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Abstract of thesis entitled: 
Stochastic Analysis of P2P File Sharing Systems 

Submitted by LIN, Minghong 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in June 2008 

File sharing is one of the most important applications in P2P networks. 
In this work, we propose stochastic models to analyze and improve the 
P2P file sharing systems. In the first part, we analyze the performance 
of the P2P file sharing systems under realistic settings. We first extend 
the results of the coupon system [MassoulieOSj by providing a tighter 
performance bound. Then we generalize the coupon system by consider-
ing limited upload capacity and incentive mechanism. We illustrate the 
last-piece problem and show how to improve the performance. In the 
second part, we analyze and design an ISP-friendly protocol to reduce 
the inter-domain traffic generated by the traditional P2P file sharing sys-
tems. To carry out realistic study, we design and implement the protocol 
which is compatible with the current BitTorrent protocol and show how 
it can handle the “ black-hole attack". Large scale experiments are car-
ried out on the PlanetLab. This work suggests that stochastic modeling 
is a powerful tool in analyzing P2P systems. 
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中文摘要 

文件共享是P2P網絡最重要的應用之一。本文中我們提出一個隨機模型來分析並 

提高P2P文件共享系統的性能。在前半部分，我們分析了P2P文件共享系統在現 

實條件下的性能。首先我們擴展了Coupon System[Massoiilie05]的結果並得到 

更加緊致的界，然後我們把這個系統一般化以考慮上傳帶寬限制和激勵機制。 

我們闡述了” Last Piece Prob lem”以及如何提高系統性能。在後半部分，我們 

分析並設計了一個ISP- fr iendly的協議以減少傳統P2P文件共享系統引起的大量 

ISP之間的網絡流量。為了更加貼近現實，我們設計並實現了這個協議，這個協 

議與現有的B i t T o r r e n t協議兼容。我們展示了這個協議如何應付” black-hole 
a t tack"，並且在PlanetLab上進行了大規模的實驗。本文展示了隨機模型可以 

作為一個很強的工具對P2P系統進行分析。 
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Chapter 1 

Introduction 

In recent years, peer-to-peer (P2P) networks have emerged as a new 
paradigm for creating network applications. Recent network measure-
ments have shown that P2P file-sharing applications constitute a large 
percentage of the network traffic. Also, P2P networks have a significant 
impact on the way new network services are designed. Unlike the tradi-
tional client-server computing paradigm, P2P networks allow individual 
user (or peer) to play the role of a client and server at the same time. 
Therefore, peers in a P2P network can help other peers in file searching, 
file lookup, as well as file transfer. 

File sharing is one of the most important applications in P2P net-
works. In general, a P2P file sharing application has a good scalability 
property due to its collaborative mechanism, which can be intuitively 
explained as follows: a file is first partitioned into many disjoint pieces. 
Each peer can get these pieces either from a server, or from other peers 
holding those pieces that it does not already have. Each peer offers up-
load service to other peers, and in return, each peer tries to obtain a 
missing piece so as to maximize its ability to serve others hence also the 
service it will receive. By coupling the service each peer can receive to 
its contribution to others, P2P file sharing applications successfully make 
each peer to play a role of a server and a client at the same time. There-
fore, as the number of peers increases, the service capacity of the whole 
system increases as well. File sharing application is implemented in P2P 
networks such as eDonkey, KaZaA, and it is the core functionality of the 
popular BitTorrent (BT) [2] protocol. 

The work by the authors in [34] suggest that P2P file sharing systems 
(e.g., BT networks) is efficient in the sense that as the demand for the 
file increases, the service capacity increases as well. However, it is not 
completely understood which aspects of the system are critical to main-
tain the scalability property. The authors in [30] use a fluid model to 
represent the BT file swarming protocol and derive a coarse approxima-
tion of the average file downloading time. Recently, a coupon model [27] 
is proposed to represent a generic file swarming system. The authors 

1 



CHAPTER 1. INTRODUCTION 2 

analyze the system under the large population regime and show the file 
swarming system stabilizes around a finite equilibrium point and is in-
deed efficient. The results provide further support to the claim of [34], 
and that the system performs well under the flash crowd scenario, even 
when the rarest first piece selection policy is replaced by some random 
coupon selection policies. However, strong assumptions are made in [27], 
in particular, the authors assume that peers have infinite upload capacity 
(or relatively large as compare with the download capacity). 

