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Abstract 
3D object design from line drawings, either in 2D or 3D, is an important problem 
in both computer vision and graphics. It has a wide range of applications including 
flexible 3D sketch input in CAD, computer game, webpage content design, image 
based object modeling, and 3D object retrieval, etc. 

Currently, a large number of 3D object design tools focus on reconstructing 
3D objects from sketches on the 2D plane in the form of line drawings. A line 
drawing is defined as the 2D projection of the edges and vertices of a 3D object in 
a generic view. Many methods have been put forward to solve this problem, but 
they usually fail when the geometric structure of a 3D object becomes complex. In 
the first part of this thesis, a novel approach based on a divide-and-conquer strategy 
is proposed to handle 3D reconstruction of complex manifold objects from single 
2D line drawings. The approach consists of four steps: 1) identifying the real faces 
and internal faces from a line drawing; 2) separating the line drawing into multiple 
simpler line drawings based on the result of face identification; 3) reconstructing the 
3D shapes from these simpler line drawings; and 4) merging the 3D shapes into one 
complete object represented by the original line drawing. A number of examples 
are given to show that our approach can handle 3D reconstruction of more complex 
objects than previous methods. 

On the other hand, we also delve into the problem of designing 3D objects by-
reconstructing them from ling drawings sketched in 3D space. In order to let the user 
design directly in 3D space, virtual 3D environments are often used. Unfortunately, 
these virtual-reality-based methods have the drawbacks that there are awkward 
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devices worn by the user and the virtual environment systems are expensive. In the 
second part of this thesis, we propose a novel vision-based approach to 3D object 
design, which leads to an inexpensive and convenient way for sketching in 3D space. 
Our system consists of a PC, a camera, and a mirror, which are inexpensive and 
easy to set up. We use the camera and mirror to track a wand so that the user can 
design 3D objects by sketching in 3D free space directly without having to wear any 
cumbersome devices. In addition, a number of sketching and editing operations are 
developed to facilitate object design. The system provides designers a whole new 
user interface of designing 3D objects conveniently. 
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摘要 

從二維或三維線條圖中重建三維物體是計算機視覺和圖形學的重要研究問題之一。 

這一研究在計算機輔助設計（C A D )中的三維草圖輸入，計算機遊戲，網頁設計， 

基於網頁的物體建模和三維物體獲取等方面具有廣泛的應用。 

目前，許多三維物體設計工具都是基於從二維平面草圖中重建三維物體的方 

法，而二維草圆通常可以線條圖的方式給出。線條圖是三維物體的頂點和邊在二維 

平面上的投影。在此之前，已經有不少研究工作試圖解決從線條圖重建三維物體這 

一問題，並提出了很多方法，但這些方法往往無法處理具有復雜幾何結構的三維物 

體。在本論文的前半部分中，我們提出一種基於“分而治之”思路，專門針對從單 

個二維線條圖中重建複雜三維流形物體的方法。該方法主要由如下四個步驟構成： 

(1)根據線條圖檢測三維物體的内外表面；（2)利用線條圖的面檢測的結果，將 

一個複雜的線條圖拆解成若干個簡單的線條圖；（3)從得到的簡單線條圖中重建 

相應的三維物體；（4)將得到的三維物體合併為一個複雜物體，對應原先的複雜 

線條圖。大量的實驗結果證明我們的方法相比過去的方法可以用於重構更為複雜的 

三維物體。 

在另一方面，我們同時深入研究了通過在三維空間中作草圖的方法直接設計三 

維物體的設計方法。通常，為了使用戶能夠直接在三維空間中作畫，往往需要構建 

三維的虛擬現實環境。這些基於虛擬現實的設計方法的主要缺點在於用戶往往被要 

求佩戴特殊且笨拙的裝備，而那些虛擬現责的系統往往又非常昂貴。在本論文的後 

半部分中，我們提出一種新的基於視覺的三維物體設計方法。通過使用這一方法， 

三維設計可以變得廉價而方便。我們的系統由個人計算機，一個攝像頭，及一面鏡 

子組成，這些設備並不昂貴且易於設置。我們利用攝像頭和鏡子跟踪用戶手上的畫 

棒，因此用戶可以直接在三維空間中作圖而不需要佩戴任何笨拙的裝備。除此之 
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夕卜，我們還在系統中開發了一系列用於簡化三維設計的編輯和操作方式。這一新系 

統為設計者提供了一種設計三維物體的全新用戶界面。 
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Chapter 1 

Introduction and Related Work 
Historically, 3D object design, usually related to architectural designs and sculptures, 
was treated as a mean of art rather than a technology until the advent of information 
age. Now, with the advancement in computer technology, 3D object design has found 
its wide application in computer game, webpage content design, object modeling, etc. 
As a consequence of commercial and technological impetus, numerous researches in 
computer vision and graphics have been conducted to facilitate the designing process 
by introducing new modeling schemes and improving the user interfaces over the last 
several decades. 

This thesis focuses on 3D object design from line drawings and sketching. The 
sketching input can be given in either 2D plane or 3D space, and usually they result 
in quite different methods and techniques for reconstructing 3D objects. Since both 
types of inputs are considered in our work, the thesis actually addresses following 
two different issues in 3D object design. 

First, when 2D inputs (usually in the form of line drawings) are given, the 
problem of 3D reconstruction based on 2D line drawings is investigated, which is 
an important computer vision problem and a branch of 3D object design. This 
research initiates from the fact that traditional architectural engineers use manual 
sketching tools such as paper and pencil to rough out their initial ideas. The goal 
of this research is to automatically recover the depth information and infer the 
3D geometrical and topological structure of the objects represented by input line 
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Chapter 1 Introduction and Related Work 2 

drawings in 2D sketching plane. Human has no difficulty in interpreting these line 
drawings, but the same goal can be challenging for the computer due to ambiguity 
from the lost dimension. The first part of this thesis is in the pursuit of this goal. 

Second, when sketches are given in 3D space, we actually turn to the problem of 
direct 3D modeling, that is, to construct 3D objects directly in the 3D space. Such 
a direct 3D design is traditionally completed in a special virtual 3D environment. 
This thesis presents a complete novel framework for direct 3D design by means 
of sketching in the air, which overcomes several drawbacks of virtual-reality-based 
methods. 

The rest of this chapter is organized as follows. A detailed introduction to the 
problem of 3D reconstruction from 2D line drawings and its related work are pre-
sented in Sections 1.1, 1.2，and 1.3. A general review to current 3D modeling systems 
is given in Section 1.4. Finally, Section 1.5 summarizes the two main contributions 
of this thesis to the problem of sketch-based 3D object design. 

1.1 Reconstruction from 2D Line Drawings and the Ap-
plications 

Currently, a large number of 3D object design tools focus on reconstructing 3D 
objects from line drawings on the 2D plane. A line drawing is defined as the 2D 
projection of the edges and vertices of a 3D object in a generic view, with or without 
hidden lines invisible. It is the simplest and most straightforward way of illustrating 
a 3D object. The human vision system has the ability to interpret 2D line drawings as 
3D objects without difficulty. Emulating this ability is an interesting research topic 
for enhancing machine vision system. It is highly desirable to develop algorithms 
that can understand the single 2D line drawing and reconstruct 3D geometry of 
the object it represents. Fig. 1.1 shows an example of 3D reconstruction from line 
drawings. 

These line drawings can be generated by sketching on the screen with a mouse 
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(a) (b) (c) 

Fig. 1.1: An example of 3D reconstruction from line drawings, (a) A 2D line drawing, 
(b) Reconstructed 3D object, (c) Reconstructed 3D object in another view. 

or a tablet PC pen and on paper with a pen. They can be represented by single 
edge-vertex graphs. In the case that a line drawing obtained by scanning the sketch 
image on paper, extracting an edge-vertex graph require some pre-processing such 
as binarizing and thinning of the image, and tracking and analyzing of the lines and 
vertices. Compared with line drawings without hidden lines, a line drawing with 
hidden lines shown makes it possible to reconstruct a complete and more complex 
object, including its back, from the line drawing. Much work concerning line draw-
ings has been published in computer vision literature [9], [10], [11], [13], [43], [51], 
[52], [53], [50], [58], [65], [71], [72], [76], [77], and in CAD and graphics [3], [8], [16], 
[17], [24], [49], [59], [61], [81], [84], [86], [85]. 

With the development of computer vision research and the increasing require-
ment of interaction between human and computer, 3D reconstruction from line draw-
ings find more applications, such as 

• providing a flexible sketching input for conceptual designers who tend to prefer 
pencil and paper to mouse and keyboard in current CAD systems [8], [49], [68], 
[721; 

• automatic conversion of existing industrial wireframe models to solid models 
[3], [8]; 

• building rich databases for object recognition systems and reverse engineering 
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algorithms for shape reasoning [3], [8], [17], [78]; 

• interactive generation of 3D models from images [24], [73], [81]; 

• user-friendly query interface for 3D object retrieval from large 3D object 
databases and the internet, which lets users easily draw 3D objects as queries 
[11]，[59], [61], [66], [92]. 

1.2 Previous Work on 3D Reconstruction from Single 
2D Line Drawings 

To reconstruct the 3D object from single 2D line drawing, the main stream approach 
in the previous researches is to formulate the problem as an optimization problem 
based on different objective functions. 

Marill [58] presented his method based on a simple criterion: minimizing the 
standard deviation of the angles in the reconstructed object, which is called the 
MSDA principle. This criterion can be used to inflate a 2D line drawing into a 
3D shape. Marill's approach is tolerant of freehand sketching errors, but cannot 
reconstruct complete 3D objects if their hidden lines are not drawn. Motivated by 
the MSDA, Brown and Wang [9] proposed to minimize the standard deviation of the 
segment magnitudes (MSDSM) in the recovered planar object. More recently, Shoji 
et al. [71] presented the criterion of minimizing the entropy of angle distribution 
(MEAD), and claimed that it is more general than both the MSDA and the MSDSM. 

MSDA, MSDSM, and MEAD are criteria of regularity that humans perceive 
when interpreting 2D line drawings. Later researches [43], [49], [64], [68], [87] follow 
this idea and incorporate more heuristic regularities in the reconstruction. Leclerc 
and Fischler's approach [43] considers not only the MSDA principle, but also the 
planarity constraint exhibited on the faces of a planar object. The method in [64] 
and [87] concentrates on the reconstruction of symmetric polyhedra by developing a 
regularity of model symmetry. Lipson and Shpitalni [49] took Leclerc and Fischler's 



Chapter 1 Introduction and Related Work 5 

work further by using more constraints for the reconstruction, such as line paral-
lelism, isometry, corner orthogonality, and skewed face orthogonality, which are in 
accordance with human visual perception of line drawings. All these constraints are 
combined together to form an objective function. Lipson and Shpitalni's method 
[49] can handle more complex objects than all the previous methods. Later, Shesh 
and Chen applied Lipson and Shpitalni's algorithm to their sketching system [68]. 
In [50], Liu et al. use the parameters of the planes that pass through the planar 
faces of an object to be the variables of the objective function. Their method is 
more robust and computationally efficient than the previous methods. 

These optimization-based methods above can handle only planar objects and 
require all the hidden lines to be drawn, and the variables of the objective functions 
are usually the lost depths of the vertices in the line drawing. Recently, some 
attempts [10], [12], [83] have been made to recover a complete solid from a line 
drawing with visible lines only (without hidden lines), but these methods are only 
applicable to relatively simple objects and require a lot of human interactions. The 
methods in [11] and [86] try to handle curved-faced object reconstruction. The main 
limitation of them is that they need human interaction. Besides, the former can only 
deal with simple objects and the latter is limited to symmetric objects without holes. 
Also, the shading information is used in [69] and [70] to recover the visible surfaces 
of 3D polyhedra in images from the edges of the polyhedra. 

1.3 Other Related Work on Interpretation of 2D Line 
Drawings 

There is much work done on the other areas of line drawings interpretation besides 
3D reconstruction from single line drawings in the literature. Although these re-
searches may not focus on a direct 3D reconstruction as those mentioned in the last 
section, they are also useful and related to our work. In this section, we give a brief 
review on these related papers. 
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1.3.1 Line Labeling and Superstrictness Problem 
Since the early stage of computer vision, a large amount of the work is about line 
labeling and 3D reconstruction based on a labeled drawing [15], [18], [19], [20], [21], 
[30], [32], [35], [57], [76], [75], [89]. Line labeling aims to find a set of consistent labels 
from a line drawing, and it does not explicitly give the 3D structure represented by 
a line drawing. Early work on line labeling focuses on labeling polyhedra without 
hidden lines. Recently, Cooper extends this line labeling research to wireframes 
with hidden lines visible as well as curved objects [19], [20], [21]. One limitation of 
line labeling is that multiple consistent labeling solutions for one line drawing are 
possible [69]. 

Another body of work on line drawing interpretation is related to judging the 
correctness of line drawings and give their possible reconstruction based on algebra 
test with linear equalities and inequalities [55], [65], [74], [76], [75], [82]. The prob-
lem of these methods is that such a formulation is superstrict and not robust; an 
originally correct line drawing will be judged as impossible after a little deviation 
of one or more vertices, causing a 3D reconstruction to fail [65]. 

1.3.2 CAD Reconstruction 
This group of work focuses on reconstructing a 3D CAD model from its multiple 
(usually three) orthographic projections [2], [39], [42], [45], [54]. Since more infor-
mation is available from three orthogonal views for the reconstruction task, such 
work is much easier than the reconstruction from one projection. 

