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The simultaneous localization and mapping technique is an important 
requirement in the development of autonomous robot. Many localization algorithms 
for wheeled robots using various sensors have been proposed. In this thesis, we 
present a vision-based localization algorithm for a small home-use robot pet (legged 
robot) which is equipped with a low-resolution camera as the only sensor for 
localization. Challenges of vision-based localization for legged robots include: 1) 
leg slippages are common in legged robot, which lead to unpredicted and 
unmodeled motion errors, 2) as the sensor data is fluctuated due to the oscillated 
walking motion of legged robot, the high degree of freedom of legged robot 
increases the complexity of the localization problem and 3) camera has limited field 
of view and image points are lack of depth information. In the proposed algorithm, 
the localization for high-dimensional movement robot is modeled as an optimization. 
The robot state (position and orientation) is obtained by optimizing the formulated 
objective function using genetic algorithm (GA). Based on the vision-based 
localization problem, details of the employment of the GA are presented. Besides, 
approaches that aim to 1) increase the efficiency of the search and 2) weaken the 
influence of noisy feature points on the localization results are proposed. Results 
from simulations show that the proposed algorithm is able to localize the legged 
robot accurately and efficiently even though the input feature points involve high 
level of noise. 
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摘要 

同時定位與地圖創建技術在發展全自主機器人的領域上是一項重要的條 

件。硏究人員對於使用不同傳感器的輪式機器人，已提出大量不同的定位演算 

法。在這篇論文中，我們針對家用的寵物機器人(腿式機器人)，提出一個基於視 

覺的定位演算法。這種機器人只裝備一臺低分辨率的攝影機，作爲唯一的定位 

用傳感器。硏究腿式機器人的視覺定位方法之挑戰在於：1)腿式機器人在步行 

時滑動是很普遍的，這導致機器人的移動產生不能預料和不能建模的誤差，2) 

因爲機器人擺動的走動方式令傳感器和傳感器接收的資料振盪，所以腿式機器 

人的高自由度移動增加了定位問題的複雜性，以及3)相對於其它傳感器，攝影 

機的視野有限,而且圖像缺乏距離的資料。在我們提出的定位演算法，高自由度 

移動機器人的定位被建模爲一個最優化程序，通過使用遺傳演算法來優化目標 

函數式，因而獲得機器人的位置和方向。我們將會提出針對腿式機器人視覺定 

位問題之遺傳演算法的運用細節。此外，我們提出方法以提高優化程序的效率 

和減弱噪聲圖像對定位結果的影響。模擬實驗結果顯示，即使使用噪聲圖像特 

徵，本論文提出的視覺定位演算法仍能對腿式機器人作出高效率和準確的定 

位° 
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Chapter 1 - Introduction 

The simultaneous localization and mapping (SLAM) problem is one of the 
major research areas in the robotic community, which is a key requirement for the 
development of truly autonomous robots. The SLAM is a technique used by robots 
to 1) continuously locate itself in an unknown environment using its sensor inputs 
and 2) build its own map at the same time for future localization or navigation. The 
navigation environment is described by a set of landmarks, while the nature of 
landmark depends on the sensor type. When the robot explores a new place, new 
landmarks are added to the map and the map is built incrementally. Based on the 
estimated location and the map built, the robot can navigate around the environment 
and execute various commands autonomously without any prior information on the 
environment. SLAM is a complicated task that can be divided into three major steps: 
1) knowledge acquisition, 2) robot localization and 3) map building and 
management. These steps are applied repeatedly during the SLAM process. 

In knowledge acquisition, information (landmarks) is extracted from the input 
sensor data. The representations of landmarks depend on the sensor type and 
localization algorithm. For example, landmarks for image are commonly represented 
as comer, line, pattern and the recently proposed scale-invariant feature [Lowe, 
2004]. In the case of laser range sensor, landmarks can be represented by the raw 
range scan or the foreground points and edges which are extracted by range data 
clustering [Bailey et al., 1999], etc. 

In map building and management, the map is built continuously by adding new 
landmarks that the robot explored during its navigation. A new landmark is located 
using the current map and robot state before adding to the current map. Sometimes a 
new landmark needs to be observed for a period of time before it can be located in 
order to increase its certainty. As the number of landmarks increases along the 
navigation, the computational cost and map storage increases exponentially so that 
effective map management algorithms are necessary. [Guivant and Nebot, 2001] 
proposed to divide the global map into many local regions so that the computational 
cost of SLAM can be reduced. [Dissanayake et al., 2000] suggested removing 
landmarks according to their information content to minimize the loss of information. 
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Robot localization is to estimate the robot state (e.g. position, orientation, 
velocity, acceleration, etc.) continuously according to the extracted landmarks, the 
current map and the previous robot states. The localization process includes 1) local 
localization and 2) global localization. Local localization is to keep track of the 
robot locally when the robot is under normal navigation. Global localization is to 
localize the robot within the whole map when the robot is first put into the map or its 
track is lost during navigation. Both of them are important in robot localization as 
global localization allows the robot to be re-localized when it is lost, while local 
localization allows the robot to be localized efficiently most of the time. 

The SLAM technique has a wide range of applications. It has been applied to 1) 
autonomous service-robots used in public areas, such as museums [Graf et ai, 2004] 
[Dellaert et al, 1999] and home stores [Gross et ai, 2001], 2) wearable visual 
robotics [Davison et al., 2003] which estimates the motion of the wearer and detects 
the environment. It is useful in remote collaboration and augmented reality and 3) 
autonomous vehicles that can navigate automatically [Dissanayake et al., 
2001][Chou et al., 2004]. These applications show the demands of high quality 
SLAM techniques. 

Recently, [Liu et al” 2006] developed a telemedicine system for remote health 
and activity monitoring that targets the elderly and patients at home. The system 
allows medical professionals to deliver health care and to share medical information 
remotely by making use of the well-developed telecommunication technologies. On 
the client side, wireless sensors are carried by the patient for biological data 
collection. On the remote side, medical professionals monitor patients' situations by 
means of multiple vital-sign parameters (i.e. electrocardiography, blood pressure, 
heart rate, etc.) via laptop, desk PC, mobile phone or PDA. Moreover, a robot pet is 
incorporated in the client side of the system for the following functions: First, the 
robot pet can behave autonomously and acts as a companion for the patient. Second, 
it can be remotely controlled (taking pictures, walking and speaking) via computer 
or mobile devices, which serves as a patient monitoring unit as well as a mode of 
communication between patients and healthcare providers. Lastly, the robot pet 
collects biological data from wireless sensors and transmits it to the remote 
healthcare provider via its built-in WLAN card. 
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In order to be autonomous and to cope with the aforementioned tasks, the robot 
pet should be able to localize itself in the environment. Ability of the robot to 
localize itself with no prior information is even better, so that the robot pet can work 
properly wherever it is putting in. Wheeled robot localization has been discussed for 
years. Recently, many researchers have shifted their focus to legged robots as it is 
more suitable to operate in a practical environment which involves uneven terrain 
and stairs, while wheeled robots need to be navigated in relatively even surfaces. 
Furthermore, human beings are more preferable to work or interact with animal- or 
human-like legged robots than wheeled robots. Besides the appearance, legged 
robots are also desired to behave autonomously. To be autonomous, the ability to 
localize itself is an essential requirement. However, localization of the legged robot 
is more difficult than that of the wheeled robot in the following aspects: First, 
walking motion of legged robots usually involve leg slippages which lead to 
unpredicted and unmodeled movements. These result in robot position and 
orientation different from those expected. If no proper localization method is applied, 
the robot position error will accumulate and increase along the track. Second, due to 
the oscillated walking motion of legged robots, sensors are vibrated so that the 
collected data is fluctuated. In addition, as sensors move in a 3D space with six 
degrees of freedom (DOFs), the complexity of the localization problem is increased. 

Information from the surroundings for robot localization is received by sensors 
that are equipped on the robot. Sensors such as laser systems, cameras and sonar 
sensors are commonly used for robot localization. The accuracy of a localization 
algorithm is highly dependent on the quality of sensor data. However, quantity and 
size of sensors equipped on a robot are limited by the robot size. Large sensors, such 
as laser system, are not feasible for small home-use robots like the one used in [Liu 
et al, 2006]. Though images contain massive amounts of information (comer, color, 
pattern, intensity and etc.) that is useful in localization, there are still many 
difficulties in visual localization. First, images can only be used for localization after 
the landmarks (e.g. comer and pattern) are extracted by some feature extraction 
techniques. However, the extraction result is highly affected by lighting condition 
and image noise. Incorrect landmark detections affect the result of localization and 
mapping directly. Second, compare with laser system which can receive data from 
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360 degrees, the field of view of a camera is small. The amount of information 
received in an instant is limited. Lastly, image points from singe image are lack of 
depth information. As our robot pet is equipped with a single low-resolution camera 
as the only sensor, we are interested in the visual localization method for small 
walking robot using single camera. 

In this thesis, we present a vision-based localization algorithm for a small 
walking robot by assuming that the robot navigation environment consists of a set of 
landmarks with known positions. We propose to formulate the vision-based 
localization for a high-dimensional movement robot as an optimization. Afterward, 
the formulated objective function is optimized using a genetic algorithm (GA). 
Given the feature coordinates of an image captured by the equipped camera at 
current instant and the corresponding landmark positions, the localization algorithm 
is able to estimate the current robot state (i.e. position and orientation). 

The thesis is organized as follows: In chapter 2, a brief review of the recent 
proposed localization algorithms is presented. These algorithms include the 
extended Kalman filter (EKF)-based localization algorithm and the Monte Carlo 
Localization algorithm. In chapter 3，the vision-based localization problem for 
legged robot is defined. We show that the vision-based localization for a high DOFs 
moving robot can be formulated as an optimization. Thus, the robot state can be 
obtained by optimizing the formulated objective function. In chapter 4，mechanism 
of some commonly used search algorithms are presented. Their limitations and 
efficiency are discussed. Afterward, the possible choice of search algorithms for the 
objective function proposed in chapter 3 is analyzed. In chapter 5, the mechanism of 
an evolutionary based optimization technique, genetic algorithm, is presented. In the 
proposed algorithm, a genetic algorithm is employed to solve the objective function. 
The details of the employment including chromosome formation, fitness functions, 
genetic operators and selection scheme are discussed. Based on the basic principle of 
the genetic algorithms, we propose several approaches to increase the efficiency of 
the localization algorithm. In addition, a search space defining method, called 
adaptive search space strategy is presented, which aims to increase the efficiency of 
the proposed algorithm as well as weaken the influence of noisy feature points. In 
chapter 6, the performance of the proposed algorithm is measured in terms of 
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accuracy, efficiency, noise sensitivity and noise reduction ability by three 
experiments. In the first experiment, the accuracy and efficiency of the proposed 
algorithm is tested by a simulation of robot localization in an area of 10m x 10m for 
60 seconds. In the second experiment, the noise sensitivity of the proposed 
algorithm is examined by simulations similar to that of the first experiment except 
that different levels of Gaussian noise are added to the input feature points. In the 
third experiment, the noise reduction performance of the proposed adaptive search 
space strategy is illustrated by simulation of robot state estimation using localization 
algorithm that is not applied with the adaptive search space strategy. Finally, the 
major contributions of the thesis are concluded in chapter 7. 
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Chapter 2 一 State of the art in Vision-based Localization 
Many localization algorithms for robots equipped with single camera have 

been proposed. Since legged robot navigation is a fairly new field, most of the 
localization approaches are developed for wheeled robot. They can be classified into 
two groups: 1) Extended Kalman Filter-based localization and 2) Monte Carlo 
Localization. In the rest of this chapter, overviews of these recently proposed 
localization algorithms are presented. 

2.1 Extended Kalman Filter-based Localization 

The Kalman filter (KF) is first introduced by [Kalman I960]，which is a 
recursive filter that estimates the state of a linear dynamical system with noisy 
measurements. The Extended Kalman filter (EKF) is an enhanced version of the 
Kalman filter, which can deal with non-linear dynamical system. The EKF has been 
the subject of extensive research in the area of autonomous robotics. An overview of 
the EKF and the process of the EKF-based localization are given in the rest of this 
section. 

2.1.1 Overview of the EKF algorithm 
The EKF targets the problem of trying to estimate the "state" of a discrete-time 

controlled process that is governed by a stochastic difference equation [Welch and 
Bishop 2004]. Suppose the state is ^ G and it is governed by the stochastic 
difference equation: 

^k 二/( ^k-l, Uk-i, Wk-l ) (2 1) 

with a measurement z g that is: 

Zk = /i (^k + Vk) (2 2) 



7 

,where Wk g and Vk g are zero-mean random variables that represent the 
process noise and the measurement noise respectively, Ur e is the control input 
and the subscript k indicates the time step. Then, the process noise covariance matrix 
Rk and the measurement noise covariance matrix Qk are mxm matrix and nxn matrix 
respectively which might be fixed or varied with time. The non-linear difference 
function f relates the state at the previous time step k-\ to the state at the current time 
step k. Meanwhile, the non-linear function h related the state and the measurement. 
Though the noise wr and Vk are unknown, the prior state and the measurement 
at time step k can be estimated using knowledge prior to time step k by setting Wk 
and Vk to zero: 

Ik 一 =/rIk-i，Uk-i,0� （2.3) 
(2-4) 

，where 专k is the posterior state at time step k . Then, suppose the actual state at time 
step k is ^k, the prior estimate error Ck" and the posterior estimate error Ck are defined 
as: 

Moreover, the prior error covariance matrix Pr" and the posterior estimate error 
covariance matrix Pk are defined as! 