The first part of the thesis aims to provide a deeper understanding 
to the P2P file sharing protocols and the efficiency of BitTorrent-like file 
sharing system. We propose a simple density dependent jump Markov 
process to model the dynamics of a file sharing system, and we investi-
gate the performance of the system under constraints on upload capacity, 
download capacity, peer selection policies (including random piece selec-
tion and coordinated matching). The contributions of this part of work 
are 

• We generalize some of the results in the coupon system [27] and pro-
vide a tighter bound for performance measures such as the average 
file downloading time. 

• We consider the last-piece problem and analytically show the im-
provement in performance when a file swarming system uses the 
forward error correction (FEC) [32] coding technique for file shar-
ing. 

• We relax the unlimited upload capacity assumption in [27], analyze 
the file swarming system under a more realistic setting and provide 
asymptotic bounds on the average file downloading time. 

• We propose a stochastic model for an incentive-based file swarming 
system with coordinated matching, wherein piece exchange is only 
allowed when both peers are deemed to be useful to each other. 

Extensive simulations are carried out to validate our models and to il-
lustrate some interesting design guidelines. 

Although it performs quite well, the file sharing application like Bit-
Torrent introduces some challenging issues. Studies show that P2P appli-
cations account for over 60% of the traffic seen by an ISP [6]. Worse yet, 
pre-dominant of the traffic goes through the cross-ISP links since these 
applications do not distinguish between ISPs' boundaries. This not only 
presents significant traffic-engineering challenges to ISPs, but the large 
volume of cross-ISP traffic also implies an increasing congestion level and 
more important, high operating cost for ISPs. 

ISPs have several options to deal with the above problem. One ap-
proach is to control the file distribution traffic via packet throttling. How-
ever, this is not an effective solution since applications can always use 
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dynamic port to bypass detection. Also, throttling discourages users 
within an ISP and these users may opt to switch to another ISP for ser-
vice. Another approach for an ISP is to perform caching so as to limit 
the cross-ISP traffic. However, caching can be complicated since ISP 
needs to accurately determine which file to cache or replace. Not only-
caching requires additional infrastructure and cost, but also introduces 
legal problem to the ISPs due to the copyright issue. 

Researchers propose some techniques to reduce the cross-ISP traffic. 
One is to select a single peer, called the "gateway peer", to connect to 
the external world [19]. This technique requires constant maintenance of 
the gateway architecture and one has to deal with the potential selfish 
behaviors of peers, e.g., the gateway peer may not want to upload to 
other internal peers within this ISP and thereby brings down the system. 
Another technique is to modify the tracker to return more internal peers 
when a peer requests a neighbor list [5]. This technique weakens the 
connectivity of the P2P network in order to reduce the cross-ISP traffic. 
A potential problem is that the topology could not evolve accordingly 
and this may degrade the downloading performance. 

So in the second part of the thesis, we introduce an “ISP-friendly file 
distribution protocor based on the BitTorrent protocol. The goal of the 
protocol is to reduce the cross-ISP traffic, maintain good file downloading 
performance and at the same time, do away with expensive infrastruc-
ture support. Prom each peer's point of view, all other peers could be 
classified into two categories: internal peers and external peers. Internal 
(external) peers are those peers which belong to the same (different) ISP 
as itself. The protocol relies on the following idea: downloading pieces 
from internal peers as many as possible, i.e., peers tend not to consider 
external peers if the piece is held by some internal peers. To illustrate it 
more formally, we call this the “exploiting-the-locality principle” (ELP). 
The ELP is: never download information from external peers if there 
exist at least one copy of the information among the internal peers. It 
is possible to modify the BT clients' interested behaviors to follow this 
principle without changing the topology of the BitTorrent network, so 
that make the peer adapt to new situation much more quickly than the 
topology maintenance approach. The contributions of this part of work 
are: 

• We analytically quantify the merits when file distribution protocols 
follow the ELP. In particular, we derive the lower and upper bounds 
of incoming cross-ISP traffic under regular peer arrival (i.e., Poisson 
process) and bursty peer arrival (i.e., flash crowd). 