1.3.3 Modeling from Images 
Tour into the image (TIP) proposed by Horry et al. [31] and later improved by Kang 
et al. [36] construct simple 3D scene models using vanishing points and a spidery 
mesh. Their researches are dependent on the directly designation of vanishing points 
and spidery meshes by the user. TIP can achieve impressive results and is easy to 
use. However, it is not strict in geometry and limited to the implied situation where 
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the image plane must be vertical to the ground plane. 
More strictly reconstruction work is on the basis of single view metrology (SVM) 

[48], [40], [73]. Their methods found on calibration of camera intrinsic parameters, 
thus do not restrict to the assumption that the image plane is vertical to the image 
plane. The main disadvantage of these methods, however, is that they require a lot of 
human interaction. Such system requires the user not only to set enough constraints 
to decide the camera intrinsic parameter, but also to give hints to every plane or 
vertex. For example, to define a point, the user must tell the vertical projection 
of that point on to the ground plane or another reference plane [48], [40]. Also, 
to define a plane, the user should tell its vanishing line. Such user input schemes 
are burdensome since they are not much easier than inputting an object using a 
traditional 3D modeler such as AutoCAD [34]. 

Our work is different from these researches in the sense that we requires no human 
interactions and our reconstruction methods process single line drawings instead of 
images. 

1.3.4 Identifying Faces in the Line Drawings 
Face identification from a line drawing provides necessary information for recon-
structing 3D objects. An object consists of faces. If the face configuration of an 
object is known before the reconstruction of its 3D geometry, the complexity of the 
reconstruction will be reduced significantly. Fig. 1.2(b) and (d) show the faces of 
the two line drawings in Figs. 1.2(a) and (c). 

In general, there are many cycles in a line drawing and only a small subset of 
them represents its faces, and the number of cycles grows exponentially with the 
number of edges. Thus finding the faces from a line drawing is not a trivial problem. 

Much effort has been made in this area for the past two decades [3]，[8]，[23]，[43]， 

[46], [51], [52], [53], [68], [72]. Among these techniques, the algorithms presented in 
[52] and [53] are useful for our work. 
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(a) (b) 

雪 鬻 
(c) (d) 

Fig. 1.2: The faces of the two line drawings. 

1.4 3D Modeling Systems 
Great effort has been made to develop CAD systems for 3D model design in the past 
three decades. Current techniques can be classified into the following four categories: 

1) Traditional CAD tools, such as AutoCAD [34] and SolidWorks [22]. These 
tools are sophisticated systems suitable for engineers to input precise geometry of 
models. However, they are not suitable for designers to rapidly express their ideas 
at the initial stage of model development. 

2) Automatic 3D object reconstruction from 2D line drawings. This is one of 
the main research, topics in computer vision and graphics. The methods are mainly 
based on line labeling, algebra, image regularities, and optimization [19], [43], [49], 
[58], [68], [69], [76], [77], [81], [82], [90]. A complete review to these methods and 
related systems has already been given in Section 1.2 and Section 1.3. Compared 
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with other 3D modeling systems, systems based on reconstruction are automatic or 
semi-automatic and they require much fewer interaction from users. But the critical 
problem in these systems is that they can handle only relatively simple objects at 
the current stage. 

3) 2D-sketch-based modeling user interfaces. Most traditional designers still 
prefer pencil and paper to mouse and keyboard in current CAD systems to sketch 
their ideas of shapes [1]. To bridge the gap between the flexible 2D sketches and the 
rigid CAD systems, researchers have developed tools that try to convert 2D sketches 
into 3D models [4], [26], [33], [37], [60], [62], [68], [93], giving rise to the state-of-
the-art systems including Quick-sketch [26], SKETCH [93], Teddy [33], FiberMesh 
[60], and etc. A more complete survey on 2D-sketch-based modeling techniques 
and systems can be found in [17]. However, one physical limitation that cannot be 
overcome by these tools is that the sketching and editing operations are performed 
on a 2D plane (tablet or screen). With one dimension missing, the 3D positions of 
the strokes, surfaces, and objects drawn on a 2D plane are often ambiguous. 

4) Design in virtual 3D environments. More than ten years ago when virtual 
reality (VR) techniques appeared, experts already noticed that VR was a perfect 
CAD system and predicted that it would come to replace the ordinary CAD be-
cause the designer could work naturally and intuitively in a real 3D environment 
[63]. However, until now this prediction has not come true due to the cost of the 
equipments, the inflexibility to use, and the slow frame update rates. Researchers 
are trying to develop better techniques for 3D design in VR [5], [25], [29], [38], [56], 
[67] but they need special and awkward devices to operate by, or connect to, the 
user, making the design an unnatural process. 

From the discussion above, we can see that the current methods for 3D model 
design are not good enough. Researchers still need to develop more friendly and 
inexpensive interfaces with better design methodology. 
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1.5 Research Problems and Our Contributions 
There have been a number of papers discussing the 3D reconstruction from single 
2D line drawings [9], [10], [11], [43], [49], [58], [71], [86] and 3D modeling interfaces 
[4], [5], [26], [29], [33], [37], [38], [56]，[62], [68], [67], [93]. In previous sections, we 
have reviewed the pros and cons of these previous researches. This thesis mainly 
concentrates on the following two topics in view of the limitations existing in the 
previous work: 

First, previous methods for line drawing reconstruction usually fail for complex 
objects, which may contain internal faces or holes. In light of this problem, we 
present a novel divide-and-conquer approach which is mainly devoted to handle 
those complex objects. To the best knowledge of us, our approach can tackle the 
objects with the most complex geometrical structure among all the researches in 
this area. 

Second, considering the advantages and limitations of all the four categories of 
the 3D modeling systems discussed in Section 1.4, we propose a novel vision-based 
approach to 3D object design, which leads to an inexpensive and convenient way of 
designing 3D objects by directly reconstructing them from sketches in 3D space. 

1.5.1 Recovering Complex Manifold Objects from Line Drawings 
Many methods have been put forward to solve the problem of 3D object reconstruc-
tion from a single 2D line drawing, but most of these researches concerning the 3D 
reconstruction from single 2D line drawings consider only relatively simple objects. 
They usually fail when the geometric structure of a 3D object becomes complex, 
e.g., objects which contains internal faces or holes. 

Chapter 2 proposes a novel divide-and-conquer approach to 3D reconstruction 
of complex manifold objects from single 2D line drawings, as shown in the following 
figure. Theoretically, we prove that the partition of a line drawing into simpler line 
drawings along its internal faces exists and is unique. Also, our work is the first 
at tempt to investigate the internal faces and perform separation on the line drawing 
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_ m 
The input line drawing. Combining the 7 parts. 

• A o 
® m ^ m 

Finding 6 internal faces Separating the line drawings Reconstructing the parts, 
of the input line drawing. into 7 simpler ones. 

Fig. 1.3: Illustration of our divide-and-conquer approach to the problem of line 
drawing reconstruction. 

automatically. 
We use those high complex line drawings from the past papers and also construct 

those which never appear in the previous work to verify the effectiveness our new 
approach, and the experiments show that our approach can tackle 3D reconstruction 
from much more complex line drawings than previous algorithms. Fig. 1.3 illustrates 
the process of our approach. This work is published in ICCV 2007[13]. 

1.5.2 The Vision-based Sketching System 
Most current 3D object design tools work on a 2D drawing plane such as computer 
screen or tablet, which is often inflexible with one dimension lost. On the other 
hand, virtual reality based methods have the drawbacks that there are awkward 
devices worn by the user and the virtual environment systems are expensive. 

In Chapter 3, we propose a novel vision-based approach to 3D object design. 
Our system consists of a PC, a camera, and a mirror. We use the camera and 
mirror to track a wand so that the user can design 3D objects by sketching in 3D 
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free space directly without having to wear any cumbersome devices. A number of 
new techniques are developed for working in this system, including input of object 
wireframes, gestures for editing and drawing objects, and optimization-based planar 
and curved surface generation. Our system provides designers a whole new user 
interface for designing 3D objects conveniently. This system is published in CVPR 
2008 [14]. 



Chapter 2 

Reconstruction from Complex 
Line Drawings 
2.1 Introduction 
A line drawing is the 2D projection of the wireframe of an object. Humans have 
no difficulty in perceiving the 3D geometry from a 2D line drawing. Emulating this 
ability is an important research topic in both computer vision and graphics. Much 
work has been carried out on 3D reconstruction from line drawings in the past three 
decades. However, when a line drawing becomes complex, previous methods usually 
fail to obtain a desired object due to two reasons: 1) the methods are not powerful 
enough to tackle the 3D reconstruction of complex objects; and/or 2) the algorithms 
can easily get trapped into local optima. 

In this chapter, we propose a novel divide-and-conquer approach to the 3D re-
construction of complex planar-faced manifold objects from single 2D line drawings 
with hidden lines visible. Manifolds belong to a class of most common solids, the 
definition of which is given in Section 2.3. Our approach is based on the fact that a 
complex object is in general the combination of less complex objects, each of which is 
easier to reconstruct. Fig. 2.1 shows an example where a line drawing is decomposed 
into three simpler ones. Obviously, the 3D reconstruction from each of the three is 
an easier job than the reconstruction from the original line drawing. Our approach 
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frf 
Fig. 2.1: Separating a line drawing into three simpler ones. 

is summarized as four steps: 1) identifying the internal faces from the line drawing, 
2) separating the line drawing into less complex ones based on the result of face 
identification from the complex line drawing, 3) reconstructing the 3D shape from 
each of these simpler line drawings, and 4) merging these 3D shapes into a complete 
object. Line drawings we discuss in this chapter are with hidden lines visible. 

Among the related previous work, the state-of-the-art method by Lipson and 
Shpitalni [49] is effective for reconstructing planar objects. It uses thirteen criteria 
for the reconstruction, such as MSDA, face planarity, and line parallelism. From our 
experiments, we found that their algorithm fails to obtain an expected 3D object 
from a line drawing when the geometry of the object becomes more complex. In 
fact, we can see this problem in the previous methods from the relatively simple 
reconstructed 3D objects shown in the previous papers. 

The rest of this chapter is organized as following. Section 2.2 states the assump-
tions for the reconstruction problem and defines terms that are frequently used in 
the chapter. In Section 2.3，we propose our method for the separation of a complex 
line drawing into simpler ones. Section 2.4 presents the reconstruction algorithm for 
merging the 3D objects that are recovered from the simpler line drawings. A number 
of experimental results are shown in Section 2.5 and finally Section 2.6 summarizes 
the chapter. 
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2.2 Assumptions and Terminology 
The following assumptions are made before we formulate the reconstruction problem. 

Assumpt ion 2.1 The object represented by a line drawing is a manifold whose 
faces are all planar. 

Assumpt ion 2.2 A line drawing is the parallel or near-parallel projection of a 
wireframe manifold in a generic view where all the edges and vertices of the manifold 
are visible, and it can be represented by a single edge-vertex graph^ . 

Assumpt ion 2 .3 All the real faces of the manifold a line drawing represents have 
been available. 

A s s u m p t i o n 2.4 All internal faces are planar. 

So far there has been little work on automatic 3D reconstruction from single 2D 
line drawings representing objects with curved faces. In this chapter, we focus on a 
class of most common solids, called manifolds, with planar faces. A line drawing is 
said to be the projection of a wireframe in a generic view means that the topology 
of the line drawing is preserved under slightly variations of the viewpoint. In this 
case, no two vertices appear at the same position, no two edges overlap in the 2D 
projection plane, and 3D non-collinear edges are not projected as collinear edges. 
Face identification from line drawings with hidden lines visible has been studied 
extensively [3], [8], [43], [47], [51], [52], [53], [72], and the algorithms developed in 
[47] and [52] can be used to find the faces from a line drawing. Therefore, we have 
Assumption 2.3 in this chapter. The reason to have Assumption 2.4 is stated at the 
end of this section after the definition of an internal face is given. 

For better understanding the content in the following sections, we here summa-
rize the terms that appear in the rest of the chapter. 

^The crossing point of two lines is not a vertex. 
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• Manifold. A manifold, or more rigorously 2-manifold, is a solid where every 
point on its surface has a neighborhood topologically equivalent to an open 
disk in the 2D Euclidean space [6]. In this chapter, we consider such manifolds 
that are made up by flat surfaces. A basic property of a manifold is that each 
edge is shared exactly by two faces [41]. 

• Face (real face). A face is one of the flat surfaces that make up a manifold. 
In what follows, We call it a real face to distinguish it from an internal face 
defined below. 

• Internal face. An internal face is a face inside a manifold only with its edges 
visible on the surface. It is not a real face but is formed by gluing two manifolds 
together. 

• Edge. An edge of a line drawing is the intersection of two non-coplanar real 
faces. An edge e is also denoted by {vei,ve2} where Vei and Ve2 are two vertices 
of e. 

• Artificial line. An artificial line is a line used to indicate the coplanar rela-
tionship of two cycles. It is generated by the designer of the sketch. 

• Cycle. A cycle is formed by a sequence of vertices ̂；0，̂̂i，• • • ’幻n，where n > 3, 
vo = Vn, the n vertices are distinct, and there exists an edge connecting Vi and 

for i = 0,1, • • • , n - 1. A cycle is denoted by (i^o,fi, ••‘，幻n)- Since the 
boundary of a face is a cycle, a face is denoted the same way as a cycle. 

• Chord. A chord of a cycle is an edge that connects two nonadjacent vertices 
of the cycle, 

• Vertex set of a cycle. The vertex set Ver(C) of a cycle C is the set of all 
the vertices of C. 

• Edge set of a cycle. The edge set Edge{C) of a cycle C is the set of all the 
edges of C. 
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• Degree. The degree d{v) of a vertex v is the number of adjacent edges to v 
in a line drawing. 

• Simple line drawing. A line drawing is called simple if there exists no 
internal face in the manifold that the line drawing represents. 

• Connected cycles. Two cycle Ca and Cb are called connected if Ver{Ca) H 
Ver(Cb) ^ 0 . 

• Connected edge and cycle. An edge e = {ve\^ve2} is called connected to a 
cycle C if {vei,ve2} n l/er((7) ^ 0 and e ^ Edge{C). 

• Neighboring real faces. Two real faces fa and /{, are called neighboring if 
there exists an edge e such that e G Edge{fa) A Edge(Jb), and fa and fb are 
called the neighboring real faces of e. 

• Part i t ion of a set. Given a non-empty set 5, a partition P s = {^i, ^2} is 
a set of two non-empty subsets <Si and S2 of S such that Si U S2 = S and 

n = 0. 