(2.7) 
Pk = £:[ek-eJ] . (2.8) 

� Given the knowledge of measurement Zk, the posterior state ^^ is obtained by: 

(2.9) 
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where the difference (z^ - z^ ) is the residual and Kk (mxn matrix) is the Kalman 
gain which is chosen that the posterior error covariance matrix Pk is minimized. As 
Kk is with respect to Rk, it can be regarded as a weight of the residual which 
depends on the noise level of the measurement. A popular form of Kk is: 

Kk (2. 10) 

，where Hk {nxm matrix) and Vk (mxn matrix) are the Jacobian matrices of partial 
derivatives of h with respect to ‘ and Vk respectively. 

2.1.2 Process of the EKF-based localization algorithm 
The EKF-based localization is a recursive solution to robot localization with 

noisy sensor measurements. The EKF aims to estimate the "state" of a system, 
where the nature of the state depends on the system. For robot localization, the state 
of the system is the robot state which can include the robot position, orientation, 
velocity or acceleration. The robot state at a time step is estimated in two phases: 1) 
predict phase and 2) update phase. The predict phase is to project forward the robot 
state and the error covariance matrix in the previous time step in order to obtain a 
prior robot state and error covariance matrix for the current time step. The update 
phase is to use the knowledge of the measurement in the current time step to correct 
the prior robot state and error covariance matrix in order to obtain an improved 
posterior robot state and error covariance matrix. 

Predict phase 
In the predict phase, the prior robot state and error covariance matrix Pk" 

are estimated without using the current measurement. The is estimated 
according to Eq. (2. 3). Meanwhile, the Pk is computed by: 

(2.11) 
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，where Qk is the process noise covariance matrix，Ak (mxm matrix) is the Jacobian 
matrix of partial derivatives of f with respect to “ and Wk (mxm matrix) is the 
Jacobian matrix of partial derivatives of f with respect to w^. 

Update phase 
In the update phase, given the measurement Zk, the posterior robot state ‘ and 

error covariance matrix Pk are obtained. The ^^ is computed by: 

(2.12) 

，where the Kalman gain Kk is obtained as described in Eq. (2. 10). Meanwhile, the 
Pk is computed by: 

(2. 13) 

The EKF-based localization algorithm tracks the robot state by applying the 
predict and update phase at each time step. To summarize, the flow diagram of the 
EKF-based localization algorithm is shown in Fig. 2. 1. 
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k=\ Initial robot state ^ Predict Phase and estimate error 
covariance, i.e. ^ 1. Predict the prior robot state . ~ 

and Po 2. Predict the prior error 
covariance matrix Pr". 

Update Phase 
k k+\ 1. Compute the Kalman gain Kr. 

2. Correct the prior robot state 
‘—with the measurement Zk ^ ~ 

3. Correct the prior error 
covariance Pr" 
^Pk 

Fig. 2. 1 Flow diagram of the Extended Kalman filter - based localization algorithm. 

2.1.3 Recent EKF-based vision-based localization algorithms 
Recently, some visual localization algorithms using the EKF are proposed. 

[Karlsson et al, 2005] proposed a SLAM algorithm based on visual and odmetric 
signals. It enables robot navigation in populated and dynamic areas. [Bond et al., 
2005] proposed a SLAM algorithm using sensor data from odometry, camera and 
sonar. The reliability of visual landmark position is improved by including the 
landmark positions in the state of the EKF. In these two examples, the robots were 
equipped with camera and other sensors, and the EKF was used as a tool to fuse data 
from different sensors. On the other hand, some researchers proposed that SLAM 
algorithm using camera as the only sensor is possible. For example, [Wang et al., 
2005] proposed a visual localization algorithm using the landmarks on a planar 
ground. Also, [Jeong and Lee, 2005] proposed a ceiling vision-based SLAM 
algorithm which localizes a robot using images captured by the equipped camera 
that is mounted in a direction facing the ceiling. One of the problems of single 
camera localization is the lack of depth information of image points. The approaches 
proposed in [Wang et cd., 2005] and [Jeong and Lee, 2005] solve the problem by 
assuming that the landmarks are always on the same plane (ceiling or ground). The 



n 

aforementioned algorithms were applied to wheeled robots, whose number of DOF 
is less than that of legged robots. Besides the applications on wheeled robot 
localization, an EKF-based localization approach has been proposed and applied to a 
six-legged walking robot LAURON III [Gassmann et ai, 2005] with the fusion of 
GPS and odometry measurement. Though EKF-based visual localization approach 
for the walking robot is not found, a real-time visual SLAM approach for a smoothly 
free-flying handheld camera is proposed by [Davison, 2003]. Similar to the camera 
equipped on walking robot, the handheld camera involves high-dimensional 
movement. 

2.1.4 Advantages of the EKF-based localization algorithm 
The EKF has been proven an effective solution to real-time robot localization 

in many researches. As the EKF-based localization algorithm computes the robot 
state at a time step by the measurement at that time step only, the computational cost 
is relative small. Moreover, the EKF-based algorithm does not have the assumption 
of rigid environment (landmarks). As the EKF-based algorithm aims to estimate the 
"state" of the system at each time step, things in the system that with interests can be 
added to the state. In the case of dynamic environment, the landmark positions can 
be included in the state, which will be updated at each time step. Furthermore, the 
EKF-based algorithm is a tool to fuse sensor measurements when more than one 
types of sensor are used for localization. 

2.1.5 Disadvantages of the EKF-based localization algorithm 
The EKF-based localization algorithm use unimodal Gaussian to represent the 

distribution of the state while the actual state distribution might be non-Gaussian. 
Thus, the EKF-based algorithm is always used for robot tracking but not global 
localization. Moreover, the EKF-based algorithm assumes smooth robot movement 
as the predict phase estimates the robot state at current time step by the robot state at 
the previous time step. To ensure that the robot states at successive time steps are 
continuous, the robot movement should be smooth. Therefore, the EKF-based 
algorithm is usually applied to wheeled robot instead of legged robot. As legged 
robot as well as its sensors vibrates during navigation, robot velocities at successive 
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frames are not continuous. In this case, robot state estimated in the predict phase 
might involve large error. If the error cannot be corrected during the update phase 
due to noisy measurements, the localization error will be accumulated along the 
track. Since EKF-based localization does not deal with the global localization 
problem, the robot track might be lost when more errors have accumulated. 

2.2 Monte Carlo Localization 

Monte Carlo Localization (MCL) is a robot self-localization approach first 
introduced by [Fox et al. 1999], which is a recursive filter that estimates the robot 
state given the sensor measurements. It is a sampling-based approach that the 
probability density function (p.d.f.) of the robot is approximated by a set of particles. 
MCL can cope with both of the global and local localization problem. An overview 
of the MCL and the recent works related to the MCL are discussed below. 

2.2.1 Overview of MCL 
In the MCL, given the sensor measurements collected from the starting time to 

the time step k, the posterior p.d.f. of the robot state at time step k can be represented 
by a set of random and weighted particles Sr = {si,k}ie[\,Nc], where the subscript k 
indicates the time step and Nc is the number of particles. Each particle Si,k has a 
weighting factor p,, where p/^0 and [二； Suppose the position of a sample Si is 
equal to li, li denotes the robot state and is in the form: li = [x, y, 0\ (i.e. [x, y] is the 
robot position vector and 0 is the robot orientation ). 

The MCL algorithm localizes the robot by recursively computing the p.d.f. of 
the robot state at each time step. The determination of a robot state p.d.f. can be 
divided into two phases: 1) Robot motion and 2) Sensor readings. 

Robot motion 
In the robot motion phase, a prior particle set Sk" = {si,k}ie[\,Nc] that estimates 

the p.d.f. of the robot state at time step k using the input motion command and the 
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sensor data prior to time step k, is generated when the robot moves. Particles of Sk" 
are generated by selecting particles from Sk-i and applying the input control 
command to each particle, where Sk is the posterior particle set at time step k. In 
probabilistic representation, for each particle in Sk-i,a particle of Sk" is generated by 
selecting a particle from the density p{ Lk| ak-i，Si’k-i), where Lk is the robot state at 
time step k and ak-i is the input control command. The newly generated particles in 
Sk" are equally weighted, i.e.;7, = l/7Vc, 

Sensor reading 
In the sensor reading phase, the posteriori particles set Sk that describes the 

p.d.f. of the robot state is determined by considering the sensor measurement at time 
step k, namely bk. First, each particle Si,k in Sk" are re-weighted by the likelihood that 
the robot state is at its particle position li，k given the sensor measurement bk, i.e. pi 
<r Tip( bk I li，k), /e[l凡]，where zj is the normalization factor that is to ensure that 
^二"j Pi = 1 after the re-weighting process. The weighted particles in Sk" reflect the 
robot state p.d.f. change with the knowledge gained from bk. Then, the re-sampling 
process randomly selects particles from the weighted Sr with the likelihood depends 
on their p-values, i.e. particle with larger /7-value is more probably to be selected. 
The resultant particle set formed by the selected particles is the posterior particle set 
Sk for time step k. The weighting factors of the particles in Sk are reset to be equal, 
i.Q.pi = l/Nc ,ie[l,Nc]. 

To summarize, the flow diagram of the MCL algorithm is shown in Fig. 2. 2. 
In the case that the initial state of the robot is unknown, the process starts with a set 
of particles that are randomly generated in the navigation environment. 
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Fig. 2. 2 Flow diagram of the Monte Carlo Localization algorithm. 

2.2.2 Recent MCL-based localization algorithms 
The MCL was first applied to Minerva, a wheeled robot which was employed 

as tour-guide in a museum [Fox et al., 1999]. The robot was equipped with a camera 
pointed toward the ceiling. Using the ceiling images and the motions recorded by its 
odometry, the algorithm is able to track the robot path even though the motions 
recorded by the robot's odometry involved significant errors. Furthermore, [Fox et 
al, 1999] showed that the MCL algorithm is able to globally localize a robot. They 
proposed that the size of the particle set should be varied from tracking to global 
localization. 
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Besides localization for wheeled robot, MCL algorithm is also applied to 
legged robot localization. Several researchers: [Rofer and Jungle, 2003], [Lenser and 
Veloso, 2000], [Ueda et al., 2003] and [Sridharan et ai, 2005] used the MCL as a 
baseline for robot localization in the RoboCup Sony Legged Robot League 
[RoboCup]. It is a soccer game participated by teams of autonomous legged robots, 
which requires the robots to localize itself in real-time. The RoboCup environments 
are approximately 4m x 6m with color-coded landmarks. The robots participating in 
the game are four-legged and equipped with single camera in their heads. The 
equipped camera captures images as sensor data for localization during the game. 
[Rofer and Jungle, 2003] proposed that the stability of the MCL algorithm can be 
increased by limiting the change of the weighting factor of each particle to a certain 
maximum. This weakens the effect of measurement errors on the particle weights, 
while maintaining the re-localizing efficiency after kidnapping. Kidnapping 
describes the situation that a robot is picked up and placed at a different position. 
[Lenser and Veloso, 2000] proposed the Sensor Resetting Localization (SRL) which 
is an extension of the MCL. The SRL handles the unmodelled movements using 
fewer particles by replacing the small p-valued particles with the particles selected 
from the p.d.f. given by the sensor measurement during the re-sampling process. 
[Sridharan et al., 2005] proposed several enhancements to the MCL which aim to 
improve the localization accuracy. One of the enhancements is "Landmark histories" 
which suggests that by storing information of the observed landmarks in successive 
frames, it is possible to localize the robot when inadequate landmarks are seen 
simultaneous. The aforementioned examples demonstrate that the MCL-based visual 
localization algorithms are sufficient for real-time robot localization in the RoboCup 
environment. 

2.2.3 Advantages of the MCL-based algorithm 
Similar to the EKF-based algorithm, the MCL is an efficient localization 

algorithm which can localize the robot in real-time. Since MCL represents the p.d.f. 
of robot state by a set of particles, the robot state p.d.f. can be described by multi-
modal distribution. Hence, the MCL is able to cope with the global localization 
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problem. That is, the robot can be localized without knowing the initial position or 
be re-localized when the robot track is lost. 

2.2.4 Disadvantages of the MCL-based algorithm 
The accuracy of the MCL-based algorithm is highly dependent on the density 

of the particle. The estimated robot state is accurate only if the blob of particles at 
the actual robot state is so dense that it can be distinguished from other particles. 
Several aforementioned examples illustrate that the visual localization algorithms 
based on the MCL performs well on legged robots. However, the Robocup 
environment is relatively small. In contrary to the environment of RoboCup, 
practical environments are usually larger and the landmarks are further from the 
robot that the expected observation is less sensitive to the particle position. In other 
words, particles at positions around the actual robot state have similar p{ bk | li,k) 
values, i.e. /7-values. Hence, the particles at the actual robot state are not distinct 
from the other particles around the actual robot state during the re-weighting and re-
sampling process. As a result, a loosely grouped blob of particles near the actual 
robot state is generated after the re-sampling. As the robot state is estimated by the 
density of the resultant particles, a loosely grouped blob of particles reduces the 
accuracy of the estimated robot state. 

Another disadvantage of the MCL-based algorithm is that the number of 
particles needed is exponentially increased with the number of dimensions of the 
state, (i.e. the number of particle is n"^ for m-dimension state, where n is the number 
of particles for one-dimension state.) 