• We propose and implement an ISP-friendly protocol on existing Bit-
Torrent client software. It is compatible with the current BitTorrent 
protocol. We show that a client only needs to control the incoming 
cross-ISP traffic and the outgoing cross-ISP traffic will be reduced 
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accordingly. 

• We carry out experiments and measurements on Planet Lab to demon-
strate significant cross-ISP traffic reduction and good file download-
ing performance. 

• We illustrate the black-hole security attack and show how the mod-
ified ISP-friendly protocol can overcome this problem. 

• End of chapter. 



Chapter 2 

A Stochastic Framework 

2.1 Model Description 

Let us consider a peer-to-peer file sharing system that distributes a given 
file to a number of peers. The file is divided into K equal size chunks, 
the 产 chunk is denoted as Ci, and = UC2U...UC；^, with CinC). = 0 
for i ^ j. To download the file a peer needs to download all K chunks 
from other peers in this P2P file sharing system. Let Ta be the set 
of chunks that peer A possesses. Peer A maintains a bitmap to denote 
which chunks they possess. Whenever peer A finishes the downloading 
of a new chunk, it will update its bitmap. Peer A can upload chunk 
Ck to others only after it has completely downloaded Ck- New peers 
arrive to this system according to a Poisson process with an average 
rate A. Using the BitTorrent's terminology, a peer that has at least one 
missing chunk of ^ is called a leecher, while a peer that has all K unique 
chunks of JT is called a seeder. Note that, unlike the BitTorrent system 
which has at least one seeder to start the file distribution and serve the 
leechers, we assume that every newly arrived peer will initially obtain 
one chunk from a server before entering this system^. This initial chunk 
is randomly chosen by the server with equal probability l / K for chunks 
Ci... Ck- When a peer finishes downloading all K chunks, the peer will 
depart immediately. 

Similar to [27], we assume that this P2P file sharing is slotted in the 
sense that uploading (or downloading) a single chunk takes one slot time. 
The file distribution process in each time slot can be described as follow. 
At the beginning of every time slot, a peer, say A, will select m > 1 other 
peers in the system and fetches their bitmaps. Note that, the parameter 
m and the way it chooses these m peers will greatly affect the system 
performance, and we will further investigate this in later sections. Since 
the bitmap information can be greatly compressed, the transfer time of 
a bitmap is negligible compared to the transfer time of a chunk. Let 

iThis assumption is similar to the one made in [27] 
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peer B be one of these m peers. Upon receiving its bitmap, peer A can 
determine whether peer B is useful (i.e. peer B possesses at least one 
missing chunk of peer A, or J^b If no peer among these m 
selected peers is useful to peer A, then peer A will take no action but 
remain idle in the current time slot; otherwise, peer A will randomly 
select one of the useful peers to request a useful chunk for download. 
Assume the selected peer is B, then peer A will request one chunk which 
is uniformly chosen from the set of chunks possessed by peer B and are 
missing in peer A (i.e. a chunk Ck C Tb\ ^a)- Note that this can be 
viewed as a blind chunk selection policy, in contrast to the rarest first 
policy in the BitTorrent protocol by which peer A will select the chunk 
among with the fewest number of copies among its neighbors [8]. 
As a result, peer B may receive multiple downloading requests. Based on 
the upload capacity constraint and service rule, peer B will choose one 
or more requests to satisfy (we will elaborate this in later sections). The 
transfer time of this chunk will take one time slot. At the end of a time 
slot, the process repeats. 