Many of these terms are illustrated with the line drawings in Fig. 2.2. Now 
we explain why to have Assumption 2.4. An internal face is where two separated 
manifolds are glued together. An internal face may be non-planar. However, we treat 
all the internal faces as planar in this chapter. This is true for most of practical 
objects with internal faces. The advantage of this treatment is that when an object 
is separated along an internal face, this internal face becomes a real planar face. 

2.3 Separation of a Line Drawing 
There are many ways to partition the edge-vertex graph of a line drawing into 
multiple smaller graphs. However, these graphs are meaningless if they do not 
represent real objects. Obviously, it is desirable that each of the separated line 
drawings still represents a manifold. We use this as a requirement to design a method 
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(a) (b) 
Fig. 2.2: Illustration of some terms, (a) Cycle �i,^^3，^4，is a real face. Cy-
cles and {vq, vj, V2o,V8, f 18, vg, '̂ e) are two internal faces. Edges 
{^18,^^19} and {V2Q,V2\} are two artificial lines indicating the coplanarity of cy-
cles {vg,V7,V8,V9,vq) and (t^io,'^12,'^13,^^lo)- Edge is a chord of cycle 
{vi,v5,v4,vs,vi). Two real faces {v2,V3,V7,vq,V2) and {vi,v3,v4,vi) are connected. 
Edge and face {vi,V2,vz,vi) are connected, (b) The line drawing in (a) is 
separated into three simple line drawings. 

for line drawing separation. By observing numerous complex objects, especially 
man-made objects, we can see that most of them are formed by gluing two or more 
smaller objects together, resulting in internal faces. Therefore, our strategy is to find 
the internal faces from a line drawing first and then separate it along the internal 
faces. 

2.3.1 Classification of Internal Faces 
An internal face is where two separated manifolds are glued together. Fig. 2.3 shows 
four internal faces. An internal face may be non-planar. However, we treat all 
the internal faces as planar in this chapter. This is true for most of the practical 
objects with internal faces. The advantage of this treatment is that when an object 
is separated along an internal face, this internal face becomes a real planar face. 

Let f i and /2 be two real faces in two separated manifolds that are glued together 
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Fig. 2.3: Illustration of four internal faces /i*_4. 

generating an internal face /* . Let Ci and C2 be the two cycles corresponding to fi 
and /2, respectively, in the original line drawing. We can classify f* into one of the 
two types: 1) Ci and C2 have no contact, and 2) Ci and C2 have contact (partly or 
completely). In Fig. 2.3, f i belongs to type 1，and /!，fg, and f : belong to type 2. 
Note that for Ci and C2 merge into one in the line drawing. 

2.3.2 Separating a Line Drawing along Internal Faces of Type 1 
When f* belongs to type 1，since Ci and C2 are not touched, additional information 
must be used to indicate the coplanarity of Ci and C2 so that correct face identifi-
cation and reconstruction from the line drawing are possible. Using artificial lines 
to indicate this coplanarity is the simplest and most straightforward way, which has 
been used in solid modeling [3], [52]. Two artificial lines connecting two edges of Ci 
to two edges of C2 are added by the user who draws the line drawing^ . For internal 
faces of type 1, if we can detect the related artificial lines and remove them, then we 
can separate the line drawing along these internal faces. The following proposition 
is for this purpose. 

2 Note that one artificial line is not enough to indicate the coplanarity. According to Propo-
sition 2.1, we can find and remove artificial lines, as shown in Fig. 2.2. Prom Fig. 2.2(b), 
Ci = and C'l = are both identified as real faces from the 
middle line drawing. With only {'^isii'ig}, we cannot know if Ci or C\ is the internal face when 
both Ci and C[ are enclosed by the cycle (vio, 1，，1*12，vi9,1*13, t̂ io) in the original line drawing 
in another viewpoint. However, we know that it is C\ with both {visji'ig} and {v20,v2i}. 
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Fig. 2.4: Part of a line drawing with an artificial line {i;, Vc}. 

Propos i t ion 2.1 Let {v, ?;o}, {-u, vi,}, and {i;, Vc} be the three edges connected to a 
vertex v of degree 3. If and {i^t^b} are collinear, then {t;, Vc] is an artificial 
line. 

Proof . Assume, to the contrary, that {i;, Vc] is not an artificial line but an edge, as 
shown in Fig. 2.4. Since the line drawing denotes a manifold, every edge is passed 
through by two faces and hence three faces / i , /2 and /s pass through v (see Fig. 2.4). 
According to the assumption that the line drawing is the projection of a manifold in 
a generic view, the three vertices Va^ v, and Vb are also collinear in 3D space. Thus, 
the straight line v^vvt and vertex Vc define a plane in 3D space, implying that /2 
and /3 are coplanar, which contradicts the definition that an edge is the intersection 
of two non-coplanar real faces. Therefore, {v^vc} is an artificial line. • 

With Proposition 2.1，all the artificial lines can be detected and removed. Note 
that when an artificial line is removed, its two vertices in the original line drawing 
are also removed. For the example in Fig. 2.4’ the two collinear edges {i;, tio} and 
{ti, Vb} become one edge { i ; o 5 } after v is removed. An internal face of type 1 turns 
out to be a real face in the separated line drawing. The face {vq,V7,V8,vq,V6) in 
Fig. 2.2(b) is such an example. 

2.3.3 Detecting Internal Faces of Type 2 
Even with the real faces known from a line drawing (Assumption 2.3), detecting 
internal faces of type 2 is not a trivial problem. In this chapter, the detection is 
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performed through a cycle-searching scheme. Since exhaustive searching is compu-
tationally expensive, we here develop some properties related to internal faces of 
type 2 so that most cycles that cannot be such an internal face can be eliminated 
during the search. 

In this section, we only consider internal faces of type 2. For concision, we simply 
use "internal face(s)" to denote "internal face(s) of type 2". When we say two 
cycles overlap, we mean that their enclosed regions overlap on the 2D line drawing 
plane. The first two properties below come from the definition and observation of 
common internal faces. They are useful to develop other subsequent properties. 
Assumption 2.4 (all internal faces are planar) is also implied. 

Property 2.1 An internal face except its boundary is invisible. 

Property 2.2 Two coplanar internal faces do not overlap with each other. 

Property 2 .3 A self-intersecting cycle is not an internal face. 

Proof . Since the projection of the boundary of a planar face cannot form a self-
intersecting cycle [52], an internal face, which is formed by gluing the real faces of 
two planar manifolds, cannot be self-intersecting either. • 

Property 2.4 If two cycles share two or more non-collinear edges and overlap with 
each other, then they cannot both be internal faces. 

Proof . Since the two cycles share two or more non-collinear edges, they must be 
coplanar if they are internal faces. Prom Property 2.2，they cannot both be internal 
faces. • 

Property 2.5 A cycle cannot be an internal face if the cycle has a chord that is 
completely or partially enclosed inside the cycle. 

P r o o f . The chord is obviously on the same plane with the cycle if the cycle is an 
internal face (see Fig. 2.5). An edge of a line drawing lies on the surface of the 



Chapter 2 Reconstruction from Complex Line Drawings 22 

� W 

Fig. 2.5: (a) A cycle Ci = ( / , a, 6 , c , d, e , . . . / ) with a chord {a, d} enclosed com-
pletely by it. (b) Another cycle C2 = (J,a,b, .“,c,e,d,g, ..J) with a chord {a, d] 
enclosed partially by it. 

manifold and is visible from a certain viewpoint in 3D space. Hence, it or part of 
it cannot be an interior part of an internal face. By Property 2.1，we have this 
property. • 

Property 2.6 A cycle cannot be an internal face if this cycle and a real face share 
two or more non-collinear edges and they have an overlapping region. 

Proof . If this cycle is an internal face and shares two or more non-collinear edges 
with a real face, then the cycle and the real face lie on the same plane. If they 
further have an overlapping region in the line drawing, then this region is visible, 
which contradicts Property 2.1. • 

Property 2.7 A cycle cannot be an internal face if this cycle and a real face share 
two or more non-collinear edges and they have intersecting edges. 

Proof . If this cycle is an internal face and shares two or more non-collinear edges 
with a real face, then the cycle and the real face lie on the same plane. If they 
further have intersecting edges, then part of the real face must be enclosed by the 
internal face, which contradicts Property 2.1. • 
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(a) (b) (c) (d) 
Fig. 2.6: Several cases where a cycle C and a real face f share two non-collinear 
edges and they have an overlapping region in the line drawing, (a) C and f have 
intersecting edges, (b)-(d) C and f have an overlapping region without intersecting 
edges. 

Fig. 2.6 shows several cases where a cycle and a real face share two non-collinear 
edges and they have an overlapping region in the line drawing. In fact, Property 2.7 
is a special case of Property 2.6. It is stated explicitly as a separate property because 
it can be used to reduce fruitless search for internal faces before a path becomes a 
cycle. For other cases such as Figs. 2.6(b)-(d) where the cycle and the real face have 
no intersecting edges, the cycle can be determined not to be an internal face after 
the cycle is formed. 

Property 2.8 A cycle cannot be an internal face if 1) this cycle shares two or more 
non-collinear edges with two real faces and 2) the two real faces share an edge or 
they have an overlapping region. 

Proof . Let the cycle, the two real faces be C, fi, and /2, respectively. Assume, 
to the contrary, that C is an internal face. Prom the first condition, we know that 
C, fi, and /2 all lie on the same plane. If fi and f�share an edge, as shown 
in Fig. 2.7(a), the definition that an edge is the intersection of two non-coplanar 
real faces is violated. In another case, f i and /2 overlap, as shown in Fig. 2.7(b). 
However, two co-planar real faces of an manifold must not overlap in the line drawing. 
Therefore, C cannot be an internal face. • 

With these properties, we can develop an algorithm to detect the internal faces 
of a line drawing, which is summarized in Algorithm 1). It is a depth-first search 
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Fig. 2.7: A cycle C sharing two non-collinear edges with two real faces and /2. 
(a) f i and /2 having a common edge {a, 6}. (b) f i and /2 overlapping. 

algorithm with the properties incorporated to guide the search. The properties can 
cut most fruitless branches during the search, and thus considerably speed up the 
algorithm. 

In the algorithm, an array Path is used to keep the vertices in the current search 
path; the variable index gives the position of the last-added vertex in Path during 
the search. A binary label Label{v) is given for every vertex ；̂ 6 V to denote 
whether the vertex v is in Path or not. In practical applications, we can often set 
the maximum length Dmax of internal faces to avoid fruitless search. Dmax is used 
with a 2D array Shortest in step 8(a), which indicates the shortest path length 
between any two vertices. 

The algorithm starts the search from every edge in the line drawing (see step 2), 
and calls the procedure INTERNAL recursively to detect possible internal faces. 
Obviously, this search does not miss any internal faces. In addition, all our ex-
periments show that the outputted cycles are indeed internal faces, which suggests 
that the properties can not only speed up the search but also effectively distinguish 
internal faces from other cycles. 

For some line drawings, there exist incompatible internal faces, resulting in mul-
tiple solutions from a line drawing (see step 3 and "Output" in Algorithm 1). One 
example is shown in Fig. 2.8, which has 15 real faces. From this line drawing, Algo-
rithm 1) finds three internal faces Ci = (1’ 2’ 3，4’ 5’ 6，7’ 8,1), C2 = (1,2’ 3’ 4，5’ 8，1)， 
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A l g o r i t h m 1 Depth-first search of internal faces of type 2. 
I n p u t : An line drawing C = where V, and T are the sets of vertices, 
edges, and real faces, respectively, the adjacent lists AdjList{v) for every vertex 
V 6 V, a 2D array Shortest{vi,V2), vi,V2 € V，indicating the shortest path length 
between vi and ？;2, and the maximum search depth Dmax-

1. Initialization: J^* 一 0; Label(v) <~ 0，for every vertex v eV] 
2. for every edge {it, ？;} G £ do 

( a ) index 2 ; 
( b ) Path{0) — v\ Path{l) — u] 
(c) for every vertex wi € AdjList{u) and wi^v do INTERNAL{u, wi)； 

( d ) Path{Q) — u\ Path�—v; 
(e) for every vertex W2 € AdjList{v) and W2 ^ u do INTERNAL�”, 1̂ 2)； 

3. Detect whether there are incompatible internal faces in T* according to Prop-
erty 2.4; 

O u t p u t : The set of internal faces in ！F* if there are no incompatible internal faces, 
or the sets of internal faces if there are incompatible internal faces. 
procedure INTERNAL{u,v) 

4. index 一 index + 1; Label (v) 1; 

5 . Path{index) <r- v] 
6. Check whether edge {ii，t»} intersects any previous edges in Path (according 

to Property 2.3). If yes, go to 9; 
7. With the set of real faces that shares two or more edges with the current 

path in Path, check whether this path can form an internal face according to 
Properties 2.7 and 2.8. If no, go to 9; 

8. for every vertex w G AdjList{v) and w ^ u do 

(a) if Label(w) = 0 and index + Shortest{Path{0), w) < Dmax, t h e n extend 
the path by calling INTERNAL{v,w)\ 

(b) else if w = Path{0) (a cycle is obtained in this case) t h e n 
i. With all the chords of the cycle in Path, check whether this cycle 

can form an internal face according to Property 2.5. If no, go to 9; 
ii. With all the real faces, check whether this cycle can form an internal 

face according to Property 2.6. If no, go to 9; 
iii. Pu t this cycle into 尸 if it is not a real face and is not in 尸 yet; 

9. index index — 1; Label(v) 0; 

e n d o f INTERNAL. 
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麵 
Fig. 2.8: An example where multiple solutions exist. 

and Cs = (5，8’ 9，10’ 5). Since Ci and C2 are incompatible according to Property 2.4， 

the algorithm finally outputs two solutions: one is Ci and C3 and the other is C2 
and C3. Note that when Ci is an internal face, Ci and the real face (5,6’ 7,8，5) are 
on the same plane; when C2 is an internal face, C2 and this real face are on different 
planes. 