2.3 Summary 
The commonly used visual robot localization algorithms are classified into two 

types: 1) EKF-based localization and 2) MCL. The EKF-based localization 
algorithm assumes smooth robot motion. Hence, it is not suitable for wheeled robot 
localization. Moreover, the EKF-based localization algorithm does not cope with 
global localization problem. The MCL algorithm can cope with both global and 
local localization, but it is only suitable for relatively small navigation environment. 
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Seen from the drawbacks of the previous works, an ideal visual localization 
algorithm for legged robots should: 1) be accurate and fast, 2) localize the robot 
using natural landmarks in the environment regardless of their distances from the 
robot, 3) adapt to the oscillating sensor data due to rapid changes of the robot 
velocity and 4) re-localize the robot state quickly after the robot is kidnapped. 
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Chapter 3 - Vision-based Localization as an Optimization 
Problem 

The vision-based localization is to estimate the states (positions and 
orientations) of the robot given the landmark positions and the feature points 
extracted from the captured images. In this problem, the state (position and 
orientation) of the equipped camera is first estimated, and the state of the robot body 
can be obtained by the transformation of the relative position and orientation 
between the camera and the robot body. For legged robot, the relative position 
between the camera and the robot body can be varied from time to time. Compare 
between legged robot and wheel robot localizations, the degree of freedom (DOF) of 
the legged robot is usually higher than that of wheeled robot. Hence, the 
dimensionality of the robot (camera) state in legged robot localization is usually 
higher. The robot (camera) state in wheeled robot localization is usually 3D，i.e. 2D 
of position and ID of orientation. Though the orientation of the camera equipped on 
the legged robot might depend on the statuses of several movable joints of the robot, 
the localization problem is simplified without loss of generality by using a vector 
that represents orientation in 3D space to represent the camera orientation. 
Meanwhile, the camera position is represented by a 3 by 1 vector. In this chapter, we 
show that the vision-based localization problem for a high DOFs moving robot can 
be formulated as an optimization. By solving the objective function, the camera state 
can be obtained. 

3.1 Relationship between the World, Camera and Robot Body 
Coordinate Systems 

To model the vision-based localization as an optimization, three coordinate 
systems: the world coordinate system W, camera coordinate system C and the robot 
body coordinate system B are defined. These coordinate systems are all represented 
in the Cartesian coordinate system. 
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The world coordinate system is defined based on the robot navigation 
environment. The xz-plane of W is parallel to the floor of the navigation 
environment (assuming that the floor of the navigation environment is flat). The 
objective of the localization is to obtain the states (i.e. position and orientation) of 
the robot (i.e. center of the robot body) related to W. The "center of the robot body" 
and "state of the center of the robot body" are abbreviated as "robot" and "robot 
state" respectively in the following discussion. By formulating the vision-based 
localization problem as an optimization, and optimizing the objective function, the 
state (position and orientation) of the equipped camera related to Wean be obtained. 
The robot state can be computed by transformation between the camera and the 
robot if the relative position and orientation between the equipped camera and the 
robot is known. 

To illustrate the transformation between the camera and the robot, the camera 
coordinate system C and the robot body coordinate system B are defined. The origin 
of C is the camera position (see Fig. 3 .1 ) . 

y 个(VV) 
World coordinate 

system 

Robot body 
coordinate system 

A (6) 
y f(C) 

y / Camera coordinate 

z 勝 
Fig. 3. 1 Relationship between the world coordinate system W, the camera coordinate system C and the robot body coordinate system B. 
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Suppose the camera position vector related to W is pc^ (the superscript 
indicates the coordinate system that the vector is related to) and the rotation matrix 
from FF to C is Rwc (a 3x3 matrix), the relation between fV and C can be described 
by the following equation: 

CC _ T> / CW _ WN S - RWC ( S _PC ) (3. 1) 

,where S^ and S^ are the 3D point at C and W respectively. Hence, if S^ is the 
camera position (i.e. S^ = pc^), S^ is equal to [0, 0, 0] (i.e. origin of Q . The origin 
of B is the center of the robot body (see Fig. 3. 1 ). Suppose the robot position 
vector related to C is pb and the rotation matrix from C to 5 is Rcb (3x3 matrix), the 
relationship between B and C can be described by the following equation: 

S» = Rcb(S^-pb^) (3.2) 

N 广 ,where S and S are the 3D point at B and C respectively. 
We define the robot position vector related to W as pb^ and the robot 

orientation represented by rotation matrix from ^ to 5 as R^b (3x3 matrix), such 
that 

sB = Rwb(SW-pbW). (3 3) 

Suppose pc and R^c are known by optimizing the objective function, and pb and 
Rbc are obtained from the statuses of the controllable DOFs of the robot, pb^ and 
Rwb can be computed as follows: 
First, substitute Eq. (3. 1) to Eq. (3. 2), 

Afterward, re-arrange the coefficients as: 
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S® = Rcb»Rwc ( S ^ - pc"^) 一 Rwc• PbC 
=Rcb.Rwc ( s^ - (pcW + Rwc PbC)). (3. 4) 

By comparing the coefficients of Eq. (3. 4) and Eq. (3. 3), 

Rwb “ Rcb*Rwc (3 5) 
Pb̂  = Pĉ  + R w c � P b � (3. 6) 

3.2 Formulation of the Vision-based Localization as an 
Optimization Problem 

As discussed in the previous section, the localization of a robot is equivalent to 
the localization of the equipped camera. In this section, we focus on the estimation 
of the state (position and orientation) of the equipped camera at a certain time step 
using the image captured by the camera at that same time step. It is assumed that 
there is a set of landmarks with known positions in the robot navigation environment. 
The feature points corresponding to these landmarks are extracted from the captured 
image and used as the sensor measurements for the localization. It is also assumed 
that the captured image always contains the feature points of some of the landmarks. 

Due to the oscillated walking motion of the legged robot, the camera vibrates 
so that its position and orientation change quickly. Therefore, the translation of the 
camera is no longer on a planar surface. Instead, the camera involves three degrees 
of translation. Hence, the camera position vector p e 沢̂ related to fV is defined as: 

P = LPX> Py> PZF ( 3 . 7 ) 

,where px, Py and p: are the coordinates along the x-，y-, and z- axis of W 

respectively. Similarly, the degree of camera rotation increase due to the oscillated 
walking motion of the legged robot. Hence, the camera has three degree of rotation. 
The camera orientation vector o e is represented by Euler angles as: 
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0 =[这,终，幻 T ( 3 . 8 ) 

,where 6x,9y and Q: are the rotation about the x-, y- and z-axis of W respectively. 
The camera state vector r is composed of the camera position vector and the camera 
orientation vector as: 

r = 5 = k Py Pz 没 X Sy 没 z]T (3.9) 

The camera position is p related to W and it becomes the origin in C. 
According to Eq. (3. 1), the relation between W and C can be described by the 
following equation: S^ = R (S^ 一 p), where R is the 3 x 3 rotation matrix from Wto 
C defined by o as: 

(By the right hand rule) 
R = Rx®Ry»Rz (3. 10) 

,where Rx, Ry and Rz are: 
"1 0 0 

R , = 0 cos (6'J sin (6'J , 
_0 -sin (<9 J cos ((9 J 
"cos (6'^) 0 -sin {9^) 

R y = 0 1 0 
|_sin(<9,) 0 cos (〜）_ 
"cos (6 J sin (6 J 0" 

R , = -sin((9J cos (6J 0 . 
0 0 1 

Suppose there is a set of landmark positions FN = {fi},e[i’Mi] where fi = [fx^Jy', 
f: ']T is the position vector of the i出 landmark related to W and Na is the total number 
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of landmarks. The position vector of the 产 landmark fi related to C is defined as: hi 
= [ h j , V , V f (see Fig. 3. 2)，i.e. hi = R (f； — p) . 

y 

h (W) 
World ooordinate 

system 又 jf i''* landmark 

/ \ h , n(C) Camera 
/ w ^ \ coordinate system 

Z / Projection plane ^ x 

Fig. 3. 2 Relationship between the landmark position vector (fj and hj) and the projected image point 

According to the pinhole camera model, the projection plane of the camera is 
perpendicular to the optical axis (z-axis of Q and F cm apart from the center of 
projection (origin of Q , i.e. projection plane is z = F, where F is the focal length of 
the camera. The projected image point of hi on the projection plane related to C is 
defined as gi = [Ui, V/, F]丁 as shown in Fig. 3. 2，and [[/,., V,] is related to hi by the 
following equation: 

U 丨二 F ^ 
K 

(3.11) 

K 

Suppose the feature coordinates correspond to the i出 landmark is mi= [w,，v,]̂ , mi is 
related to [t/,-, K,] by the following equation: 
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厂 “ / l � " 1 + — w, p 
； = V. (3- 12) L ‘ � — _ 

where \cx, Cy\ is the image coordinates of the principal point, and py> are the pixel 
length (cm per pixel) in x- and y- direction respectively. 

By considering hi and its corresponding measured feature coordinates, namely 
mi' = [u/, v/], we define the measured gi, namely as: 

T (3 13) =\Pu{Ui' - Cx), Pv{Vi - Cy\ F]T . 

A line equation that passes through hi and (hi - )，namely camera position 
line is formed, i.e. /,: hi + 广g/，which describes the position of the camera. Since the 
measured feature coordinates m/ is assumed to be noiseless, gi is equal to gi'and L, 
should pass through the origin of C. Suppose Nm (J^m < No) feature points that 
correspond to the landmarks in FN are selected for localization, a set of Nn, line 
equations {L,},, e [ i ,^] g {/y},je[i’Na]，and Lj 关Lk for j is formulated and they are 
converged at the origin, i.e. actual camera position. However, m/ always involves 
noise that gi is no longer equal to g/ and the corresponding L, may not pass through 
the origin. As a result, there is a perpendicular distance dj between L, and the origin: 

gi'x([000]T-h 丨： 

d丨= ； 
gi 

gi 丨 ) | 

— f gi 

一 [ V ^ ' - V f J (3. 14) 
—1 72 72 

\ Ui + 广 
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As there are Nm feature points, there is a set of perpendicular distance D = (dj, 
d2, ds d^m} as shown in Fig. 3. 3. 

(C) 
今y hj 

Fig. 3. 3 Visualization of the goodness of a camera state {N^ = 2). 

Hence, the accuracy of a possible camera state r can be represented as the sum 
of {J,}. The smaller the sum of {d,} ’ the more accurate the camera state. Thus, a 
vision-based localization problem can be modeled as an optimization problem which 
minimizes the perpendicular distances between the origin and camera position lines 
with respect to the camera state, i.e. 

robot state = argmin^d.(r) (3 j5) 
r i= l 

Thus, the goodness of a possible camera state can be measured by the following function: 
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N „ 

f,oo,ness(^) = ^Ld , ( r ) (3.16) 
i= l 

3.3 Summary 

The vision-based localization for a high DOFs moving robot is defined as: 
given the landmark positions and the feature coordinates from an image captured at 
a certain time step, the 6D camera state (i.e. 3D position and 3D orientation) related 
to the world coordinate system at that time step is estimated. We formulate the 
localization problem as an optimization which minimizes the perpendicular 
distances between the origin of the camera coordinate system and the camera 
position lines. Thus, by optimizing the objective function, the camera state can be 
obtained. In addition, the transformation between the estimated camera state and the 
estimated robot state is presented. 
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Chapter 4 - Existing Search Algorithms 

In chapter 3, we showed that the vision-based localization problem can be 
formulated as an optimization in which the camera state at current time step can be 
obtained by minimizing the objective function fgoodnessix) (Eq. (3. 16)). There are 
numerous search methods proposed, in which different approach advantages in finite 
classes of functions. In the rest of this chapter, a brief discussion of the common 
search methods is given. Afterward, the choice of search algorithm for the proposed 
objective function is analyzed. 

4.1 Overview of the Existing Search Algorithms 

In numerous search algorithms, there are three major approaches: calculus-
based, enumerative and stochastic. The calculus-based approach can be further 
divided into two groups: direct and indirect methods. The direct search method 
searches for the local optimum by constantly adjusting the solution in the search 
space according to the gradient information. A well-known method in this domain is 
the steepest gradient descent. For the indirect method, the local optimum is found by 
solving a set of equations obtained by setting the gradient of the objective function 
in each direction to zero. The calculus-based search method is efficient as it is 
specialized for different objective functions. However, as it seeks for optimum based 
on the neighborhood information, the search result may probably be trapped in the 
local optimum for multimodal functions. Moreover, the arbitrarily chosen step size 
of the algorithm may result in divergence. In addition, the existence of derivatives of 
the objective function is necessary. Therefore, the calculus-based search method is 
suitable only for unimodal and differentiable objective functions. 

For the enumerative method, its principle is simple, which searches for the 
global optimum by evaluating every point in the search space, one at a time. Though 
this approach ensures that the global optimum can be found, it is inefficient and is 
only applicable on small search space and discounted processing time. 
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For the stochastic search algorithm, it is not just randomly searching in a 
search space. Instead, it uses randomized techniques to guide the searching process. 
It is not Strange to apply random in the searching process as many processes in our 
nature involve random. A famous stochastic search algorithm is called the genetic 
algorithm (GA), which employs the mechanism of natural selection in its search 
strategy. Stochastic algorithm is not as efficient as the calculus-based approach. 
However, since no gradient information of an objective function is involved in GA, 
it can be applied to both discontinuous and non-differentiable functions. Moreover, 
as the GA search is guided by a random operator instead of the gradients of function, 
it is able to jump out the local optimum lobe. 

