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Abstract 

This thesis addresses how the motion of a camera can be tracked and determined 

from the video data captured by the camera. For reliability of the tracking and motion 

determination tasks we consider three consecutive image frames at a time in the video 

data, and examine how the camera motion as determined by such a triplet of consecutive 

images can be tracked and determined temporally. A concise quantity that captures the 

essentials of the camera motion in a triplet of images is the trifocal tensor. There has been 

much work on how the trifocal tensor can be determined from point correspondences over 

the image triplet. In man-made scenes lines are often abundant and are as indispensable 

as point features. This work focuses on how the tracking and motion determination tasks 

can be achieved by the use of line correspondences in the video data. 

This thesis first considers the degeneracy in camera motion estimation and projective 

reconstruction when image line correspondences over three views, and in particular those 

projected from linear line structures in space, are used. The observed set of lines in space 

are called critical if there are multiple projectively non-equivalent configurations of the 

camera positions that can picture the same image triplet of the lines. In other words, the 

line set is critical if their image projections to three views do not allow the three associated 

camera positions to be uniquely determined. This work examines the degeneracy of the 

camera positions from the under-determination of the associated trifocal tensor. It is 

shown here that'the matrix that leads to the determination of the trifocal tensor, termed 

the tensor estimation matrix, is useful in classifying the linear line structures. We show 

that the rank of the tensor estimation matrix is reduced to 7, 11, 15 if the observed lines 

come from a line pencil, a line bundle, and a line field respectively, which are line families 

belonging to linear line space; and 12’ 19，23 if the lines come from a general ruled surface, 

a general linear congruence, and a general linear line complex, which are subclasses of 
I 
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linear line structures. In addition, for each of the above line structures, we provide how 

many lines of the structure must at least be observable so that the full information of the 

line structure is displayed in their image data. Such critical structures are quite typical 

in reality, and thus the findings are important to the validity and stability of practically 

all algorithms related to structure from motion and projective reconstruction using line 

correspondences. 

This thesis also provides a framework of how the camera motion can be tracked and 

determined over time should the observed line structure be general enough to allow a 

unique trifocal tensor solution over each image triplet to be attained. The framework 

consists of the following: a simple line tracking algorithm that can establish line corre-

spondences from the image sequence, and an extended Kalman Filter whose application 

can recover the camera motion parameters up to projectivity. 

Synthetic data and real image experiments are both presented to illustrate the validity 

of the findings. 
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摘要 

本論文主要考量如何從視頻信息中跟縱和估計攝像機運動的問題。基於跟跟和運動估 

計的可靠性，我們考慮利用視頻信息中的三張連續圖像，研究如何從三張連續圖像估計攝 

像機運動。三視圖張量是一個從實質上描述三張圖像裏攝像機運動的簡潔方式。已經有許 

多工作關於三視圖張量如何從三圖像點對應中得到。在人造實景中，錢的數量通常比較 

多，和點特徵一樣不可或缺。我們的工作集中在如何通過視頻信息中的錢對應完成攝像機 

跟縱和運動估計。 

本論文首先考慮給定三視圖綫對應情形下，攝像機運動估計和投影重搆中的退化問 

題，尤其是使用這些綫性結構的圖像時。如果多個投影不等效的攝像機位置可以照出相同 

的圖像，這組空間中的錢被稱爲退/1^:;^1^也就是說，這個綫集合是退化的，如何從它們的 

三個圖像不能唯一確定攝像機位置。這個工作考察了由於相關聯的三視圖張量不能完全被 

決定的退化情形。用來估計三視圖張量的張量估計矩陣在分類錢性結構上非常有用。我們 

指出張量估計矩陣的秩減少到7、11、15,如果觀察到的錢分別來自一個錢組、綫群和錢 

場，它們是屬於綫性錢空間的綫族；減少到12、19、23，如果錢來自一個一般規範曲面、 

：般合同綫束和一般複合綫束，它們是綫性結構的子類。此外，對於上述每個錢結構，我 

們給出最少需要綫的數量，使得該結構的全部秩的性質都能從圖像信息中反映出來。這些 

退化的結構在現實中很常見，因此這個工作對於實踐中使用對應錢的基於運動的結構估計 

和投影重搆算法的有效性和穩定性都很重要。 

本文也提供了一個跟縱並估計攝像機隨時閒運動的框架，從三張圖像觀察到的錢結構 

足夠得到唯一的三視圖張量。該框架包括下面這些部分：首先，一個簡單的錢跟跟算法從 

圖像序列中找出對應綫；其次，應用擴展卡曼滤波器來找出攝像機運動參數。 



我們同時給出了模擬數據和實際圖像試驗來證明該工作的正確性。 
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Chapter 1 

Introduction 

This chapter begins with the motivation of this work and outlines the objectives and 

challenges in exploring the degeneracy in using line correspondences to estimate the tri-

focal tensor and camera motion. Next, the original contributions of this work are listed. 

Finally, we give a brief overview of the organization of the thesis with forward pointers 

to various chapters. 

1.1 Motivation 

The topic of this thesis is degeneracy of trifocal tensor which captures all geometric 

constraints of three uncalibrated images as its counterpart-fundamental matrix for two-

view, and camera motion estimation using line correspondences. As for line features, 

several structure and motion estimation algorithms that use line correspondences have 

been proposed in the literature [1], [2, 3’ 4]. However, the ambiguity issue possibly 

involved in the use of line correspondences has not been given as much attention as to the 

use of point correspondences. In fact, compared to points, the advantage of using lines 

are that they can be located accurately in the image and tracked reliably from one image 

to the next; available evidence suggests that the construction from lines is more accurate 

than reconstruction from points, at least if the camera calibration is known [5 . 

The rank classification of tensor estimation matrix is based on different linear line 

structures, including line pencil, point star, ruled plane, linear ruled surface, linear line 

congruence and linear line complex. These critical structures are quite typical in real-
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ity, and thus the findings are important to the validity and stability of practically all 

algorithms related to structure from motion and projective reconstruction using line cor-

respondences. 

Next, a minor part of the thesis is about camera motion estimation, which has a wide 

range of applications, such as real-time robot localization, navigation for camera-enabled 

handheld devices (mobile phones, PDAs), automatic CAD modeling, vehicle navigation. 

It is more useful to estimate motion in urban scenario where the signals from Global Po-

sitioning System (GPS) may be blocked by buildings [6]. As mobile phone and embedded 

camera are widely available, people and automobiles in downtown of city can be located 

more accurately using visual information and 3-D scene model than the use of GPS, not 

to mention the case that GPS signal is blocked by buildings. The scene characteristics of 

typical urban environment consist of regular components such as buildings with distinc-

tive points and parallel line segments, and undesired components such as moving people 

and cars (non-rigidity), trees (homogeneity), and vitreous window (lighting). 

1.2 Objective of the study 

This work aims at providing a more comprehensive treatment of the various critical con-

figurations of line structures that can be present in real scenes, and how they impact the 

determination of trifocal tensor from image data. 

We address the question of, given line correspondences over three views, what is the 

condition of the observed lines for the relative geometry of the three associated camera 

positions in space to be uniquely recoverable? There are at least two issues: what par-

ticular structure the lines in space belong to, and whether there are enough of the lines. 

In this work we deal with both the structure issue and the quantity issue, and we deal 

with them from the perspective of trifocal tensor - the 3 x 3 x 3 quantity that captures 

the relative positions of the cameras in relation to the views. We investigate whether the 

observed lines are of a too specific structure in 3-D space to allow the trifocal tensor to 

be uniquely recoverable, and if they indeed are, by how much they are shy of a general 

enough structure. We also investigate, for each of the investigated line structures, how 

many lines are minimally needed to allow the full information of the line structure to be 
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reflected in the image projections. 

A set of observed lines in space are called critical if there are multiple projectively 

non-equivalent configurations of the camera positions that can picture the same image 

triplet of the lines. We shall examine the different classes of structure of the line set that 

are critical. In all cases, we assume that the camera positions are general with respect 

to the set of lines, meaning that the images are not degenerate images like those having 

multiple lines projected to the same image line, a result of accidental alignment. 

Trifocal tensor, an important quantity in multiple view geometry, is the counterpart of 

fundamental matrix; trifocal tensor to three views is as fundamental matrix to two views. 

Trifocal tensor has drawn much attention in the last decade or so, for it can be computed 

directly from image correspondences, and its determination would allow camera matrices 

and in turn projective structure of the imaged scene to be reconstructed. 

In the case of four views, quadrifocal tensor [7] captures the relationship between 

a set of four lines that provide 9 linear equations. The reason that trifocal tensor is 

frequently used in contrast to quadrifocal tensor is the following: first, quadrifocal tensor 

contains 80 degrees of freedom with 51 admissibility constraints (nonlinear constraints), 

which is much more complicated than trifocal tensor with 26 degrees of freedom and 8 

admissibility constraints. Second, it is known that the quadrilinear tensor is algebraically 

dependent on the associated fundamental matrices and trifocal tensor, and thus does 

not add independent new constraints. Finally, four views is the maximum number for 

which such an object exists (for 5 views or more such multi-linear constraints cannot be 

conveniently captured using a single tensor), which means the tensor method does not 

extend to more than four views [7]. The above explains why there are only limited number 

of works that use quadrifocal tensor. 

Existing algorithms of determining trifocal tensor are mainly iterative and require 

initialization typically from a linear method. The degeneracy of camera motion estimation 

using linear method has been studied in a number of works. However, the works are mainly 

about the cases where point correspondences are used. There have been a few earlier 

works on the cases where line correspondences are used, but the treatment has been 

conducted with the use of direct geometric primitives namely the relative displacements 

and orientations of the cameras [8]. Since trifocal tensor has the essence of expressing the 
» 
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relative positions of all cameras in relation to the image observables in a single collective 

term, we believe the study would be simpler and the degeneracy be more easily quantified 

if the issue is pursued from the angle of trifocal tensor, and this work aims at doing that. 

Line correspondences are in many ways as indispensable as point correspondences. 

There is evidence [9, 10] that 3-D reconstruction from lines could be more accurate than 

from points. Moreover, linear line structure as the structures to be addressed in this 

paper do appear quite often in real scenes, as exemplified in Fig. 1.1. Putting it simply, 

linear line space includes three subspaces: line pencil as a family of lines that contain the 

same point and that intersect at a non-incident line (in other words, the lines are both 

co-planar and co-intersecting at a point on the plane) ； point-star (also named bundle of 

lines) as a family of lines that are concurrent at a point; ruled plane (also named field 

of lines) as a family of lines incident on a particular plane. More general than linear 

line space, linear line structures include linear line complex which are lines satisfying one 

linear constraint, linear line congruence satisfying two linear constraints, and linear ruled 

surface-lines satisfying three linear constraints. In Fig. 1.1(a) a typical linear line complex 

structure is shown. The line sets extracted from the roof of the pavilion in Fig. 1.1(b) 

and Fig. 1.1(c) are bundles of lines that belong to linear line congruence. Eiffel tower in 

Fig. 1.1(d) and the roof of the church in Fig. 1.1(e) can also be approximated as several 

sets of line bundle. The building in Fig. 1.1(f) consists of a field of lines that are coplariar 

and they also belong to linear line congruence. 

Next, it provides a framework for determining camera motion integrating Kalman 

Filter and trifocal tensor. The goal is the following, compute the position and velocity of 

the camera from a image sequence capturing a static scene. Generally the 3-D information 

is not directly accessible, thus, we can foresee the advantage to estimate camera motion 

without knowing any 3-D structure using trifocal tensor. 

1.3 Challenges and our approach 

The degeneracy problem is challenging because there are multiple perspectives consid-

ering degeneracy, such as degenerate motion of the camera, and degenerate structures 

(point, lines). Besides, line correspondences are in many ways harder to handle than 
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i/iil ^ S li瓶 
(a) (b) (c) 

• 國 _ 
⑷ . （e) (f) 

Figure 1.1: Scenes consisting of linear line complex and linear line congruence (in partic-
ular the sub-class point-star, and ruled plane) respectively. 

point correspondences, for the reason that their representation, say the Pliicker's coordi-

nates, contain nonlinear constraint (Pliicker equality) between the coordinates. And the 

projection of lines makes the nonlinearity in Pliicker's coordinates even more complicated. 

However, the key issue is the way that we treat the degeneracy of tensor estimation - a 

novel perspective from the rank of tensor estimation matrix, which allows a systematic 

,classification of degenerate linear structures. 

Linear features have several advantages for tracking, however, line tracking is difficult 

primarily because there is no strong geometric constraint available, compared to point 

tracking where epipolar constraint decreases the searching dimension. Matching lines as 

individual or group proves to be difficult. Applying epipolar constraint to ending points of 

line segment is not reliable. Secondly, in engineering practices, the extraction of lines has 

some deficiencies in connectivity and the piecewise linearity of the real line in 3-D. Thirdly, 
» 
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the partial occlusion gives considerable trouble as the 3-D object model is unknown. In 

data acquisition process, we may only have the blurred images in video due to the finite 

shutter speed. Lastly, the robustness and computational complexity are always the keen 

considerations for real time video applications. 

For camera motion estimation, the scene complexity in reality comes from non-rigidity, 

lighting effect, homogeneity and so on. The problem of computational stability and 

degenerate motion and structures also effect the algorithm. Additional challenges rise 

from projective to Euclidian (R, t) measurement and similarity between small translation 

and rotation. To overcome such difficulties, we have made the following assumptions to 

simplify the problem: 1) Target scene: regular urban scene consists of buildings and roads 

(straight lines); 2) Scene rigidity and smooth motion (for filtering); 3) Dense sample rate 

with respect to motion velocity; 4) Near planar motion. 

Our approach integrates the use of trifocal tensor, extended Kalman Filter (EKF). 

The process for camera motion estimation can be decomposed to three steps: 1) Feature 

tracking across views; 2) Relative camera motion estimation with respect to the first cam-

era position; 3) Model matching for motion in Euclidean space. The proposed approach 

holds the following advantages. First, linear feature is usually sparse, allowing more ac-

curate tracking result than point feature [9, 10]. Secondly, different lines detected in a 

single image are likely to be relatively distant from each other, in contrast to distinc-

tive point features that are usually locally concentrated. Therefore, line correspondences 

across multiple views may capture more accurate information than points. 

1.4 Original contributions 

The major contributions presented in the thesis are listed in Table. 1.1. The author 

published two papers [11，12] related to this topic. 

1.5 Organization of this dissertation 

The thesis is organized as follows: 

We start in Chapter 2 by giving an introduction about the ideas behind degeneracy of 
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Table 1.1: Original contributions. 
1. Rank classification of tensor estimation based on line geometry; 
2. Proof of rank properties in 5 general Lemmas in algebra; 
3. Proof of rank 7’ 11，15 in tensor estimation for line pencil, point star and ruled 

plane respectively; 
4. Proof of rank 12,19,23 in tensor estimation for linear ruled surface, linear line 

congruence and linear line complex respectively; 

trifocal tensor estimation and camera motion estimation, and present a survey of previ-

ous research related to our problem. Chapter 3 encloses three-view geometry and trifocal 

tensor, including trilinearities, line transfer, and computation of the trifocal tensor. Alge-

braic line geometry related to this work is described in Chapter 4, including Pliicker line 

coordinates, line projection matrix and classification of linear line structures. We describe 

the critical three-view configurations for trifocal tensor determination in Chapter 5. Line 

tracking and camera motion estimation framework are proposed in Chapter 6. Experi-

mental results of both simulation and real data are presented in Chapter 7. Finally we 

summarize our findings and highlight possible future work in Chapter 8. 

o 
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Chapter 2 

Related Work 

In this chapter, we will first outline some of the furiciamental concepts in degeneracy of 

trifocal tensor estimation, and give a brief survey of previous work related to the problem, 

specifically the work regarding line correspondences and line geometry. The survey is 

brief, as the number of related work is limited. It is next shown about the related work 

on camera motion estimation. The intention here is to outline some of the shortcomings 

in previous work and to gain some insight about possible solutions to the problem. 

2.1 Critical configuration for motion estimation and 

projective reconstruction 

In this thesis we are concerned primarily with recovering camera displacement or camera 

motion from visual observations. The problem has been studies both in photogrammetry 

and computer vision community. Point and line features can both be used in motion 

estimation from multiple views. Certain algebraic properties of correspondences over 

multiple views are summarized in [13] and [7 . 

2.1.1 Point feature 

Critical configuration of point features, in particular, has already drawn much attention 

in the literature, and the studies have been about the condition of the point features that 

do not allow the camera motion to be determined uniquely. 
> 
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Two-View. In the two-view case, the only critical setting is that all 3-D points and 

camera centers in space lie on a ruled quadric [14]. However, [15] has shown that not all 

ruled quadric are critical. The critical configurations and their conjugates for two-view 

only include the following: Hyperboloid X Y = ZT - centers on a common generator and 

Cone X2 + Y2 = Z2 - camera centers on different generators, Hyperboloid X Y = ZT -

centers not on a common generator and itself, Cone X^ + Y^ = Z^ - one camera center 

at the vertex and itself, two planes X Y = 0 - cameras on one plane, but not on the 

intersection and itself, two planes X Y = 0 - one camera on the intersection, the other not 

and itself, single plane X^ = 0 - both cameras on the plane and itself, cone X^ + Y^ = 7? 

-both cameras on the same generator, but not the vertex, two planes X Y 二 0 - camera 

centers not on the same plane. Another important result is that with two perspective 

views of 5 point correspondences, there are 10 possible solutions to structure and motion 

16 . 

Three-View. In contrast with two-view, there is no such single "critical surface" for 

point correspondences in three-view [17]. [18] has shown that in general there is a unique 

solution for relative orientation of three-view using 4 point correspondences on a fixed 

object. However, multiple solutions are possible in rare cases, even when the 4 points 

are not coplanar. They expressed the rotations in quaternion form and use an equivalent 

form of "Longuet-Higgins equations" for motion. The result is that given the perspective 

projections of four points on an object at three views, then there is almost always a unique 

solution for the motion and structure of the object. 

19] pointed out that three images of 6 points is subject to a three way ambiguity, then 

in [20]，the author proposed that the three way ambiguity is preserved as long as the optical 

center of camera remains on a certain quadric surface and the ambiguity does not hold 

only if the optical center leaves the quadric surface. The proof depends on the properties 

of certain Cremona transformation of the plane. The Cremona transformation relevant to 

reconstruction from images of six points is of type , e?]. In brief, for noncollinear sets 

of six points from three views, Cremona transformation of type yields a linked 

triple which corresponds to three way ambiguity. In addition, the three way ambiguity 

can be resolved by a further motion of camera! 