The reader may wonder why C3 in Fig. 2.8 is also an internal face. In fact, 
holes and caves may also generate internal faces, but the definition of internal faces 
needs to be extended a little. Here a hole is one that passes through the surface 
of a manifold while a cave does not. The manifold in Fig. 2.1 has a hole while the 
manifold in Fig. 2.8 has a cave. Next we discuss this extension with two simple 
objects in Figs. 2.9(a) and (c). 

In Section 2.2, we define an internal face as a face inside a manifold only with 
its edges visible on the surface, and it is formed by gluing two manifolds together. 
One such example is shown in Fig. 2.9(a) where Ci (denoted by the bold cycle) 
is the internal face. Obviously, the object in Fig. 2.9(a) can be considered as the 
union (gluing) of the two smaller objects in Fig. 2.9(b). In another case, the object 
shown in Fig. 2.9(c) can be considered as the subtraction of the smaller object from 
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(C) (d) 

Fig. 2.9: Union and subtraction that generate internal faces, (a) A manifold, (b) 
Two manifolds whose union can result in the manifold in (a), (c) Another manifold, 
(d) Two manifolds, with which the subtraction of the smaller one from another can 
result in the manifold in (c). The two internal faces are Ci and C2, 

the bigger object shown in Fig. 2.9(d). Comparing the two line drawings (a) and 
(c), we can see that they have very similar structures and the same topology. The 
region enclosed by C\ is invisible and is the common part of the two separate objects 
in Fig. 2.9(b). There is also such a region enclosed by C2 (the bold cycle) that is 
invisible since it is not a real face, and is the common part of the two objects in 
Fig. 2.9(d). Therefore, we also call C2 an internal face. Note that Algorithm 1) can 
also find it as an internal face because Properties 2.1-2.8 do not prevent it from 
being so. Now we see that an internal face can be formed either by gluing two 
manifolds together or by cutting a manifold from another. On the other hand, it is 
easy to know that gluing two manifolds or cutting a manifold from another may not 
necessarily result in an internal face. 

The cycle C3 = (5’ 8’ 9’ 10, 5) in Fig. 2.8 is similar to the cycle C2 in Fig. 2.9(c). 
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In Fig. 2.8, since C3 is compatible with both Ci and C2 while Ci and C2 are incom-
patible, Algorithm 1) obtains the two solutions. Both of them are valid but lead to 
different separations of the line drawing, which is discussed in the next section. 

2.3.4 Separating a Line Drawing along Internal Faces of Type 2 
In this section, we again use "internal face(s)" to denote "internal face(s) of type 2" 
for concision. From an internal face, we separate the line drawing by recovering the 
two touching faces that form the internal face. 

Given a line drawing and its identified real and internal faces, it is not a trivial 
problem to separate the line drawing. The main difficulties are: 1) the 3D geometry 
of the manifold is not available yet; 2) in the 2D projection, the lines connecting 
to an internal face can be in any direction with respect to the internal face; and 3) 
when a line drawing is separated into two parts along an internal face, for a line 
that is connected to the internal face in the original line drawing, it is not obvious 
to which part this line should be connected. For example, the correct separation of 
the line drawing in Fig. 2.10(a) is given in Fig. 2.10(b). If the edge {vi,v2} is not 
connected to Via but to vib^ a wrong separation then results. It is wrong because 
the face { v i ^ v 2 , f 4 , ' ^ i ) is broken after such a separation. 

Through the observation of different line drawings, we find that the human sep-
aration of a line drawing along an internal face /* always satisfies two conditions: 

Condit ion 2.1 All the real faces connected to f* are partitioned into two sets, 
Mr) a n d J W " ) . 

Condit ion 2.2 Two real faces sharing a common edge connected to / * (not includ-
ing the edges of /*) both appear in either J^o{f*) or Ti{f*). 

Condition 2.1 guarantees that each real face connected to f* is not broken. Condi-
tion 2.2 implies that two real faces sharing an edge that is connected to f* always 
appear in the same face set or J^i{f*). Along all the internal faces of type 
2 in the line drawings in Fig. 2.3 and Fig. 2.10(a), our intuitive separations of the 



Chapter 2 Reconstruction from Complex Line Drawings 29 

德藝 
(a) (b) 

Fig. 2.10: An example of separating a line drawing along an internal face, (a) The 
original line drawing with the internal face marked, (b) The correct separation. The 
hidden edges are shown in dashed for easier observation. 

line drawings are shown in Fig. 2.11. We can verify that all these separations satisfy 
the two conditions above. Mathematically, we formulate such a separation in the 
following definition, and call it a partition along an internal face. 

Definit ion 2.1 Let /* be an internal face, T{f*) = { f i } ^ i be the set of all the m 
real faces connected to /*, and S{f*) = be the set of all the n edges connected 
to /* . A part i t ion along / * is to find a face set partition Pj^{f*) = 
and an edge set partition P£{f*) = {&(/*)， s i m u l t a n e o u s l y such that for any 
e G Ssif*), it holds that e 车 Edge{f),\ff e where s = 0,1. This partition 
along f* is denoted by Pf* = (_Pjr(,H«)’ _?£：(”)). 

We can prove that a partition along an internal face has the following properties. 

Property 2.9 Given a partition Pf* = (广 )， a l o n g an internal face /*, 
for two real faces fa, ft ^ , if fa � f b , then both fa and fb are in To{f*) or 

Proof . Since fa � f b , according to Definition 2.2，we can find a series of real 
faces fa = / o , / i , . . • Jk-iJk = fb such that Edge(fi) n C £{f*) and 
Edgeifi) n Edge(Ji+i) — 0’ i = 0’ 1，…，/c - 1. Obviously, we have { / � } � = • C 
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耗 
(a) (b) 

Fig. 2.11: (a) Partitions along / I , /《，and f : in Fig. 2.3. (b) Partitions along all 
the internal faces in Fig. 2.10(a). 

and all these faces are classified into J^oif*) or J^i{f*). Suppose, to the contrary, that 
fa and fb are not both in To{f*) or in Without loss of generality, assume 
fa e J^oif*) and fb e Then there must exist two neighboring faces f j and 
fj+i, 0 < j < k - l , such that f j G ^o(/*) and fj+i G Ti{f*). By the definition 
of f j and / j + i , there exists an edge e G £( /*) satisfying e E Edge{fi) n Edge{fi+i). 

Without loss of generality, we suppose e is classified into £o{f*) in the partition. 
Since e e Edge(Ji) n Edge(Ji+i�and f j and / j+ i belong to different face sets, which 
violates the definition of line drawing partition. Therefore, Property 2.9 always 
holds. • 

Property 2.10 In a line drawing partition, for any real face f E where 
s = 0，1，its edge set satisfies that Edge{f) n £：(/*) C 以f*). 

Proof . The property results immediately from the definition of the line drawing 
partition. • 

In the rest of this section, we will prove that the partition along an internal 
face is unique and the line drawing(line drawings) after each partition still repre-
sents(represent) a manifold(manifolds). First, the following Proposition 2.2 states 
the uniqueness of a partition and indicates a separation scheme to find such partition 
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Fig. 2.12: Part of a line drawing where the bold edges and bold dashed edges denote 
f* and all the neighborhoods Afy^, I <i <t, have been stretched into 2D disks 

given the line drawing and the internal face which is separated along. 

Propos i t ion 2.2 The partition along an internal face of a line drawing representing 
a manifold exists and is unique. 

To prove Proposition 2.2, we shall first introduce three lemmas to describe the 
topological relationship among all the faces connected to an internal face in the line 
drawing that represents a manifold. 

In order to simplify the mathematical formulations in the lemmas and their 
proofs, we generalize the term neighboring real faces (see Section 2.2) to S-neighboring 

real faces�which is defined as follows. 
Definition 2.2 Given a set £ of edges, we call that there exists an 5 -path between 
real faces fa and fb if we can find a series of real faces /a = /o，/i，…> fk-i^fk = fb 

such that Edge{fi)nEdgeifi+i) C S and Edge{fi)nEdge{fi+i) — 0, i = 0,1,... , k— 

1. These two real faces fa and fb are called ^ -ne ighbor ing , denoted by fa ~ fb-

As illustrated in Fig. 2.2，given the edge set £ = {{'^3, vj}, {7；4, tis}}, the real 
faces {v2,V3,V7,vq ,V2) and {V4,V5,V9,VS,V4) are 5-neighboring. ^^-neighboring has 
the following property, the proof of which is trivial and omitted here. 
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Fig. 2.13: The illustration for Lemma 2.1. The bold solid line represents the internal 
face passing through ao, oh and the dashed lines denote the real faces. 

Property 2.11 5-neighboring is an equivalence relation, which satisfies: 1) reflex-
ivity: fa ~ /a； 2) symmetry: if /a ~ 九’ then 九 ~ fa., and 3) transitivity: if fa ~ ft £ f 
and /b � / c， then f a � f c . 

With the definition above, we now present the three lemmas as follows. 

L e m m a 2.1 Let e\ and 62 be two edges of an internal face f* joining at vertex o, 
and let S�be the set of all the edges connected to o other than ei and e2. Then, the 
two real neighboring faces of e\ are £o-neighboring to either neighboring face of 62-

Proof . Suppose the internal face f* passes through edge ao and ob (corresponding 
to ei and 62 respectively) as illustrated in Fig. 2.13. The neighboring faces of ao 
are fi and /2，which pass through oc and od respectively, and the neighboring faces 
of ob are fs and 几 which pass through oe and of respectively. Now, suppose that 
/a is £^o-neighboring to neither f i nor /2. Then for any pair of points Pa E fs and 
Pb G fi U /2, all the paths connecting pa and pb must pass through o. We note 
the neighborhood of point o as Afp. Then according to the conclusion above, No 
with point o removed is not a connected space. Since the object is a manifold, 
Afo should be topologically equivalent to an open disk D. Suppose now we have a 
homeomorphism h : A/"�—>• D. It will also induce a homeomorphism from h : A/"o —{0} 
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專: 
Cn ‘ 

Ci 1 
Fig. 2.14: Illustration for Proposition 2.2. {oci，oc2，... ,ocat} are the edges which 
are contained in a series neighboring faces linking f i and /2 while {odi^od2,…，odx} 
refer to unrelated edges. 

to D — /i({o}) but D — /i({o}) is obviously a connected space [6]. Hence, we know 
that the neighborhood of o cannot be topologically equivalent to an 2D open disk, 
which contradicts with the assumption of manifold object. Therefore, / s must S{f*)-

neighboring to either f\ or /2. The similar result holds for J4. • 
With the definition of ^^neighboring, we can immediately arrive at the following 

corollary from Lemma 2.1: 

Corollary 2.1 Given two arbitrary edges e\ and 62 on the internal face /*, each 
neighboring face of ei is £^(/*)-neighboring to either neighboring face of 62. 

L e m m a 2.2 If fa and fb are two neighboring faces which are neighboring along 
the internal face /*, i.e., their intersection Edge{fa) n Edge{fb) Q Edge{f*), then 
f ， f b . 

Proof . We assume that the cycle C passes through {ao, 06} as Fig. 2.14 illustrates 
and two neighboring faces / i and f�of ao passes through the two edges connected 
with C at vertex o: {ao, oci} and {ao, oc^v} respectively. According to Lemma 2.1 
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Fig. 2.15: Illustration for Proposition 2.3. The dashed line eof denotes the isolated 
face. 
and Corollary 2.1, the proof of the theorem is equivalent to prove that there exists 
no series of neighboring faces J^c = {/cioc2’ /c20C3’... ’ Icn-iocn} linking f i and /2. 

Suppose, to the contrary, that there exists two faces fa and /{, neighboring along 
f* and also £^(/*)-neighboring. And then there exists a series of neighboring faces 
^ C = {fcioc2,fc20c3,"' ,fcN-iocrA which make / i and /2 £:(/*)-neighboring. We 
know that the real face fs which passes through edge bo are £^(/*)-neighboring to 
fi and /2 according to Lemma 2.1. Hence, /a must pass through the edges in 
Sc = {oci,oc2, • • • ,ociv}. Without loss of generosity, we let fs go through oci 
where z = 1,2, • • • , N . We will find that the edge oci is now shared by 3 real faces: 
fci-ioci, fci-ioci+i and /s , where /cqoci = fi and fcNOCN+i = h - Such result obviously 
contradicts with the property of the manifold. • 

L e m m a 2 .3 If fa and f i are two arbitrary faces neighboring along the internal face 
£(f*) £{f*) 

/* , then for any face / connected with /*, either / � f a or f � 九 holds. 
Proof . Let's consider the case shown in Fig. 2.15 where there exists an isolated 
face f which connected with /* at o but £(/*)-neighboring to neither / i nor /2. 
Then for any pair of points Pa ^ f and G / i U /2, all the paths connecting pa and 
Pb must pass through o. Similar to the case in Lemma 2.1，the neighborhood of o 
cannot be topologically equivalent to an 2D open disk and thus it contradicts with 
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the assumption of manifold object. Therefore, f must £^(/*)-neighboring to either 
fi or /2. • 

With Lemma 2.1-2.3 above, we can now proceed to the proof of Proposition 2.2. 
Proof of Propos i t ion 2.2: 
Mathematically, we need to prove that given a line drawing representing a manifold 
and an internal face f* of it, Let e be an arbitrary edge of /*, the real faces / • and 
fi be two neighboring faces of e. Then Pj^{f*) defined in Equation 2.1 is a partition 
of the face set T {f* ) of all the real faces connected to /*, and Ps{f*) defined in 
Equation 2.2 is a partition of the edge set £( /*) of all the edges connected to /*, 

Pnn = {^o(r),^i(r)} 
={{ / i / enr ) ’^ (r ) / j }Lo (2.1) 

Psin 二 m n M H } 

= { { e | e e « ^ ( r ) ’ 3 / e « F “ r)， 

s.t.e G Edge{f)}}\^Q (2.2) 

Furthermore, (î(广），•?£(/*)) constructs the unique line drawing partition along /*. 
We choose an arbitrary real face / • E to be the standard face. Let f i be 

the neighboring face of /o along the edge of internal face f*. The edge sets and face 
sets Soif*), Si{f*), ^lif*) are defined in Equation 2.1 and Equation 2.2. 