声 rrrm % t t t i ô  m m 
i s x i / ' ' Dom T r m 

••era •=•=• �*…--

o / ' � E o / OE o , OE E ™ 
BN^ B B 

I T I X B ^ ' - X H U M t':il I O 

、、Oj. I I I O I O j , I I I • I O f I I I • I 

request for bitmap ^ 一 
k- request for useful chunk tranfer of chunk 

transfer of bitmap 

(a) (b) (c) 

Figure 2.1: A simple illustration of a transfer dynamic within one time slot with 
= Ci U C2 ... U Cs 

Figure 2.1 illustrates the P2P file sharing model with m — 2. We have 
six peers: A, B, C, D, E and F. The file has five chunks and the shaded 
boxes represent the chunks that peers possess. For example, peer A has 
Ci,C3 and C4. In Figure 2.1(a), peer A (peer B) requests bitmaps from 
peer C and D (peer D and F) and these peers reply with their respective 
bitmaps. Peer A determines that peer C is not useful while peer D is 
useful. Peer B, on the other hand, determines that both peer D and F 
are useful. Both peers select one peer for a chunk transfer and Figure 
2.1(b) shows that both peer A and B choose D for the chunk transfer. 
Peer D receives two transfer requests, it randomly picks one peer to serve 
in this example, and it chooses peer A. Figure 2.1(c) shows that peer D 
transfers C5 which is requested by A. At the end of a time slot, peer A 
obtains C5 while peer B wastes one time slot. 
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The above model is in fact, quite general. For example, when one con-
siders the case that m = 1 (or each peer just randomly chooses one peer 
to fetch the bitmap), and that there is no constraint on peers' upload 
capacity, then this becomes the model studied in the coupon replication 
system [27]. In this work, we generalize their model and study the per-
formance of the system when m > 1, which means that each peer can 
first fetch multiple bitmaps from different peers but can choose at most 
one peer to request chunk transfer. Surprisingly, such a simple modi-
fication can improve the performance of the system to achieve a near 
optimal average file downloading time. Furthermore, we also relax the 
assumption of large or infinite upload capacity in [27]. This is in fact 
a very important step because for the current Internet, the bottleneck 
is usually not at the network core but rather at the network edge, and 
the upload capacity of an end host is indeed limited (e.g., ADSL system, 
cable system). Therefore, this capacity constraint model is in fact a more 
realistic representation for file sharing systems. In this uplink/downlink 
constrained system, we study two different uploading policies. 

1. Altruistic Uploading Service: Under this policy, a peer will provide 
upload service to other peers regardless of whether these peers have 
provided upload service or not to other peers. In other word, this 
is a perfect collaborative system and it is similar to the "optimistic 
unchoking" feature in the BitTorrent protocol. 

2. Incentive Uploading Service: Under this policy, a peer follows a given 
incentive mechanism similar to the "tit-for-tat" feature used in the 
BitTorrent protocol to decide on uploading. 

Although our system model is a simple representation of some realistic 
P2P file sharing system (e.g., BitTorrent), it has already captured many 
essential features such as the collaborative upload and download, as well 
as incentive-based chunk exchange in P2P file sharing systems. In later 
sections, we will derive the performance of such system, and show why 
and how it can achieve good performance. 

2.2 Altruistic File Sharing System with Download 
Constraint 

In this section, we consider the file sharing system where each peer has 
a constraint in the download capacity and we place no upper bound re-
striction on the upload capacity. So at every time slot, each peer will 
first contact m > 1 other peers randomly in the system to get their 
bitmaps. If more than one peer are useful, it will randomly choose one to 
request a useful chunk. It is possible that a peer may get many download-
ing requests. Since we assume that there is no restriction on uploading 
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bandwidth, all requests will be satisfied. Also, due to the abundance of 
uploading bandwidth, there is no need to enforce incentive mechanism 
for data transfer. Lastly, it is important to note that when m = 1, this 
corresponds to the model described in coupon replication system [27]. 

2.2.1 Model Formulation 

First we assume that all types of chunks in the system are uniformly 
distributed. This assumption can be guaranteed by the random chunk 
selection policy (as described in Section 2.1). We classify peers into differ-
ent types according to the number of chunks it possesses. A peer holding 
i chunks is called a type i peer, for z = 1,2,... ,K - 1 {i # K because 
a peer will immediately depart from the system when it finishes down-
loading all K chunks). After receiving a new chunk, a type i peer will 
become a type (i + 1) peer. Let pij denote the probability that a type j 
peer B is useful to a type i peer A. When i < j, it is clear that Pij = 1; 
When i > j , we have pij = 1 - Prob{^s ^ Ta\- Thus 

I 1 l < i < j < K - l , . 
Pi’j = j i - 夢 1 < j < i < K - is the binomial coefficieSf ̂  