Generally 7 points are enough to allow the trifocal tensor to be retrieved uniquely. 
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However, it has been shown that though a single "critical surface" is not present, there 

are still critical configurations in the three-view case, which include the configuration 

of the cameras and 3-D points all lying on the intersection of two quadric surfaces, the 

configuration of all 3-D points being coplanar and the three cameras being off the plane, 

and the configuration of all points lying on a twisted cubic and at least one of the three 

cameras being embedded on the cubic [21]. [17] proved that the critical configuration is a 

finite set of 10 points (including the camera centers) that are the intersection of a linear 

system of cubic surfaces. The 10 points must satisfy the three-view geometry, hence a 

general set of 7 points from 3 general cameras does not lead to any ambiguity. 

N-View. As for the n-view case, the critical configuration is that all 3-D points 

and cameras lie on the intersection of two distinct ruled quadrics [22]. [23] investigated 

critical configuration for projective reconstruction from multiple images taken by a camera 

moving along a straight line. It is shown that the image sequences from a configuration 

consisting of any number of cameras lying on a straight line and any number of points 

lying on a twisted cubic, and a set of points and cameras all lying on a rational quartic 

curve. 
雔 

A classification of multiple-view critical configurations [23] is provided here for an 

overview. 

• If the three quadrics meet in isolated points, then the configuration is critical of 7 

of those points, and the three cameras defining the quadrics 

• If the three quadrics are the same, then all the cameras in the conjugate configu-

„ ration are collinear. The critical set does not consist of the complete quadric, but 

only of a rational quartic curve lying on the quadric. The conjugate configuration 

is a twisted cubic/line configuration. •* 

• If the three quadrics are linearly dependent (pencil of quadrics), then the critical 

configuration is elliptic quartic curve (the intersection of the quadrics) and any 

number of points and cameras lying on this curve. 

• If three quadrics meet in a twisted cubic, the critical configuration is any number 

of points lying on the twisted cubic and cameras on an arbitrary line. 
» 
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• If the three quadrics meeting in conics or lines, then all these possible intersections 

are critical configurations. 

15] summarized the latest results on critical configurations from multiple views. 

The reason of reviewing the previous work about critical configurations on point fea-

tures is to gain some insight about the methodologies and research perspectives on the 

subject, which would definitely enhance our studies to line feature. 

2.1.2 Line feature 

A pioneering work was done by Buchanan [24’ 25] who pointed out that (3, 6, 5)-congruence 

is a critical line set (A congruence of order n, class m, and rank r is referred to as a 

(n, m, r)-congruence; the number of lines that is constant for almost all points of 3-space 

is defined as the order of line congruence, the finite number of lines that a general plane 

in 3-space contains is defined as its class, and rank of congruence is defined as the finite 

number of points P on a line 1 in 3-space with the property that 1 together with two ele-

ments of congruence through P lie on a plane, for example, (1,0,0)-congruence is called 

the point-star), and suggested a few line sets that defeat the Liu-Huang algorithm [26] of 

recovering motion and structure from line correspondences. 

Maybank [5] continued Buchanan's work by choosing to use Semple's representation 

to describe lines so as to parameterize the line congruence by surfaces of degree 6 in 

while Grassmann coordinates express the line set by a surface of degree 9 in V^. However, 

Semple's representation does not have a direct way of expressing the projection of 3-D 

lines to image lines. In Maybank's work it is also shown that line congruence can be 

represented by a general plane of or a quadric hypersurface of It is shown that 

(3,6,5)-congruence is a critical set of lines for reconstruction from three images taken by 

uncalibrated cameras. In Semple's parameterisation of lines of a line congruence of 

type (3’ 6, 5) is represented by a surface in V^ of degree 6 known as a Bordiga surface. 

Then, a general Bordiga surface containing the rational normal quartic parameterises a 

critical line congruence. Next, if three uncalibrated cameras are used to obtain images 

of 10 lines in general positions, then reconstruction from these images is unique up to a 

collineation ambiguity in space. If cameras are calibrated, then it is known that six lines 
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are sufficient for a unique reconstruction. 

Navab and Faugeras [27] addressed the analysis of the critical sets of lines in the Eu-

clidean domain using two equations from Liu and Huang [26] and related the degeneracy 

analysis to the Liu-Huang algorithm. The treatment is however in terms of geometric 

primitives explicitly related to individual camera positions and orientations, not the col-

lective quantity trifocal tensor. 

As discussed earlier, trifocal tensor is a concise quantity that captures how the posi-

tions and orientations of all cameras are related to image observations. We believe there 

is advantage in treating the degeneracy issue in terms of trifocal tensor, especially when 

observables are not direct 3-D but only image data. In particular, as we shall elaborate 

in this report, the rank of a matrix - the matrix that leads to the determination of the 

trifocal tensor, which hereafter we shall refer to as the tensor estimation matrix - could 

be a measure of the degeneracy of the observed line set, and the parallel measure in direct 

geometric primitives is not as accessible. 

The work of Stein and Shashua [28] is among the very few that ever look at the 

degeneracy of'line structures from the viewpoint of trifocal tensor. The work focuses on 

the case that the observed line set is a linear line complex (LLC), and points out that in 

such a case the tensor estimation matrix has the rank reduced to at most 23. It is shown 

that the ambiguity of tensor estimation from LLC structure is at most an 8-fold ambiguity. 

As the null space span the admissible tensors, three standard correlation matrices of the 

admissible tensors can be spanned by three 1-parameter family of matrices. They also 

observed that only one of the 8 solutions satisfies all the admissibility constraints, as the 

rank-2 constraint of the standard correlation matrices is closed under linear superposition. 

An algorithm for recovering trifocal tensor in the LLC case was proposed as in Table. 2.1. 

Besides, they found that the rank of estimation matrix from three-view of coplanar points 

is at most 21. However, the null space includes admissible tensors, thus a unique solution 

is not available. 

There are however line structures other than LLC that can also show up in reality. 

This work aims at providing a more comprehensive treatment of the various critical con-

figurations of line structures that can be present in real scenes, and how they impact the 

determination of trifocal tensor from image data. The problem is challenging because 
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Table 2.1: Algorithm for recovering trifocal tensor in the LLC case. 
1. Robust estimation to determine line correspondences which belong to the LLC. 
2. Create 3 'ghost tensors'. 
3. Use point-line-line correspondences from three view to compute the tensor 

estimation matrix A. 
4. Find the 4th vector spanning the null space of A. 
5. Find three scalars so that an admissible tensor is obtained using the 

admissibility constraints. 

line correspondences are in many ways not as easy to handle as point correspondences, 

for the reason that their representation, say the Pliicker's coordinates, contain nonlinear 

constraint (Pliicker equality) over the coordinates. 

In terms of the 9 admissibility constraints, we do not address this issue to every line 

structures for the following reasons: first, many degenerate line structures only provide 

linear constraints on tensor estimation from which trifocal tensor can not be recovered 

even with the full use of admissibility constraints; secondly, the tensor estimation from 

LLC has been addressed already in Stein and Shashua [28]. These constraints can not 

applied in a explicit way because they are nonlinear constraints of higher degrees. 

2.2 Camera motion estimation 

Camera motion estimation consists of three parts: feature extraction (not included be-

low), feature tracking and camera motion determination. A brief summary of different 

approaches is given below. Features that can be used in determining camera motion 

include points, junctions and lines. 

To track features across multiple images, point is the most common feature to establish 

correspondences [29]. The well-known KLT tracker is among this category. However, 

point features may not be available in large quantities and generally, the mismatch and 

unreliability of point features are larger than lines. As lines are determined by a set of 

pixels, it is possible to locate lines more accurately than points [30] given the homogeneous 

attribute for points within a small region. Thus, We primarily focus on lines. 
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2.2.1 Line tracking 

Although there are many literature in line tracking, it is still a difficult task. The end 

points and connectivity of line feature are not stable. And there is no strong disambiguat-

ing geometric constraint available for lines [31]. Early approaches to tracking were mostly 

edge-based because they are computationally efficient and stable to lighting changes. The 

existing methods can be separated into two groups [32]: one looks for gradients in the 

image around a first estimation of object pose and it is fast and general; another approach 

extracts image contours and fits the model outlines to the contours, and this is slow, less 

general, and more robust. 

First, we summarize some model-based tracking methods. Drummond and Cipolla 

33] described a robust real-time wire-frame tracking system that combined the graphical 

rendering with constrained active contour tracking. Exponential map is used to represent 

of transformation of structure between two frames and this inter-frame transformation can 

be approximated by a linear term. Based on the strong feature of the object model, the 

search for intensity discontinuities is limited to one dimensional. Binary space partition 

trees are used to dynamically determine the visible features of the model in real-time. The 

whole system is shown in Fig. 2.2.1. Least-squares algorithm minimizes the transformed 

edge position and the actual edge position when estimating the transformation across 

frames. Instead of using RANSAC or M-estimator, it incorporates iterative reweighted 

least squares (IRLS) to improve its robustness to occlusion. 

Figure 2.1: Drummond and Cipolla's model-based tracking system. 
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In contrast to the methods that rely on matching points sampled on edges, an alterna-
» 
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tive is to globally match model with straight line segments [34] extracted from the image 

based on the "Mahalanobis distance". Given the attribute vector X ^ of a model and the 

attribute vector X^ of a tentative segment, the Mahalanobis distance between X ^ and 

Xd can be defined as 

d={Xm- XdViAm + A d ) — - X , ) (2.1) 

where Am and A^ are the covariance matrix of Xm and X^ respectively. The minimization 

is performed using the Levenberg-Marquardt algorithm. 

35] proposed to apply direct optimization on gradients, for example, maximize the 

gradient norm along the model reprojection. Some chose to maximize the correlation 

between the predicted and measure gradient norm plus an additional term to constrain 

the motion. They require a very good initial estimate to converge to a correct pose. 

Next, let us move on to tracking without 3-D models. It is possible to simultane-

ously estimated both camera motion and the scene geometry without priori 3-D models, 

known as Simultaneous Localization and Mapping (SLAM) that concerns about global 

representation, in contrast to Structure from Motion (SFM) that focuses more on local 

reconstruction. It robustly estimates the relative poses between three consecutive cameras 

using RANSAC in three-view. 

Fitzgibbon and Zisserman [36] described an automatic camera tracking method involv-

ing the following steps: (1) compute interest points in each frame; (2) match the interest 

points between neighboring frames using robust estimation of multiple view tensors; (3) 

compute a projective reconstruction from the interest point matches; (4) compute a metric 

reconstruction. They used an occupancy matrix to identify whether 3-D points are visible 

in certain views. The minimization of re-projection error is achieved using bundle adjust-

ment. If the prior knowledge about the camera parameters, camera motion and scene 

constraints are available, the optimal estimate must minimize the bundle error subject to 

these constraints, thus, they formulated a penalty function considering the priors. 

Schmid and Zisserman [31] used both grey level information and the multiple view 

geometric relations for image triplets. The line segments are extracted by applying Canny 

edge detector. Their method treats short range motion and long range motion differently. 
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For short range motion, each segment is treated as a list of points so that neighborhood 

correlation is a measurement of similarity. The corresponding points could be obtained 

by searching along each line segment with a winner takes all strategy. In the F-guided 

matching, the matching score for a line pair is computed as the average of the individual 

correlation score for the points of the line. 

Last but not least, the tracking by detection methods make the system more realistic 

in applications. In [37], the line detector/tracker can be incorporated together. Candidate 

points (edgels) for lines can be found from sparse sampling of image data by applying 

either the isotropic or oriented detector to a randomly chosen small region of the image, 

and it uses a RANSAC grouper to find the line segments based on the edgels. The line 

segment is tracked by a small number of linear searches normal to the line at its predicted 

position. Given two previous views, line position in the third view can be predicted. The 

robust estimate of the true line segment is obtained from RANSAC optimization. The 

unguided tracking continues until the structure based tracking can be established. 

Rosten and Drummond [38] proposed a real-time 3-D model-based tracking by comb-

ing point and line features, which have demonstrated high performance. They integrated 

the two classes of features in a two component Gaussian Mixture Model (GMM) with 

preconditions and postconditions that are useful in understanding the behavior of corre-

sponding features as shown in Table 2.2. 

Their fusion algorithm is as the following: 1. New frame arrives and point features are 

detected. 2. Correspondence are found on the model. 3. The correct-match probability is 

computed from the correspondence score. 4. Pose is robustly computed for both modes, 

and ‘the most probable mode is kept. 5. The new pose is used to initialize an edge 

tracker. 6. Features are back-projected on to the model. 7. The learned relationship 

.between matching score and matching probability is updated. Points are analyzed using 

Scale-Invariant Feature Transform (SIFT) [39]. The maximum-likelihood is found not 

by iterative reweighted least squares (IRWLS)，which will not succeed because of local 

maxima, but by robust technique - Generalized Monte-Carlo based technique such as 

simulated annealing. 

40] provided a comprehensive study about the geometry and match of lines over multi-

ple views. They introduced a geometric constraints in two-view matching - epipolar beam 
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Table 2.2: Point based tracking and edge based tracking. 
Point based tracking 

Preconditions 
3-D point cloud/model 

Postconditions 
Produces robust differential measurements 
with approximately Gaussian posterior 
Posterior measurement covariance is inaccurate 

Edge based tracking 
Preconditions 

Geometric 3-D edge model 
Accurate pose prior 

Postconditions 
Non-Gaussian posterior 
Drift-free measurement 

as shown in Fig. 2.2. However, as the end points of line segments are not reliable, there 

is very limited usage of this property. Their short baseline matching between two views 

is: 1. Determine the curves in the second image which satisfy the epipolar constraints as 

putative matches. 2. For each putative match, determine the similarity score based on 

normalized cross-correlation - photometric constraint. 3. The matches are decided by a 

winner takes all scheme based a similarity scores. Each curve in the first image can only 

match one curve in the second. In implementation, the linear features are extracted by 

Canny edge detector. The similarity score for a pair of curve segments is computed as 

the average of the individual edgel correlation values. 

41] described an algorithm for matching line segments when camera motion is ap-

proximately known. They suggested that tracking usually involves two steps. First is 

a initialization process for a first estimate, and second is the use of K aim an filter to 

track frame by frame. [42] presented a robust model-based tracking algorithm based on 

EKF, and they used a test of mean criterion for initiating backtracking. [43] considered 

the propagation of uncertainty for matching junctions. The feature extraction consists 

of edge detection using an optimal filter [44], followed by a Hough transform line finder. 

The uncertainty of end point location of line segment is measured by a probability density 
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Figure 2.2: The epipolar geometry reduces the search space for line segments correspond-
ing to 1. 

function. Then, the uncertainty propagates to epipolar lines. In matching junctions, the 

similarity is based on two junctions, junction topologies, and physical constraints. 

In summarize, although tracking itself is by and large a solved problem, tracking lines 

using three-view geometry still deserve further exploration, and we aim at doing that. 

2.2.2 Determining camera motion 

In the early days, people estimated camera motion using point features from two images 

even when the relative position of the two cameras was unknown. 

The algorithms fall into two classes: batch algorithms and recursive algorithms. In 

batch algorithms, one is linear algorithm with close form solution, the other is the opti-

mization of nonlinear objective function. Recursive algorithms require models for motion 

and measurement, and the application of extended Kalman Filter. 

Linear algorithm, close form solution. [30] proposed a closed-form solution to 
/ 

lotion and structure from line correspondences. It requires rigid scene and a minimum of 

13 lines over three perspective views. Essentially, their derivation is in Euclidean space, 

and the three intermediate parameters (E,F, G) can be regarded as the "essential trifocal 

tensor", compared to essential matrix in two-view case. In the algorithm, E, F, G is solved 

first, and then two translation vectors can be cleterrriiiied up to scale, and finally, rotation 

matrices is determined. It can be used as a initial guess for an iterative process. 

30, 45] are some other linear algorithms. 

Factorization. Tomasi and Kanade [46] is a pioneering work in this category, which 
» 
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Figure 2.3: Orthogonal projection and paraperspective projection. 

assumes orthographic projection as in Fig. 2.3(a). Given P feature points over F frames 

in an image stream, then horizontal feature coordinates are incorporated into an F x P 

matrix U with one row per frame and one column per feature point. Similarly, matrix 

V is built. U and V form a 2F x P matrix W , called measurement matrix. Then, it 

can be converted to registered measurement matrix W , which is fully based on image 

measurements. In the algorithm, first is to compute the singular value decomposition of 
~ lU _ ~ 

W , then rotation matrix R and shape matrix S can be computed based on SVD of W . 

In the presence of noise, a steepest descent minimization can be applied to a objective 

function of W. The basis of the factorization method is the rank theorem - without 

noise, the registered measurement matrix W is at -most of rank three. The advantage 

of factorization algorithm is that it does not require any prior knowledge about camera 

motion and object shape. But its orthographic projection model limits its applications to 

certain types of camera motions, because orthographic model contains no notion of the 

distance from the camera to the object. 

47] loosened the orthographic projection model in [46] to para-perspective projec-

tion model as in Fig. 2.3(b). They also provided an iterative minimization method for 

perspective refinement of para-perspective solution. 
Bundle adjustment. Bundle adjustment in recovering motion and structure mini-
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mizes the reprojection error between the estimated model and image measurements and 

it can produce jointly optimal 3-D structure and camera pose parameters. A variation of 

it is the interleaved bundle adjustment [48], It separates the minimization process into 

two steps to speed up the algorithm. 

49] was a recent work applying bundle adjustment to estimate camera motion. It 

computes the trifocal tensor, triangulate the 3-D points using optimal backprojection, 

resection cameras and bundle adjust the reconstruction over all views in the sequence. 

50] gave a comprehensive survey about the theory and methods of bundle adjustment. 