The three search approaches: calculus-based, enumerative and stochastic, 
benefit in different classes of functions and with different levels of efficiency. The 
calculus-based method is the most efficient solution among the rest but its 
application is limited to differentiable functions. Besides, its performance is not 
stable for multimodal functions as it is probably trapped in local optimum. Though 
the enumerative method is inefficient, it ensures that the global optimum can be 
found and is applicable to both non-differentiable and multimodal functions. 
Moreover, its parameter-less property is the advantage over the other two 
approaches. Though the stochastic search approach is not as efficient as the calculus-
based approach in differentiable and unimodal functions, it is more robust in the 
sense that its performance is stable for wider classes of functions including 
multimodal, non-differentiable and discontinuous functions. The stochastic search 
approach is not doing better than the enumerative approach when unlimited time is 
given. However, it is a more efficient and is a fairly good solution when processing 
time is critical. 

4.2 Search Algorithm for the Proposed Objective Function 

In chapter 3, we pointed out that the error of a suggested robot state r in 
vision-based localization can be expressed as fgoodnessix), i.e. ri is more accurate than 
Y2 if fgoodmssijx) < fgoodnessix^). Thus, the Camera state can be obtained by minimizing 
the objective function. In calculus-based approach, we should set partial gradient of 
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fgoodnessiy) to zcro. On the other hand, fgoodnessix) is a sum of the perpendicular 
distances dj between Li and origin at the camera coordinate system C. As J, in Eq. (3. 
14) consists of trigonometry functions (sine and cosine), these non-linear terms are 
not eliminated after the partial differentiation in the calculus-based approach. Instead, 
more non-linear terms are introduced that the resultant differential equations are 
much higher non-linear. Due to the non-linearity, the matrix inverse method is not 
applicable. Meanwhile, this non-linearity of fgoodnessî ) implies that fgoodmssî ) is 
multimodal. 

Fig. 4. 1 shows the simplified output landscape of fgoodnessif) when number of 
feature points Nm = 5 and the feature points are viewed at the position = [-1.77, 
29.22, 78.00] and the orientation = [-0.07°, 0.04°, -0.03°] represented by the Euler 
angles. In this figure,/goo£/«e5s(r) is plotted against px and Oy (indicated as "angle y" in 
the figure) while py, pz, Ox and Q: are fixed at the desired values (i.e. py = 29.22, p:= 
78.00, e文=-0.07° and 0, = -0.03°). 

-15 -10 

X (cm) angle y (deg) 

Fig. 4. 1 The objective function fgoodmss (r) is multimodal. 
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Seen from the figure, the landscape contains multiple local optimums and a 
single global optimum lobe (the one we are interested in). It is expected that there 
will be even more local optimums when all the elements of r are variable. Therefore, 
the steepest gradient descent method and its variants are easily trapped in the local 
optimum. For the enumerative approach, it is inefficient to optimize fgoodnessif) in the 
following aspects: 1) fast algorithm is desired for robot localization, otherwise the 
system will lose track of the robot and 2) the search space is large, due to the high-
dimensional camera state. Lastly, the stochastic search approach is considerable in 
optimizing fgoodness(î ) as it is relatively efficient and performs well on multimodal 
functions, and GA is employed in the proposed algorithm. 

4.3 Summary 

The common search algorithms can be classified into three types: calculus-
based, enumerative and stochastic. In the view of efficiency, the indirect method in 
the calculus-based approach (i.e. matrix inverse method) is the most efficient 
approach because it is specialized for the objective function. The optimum is 
obtained by setting the gradients of the function to zero. The enumerative method is 
the most insufficient approach as it evaluates every point in the search space. 
Comparing the limitations of these algorithms, the calculus-based method is 
practical to differentiable functions only. Moreover, since the calculus-based method 
is guided by the gradients information, it is easily trapped in the local optimum for 
multimodal functions. The enumerative method is limited to small search space. 
Moreover, it provides a discrete solution with the resolution depends on the 
sampling rate. The efficiency of the enumerative method is inversely proportional to 
the resolution in the order of function dimension. The stochastic method is 
applicable to all classes of functions including: discontinuous, non-differentiable, 
multimodal and even black-box functions. It is not limited by the size of the search 
space. The limitations and efficiency of these search algorithms are summarized in 
Table 4.1 and Table 4.2 respectively. 
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Calculus-based Enumerative Stochastic 
Continuous functions yes no no 
Unimodal functions yes no no 
Differentiable functions yes no no 
Small search space no yes no 

Table 4.1 Limitations of the calculus-based, enumerative and stochastic approaches. 

Calculus-based Enumerative Stochastic 

Differentiable and high low moderate 
unimodal function 

Differentiable and „ low moderate 
multimodal function 

Non-differentiable and „ low moderate 
unimodal function 

Non-differentiable and „ low moderate 
multimodal function 

Table 4.2 Efficiency of the calculus-based, enumerative and stochastic approaches. 
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Chapter 5 - Proposed Vision-based Localization using 
Genetic algorithm 

The formulation of the vision-based localization for high degree of freedom 
(DOFs) robot as an optimization problem is discussed in chapter 3. In this chapter, 
the details of optimizing the objective function by the genetic algorithm (GA) are 
discussed. In the rest of this chapter, we first present the mechanism of the genetic 
algorithm. Afterward, we discuss the details of the employment of the genetic 
algorithm including chromosome formation, fitness function, genetic operators, 
selection scheme and search space. 

5.1 Mechanism of Genetic Algorithm 

Genetic algorithms (GAs) are search algorithms model the mechanism of 
natural selection. A candidate solution of an optimization problem is represented as 
a string of elements called chromosome, where each element (gene) is one of the 
parameters in the solution. The length of a chromosome equals to the function 
dimension. For example, in the optimization of a function J{xi, x〕，X3, the 
chromosome should be in the form as shown in Fig. 5. 1. 

C — Y — Y \ ( \ 
CHROMOSOME = Gene 1 Gene 2 Gene 3 、 Gener? —̂ 

Fig. 5. 1 Chromosome and genes. 

In the initialization of GA, a set of chromosomes (population pool) are 
generated randomly within the search space, where the number of chromosomes in 
a pool is known as population size. After the initialization, GA performs the search 
by means of reproducing new chromosomes (offspring/ children) from the initial 
population (parents) through the genetic operators. Two common genetic operators 
are mutation and crossover. Mutation reproduces a child by varying the values of 
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some genes in a selected parent. Fig. 5. 2 shows an example of mutation. The 
selection of genes to mutate and the amount to mutate are governed by a random 
process. As the mutation generated offspring is slightly different from its parent, 
they correspond to the local search in the searching process. 

E.g. The chromosome length = 6 genes . 
The genes to mutate are the 2】*̂，the and the one. 

f “ Y ~ Y ~ Y ~ Y — Y ~ ^ 
P a r e n t Gere 1 I Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 

I Mutation 

~ V V V — V ~ V \ 
Child h - t e t e 

V 人 人 人 人 人 

Fig. 5. 2 The mutation process. 

Given two parents, crossover reproduces two children by cutting the parents 
into segments and swapping some of them between the two parents. Fig. 5. 3 shows 
an example of crossover. The decisions of cutting position and the segments to be 
swapped are governed by a random process. The crossover generated offspring are 
largely different from their parents. Hence, they correspond to the far search in the 
searching process. 
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K,g. I he chromosome length = 6 genes. 
The cuts are between the and the gene, and between the 4伪 and 
the 5"、gene. 

I I 
^ — Y — Y — Y — Y — Y — ^ 

P a r e n t 1 Gene 1 I Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 

、 人 木 人 木 人 J 
^ — Y ~ Y ~ Y ~ Y — Y — \ 

P a r e n t 2 Gene 1 I Gsne 2 Gene 3 Gene 4 Gene 5 I Gene 6 

V_人 人 人 人 人 _ J .. . J I Swap I 
I Crossover 

广—Y—Y—Y—Y—Y—\ Child 1 Gene 1 I Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 

V 人 人 人 人 人 J 
/—Y—Y—Y—Y—Y—\ Child 2 Gene 1 I Gene 2 Gene 3 Gene 4 Gere 5 Gene 6 

V 人 人 人 人 人 J 
• •• . - • • ‘ • 

Fig. 5. 3 The crossover process. 

The goodness (fitness) of the parents and offspring are measured by a fitness 
function which is the function to be optimized. A set of chromosomes with size 
equal to the population size is selected from the mixture of parents and offspring by 
means of "survival of the fittest". The selected chromosomes become the parents in 
the next generation. This is known as the selection process. The reproduction and 
selection processes are repeated until the fitness of the chromosomes are converged 
or the generation number exceeds a certain threshold. The fitness of the 
chromosomes is expected to be improved along the generations. The most optimal 
chromosome found in the evolution is regarded as the solution of the optimization. 
The flow diagram of general GA is shown in Fig. 5. 4. 
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Initialization of 
chromosomes Output optimum 

i i 
,, yes 

Reproduction 
{Mutation and ... _ » Selection ； — • C ^ T e r m i n a t e ? 

Crossover) 

no 

Fig. 5. 4 Flow diagram of genetic algorithm. 

5.2 Formation of Chromosome 

In this section, we construct the chromosome with respect to our proposed 
objective function. The formation of chromosome affects the searching efficiency of 
a GA. The chromosome is preferred that: 1) the corresponding genes are mutually 
independent, which prevents the condition checks for every newly generated 
chromosomes and 2) the representation of genes does not have redundancy, which 
reduces as many optimums in the search space as possible. 

The camera state: the target solution of the localization problem is modeled to 
be chromosome. The camera position vector p is composed of three parameters: px, 
Py and p- which are coordinates along the x- y- and z- axis of the world coordinate 
system W. These parameters are mutually independent and the representation does 
not have redundancy. Therefore, they are directly defined as position genes in the 
chromosome, i.e. {Px Py 尸:). 

In general, three parameters are sufficient to represent an orientation in a 3D 
space. As discussed in section 3.2, the camera orientation is represented by Euler 
angles: o = [Ox, 9y,幻 which describe the rotations about the x-, y- and z- axis of W. 
Though the camera orientation can be represented by three parameters, we model the 
orientation genes based on the quaternion representation which involves four 
parameters. The reason is that for a certain orientation, it can be expressed by more 
than one sets of Euler angles. Consider the following example (Fig. 5. 5(a)): a unit 
vector [0，0, 1]丁 is rotated according to a set of angles: [ 45°, 90°，-45�] based on the 
right hand rule and the resultant vector is [-1，0, 0]丁. On the other hand, this rotation 
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can be represented by another two sets of angles: [0。，90。，0°] and [90°, 0°, -90� ] as 
shown in Fig. 5. 5(b) and Fig. 5. 5(c). Therefore, the rotation represented in [45°， 

90°，-45°], [0°, 90°, 0°] and [90°, 0°, -90°] are equivalent. 

^ ：̂' y 

Z 0,=45� / 0,90° Z e=-A5° 7 

s = [0，0，1] T s = [0，0.7，0.7] T s = [-0.7, 0.7，0] 丁 S = [-1, 0，0] 丁 

(a) 

y y y y A A A RjC Z Ry ^ Z Rx ^ Z 
^ ^ 〉 义 > ^ ^ ^ ^ > 和 Z _ _ > 和 Z 

/ � = 9 0 � Z 61=0° ^ 
S = [0，0’1]T S = [0,0,1]^ S = [-1，0’0]T S = [-1，0,0]T 

(b) 

y y y y 
‘、 个 个 个 

^ ^ Rx • Z Ry 八 ^ ^ Rz ^ ^ 
^ ^ 〉 义 > ^ ^ > ̂ 7 > 和 Z � x z 0=90° / ey=0° / 6l=-90° 7 

S = [0，0’1]T S = [0，1，0] 丁 S = [0，1,0]T S = [-1，0，0]T 

(C) 

Fig. 5. 5 Example of multiple expressions of a rotation in Euler angles. 