Let yi(t) denote the number of type i peers in the system at time t. The 
total number of peers in the system at time t is y{t) — YlS^^ � . W h e n 
a type i peer randomly picks another peer and requests its bitmap, the 
probability that this selected peer is useful is qi{t) = Ylfji^ Pijyjit)/y{t), 
i = l,2,...,K -1. ’ 

Given the system state Y{t) = {2/i(t)}ie{i’...’/^-i}，it is easy to verify 
that (Y{t))t>o is a Markov process taking its values in is a 
K — 1 dimensions vector with non-negative integer entities). Denoting by 
ei the unit vector of whose z-coordinate equals 1, and with all other 
coordinates equal to zero, the non-zero transition rates of this Markov 
process are, for all i G {1，...，K — 1}， 

Y ~ y + ei with rate A, 
y ~ > y - ei + ei+iwith rate yi (1 - (1 - QiD, i e [l,..., K - 2} 
y 一 Y - CK-i with rate 2//^_1(1-（1-収-1广). 

We analyze the system under a large population asymptotic regime. Note 
that this is a density dependent jump Markov process [22]. It converges 
to the solution of the differential equations 

_ = J A 1 1 � [ 1 - (1 - � n 2 = 
dt — i 2 / , _ i w [ i — ( i - g i - i w n i “ 0 [ i — ( i - g i w n《 = 2， . . .， /〈坊」） 

for some initial condition y (0 ) . 
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2.2.2 Steady State Analysis 

In this section, we derive the average file downloading time for the above 
P2P file sharing system. We also extend our analysis to a file sharing 
system that provides forward error correction (FEC) service. 

Altruist ic File Sharing W i t hou t F E C 

In this section we focus on the steady state performance and its equi-
librium point. An equilibrium point is the point Y = (yi,y2, • • •, VK-i) 
such that if Y{t) = Y, then Y{t') = Y for all t' > t. The necessary 
and sufficient condition for Y to be an equilibrium point is ^^^ = 0， 

for 1 < i < K - 1. Apply these conditions to Eq. (2.2)，we have the 
following equations at the equilibrium point Y: X = ？/j(l — (1 — gj"^), 
i = 1，2，...，7^- 1. 

Let Ti be the average sojourn time for type i peers, that is, the average 
time for a type i peer to receive a new chunk and become type (z+l) . One 
can derive this measure from the equilibrium point Y = (yi,... ,yK-i) 
by using Little's theorem [21]: XTi = yi. Define T = Zfji^ Tj as the 
average file downloading time in the P2P file sharing system, we have 
Ui/y = Ti/T. Finally, one can obtain the following equations at the 
equilibrium point Y: 

I K-l rp 

^ 1 _ (1 _ q.)m and - E -fP^.j^ for z - 1,2,..., - 1, (2.3) 

One can observe that T] of Eq. (2.3) does not depend on A. So even 
when the arrival rate A is large and the number of peers in the system 
becomes very large, the average sojourn time (and also T) will not be 
affected in the steady state. This is an important observation since this 
indicates that the P2P file sharing system has a good scaling property: 
when one increases the arrival rate, the performance will not degrade. 
Since 7] is the average sojourn time for type i peers, i.e. it takes on 
average, Ti unit of time slots to download the next chunk when a peer 
holds i chunks, let us explore the relationships among the TVs at the 
steady state. 

Lemma 1 The sojourn time is an increasing sequence, i.e. 1 < Ti < 
T2 < ... < Tk-1. 

Proof: According to Eq. (2.3) we have qi < 1. Therefore, one can 
conclude that T̂  > 1 for i = 1 , . . . , / f - 1. According to Eq. (2.1), when 
i > i', pij < pi>j holds fov j = 1,... -1 and pij < pi>j holds for some 
j. So Qi = E f = / 导Pi’j < Efji ^Pi'd = Qi'- Thus, we have > when 
i>i'. I 
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Lemma 2 The upper and lower bounds of are 

1 �(^ 1 W ^ ^ r + 2)〈了2 < r / ^ N / _ 7 I T r ' 

where K is the number of chunks in T and Hk is the K^'^ harmonic 
number. 