Classically, bundle adjustment is formulated as nonlinear least squares problem, and the 

cost function is quadratic in feature reprojection errors. Modern bundle adjustment uses 

non-quadratic M-estimator-like probabilistic models to handle outliers more integrally, 

such as additional penalties to overcome overfitting. Bundle adjustment is essentially a 

parameter estimation problem. Nonlinear least squares (NLS) is the most basic parame-

ter estimation method, and it minimizes the weighted Sum of Squared Error (SSE) cost 

function. For Gaussian noise, it provides the optimal solution; for non-Gaussian noise, 

Gauss-Markov theorem states that least squares gives the Best Linear Unbiased Esti-

niator (BLUE) for linear model. Other models include robustified least squares (more 

realistic likelihood model), intensity-based methods (error model is based on intensity 

residuals), implicit models. Numerical optimization methods include Newton's method,, 

Gauss-Newton method, Levenberg-Marquardt method. Constrained Problems can be 

solved by Sequential Quadratic Programming (SQP). Network optimization is applicable 

to solve complex parameters. 

Recursive, point feature, trifocal tensor. A recent work integrated extended 

Kalman Filter and trifocal tensor in camera motion estimation [51]. Kanade-Lucas-Tmasi 

(KLT) tracker is used to extract point features and track them across views. In the initial-

ization stage, eight-point algorithm using epipolar geometry plus the RANSAC algorithm 

provides a rough estimate of the relative pose between the first two frames. Next, in 

the EKF stage, constant velocity model is used as the motion model of the dynamic 

system, and measurement model is based on trifocal tensor constraints. It requires no 

prior information about the scene structure. In particular, it is the trifocal tensor point 

transfer function. They also proposed an additional structure updating step consisting of 
I 
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N identical EKFs for each model point. 

In [52], the object motion model is separated as translational motion model and rota-

tional motion model. The translational model assumes nth derivative of object position 

is constant, then, the model can be described by 3n parameters. The rotation matrix is 

written as the unit quaternion, 

q = (91,^2,93,94)^ = (cos(^/2),cjsm(0/2)) (2.2) 

where cu is the axis of rotation. The solution can be obtained with a filter such as an 

lEKF. 

53, 54, 55] are some other EKF-based algorithms. 

To conclude, although camera motion estimation has been investigated for a couple of 

years, there is still a room to integrate feature tracking and motion determination together 

with the use of trifocal tensor and line features. 

1 



Chapter 3 

Preliminaries on Three-View 

Geometry and Trifocal Tensor 

This chapter is about the fundamentals of camera geometry, two-view geometry and three-

view geometry. It begins with projective spaces and transformations, and summarizes the 

relationship of camera matrix, fundamental matrix and trifocal tensor. It also covers the 

trilinearities among three-view and line transfer. An linear algorithm for trifocal tensor 

based on line correspondences will be discussed as the foundation of later chapters. 

3.1 Projective spaces V^ and transformations 

Projective space is a set of elements constructed from a vector space consists of all vectors 

that "are equal up to a non-zero scalar multiplication. A 3-D point in space is represented 

by a homogeneous 4-vector in V^ as 

X �[：1：1，3；2，0：3，2：41了 (3.1) 

while its Euclidean representation in E^ is X = [xi/x4,X2/a;4, All points with 

= 0 in V^ refer to points at infinity. 

Projective representation of 3-D plane is also a 4-vector $1. Suppose a 3-D plane 

is given by piXi -\-p2X2 +P3X3 + P4T4 = 0, then the plane ft is expressed by homogeneous 
I 
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vector 

^ �[Pl，:P2,P3,P4r (3.2) 

Projective representation of 3-D line is covered in Chapter 4. 

Projective transformation of points. A 4 x 4 matrix H captures the projective 

transformation on V^ 

X' = HX (3.3) 

The hierarchy of transformations. The 15 degrees of freedom of projective transfor-

mation are accounted for as follows: 7 for similarity transformation, 5 for affine scalings, 

and 3 for projective part of the transformation. Meanwhile, 7 degrees of freedom are as 

3 for rotation, 3 for translation, and 1 for isotropic scaling. 

A t A t 
Pproj = , Pa// = 

V^ V 1 

sR t R t 
Psim 二 5 '^Euclidean ~ 

1 ( F 1 

3.2 The trifocal tensor 

In this section, we discuss briefly about the geometry of single view, two-view and con-

centrate on three-view geometry and trifocal tensor. 
Camera Geometry. 
Pinhole cameral model captures the relation between 2-D image of an object taken by 

a camera and the 3-D geometry of this object shown in Fig. 3.1. With this, any 3-D point 

X can be projected to a image point x in Eqn. 3.4. 

Camera matrix. Camera matrix is the projection matrix that captures how a 3-D 

point (expressed in homogeneous coordinates of V^) is related to its image projection 

(expressed in homogeneous coordinates of V^). It is the 3 x 4 matrix P in 

X = PX = K M X (3.4) 
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Figure 3.1: Camera Model. 

P has 11 degree of freedom. K and M presents the intrinsic and extrinsic parameters 

matrix of the camera respectively. 

f 0 p, 

K = 0 f Py (3.5) 

0 0 1 

is called the camera calibration matrix, f is the focal length, and px, Py are the coordinates 

of the principle point on image plane. 

Assume that camera motion is rigid, M can be extended to 

M = [R t] (3.6) 

where R, t are respectively the rotation matrix and translation vector that define the 

camera's position in space with respect to the reference coordinate frame. In particular, 

R can be expressed by the Euler angles a, P, 7 as Eqn. (3.7): 

_ "1 「 "1 「 —I 

1 0 0 cos(P) 0 sin((3) cos(j) —s切(7) 0 

R = 0 cos{a) -sin{a) 0 1 0 sin{-f) 005(7) 0 (3.7) 

0 sin{a) cos(a) 一sin(j3) 0 cos{P) 0 0 1 
- J L J • 

Camera-Motion. R and t can be parameterized by a, /?, 7 and x,y,z respectively. 

To compute camera-motion means to determine R and t (up to scale), or equivalently, 

determine a, jS, 7, x, y, z directly from the image observations. 

Decomposition of the camera matrix. Suppose camera matrix P is given, then the 
39 
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Figure 3.2: Two-view geometry and fundamental matrix. 

camera center, orientation, and internal parameters K can be retrieved from P. Camera 

center C satisfies P C 二 0. Applying SVD to P (see Appendix.), the right null-vector can 

be obtained. For the camera orientation R and internal parameters K，from 

P = [M| - MC] 二 K[R| — RC] (3.8) 

where C is the camera center in the world coordinate frame. Then, K and R can be found 

as M = K R using the RQ-decomposition, which decomposes a matrix to the product of 

an upper-triangular matrix and an orthogonal matrix. 

Camera line projection matrix. Suppose the camera matrix that projects 3-D 

point to image point is the 3 x 4 matrix P �（P|p). Then the 3 x 6 line projection matrix 

3，4] that projects 3-D line (in the Pliicker coordinates as a 6-vector) to image line (in 

the projective coordinates of V"̂  as a 3-vector) is 

P �[de力(P)p-T|[p]xp]‘ (3.9) 

Two-View Geometry. In two-view geometry, fundamental matrix captures all con-

straints of epipolar geometry. Geometrically as in Fig. 3.2，epipoles e, e' are the points 

of intersection of the line joining camera centers with the image plane. Baseline CC'is 

the line joining two camera centers C, C . Epipolar plane Ĥ r is a plane containing the 

baseline. Epipolar line 1, 1' is the intersection of epipolar plane with the image plane. 
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Suppose the point correspondence x, x' satisfy 

X' = H冗 X (3.10) 

we have 

1' = e' X X' = [e']xH冗X = Fx (3.11) 

Fundamental matrix is defined as F = [e'jxHTr. The rank-2 matrix F maps from 2-D to 

1-D family. 

Definition 3.1. Fundamental matrix F is the 3 x 3 rank-2 homogeneous matrix that 

satisfies 

X'了 Fx = 0 (3.12) 

for all point correspondences x, x' in two images. 

Properties. 

1. Epipolar lines 1' 二 Fx，1 = F了x'; 

2. Epipole Fe = 0，e'^F = 0; 

3. F has 7 degrees of freedom; 

4. Pure translation, F 二 [e']x has only 2 degrees of freedom; pure planar motion, F has 

6 degrees of freedom. 

F can also be calculated from epipole and camera matrices, 

F = [e']xP'P+ (3.13) 

where P+ is the pseudo-inverse of P, i.e. PP+ = I. 

Given fundamental matrix F, projective ambiguity is the only ambiguity for camera 

matrices. Camera matrices may be chosen as P = [I|0] and P' = [[e']xF|e']. The general 

representation is given by 

P = [I|0], P' = [[e']xF + eV^lAe': 

where v is any 3-vector and A is a non-zero scalar. 
» 
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Figure 3.3: Three-view geometry and trifocal tensor. 
Three-View Geometry. Compared to two-view geometry, where fundamental ma-

trix captures all geometric relations across two views, trifocal tensor encodes the geometric 

relationship for three views. 

In three-view, three back-projected lines meet in a single line in 3-D, and it provides 

constraints on lines. We denote the line correspondence as k, /J, and camera matrices 

for three views as P = [I|0], P' = [A|a4], P" = [B|b4]，where A, B are 3 x 3 matrices 

that represents infinite homographies from the first to the second and the third cameras 

respectively. Then, the incidence relation is 

= F T J " (3.14) 

where 

Ti = - a4bf (3.15) 

where â , b̂  are columns in camera matrix P'’ P" respectively. 

Definition 3.2. {Ti, T2, T3} is the matrix notation of trifocal tensor. 

F = F [Ti T2 T3] r (3.16) 

Note: trifocal tensor only involves image coordinates, not S-D structure. 

Based on trifocal tensor, line-line-line, point-line-line, point-line-point, point-point-

point relations can be derived [7 . 

Tensor slices. 
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The properties of tensor slices can be found in [56]. Here only a brief summary is 

stated. Three matrices E ĵ, W^, Gs are obtained from the dot products of the tensor with 

some arbitrary vector 5. Three types of dot products produce three types of families: E ,̂ 

are homography matrices where Ej is a collineation mapping from view-1 to view-2 

via the plane determined by camera center C" of the third camera and the line 8 in view-3; 

likewise, W<j is the homography mapping from view-1 to view-3 via the plane formed by 

camera center C of the second camera and the line 5 in view-2. Matrix G(j is a correlation 

matrix mapping the dual image plane of view-2 to points in view-3. 

When 6 is chosen to be (1，0’ 0)，（0，1’ 0), (0’ 0’ 1)，Ei, E2, E3 are call standard homog-

raphy slices of the tensor. Similarly, Gi, G2, G3 are called standard correlation slices of 

the tensor. 

Admissibility constraints of the trifocal tensor. 

The tensor with 27 coefficients while the number of degrees of freedom is only 18 

(It can be accounted as the three camera matrices (33 parameters) minus the degrees of 

freedom associated with any arbitrary projective frame (15)). Therefore, there must be 9 

algebraic constraints for trifocal tensor. There is no other constraint for trifocal tensor. 

We used the correlation contraction form for the tensor. Three groups of admissibility 

constraints are: 

1. (7 constraints) Rank{6%^'') = 2 for all S. Gi ’ G2，G3 are of rank-2. 

2. (1 constraint) Rank{null{Gi),null{G2),null{Gs)) = 2. 

3. (1 constraint) Rank{null(G'^),null(Gl),null{Gl)) = 2. 

Camera matrix, fundamental matrix and trifocal tensor. Suppose P, F and 

T denote camera matrix, fundamental matrix and trifocal tensor respectively. 

Calculating T from P. Given camera matrices for three views P = [I|0], P ' = 

A|a4]’ P � = [B|b4], in which 3 x 3 matrices A and B represents infinite homographies 

from the first to the second and the third cameras respectively. 

Then the matrix notation of trifocal tensor {Ti , T2, T3} can be written as 

Ti = - a4bf (3.17) 

•r 

Extracting F from T. 3 x 3 matrices F21, F31 are fundamental matrices between 
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the first and the second and third views respectively, then 

F2i = [e']x[Ti，T2,T3]e� 

F3i = [ e � ] x [ T r ’ T l ’ T � ] e ' (3.18) 

Extracting P from T. Camera matrices can be retrieved from trifocal tensor only 

up to projective ambiguity. The first camera can be chosen arbitrarily as P = [I|0]. Then 

P '= [[Ti,T2,T3]e�|e'] (3.19) 

Taking the projective ambiguity in to account, we have 

P' = [[Ti,T2, Ts]e" + e'v^lAe'] (3.20) 

for some 3 x 1 vector v and scalar A. Obviously the fundamental matrix between camera 

pair P，P' is F21. Suppose P' is chosen as Eqn. (3.19), then the projective world frame is 

fixed so that P � can be defined uniquely up to scale, 

p � = [(e�e�T - I)[T� ,T� ,T�]e '|e"] (3.21) 

NOTE: Details can be found in [7]. 

Trilinearities and transfer. Line transfer from corresponding lines in the second 

and third views to the first is given by [7 . 

h = 卿 ' (3.22) 

where I'j, /JJ = 1’ 2,3 are image coordinates of 1, 1', 1〃 respectively. 
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3.3 Computation of the trifocal tensor-Normalized 

linear algorithm. 

To calculate trifocal tensor from line correspondences in three-view, it is easy to verify 

the line-line-line correspondence from line transfer, 

= (T (3.23) 

The equation contains three scalar equations, but only two of them are independent. 

Given N > 13 image line correspondences across three views, the trifocal tensor can be 

computed as follows. 

Algorithm. 

1). Transform lines with respect to the center of the image as its origin. 

2). Expand Eqn. (3.23) to two scalar equations and form a set of linear equations of 

the form At = 0. 

“ (1'了 [Ti T2 T3]O[1]X=0了 （3.24) 

where the set of three matrices Ti ,T2, T3 constitutes the trifocal tensor in matrix nota-

tion. It is expanded as, 

I" 0 -I3 I2 

( k 1'2 I'al [Ti T2 Taj [l；' V̂  1?]) I3 0 - l i = (3.25) 
- J L J L J 

-I2 li 0 

It can then be written as, 

1'TTiI" 二 + Z冗21 + I'龙�)i'( + + /况22 + &打2)^《+ 畑‘+《况23 +《了严);^ 

1'TT21" = (Z'lTf + Z 沉21 + I'^T^yi + (I'jf + ]!於 + l'{rf)l'!, + + Z 冗23 + /̂̂ ââ；// 

1'了 T3 l� = {l\Tl' + + + (I 'JT + + I'^Tfy^ + + /^Tf + /^Tf)§.26) 

I3,13,13 can be normalized to 1. The first two columns of [l]x are selected as two 

independent scalar equations, 
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/3FT2I" — kl'^Tsl" = 0 

- /sl '^Til" + hV^Tsl" = 0 (3.27) 

Using these two equations, N {N > 13) line correspondences can be packed into 2x N 

linear equations as the form At = 0, where 

t = [ t\ ' TP TP . . . T f ] (3.28) 

3). Use least-squares method to get the solution. Given At = 0，the solution t that 

minimizes ||At|| subject to ||t|| = 1 is the last column of V , where A = UDV^ is the 

SVD of A. 

4). Reshape the solution to trifocal tensor form. 

Besides, algebraic minimization algorithm and geometric minimization algorithm are 

two other kinds of methods for trifocal tensor estimation in real applications, which we 

will not discuss here. 



Chapter 4 

Linear Line Structures 

This chapter will describe the model of line space and the classification of linear line 

structures, including linear line space (line pencil, point star, ruled plane) and linear 

ruled surface, linear line congruence, linear line complex. 

4.1 Models of line space 

A line is defined by joining two points or intersecting two planes. Unlike point and plane, 

line can not be represented using homogenous 4-vector, since it has 4 degree of freedom 

that corresponds to a homogenous 5-vector. Some of the line representations are listed. 

1. Orthogonal plane coordinates. Suppose a line intersects two arbitrary or-

thogonal planes a, (5 at Xi , X2 respectively. Two additional plane coordinates can be 

established with these two planes to index Xi and X2 as (x2,y2)- Generally, a 

line is uniquely determined by four parameters , yi, X2,2/2, giving four degree of free-

dom. This representation has the disadvantage of changing the degree under projective 

representation, -but it still helps in classifying line structure that will be shown later. 

2. Pliicker line coordinates 

First Pliicker line coordinates. This representation was first introduced by Pliicker 

in 1846 [57]. Suppose z are cartesian coordinates, a line can be represented by the 

following equations 

X = rz g,y = sz p (4.1) 
33 
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where r, 5, g, p are four parameters of the line. However, if a projective transformation is 

applied, the result can not be precisely stated, as the numerators and denominators are 

linear functions of the original line. The degree of any equation between r, s, g, p would 

be changed by projective transformation. It can be avoided by a new formulation below. 

Pliicker matrices. Line is represented by a 4 x 4 skew-symmetric homogeneous 

matrix. Suppose there are two points A, B, line L is 

L = AB^ — BA^ (4.2) 

Properties. 

1. L has rank 2. 

2. Line L has 4 degrees of freedom. 

Dual Pliicker representation L*. It is formed by the intersection of two planes 

P，Q， 

1/ = PQT - QP^ (4.3) 

Properties. Similar to L. 

Join of two points and intersection of two planes form the self-dual for line-geometry. 

Pliicker line coordinates. We adopt the Pliicker line coordinates for representing 

lines because not only do they capture a concise description of any 3-D line but also allow 

the relationship between the line and its image projection to be related by a rather simple 

projection matrix. 

Given two 3-D points M"^ � 饥 ) ^ n d INF � ( N ' ^ | n ) of a 3-D line to be rep-

resented, the Pliicker line coordinates of the line are the homogeneous 6-vector L � 

(aT|bT)T，where a = M x N refers to the surface normal of the plane defined by the 

described 3-D line and the origin of the coordinate frame, b = mN — nM refers to the 

direction of the 3-D line in that plane, and a and b in L have their respective norms 

scaled relative to each other so that if b is scaled to be a unit vector the norm of a is the 

distance of the 3-D line from the coordinate frame origin. The Pliicker coordinates also 

satisfy the Pliicker equality which is given by 

^l.L = C{L} = a^b = 0 (4.4) 
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Equivalently, the Pliicker coordinates can also be obtained as six particular coefficients of 

the following 4 x 4 skew-symmetric Pliicker matrix L: 

L = MN^ NIVT 

with the six coefficients being 

已�{�23，—hs, h2, U2, —^34} 

Thus a general 3-D line has four degrees of freedom: two captured by the direction of 

a which is the normal vector to the plane IT defined by the 3-D line and the origin, one 

on vector a's norm - the distance of the 3-D line from the origin, and one on the direction 

of vector b as the orientation of the 3-D line on plane IT. 