First, we will prove that the separation scheme defined in Proposition 2.2 is a 
line drawing separation. We hence need to prove that the separation scheme satisfies 
Definition 2.1. 

1. = {J^s{f*)}l=o is a partition of T{f*). With Lemma 2.3 and the 
definition of J^oif*) and Ti{f*) in Equation 2.1, it follows immediately that for 
any real face f G either f e J^oif*) or / e holds. Hence, we have 
that T{f*) =To{f*)LlJ^i{r). Then, we need to prove that j r o ( / * ) n : r i ( / * ) = 
0. Suppose, on the contrary, that there exists a real face f G H 
Then according to the definition of • F o ( / * ) ， w e have / � / o and 
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f ) fi. With the transitivity of 5(/*)-neighboring, it follows that /o ) 
fi, which obviously contradicts Lemma 2.2. 

2. P£(f*) = {£s{f*)}l=o is a partition of £(/*). For any edge e e £( /*) , its two 
neighboring face f i and f � a r e in either J^oif*) or J^i{f*). According to the 
definition of So{f*) and Si{f*) are defined in Equation 2.2，either e e So(f*) 

or e e Siif*) holds, which means that £：(/*) = So{f*)USi{f*). Then, we need 
to prove that ^o(/*)n£^i(/*) = 0. Suppose, on the contrary, that there exists a 
real face e G 似/*) n W / * ) . Then there exists two real faces fa G 而(/*) and 
fb e such that e G Edge(Ja)riEdge(Jb� , i.e., fa � f t - Then according 
to the definition oiJ^oif*)： we have fa ~ fo and 九 ~ V i - With the 

S<f*) 

transitivity of <S(/*)-neighboring, it follows that fo � f i , which obviously 
contradicts Lemma 2.2. 

3. ( P j r ( j ” , P £ ( j ” ) satisfy the condition of a line drawing partition. Suppose, 
on the contrary, there exists an edge e G So{f*) and a real face f 6 
such that e € Edge{f). With the definition of £o{f*), we know that there 
exists another face fa G such that e G Edge{fa)- Hence, we have 
e e Edge(f) n Edge(Jb), i.e., f � f a . Similar to the proof above, we can 
finally find that it is contradictory with Lemma 2.2. 

As a conclusion, we have proved that the separation scheme defined in Proposi-
tion 2.2 in a partition. 

Second, we will prove that the line drawing partition is unique when the line 
drawing and the internal face is given. Suppose that there exist another line draw-
ing partition Psf^f*)) other than the one given in Proposition 2.2, where 

= { ^ . ( D ' l L o and P ‘ � = {S,{ry}l=o- The face set M P ) ' is still the 
set containing the standard face fo. We will then show that J^oif*) = and 
S o i n = S o i r y such that J ' l i f* ) = J ' l i f* ) ' and Si i f*) = Si i f*) ' can be obtained 
immediately from the definition of a partition. 

1. Showing that To{f*) = Mf*)'- Since fo 6 J ^o lD ' , the fact that To{f*) Q 
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^ o i f * y results directly from the definition of J^o{f*) in Equation 2.1 and 
Property 2.9. Now we will show that J^oif*)' C J'oif*). Suppose, on the 
contrary, that there exists a face f G ^oif*)' and f • ^o{f*). Hence, we 
have f e According to the definition of J^i{f*) in Equation 2.1 and 
the transitivity of ^-neighboring, it follows that f � f for any real face 
f e and thus by Property 2.9 we know that C J^oif*)'. On 
the other hand, we have already shown that J^oif*) ^ ^oif*) ' - As a result, 
Toif*) n •Fo(/*) = T{f*) c To{f*y. Therefore, the only possible case is 
J^oiry = and it follows that TiU*)' = 0, which is contradictory with 
the definition of a partition that Ti{f*) ' — 0. As a conclusion, we have proved 
that = jro(/*)'. 

2. Showing that = &( /*) ' . For any edge e e S(f*), we can obtain one of 
its neighboring faces / • It is obvious that / G ^ ( f * ) . Hence the classification 
of f is uniquely determined in any line drawing partition according to the 
discussion above, in the line drawing partition. By Property 2.10, we know 
that the classification of e is also uniquely determined. It means that 8o{f*)= 

As a conclusion, we have proved that the line drawing partition is unique given the 
line drawing and the internal face.B 

An algorithm can be designed to find such line drawing partition given the in-
ternal face f*. In the beginning, £o{f*),似/*) and Ti{f*) will be set empty, and 

will be initialized to contain an arbitrary face / � G We conclude 
following three rules from the lemmas proposed above to classify the remaining 
edges (faces) through an inference from the classified edges and faces and hence aug-
ment the edge sets SqU*), Si{f*) and face sets W ) , 

Rule 2.1 Given the edge e G Ss{f*) where s = 0，1 and its two neighboring faces 
are / i and /之，we can infer that / i G ̂ s i f* ) and /2 G J^s(f*). 
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Rule 2.2 Given the face f G J^sif*) where s = 0，1 and an edge e G Edge{f), we 
can infer that e G Ss{f*)-

Rule 2 .3 If two faces fi and fj are neighboring along the internal face f* and fi 
is classified as fi E J^s where s = 0,1, then we can infer that fj 6 where 
s = 0’ 1. 

Proposition 2.2 guarantees that all the edges and faces connected to the internal 
face f* can finally be classified by iteratively and alternately applying Rule 2.1, 
Rule 2.2 and Rule 2.3 as long as the object the line drawing represents is a manifold. 

The complete algorithm for separating the object along internal faces is list in 
Algorithm 2. The separation is on the basis of Proposition 2.2 and three rules 
proposed above. The duplicate of the vertices along the internal face f* and 
two artificial faces /q and / j which are in the place in which the internal face f* lies 
are added to the face set forming a new set of line drawing after each separation 
is performed. 

Since there may be more than one internal face in the original line drawing, 
we hope to further repeat such separation process along other internal faces in the 
remaining line drawing. For the line drawing in Fig. 2.10(a), four partitions along 
the four internal faces separate it into four simpler line drawings. This requires 
that the line drawings generated from the separation process above still represent 
manifold objects so that the prerequisite of Proposition 2.2 can be met. In view 
of this, we need the following Proposition 2.3 to guarantee that the remaining line 
drawings conserve the property of manifold after the separation scheme given in 
Algorithm 2. 

Propos i t ion 2.3 If the initial line drawing C which represents a manifold object, 
then after the partition along an internal face, the line drawing (line drawings) still 
represents (represent) a manifold (manifolds). 

Proof . If /* is a Type 1 internal face, the result is obvious. Here we consider the case 
that f* is a Type 2 internal face. Since the separation only change the topological 
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Algor i thm 2 Separating a line drawing along an internal face of type 2. 
Input: The 2D line drawing C = (V’ 5, J^) and one of its internal face f* = {vi}fL^. 

1. Find the set T{f*) of the faces connected with f* and the set S{f*) of the 
edges connected with f* 

2. Pick an arbitrary edge e* from Sf* and find the two faces fa and 九 which pass 
through e*. 

3. Initialization: = {/a}, J^i = {A}, ^o = 0 ， = 0 
4. Repeat until all the elements in S and T have been classified. 

(a) For each edge e G update the face classification ^ l i f * ) accord-
ing to Rule 2.1. 

(b) For each face f e T, update the edge classification 5o(/*), S\{f*) accord-
ing to Rule 2.2. 

(c) For each face / 6 update the face classification To{f*), T\ according 
to Rule 2.3. 

5. Split f* into two faces /q = /* = M^o where o = vk and f^ = (v-)fio, 
where are the duplicates of Vi, i = 0,1,2, • • • , K . 

6. Update the line drawing £ to = ( V ' , ^ , ^ ' ) -
(a) Update the vertex set: V' = V U {v-jfio-
(b) Update the edge set: = (/*))•£：；(/*), where is the duplicated 

edge set of S\(/*) in which all those edges pass through ^^�(i = 0’ 1,...，iQ 
now pass through v[{i = 0,1, ••‘ , K) instead. 

(c) Update the face set: = {T - J ' l i f*)) U U {/�*’ 八*}，where 
is the duplicated face set of J^i{f*) in which all those faces pass through 
Vi{i = 0’ 1’ • • • , K) now pass through = 0,1，•.. , K) instead. 

Output: The line drawing C = after the separation. 
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‘ / . . V f i a ^ ^ ^ f f f l ^ b ’ 

Fig. 2.16: Illustration for Proposition 2.3. The original line drawing is given in the 
left while the line drawing after the separation is given in the right. 

structure of C along the internal face /*, in order to prove the manifold property 
of we thus only need to verify that every point p on the new generated artificial 
face /o and / j has a neighborhood topologically equivalent to an open disk in the 
2D Euclidean space. Now, let us consider the following three cases corresponding to 
p in the different location of the artificial faces. 

1. p is in the interior of the face /q or /丄*. The proof is trivial in this case due to 
the planarity assumption of /q and / j . 

2. p is on the boundary other than vertices of /q or / j . In this case, we can briefly 
check whether each edge e 6 Edge[fG) U Edge{fi) is still shared by exactly 
two faces so that the neighborhood every point on the boundary edges of new-
artificial faces have a neighborhood which can be simply transformed into an 
2D open disk through folding. In the original line drawing for any edge 
eo G Edge(J*), we can find two faces fa G ^o(/*) and fb E Tiif*) which share 
eo given the manifold property of where ^o( /*) and Ti{f*) are face sets 
defined in Algorithm 2. The separation process duplicates the original edge eo 
into two, and we note them as eo e Edgeijg�and e^ € Edge{fi) respectively. 
Prom Algorithm 2, we can easily know that ei is now shared by face fa and 
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/o> and 62 is shared by face fb and / f . Since cq an arbitrarily edge in the 
boundary of /*，we have proved that all the edges in the boundary of /q and 
fi are shared by exactly two faces. 

3. p is one of the vertices of /q or , i.e., p e Ver(J3) U Ver{f^). Suppose 
p is now an arbitrary vertices of the original line drawing C and the inter-
nal face f* pass through edge ap and pb as shown in Fig. 2.16. We note 
the neighboring faces of edge ap as fi and /2, and those of edge ob as fs 
and /4 respectively. Since the original line drawing C represents a manifold 
object, according to the results of Lemma 2.1 and Lemma 2.2，we can as-
sume that fi is £^p-neighboring to fs and is £^p-neighboring to / ‘ without 
loss of generosity. Hence, there must exist a sequence of neighboring faces 
T c = {/cipc2’/c2pc3’... , fcN-ipciA linking f i and /s , and also another se-
quence of neighboring faces J^d = {/dipd2’/d2Pd3，. •. , fdM-ipdM� l inking h 
and /4, where M, N are non-negative integers. After the separation, the inter-
nal face f* is split into two artificial faces /q = fapb and = fa'p'b'. Now we 
will verify the neighborhood of both duplicated vertices p and p'. Let us first 
consider the neighborhood of vertex p. For the verbal simplicity, we define the 
vertices cq = C7V+2 = a and c^v+i = b, and also note the set of all faces passing 
through p as 

^P = ^ c U { / i , / 3 , / o * } 
= {fcQpCl ’ fcipc2，…，fcN-lPCN ’ fcNPCQ } 

Now, we consider the neighborhood of p with a small radius e can be written 
as ATp = {p'IIIpp'II < £ A p ' e/，V / e Tp). Hence, we can define the following 
piecewise homeomorphism: 

h : ATp̂ n /cipci+i — {(r’ : 0 < r < e, 

N + 2 - - N + 2 ^ 

h maps the part of A/J in each face to a sector in the polar coordinate, and as 
a result Afp is finally mapped into a 2D open disk in Euclidean space. Since 
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the topological structure at p' is similar to that of p, we can verify that has 
a neighborhood homeomorphic to an 2D open disk in the same way. 

From the discussion above, we have shown that the neighborhood of p can be topo-
logical equivalent to a 2D open disk in all the cases and thus the line drawing C 
after the separation still represent a manifold object. • 

With Proposition 2.3, such separation process described in Algorithm 2 can be 
performed iteratively to those separated line drawings until all the internal faces 
have been split and only simple line drawings are remained. 

Now let us see what partition results look like when Algorithm 1) finds multiple 
solutions from a line drawing. Take the line drawing shown in Fig. 2.8 as an example, 
in which {Ci,C3} and {C2,Cz} are two solutions with C\ = (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,1) , 
C2 = (1 ,2 ,3 ,4 ,5 ,8 ,1) , and C3 = (5,8,9,10,5). For convenient observation, it is 
re-drawn in Fig. 2.17(a). 

Consider the first solution {CijCa} and suppose that Algorithm 2 does the par-
tition beginning with Ci. Then the result is shown in Fig. 2.17(b). Note that since 
C3 has been broken in Fig. 2.17(b), a partition based on it is impossible. Further-
more, since the two line drawings in Fig. 2.17(b) have no internal faces, the result 
in Fig. 2.17(b) is final. Now suppose that Algorithm 2 starts with C3 instead of Ci. 
The first partition result is shown in Fig. 2.17(c). Again Ci has been broken after the 
first partition and a partition based on it is impossible. However, From the bigger 
line drawing in Fig. 2.17(c), Algorithm 1) can find an internal face C4 = (1,2’ 3，4,1). 
Therefore, Algorithm 2 performs the second partition along C4 and the final result 
is given in Fig. 2.17(d). 