The multiple expressions in Euler angles lead to multiple optimums in the 
search space that waste the searching power. Consider the previous example again, 
if 6y and Q: are defined as three orientation genes and [45°, 90。，-45�] is an 
optimal orientation (i.e. either global or local), [0。，90°, 0°] and [90°, 0°, -90°] are 
also the optimal orientations. Hence, instead of Euler angles, the orientation genes 
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are modeled based on the unit quaternion: q = [qi,的，豹，如]丁 where qj^ + + q^ + 
= \ , which gives unique rotation representation. The rotation matrix R that 

relates PFand C can be converted from q by: 

l-2q/-2q/ 2 n - 2 q,q, 2 q^q, + 2 q^q^ 
R = l - 2 q 2 - 2 q ' ( 5 1 ) 

_ 2 - 2 qiq, 2 + 2 q^q^ l-2q,'-2q' ^ 

Though the unit quaternion representation of camera orientation avoids 
redundancy, the extra parameter increases the number of dimension of search space. 
We either increase the population size or number of generation to maintain the 
searching power. Based on the property |q|=l, we suggest to reduce the orientation 
representation to three parameters while avoiding the redundancy. Suppose any three 
parameters in q (e.g. q2, qs and q4�are known, the magnitude of the remaining one 
(e.g. qi) is known, i.e. q! = . The sign of qi is considered in the 
fitness function by substituting qj with both signs, one at a time. Among the two 
fitness values, the smaller one is chosen as the resultant fitness (see section 5.3). 
Hence, the orientation representation is simplified to qs = [q2, qs, where lqs|<l. 
However, the parameters in qs cannot be converted to genes directly as these 
parameters are not independent. They are related by • � / + � / + � / < 1. It is time 
consuming to check the genes of every newly generated chromosome and to re-
generate chromosomes when the condition is not satisfied. Therefore, using these 
three parameters as genes is also not a suitable choice. As the magnitude of qs is 
smaller than one, it can be regarded as a point within the unit sphere centered at the 
origin with radius equal to one. To define a point within a unit sphere, three 
independent parameters: ct, p and I can be used as shown in Fig. 5. 6，where a and p 
are the pan and tilt angle respectively and I is distance from the origin (/<1). 
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- 1 

Fig. 5. 6 Representation of a point in a unit sphere using a, /? and I. 

qs is related to [a, p,l\ by the following equations: 

q2= I • cos(«) • COS(ŷ  
仍= /.sin(/?) (5.2) 

如=/ . s i n � . c o s ( j 3 ) 

Therefore, a, P and I are defined as the orientation genes, i.e. {Qa Qp Qi). The 
chromosome is composed of the position and orientation genes in the form of: [Px, 
Py, Pz, Qa, Qp. Q{\-

The robot state vector r is defined in Eq. (3. 9) as r = [p̂ , 0丁]丁’ where o is the 
camera orientation vector represented by Euler angles. Due to the redundancy of 
Euler angles representation, we represent the camera orientation by unit quaternion 

丁 

and redefine the camera orientation vector as q = [qi, q2, qs, qA • Thus, the robot 
state vector is also redefined as: 

p r r5 3) r= q Py P: qi q2 ^4 1 
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5.3 Fitness Function 

Fitness function is important in genetic algorithm as it measures the qualities 
of chromosomes during the evolution. The formulation of fitness function depends 
on the nature of the optimization problem. In vision-based localization, given a set 
of landmark positions and the corresponding feature coordinates, the fitness of a 
chromosome denotes the goodness of the camera state represented by its genes. 

As the robot state vector is redefined to be r = [p^, q^]^ in Eq. (5. 3), we 
/ r 1 � 

P introduce a new objective function fgoodmssi by replacing the orientation vector 
VLq�y 

/T "1� /̂ r "1� /T 1 � 
O in f一„ess P by q . Both of f一廳:P and f g � — ^ are aim at 

vL Jy \L"Jy vL jJ 
measuring the sum of perpendicular distances between the origin of the camera 
coordinate system and the camera position lines. The only difference between these 
functions is the orientation representation. With the camera orientation represented 
by 0, the rotation matrix R is converted according to Eq. (3. 10). On the other hand, 
with the camera orientation represented by q, R is converted according to Eq. (5. 1). 

Hence, the fitness function is formulated based on the objective 
/ r "A r P p function , . The parameters in vector are mapped to the genes (Px 
ILqJJ Lq� 

PyP:, 0 a 2/) as follows： 

Px = Px 
Py = Py 
Pz = Pz 
^2 = 0/cos(0«)cos(e^) (5.4) 
<13 = Qi sin(0^) 
q4 = Qi sm{Qa)cos{Q/^) 
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There are two possible values of qi that are opposite signs. They are 
substituted to the objective function one at a time. The minimum among the two 
resultant function values is regarded as the fitness of the chromosome. Hence, the 
fitness function is formulated as the following: 

ffitness{[P.,Py,Pz, Qa, Qp, Q{\) 

rr Px 1) rr 
Py Py 

(5.5) 
=goodness 2 ’ fgoodness 2 ) 

Q,cos(QJcos(Q^ ) Q,cos(QJcos(Qp ) 
QiSin(Qp) QiSin(Qp) 

�Q,sin(QJcos(Qp) I I QiSin(QJcos(Qp) 
\L- —J/ 

5.4 Mutation and Crossover 

The GA performs the optimum search by means of reproduction, in which new 
chromosomes are generated using genetic operators. Two standard genetic operators: 
mutation and crossover are used in the proposed algorithm. 

In the crossover operation, two chromosomes (parents) are randomly selected 
from the current population. By cutting the chromosomes into segments and 
swapping them between the two parents, two children are reproduced. In the 
proposed algorithm, multi-point crossover is used where each segment is one gene 
long. For each pair of selected parents, a swapping vector [sj, S2, S3, S4, S5, ^g] is 
generated, in which Si, ie [1，6] is a Boolean random variable. 5/ = 1 indicates that 
the i'h genes in the parents are swapping, while 5,- = 0 indicates that no swap is 
performed in the 产 gene. For example, if the swapping vector for a pair of parents 
is [1, 0, 0, 1，1, 0], two individuals are generated as shown in Fig. 5. 7. 
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swapping vector = � 1 0 0 1 1 0 ] 
swap I I I swap | swap | /—^—Y—Y—Y—T—^ 

Parent 1 I ^̂^ 1 v̂ Q， 

广—Y—Y—Y—Y—Y—^ 
Parent 2 L 丄〃〃 丄〜丄。 ‘" 。‘ 

1 1 1 ) 1 

I Crossover 

广—Y—Y—Y—Y—Y—^ 
Child 1 I 1 [ Q � ' 丄 1 

/ — Y — Y — Y — Y — Y ~ ^ 
Child 2 p. I p, p: Q, 1 Q, 

Fig. 5. 7 Example of crossover with the swapping vector = [1, 0, 0, 1, 1,0]. 

Hence, the effective crossover rate of each gene is 0.5. In a generation, Np 
individuals are generated by crossover, where Np is the population size. Since the 
offspring generated from crossover are significantly different form its parents, it 
facilitates the far search in the searching process. 

Mutation is another genetic operator. Given a chromosome (parent) from the 
current population, a new individual is reproduced by mutating some of the genes in 
the parent. Similar to crossover process, a mutating vector [m；, m�,ms, 1714, ms, ms] is 
generated for each parent, in which m,-, i e [1, 6] is a Boolean random variable, m/ = 
1 represents that the 产 gene of the parent is mutated, while m/ = 0 represents that the 
value of the gene remains unchanged. The mutating magnitude of the 产 gene is a 
random value within the range [+Agi, -Agi ] under uniform distribution. We define 
Agi as 1/50 of the search range of the 产 gene. For example, if the mutating vector 
for a parent is [1，0，0, 0, 1,0]，the individual generated is in the form as shown in 
Fig. 5. 8. 
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mutating vector = ( 1 0 0 0 1 0 1 

/ — Y — Y — Y — Y — Y — ^ 
Parent I Py � < 

、 人 人 人 人 人 J 
-.-mm. 

I Mutation 

/ — Y " — Y — Y — Y — Y — ^ Child Pi Qe 

' wilhin [-,%,’ 卞 '’"</., wUhin [-4?,, 

Fig. 5. 8 Example of mutation with mutating vector = [1，0, 0, 0, 1，0]. 

Therefore, the mutating magnitude of each gene is different and the effective 
mutation rate of each gene is 0.5. In a generation, each chromosome from the current 
population reproduces one individual by mutation from which Np mutation 
generated individuals are formed. As Agi is small relative to the search range, the 
offspring generated from mutation are slightly different from its parent. Hence, it 
corresponds to the local search in the searching process. 

5.5 Selection and Stopping Criteria 

After the reproduction process, there are 2Np newly generated chromosomes 
(i.e. Np from crossover and Np from mutation) and Np chromosomes from current 
population. To keep the number of chromosomes in the next generation be equal to 
the population size, Np chromosomes are selected from them by means of "survival 
of the fittest": the individuals are selected according to their fitness. In order to 
maintain the divergence, the current population, mutation generated individuals and 
crossover generated individuals, are not selected together. Instead, Np/2 
chromosomes are selected from the current population and mutation generated 
individuals, and the other Np/2 chromosomes are selected from the crossover 
generation individuals. For each pair of mutation generated offspring and its 
corresponding parent, the one with better fitness is chosen. As a result, there are Np 
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chromosomes chosen from all the chromosome pairs. They are then sorted by fitness 
and the N/l fittest chromosomes are selected for the next generation (see Fig. 5. 9). 
This prevents both chromosomes in a parent and child pair from being selected, in 
order to slow down the speed of convergence. On the other hand, the crossover 
generated chromosomes are sorted by fitness. The Npl2 fittest chromosomes are 
selected (see Fig. 5. 9). Hence, there are a total of Np chromosomes selected and 
they become the parents in the next generation. 

The reproduction and selection process are repeated in every generation until 
either of the following stopping criteria is satisfied: 1) the chromosome are 
converged that is the fitness of the fittest chromosome remains unchanged for the 
number of generations that equal to the convergence threshold or 2) the number of 
generations exceed the maximum number of generations Tg. In the proposed 
algorithm, the convergence threshold and Tg are set to 30 and 100 respectively. 

current population Mutation generated Crossover generated 
chromosomes chromosomes 

！ [‘��•̂ . / I fi“"” 
C M S 1 > M J 3 M S 1： . Q l ^ M S i i . 

CMS 3 : > - MJ5MS-3 ； CaOwSCSr^. 

‘ ： ^ 〜 4 、 _ 擎 

CMSWp 礙 > 
® 必 * , .，. 

Selecl the chromosome [ " ] ( " ! Sort and select the 
with better fitness in a fittest 
parent and childem pair chromosomes 

E.g. E.g. C_CMS 2 
CMS 1 C_CMS3 

M_CMS 2 C_CMS 1 
M_CMS3 “ ： 

C M S 〜 办 

Sort and select the R C—CMS2 
Np/2 fittest C_CMS 3 
chromosomes C_CMS1 

E.g. M CMS 2 M CMS 2 
M CMS 3 , K M CMS 3 

CMS 1 ‘ CMS1 

Parents of next 
CMS; chromosome generation 
M_CMSt mutation generated dwomosoma 
CjCMS: crossover generated chromosome 

Fig. 5. 9 The selection process. 
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5.6 Adaptive Search Space 

The size of search space affects the search efficiency. For the localization 
problem, if the search space includes all possible camera states in an environment, 
the search space is large that larger searching power, i.e. larger population size 
and/or more generations are/is needed, which increases the computational cost. 
However, if the search space is reduced to the camera states in part of the 
environment, the searching power can be saved while the actual robot state may be 
excluded. Therefore, we have to balance between the search space size and the 
probability of the actual camera state to be included. 

In the proposed algorithm, we assume that the camera is allowed to rotate 
quickly and freely. Hence, all possible orientation states form a hyper-rectangular 
range Qo = [-nil, nllf' x [-1, 1], i.e. {Qa, Qp, Qi\ e Qo. Suppose the robot is walking 
on a floor which is parallel to the xz-plane of W, small oscillations along y-axis are 
occurred due to walking vibrations that the value of Py is not always equal to pyo (the 
camera height at steady state) but within a range, i.e Py e [pyi, pyu], where pyi and pyu 
are the lower and upper limits of the vibrate range in ；^-direction. Unlike the ranges 
of [Qa, Qp, Qi\ and Py which are fixed for all camera state estimations, the ranges of 
Px and P: are varied according to the estimated camera states in the previous frames. 
This assumption is based on the fact that the current camera position should be at the 
neighborhood of the previous camera position unless kidnapping has happened. It is 
inefficient to search the camera position in the entire environment for every camera 
state estimation. Suppose r, is the capture time of the 产 frame to process and A/.i is 
the maximum possible robot movement between ti and ti.\, the possible camera 
position at ti should be within a circular range C,.j centered at cm 二 [/？；/卜丄)，肌d 
radius Zj.i+AA (See Fig. 5. 10) where [p；^�’ � ] i s the estimated \px, Pz] at ta for a e 
2+ and AA is the maximum tolerance of cm. However, if cm involves error larger 
than AZ, the actual px^nd p- at r, may be excluded from C/,i. Therefore, we propose 
to use the p^and the p: of the previous n >1 frames to define the range of \px\ • 
In general, the range of \px \ /?:(')] can be represented by a circular range Q „ which 
is in terms of i.e. centers at Ci.„ = [/?/")’ and radius 
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n 
+ . Suppose we use the estimated camera positions of the previous n frames 

to define the range of [p;c(')’ namely Qp^ ,̂ Qp*̂  is defined as the union of for 
j = 1，2,…，n, i.e. Qp̂ ^ = C " u Cij^ ... u Q„. Fig. 5. 10 shows an example of 
Qp*̂  for « = 2. In the proposed algorithm, we choose « = 3 to define Qp*"" for all i > 4. 
For simplicity，the bounding box of Qp*̂ ) is used as the search ranges of Px and P. at 
ti. 

I 
i \ / I 八 / i 

j K ^ � 
Search ranges of Fig. 5. 10 An example of for n = 2. 
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5.7 Overall Flow of the Proposed Algorithm 

To summarize, the flow diagram of the proposed localization method using 
genetic algorithm is shown in Fig. 5. 11. By assuming that the chromosomes have 
fallen in the global optimum lobe after T/1 generations, the efficiency of the search 
is increased by: 1) reducing the population size to N/l after the {TglTf^ generation 
and 2) reducing the search space to the minimum size that includes all the 
chromosomes at the {Tg/2)'̂  generation. 