Proof: The sequence {tj = Tj/T} is increasing and the sequence {aj = 
Pij} in non-decreasing. From Chebyshev's sum inequality, we have 

1 /K-I ji \ /K-I \ 1 , i Qj \ 

" 1 � D ( S ^ ( § 叫 = 口 ( f i - § 凉 J 
= l - ( — ^ f——-——)("Concrete Mathematics" [16], pl74.) 

\K - 1/ \K - 2 + 1/ 
One can apply it to Eq. (2.3) and obtain the upper bound of Ti as 
claimed. For the lower bound of T“ let us first derive an upper bound of 
T, which is 

= ¥ 1 < 丄 < 巧 i ^ - 驅 - i + l ) 
— 白 i - ( i - � - iiQi h m - i ) - i 

We can apply it to Eq. (2.3) to obtain an upper bound of qi as 

= ( £ l \ < i ) 
"I — ^ M n c i , ) h c'k 

With this upper bound of qi, one can substitute it to Eq. (2.3) to obtain 
the lower bound of 7] as claimed. • 
Remark: The importance of the above two lemmas is that one can use 
them to understand the “last-piece” problem in P2P file sharing systems, 
i.e. how long it takes for a peer to receive the last few chunks of the file 
since it gets increasingly more difficult to find other peers that can help. 

To illustrate this issue, let us consider the upper and lower bounds of 
Ti for a file with = 50 chunks. The scenario is illustrated in Fig.2.2(a) 
and Fig. 2.2(b). There are two important observations. First, one can 
observe that the upper and lower bounds are indeed very tight, which 
implies that we can use to give a very accurate measure of the average 
file downloading time T. Secondly, one can observe that the sojourn 
times Ti are very close to 1 for i « K - I, but when i approaches 
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(c) m > 1 with FEC 

Figure 2.2: Illustration on the last-piece problem: bounds of Tj for m = 1,2 and 
m > 1 with FEC. K == 50 chunks 

K - 1, Fig. 2.2(a) (and Fig. 2.2(b)) shows that both bounds approach 
2 (approach 1.4) quickly. The increasing downloading time, especially 
for the last few chunks, depicts the last-piece problem. Intuitively, the 
reason for this problem is that it becomes more and more difficult for a 
peer to find other peers which are useful, especially when the peer is very 
close to finish downloading the whole file. However, one can amend this 
problem, at least to a certain degree, by simply changing the parameter 
m. One can observe that when m = 1 (as shown in Fig. 2.2(a)), it costs 
2 time slots on average to download the last chunk but when m = 2 
(as shown in Fig. 2.2(b)), it only costs 1.4 time slots to obtain the last 
chunk. The reason is that when m = 2, peers can ask for more peers for 
bitmaps and thereby increase the chance to find useful peers. Given m, 
we can derive the bounds of T from Lemma 2. 

Theorem 1 When m = 1，the average downloading time T = K — 2 + 

Proof: In the proof of Lemma 2，we have obtained T < K — 2 + Hk + 
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For the lower bound of T, let us denote A = K-2 + Hk, then 

K-l K-l 1 

i=i i=i 丄 - I 

= A + 盟 1 i ) i ^ ) • 
^ + 1 V J J \ ^ J \ K ) 

Combining the upper and lower bounds, we know that for any given 
solution T, there exist two constants ai and 0；2，so that K - 2 + H^ + 
Qi ( ^ ) < T < K - 2 + Hk + o^2 ( ^ ) . Thus Theorem 1 can be 
shown as claimed. Note that the residual term approach 0 as increases. 

I 
Remark: Note that when m 二 1, the system corresponds to the “open 
and flaf case of the coupon system [27], in which the authors give an 
upper bound T < K + 0(-\/K). However, the result in Theorem 1 states 
T = K - 2 + Hk + 0 We know that Hk is the K仇 harmonic 
number, Hk = log/C + 7 + 0(K~^), where 7 = 0.5772... is the Euler-
Mascheroni constant. Thus T = K + \ogK 0{1). Therefore, we obtain 
a tighter bound than [27]. 

Similarly, we can derive the lower and upper bounds of T from Lemma 
2 when m >2. Due to the lack of space, we only show the derivation of 
the upper bound in the following theorem. 
Theorem 2 When m > 2， the average downloading time T < K + 
O ( l ^ ) . 