With the Pliicker representation, a line in 3-D can be represented as a point of p4 

5], or a point that lies on a non-singular quadric fl (Eqn. (4.4)) in P^. The latter 

representation is called the Klein model [58 . 

Definition 4.1. The Klein mapping assigns a line L ofV^ to the point {Z23’ -“3，“2，—“4， 

^42, —^34 } ofV^, where {^23, 一“3’ “2’ _ “ 4 , “ 2 ,— ^ 3 4 }肌已 the line's Pliicker coordinates. 

Theorem 4.1. The lines of projective Z-space are in one-to-one correspondence with the 

points of the quadric Q = 0 of projective 5-space. 

There is advantage of using the latter representation because with it the relationship 

between a line and its image projection can be captured by a simple pre-multiplication of 

a projection matrix. 

4.2 Line, structures 

No matter which representation is adopted, the lines of four degrees of freedom form a 

quadruply infinite system [59], which are line complex, line congruence, ruled surfaces. 

As discussed earlier, general 3-D lines have four degrees of freedom, and they can be 

regarded as forming a quadruple infinite system V么 in the 3-D line space [59]. Overally 

speaking, specific family of lines in the 4-dimensional line space that possess one degree 
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(a) (b) (c) 

/I y /__ ' � 

⑷ （e) (f) 

Figure 4.1: Illustration of the various linear line structures, (a)-(c): linear line spaces 
including line pencil, point-star and ruled plane; (d)-(e): linear ruled surface, linear line 
congruence and linear line complex. 

of freedom, two degrees of freedom, and three degrees of freedom are respectively called 

ruled surface, line congruence, and line complex in the terminologies of classical line 

geometry. In particular, if the constraints that reduce the degrees of freedom (DoFs) 

of the line set are all linear, the above structures are called linear ruled surface, linear 

line congruence, and linear line complex respectively, and as a collection they are called 

linear line structures. In this work only line structures with linear constraint(s) are 

investigated; in other words we only consider linear line structures. On top of the above, if 

the Pliicker equality that governs the 6 line coordinates happens to be linear (for example, 

in the case where the a (or b) in the Pliicker coordinates L �[a?，b^]"^ of every line in a 

line set is a constant vector), then the linear line structure is reduced to the linear line 

space, which has linear ruled surface reduced to the sub-structure line pencil, and linear 

line congruence reduced to point-star or ruled plane. 

Below we describe the respective line structures in more detail. 
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4.2.1 Linear line space 

The only linear line spaces in 3-D are line pencil (with 1 arbitrary DoF), point-star 

,and ruled plane (both with 2 arbitrary DoFs) [59], which are visually illustrated in 

Fig. 4.1(a),(b),(c). 

Lemma 4.1. The only one-dimensional sub spaces contained in the Klein quadric Mj is 

line pencil. 

Lemma 4.2. The Klein quadric contains two two-dimensional sub spaces, which corre-

sponds to point-star, and ruled plane. 

Remark 4.1. A regular quadric in V^ can not contain three-dimensional sub spaces，for 

Pliicker equality can not appear to be linear under 3-DoF. 

If the Pliicker equality has to appear linear, there is no line space with 3 DoFs [58], for 

a regular quadric in V^ cannot contain three-dimensional subspaces. Point-star and ruled 

plane are dual to each other in the linear space (because they are both specializations of 

the 2-DoF linear line congruence when the Pliicker equality happens to be linear), and 

the line pencil is self-dual. Line pencil can be obtained as the intersection of point-star 

and ruled plane. 

4.2.2 Ruled surface 

Ruled surface is a family of lines that has 1-DoF generated by a straight line moving 

through 3-D space by a single parameter. The straight lines in the ruling are called 

generators of the surface. The order of the surface is the number of lines that meet a 

general line. ‘ 

Linear ruled surface. Linear ruled surface (Fig. 4.1(d)) is a line system constrained 

by three linear equations. The order n of the line system is the number of lines in the 

system that meet at a general line [59 . 

In Pliicker coordinates with the norm scaled to be 1, a line L � i n a ruled sur-

face has its coordinates constrained by three linear constraints plus the Pliicker equality, 
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as expressed by the following: 

a � L = a^L = a � L 二 0; 

a^b = 0; |L1 = 1 (4.5) 

Some analytical ruled surfaces. Typical ruled surfaces include ruled hyperboloid, 

quartic ruled surface, sextic ruled surface, twisted cubic, helicoid, ruled cone. 

4.2.3 Line congruence 

Line congruence is defined by two independent equations, as the intersection of two com-

plexes. The order of line congruence is the number of lines that meet at a general point, 

and the class is the number of lines that lie in a general plane [59 . 

Linear line congruence. Linear line congruence (Fig. 4.1(e)) is line congruence with 

the two constraints being linear. It is a (1,1) congruence that is the intersection of two 

distinct linear line complexes Li, L2. In Pliicker coordinates with the norm scaled to be 

1，a line L � （ a 了 i n a linear line congruence is bounded by the following: 

afL = a � L = 0; 

a^b = 0; |L| = 1 (4.6) 

Quadric congruence. Quadric congruence is a (2,2) congruence that is the inter-

section of a linear complex and a quadric complex. 

4.2.4 Line complex 

In Pliicker coordinates a line L in a line complex is constrained by a single equation: 

f{Jl2, ^135 “4，^23) U2, hi) = 0 

leaving only 3-DoF for any line in the line system. The order of the line complex is defined 

by the order of the constraint / ( . ) = 0 over the six line coordinates. However, we are 

reminded that the quadric constraint (Pliicker equality), is always satisfied, which makes 
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the line geometry more complicated than its counterpart of points. 

Linear line complex. Linear line complex (Fig. 4.1(f)) is line complex with the 

governing constraint being linear. It is the three-dimensional linear manifold of lines 

defined by one linear equation. In Pliicker coordinates with the last coordinate scaled to 

be 1, a line L �（a^lbT广 in a linear line complex is: 

a � L = 0; 

a^b = 0; |L| = 1. (4.7) 

If the 6-vector a： satisfies the Pliicker equality (Jlai.ai = 0), meaning that ai is the Pliicker 

coordinates of a 3-D line, then all lines of the linear line complex (LLC) meet the line ai 

as its axis, and the LLC is called special or singular. If the 6-vector ai does not satisfy 

the Pliicker equality {flauai + 0), the LLC is called general or regular. The degeneracy 

study of Stein and Shashua in [28] is about special linear line complex. 

Quadratic line complex. If / ( . ) = 0 is second order, the line complex is quadratic. 

m 

o 
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Chapter 5 

Critical Configurations of Three 

Views Revealed by Line 

Correspondences 

Degeneracy can come from degenerate motion (straight line motion, planar motion) and 

degenerate structure (quadrics). Our perspective is to investigate the degenerate line 

structure for trifocal tensor estimation. Next, it describes the empirical observation re-

garding the line transfer under degenerate structure. Finally, rank properties of nonlinear 

line structures are proposed. 

5.1 Two-view degeneracy 

As line correspondences do not provide any constraint for two-view geometry, only point 

feature will be summarized in brief. 

Point feature. Two-view ambiguity is summarized in [15]. Critical configuration is 

defined by two projectively iiiequivaleiit configurations F\ Pj and Qj such that 

P^P. = Q^Q. (5.1) 

P ,̂ Pj and Qj. are called conjugate configurations. It is well-known that critical con-

figurations of two cameras occur when two cameras and all 3-D points lie on a ruled 

41 
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quadric. 

Theorem 5.1. Suppose two pairs of cameras (P°, P^), (Q°, Q^) with inequivalent funda-

mental matrix Fp , Fg . Define two quadrics 

Sp = p i T F g p o , S g = Q i 了 F}?Q0 (5.2) 

1. IfP and Q satisfy P°P = Q°Q and pip = QiQ，then P lies on the quadric Sp and 

Q lies on Sg. 

2. If P lies on Sp, then there exists critical configuration Q lies on Sg 

3. If e^Q is the epipole defined by F沒e绞=0，then the ray passing through consists 

of points X such that P°X = e^ = Q°Cq lies on the ruled quadric Sp. 

Proof. 

1. 

P ^ S p P 二 P 了 p i T F 攻 p o p 二 Q了 ( Q i T F g Q 。 ) Q = 0 (5.3) 

Thus, P lies on Sp. Likewise, Q lies on Sg 

3. For point X such that ê ^ = P^X, then SpX = P ^ ^ F j o p O X = P̂ F̂ĵ OeĴ o = 0. X 

lies on Sp. 

5.2 Three-view degeneracy 

In three views, both point feature and line feature can be used. We only focus on the 

cases where line structures are used. As we have seen that the critical configurations using 

point correspondences are well-known; however, only a few attention has been drawn to 

the critical sets of lines, see [28] and [27]. There is still much room to explore in this area. 

5.2.1 Introduction 

Line representation. In this work, we use the Pliicker coordinates to represent lines, 

see Chapter 3. 
、 

In this work we examine how the determination of the trifocal tensor from an image 

triplet would be affected should the observed line correspondences over the three views 
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be from particular line systems in 3-D. In particular, we examine how the rank of the 

tensor estimation matrix A — the matrix that leads to the determination of the trifocal 

tensor — would be affected, and how distant each of the particular line systems is from 

the necessary system that allows the trifocal tensor to be uniquely determined. 

Line Projection. For any 3-D line L visible in three given views, its image projections 

1, l'，l� in the three views are related to L in Pliicker coordinates by the following: 

l l [ p 

K = 1' 二 p' L (5.4) 

1" P〃 

where P, P', P" are the three cameras' line projection matrices. 

In the above, L can be taken to include the coordinates of all N 3-D lines visible in the 

image data. In that case (which hereafter we assume), L will be a 6 x A/‘ matrix, 1，1', 1〃 will 

be each a 3 x iV matrix, and the entire left side of the above equation, collectively referred 

to as the K matrix, is about a 9 x iV matrix that captures all image line observations in 

all views of all N lines. As we shall present in detail below, this 9x N observation matrix 

K is all it takes to define the estimation matrix A - the key to the determination of the 

trifocal tensor. 

In the rest of paper we also require to access the individual rows of the image line 

observations 1 or 1' or 1� that are visible in View 1，2，and 3 respectively. We shall define 

the N-vectov as the row of 1, and scalar kj as the jth. entry of that row of 1. In 

other words, 1 = [ l i^，^ Ig^]^, and = [kj] for all i = 1，2，3. Similarly, we have TV-vector 

1- and scalar for image line observations 1' in the second view, and TV-vector 1-' and 

scalar I'-j for image line observations 1� in the third view. 

Tensor Estimation. Each line correspondence over three views gives two indepen-

dent linear equations for the 3 x 3 x 3 trifocal tensor [7] whose entries can be listed out 

in a column fashion as a 27 x 1 vector t. Given N line correspondences, we have 2N 

linear equations for t, which can be collectively captured by a 2N x 27 matrix A. The 

tensor-equivalent vector t and the estimation matrix A are related by: 

‘ At = 0 (5.5) 
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where 

0^x9 hi^i -hi^i 
« • 

A = • . ； (5.6) 
• • 
• • 

and B^ is the zth row (i = 1，2,..., TV) of the TV x 9 matrix B defined by the image line 

observations in Eqn. (5.7). 

•R — 7/ ；// 7/ / � // /// // /// // /// // /// 7/ /// // /// 7/ /// f5 7) 
D— hihi, hihi, hihiJ hihiJ hihi^ ^Sihi,乙3i乙2i， ^ ^ 

_ -

Notice that once the line correspondences are established, B is known, and so is the 

estimation matrix A. 

Hereafter we shall in many places require the use of a simple property about the rank 

of a matrix, and we state it below. 

Rank invariance property. Given any matrix M = [mj, where rrij is the z-th row 

of M, 

rank{[aimi]) < rank(~M) (5.8) 

for all set of scalars ai G IZ. 

5.2.2 Linear line space 

Linear line space includes only line pencil (with 1-DoF in the line set), point-star (2-DoF 

in the line set), and ruled-plane (2-DoF in the line set). 

As captured by Eqn. (5.4), with N 3-D lines included into the 3-D line set matrix L, 

the image observations will collectively become a 9 x TV matrix K. Below we work out the 

rank property of the estimation matrix A through the rank property of this observation 

matrix K. 
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Our presentation will be conducted in this manner. We first show that if the K 

matrix defined by the line correspondences owns certain rank properties, the rank of the 

estimation matrix A will be capped at a certain value. Different sets of rank properties 

of the K matrix will lead to different caps of the estimation matrix A. These we present 

in three separate lemmas, one for line-pencil, another for point-star, and yet another for 

ruled plane. We then in a theorem show that the required sets of rank properties of the 

K matrix are indeed there should the observed line structure be a line-pencil, point-star, 

and ruled plane respectively. 

Lemma 5.1. Given any 9 x N matrix K = [ki^, ks^]^, where k̂  is each a 3 x N 

matrix,，suppose that for all i, j = 1,2,3 and i — j, we have ‘ 

• rank(ki) = 2, 

• rank{K) — 2. 

Then if K is taken as the image line observation matrix K (and thus all Iq，i = 1,2，3， 

as 1,1',1� respectively) to calculate the estimation matrix A, the rank of A is at most 7. 

Proof. Let A * � b e the jth column of the estimation matrix A, for all j = 1’ 2’ …，27. 

The proof consists of 3 parts: one for the 1st 9 columns of A, the other for its second 

9 columns, and the third for its last 9 columns. In each part, we examine how many of 

the 9 columns are linearly independent and contribute to the overall rank of A. 

I First 9 columns of A: 

Consider the 1st to 9th columns of A, i.e., the columns A*，i to A*’9. 
4' 

1(a) As pointed out by Eqn. (5.6), these columns are all about the N x9 sub-matrix 

-IsiBi]. Both the three sets of columns {A*’i，A*’2’ A*’3}’ {A*’4’ A*’5，A*’6}， 

and {]\*，7, A*’8’ A*’9} are about [ai[li'’i’ 1'2'�’ l y ] for some â . By the Rank In-

variance property stated above, the rank of each of such 3-column sets is no 

more than ran/c([l'/’�l'2'’o 1'3'J) = rank{[\f = rankik^) which is 2 by 

the first stated rank property of K. In other words, in counting the linearly 

independent columns, we can rule out A*’3，A*’6, and A*’9, and keep only A*’i， 

A*，2’ A*’4，A*’5，A*，7，and A*’8. 
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1(b) Similar to the above, by the first stated rank property of K and the rank in-

variance property, again it can be deduced that rank{[A^j, A*j+3, A^j+e]) < 

rank{[\['^二 ran/c(k2) = 2 for j = 1,2,3. In other words, A*,7 is 

dependent of A*’i and A*’4, and A*’8 is dependent of A*’2 and A*，5. 

With the above, within the first 9 columns of A, we have at most 4 columns: 

A*，i’ A*，2’ A*’4, A*，5, that are linearly independent. 

1(c) Next we shall show that A*’4 is linearly independent of {A*’i’ A*’2}. 

Observing the second rank property of K, we can pick {li,I2} as the basis of 

{li, I2,13,1'l, 1'2，1'/’ 1� ,I3}. In other words, we have 

I'l = cili + C2I2 

1'2 = C3I1 + C4I2 

I'l' = C5I1 + c^h 

I2 = C7I1 + C8I2 (5.9) 

for some q G R. 

Suppose that A*’4 is linearly dependent of {A*’i’ A*’2}. Then there should exist 

X, y G R such that A*，4 = X A � i + FA*,2 or simply 

where [*] is a vector with * as its column entry. Using Eqn‘ (5.9) to expand the 

above in terms of l2i, we have 

.(cs/ii + c^l2i){c^l\i + c^hi)] = X[{cilii + 02/21) (cs^H + c^ki). 

+y[{cilii + C2l2i){Cjlii + Cski), 
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or for alH = ,iV, 

&(C3C5) + hikiiCsCG + C4C5) + lli(c4CQ) 

=lli{XciCs + Ycicj) + hihiixcice + XC2C5 

+yciC8 + YC2C7) + li{Xc2Ce + ycacg). 

Equating the coefficients of both sides, the above equation can be reduced to 

C1C5 C1C7 � 1 C3C5 

CiCe + C2C5 C1C8 + C2C7 y = C3C6 + C4C5 

C2C6 C2C8 C4C6 

which is an over-constraining set of equations for X, Y, showing that X, Y do not 

exist in general — a contradiction to the supposition. Thus A*’4 is independent 

of A*’i’ A*’2. 

1(d) By a similar "Proof by Contradiction" step, we can show that A*’5 is linearly 

dependent of {A*’i ’ A*,2, A*’4}. 

Suppose A*’5 is linearly independent of {A*’i’ A*’2’ A*’4}. It means — 

— Y{l'ul'ii] - Z{l'2ilu} = 0 has no solution in X, Y, Z. But X ’ y, Z in 

C1C5 C1C7 C3C5 X C3C7 

C1C6 + C2C5 C1C8 + C2C7 C3C6 + C4C5 Y = C3C8 + C4C7 

C2C6 C2C8 C4C6 Z C4C8 
華 J 」 L • 

do supply a solution — a contradiction to the supposition. Thus A*’5 is linearly 

dependent of A*，i，A*，2，A*’4. 

Putting together all the above linear dependencies, A*’3’ A*’5’ A*’6’ A * ， ’ A丰’8，A*’9 

are linearly dependent of {A*’i，A*’2，A*,4}, and ran/c([A�i，... ’ A*’9]) < 3 . 

II Second 9 columns of A: 

{A*’i，...，A*,9} and {A*’io’ …，A*,is} are all about hiBi. Thus by the same reason 

as the first 9 columns of A, we have ran/c([A*,io,..., A*’i8]) = ranA;([A*_i,...，A*’9]) < 
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3. 

{A*’i, A*’2’ A *’4 , A*’io, A*’ii, A*，i3} can be picked as the basis of the first 18 columns 

of A. 

Ill Last 9 columns of A: 

Again by the rank invariance property, the rank of the 2N x 9 matrix is 
[hi^i] 

no more than the rank of [B ]̂. In other words, the rank property of {A*’i9,..., A*,27} 

is the same as that of {A*’i，…’ A*,9} and {A*’io，…’ A*’i8}. Thus, from the proof 

in Step I, A*，2i, A*’23, A*，27 are linearly dependent of [A*’i9，A*’2o’ A*’22}，and 

ran/c([A*’i9’... ’ A*’27]) < 3. 