丨+1 Input image 
* coordinates of 产 

frame 

Define search 
space 

generation = 1 
• 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 華 一 一 一 一 尋 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 _ 一 一 一 ， 

{ * Genetic 
I Initialize N^ algorithm ” 
‘ chromosomes i 

[ generation <r generation +1 | 

I _ _ i i ！ T I J 
I Mutation Crossover ^ . j 
I (generate N。 (generate W。 bearcn space , 
I children) " children) " s.ze reduction j 

1 I i 
I Fitness ‘ 
} calculation i 

‘ Selection Selection i 

I Yes I [ ClXonverged?^ “ ” i 
Output Estimate i j ' ' ^ { 
camera slate of No No i 

产 frame ！ ^X . i No / \ Yes Population Size 1 I _ ^ M a x . m u m \ — — ^ _ _ . reduction j 
I 乂2 1 

I — — — ——―‘ 
Fig. 5 .11 Flow diagram of the proposed localization algorithm using genetic algorithm. 
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5.8 Summary 

In order to estimate the camera state using the landmark positions and the 
feature points captured from image, genetic algorithm is applied to optimize the 
objective function formulated in chapter 3. The details of the employment, which 
target the proposed objective function, are discussed. Based on the basic principle of 
the GA, several approaches are proposed to improve the efficiency of the 
localization. First, the orientation genes are constructed based on the quaternion to 
reduce the number of optimums. With the modification of the objective function, the 
orientation representation is reduced to three parameters. It increases the searching 
efficiency without increases the dimensions of the search space. Second, the 
adaptive search space strategy is proposed. It increases the searching efficiency by 
reducing the search space size while prevents the actual camera state from being 
excluded from the search space. Lastly, based on the assumption that the 
chromosomes are fallen into the global optimum lobe after half of the maximum 
number of generations, the computational time is saved by reducing the population 
size to half and reducing the search space size to the bounding box of the population 
when Tg/2 generations are processed. 



Chapter 6 - Experimental Results 

In this chapter, the performance of the proposed algorithm is illustrated in 
terms of 1) accuracy, 2) efficiency (computational time), 3) noise sensitivity and 4) 
noise reduction performance by experimental results. The experiment is divided into 
three parts. In the first experiment, accuracy and efficiency of the proposed 
algorithm is examined by a simulation of continuous robot (camera) localization for 
60 seconds, in which the robot is navigated in a 10m x 10m area. Afterward, the 
noise sensitivity of the proposed algorithm is studied in the second experiment. The 
setup is similar to the first experiment except that the input feature points are added 
wit different levels of noise. In the third experiment, the noise reduction 
performance of the proposed adaptive search space strategy is proven by 
demonstrating the effect of noisy feature points on the estimated camera state when 
the localization is not applied with the adaptive search space strategy. 

6.1 Test Robot 

The performance of the proposed algorithm is examined on a four-legged robot 
pet: Sony AIBO ERS-7 as shown in Fig. 6. 1. The robot is about 30 cm tall and 30 
cm long. The robot head is equipped with a color CCD camera, whose horizontal 
and vertical angles of view are 56.9 and 45.2 degrees respectively. The resolution of 
the captured image is 412 x 318 pixels and the maximum capture rate is 30 
frame/sec. The images are transmitted to a networked computer via the WLAN card 
equipped in the robot. The frame rate of images received by the computer depends 
on the bandwidth of the network, which varies with time and usually cannot meet 
the maximum frame rate. Using the input images, the localization process is 
performed on the same computer. The robot movement can be remotely controlled 
by the control commands developed from the AIBO software development kit 
(SDK). 



•pnpi 
Fig. 6. 1 Test robot: Sony AIBO ERS-7. 

6.2 Simulator 

In order to illustrate the accuracy of the proposed algorithm, the estimated 
camera state is compared with the actual camera state. However, the three 
dimensional rotation of the camera is difficult to measure as the camera is equipped 
inside the robot head. Therefore, a simulator is developed and used in our 
experiments. The simulator performs three kinds of simulation: 1) camera states 
given the control commands, 2) vibrations caused by the oscillated walking motion 
of the robot and 3) input image for localization. 

6.2.1 Camera states simulation 
Given a series of control commands, the simulator simulates the walking path 

of the robot. Instead of providing the statuses of the controllable DOFs of the 
physical robot, the robot path is generated in terms of a series of discrete 6D camera 
states at frequency equal to the input frame rate. The simulator generated camera 
state rs is in the form： Vg = \px, Py, Pz, Ox, Oy, Oz\, where [px, Py, Pz] is the camera 
position vector in Cartesian coordinates and [0x, %>,这]is the camera orientation 
vector represented by Euler angles. Both of the camera position and orientation 
vector are related to the world coordinate system W. 

To simplify the experiment without loss of generality, we consider only the 
motion made by leg movement though the robot has three DOFs in the head. The 
commands processed by the simulator are limited to two types: 1) forward and 
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backward movement, e.g. "walking forward 30 cm" and 2) left and right rotation, 
e.g. "rotate right 30 degrees". In this stage, px, p- and 0y are generated with respect to 
the control commands and py. Ox and (9- are set to constant by assuming that there is 
no vibration caused by the walking motion, i.e. py = pyo. Ox = 0° and Or = 0°，where 
Pyo is the camera height when the robot is steady. The walking vibration is reflected 
by simulation described in section 6.2.2. 

Compare with the movements of wheeled robot, the legged robot movements 
corresponds to the control commands are not precise. Moreover, leg slippages are 
usually happened in legged robot. Hence, in order to reflect the unmodeled 
movement and rotation errors, random noises are added to px, Pz and 6y. Movement/ 
rotation error is regarded as the difference between the actual movement/ rotation 
and the expected movement/ rotation with respect to the control commands. The 
rotation error is simulated by adding a zero-mean Gaussian noise with standard 
deviation (7r to the expected rotation, where a> is equal to 10°. The movement error is 
simulated by adding a zero-mean Gaussian noise with standard deviation am to the 
expected movement, where a^ is 10% of the expected movement. 

6.2.2 Oscillated walking motion simulation 
In the real situation, the values of py. Ox and Q: are not fixed as the camera 

vibrates due to the oscillated walking motion. The camera vibrations are simulated 
by the synthesis of two sources of noises: 1) the up and down vibration (movement 
along y-direction) is simulated by adding a random noise within the range [-3 cm, 3 
cm] under uniform distribution to pyo and 2) the camera orientation changes are 
simulated by adding random noise within the range [-10。，10。] under uniform 
distribution to 0x,6y and 0-. 

6.2.3 Input images simulation 
Given a camera state and the landmarks positions, the simulator simulates the 

image captured by the camera at that camera state. The image is generated in terms a 
set of feature coordinates. For each landmark that fall within the field of view of the 
camera at that camera state, the corresponding feature coordinates are generated. 
The simulated feature points are used as inputs of the localization system. In the case 



51 

that more than one landmarks are projected on the same image coordinates, the 
corresponding feature points are regarded to be distinct. 

The camera states generated by the simulator are regarded as the actual camera 
states in the experiments. Hence, the actual camera states can be conveniently 
obtained and compared with the estimated camera states, in order to examine the 
performance of the proposed algorithm. In addition, the frequency of the generated 
camera states is equal to the input frame rate, which ensures that each input image 
has a corresponding actual camera state for comparing with the estimated camera 
state. Moreover, the performance of the proposed algorithm in different image noise 
levels can be easily investigated by adding noise to the feature coordinates using the 
simulator. Therefore, we perform the experiments in computer simulation instead of 
a physical robot. 

6.3 Computer for simulations 

All simulations are performed on the PC platform with 2.8GHz CPU and 
512MB memory. 

6.4 Position and orientation errors 

In following experiments, the accuracy of an estimated camera state is 
represented by two quantities: position error Ep and orientation error E。. The 
position error denotes the Euclidian distance between the actual and the estimated 
positions (3D) of the camera states. To compare the actual camera orientation 
represented by Euler angles (i.e. {Ox, 9y, 6>-]) with the estimated camera orientation 
represented by quaternion (i.e. \qi, q2, qs, both of them are converted to rotation 
matrices, i.e. the actual rotation matrix Ra and the estimated rotation matrix Re. 
Afterward, a unit vector along x-axis, i.e. [1, 0, 0], is multiplied to both rotation 
matrices. The two rotated vectors are equal if the two rotation matrices are identical. 
If the two rotated vectors are not equal, there is an angle Qex >0 between the two 
rotated vectors. The difference between the actual and estimated orientations can be 
described by Qex. However, in order to avoid the problem of gimbal lock (i.e. rotating 
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a vector along the x-axis about the x-axis does not have effect), unit vectors along 
the y- and the z-axis, i.e. [0, 1，0] and [0, 0, 1], are also multiplied to both rotation 
matrices. Similarly, two angles between the two rotated vector pairs, 0ey and Qez, were 
obtained. Suppose Ra and Re are in the forms: 

Ra= a 22 =[Ai A^ A3 
Jhl ^32 ^33 _ 

K K 
R e = b,丨 b,, b,, =[Bi B, B3] 

P31 ^32 t>33_ 

,6ex, 6ey, Oez caii bc computcd by: 

Oey = cos"̂  (A2 • B2) (6.1) 
Oez = COS] (A3 • B3) 

The error of an estimated orientation is defined as the average of these three 
angles. Since GA is a stochastic method, a simulation of the localization is repeated 
for many independent trials. Ep and E � a r e the average over the number of processed 
frames in the Nt trials. Suppose Ep{i,n) and Eo{i,n) are the position error and the 
orientation error of the processed frame in the 产 trial respectively where i e[l， 
Nt~\,n G[1, 77,] and 77, is the number of frame processed in the 产 trial, the Ep and E� 
are represented by: 

N, n, 

E p 二 气 , — — ， ( 6 . 2 ) 

/=i 
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TLEoii.n) 
E = (6.3) 

o Nf • 
/=i 

6.5 Experiment 1 一 Feature points with quantized noise 

In this experiment, the performance of the proposed algorithm is measured in 
terms of 1) accuracy of the estimated camera state and 2) efficiency (computational 
time). The feature points used in this experiment consist of quantized noise only. 

6.5.1 Setup 
In the following simulations, the robot is navigated in an area of 1000 cm x 

1000 cm consisting of 40 landmarks with known positions. The robot walks at a 
speed about 3 cm/sec. for 60 seconds according to a series of control commands. 
The magnitudes of the movement and rotation commands are within the ranges [3 
cm, 6 cm] and [-10。，10�] respectively. The initial position of the robot is assumed to 
be known. 

By assuming that images are input to the system at a constant rate (20 frames/ 
sec.), the simulator generates a sequence of camera states along the path at the same 
frequency (see section 6.2.1). Thus, 1200 camera states are generated, which are 
regarded as the actual camera states. Random noises are added to each camera states 
to synthesize the vibrations caused by the oscillated robot walking motion as 
described in section 6.2.2. The camera states sequence generated by the simulator 
forms an actual path. The landmarks distribution and an example of actual path are 
shown in Fig. 6. 2. 
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Fig. 6. 2 (a) Landmarks and actual path (Topview) and (b) magnified figure of actual path 

(Topview). 
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For each camera state, the simulator generates all the feature coordinates of 
landmarks that are within the field of view of the camera with that state (see section 
6.2.3). The feature coordinates are quantized as the case in the real situation. The 
performance of the proposed system is studied by varying the population size from 
100 to 300. Meanwhile, the number of feature points used is also varied from 5 to 10 
per frame. For the case that the number of feature points in a captured image is 
larger than the number of feature points required in a simulation, the feature points 
are randomly selected. In this experiment, it is not guaranteed that every frame is 
processed. After a frame is processed, the next frame to be processed is the most 
recent frame captured. If there is no non-processed recent frame, the system waits 
for the next input frame to process. Since GA is a stochastic method, for each 
combination of population size and number of feature points, the simulation is 
repeated for 100 trials. In each trial, the same set of control commands is used and 
different random noises are added to the simulated camera states, in which the 100 
actual paths are slightly different. A picture of the 100 actual paths is shown in Fig. 
6.3. 

, # 
：： I 

L � _ � 

6 0 -

4 0 - ^ ^ 

20 - W 
g I I I I I 

-60 -40 -20 0 20 40 60 

x(cm) Fig. 6. 3 The actual paths of 100 trials. 



6.5.2 Results 
The averaged results {Ep, E � a n d processing time) over the total number of 

processed frames in the 100 trials are shown in Fig. 6. 4. The Ep and E�are varied 
from 3.4 cm to 4.3 cm and from 0.4° to 0.7° respectively. Seen from Fig. 6. 4(a) and 
Fig. 6. 4(b), Ep and E�decrease along with the increments of population size Np and 
number of feature points Nm. Since Np describes the searching power of GA, the 
global optimum (i.e. actual robot state) is more probably to be found when Np 
increases. Furthermore, as Nm increases, two influences to the corresponding fitness 
landscape occur: 1) the number of local optimum is reduced and 2) the differences 
between the global and local optimum are increased. As a result, the increment of 
Nm leads to reductions of Ep and E�. 