Proof: 

K-l 1 K-l lY丄） 
T ^ - = I V I A k - \ K - i + l j \ 

[ ( 由 ) ( “ ) ] 「 

… 1 + 臺 劃 + 0 � … o ( 宇 ) . • 

Remark: Since it is necessary to require at least K - l time slots to 
finish the downloading of the whole file we can conclude by fetching 
multiple bitmaps (setting m > 2), the average downloading time is near 
optimal. To see this, one can compare it with the result in Theorem 1, 
which states that it takes at least K + \og{K) + 0(1) time slots to finish 
the downloading, and we remove the log(i^) term by getting more than 
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one bitmap. Setting m 二 2 is sufficient for achieving the near optimal 
performance. This result is encouraging and insightful, it shows that due 
to the diversity of chunks held and the altruistic uploading for every peer, 
a "simple-design" can achieve very good performance. 

Altruist ic File Sharing with F E C 

We have seen that by fetching bitmaps from multiple peers, the system 
performance can reach near optimal levels. Here, we provide an alterna-
tive approach to reach the near optimal performance by using the forward 
error correction (FEC) coding technique [32]. Given a file one can en-
code the original K chunks to Q = (1 + a)K chunks with erasure codes 
before the distribution process. Any peer can reconstruct the original 
file T after it receives any K distinct chunks of these Q chunks. This 
technique makes it unnecessary to download the "last" chunk and will 
ease the last-piece problem, making the system more efficient. To make 
this claim formally, we have the following theorem: 

Theorem 3 For m > 1, using FEC with redundancy rate of a > 0, the 
average downloading time Tpsc < - 2 + (1 + a) log ^ + 

Proof: Note that FEC makes pij = 1 - when l < j < i < K-l 
and all other equations remain the same. Similarly to the proof of Lemma 
2, one can derive that Ti < I - (；^^ (q4+i ) . S � 

刚 < S i - ⑷ ( 南 广 丁 - ( i + ^ l ^ J 

= i ^ + ( P ， + i) ! + 等 1) 

八 八 j=Q-K+\ J 

= K - 2 + {l + a)log + 0{K-'). I 
a 

Remark: Compared with Theorem 1, the harmonic term Hk is replaced 
with the term (1 + a) log Note that, when a = 0.1 (i.e. 10% redun-
dancy), this term is less than 2.7. Thus given a particular redundancy 
rate a, Tfec is bounded by — 1 plus a small constant. So by using 
FEC codes, even if a peer only contacts one other peer for bitmap (i.e. 
m = 1), the average downloading time T can still approach the near 
optimal value. 

Gkantsidis et al. [15] declare that traditional P2P content distribution 
software as BitTorrent usually suffers from last-piece problem and it could 
be settled by the network coding technique they propose. In our model 
we have seen that there exists last-piece problem as Fig. 2.2(a) and Fig. 
2.2(b) show. It takes about 2 time slots in average to download the 
last piece. To illustrate how FEC affects the last-piece problem, let us 
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consider the upper bound of 7] for a file with K = 50 chunks again. By 
setting OL = 0.1 (i.e. 10% redundancy), we show the upper bound of in 
Fig. 2.2(c). This bound holds for all m > 1. From Fig. 2.2(c), one can 
observe that the last-piece problem can be eased if we use FEC technique 
to generate a few redundant chunks. This observation is helpful for the 
advanced P2P content distribution system design in the future. 

2.3 Altruistic File Sharing System with Download 
and Upload Constraints 

In this section, we consider the P2P file sharing system where each peer 
has a limited bandwidth on the download and upload capacity. Note 
that this is a more realistic setting than the unlimited upload bandwidth 
assumption in Section 2.2 and the coupon replication system [27]. This is 
a very important point since the current Internet, the bottleneck is not at 
the network core but rather at the edge, and usually the upload capacity 
of a host is indeed limited (e.g., ADSL or cable system). To simplify our 
analysis, we only consider the case m = 1 (i.e. in each time slot, peer 
A will first contact one other peer randomly in the system to obtain its 
bitmap). If this peer can help peer A, peer A will request a useful chunk. 
It is possible that a peer may get multiple requests for chunk. Due to the 
upload capacity constraint, this peer will only randomly pick one peer to 
upload. If peer A is chosen, then peer A can download one useful chunk 
within the current time slot. Otherwise, peer A will remain idle for the 
current time slot. 