Finally, we need to determine the linear dependency between the 3 column vec-

tors A*’i9’ A*’2o, A*，22 and the basis of {A*’！，..., A*’i8}. Again, "Proof by contradic-

tion" schemes similar to those above can be used to show that A*’i9 is independent of 

{A*’i’ A*’2, A*’4, A*,io’ A*’ii，A*’i3}, but {A*,20, A , ,22} is dependent of {A*’i’ A*，2，A4, 

A*，io, A*’ii, A*’i3, A*’i9}. Due to page limit, we omit the elaboration of such trivial steps 

here. To conclude, the rank of A is at most 7. 

• 

Lemma 5.2. Given any 9 x N matrix K = [ki^, ka^] ,̂ where kj is each a 3 x N 

matrix, suppose that for all = 1,2，3 and i • j, we have 

• rank{ki) = 2, 

• rank{[ki, kj]^) = 3， 

• rank{K) = 3. 

Then if K is taken as the image line observation matrix K (and thus all ki, i = 1,2,3， 

as 1,1', 1" respectively) to calculate the estimation matrix A, the rank of A is at most 11. 

Proof. We follow the same notations and the proof structure as in Lemma 5.1. 

I First 9 columns of A: 
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1(a) As rank(\i) 二 2, by Step I of the proof for Lemma 5.1, it can be deduced that 

rank([A^j A.j+s]) < 2 for j = 1,4’ 7, and rank{[A^j A.j+e]) < 2 

for j = 1,2,3. 

1(b) Next we show that A*’4 is linearly independent of {A*’i, A*’2}. 

Observing the second and third rank properties of K, we can pick {li, I2,12} as 

the basis of {li, I2,13,1'” 1'2,1'3，1'/，1'2'，I's}- In other words, we have 

1'2 = Cili + C2I2 + Csl'i 

I'l' = C4I1 + C5I2 + cel'i 

1'2' = C7I1 + C8I2 + Cgl'i ‘ 

for some q G R. 

Suppose that A*’4 is linearly dependent of {A*’i’ A*’2}，then there should exist 

X, y G R, such that 

Expanding the above in terms of lii’l2i and equating the coefficients of both 

sides, the above equation can be reduced to 

C4 C7 � 1 CiCQ + C3C4 
X 

C5 C8 = C2C6 + C3C5 
y 

C6 Cg L � C3C6 

and 
o 厂 -

CiC'4 

C1C5 + C2C4 = 0 

- C2C5 

which is an over-constraining set of equations for X，Y, showing that X，Y do not 

exist in general — a contradiction to the supposition. Thus, A*’4 is independent 

of A*’i’ A*’2. 

1(c) By a similar "Proof by contradiction" treatment, we can show that A*’5 is 

linearly independent of {A*’i，A*，2’ A*’4}. 
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Putting together all the above linear dependencies, A*，3, A*’6, A*，8’ A*’9 are lin-

early dependent of A*’2’ A*,4’ A^^s}, and ran/c([A*，i... A*,9]) < 4. 

II Second 9 columns of A: 

By Step II of the proof for Lemma 5.1, we have ran/c([A*,io,..., A^jg]) 二 ran/c([A*,i, 

… ’ A*’9]) < 4. 

{A*’1’ A*，2, A*’4, A*’5, A*’1� ’ A*’11，A*，i3’ A*’i4} can be picked as the basis of the first 

18 columns of A. 

Ill Last 9 columns of A: 

By Step III of the proof for Lemma 5.1，the rank property of {A*，i9，..., A*’27} is the 

same as that of {A*’i,..., A^.g} and { A * ’ i o ’ A * ’ i 8 } . Then by Step I of the proof for 

Lemma 5.1, A*’2i, A*’23，…’ A*’27 is linearly dependent of {A*,19, A*,20, A*,22, A*,23}, 

and ran/c([A*,i9,...，A*,27]) < 4. 

Finally, we need to determine the linear dependency between the 4 column vectors 

A*’i9，A*，2o, A*’22’ A*’23 and the basis of {A*’i,. •., A*,is}. Again, a "Proof by contradic-

tion" step can be used to show that A*,19, A*’2o, A*’22 are independent of {A*,i’ A*’2’ A*’4’ 

A*’5’ A*’io’ A*’ii，A*’i3’ A*’i4}’ but {A*’23} is dependent of them. Due to page limit, here 

we omit the elaboration. To conclude, the rank of A is at most 11. • 

Lemma 5.3. Given any 9 x N matrix K 二 [ki^, ^ ks^]'^, where k̂  is each a 3 x N 

matrix, suppose that for all = 1，2,3 and i + j, we have 

• rank(ki) = 3； 

• rank{K) = 3. 

Then if K is taken as the image line observation matrix K (and thus all k“ i = 1,2,3， 

as 1, l ' , l � respectively) to calculate the estimation matrix A, the rank of A is at most 15. 

Proof. Again we adopt the same notations and the proof structure as used in Lemma 5.1. 

I First 9 columns of A: 
� 

1(a) As rank{li) = 3, by Step I of the proof for Lemma 5.1, we have rank([A^j 人*’j+i 

A*，j+2]) = 3 for j = 1,4’ 7, and ran/c([A^j A*，计3 A*’j+6]) = 3 for j = 1’ 2’ 3. 
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1(b) Next we show that A*’4 is linearly independent of {A*，i’ A*，2’ A*’3}. 

Observing the second rank property of K, we can pick li,I2,13 as the basis of 

{li,I2,13,1'l’ 1'2’ 1'3’ I'l'’ 1'2',I3}. In other words, we have 

I'l = cili + C2I2 + CaH 

1'2 = C4I1 + C5I2 + CQ\[ 

I'l = C7I1 + C8I2 + C9I； 

1'2' = Cioli + C11I2 + Ci2li 

I3 = C13I1 + C14I2 + Cisl'i 

for some q G R. 

Suppose that A*’4 is linearly dependent of {A*，i，A*’2, A*’3}, then there should 

exist X, y G R, such that 

M = 邓 ； 紐 ” ； 象 職 ] 

Expanding the above in terms of li“l2i and equating the coefficients of both 

sides, the above equation can be reduced to 

C1C7 CiCio C1C13 C4C7 
C2C8 C2C11 C2C14 � 1 C5C8 

C3C9 C3C12 C3C15 CQCQ 
Y 二 

CiCg + C2C7 CiCii + C2C10 C1C14 + C2C13 C4C8 + C5C7 .. z 
C1C9 + C3C7 C1C12 + C3C10 C1C15.+ C3C13 L � C4C9 + C6C7 
C2C9 + C3C8 C2C12 + C3C11 C2C15 + C3C14 C5C9 + CeCg 

which' is an over-constraining set of equations for X, "K, Z, showing that X, Y, Z 

do not exist in general — a contradiction to the supposition. Thus, A*,4 is 

independent of A*’i’ A*’2，A*’3. 

1(c) By a similar method, we can show that A*’5 is also linearly independent of 

{A*，i，...，A*’4}; A*’6 is dependent of {A*’i，...，A*,5}; A*,7 is independent of 

{A*’i，...，A*’5}; A*’8，A*’9 are linearly dependent of {A* ’ i ’ . . •，A*’5’ A*’？}. 
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Putting together all the above linear dependencies, A*,6’ A*’8’ A*’9, A*’9 are linearly 

dependent of A*，i’..., A*’5, A*’?，and rcm/c([A*’i’...，A*’9]) = 6 by Eqn. (5.6). 

II Second 9 columns of A; 

By Step II of the proof for Lemma 5.1, we have ranA;([A*,io, •..，A^^g]) = ran/c([A*’i, 

• • •’ A*,9]) < 6. 

Ill Last 9 columns of A: By Step III of the proof for Lemma 5.1, the rank property 

of {A*’i9, ...’ A*，27} is the same as that of {A* ’ i , . . . , A*,9} and {A*，io,..., A^^ig}. 

By a few "Proof by contradiction" steps similar to those used in Lemma 5.1 in dis-

cussing the linear dependency, it can be proved that rank of A is at most 15. 

• 
Theorem 5.2 (Linear Line Space). The rank of the tensor estimation matrix is at 

most 7,11,15 respectively for each of the following line structures of linear line space: line-

pencil, point-star, and ruled plane; the minimal number of lines for the full information of 

each of the line structures to he reflected in image observations is 4,6’ 8 lines respectively. 

Proof. Eqn. (5.4)relates the image observations [F, to the 3-D line set L through 

the cameras' line projection matrices P ,P ' ,P" . The relationship leads to the fact that: 

l l [P 

rank( 1' ) < min{rank{ p' ),rank{L)) (5.10) 

1" P" 

Since [P^, P'T, p〃了严 is of full column rank (=6) in general, we have mnA:([F, F ’ 产严）= 

rank{L). 

I Line Pencil: 

By Eqn‘ (4.5), rank{L) = 6 - 3 - 1 = 2’ with the 3 coming from three linear constraints 

on L and the 1 from the Pliicker equality (which is degraded to be linear, or else the 

structure does not belong to linear line space). By the assumption that the projection 

is general, plus Eqn. (5.10), it can be deduced that rtm/cQF, 1'『，1 “ � ] ) = 2 . Since 

rank(l) = rank(V) = rank(r) = 2, we have ran/c([F，l叩）=rari/c([F, 1'叩）= 
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ran/c([l'T’ 1"了严）=2. All constraints on image lines have thus been considered, and 

they give rise to the rank properties of K required by Lemma 5.1. By Lemma 5.1，the 

rank of A is at most 7 for line pencil. As each line correspondence provides 2 linear 

constraints on A, the minimum number of line correspondences needed is�7/2"| = 4 . 

II Point star and ruled plane: 

Similar to the above, for such line structures, rank(L) = 6 — 2 — 1 = 3, with the 2 

coming from two linear constraints and the 1 from the Pliicker equality. The image 

lines of point-star co-intersect in each image, so rank{\) = rank{V) = rank(l") = 2， 

but ran/c([F,F]'^) = rank([l^= rank{[V^X^f) = 3 because the points of • 

intersection in different images are generally not the same. In contrast, the image 

lines of ruled plane have rank{\) = rank(V) = rank{\") = 3 and mnA;([F，l‘〒）= 

ran/c([F, = rank(ll^, = 3. The rank properties governing the image 

lines of point star and ruled plane thus satisfy the condition of Lemma 5.2 and 

Lemma 5.3 respectively. By Lemmas 5.2 and 5.3, the rank of A is at most 11 and 

15 respectively for these two linear line structures. The minimum number of line 

correspondences needed is�11/21 — 6 for point star and�15/2^ = 8 for ruled plane. 

• 

In the following subsections we tackle the cases of linear ruled surface, linear line 

congruence, and linear line complex. We adopt a presentation similar to that for linear 

line space. We first show that if the K matrix defined by the line correspondences owns 

certain rank properties, the rank of the estimation matrix A will be capped at a certain 

value for the cases of linear ruled surface, linear line congruence, and linear line complex 

respectively. For the case of linear ruled surface, we simply borrow Lemma 5.3 above. For 

the cases of linear line congruence and linear line complex, we have two separate lemmas 

to point out the required rank properties of the K matrix and the resultant rank of the 

estimation matrix A. We then in two theorems show that the rank properties of the K 

are indeed there should the observed line structure be a linear line congruence and linear 
• r 

line complex respectively. 
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5.2.3 Linear ruled surface 

Theorem 5.3 (Linear Ruled Surface). The rank of the tensor estimation matrix is at 

most 12 if the available 3-view observations are about a set of at least 6 lines that belong 

to a general linear ruled surface. 

Proof. For linear ruled surface, rank(L) = 6 — 3 = 3, with the "3" coming from three 

linear constraints - a characteristic of the line structure. The fact that the line structure 

here does not belong to linear line space means the Pliicker equality is no longer a linear 

constraint. By Eqn. (5.10), as the projection is assumed to be general, rank([F = 

3. Since rank(l) = rank(l') = rank(l〃）= 3, by Lemma 5.3，the rank of A is at most 15 

for ruled surface. 

However, the Pliicker equality to be satisfied by L, though nonlinear, does lead to 

constraints on the image lines 1,1', 1〃 through the camera projection process (as captured 

by Eqn. (5.4))，which could induce additional linear constraints on A, as described below. 

With the three cameras assumed to be in a general configuration, by means of Eqn. (5.4), 

the image lines can be expressed in terms of the camera matrices and the Pliicker lines L. 

Algebraic manipulations show that as long as the Pliicker equality is satisfied, we have 

hiVlil = CifZsJk"/�+ C2[Z3iZkZ�i] + Cslkil'^^l'^i 

([*] represents a vector with * as its column entry) for some ĉ  G lZ,r = 1 , 5 , which 

are solely determined by the three camera matrices and are thus constants. Similar 

properties hold for [ZiiZ^/J and [kAil'u]- With these, it follows that is linearly 

dependent of {A*’i’ …’ A*’5}; A*’i6 is linearly dependent of {A*’io，..., A*,^}; and A*，22 is 

linearly dependent of {A*’i ’..., A*’5’ A*，io, •••’ A*’i4’ A*’i9，A*，2o}. Thus, three DoFs have 

to be deducted and the rank of A is at most 15 — 3 = 12. As each line correspondence 

provides 2 linear constraints on A, the minimum number of line correspondences needed 

is [12/2] = 6 . • 
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5.2.4 Linear line congruence 

Lemma 5.4. Given any 9 x N matrix K = [ki'̂ , ka'̂ ]̂ , where k̂  is each a 3 x N 

matrix, suppose that for all = 1，2，3 and i + j, we have 

• rank{\<.i) = 3， 

• rank([ki,kj]'̂ ) = 4， 

• rank(K) = 4. 

Then if K is taken as the image line observation matrix K (and thus all k̂ , i = 1,2,3, 

as 1 , 1 � respectively) to calculate the estimation matrix A, the rank of A is at most 22. _ 

Proof. Again we adopt the same notations and proof structure as used in Lemma 5.1. 

I First 9 columns of A: 

1(a) Since rank (I) = rank{V) = rank{V') = 3，by Step I of the proof for Lemma 5.1, 

we have rank{[A^j, = 3 for j = 1,4,7 and ran/c([A*j, 

A�J++6]) = 3 for j = 1,2,3. 

1(b) Next we show that A*’5 is linearly independent of {A*，i，…’ A*’4}. 

Observing the second and third rank properties of K, we can pick li, I2，I3’ I'l as 

the basis of {h,I2，I3，1'” 1'2,13,1'/，1'2'’I3}. In other words, we have 

1'2 = Cili + C2I2 + C3I3 + C4l'i 

I3 = C5I1 + Ceh + C7I3 + Csl'i 

1'/ = C9I1 + C10I2 + C11I3 + Ci2l'i 

1'2' = C13I1 + C14I2 + C15I3 + Ciel'i 

__ I3 二 C17I1 + Ci8l2 + C19I3 + C2ol'i 

for some q G R. 

Suppose that A*’5 is linearly dependent of {A*’i，..., A*’*}，then there should 

exist X, y, Z, W e R, such that 

{I2A} = + + + Z{l'J[,} 
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It can be expanded similarly to an over-constraining system of equations like 

Eqn. (5.10), showing that W, X, V, Z do not exist in general - a contradiction 

to the supposition. Thus, A*，5 is independent of {A* ’ i , . . . , A * ’ ] . 

1(c) By a similar method, we can show that A*’6 is linearly independent of {A*，i,..., 

A*’5}; A*’7 is independent of {A*’i’...，A*’6}; A*,8 is independent of {A*，i,..., 

A*’7}; A*’9 is independent of {A*，i’...，A*，8}. 

Putting together all the above linear dependencies, A*’9 is independent of {A* ’ i , . . . , 

A*’8}, and ranA:([A*，i’..., A*’9]) < 8 by Eqn. (5.6). 

II Second 9 columns of A: By Step II of the proof for Lemma 5.1，we have ran/c([A*’io, 

… ’ A*，i8]) = ran/c([A*’i,…，A*’9]) < 8. 

Ill Last 9 columns of A: By Step III of the proof for Lemma 5.1, the rank property 

of {A*’i9，…’ A*’27} is the same as that of {A*，i,..., A*,9} and {A*’io’ …，A*’i8}. 

By a few "roof by contradiction" steps similar to those used in Lemma 5.1 in discussing 

the linear dependency, it can be proved that rank of A is at most 22. • 

Theorem 5.4 (Linear Line Congruence). The rank of the tensor estimation matrix 

is at most 19 if the image observables are about a set of at least 10 lines that belong to a 

general linear congruence. 

Proof. For linear congruence, rankijj) = 6 — 2 二 4’ with the 2 coming from two linear 

constraints. With the assumption that the linear congruence here does not belong to 

linear line space, the Pliicker equality is no longer a linear constraint. By Eqn. (5.10), since 

projection is assumed to be general, ran/c([F 1 '吓）=rank{L) = 4. By rank(l)= 

rank(V) = rank(r) = 3 and Lemma 5.4, the rank of A is at most 22 for linear congruence. 

However, as in the step in proving Theorem (5.3) for ruled surface, three DoFs have 

to be deducted and the rank of A is at most 22 — 3 = 19 for linear congruence. As 

each line correspondence provides 2 linear constraints on A, the minimum number of line 

correspondences needed is�19/2"| = 10. 

• 
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Minimal surface - Helicoid. Helicoid is defined by the following parametric equa-

tions in Cartesian coordinates, 

X = pcos(a6)y = psin(a6)z = 9 (5.11) 

where —oo < p < oo, —oo < 9 < oo, a is a constant. 

Theorem 5.5. The rank of estimation matrix is at most 19 for the set of 3-D lines that 

belong to a helicoid. 

Proof. Just find out that helicoid belongs to linear congruence, and apply Theorem 5.4. 

• 

5.2.5 Linear line complex 

Lemma 5.5. Given any 9 x N matrix K = [ki^, ka^]^, where kj is each a 3 x N 

matrix, suppose that for all i^j = 1,2,3 and i • j, we have 

• rankCki) = 3， 

• ran/c([ki, = 5， 

• rank(K) = 5. 

Then if K is taken as the image line observation matrix K (and thus all k ,̂ i = 1,2,3, 

as 1,1',1� respectively) to calculate the estimation matrix A, the rank of A is at most 26. 

Proof. Again we adopt the notations and the proof structure as used in Lemma 5.1. 