It is observed that there are some small oscillations in the values of Ep and Eo 
along the increments of Np and Nm. A reason for these is that the increments of Np 
and Nm cause a longer processing time per frame as shown in Fig. 6. 4(c). Hence, the 
time interval between the capture time of the current processing frame and the last 
processed frame increases. As the search space size depends on the maximum robot 
traveling distance in that time interval, the increments of Np and N^ lead to 
increment of search space size. Therefore, effect of the search power enhancement 
due to the increases of Np and N^ is compensated by the increase of the search space 
size. 
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Fig. 6. 4 Experimental results of feature points with quantized noise: (a) average position errors, 

(b) average orientation errors and (c) average processing time per frame. 
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Fig. 6. 4 {continued) 

The estimated paths formed by the estimated camera states for Np = 100, 200 
and 300 are shown in Fig. 6. 5，Fig. 6. 6 and Fig. 6. 7 respectively. For each 
combination of Np and Nm, the estimated paths in the 100 trials are shown in a sub-
figure. Seen from these figures, the estimated paths are concentrated at the actual 
paths group (see Fig. 6. 5(a), Fig. 6. 6(a) and Fig. 6. 7(a)) for all combinations ofNp 
and Nm. It is also noted that the estimated paths are more convergent when Np 
increases. The convergence of the estimated paths indicates the accuracies of the 
estimated camera positions. The smaller the average error of the estimate camera 
positions, the more convergent the estimated paths. Hence, the convergence of the 
estimated paths increases along with the increment of Np can be explained by the 
decrease in Ep when Np increases (shown in Fig. 6. 4(a)). 
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Fig. 6. 5 (a) Actual paths and (b-g) estimated paths of feature points with quantized noise, Np=\00 
and (b)A^„,=5, (c) =6，（d) N„, = 7，(e) =8, (f) N^ =9 and (g) N„ =10. 
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Fig. 6. 6 (a) Actual paths and (b-g) estimated paths of feature points with quantized noise, Np=200 
and (b)M„=5, (c) N^ =6，（d) = 7，(e) 1%, =8，(f) =9 and (g) N„ =10. 
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Fig. 6. 7 (a) Actual paths and (b-g) estimated paths of feature points with quantized noise, Np=3QQ 
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6.6 Experiment 2 - Feature points added with Gaussian noise 

This experiment is aimed to investigate the effect of noisy feature points on the 
accuracy and efficiency of the proposed algorithm. In the experiment, the feature 
points input to the system are added with Gaussian noise in order to model the error 
introduced in the feature extraction process. 

6.6.1 Setup 
The experimental setup is the similar to that of experiment 1 (see section 6.5.1) 

except that zero-mean Gaussian noise with standard deviation a„ is added to feature 
coordinates, i.e. w, and v,, / e [ l , Nm\. The feature coordinates are then quantized and 
input to the proposed localization system. 

6.6.2 Results 
The experimental results of feature points added with Gaussian noise, = 4 

pixels and 8 pixels, are shown in Fig. 6. 8 and Fig. 6. 9 respectively. Seen from Fig. 
6. 8(a) and Fig. 6. 9(a)，the Ep increases along with the increment of Np, which is 
opposite to the trend shown in Fig. 6. 4(a). This observation can be explained in the 
following manner: when the feature points involve higher noise level, the global 
optimum can no longer represent the actual camera state ro. Furthermore, the global 
optimum is probably out of the search space defined by the adaptive search space 
strategy (but it does not imply that ro is out of the search space). Hence, the 
increment of Np does not increase the probability of finding ro, which does not lead 
to the decrement of Ep. In this case, the adaptive search space strategy limits the 
search within a reasonable range. This feature also avoids the estimated camera state 
from large error caused by the noisy feature points. Moreover, the increment of Np 
results in longer processing time that a longer travel distance between successive 
estimations is expected. Thus, it increases not only the search ranges of Px and P: but 
also the uncertainty of the possible camera position. As a result, the Ep increases 
along with the increment of Np for noisy feature points. On the other hand, as the 
increment of feature points that involve noise does not provide addition information 
to the search, the effect of Nm on the Ep is small. 
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Similar to the case ofEp, the increment of Np does not lead to the decrement of 
Eo as 1) the global optimum may not equal to ro and 2) ro may not be included in the 
search space. On the other hand, the range of the orientation genes is fixed that 
the increment of Np does not lead to the increment of E�. Fig. 6. 8(b) and Fig. 6. 9(b) 
empirically show the small effect of Nm to the E�. Seen from Fig. 6. 4(c), Fig. 6. 8(c) 
and Fig. 6. 9(c), the processing time per frame does not depend on the noise level of 
feature points, which is only depends on the Nm and the Np. 

Number of feature points 5 100 Number of chromosomes 

(a) 
Fig. 6. 8 Experimental results of feature points added with Gaussian noise (cr„ = 4 pixels): (a) average 

position errors, (b) average orientation errors and (c) average processing time per frame. 
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Fig. 6. 8 {continued) 
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(b) 
Fig. 6. 9 Experimental results of feature points added with Gaussian noise {a„ = 8 pixels): (a) average 

position errors, (b) average orientation errors and (c) average processing time per frame. 
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Fig. 6. 9 (continued) 

Fig. 6. 10 and Fig. 6. 11 show the Ep and the E�respectively where the feature 
points are added with Gaussian noise with cr„ varied from 0 to 8 pixels. Compare 
with the results for a„ = 0，the increments of Ep and E�are ranged from 3.4 cm to 7.5 
cm and from 0.4° to 0.8° respectively for o•” = 4. The increments of Ep and EQ are 
ranged from 6.8 cm to 11.7 cm and from 1.0° to 1.8° respectively for cr„ = 8. It is 
observed that the Ep and the E� increase along with cr„. 
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Fig. 6. 10 Position errors for the population size (a) 100, (b) 200 and (c) 300. In each sub-figure, the 

standard deviation a„ of the added Gaussian noise is varied from 0 to 8 pixels. 
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Fig. 6. 9 (continued) 
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Fig. 6. 11 Orientation errors for the population size (a) 100，(b) 200 and (c) 300. In each sub-figure, 

the standard deviation a„ of the added Gaussian noise is varied from 0 to 8 pixels. 
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The estimated paths of the feature points added with Gaussian noise: cr„ = 4 
pixels and cr„ = 8 pixels are shown in Fig. 6. 12 to Fig. 6. 14 and Fig. 6. 15 to Fig. 6. 
17 respectively. For each combination of Nm, Np and cr„, the estimated paths in the 
100 trials are shown in a sub-figure of Fig. 6. 12 to Fig. 6. 17. It is observed that the 
estimated paths for all the combinations are converged to the actual paths group (Fig. 
6. 12(a)). Compare the estimated paths of cr„ = 4 pixels with the estimated paths of 
cr„ = 8 pixels, the estimated paths of cr„ = 8 pixels are more diverged from the actual 
paths group than the estimated path for the added noise with cr„ = 4 pixels. As the 
divergence of the estimated paths indicates the differences between the estimated 
and the actual paths, the more divergent estimated path of cr„ = 8 pixels can be 
explained by the larger average Ep for the feature points with higher noise level. 

Seen from Fig. 6. 12 to Fig. 6. 17，for a fixed noise level of feature points, the 
divergence of the estimated paths increases along with the increment of Np. It is 
because the Ep increases along with the increment of Np as shown in Fig. 6. 8 (a) and 
Fig. 6. 9 (a). 
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Fig. 6. 12 (a) Actual paths and (b-g) estimated paths of feature points added with Gaussian noise (a„ = 
4 pixels), Np=働 and (h)N„,=5, (c) N^ =6, (d) N„, = 7，(e) N,„ =8, (f) N^ =9 and (g) 
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Fig. 6. 13 (a) Actual paths and (b-g) estimated paths of feature points added with Gaussian noise (cr„ = 

4 pixels), Np=2QQ and (h)N„=5, (c) N^ =6, (d) N^ = 7，(e) N„, =8, (f) N„ =9 and (g) N„, =10. 
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Fig. 6. 14 (a) Actual paths and (b-g) estimated paths of feature points added with Gaussian noise {a„ 
= 4 pixels), Np=働 and (b)A^„,=5, (c) TV, =6, (d) N„, = 7’ (e) N^ =8，(f) N^ =9 and (g) N^ =10. 
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6.7 Experiment 3 - Noise reduction performance of the adaptive 
search space strategy 

In experiment 2, we suggested that the global optimum in the landscape ofy(r), 
namely rg, might no longer be the actual camera state ro when the feature points 
involve high noise level. In this section, we demonstrate the effect of noisy feature 
points on the difference between rg and ro. 

6.7.1 Setup 
In an environment of 1000 cm x 1000 cm that consists of 100 landmarks with 

known positions at the surrounding, 100 independent camera states are randomly 
generated as shown in Fig. 6. 18. 
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• camera position 10001 1 * 1 1 r* 1 • I I i W 

* * * * * * * * * * * 
* •It * * 900 * V * -
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Fig. 6. 18 Landmarks and 100 independent camera states (Topview). 



These camera states are regarded as the actual camera states, and each of 
which is in the form of [px, Py, Pz, Ox, Oy, 61] where \px, Py, p.] is the camera position 
vector represented in the Cartesian coordinates and [0x, Oy, (9J is the camera 
orientation vector represented in Euler angles, px, p: and Oy are randomly generated 
within the ranges [-300 cm, 300 cm], [200 cm, 800 cm] and [-180°, 180°] 
respectively under uniform distribution. In Fig. 6. 18，the dots indicate the camera 
positions on the xz-plane (i.e. \px, Py\) and the arrows show the camera orientation 
(i.e. Oy). The value changes of py. Ox and 9- caused by the oscillated walking motion 
are generated by the simulator as described in section 6.2.2. For each camera state, 
the corresponding input feature coordinates are generated by the simulator (see 
section 6.2.3). In order to investigate the effect of noisy feature points on the 
difference between rg and ro, the feature points are added with different levels of 
Gaussian noise and then quantized. The rg corresponding to each ro is obtained by 
the GA with a large population size Np = 400 and the setting is similar to that 
described in chapter 5, except that 1) the population size is fixed for every 
generation, 2) the search is terminated only when the number of generation reaches 
300 and 3) the search is performed within a fixed search range set, which includes 
all the possible camera states in the environment: i.e. Px e [-500 cm, 500 cm], Py e 
[(Pyo -3) cm, (pyo +3) cm], P: e [0 cm, 1000 cm], Qa e [-n/2, n/2]，Qp G [-nil, nil] 
and Qi e [-1，1], for every generation. Since GA is a stochastic method, each of the 
rg searches are repeated for 10 independent trials and the camera state corresponds 
to the smallest fitness among the 10 trials are regarded as rg. 
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6.7.2 Results 
The experimental results of differences between rg and ro for the number of 

feature points Nn, = 5, and the added Gaussian noise with standard deviation cr„ = 4 
pixels and 8 pixels are shown in Fig. 6. 19 and Fig. 6. 20 respectively. In these 
figures, the ro (dot) and its corresponding rg (cross) are linked by a dotted line. 
Hence, the lengths of the dotted lines represent the differences (on jcz-plane) between 
ro and rg due to the noisy feature points. Seen from Fig. 6. 19 and Fig. 6. 20, the 
lengths of the dotted lines for = 8 pixels are generally longer than those for cr„ = 4 
pixels. The 3D distance between ro and rg averaged over the 100 independent 
camera states, namely Ar, are 32.0 cm and 69.6 cm for cr„ = 4 pixels and 8 pixels 
respectively. The sorted Ar for feature points with cr„ = 4 pixels and 8 pixels are 
shown in Fig. 6. 21. The figure illustrates that the distance between r � a n d rg 
increases along with the increment of the noise level of the feature points. Hence, 
when the feature points involve high noise level, the global optimum can no longer 
be the actual camera state. As a result, localizing the camera by searching for the 
global optimum in a search space that includes all possible camera states in the 
environment might induce large errors. 
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Fig. 6. 21 Sorted distances between the global optimums and the actual camera states for feature 
points added with Gaussian noise with standard deviation a„ = 4 pixels and 8 pixels. 

Comparisons between the results of the average position errors (Ep) of the 
estimated camera states obtained in the experiment 2 (section 6.6) and the Ar, for Nm 
varied from 5 to 10，are shown in Fig. 6. 22 and Fig. 6. 23. The results for the feature 
points added with Gaussian noise: cr„ = 4 pixels and 8 pixels are shown in Fig. 6. 22 
and Fig. 6. 23 respectively. Seen from these figures, the Ar is larger than the Ep for 
different noise levels of feature points. The difference between Ar and Ep increases 
along with the feature points' noise level. In experiment 2, the adaptive search space 
strategy is applied to the localization algorithm. Hence, Fig. 6. 22 and Fig. 6. 23 
demonstrate the estimated camera position errors differences between searching for 
the optimum in an adaptive search space and searching for the global optimum in the 
entire environment. The results illustrate that the adaptive search space strategy is 
efficient in reducing the position error of the estimated camera state especially when 
the noise level of feature points is high. 
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6.8 Experiment 4 - Comparison with benchmark algorithms 

In this experiment, the performance of the Extended Kalman filter (EKF)-
based localization and the Monte Carlo Localization (MCL) algorithms are studied 
and compared with the performance of the proposed algorithm. 

6.8.1 Setup 

In the following simulations, the experimental setups are the same as that of 
experiment 1 (section 6.5.1) except that the equipped camera is localized using the 
EKF-based and the MCL algorithms respectively. 

For the EKF-based algorithm, the camera state is in the form: ^ = [p^, (|)丁]丁 

where p = [ a , Pzf is the camera position vector and (j) = is the 
camera orientation represented by Euler angles. As discussed in section 2.1.1，the 
state of a discrete-time process is governed by Eq.(2. 1) and the state is related to the 
measurement by Eq.(2. 2). In the following simulations, the control input u in Eq. (2. 
1) is composed of translation and rotation magnitudes: u = [trans, rot], and Eq.(2. 1) 
and Eq.(2. 2) are formulated as Eq. (6. 4) and Eq.(6. 5) respectively. For each frame, 
five feature points are input to the localization system, i.e. Nm = 5. 