Consider the second solution {C2, C3} and suppose that Algorithm 2 carries 
out the partition along C2 first. The result is shown in Fig. 2.17(e). Since C3 is 
not broken in the upper line drawing in Fig. 2.17(e), further partition along it is 
performed and the final result is generated as shown in Fig. 2.17(f). If Algorithm 2 
starts the partition along C3 first and then along C2, the same final result as the 
one in Fig. 2.17(f) will be obtained. 
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(a) (b) (c) 

(d) (e) (f) 

Fig 2 17: (a) The original line drawing, (b) Partition result along Ci from (a), (c) 
Partition result along C3 from � .（ d ) Further partition result along C4 from (c). 
(e) Partition result along C2 from (a), (f) Further partition result along C3 from 
(e). 
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From this example, we can see that even though we have proved that the partition 
along an internal face is unique (Proposition 2.2), we may obtain multiple separations 
of a line drawing when the line drawing has more than one internal face. In this 
example, since the results in Figs. 2.17(d) and (f) are the same, there are only two 
different separation results as shown in Figs. 2.17(b) and (d). 

It should be mentioned that although we have two different separations from this 
line drawing, after combining the manifolds reconstructed from these separate line 
drawings by our 3D reconstruction method described in the next section, the two 丨丨 

combined 3D manifolds based on the two separations can have very similar expected 
3D shapes, which are given in the experiment section. 

2.4 3D Reconstruction 
After separating a complex line drawing along all its internal faces of types 1 and 
2, we obtain several simpler line drawings, each representing a part of the manifold. 
Our strategy to obtain the 3D manifold is to reconstruct the 3D shapes from these 
simpler line drawings and then merge these 3D shapes together. 

2.4.1 3D Reconstruction from a Line Drawing 
As most of the previous methods for 3D reconstruction from a line drawing, we 
consider that a line drawing is a parallel or near parallel projection of the edges and 
vertices of a 3D manifold in a generic view. Thus the x- and y-coordinates of each 
vertex are already known, and only the depth (么-coordinate) needs to be derived. 
Since the cycles of the real faces are already available too, the surface of the 3D 
manifold is recovered if the depths of all the vertices are obtained. Among previous 
methods, the one in [50] can handle 3D reconstruction of most complex objects. For 
our current problem, however, each separated line drawing is quite simple, and so 
we can develop a simpler algorithm to handle it. 

Reconstructing the 3D shape from each separated line drawing is carried out by 
an optimization-based approach, in which the objective function contains several 
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constraints. These constraints try to emulate the human perception of a 2D line 
drawing as a 3D object. In this chapter, we adopt five constraints: minimizing the 
standard deviation of angles in the reconstructed object [58]，face planarity [43], line 
parallelism, isometry, and corner orthogonality [49], which are denoted by a i , a2, 
0；3，a4, and as , respectively. The objective function to be optimized is then: 

5 
/(2；1’；22’-. • = X I Ai< î， （2.3) 

i=l 

where Ai_5 are weighting factors, and zi-n are the depths of all the N vertices of 
a line drawing. We use the hill-climbing method presented in [43] to carry out the 
minimization. 

2.4.2 Merging 3D Manifolds 
When all the 3D simple manifolds are available, the next step is to combine them 
in an appropriate way so that a complete 3D expected object is obtained. The 
basic idea of our merging process is to well match two manifolds' real faces that 
correspond to one internal face of the original line drawing. 

Suppose that two 3D manifolds Oa and Ob share an internal face /* with K ver-
tices in the original line drawing, the depths of all Oo's vertices are Zai,Za2, • • •，ZaNa, 
and the depths of all O^s vertices are Zbi,Zb2, •. • ,ZbNb. Without lose of general-
ity, also suppose that Zai,Za2, ‘ • ‘ , ZaK are the depths of /*，s vertices in Oa, and 
Zbi,Zb2, • • •，ZbK are the depths of f*，s vertices in Ob, where Zai corresponds to z^i, 

1 < i < K. Since Oa and Of, are reconstructed independently, we usually have a 
large difference between Zai and Zbi, 1 < i < K, and different sizes of f* in Oa and 
Ob. We align them according to the depth means (jia and fib) and the standard 
deviations {aa and <75) of f* in Oa and Ot, where 

1 K 
= ；^ XI 勺“ j = (2.4) 

i=l 
1 K 

= (巧i 一 ^ = a, b. (2.5) 
1 i=l 
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(a) (b) (c) (d) 
Fig. 2.18: (a) A line drawing, (b) Two separated line drawings, (c) Incompatible 
objects Oai and Ob. (d) Compatible object Oa2 and Ob-

While fixing Ob, we modify the depths of all the vertices of Oa by 

= M6 + —{Zai - l^a), S = l’2’..-’iVo. (2.6) 
CTa 

Finally, Oa and Ob are merged by forcing their corresponding vertex depths of f* 
to be the same: 

= = i = l，2’..•’ K (2.7) 

Our visual system can interpret a line drawing as a 3D object in two ways, 
which is well-known as the Necker cube reversal perception, and this phenomenon 
also exists in 3D reconstruction from a line drawing [58]. One example is shown in 
Fig. 2.18 where the lower line drawing in Fig. 2.18(b) may lead to one of the two 
3D objects Oai in Fig. 2.18(c) and Oa2 in Fig. 2.18(d). Incompatible gluing of Oai 
and Ob happens. To solve this problem, we can turn Oai to Oa2 by multiplying —1 
to all the depths of the vertices of Oai- Before doing this, we need to check if two 
objects Oa and 0(, are compatible. Let 

K 
s = sgn( Y^izai - Ha){zbi - fJ'b)) • (2.8) 

i=l 

If s = 1, Oa and Ob are compatible; if s = -1，Oa and Ob are not. 
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2.4.3 The Complete 3D Reconstruction Algorithm 
The outline of the complete 3D reconstruction algorithm is summarized in Algo-
rithm 3. 
Algor i thm 3 3D reconstruction. 

1. Separate the input line drawing into simpler line drawings along the internal 
faces; 

2. Reconstruct the 3D objects from the separated line drawings independently; 
3. Merge these 3D objects to form a complete object; 
4. Fine-tune the complete object. 

Steps 1, 2, and 3 have been described in the previous sections. Step 4 is to 
fine-tune the complete object by performing the minimization of the objective func-
tion in (2.3) using the input line drawing. This fine-tuning step can correct some 
deformation caused by (2.7). The initial values of the depths in this step are the 
depths of the complete object obtained in step 3. Our experiments show that using 
step 4 usually generates a better result. When there are multiple separations of a 
line drawing, as discussed in Section 2.3.4，we can either do the reconstruction from 
all these separations and output multiple complete manifolds, or just pick any one 
separation to carry out the 3D reconstruction. 

2.5 Experimental Results 
In this section, we show a number of examples to demonstrate the performance of 
our approach. The algorithm is implemented using Visual C++，running on a PC 
with 3.4 GHz Pentium IV CPU. The weighting factors Ai_5 in (2.3) are chosen to be 
100, 1，20，15，and 20 respectively. These values are obtained by a few experiments 
first and then fixed in the reconstruction of all the objects. 

For some line drawings, there are multiple separations. Let us take the one 
in Fig. 2.17(a) as an example. Fig. 2.19 shows the two different separations of 
the line drawing and the reconstruction results based on them. Although the two 
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(a) (b) (c) (d) (e) 

磁骞.鲁參P 
(f) (g) (h) (i) 0) 

Fig. 2.19: (a) One separation of the line drawing in Fig. 2.17(a). (b) Reconstruction 
results from the two line drawings in (a), (c) Another view of the results in (b). (d) 
Result after combining the two manifolds in (b). (e) Another view of the result in 
(d). (f) Another separation of the line drawing in Fig. 2.17(a). (g) Reconstruction 
results from the three line drawings in (f). (h) Another view of the results in (g). 
(i) Result after combining the three manifolds in (g). (j) Another view of the result 
in (i). 

separations are different, the two final combined manifolds are similar and expected. 
In the following examples, we only show one final result in two views for each line 
drawing. 

Fig. 2.20 shows a set of results and Fig. 2.21 shows another set of more complex 
results. For each input line drawing, we give a separation result and the recon-
structed 3D object displayed in two views, with different grey levels indicating the 
faces. From Fig. 2.20 and Fig. 2.21，we can see that our algorithm successfully par-
titions the line drawings and generates expected 3D objects. It is worth mentioning 
that the objects in Fig. 2.21 are more complex than the objects given in the previous 
papers for 3D reconstruction from single line drawings. 

The method in [50] can do 3D reconstruction of more complex objects than other 
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ft t ̂  
(c) 

^ ^ ^ ^ IHIb 减 
^ ^ ^ ^ 爾 

(d) 遍 

⑷ ^ 

� � 

^ ^ tee ^ ^ ^ 
(g) W 

(h) ^ ^ 

Fig. 2.20: A set of line drawings and their separation and reconstruction results. 
Different colors are used to indicate the faces. 
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^ ^ ^ ^ ^f^ 
(j) 

(k) ^ ^ 

(m) 

_ _ ~ z, 
• • 凝 ％ 

(p) 
Fig. 2.21: A set of more complex line drawings and their separation and reconstruc-
tion results. Different colors are used to indicate the faces. 
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寧 會 

Fig. 2.22: Failed results in two views reconstructed from the 6th line drawing in 
Fig. 2.20 and 3rd line drawing in Fig. 2.21 by the method in [50]. 

Table 2.1: Times (seconds) taken by searching for internal faces (Tl) and 3D recon-
struction (T2) for all the line drawings (a)-(p) in Figs. 2.20 and 2.21. 

~ I Tl T2 I I Tl T2 I I Tl T2 I Tl T2 
~ < 1 < 1 ~ e ~ 8 6 r 4 5 "m"一10 30 
~b~ < 1 < 1 7 " 4 1 一 丁 5 9 iT 3 21 
了 < 1 < 1 '"g~ 2 4 ~ k 14 7 ~ o “ 4 24 

d I 2 < 1 I h I 2 3 I 1 I 12 12 I p I 8 45— 

previous methods. However, it is still unable to handle the complex line drawings in 
Fig. 2.20 and Fig. 2.21. For example, for the line drawing (f) and (k), it generates 
results that are not what we want to have, as shown in Fig. 2.22. 

The computational time of our algorithm varies with different drawings, de-
pending on their complexity. The main computation cost comes from the search of 
internal faces and the 3D reconstruction. Table 2.1 lists the times taken by these 
two parts for all the line drawings in Figs. 2.20 and 2.21. 

From these experimental results, we can see that some are not perfect, which is 
partly due to the inaccurate sketches of the line drawings. The beautification of the 
reconstructed objects and the improvement of the computational efficiency of the 
algorithm are our future work. 
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Fig. 2.23: A complex line drawing without internal faces. 

Our current approach can handle complex line drawings which contain one or 
more internal faces. It is worth to mention that there do exist some special cases 
when complex line drawings may not have internal faces. An example is given in 
Fig. 2.23，in which many crosses are stuck together but no internal faces are formed. 
In these cases, our approach is degenerated into a direct 3D reconstruction method 
without the divide-and-conquer strategy. However, in most cases, humans are more 
likely to create line drawings with internal faces and hence a divide-and-conquer 
approach can usually be effective. Better dealing with those complex line drawings 
without internal faces is also our future work. 

2.6 Summary 
In this chapter, we have proposed a novel divide-and-conquer algorithm for 3D 
complex manifold reconstruction from single line drawings. Our strategy is to 1) 
identify the internal face in the line drawing, 2) separate a complex line drawing into 
simpler ones along its internal faces, 3) reconstruct the 3D shapes from these simpler 
line drawings, and 4) combine the shapes into a complete object. The experiments 
show that our approach can handle more complex objects than the solid objects 
appearing in the previous related papers. 

Future work includes 1) the improvement of the computational efficiency of the 
algorithm, 2) the beautification of the reconstructed objects, 3) the extension of the 
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work to handle general planar objects, 4) better handling those complex line draw-
ings without internal faces, and 5) addressing the reconstruction from line drawings 
representing objects with curved faces. 



Chapter 3 

A Vision-Based Sketching 
System for 3D Object Design 
3.1 Introduction 
3D object design has many applications including flexible 3D sketch input in CAD, 
computer game, webpage content design, image based object modeling, and 3D 
object retrieval. Despite great progress of 3D modeling in current computer-aided 
design (CAD) tools, creating 3D objects using these tools is still a tedious job since 
they require users to work on a 2D drawing plane. Design in virtual 3D environments 
enables users to draw objects in 3D space, but this method has the drawbacks 
that there are awkward devices worn by the user and the virtual environments are 
expensive. 

In this chapter, we propose a novel vision-based approach to 3D object design. 
Different from the current techniques, it works in 3D space without any devices 
connected to the user. Our target is to develop an inexpensive system that allows 
the user to design 3D objects conveniently. Our system consists of a PC, a camera, 
and a mirror, as shown in Fig. 3.1. In the system, the user designs 3D objects 
by sketching in the air the wireframes of the objects with an easily-tracked wand. 
A number of sketching and editing operations are developed to facilitate object 
design. In real time, the 3D positions of the strokes of the wand are captured, and 

54 
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mirror \ 

^ ^ ：、》 ^ - ^ ! ^— • 

F T J L J F 
Fig. 3.1: The sketching system. 

the wireframes and surfaces being developed are displayed on the PC screen to guide 
the user to draw more and more complex objects. 

The system provides a new way of 3D object design. It requires no special 
equipments and is easy to set up and use. Its applications include flexible 3D sketch 
input in CAD, game, education, and webpage content design, generation of 3D 
objects from 2D images, and a user-friendly query interface for 3D object retrieval. 

3.2 The Sketching System 
As shown in Fig. 3.1, our system consists of a video camera, a mirror, and a PC only. 
The user draws an object with a wand in the 3D free space. The tip of the wand 
is colored so that it is easy to track. The basic idea of 3D design in this system is 
that a 3D wireframe of an object is obtained by tracking the movement of the wand, 
and then an automatic filling-in process generates a surface from the wireframe. We 
propose this system based on the observation that a designer thinks not in terms of 
surfaces, but rather in terms of the feature curves of an object which construct the 
wireframe. The whole flow chart of our system is shown in Fig. 3.2. 
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3.3 3D Geometry of the System 
Being able to find the 3D position of the wand^ is the first step. In the system, 
the world frame {X, Y, Z) is defined as in Fig. 3.3，where the XY plane is parallel 
to the image plane coy of the camera and the distance between the origin O and 
the image plane is equal to the focal length / . With a simple calibration, the YZ 
plane can be set orthogonal to the mirror. The angle 9 between the Z axis and the 
mirror is less than 90 degrees so that the tip of the wand P i = {Xi,Yi, Zi)'^ and 
its image P2 = {X2, Y2, in the mirror always project to two different points 
Pi = (a：!, 2/1, and p2 =(工2，2/2’ / ) � o n the image plane. To find the 3D coordinate 
of P i , we need to know 6 and Zq, where Zq is the distance from O to A and A is 
the intersection of the Z axis and the mirror. The two parameters 9 and Zq can be 
obtained by the calibration scheme discussed in Section 3.4.2. 