I First 9 columns of A; 

1(a) As rank{\) = rank{\') = rank{\") = 3’ by Step I of the proof for Lemma 5.1, we 

have ranA;([A*j, A*j+2]) = 3 for j = 1’ 4，7, and rank{[A^j, A^j+3, A^j+e]) 

= 3 for j = 1,2,3. 
r 

1(b) Next we show that A*’6 is linearly independent of {A*，i,...，A*’5}. 
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Observing the second and third rank properties of K, we can pick li, I2,13,1'l, 1'2 

as the basis of {li, I2,13, l'” 1'2’ I3,1'/’ 1'2', I3}. In other words, we have 

I3 = Cili + C2I2 + C3I3 + C4li + C5I2 

1'/ 二 Cell + C7I2 + csh + cgli + C10I2 

12 = Cull + C12I2 + C13I3 + Ci4l[ + C15I2 

13 = Cieli + C17I2 + C18I3 + cigli + C20I2 

for some Cj G R. 

Suppose that A*’6 is linearly dependent of {A*，i，..., A*,5}, then there should 

exist y, V^，X,Y,Z e R，such that 

{ « } = y{lulu} + + + Y{rj；,} 

It can be expanded similarly to an over-constraining system of equations like 

Eqn. (5.10), which shows that V, VK, X, Y, Z do not exist in general - a contra-

diction to the supposition. Thus, A*，6 is independent of {A*’i,...，A*’5}. 

1(c) By a similar method, we can show that is linearly independent of {A*，i,…， 

A*’j.}’ for j = 6,7,8. 

Putting together all the above linear dependencies, rcmA;([A*’i,..., A*’9]) = 9 by 

Eqn. (5.6). 

II Second 9 columns of A: 

By Step II of the proof for Lemma 5.1, we have ran/c([A*^io,..., A^ îg]) = ran/c([A*^i, 

.•. ’ A*’9. ) = 9. 

Ill Last 9 columns of A: 

By Step III of the proof for Lemma 5.1, the rank property of {A*，i9, _.., A*,27} is the 

same as that of {A*’i,…’ A*’9} and {A*’io’...’ A*’i8}. 
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Table 5.1: Rank classification of linear line structures. 
Linear line structure Rank property Min. No. lines 
Line pencil 7 4 
Point star 11 6 
Ruled plane 15 8 
Linear ruled surface 12 6 
Linear congruence 19 10 
Linear complex 23 12 

By a few "Proof by contradiction" steps similar to those used in Lemma 5.1 in discussing 

the linear dependency, it can be proved that rank of A is at most 26. • 

Theorem 5.6 (Linear Line Complex). The rank of the tensor estimation matrix is 

at most 23 if the image observables are about a set of at least 12 lines that belong to a 

general linear line complex. 

Proof. For linear complex, rank{L) = 6 — 1 = 5, with the 1 coming from one linear 

constraint. The Pliicker equality is no longer a linear constraint. By Eqn. (5.10), since 

projection is assumed to be general, ran/c([F’ 1'了，1"�]t) = 5. By rank{\) = rank{l')— 

rank (I") = 3 and Lemma 5.5，it can be concluded that the rank of A is at most 26 for 

linear complex. 

However, as in the step in proving Theorem (5.3) for ruled surface, three DoFs have 

to be deducted and the rank of A is at most 26 - 3 = 23 for linear complex. As each 

liAe correspondence provides 2 linear constraints on A, the minimum number of line 

correspondences needed is�23/2"| 二 12. 

__ • 

An alternative proof for the above has been presented by Stein and Shashua in [28 . 

The proof here is of a more general nature because it applies not only to special linear 

line complex but general linear line complex. 
• r 

Table 5.1 summarizes the rank properties of all line structures this paper has presented. 
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5.3 Retrieving tensor in critical configurations 

For linear line structures, such as ruled plane and linear line complex, although they are 

degenerated linear line structures such that trifocal tensor can not be uniquely determined, 

the tensor retrieved from the set containing all null vectors of estimation matrix A can 

transfer lines that belong to corresponding linear structures correctly, but not so for lines 

beyond such structures. 

The trifocal tensor from linear line congruence can be recovered, as the estimation 

matrix A only ranks 19, it is possible to incorporate some of the 9 admissibility constraints 

to obtain a full recovery of trifocal tensor. From the rank property, linear line congruence 

is the only linear line structure beyond LLC that allows the computation of true trifocal 

tensor available, because the rank of tensor estimation matrix should be at least with 

rank 27 — 9 = 18 for the unique determination of trifocal tensor. 

Algorithm for recovering trifocal tensor from linear congruence. 

1. Robust estimation to determine line correspondences which belong to the linear 

line congruence. 

2. Use line-line-line correspondences from three view to compute the tensor estimation 

matrix A. 

3. Find the 8 vectors spanning the null space of A. 

4. The true trifocal tensor can be spanned by 8 null vectors with 7 scalars as parameters 

to be determined. 

t 二 to + Qfiti + 0；2七2 + CKsts + Q!4t4 + (̂ 5七5 + + Oijij (5.12) 

where t is the true trifocal tensor, and t。，...，t? are the 8 null vectors of A. ai , . . . , Qy 

are the 7 scalars to be determined. 

5. Find the above 7 scalars so that an admissible tensor is obtained using the admissibility 

constraints. 

In practice, the last step starts with the solution from normalized linear method and 

refine it by numerical Gauss-Newton method until a solution satisfies the admissibility 

constraints is obtained. 
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5.4 Rank classification of non-linear line structures 

By orthogonal plane representation of lines, the following propositions can be derived. 

Note that the results do not require any specific representation of lines, but the orthogonal 

plane representation can provide geometric insight of the structures. Here, we will not 

give the proof for rank classification of non-linear line structures. 

The following proposition holds for nonlinear ruled surface, 

Proposition 5.1 (Nonlinear Ruled Surface). The rank of the tensor estimation matrix 

is at most 26 if the image observables are about a set of at least 13 lines that belong to a 

nonlinear ruled surface. . 

Remark 5.1. Empirical observations include rank 11，17，19 for 2-order ruled surface, 

rank 22, 23 for 4：-order ruled surface and rank 26 for 8-order ruled surface respectively. 

The following proposition holds for nonlinear line congruence, 

Proposition 5.2 (Nonlinear line congruence). The rank of the tensor estimation 

matrix is cCt most 26 if the image observables are about a set of at least 13 lines that 

belong to a nonlinear line congruence. 

Remark 5.2. Empirical observations include rank 23，26 for 2-order line congruence, 

rank 26 for A-order line congruence respectively. 

The following proposition holds for nonlinear line complex, 

Proposition 5.3 (Nonlinear line complex). The rank of the tensor estimation matrix 

is at most 26 if the image observables are about a set of at least 13 lines that belong to a 

nonlinear line complex. 

Remark 5 . 3 . ' E m p i r i c a l observations include rank 26 for 2-order line complex. 

f 
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Chapter 6 

Camera Motion Estimation 

Framework 

The goal of camera motion estimation is to determine camera projection matrices P, from 

unknown motion acquired by uncalibrated camera, given the fact that we do not have 

direct access to 3-D in most cases. It is the foundation of real-world applications, such as 

ego-motion-determination (3-D position of the camera). Camera pose can be estimated 

by several classes of methods, such as stereo, structure and motion. The problem can be 

break down into two pieces - line tracking and computation of camera pose, given a set 

of line correspondences. We made the following reasonable assumptions: 

• ||[(Rij_i,tij_i) - (Ri’/，ti’/)] - [ (Ri , / , t i j ) - (Ri’/+i，ti’/+i)]|| is small for all / , 

which means the camera motion is smooth. 

• ||(Ri/,ti/) — (Ri’/+i，ti，/+i)|| is small - the imaging rate (video capture rate) is 

much faster than camera motion at all time, which implies that the image line Ifi 

in frame f is close to the image line l/+i’z in frame / + 1. 

• Linear features are sparse (only small amount of linear features are selected from 

the image sequence). 

• scene depth/focal length is large - the scene is far away from the camera. 

The following sections describe camera motion estimation framework in three parts: 

line extraction, line tracking and camera motion determination framework, as shown in 

63 
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Fig. 6.1. 

LINE LINE MOTION 
DETECTION TRACKING ESTIMATION 

linage Set of Line Caiiiei a 
sequence ^ lines ^ conespoiicleiices ^ Motion 

Figure 6.1: Overview of camera motion estimation. 

6.1 Line extraction 

An existing linear feature extraction software, called “LINEAR” ^ [60], is used for edge 

extraction as shown in Table 6.1. Briefly, it undergoes the following operations: edge 

detection (using convolution operator), edge thinning, edge linking, line fitting (to form 

super-segments and segments), then anti-parallel extraction. Image sequence can be pro-

cessed automatically from command line input. Details about the output files of LINEAR 

can be found in its document. In particular, .ASEG file in ASCII format includes detailed 

information of line segments. "ShowLinear" can be used to display linear images (*.DAT). 

A powerful characteristic of this program is that disqualified segments and anti-parallels 

can be filtered out by adjusting the parameters in Filter Options, such as minimum seg-

ment length and minimum segment strength. 

Table 6.1: LINEAR - Linear Feature Extraction Software. ： 

Function: 
1. Extracts the edges in the image, (.out files) 
2. Finds the axial symmetries (anti-parallels) of the pairs of line segments that have 

opposite edge contrast. 
Input: Gray level image 

Output: Line segments of the image (.aseg files) 

1 Created by Davey Fong under the supervision of Prof. Ronald Chung 
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6.2 Line tracking 

Line tracking problem can be formulated as, 

Remark 6.1 (Line tracking). Given F sets of lines, { l i j , . . . , {1/ / } , . . . , {IF/}；社 aims to 

find the mapping, such that { ( l iz , . . . , 1/ / , . . . , —> 1. 

The tracking method depends on the type of object (rigid or deformable), the degrees 

of freedom of objects and camera as well as the corresponding application. In 2-D tracking, 

the 3-D displacement is modeled as a 2-D transformation. "Adaptive Model" approach can 

be used to estimate perspectives or deformation. Recently, 3-D tracking has become the 

dominate method to recover R, t in 3-D. In batch methods, image sequence is considered ‘ 

as a whole. Epipolar geometry plays an important role in matching points in two-view; 

likewise, trifocal tensor for three-view geometry is one of the fundamental tools of line 

tracking. As the geometry of lines in V^ is studied in chapter 3，our tracking method will 

be proposed directly. 

6.2.1 Preliminary geometric tracking 

Our method considers the homogeneous notion for points and lines on a plane. A line 1 

in 2-D satisfies ax by c = then, 1 can be represented by the vector (a, 6, c)^. As 

(ka, kb, kc) also satisfies {ka)x + [kh)y + (kc) = 0, (ka, kb, kc) and (a, b, c) represent the 

same line, (a, b, c广 can be treated as the homogeneous representation of lines in 2-D. 

The point x lies on line 1 if and only if x • 1 = 0. The intersection of two lines 1 and 1' 

is the point x = 1 x 1'. The line through two points x and x' is 1 = x • x'. The point 

{xi,x2,0)^ with last coordinate 0:3 二 0 are known as ideal point , or point and infinity. 

Line at infinity is denoted by the vector loo 二 (0,0,1)^. 

Theorem 6.1- (Duality Principle). Duality principle states that to any theorem of 2-D 

projective geometry, there corresponds a dual problem, which may be derived by inter-

changing the roles of points and lines in the original theorem. 

A model for the projective plane is given in Fig. 6.2. To find the projective line 

representations, suppose Xi = (xi,?/i) and X2 = (x2,2/2) are two points on line 1 = (a, 6, c), 

and c can be assigned as any arbitrary value to make [a, 6严 in a reasonable magnitude. 
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A 

ideal ^ 
point V Z 

tgp^-^^mm ma mm mt tm tm m • JBP^"*". 

Figure 6.2: A model for the projective plane. 

Then, Line is expressed as projective point on image plane in pinhole camera model as in 

Fig. 6.3(a). It can be found that, 

x i . 1 = 0 

X2.1 = 0 (6.1) 

which can be expanded as, 

a Xi yi c 
二 - (6.2) 

Ĵ [X2 2/2� [C 
Lines across multiple views can be tracked, which is the same as tracking their projec-

tive point representation. However, the remaining problems are the following, first, it is 

not geometrically meaningful to assume any motion model on projective points in inho-

mogeneous representation; second, if we want to track projective points in homogeneous 

representation, it is not linear with respect to its three coordinates xi, X2 and 0:3. Thus, 

we have to look back to some more geometric originality of the problem. Kalman filter 

is used for tracking 0 and (f) as shown in Fig. 6.3(a) and (b) respectively. 9 is the angle 

resulted from vertical rotation and translation of the camera;小 is the angle resulted from 
•V 

horizontal rotation and translation of the camera. 

In our model, the state vector denoted by X^ consists of two angle parameters and is 
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^ ^ 3D motion 
3-D Motion \ 一__ 

‘ l ( t+At ) l̂(t) ImageplanT--^^ 二 � 

Ĵ __̂  îmage plane 

(a) (b) 

Figure 6.3: Projective line representation, motion parameter 9 and (p in 2-D and 3-D. 

defined as 

Xfc = (j) 0 广 (6.3) 

where 9, —are the velocities of the angle parameters 9 and 0 respectively. Prom the 

assumption that the scene is far away from the camera, these two angles, as shown in 

Fig. 6.3, are capable in describing the position of the camera relative to the scene. Initial 

guess can be computed from nearest neighbor method or RANSAC robust estimation 

method. 

The linear dynamic model in Kalman Filtering is considered as state transition and 

measurement equations respectively 

Xa； = Afc-iXfc—1 + q/c—i 

. Yk 二 HfcXfc + rfc (6.4) 

where q^-i �iVfC^Qfe—i)，r^ �A/"(0，Ilfc) are process noise and measurement noise re-

spectively. As there are N linear features extracted from each frame, the number of KF 

is also N. 

A is the 4 x 4 diagonal state transition matrix, and H is the measurement matrix. A 
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and H are respectively defined as 

1 0 1 0 
0 1 0 1 [ 1 0 0 0 

A - ’ H = (6.5) 
0 0 1 0 [o 1 0 0 
0 0 0 1 

Discrete Kalman filter time update equations and measurement update equations will 

be used to estimate the projective point representation of lines. 

K = Axfc_i 

Pfc = + Q (6.6) 

KFC = P � H 丁 (HP 厂 HT + R ) - I 

Xfc = Xfc + Kfc(zfc — Hx~) 

PFC = (I - K , H ) P , - (6.7) 

Q and R are the covariance matrix for process noise and measurement noise respec-

tively, 
1 0 0 0 

0 1 0 0 |l 0 
Q = 0.1 , R = (6.8) 

0 0 1 0 [o 1 
0 0 0 1 

Kalman filter starts from the third view. After the kalman prediction, a local search 

is applied to find a unique match. If no line is found in the local search, then we assume 

that this line feature is no longer available. 

As the coordinate frame for lines is known, then we can compute the angle-adjusted 

shortest distance d between each pair of line segments (reminded that length of line 

segment is finite). If d is smaller than a given threshold, the parameter of line detection 

system (LINEAR) can be tuned to extract less line segments from each frame to avoid 

such case. We do not need as many line correspondences as point for tracking. 
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To summarize, a geometric meaningful line tracking algorithm is proposed by merging 

kalman filter and 3-view geometry. The proposed tracking algorithm is simple and fast, 

and it does not use any 3-D information of the scene. We also plan to include the depth 

d and the velocity of d as two additional variables in the state vector. In future, it can 

be extended to a Bayesian Network framework concerning the relationship of points in 

2-D, or incorporated with 3-D geometry of lines. However, there are several limitations 

that we should consider. The sample rate can not be either too slow or too fast, simply 

because in over-dense image sequences, the measurement noise will become dominant. 

The image sequence that is currently used only contains 16 images. Later, we will use a 

longer image sequence to test our method. Besides, other soft features may be applied, . 

such as the edge gradient. 

6.2.2 Experimental results 

Real images experiment is performed. Image sequence with resolution 480 x 512 comes 

from CMU VASC Image Database taken by SONY XC57 camera with NIKON 35—105mm 

zoom lens, fixed 50mm, focus infinity. The distances are as follows: the camera to the 

nearest parking meter: 39'6" ； the camera to the 2nd parking meter: 60'7" ； the camera to 

the 3rd parking meter: 82,4”; the camera to the farthest corner of the building : 112,2，’. 

It contains 15 frames. 

The images come in PNG format, and they are converted to BMP format (A=imread 

('pmseqO.png'); imwrite(A,'pmseq0.bmp');). Then, LINEAR AnyToRaw utility converts 

the image format from BMP to DAT. LINEAR is used for line detection (Linear -img 

pmseq0.dat). The detection results are controllable by adjusting the parameters in Fil-

ter Options, such as minimum segment length and minimum segment strength. Sample 

result from LINEAR is shown in Table 6.2. ".aseg" files record the information of all ** 
line segments, but it is less convenient. The results from the command line are more 

straightforward. 

Every two points (Begins, Ends) represent one line segment. Line representation can 

be transformed to its corresponding projective point representation, which is (a, b) in 

inhomogeneous form. The point-form lines can be tracked using Kalman Filter: Xk = 

(Ok, (t)k, Ok, in which 6 and (f) are the only two observables. 
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Table 6.2: Results from line extraction using LINEAR - Part of .aseg file. 
Segment Fam Pred Succ Begins Ends Length Theta Strength 

6 5 0 7 ( 3 7 ^ (191, 8 6 ) 1 8 8 . 0 0 ^ 40.54 
48 33 0 0 (3, 492) (116, 488) 113.07 357.97 86.23 
49 34 0 0 (3, 503) (78, 501) 75.03 358.47 31.27 
50 35 0 0 (3, 510) (41, 510) 38.00 0.00 46.55 

596 414 0 597 (45, 510) (163, 510) 118.00 0.00 73.89 
715 494 714 716 (65, 373) (249, 370) 184.02 359.07 38.21 
717 495 0 718 (54, 411) (3，273) 147.12 249.72 34.04 

720 495 719 0 (3’ 225) (197’ 222) 194.02 359.11 51.13 
800 540 799 0 (54’ 414) (3, 414) 51.00 180.00 39.63 

Nearest neighborhood method is applied to establish the initial matching. The initial 

value of X is computed as Xi = [-116.27907,0,1,0]^. The initial value of Q is 

1 0 0 0 
0 1 0 0 , 、 

Qi = (6.9) 
0 0 1 0 

0 0 0 1 

Kalman Filtering predicts the position of the point-form lines (kalman.filter{x, A, H, 

Q, R, initX, initQ)). In addition, to reduce the error caused by measurement noise, we 

also apply Kalman smoothing technique to achieve the smooth motion of the points 

{kalman^smoother{x, A, H, Q, R, initx, initQ)). Both "kalmanJilter" and "kalman_smoother" 

results are shown in Fig. 6.4. 