Px.k ] [ Px,k-i - trans,x sin((t)^,_,) + w厂 

Py.k Pyo+^2 
专 = P z k = + î ^n^k-x X cos((t)^,_,) + W3 

k 小:a ŵ / 
小 M (6.4) 

� L . 
where w = [w/, w), W3’ w^，wj，w ]̂̂  is the process noise vector. 
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-〜 ]卜 _ 

「 ， k . ^ x ^ l ( 6 . 5 ) 
� = Pu Ki 
m • F h • 

1 / � � c少+ — 

_ Pv Ki_ 
Ki 
Ki = R x ( f / - P k - i ) 

where v = [v八......y2Nmf is the measurement noise and R is obtained by substituting 
[6?c，Oy, a ] in Eq.(3. 10) with (|)k-i. 

In order to study the performance of the MCL algorithm, a MCL-based 
algorithm proposed by [Rofer and Jungel, 2003] is employed in the simulation of 
camera state localization. According to the MCL algorithm mentioned in section 
2.2.1，the camera state represented by a particle is in the form: 1 = [x, y, 6\ where [x， 
y] is the camera position vector and G is the camera orientation. The number of 
particles Nc is set to 200. Similar to the setting of the EKF-based algorithm 
simulation, five feature points per frame is input to the localization systme, i.e. Nm 
=5. In the sensor reading phase, each particle is weighted by the probability P. 
Suppose the measured and expected bearings of the i出 input feature point for a 
certain particle position are cOn! and cOe respectively, P is computed by: 

1=1 

where e,.= < ” , � 
‘ V —等 ‘ �，o t h e r w i s e (“） 

_ h " � ‘ and a = 7T 
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In order to calculate the camera state at a certain time step, the search space is 
divided into 10x10x10 cells and each particle is assigned to one of these cells. The 
2x2x2 sub-cube that contains the maximum number of particles is considered. The 
mean of all the particles that belongs to this sub-cube is the estimated camera state. 

6.8.2 Results 
The results of localizations using the EKF-based and MCL algorithms are 

shown in Fig. 6. 24 and Fig. 6. 25 respectively. The estimated camera paths show in 
Fig. 6. 24 and Fig. 6. 25 diverge from the actual camera path soon after the camera is 
departed from the starting point, i.e. [0，0]. Moreover, both estimated camera paths 
do not tend to return to the actual path after the divergences. 

The position errors (2D) of the camera paths estimated by the EKF-based and 
MCL algorithms are shown in Fig. 6. 26 and Fig. 6. 27 respectively. In these figures, 
the position error increases along with the increment of frame number (time). This 
indicates that the robot track will probably lost when the EKF-based or MCL 
algorithm is employed to the localization of the legged robot which is navigated in a 
relatively large environment. Moreover, the performance of the EKF-based and 
MCL algorithm is expected to be degraded if the input images are noisy. 

The position errors (2D) of the EKF-based and MCL algorithm estimated paths 
averaged over the number of frames are 47 cm and 55 cm respectively. On the other 
hand, the average position errors (3D) of the proposed algorithm obtained in 
experiment 1 (Fig. 6. 4(a)) are varied from 3.4 cm to 4.3 cm. 
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Fig. 6. 24 Localization results of the EKF-based localization algorithm (Topview). 
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Fig. 6. 26 Position errors of localization results using the EKF-based algorithm. 
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6.9 Discussions 

As discussed in chapter 2, the predict phase of the EKF-based visual 
localization method estimates the current robot state using the robot state estimated 
at the previous time step, which implies the necessity of smooth robot movement. 
On the other hand, the proposed GA-based localization algorithm does not require 
this assumption. The above experiments show that the proposed algorithm performs 
well with oscillated robot movements. Moreover, since the proposed algorithm does 
not predict the robot state from the estimated robot state at the pervious time step, it 
is unnecessary to provide high frame rate input to ensure the correlation among 
camera velocities in successive frames. In other words, the proposed algorithm is 
applicable to robots which are equipped with relatively low capture rate camera. In 
addition, the previous estimated camera states are only used as reference for defining 
the search space. It is a rough approximation which aims to increase the efficiency 
of the searching process and to give a boundary of reasonable camera states. 

MCL is a probabilistic method that the probability density function (p.d.f.) of a 
robot state is represented by particles. When landmarks are far from the robot, the 
density of particles near the actual robot state is not high enough to be distinct from 
other states. Hence, the accuracy of the robot localization is degraded. Unlike MCL, 
GA performs well in the cases: 1) multimodal functions and 2) the objective 
function with small differences between the local and global optimum. Besides, as 
MCL estimates a robot state by the particle set generated with respect to the p.d.f. of 
previous robot state, the measurement (feature coordinates) errors appeared in 
previous frames may highly affect the localization results in future frames. 
Alternatively, the proposed algorithm estimates the camera state by randomly 
generating chromosomes (i.e. the distribution of chromosomes is independent to 
previous camera states). Though the range of search space is related to the previous 
estimated camera states, it is only a rough approximation, as mentioned above. 
Furthermore, the search space is defined by several previous estimated camera states 
to avoid large localization error caused by measurement errors in a frame from 
affecting the localization results in future. Therefore, the estimated camera state by 
the proposed algorithm is insensitive to the previous measurement errors unless 
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large localization errors are involved in all previous reference camera states. In 
addition, the adaptive search space strategy weakens the influence of measurement 
errors in the current frame on localization results by bounding the search within a 
reasonable range. It is especially sufficient when the feature points are involved with 
high level of noise. 

Since similar research on 6D localization for legged robots was not found, 
localization results of some 3D localization methods for legged robots are reported. 
The accuracy of a MCL-based localization method for a legged robot in the 
RoboCup environment proposed by [Lenser and Veloso, 2000] is reported to be: 
average 2D position error approximately 9 cm and average orientation error 
approximately 14°. The accuracy of another MCL-based method proposed by 
[Sridharan et al., 2005] is reported to be: average 2D position error approximately 9 
cm and average orientation error approximately 3°. It is inappropriate to make any 
comparison between these algorithms and our proposed algorithm as these 
experiments are 3D localizations and their experimental setups and camera qualities 
are not identical to our experiments. 

In addition, we should point out that the robot control commands are unknown 
to the proposed algorithm. In each camera state estimation, the search space is 
defined as there is no information about the moving direction of the robot. The 
possible camera state becomes the maximum moving distance in all directions (see 
section 5.6). However, we expect that the performance of the proposed algorithm 
can be improved if the control commands are also input to the localization algorithm. 
With the information from control commands, the search space size can be further 
reduced, and the accuracy and efficiency of the proposed algorithm can be improved. 

Another possible way to improve the proposed algorithm is an appropriate 
feature point selection strategy. In the above experiments, the feature points used for 
localization are randomly selected from all feature points appeared in an image. It is 
expected that the feature point of near landmark is more reliable than that of far 
landmark especially for noisy image. Due to lens distortion, feature points near the 
center of the captured image should be more reliable that those at the edges of the 
image. Hence, a proper feature selection strategy might help to improve the 
localization accuracy. 
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6.10 Summary 

In this chapter, the performance of the proposed algorithm is examined by 
several experiments. In the first and second experiments, simulations of continuous 
camera localization using feature points with low and high level of noise were 
performed. The results of these experiments show that the accuracy and efficiency of 
the proposed algorithm is satisfactory even though the feature points are noisy. In 
the third experiment, the effect of the noisy feature points on the difference between 
global optimum and actual camera state is demonstrated by randomly generating 100 
camera states and adding different levels of noise to their feature points. The results 
show that the difference between the global optimum and the actual camera state is 
significant, especially when the noise level is high. This indicates that the adaptive 
search space strategy not only improves the efficiency of the localization, but also 
weakens the influence of the noisy feature point on the estimated camera state 
accuracy by limiting the search in a reasonable range. 
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Chapter 7 - Conclusion 

This chapter concludes the thesis by summarizing the main development and 
results. 

The thesis addresses the needs of an accurate and efficient localization method 
for small home-use robot pet (legged robot) which is equipped with a single low-
resolution camera as the only sensor. The main challenges of vision-based 
localization for legged robot include: 1) the rapid changes of robot velocity which 
cause the sensor and its collected data fluctuated, 2) compared with wheeled robot, 
the high degree of freedom of legged robot increases the complexity of the 
localization problem and 3) camera has limited field of view and images from single 
camera are lack of depth information. Thus, an ideal vision-based localization 
algorithm for legged robot should be adapted to the oscillated sensor data and able to 
estimate the robot state accurately and efficiently. Moreover, it should be able to 
cope with both robot tracking and global localization, and able to autonomously shift 
between them. 

The state of the art of the vision-based localization includes the Extended 
Kalman Filter (EKF)-based localization and the Monte Carlo Localization (MCL), 
are reviewed in chapter 2. Their advantages and disadvantage are also discussed. 

The vision-based localization problem of legged robot or high-dimensional 
movement robot is defined as: given the feature points of an image captured by the 
camera equipped on a robot at a certain instant and the landmark positions 
correspond to the feature points, trying to estimate the robot state (position and 
orientation) at that instant. We assume that the robot navigation environment 
consists of a set of landmarks with known positions and some of these landmarks are 
viewed by the camera at each time step. By estimating the robot state repeatedly at 
each time step, the robot path can be tracked. Based on the defined problem, we 
formulate the vision-based localization for high-dimensional movement robot as an 
optimization in chapter 3. 

The camera state at the current instant can be obtained by optimizing the 
objective function formulated in chapter 3. The mechanism of some common search 
algorithms including calculus-based, enumerative and stochastic algorithm are 



presented in chapter 4. The limitations and the efficiencies of these algorithms are 
discussed. As the proposed objective function is a multimodal and non-linear 
function, the stochastic algorithm is the best solution to the optimization of the 
objective function. A well-known algorithm in the stochastic approach class, 
genetic algorithm (GA), is employed in the proposed localization algorithm. 

The mechanism of the genetic algorithm is introduced in chapter 5. The details 
of the employment of GA including chromosome formation, fitness function, 
genetic operator, selection scheme and search space which targets the vision-based 
localization problem are presented. Based on the basic mechanism of GA, we 
proposed several approaches to improve the efficiency of the proposed localization 
algorithm. First, the number of optimum in the search space is reduced by redefining 
the camera orientation vector. The redundant Euler angles representation is replaced 
by the unique unit quaternion representation. Afterward, we modified the objective 
function that is formulated in chapter 3, and three mutually independent orientation 
genes are formed by modeling three of the parameters in the quaternion as a point in 
a unit sphere. The strategy reduces the number of optimum while maintains the 
search space dimensions. Second, a search space defining method, called adaptive 
search space strategy, is proposed with the assumption that the maximum distance 
between robot positions at successive time steps are limited by the robot's walking 
speed. The strategy increases the searching efficiency by reducing the search space 
size to part of the navigation area while prevents the actual robot state from 
excluding from the search space. Moreover, the strategy is insensitive to localization 
error at the past as the localization results at previous few time steps are used as 
reference. Besides increasing the searching efficiency, the adaptive search space 
strategy is able to improve the accuracy of the estimated camera state especially 
when the input feature points involve high level of noise. As the global optimum is 
significantly different from the actual robot state when the feature points is noisy, 
the adaptive search space strategy weakens the influence of noisy feature points on 
the accuracy of localization by bounding the search within a reasonable range. 
Lastly, based on the assumption that the chromosomes are fallen into the global lobe 
after half of the maximum number of generation Tg, the computational cost is saved 
by reducing the population size to half after the (jy2)出 generation. 
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The performance of the proposed algorithm is tested by experiments and the 
results are shown in chapter 6. The results of the simulation of continuous camera 
localization in an area of 1000cm x 1000cm for 60 seconds show that the proposed 
algorithm is able to track the camera state accurately and efficiently. In the second 
experiment, simulation similar to the first one is performed except that the input 
feature points are added with noise. The results show that the proposed algorithm is 
insensitive to noise. Moreover, the ability of the adaptive search space strategy in 
weakening the influence of noisy feature points on the estimated camera state 
accuracy is further confirmed by the third experiment. Experimental results showed 
that difference between the state of global optimum and the actual robot state is 
large when the noise level of feature points is high. Hence, the results prove that 
without applying the adaptive search space strategy, large error can be induced in 
the estimated camera states when the feature points are noisy. 

To summarize, our main contributions include: 1) demonstration of genetic 
algorithm as a possible solution to vision-based localization for small home-use 
robot navigated in a practical environment, 2) the proposed algorithm does not 
require the assumption of smooth robot movement so that it is applicable to walking 
robots or robots with rapid velocity change, 3) compared with the EKF-based 
localization algorithms, the proposed algorithm can tolerate low frame rate input, 4) 
the proposed algorithm is insensitive to localization errors in previous estimations 
compared with MCL，which avoids error propagation from previous estimations, 5) 
the adaptive search space strategy weakens the influence of measurement errors in 
current frame on the localization result by bounding the search within a reasonable 
range and 6) development of a fundamental localization system based on the 
proposed algorithm, which can be used for further investigations, e.g. global 
localization and feature point reliability analysis, on the proposed algorithm. 
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