The 3D position P i = ( X \ , Yi , Z \ Y can be determined from the known 9, Zq, p i , 
P2, and the geometrical relationship shown in Fig. 3.3. The formula for calculating 
P i is derived in Section 3.4.1. 

Our system is able to determine the 3D positions of the wand with sufficient 
accuracy. We have also tested the traditional stereo method using two cameras to 
find the depth of a spatial point. Prom our experiments, we have found that the 

^More exactly, the position of the tip of the wand. 

C � � � � J � w i r e f r a m e . face _ _ . surface 
(t人？、、N'? — camera 中 on the PC " P identification generation 

、：※ [ i=-~Li= 
wireframe in drawing & editing 丄 3D space of the wireframe r \ ^ on the screen with the keyboard K ^ K ^ M M 
drawing & ^ ^ ^ \ editing of projection on projection on the wireframe k the screen the screen in 3D space ^ the user ^ i 

Fig. 3.2: Flow chart of 3D object design in the sketching system. 
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FED. 
2�\Y、令[a 乂 image plane ����� � ‘ / 

mirror l/̂  

Fig. 3.3: Geometry of the system. 

new method has the following advantages: (a) easier to calibrate, (b) less time to 
track the wand due to only one video sequence to handle, and (c) larger 3D working 
space for object drawing if the volume to set up the two systems are the same. The 
last advantage comes from the fact that if the traditional stereo method is used, the 
tip of the wand must appear in both image sequences of the cameras, which limits 
the 3D drawing space. 

3.3.1 Locating the Wand 
Locating the 3D position P i of the wand is the first step for the system to work. 
We can represent P i = (Xi, Yi, Zi )^ in terms of the points p i and p2 on the image 
plane, and the parameters / , 0, and Zq. First, from the geometrical relationship in 
Fig. 3.3，it is straightforward to relate the spatial positions with the positions in the 
image plane by 

Xi = coiZi/f, Yi = ViZi/f, 2 = 1,2. (3.1) 

We now consider the geometry of the system on the Y Z plane as shown in 
Fig. 3.4，where P and P ' are the projections of P i and P2 onto the Y Z plane, 
respectively. Let B be the midpoint of P P ' ’ and the three lines P Q , P 'Q ' ’ and B C 
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Y 个 Mirror 

… — 

Fig. 3.4: Geometry of the system on the Y Z plane. 

be perpendicular to the axis OZ. Then |PQ | + |P 'Q ' | = 2 |BC| and |OQ| + |OQ' | = 
2 |OC| . Hence, we have 

= |P 'Q ' | = 2 | B C | - | P Q | 
= 2 I I s i n 0 - Y i 
=2Hsme-yiZi/f, (3.2) 

Z2 = |OQ' | = 2 | O C | - | O Q | 
=2(Zo - H cosd) - Zi. (3.3) 

On the other hand, 
H = |AB| = | P Q | s i n 0 + |AQ|cos6> 

= Y i s m e - { Z i - Z o ) c o s e 

= y i Z i s i n d / f - i Z i - Zo)cos6'. (3.4) 
Prom (3.1), (3.2), (3.3), and (3.4), we have, 

y2 = 2Hsme-yiZi/f 
了 =系=2{Zo - Hcosd) - Zi 

= 2 y i Z i sin2 0 - {Zi - Zp)/s in 20 - yiZi 5) 
- 2 Z o / sin2 d - yiZi sin 29 + Zif cos 2d ‘ ‘ 

Finally, Z\ is obtained from (3.5) as 
_ 2/Zo sin e{y2 sin 6' - / cos 9) (3 6) 

(2/12/2-/2) sin 2 0 - / ( 2 / 1 + ^ 2 ) cos 20- “ 
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(a) (b) 
Fig. 3.5: (a) A rectangle for calibration, (b) The rectangle in the image. 

y 

/ , image plane mirror 

� � � � l � / H 、 - C ^ 、 、、、、 •‘ 
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、、叫 Fig. 3.6: Geometry of the YZ plane in calibration. 
Given (3.1), we immediately have the other two dimensions of Pi： Xi = x \ Z \ l j 
and Yi = y i Z i / f . The position of the wand P i in the 3D space is hence determined 
if / , 6, and Zq are known. 

3 . 3 . 2 C a l i b r a t i o n 
The calibration process is to find the parameters 6 and Zq. It is reasonable to assume 
that the Z axis in Fig. 3.3 is orthogonal to the image plane and passes through the 
center o of the image displayed on the screen. The focal length f can be known 
from the camera and is fixed in the system. To calibrate the system, we print out 
a rectangle (Fig. 3.5(a)) on a white page and place this page on the central part of 
the mirror with the side R S approximately parallel to the ground. This rectangle is 
captured by the camera and displayed on the screen as shown in Fig. 3.5(b). Then 
we adjust the position of the camera so that the point a is coincident with the 
image center o, the side rs is horizontal, and wi = W2 in the image. This simple 
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adjustment makes the YZ plane orthogonal to the mirror. With the known lengths 
of the sides of the rectangle in Fig. 3.5(a) and h and wi in the image, we can find 9 
and Zq from 

， = h = f (3 7 � 

W ~ HSINO - ZO-HCOSE' � • ) 

which is derived from the geometry shown in Fig. 3.6. 
3.3.3 Working Space 
As we mentioned above, the proposed sketching system provides a larger working 
space than the traditional stereo method does. In this subsection, we compare the 
working spaces between these two systems. The working space in the traditional 
system is the space where the tip of the wand appears in both cameras. In the new 
system, it is the space where both the tip and its image in the mirror appear in the 
camera. 

The calculation is based on a fixed setting that the distance from the center (s) 
of the camera(s) to the wall or the mirror is 1 meter, and the focal lengths of 
the cameras are all set to 3.6mm. Besides, the camera's internal image size is 
2.53 X 3.60mm2. We use a Monte-Carlo method [27] to calculate the working spaces 
of the two systems under different settings. For the two-camera system, we adjust 
the distance d between the two cameras on the baseline, and the angle <p between 
the camera axis and the normal of the wall, as shown in Fig. 3.7(a). For the one-
camera-plus-a-mirror system, we consider the working space with different a , the 
angle between the camera axis and the normal of the mirror, as shown in Fig. 3.7(b). 
The parameters are changed within reasonable ranges. The results are given in 
Table 3.1 and Table 3.2. 

Theoretically, the larger the o：, the larger the working space in the new system. 
However, a large a causes the camera to be set too high and far from the working 
space, which causes the tracking of the wand unreliable. In practice, we choose 
a = 20 degrees. Prom Table 3.1 and Table 3.2, we can see that the working space 
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(a) (b) 

Fig. 3.7: (a) Geometry of the two-camera system, (b) Geometry of the one-camera-
plus-a-mirror system. 

Table 3.1: The working space of the two-camera system. 

Working Space d (cm) 
(xl03cm3) — 20 30 I 40 50 ~ 

0 0 133.1 90.9 54.2 25.6 
(degree) ~~5 197.7 153.l" 111.6 7 5 ^ " 

10 —188.1 200.7 178.2 137.3~ 
15 ~140.5 173.7 193.4 193 .^ 

^ 1 2 7 . 5 161.1 184.8 

of the new system is about 30% larger than the maximum working space of the 
two-camera system. This is due to the fact that the tip of the wand has to appear in 
both cameras in the traditional system, while it only needs to appear in one camera 
in the new system. 

Table 3.2: The working space of the one-camera-plus-a-mirror system. 

Q (degree) | 10 | 15 | 20 I 25 
Working Space 227.6 238.8 255.7 269.7 

(xl03cm3) I I 
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3.4 Wireframe Input and Object Editing 
The main difficulty to generate a wireframe of an object lies in the fact that the 
strokes drawn are invisible to the user. However, they are visible to the camera, and 
the trace of the moving wand and what has been drawn can be displayed on the 
screen as the feedback to the user, which can be used to guide the sketching process. 

First, we propose a solution to locating the position on an unfinished wireframe 
in order to continue to draw. While the user moves the wand in the space, the 
3D coordinates of the tip are given on the screen. Besides, the closest point on 
the unfinished wireframe to the tip is computed, and a different color is shown on 
the screen to indicate this point. In this way, the user can find a position to draw-
without difficulty. When this position is found, the user presses some key to let the 
system know it, and then the movement of the tip is considered as a new edge of 
the wireframe. An illustration to the sketching input is given in Fig. 3.8. 

Second, to distinguish a drawing stroke from non-drawing movement of the wand, 
we use the keyboard to let the system know when a stroke begins and ends. Besides, 
we have also developed a number of sketching and editing operations to facilitate 
object design, such as extrusion, moving, copying, rotation, and zooming. These 
3D operations and gestures are summarized in Table 3.3. The keyboard is used to 
control the start and stop of a 3D gesture shown by the movement of the wand. 
All the operations can be done by the wand and the keyboard, without resorting to 
the mouse, thus allowing a continuous design by moving the wand with one hand 
and hitting the keyboard with another. The system also allows the user to switch 
between two drawing modes: the curve mode and the straight-line mode. In the 
curve-mode, smooth Bezier curves are generated to fit the path of wand movement 
when forming the wireframe. On the other hand, in the straight-line mode, the path 
information is discarded and only the start and the end positions of each stroke is 
used to generate straight lines. 

Compared with traditional sketch-based editing operations on a 2D plane, many 
3D operations have their advantages. For example, if we want to draw a duct by the 
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Fig. 3.8: The sketching input. The black dot shows the position of the tip of the 
wand. The red, blue, and green dots indicate the x, y, and ^-coordinates of the tip, 
respectively. The closest point on the unfinished wireframe to the tip is shown by 
the gray dot. 

extrusion of a closed circle along an arbitrary open curve (see Fig. 3.9), a 2D system 
will encounter two problems: (a) whether the closed curve is a circle or ellipse and its 
orientation in 3D space are unclear; (b) the 3D trail of the open curve is impossible 
to determine. However, these problems do not exist in our system. 

3.5 Surface Generation 
When we obtain the wireframe of an object in the 3D space by using the sketching 
scheme described in the previous section, the next step is to generate the 3D surface 
from the wireframe to finally reconstruct the object. Surface generation can be 
divided into two steps. The first is to identify all the faces, i.e., the circuits in the 
wireframe which represent patches constituting the whole surface, and the second 
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Table 3.3: Gestures and operations defined in the system. 

Keyboard Function 
m / r move/copy the selected part 

Left/Right rotate along Y-axis 
Up/Down rotate along X-axis 

+ / - zoom in/out 
d mode 1: move the position of a vertex or a 

control point 
mode 2: sketch a patch by dragging a 

straight/curve edge 
mode 3: sketch a pyramid/cone structure 

by dragging a patch 
mode 4: sketch a rectangular/cylindrical 

volume by dragging a patch 
a draw a straight line/curve 

c /e mode 1: draw a circle/ellipse 
mode 2: draw a body of revolution from a 

straight/curve edge 
q/w adjust the scaling of the selected part 
z /x adjust the curvature of curved strokes 
1-4 change editing modes 
F I switch between the curve mode and the 

straight-line mode 

step is to generate these patches, either planar or curved, from their boundaries. 

3.5.1 Face Identification 
Given a wireframe, before filling in it with surface patches, we have to identify the 
circuits that represent these patches (faces). Since the wireframe may represent a 
manifold or non-manifold solid, a sheet of surface, or the combination of them, with 
or without holes, identifying the faces is not a trivial problem due to the combina-
torial explosion in the number of circuits in the wireframe. To solve this problem, 
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Fig. 3.9: Extrusion of the circle along the curve. 

we use the algorithm proposed in [53] to detect the faces of a wireframe. In our 
interactive system, the user can also select the edges of a face for face identification 
manually, which can help fix wrongly detected faces by the algorithm occasionally. 

3.5.2 Planar Surface Generation 
An object may have many planar faces. In the system, a straight line replaces a 
stroke in the straight-line mode. It is reasonable to consider that a face is planar 
if all its edges are straight lines. However, for a planar face with more than three 
vertices, it is not likely for all the vertices to be located exactly on a plane in 3D 
space due to the inaccuracy of the measurement and the input during the sketch-
ing process. Filling in these circuits with triangular patches will make the object 
distorted. In order to solve this problem, we propose an automatic line drawing 
correction algorithm to deal with this problem. 

After face identification from a (partial) wireframe, we know the circuits repre-
senting planar faces. Prom the vertices of these circuits, a fitting algorithm is used to 
find a set of planes that best fit these planar circuits. We represent a plane passing 
through face j by its normal vector fj = (aj,bj,Cj)'^ and a scale dj. Then, any vertex 
V = (a；, y, z)"^ on this plane satisfies the linear equation: ajX + bjy + CjZ — dj = 0 or 
V 乂 = dj. 

We hope that for each identified face, the corrected positions of its vertices should 
be as close to the fitting plane as possible. Besides, for each vertex, its corrected 
position should not deviate too much from its initial position. Let Vj be the set of 
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the vertices of face j. The objective function to be minimized is defined as follows: 

Q(vi , V2,.. • , Viv,f i , f2 , . . . A,di,d2,. • • ’ OJM)= 

f > - V 丨 + （3.8) 
i=l j=l iEVj 丨丨Ijll 

where v i , V2, • • • , v^r are the corrected positions of iV vertices; (fi, cJi), (f2，d2)’ …，(fjvf, c^m) 
are the parameters of M planar faces; v j , v^, • • • , vjy are the positions of the N ver-
tices in the original sketching; is a weighting factor. The goal of the optimization 
is to find the corrected positions v^, z = 1,2, • • • ,N, and the fitting planes (fj,<ij), 
j = 1,2，...，M, such that Q is minimized. 