Then, we use local search within a circle whose radius is determined by the norm of 

the covariance matrix of the estimation to find the actual position of lines. The corre-

spondences are then established iteratively. The result shows that most lines that exist 

in all frames can be tracked correctly, and it is fast. 

Integrating trifocal tensor. Trifocal tensor can be integrated into the line tracking. 

Line transfer from two images to the third one revealed in [61] can be applied. Line 

correspondences and trifocal tensor can be integrated to the state vector of the Kalman 

filter system such that the estimate of trifocal tensor can be updated from data in new 

image frame. As trifocal tensor tells the camera motion up to projectivity, this treatment 

coincides with our primary motion estimation objective and leads to the camera pose 
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Figure 6.4: Prediction from Kalman filter and Kalman smoother. 

estimation framework as illustrated in the next section. 
Finally, The line tracking over frames is shown in Fig. 6.5. 

6.3 Camera motion estimation framework using EKF 

NOTE: This part is only about the framework of camera motion estimation. The system 

have not been fully implemented yet. 

Remark 6.2 (Camera motion estimation). Find (R42, ti2)’ …，(Ri/, tiy),..., (Rjp, tip), 

such that for all I，its correspondences in the image sequence (l^,..., 1//,..., intersect 

in 3-D at the same 3-D line segment under transformation {{Rif, ^i/), / = 2 , . . . , F} , 

where F is the total number of frames, and I is the index of lines. 

In motion estimation, several choices should be made before designing the algorithm, 

such as optimal flow or geometry, point feature or line feature, recursive or non-recursive 

method, two-view or multiple-view. We choose to use line feature, recursive, three-view 

geometry-based camera motion estimation with trifocal tensor as in Fig. 6.6. 

The way to create a motion model depends on how to parameterize camera pose. 
•r 

In Euler angles, a rotation matrix R can always be factorized as the product of three 
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Figure 6.6: Camera motion estimation framework using line correspondences with the 
trifocal tensor. 

matrices representing rotations around the X, Y, and Z axes as in Eqn. (3.7). 

Constant velocity model is assumed for camera motion. The state vector includes 

translation vector (tx, ty, tz) rotation matrix parameters (a, 7) as 

Xk = [tx,ty, t^, a,"’ 7, a, A 7,工2,2/2，之2, "2,72]了 (6.10) 

• • • • 

where tx,ty, tz, a, 7 are the velocities of the camera pose parameters. 0:2,2/2,之2，<̂ 2，(h�I2 

are the pose parameters with respect to the second camera. As initial estimate obtained 

by nearest neighborhood method or RANSAC method is not accurate, and also because 

the baseline between frame 1 and 2 is short, it is necessary to include the pose information 

of frame 2 into the state vector. 

X/c = /(Xfc—1) + Wfc_i) 

•• Zk = /i(Xfc)十 v̂ e (6.11) 

where Wfc—1’ v^ are the system noise and measurement noise respectively. Zfc is a 2N x 1 

vector. h{-) is the 2N x 1 function determined by line transfer using trifocal tensor. Next, 

EKF prediction and update equations can be used to obtain optimal estimation. 

To summarize, we have illustrated recursive camera motion estimation framework 

based on tracking lines across views integrating kalman filter and trifocal tensor. As men-

tioned before, the three-view geometry plays an important role in structure and motion. 

First, it makes consistent of geometric parameters across three views, which is unfor-
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tunately not directly satisfied for fundamental matrix in two views; Secondly, the time 

complexity for algorithms based on three-view is allowable, in contrast to four or more 

views, where it is not only hard to analyze but also time-consuming. 

In future, our framework can be implemented, so that camera motion will be computed 

with respect to the coordinate frame of the first camera. Next, the sparse lines under 

tracking with known camera motion will be matched with the known 3-D models of 

buildings to obtain the camera position and motion with respect to an arbitrary world 

coordinate frame in Euclidean space. 



Chapter 7 

Experimental Results 

Here we present results on both simulated and real image data to illustrate the validity 

of the above findings. To present the rank property of the estimation matrix A in each 

experiment, we display the magnitudes of the various singular values of A extracted by 

the Singular Value Decomposition (SVD) mechanism. Simple visual examination of the 

relative magnitudes of the singular values would already allow the true rank of the matrix 

to be revealed despite the presence of influence from resolution error and image noise (in 

the case of real image experiments). 

7.1 Simulated data experiments 

We have conducted massive empirical experiments to examine the proposed rank proper-

ties of the tensor estimation matrix. In such experiments image noise was absent, making 

the rank property more apparent, though resolution error was allowed to be present and 

have effect. 

The way we generated the simulated data is summarized in Table 7.1. 

Linear line space. Line pencil, point star, and ruled plane were generated in 3-D, 

and three views of 50 lines of them were created and they are shown in Fig. 7.1(a), 7.2(a), 

7.3(a) respectively. Fig. 7.1(b), 7.2(b), 7.3(b) show the logarithmic values of all singular 

values for these three line structures. Simple visual check already shows that the rank of 

the estimation matrix was 7,11,15 respectively. 
•r 

Linear ruled surface. Linear ruled surface was generated in 3-D, and three views 

75 
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Table 7.1: Simulation process. 
1.Generate 3-D lines and form the matrix L. 
2.For each of the three cameras, choose its position in space and the Euler angles 

for its orientation; then generate three camera matrices using the camera model 
described in Chapter 3. 

3.Calculate the line projection matrices using Eqn. (3.9). 
4.Calculate the image lines using Eqn. (5.4). 
5.Determine tensor estimation matrix A using Eqn. (5.6). 
6.Apply SVD to A to let its rank be visually examined. 

of 50 lines of it were created and they are shown in Fig. 7.4(a). Fig. 7.4(b) shows the 

logarithmic values of all singular values. It is clear visually that the rank of the estimation 

matrix was 12. 

Linear line congruence. Linear line congruence was generated in 3-D, and three 

views of 50 lines of it were created and they are shown in Fig. 7.6(a). Fig. 7.6(b) shows 

the logarithmic values of all singular values. Visual check shows that the rank of the 

estimation matrix was 19. Helicoid is a special line congruence shown in Fig. 7.5. Rank 

of estimation matrix is 19. 

Linear line complex. Linear line complex was generated in 3-D, and three views 

of 50 lines of it were created and they are shown in Fig. 7.7(a). Fig. 7.7(b) shows the 

logarithmic values of all singular values. Visually it is obvious that the rank of the 

estimation matrix was 23. 

7.2 Real data experiments 

The scene was composed of a cube and square board, with square grids covering every 

surface of the scene. The images were captured by a consumer-grade camera (Fuji FinePix 

S602 Zoom camera) with image resolution 2048 x 1536. Image lines were precisely located 

by having two widely separated grid-corner points identified on each of them, and line 

correspondences were manually established carefully. The grid-corner points came from 

four different planes: three faces of the cube and one square board behind the cube. Lines 

and subsequently line correspondences could be established from points within a plane 
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Figure 7.1: Three views of 50 lines that belong to a line pencil: rank�A) = 7; (a) the 
three views; (b) magnitudes of all singular values of the tensor estimation matrix. 

image 1 image 2 image 3 Point star: rank=11 
200 r 260 r 20001" 20, , , , , 
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Figure 7.2: Three views of 50 lines that belong to a point star: rank(A) = 11; (a) the 
three views; (b) magnitudes of all singular values of the tensor estimation matrix. 
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image 1 image 2 Image 3 Ruled plane: rank二 15 
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Figure 7.3: Three views of 50 lines that belong to a ruled plane: rank�A) = 15; (a) the 
three views; (b) magnitudes of all singular values of the tensor estimation matrix. 
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Figure 7.4: Three views of 50 lines that belong to a linear ruled surface: rank{A) = 12; 
(a) the three views; (b) magnitudes of all singular values of the tensor estimation matrix. 
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Figure 7.5: Helicoid and its images in three-view 
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Figure 7.6: Three views of 50 lines that belong to a linear congruence: rank�A) = 19； 

(a) the three views; (b) magnitudes of all singular values of the tensor estimation matrix. 
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image 1 image 2 image 3 Linear line complex(gen8ral): rank=23 
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(a) (b) 
Figure 7.7: Three views of 50 lines that belong to a linear complex: rank�A) = 23; (a) 
the three views; (b) magnitudes of all singular values of the tensor estimation matrix. 

as well as across different planes. This way, lines could form a number of different line 

structures. Line pencil was formed by taking all points (lines) that co-intersected in one 

plane. Point-star was the family of lines joining points from one plane and points off the 

plane. Ruled plane was formed by lines that joined only coplanar points. Besides, for any 

particular family of lines, new lines that were outside the family could also be arbitrarily 

generated. Thus the scene setting, though simple, did allow all linear line structures we 

consider in this work to be established. 

In all experiments, once the image lines and the line correspondences were established, 

the normalized linear algorithm was used to estimate the trifocal tensor. 

NOTE: While any family of lines we consider in this work are not bounded by any 

particular sector of the S-D space, any line set visible in the image data were (they were 

all inside the sector of S-D space where the visual fields of the three cameras overlapped). 

Thus it could be expected that the tensor estimation matrix A of the image lines could be 

under-ranked，i.e., having a rank less than the upper bounds presented in Chapter 5. 

7.2.1 Linear line space 

Line pencil. Three views of 15 lines of a line pencil were captured in Fig. 7.8(a),(b),(c). 

The singular values of the tensor estimation matrix as determined from the real image 
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Figure 7.8: Three views of 15 lines of a line pencil: rank{A) should be 7: (a),(b),(c): the 
three views, (d) the singular values of the tensor estimation matrix. 

data is displayed in Table 7.2. Fig. 7.8(d) shows the logarithmic values of singular values. 

Notice that there was a sharp decrease from the 7th largest singular value to the 

8th largest singular value, and the ratio between their magnitudes was only 0.002. It is 

consistent with the proposed result that the rank of the estimation matrix is no more 

than 7. 

Point star. Three views of 15 lines of a point star were captured in Fig. 7.9(a),(b),(c). 

The singular values of the tensor estimation matrix as determined from the real image 

data is given in Table 7.3. Fig. 7.9(d) shows the logarithmic values of singular values. 

Notice that there was a sharp decrease from the 11th largest singular value to the 12th 
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Real data of point star: rank=11 
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Figure 7.9: Three views of 11 lines of point star: rank�A) should be 11: (a),(b),(c): the 
three views, (d) the singular values of the tensor estimation matrix. 
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Table 7.2: Line pencil: The first 9 largest singular values of the tensor estimation matrix 
in descending order. 

1 I 2 I 3 
3.87391415456492 3.87300652270457 0.25289777951591 

4 I 5 I 6 — 
0.03040938703019 0.02976519813995 0.01067095306172 

7 8 9 
0.01060214514503 0.00002074615175 0.00000118752174 

Table 7.3: Point-star: The first 12 largest singular values of the tensor estimation matrix 
in descending order. • 

1 I 2 I 3 — 
3.37856000778844 3.31704866741561 1.76964758669184 

4 I 5 I 6 — 
0.07929898313645 0.07925389410443 0.05977953639001 

7 8 9 
0.03721143608304 0.00361908958561 0.00013670897335 

- 10 11 12 

0.00008674288015 0.00005252513361 0.00000000400253 

largest singular value, and the ratio between their magnitudes was only 0.0000762. It is 

consistent with the proposed result that the rank of the estimation matrix is no more 

than 11. 

Ruled plane. Due to measurement noise and the relatively small scope of space the 

line set was contained in, unlike the above, the actual rank of the tensor estimation matrix 

in this case was not as obvious from the magnitudes of the singular values. We verified the 

proposed upper bound of the rank in a different way. We used a line transfer mechanism 

as summarized in Table 7.4. Fig. 7.11 shows the line transfer result. A trifocal tensor was 

determined from merely the first 15 largest singular values of the tensor estimation matrix. 

Line transfer using this trifocal tensor could still re-project lines from the second and third 

views to the first view correctly, meaning that the rank of the tensor estimation matrix 

was indeed no more than 15，as predicted by the described analysis. However, upon having 

the estimation matrix's rank reduced further to less than 15, the line transfer results (as 
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Table 7.4: Checking the rank property of a linear line structure using line transfer. 
1. Choose a line set of the line structure from the image data. 
2. Use the image lines in the three views to construct the tensor estimation matrix 

A, and find the singular values of this matrix A. 
4. Suppose that the described rank analysis says the rank of A for the particular 

line structure is no more than r. Using SVD, keep only the largest r singular 
values of A, thereby reducing matrix A to matrix A' that is of 
rank only r. 

5. Determine the trifocal tensor of the three views using the reduced matrix A' as 
the tensor estimation matrix. 

6. Using the trifocal tensor so obtained, by means of Eqn. (7.1), transfer the above 
image lines 1', 1� in view 2 and 3 respectively to view 1. 

7. How close the transferred image lines are to the actual image lines in view 1 
indicate whether the proposed rank property is correct or not. 

shown in Fig. 7.11(b-d) deteriorated quite dramatically from (b) to (d), showing that for 

a ruled plane the rank of the tensor estimation A was no more than 15 but close to 15. 

The experiments for linear ruled surface, linear line congruence, and linear line complex 

are conducted in the same way. 

7.2.2 Linear ruled surface 

Linear ruled surface. As shown in Fig. 7.13, the line transfer error using tensor approx-

imated from respectively 12, 11 and 10 largest singular values of the estimation matrix 

were small, indicating that the rank of the estimation matrix A was indeed less than 12, 

as predicted. 

Nonlinear ruled surface. Rank of estimation matrix is up to 26. 

7.2.3 Linear line congruence 

Linear line congruence. As shown in Fig. 7.15, line transfers using tensor approximated 

from 19 largest singular values of the estimation matrix A were correct, but results from 

18 singular values contained an incorrect line, indicating that the rank of A was about 

19. This was consistent with the described rank analysis. 
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Real data of ruled plane: rank=15 
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Figure 7.10: Three views of 10 lines of ruled plane: rank�A) should be 15: (a),(b),(c): 
the three views, (d) the singular values of the tensor estimation matrix. 

•r 
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(a) (b) 
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(c) (d) 

Figure 7.11: Line transfer from the second and third views of a ruled plane (the frontal 
surface of the box) {rank{A) = 15) to the first view by trifocal tensor that was determined 
respectively from (a) 15, (b) 14，（c) 13, and (d) 5 largest singular values of the estimation 
matrix. 

1 
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Real data of linear ruled surface: rank: l2 
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Figure 7.12: Three views of 10 lines of linear ruled plane: rank (A) should be 12: 
(a)’(b)，(c): the three views, (d) the singular values of the tensor estimation matrix. 

•r 
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Figure 7.13: Line transfer from the second and third views of a linear ruled surface 
(rank(A) = 12) to the first view by trifocal tensor that was determined respectively from 
(a) 12, (b) 11, (c) 10, and (d) 9 largest singular values of the estimation matrix. 
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Figure 7.14: Three views of 20 lines of linear line congruence: rank (A) should be 19： 

(a),(b),(c): th^ three views, (d) the singular values of the tensor estimation matrix. 
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Figure 7.15: Line transfer from the second and third views of a linear line congruence 
(rank{A) = 19) to the first view by trifocal tensor that was determined respectively from 
(a) 19, (b) 18, (c) 17, and (d) 16 largest singular values of the estimation matrix. 
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(C) (d) 

Figure 7.16: Three views of 15 lines of linear line complex: rank�A) should be 23: 
(a)，(b)’(c): the three views, (d) the singular values of the tensor estimation matrix. 

Nonlinear line congruence. Rank of estimation matrix is up to 26. 

7.2.4 Linear line complex 

Linear line complex. As shown in Fig. 7.17, line transfers using tensor approximated 

from 23，22 and 21 largest singular values of the estimation matrix A were small, indicating 

that the rank of A was less than 23. This was in line with the prediction. 
•r 

Nonlinear line complex. Rank of estimation matrix is up to 26. 
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Figure 7.17: Line transfer from the second and third views of a linear line complex 
{rank{A) = 23) to the first view by trifocal tensor that was determined respectively from 
(a) 23’ (b) 22’ (c) 21, and (d) 20 largest singular values of the estimation matrix. 

� 
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7.3 Empirical observation: ruled plane for line trans-

fer 

In this section, we observe that trifocal tensor can still be partially recovered from de-

generate line structures. The line transfer result is correct for lines that belong to the 

degenerate line structures that is used for tensor estimation, but not correct for lines that 

do not belong to this set. 

Consider image line correspondences from a ruled plane. Although the correspon-

dences should be under-determining the trifocal tensor (since the rank of the estimation 

matrix in the case of ruled plane is no more than 15), owing to biasing influence of 

image noise and resolution error to the data, any linear estimation process would most 

definitely reach a particular solution for the trifocal tensor. Such a solution is only a 

particular one among the multiple trifocal tensor solutions constrained by the image line 

correspondences. If one is ignorant of the nature of the input data and blindly uses such a 

result for the initialization of any nonlinear algorithm in the literature for trifocal tensor 

determination, the quality of the final solution would be compromised. 

We have experimented to examine how this particular solution of the trifocal tensor 

performed in transferring the positions of image lines from two views to the third view 

using the following equation: 

h = 僻 ' (7.1) 

where 1，1'，1" are image lines in the three views respectively and T is the trifocal tensor. 

For illustration, the three views of the scene shown in Fig. 7.11 were used, and the 

frontal face of the box in the scene was chosen as the ruled plane for determining the 

trifocal tensor. Extensive experiments show that while image lines coming from that 

particular "ruted plane" could be transferred correctly, those coming from beyond that 

plane generally could not, as displayed by Fig. 7.18. 

NOTE: The above properties hold not only for ruled plane but for all linear line 

structures described in this thesis. 

The fact that the trifocal tensor determined by image data of under-determining line 

structure could still successfully transfer image lines that are on the line structure itself 
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Figure 7.18: Line transfer from the second and third views (shown in previous figure) 
to the first view by trifocal tensor that was determined from a ruled plane (the frontal 
surface of the box) (rank(A) = 15): (a) line transfer to the first view for lines on the 
above ruled plane; (b) line transfer for lines beyond the above ruled plane. 

(but generally not lines that are beyond the line structure) is actually exploited in our real 

image experimentation; it is used in the line transfer mechanism described in Table 7.4 

for confirming the rank property of the various linear line structures. 

7.4 Simulation for non-linear line structures 

As from Chapter 5, we use massive simulations to find out rank classifications of non-linear 

line structure. 

Nonlinear ruled surface. Nonlinear ruled surface of order 2 was generated in 3-

D, and three views of 50 lines of it were created and they are shown in Fig. 7.19(a). 

Fig. 7.19(b) shows the logarithmic values of all singular values. Visually it is obvious that 

the rank of the estimation matrix was 17. 

Nonlinear line congruence. Nonlinear line congruence of order 2 was generated in 

3-D, and three views of 50 lines of it were created and they are shown in Fig. 7.20(a). 

Fig. 7.20(b) shows the logarithmic values of all singular values. Visually it is obvious that 

the rank of the estimation matrix was 23. 

Nonlinear line complex. Nonlinear line complex of order 2 was generated in 3-

D, and three views of 50 lines of it were created and they are shown in Fig. 7.21(a). 
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(a) (b) 
Figure 7.19: Three views of 50 lines that belong to a 2nd order ruled surface: rank{A)= 
17; (a) the three views; (b) magnitudes of all singular values of the tensor estimation 
matrix. 
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� (b) Figure 7.20: Three views of 50 lines that belong to a 2nd order line congruence: rank{A)= 23; (a) the three views; (b) magnitudes of all singular values of the tensor estimation matrix. 
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Figure 7.21: Three views of 50 lines that belong to a 2nd order line complex: rank�A)= 
26; (a) the three views; (b) magnitudes of all singular values of the tensor estimation 
matrix. 

Fig. 7.21(b) shows the logarithmic values of all singular values. Visually it is obvious that 

the rank of the estimation matrix was 26. 



Chapter 8 

Conclusions and Future Work 

This chapter concludes the thesis. We first summarize the content of the thesis, including 

rank classification of trifocal tensor estimation and recursive camera motion estimation 

framework. Then, we propose possible extensions to this work. 

8.1 Summary 

Degeneracy of trifocal tensor estimation and empirical studies. 

The topic of the thesis is rank classification of trifocal tensor estimation for linear line 

structures, which describes how far is it from determining a unique trifocal tensor for 

different linear line structures. Trifocal tensor is an important quantity in multiple view 

geometry because it can be determined uniquely and linearly from image observables, and 

it captures all geometric constraints for among three-view. Thus, the topic of study in 

this thesis should be well-investigated before the application of trifocal tensor using line 

correspondences. 

We have supplied a classification of the geometry of a collection of lines in space in 

regard to the determination of trifocal tensor from three views of the lines. In particular, 

we have presented what rank the estimation matrix would have if the line set is a sub-

class (linear ruled surface, linear line congruence, or linear line complex) of linear line 

structure, or more specifically a sub-structure (point-pencil, point-star, or ruled plane) 

of linear line space. Trifocal tensor determination is crucial to motion estimation and 
•r 

projective reconstruction, and ambiguity would be present if a less than general set of 
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lines are unfortunately all that can be observed. Notice that not only is the presence of 

ambiguity pointed out, the extent of the ambiguity is also pinpointed in this work. Such 

a study over a list of major line structures is unprecedented. 

The whole concept can also be looked at from the opposite angle. By examining the 

rank property of the tensor estimation matrix, one can have a glimpse of what possible 

line structure the cameras are indeed observing even if it is an under-ranked case. And 

this can be done without even attempting motion estimation, 3-D structure recovery, or 

trifocal tensor determination. 

Preliminary camera motion estimation framework. 

A geometric meaningful line tracking algorithm has been proposed in this research by 

merging geometry and kalman filter. It also illustrates recursive camera motion estimation 

framework based on tracking lines across views integrating kalman filter and trifocal 

tensor. It is only the preliminary investigation beyond the core work-rank classification of 

tensor estimation matrix, to show the possible applications. In the author's view, three-

view geometry is the heart of motion analysis accompanied with the latest development on 

computing tools. First, it makes consistent of the geometric parameters across three views, 

which is unfortunately not directly satisfied for fundamental matrix across two views; 

Second, the time complexity for algorithms based on three-view is allowable, in contrast 

to four-view or more, where it is not only hard to analyze but also time-consuming. 

Briefly, our research work has the following contribution - rank classification of trifocal 

tensor estimation using line correspondences with proof of algebraic lemmas and theorems 

in two papers: 

1. Ming Zhao and Ronald Chung. Rank classification of linear line structure in 

determining trifocal tensor. In Proceedings of the European Conference on Computer 

Vision (ECCV), 2008. to be published. 

2. Ming Zhao and Ronald Chung. Trifocal tensor under linear line structures and its 

use in line transfer. In Proceedings of International Conference on Pattern Recognition 

(ICPR), 2008. to be published. 
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8.2 Future work 

Degenerate line structures. 

Rank property analysis is meant for linear structures. A possible future work is to 

explore how the equivalence of rank property can be extracted for nonlinear line structures, 

and even different camera motions. Slight deviation of the observed lines from the line 

structures mentioned in this work, like having a set of lines that are supposedly from a 

ruled plane but are not exactly all co-planar, would affect the singular values of the tensor 

estimation matrix. Another possible future work would be to investigate how tolerant is 

the rank property toward such deviations. 

There are to additional issues to investigate. 1. Completeness. It aims to prove that 

whether aforementioned rank classification can represent all line structures in the sense of 

trifocal tensor estimation. 2. Distortion. It involves two problems: the first is to study 

how lens distortion and image errors would affect the rank properties of line structures; 

the second is to study how minor changes in line structure in 3-D would affect the rank 

properties and therefore the accuracy of trifocal tensor estimation. 

Camera motion estimation. 

Implementation. There is a need to implement the whole camera motion estimation 

framework. Calibrated images. Just as essential matrix and fundamental matrix are 

in Euclidean space and projective space respectively, trifocal tensor in projective space, 

trifocal tensor can also have a similar quantity in Euclidean space. Therefore, there is 

a room to investigate the way to determine camera motion using this "essential trifocal 

tensor". 

• I 



100 

A 

. • ‘ • •• 

‘ - •‘ • 

• V ” 

• \ • . . . > 



Appendix A 

Notations 

In this chapter the notations used in this thesis are summarized. 

Table A.l: Notations. 
Notion Interpretation 

A Tensor estimation matrix 
B Sub-matrix of tensor estimation matrix 

_ T Tensor-equivalent column vector 
X 3-D point 
n 3-D plane 

H, Pproj Projective transformation matrix 
Faff Affine transformation matrix 
Pg^^ Similarity transformation matrix 

PEuclidean Euclidcan transformation matrix 
R Rotation matrix, or 27 tensor-equivalent vector 
t Translation matrix 

o 

P Camera projection matrix 
K Intrinsic parameters matrix 
M Extrinsic parameters matrix 
f Focal length 

Px.Py coordinates of the principle point on image plane 
a’/?, 7 Euler angles 

C Camera center in camera coordinate frame 

101 
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Table A.2: Notations (cont.). 
C Camera center in the world coordinate frame 
P Camera line projection matrix 

e, e' Epipoles 
F Fundamental matrix 

Htt Homography matrix 
P+ Pseudo-inverse of P 
Tj Trifocal tensor in matrix form 

E<5,W(5 Homography matrices 
G^ Correlation matrix 

El, E2, E3 Standard homography slices 
Gi, G2, G3 Standard correlation slices 

T产 Trifocal tensor with indices i,j,k 
L Pliicker coordinate of lines 

1’ 1'’ 1� Image lines in three-view 
l]x Skew-symmetric matrices related to 1 
L Pliicker matrix 
L* Dual Pliicker representation 
K Any 9 x TV matrix 
*] A vector with * as its column entry 

A*’i The ith column of A 
Xfc State vector in Kalman filter 

Qfc-i Process noise 
r/c Measurement noise 
A State transition matrix 
H Measurement matrix 
Q Covariance matrix for process noise 
R Covariance matrix for measurement noise 

� 



Appendix B 

Tensor 

Tensor notation is frequently used in this thesis. For more details, the reader can refer to 

mathematics textbook about tensor or [62 . 

For vectors, indices are written as subscripts and coordinates are written as upper 

index, such as x̂ ê , x = In standard tensor notation, covariant indices are 

written as subscripts, and contravariant indices are written as superscripts. The sum over 

an index, such as HJx-̂  is referred as a contraction , which can be simplified to x\ 

The trifocal tensor T^^ has one covariant i and two contravariant indices j, k. Points 

and lines are indexed as contravariant x̂  and covariant k respectively. 

According to tensor slices, the 27-element trifocal tensor can be represented in a 3x3x3 

cube as shown in Fig. B.l. It visually illustrates how line transfer is applied. 

i" I “ 
… - - - … 

！……」?……丨;’ 

‘ I , ， ： ,,,'、 

！ … 」 ( … ‘ 

Figure B.l: Inside trifocal tensor. 
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Appendix C 

Matrix Decomposition and 

Estimation Techniques 

Least-squares Minimization. The problem can be formulated using simultaneous 

linear equations, Y = /?X + In practice, we assume that the dimension of column of X 

is much larger than the dimension of row of X, and X is full column rank. Then (3 can 

be estimated as p = X+Y, where 

X+ = (X 'X) - iX , (C.l) 

is the pseudo-inverse of X. If noise is normally distributed, then maximum likelihood 

estimation (MLE) is least squares estimator (LSE). 

Robust Estimation. Two main robust estimators (M-Estimator, RANSAC) can be 

used to solving the sensitivity of LSE to outliers. 

For M-Estimator, it minimizes instead of where p is an M-estimator. 

Huber estimator and Tukey estimator are respectively given by 

1x^2 if\x\ < c 
PHub{x)= 

c{\x\ — c/2) otherwise. 
\ 

f[l-(l_(，)3)] i/|x| < C 
pTuk{X)= 

c^/6 otherwise. 
< 
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RANSAC can be referred to the classical text [63]. M-Estimator requires an initial 

estimate to converge; on the contrary, RANSAC does not require such initial estimate. 

M-Estimator utilizes data better (more accurate) ； RANSAC only utilizes partial data. 

Therefore, they can be combined as RANSAC for initial estimate and M-estimator for 

better results. 

Kalman filter. Kalman Filtering [64] considers a linear dynamic model 

x/c = + qfc_i 

Yk = HfcXfc + Tk (C.2) 

where 

Qfc-i �7V(0’Qfc—i) 

rfc � 佩 Rfc) (C.3) 

x/c is the state at time tk, Yk is the direct measurement containing noise, Ait_i is the transi-

tion matrix, q^-i denotes the uncertainty during the state transition. The Qfc_i，Rfc 

are known for all k > 0. The initial estimate is assumed to be known. Let rriA；, P^ denote 

the state mean and state covariance respectively, then we have the prediction result, 

m 厂=Afc—inifc—1 

P - = Afc_iPfc_iA�—1 + Qfc—1 (C.4) 

o 

Finally, the state mean and covariance can be updated by 

Kfc 二 厂 

mfc = m厂 + KfcVfc 

Pfc = Pfc - KkSkKl (C.5) 

Extended Kalman Filter (EKF). EKF [64] considers a nonlinear dynamic model 
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governed by the stochastic difference equation 

Xfc = /(xfc-i,Ufc_i,Wfc_i) (C.6) 

with a measurement 

Zfc = / i ( X f c ’ V f c ) ( C . 7 ) 

where w/̂ , v^ represent the process and measurement noise, which are not known at each 

time step. Therefore, the state and measurement can be approximated as 

Zfc = Mx.,0) (C.8) 

By linearization, the state vector can be approximated according to the optimality of 

Bayes' rule. EKF time update ("Predict") equations are given by 

P," = + (C.9) 

and the measurement update ("Correct") equations are 

Xfc = x^ + Kfc(zfc - h{x-,0)) 

P/c = (I - (C.IO) 

� 



Appendix D 

MATLAB Files 

Here encloses partial matlab code for trifocal tensor estimation, line transfer and simula-

tion. 

D.l Estimation matrix 

% Tensor estimation matrix 

A = zeros(2*nlines,27); 

% equation 1 

r = 1 : nlines; 

A(r，10) =( 11(3,:).*12(1,:).*13(1,:))，； 

A(r, 11) =( 11(3’:).*12(1，:).*13(2，:）)'; 

A(r, 12) =( 11(3,:).*12(1,:).*13(3,:))’； 

A(r, 13) =( 11(3,:).*12(2,:).*13(1,:))’； 

A(r, 14) =( 11(3,:).*12(2,:).*13(2,:))’； 

A(r, 15) =( 11(3’:).*12(2’:).*13(3’:）），； 

A(r, 16) =( llf3,:).*12(3,:).*13(l,:))，； 

A(r, 17) =( 11(3,:).*12(3,:).*13(2,:))，； 

A(r, 18) 二（ 11(3,:).*12(3’:).*13(3，:）），； 

A(r , 19) = { -11(2，:).*12(1，:).*13(1’:）），； 

A(r, 20) =( -ll(2，:).*12(l’:).*i:i(2，:）)'; 

107 
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A(r, 21) =(-ll(2’:).*12(l’:).*13(3’:）），； 

A(r, 22) =(-ll(2’:).*12(2,:).*13(l,:))，； 

A(r, 23) =( -11(2,:).*12(2,:).*13(2,:))，； 

A(r, 24) ={ -11(2,:).*12(2,:).*13(3,:))’； 

A(r, 25) =(-ll(2,:).*12(3,:).*13(l,:))'; 

A(r, 26) =( -11(2,:).*12(3,:).*13(2,:))，； 

A(r, 27) =( -11(2,:).*12(3,:).*13(3,:))，； 

% equation 2 

r = (nlines+1) : nlines*2; 

A(r, 1) =(-ll(3’:).*12(l,:).*13(l，:）)'; 

A(r, 2) =(-ll(3’:).*12(l’:).*13(2,:))’； 

A(r，3) 二(-11(3’:).*12(1’:).*13(3，:）），； 

A(r, 4) =(-ll(3’:).*12(2,:).*13(l’:）)'; 

A(r, 5) = ( -11(3，:).*12(2,:).*13(2，:））,； 

A(r, 6) =(-ll(3，:).*12(2,:).*13(3’:）），； 

A(r, 7) =(-ll(3,:).*12(3,:).*13(l,:))，； 

A(r, 8) = ( -11(3,:).*12(3，:)‘*13(2，:）），； 

A(r, 9) = ( -11(3,:).*12(3，:).*13(3’:））’； 

A(r, 19) =( 11(1,:).*12(1,:).*13(1,:))，； 

A(r, 20) =( 11(1,:).*12(1,:).*13(2,:))，； 

A(r, 21) =( 11(1,:).*12(1,:).*13(3,:))，； 

A(r, 22) =( 11(1,:).*12(2，:).*13(1’:）)'; 

A(r, 23) =( 11(1,:).*12(2,:).*13(2,:))，； 

A(r, 24) = ( 11(1，:).*12(2’:).*13(3’:）），； 

A(r, 25) =( 11(1,:).*12(3,:).*13(1,:))，； 

A(r, 26) =( 11(1,:).*12(3,:).*13(2,:))，； 

A(r, 27) =( 11(1,:).*12(3,:).*13(3,:))'; 

� 

rankA=rank(A); 
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V, D, V] = svd{A,0)] 

tO=V(:,27); 

TO=permute( reshape(t0,3,3,3) , [ 2 1 3 ] ) ; 

D.2 Line transfer 

% Line transfer from corresponding lines in the second and third views 

% to the first using trifocal tensor, refer to [7] p.367 

% Arguments: 11, 12, 13: lines in view 1,2,3 respectively . ‘ 

function [ll]=line_transfer(12，13，T) 

if size(12) =size(13) error('size of 12, 13 is different'); end 

Size=size(12); Size=Size(2); 

for i=l:Size 

ll(:，i)=[12(:，i)’*T(:，:，l)*13(:,i);12(:,i)’*T(:,:,2)*13(:,i);12(:,i)，*T(:,:，3)*13(:,i^ 

ll(:，i)=ll(:，i)/ll(3,i); 

end 

return 

D.3 Simulation 

% Camera matrix. 

K=[5 0 0; 0 5 0; 0 0 1); 

alpha=pi/29; ' 

beta 二 pi/30; 

gamma=pi/31; 

R l= [ l 0 0; 0 cos (alpha) -sin(alpha); 0 sin(alpha) cos(alpha)]* [cos(beta) 0 sin(beta); 0 1 

0; -sin(beta) 0 cos(beta)]* [cos (gamma) -sin(gamma) 0; sin(gamma) cos (gamma) 0; 0 0 
• r 

1]； 
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tl=[-1.5;-0.5;-l]; 

PI 二 K*[R1 tl]; 

% Line projection matrix from camera matrix. 

Pl_lin=[det( Pl(:,l:3) )*inv(Pl(:,l:3)'), -vgg_contreps(Pl(:,4))*Pl(:,l:3)]; 

P2�in=[det( P2(:，l:3) )*inv(P2(:,l:3)'), -vgg_contreps(P2(:,4))*P2(:,l:3)]; 

P3�in=[det( P3(:,l:3) )*inv(P3(:,l:3)，)’ -vgg_contreps(P3(:,4))*P3(:,l:3)]; 

% LLC. 

nlines=50; 

L(:’6)=ones(nlines, 1); 

L(:,l)=rand(nlines, 1); 

L(:，4)=rand(nlines, 1)*100; 

L(:，2)=rand(nlines, 1)*50; 

L(:’5)=L(:’1)-4*L(:’2)+3*L(:,4)+5*L(:’6); 

L(:,3)=-L(:’1).*L(:’4)-L(:，2).*L(:，5); 

% Line projection. 

11—lin=Pl_lin*L’； 

ll_lin(l,:)=ll_lin(l,:)./ll_lin(3,:); 

llJin(2’:)=ll_lin(2，:)./ll_lin(3,:); 

ll_lin(3，:)=lUin(3’:)./ll_lin(3’:)； 
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