We solve this optimization problem in an iterative way. Let the set of v^, i = 
1’ 2，• • • ’ iV’ the set of f^, j = 1,2, ••• , M, and the set of d)•’ j = 1,2, ••• , M be 
V̂  = {vi}仏 1’ F = and D = {dj}¥„ respectively. Also let = K l i l i , 
F 几 = a n d V = { d � } f i i be the optimization results after the nth iteration. 
The optimization problem is divided into two iterative minimization steps, and a 
closed-form solution can be achieved in each step. 
Step 1： Face fitting. 

(F"+i，D"+i) = a r g m i n Q ( y " , F , D ) . (3.9) 

Step 2: Vertex correction. 

= (3.10) 
= (3.11) 

In Step 1, we do the plane fitting on all the identified planar faces using the 
updated positions of the vertices obtained in the previous iteration. The optimal 
fitting is obtained as follows. First, by solving = 0, we have 

= j = l，2，...’M. (3.12) 
丨b丨ieVj 

Substituting (3.12) into (3.8)，after some algebraic manipulation, we can transform 
fTg .f. the problem in (3.9) into the problem of minimizing the Rayleigh quotient 
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with respect to each f力 j =： 1，2’ … ’ M, where Sj = ^iev,- (Vi 一 — vjf is 
the covariance matrix, and Vj = J2ieVj Vi. Furthermore, minimizing ^ ^ ^ can 
be reduced to the following eigen-problem: 

S j f j = Xj,miJj, j = 1’ 2’ … ’ M, (3.13) 

with f j being the eigen vector corresponding to the minimum eigen value \j,min of 
Sj. From (3.12) and (3.13), we can obtain the closed-form solution fj^+i and d � + i , 
i = 1,2, ••• , M , in terms of vf, i = 1’ 2’ …，iV. 

Step 2 is done by minimizing Q, given the fitting planes obtained in Step 1. 
From 栽=0， i = 1，2’... ’ iV’ we have 

where Ti is the set of the faces containing vertex i. 
The closed form solution to (3.14) results in the following equation for computing 

vr^-
V广 1 = i = 1’ 2，...，JV’ （3.15) 

where 

� + 1 = I + " S W ’ （3.16) 
jn+lf-n+l 

々广 1 = V丨+ (3-17) 

Since both steps minimize the object function and have closed-form solutions, 
the convergence of this algorithm can always be guaranteed. Our experiments have 
shown that the algorithm is effective for finding the global minimum in most cases 
and converges quickly within several iterations. 

3.5.3 Smooth Curved Surface Generation 
After a curved stroke is finished in the curve mode, we use a Bezier curve to ap-
proximate it to obtain a smooth curve. When we have a (partial) wireframe with 
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Fig. 3.10: Smoothness between two patches. 

identified faces (circuits) and curves, we fill in the circuits denoting curved faces 
with smooth surface patches. 

In our work, we use triangle meshes to generate curved surfaces. Triangle meshes 
can be used to represent surfaces with all boundary types, unlike parametric patches 
such as Bezier and Coons patches, which are mainly suitable for patches with four 
sides. Another advantage of using triangle meshes is that they allow more flexible 
local editing. 

We first build an initial isotropic mesh for each circuit denoting a curved face from 
its boundary. The curved surface patch is then generated through optimizing the 
initial meshes according to the following three criteria. First, the surface should be 
smooth not only inside a patch, but also along the boundary between two neighboring 

• z —' 

patches, as shown in Fig. 3.10，if the curves BD, ABE, and C D F in the wireframe 
are smooth. Second, the curvature of the surface should be continuous. Third, a 
generated patch should fit into its boundary well. With these constraints, the mesh 
generation can be formulated as an quadratic optimization problem of minimizing 
the following objective function P : 

i jeN{i) 

7 E E l | c i - c j 2 + E | | u r i i ; f ， (3.18) 
ieS\B j€M{i)\B ies 

where u、，û , and Cj, i = 1,2，.•. are the initial positions, the new positions, 
and the curvatures of all K mesh points, respectively; M{i) is the set of mesh points 
connected to the i th mesh point in the mesh; S is the set of mesh points located 
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on the input wireframe; B is the set of mesh points located on the strokes of the 
wireframe where the surface passing through them is not smooth; A and 7 are 
weighting factors. In (3.18), the first term represents the smoothness of the mesh, 
the second term is used to maintain the continuity of the curvature in the mesh, and 
the last term is the fitting constraint that requires the meshes to fit the points on 
the wireframe well. 

One simple way to approximate the curvature in a mesh is to use the discrete 
graph Laplacian [80]: 

Ci = Ui - Uj, ieS\B. (3.19) 
I � I jeA^i) 

To find the solution to minimizing P , we rewrite (3.18) in matrix form: 

P ( U ) = ATr(UTLU) + 7Tr (C^L 'C) 
+ T r ( ( U - U ' f I s ( U - U'))’ (3.20) 

where U = [uf ’ u『，…’ u j ] ^ , U ' = [ u f , u ' l ’ … ’ u ' J ] ^ , C = [cj； c f . . .，c^f = 
H U , Is = diag{si,s2,... , sk] (diagonal matrix) with Sk = 1 ii k E S and s^ = 0 if 
k ^ S , L = [Lij]KxK, L' = [L'ijKxK, and H = [Hij]KxK with 

丨糊’ i = 

L i � j = -1， j e A f { i ) , 
0， otherwise, 

V 

f 

= —1， i —j, i ^ B , 
0， otherwise, 

1’ i = i t B, 
Hi,3 = -1/W{i)l i i B , j e 靴 

0, otherwise. 
\ 
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The problem of minimizing P (U) can be solved as follows: 

= 2ALU + 27H^L 'HU 
州 u=u* 

+2l5(U - U') = 0. (3.21) 
Finally the closed form solution is 

U* = {Is + AL + 7 H ^ L ' H ) " 4 5 U ' , (3.22) 

which gives the positions of all the mesh points. 

3.6 Experiments 
In this section, we show a number of examples to demonstrate the performance of 
our system. Our system is implemented using Visual C++，running on a PC with 
3.4 GHz Pentium IV CPU. The parameters P in (3.8), and A and 7 in (3.20) are 
chosen to be 10，0.05，and 0.2, respectively. Our experiments show that the system 
is insensitive to the parameters; very similar results are obtained when \ and 7 
change in [5,20], [0.02,0.1], and [0.1,0.5], respectively. 

The resolution of the video sequence in our system is set to 320 x 240. Although 
the low resolution results in larger errors in tracking, our experiments show that it 
only slightly affects the accuracy of the sketching process when zooming operation 
is used. On the other hand, it greatly enhances the processing speed of the system. 
The wand tracking and display module works in real time at a rate of 10 frames 
per second. The system can track the moving of the wand at a maximum speed of 
about one meter per second. 

A new user usually needs to take two or three hours of training to get adapted 
to simultaneous keyboard and wand operation in the system. In our system, strokes 
are preprocessed and the displayed wireframes are composed of straight lines and 
smooth curves. The jittering of the strokes by natural hand tremor is smoothed. 

Fig. 3.11 shows a set of wireframes created with our system. For each wireframe 
in the first column, we give the corrected wireframes in the second column and the 
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Fig. 3.11: Experimental results. The axes of the 3D coordinate system are also 
shown. 

3D reconstruction result displayed in two views in the third and fourth columns. 
The results show that the correction step (Section 3.5.2) is effective and the faces of 
the reconstructed objects are planar. 

Figs. 3.12 and 3.13 show a set of more complex objects that include strokes of 
both straight-lines and curves. We can see that our system can handle complex 
wireframes sketched in the air and generate expected 3D objects. 

The time used for the face identification and the generation of planar and curved 
surfaces of a scene is between 3 and 48 seconds, depending on the complexity of the 
scene. For instance, the system takes 3，19, and 48 seconds to reconstruct the 
second object in Fig. 3.11, the fourth object in Fig. 3.12，and the scene in Fig. 3.13， 

respectively, after the wireframes are obtained. 
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Fig. 3.12: More experimental results. 

3.7 Summary 
We have developed a novel 3D vision-based sketching system with a simple and 
inexpensive interface allowing users to sketch objects directly in the 3D space. A 
number of new techniques are proposed for working in this system, including input 
of object wireframes, gestures for editing and drawing objects, and optimization-
based planar and curved surface generation. Experiments have verified its efficacy 
in designing 3D objects. Our system is still being improved. At the current stage, 
a new user usually needs to take two or three hours of training to get adapted 
to simultaneous keyboard and wand operation in the system. Our future work 
includes: 1) developing more gestures and operations to handle complex objects; 2) 
improving the tracking algorithm to support more accurate 3D positioning of the 



Chapter 3 A Vision-Based Sketching System for 3D Object Design 73 

幽 A 
Fig. 3.13: A complex scene. Three different views of the reconstruction result are 
given. 

wand movement; 3) conducting more user testing and making the system available 
to the public. 



Chapter 4 

Conclusion and Future Work 
4.1 Conclusion 
In this thesis, we examine the issues concerning the problem of reconstructiong 3D 
objects from 2D line drawings and 3D sketching in the air. The main research 
contributions are as follows. 

First, we present a novel divide-and-conquer approach for 3D complex object 
reconstruction from single line drawings. This research involves proposing new algo-
rithms for identifying the internal faces from the line drawing, separating a complex 
line drawing into simpler ones along its internal faces, reconstructing the 3D shapes 
from these simpler line drawings, and combining the shapes into a complete object. 
Experiments show that the new method can handle solid objects which are much 
more complex than those appearing in the previous related papers. 

Second, we have developed a novel 3D vision-based sketching system with a 
simple and inexpensive interface allowing users to sketch objects directly in the 
3D space. Along with this system, a number of new techniques are proposed, in-
cluding input of object wireframes, gestures for editing and drawing objects, and 
optimization-based planar and curved surface generation. 

To conclude, our work on reconstruction 3D objects from 2D and 3D line draw-
ings has generalized the previous work to many cases they cannot handel. 

74 
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4.2 Future Work 
With the current results, we can expect that many interesting and exciting directions 
still lie ahead. Some of the options are described below, and we hope one or two of 
them to flourish in the future work. 

4.2.1 Learning-Based Line Drawing Reconstruction 
All the researches on 3D reconstruction of line drawings investigate only geometric 
and topological clues of the line drawing and they are mainly on a basis of heuristics 
and human's perception. However, no research by far makes any attempt to incorpo-
rate machine learning schemes to handle this problem. Intuitively, human's ability 
to interpret 2D line drawings is based on experiences and a learning process. Trying 
to reconstruct the 3D object from 2D line drawings using learning-based methods 
and presenting the optimization-based reconstruction into a Bayesian framework will 
be our future work, 

4.2.2 New Query Interface for 3D Object Retrieval 
Most work done in the area of 3D object retrieval is mainly concentrated on finding 
3D shape descriptors and defining similarity measurement. A detailed survey is 
available in [79]. 3D shape descriptors are computational shape representations (e.g., 
a feature vector) with which shape matching is performed. They are expected to 
have good properties of shape discriminating, transform invariance, computationally 
efficiency, robustness against noise, etc. Current work in 3D object retrieval [28], 
[61], [88], [92] mainly uses existing models as the queries for 3D retrieval. Recently, 
a few researchers [7], [11], [44] start to take into account the user's influence on the 
3D object retrieval by means of introducing relevance feedback. Our next work will 
be focus on improving these methods by applying the techniques in Chapter 2 and 
providing more comfortable and straightforward query tools to the retrieval. 
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(a) (b) 

(c) (d) 

Fig. 4.1: Examples of reconstructing curved objects from line drawings. 

4.2.3 Curved Object Reconstruction 
Up to now, very little previous work has been done to reconstruct curved objects 
from line drawings (see Fig. 4.1). Although some methods [11], [86] have been pro-
posed to handle line drawings representing curved objects, they require considerable 
interactions from users and only deal with objects with special geometrical traits, 
e.g., symmetrical objects. To the best knowledge of us, no method has been pub-
lished to tackle curved objects with more complex and general geometrical structure. 

Reconstruction of curved objects is a much harder problem. Three non-collinear 
points determine a plane, but a curved surface often has much more degrees of 
freedom. Therefore, the reconstruction of curved objects owns a higher undercon-
strained nature. Now, we are trying to investigate the problem of reconstructing 



Chapter 4 Conclusion and Future Work 77 

3D objects with both curved and planar faces and propose an algorithm for auto-
matically reconstructing 3D curved objects from 2D line drawings. We will focus on 
labeling curved faces and planar faces in the line drawing and proposing several new-
regularities to characterize curved objects. Combined with the divide-and-conquer 
approach we proposed, curved objects with considerable complexity might be han-
dled. Part of the work has been done recently and submitted to ECCV [91]. 

4.2.4 Improving the 3D Sketch System 
The 3D sketching system we have implemented in Chapter 3 is still a prototype 
at the current stage. In order to make the system available to the public, further 
refinement on the interface and improvement on system controllability need to be 
carried out. Detailed work will include developing more gestures and operations to 
handle complex objects, improving the tracking algorithm to support more accurate 
3D positioning of the wand movement, conducting more user testing. For example, 
we will consider incorporating the eye-tracking scheme into the system by intro-
ducing another web-cam. By tracking the eyes of the user, their spatial positions 
and relative distance from the screen can be calculated. The screen display can thus 
properly react to head and body movement to create the illusion of depth and space. 
This modification will make the 3D object that the user is drawing more intuitive 
and thus greatly enhance the feedback of the system. 

4.2.5 Other Directions 
Other research topics include extracting line drawings from images, designing faster 
and more robust optimization algorithms to perform the optimization, reconstruc-
tion under the perspective projection, etc. 
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