2.3.1 Model Formulation 

As in Section 2.2, let pij denote the probability that a type j peer is 
useful to the type i peer, yi{t) denote the number of type i peers in the 
system at time t. The total number of peers in the system at time t is 
y{t) = yi{t). When a type j peer is requested by another peer for 
its bitmap, the probability that this request comes from a type i peer is 
yi(t)/y{t). Thus, the probability that the type j peer is useful to a peer 
who contacts it is (3j(t) = ^^^^ Pijyi{t)/y{t). 

Assume that peer A contacts peer B and B is of type j. Peer A finds 
that B is useful and sends B a request for a chunk. Let us consider 
the probability that A will be chosen by B for service. To derive this 
probability, we consider how many other peers contacted B for its bitmap. 
Since there are y-2 peers (ignoring A and B) in the system selecting 
others to contact and B is contacted by a particular peer with probability 
l/{y - 1) (each peer does not contact itself). Thus the number of peers 
that contacted B, denoted by the random variable R, is the number of 
successes in a sequence of y - 2 independent Bernoulli trials, or i? ~ 
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Bernoulli — 2，由)• Since ^ — 2 is large and (y — 2)/{y — 1 ) � 1 , R can 
be approximated as a Poisson random variable with mean 1，thus R has 
a probability mass function of /i?(/c) = /k\, for k e {0,1,...}. 

Assume R = r (i.e. peer B was contacted by r peers for its bitmap). 
The probability that peer B is useful to a peer in R is Pj{t). Thus B 
receives k requests for chunk with probability C，(3�{f}{l — for 
k <r. When A contacts B, finds B is useful and also sends B a request 
for chunk, the probability that A is chosen by B for service is 

The system can be modeled as a Markov process Y(t) = {队⑴) 

Again, it is easy to verify that (Y(t))t>o is a Markov process taking its 
values in The non-zero transition rates of this Markov process, 
for a i n e { 1， . . .，— 1} is 

Y ——y + ei with rate A, 
K-l \y. OO e-1 -

y ^ Y -ei + ei+i with rate yi ^ — ^ — 
j=l Iy r = 0 广 . 

i e { l , . . . , K - 2 ] 
K - l � OO g-1 . 

y ~ ^ y - e K - i with rate yn-i ^ —PK-i,j . 
j=l Ly r=0 T, -

For a large population asymptotic regime, this density dependent jump 
Markov process converges to the solution of the system of differential 
equations 

dyAt) � “ � • � f e - i , .1 

K-l「？厂⑷ OO - 1 1 
m E E � ， … 2 ” • • ’ - 1. 

with some initial condition y ( 0 ) . 

2.3.2 Steady State Analysis 

We focus on the steady state performance and we are interested in its 
equilibrium point. In other words, the operating point wherein dyi/dt = 0 
iov 1 < i < K — 1. Define as the sojourn time for type i peer. It follows 
from Little's theorem that XTi = 队 . L e t the average file downloading 
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time be T = Tj, one can obtain the following equations at the 
equilibrium point: 

1 K-l rp OO 

不 = E ( 如 E T T V ) ， i = l ’ 2 ，， i ^ - l (2.4) 
丄 i j=l 丄 r=0 

where 

= ( � + 1 ) ‘ and ft 二 石 - P i j , j = l,2,...,K-l. 

In Section 2.2, we have shown that a P2P file sharing system that has 
only download capacity constraint is very efficient. With both download 
and upload capacity constraints, the performance of the system will not 
be as good. In this section, we seek to derive the bounds of (and 
thereby T) to gain insight on how the upload capacity constraint can 
affect the system performance. Let us first state the upper and lower 
bounds of the sojourn time 

Theorem 4 The sojourn times Ti satisfies 

1 I J 1 1 [ 1 “ 
口+o ( 丁广 < ir^J [ i - ( ^ ) � - • 

Proof: Because ft- < 1, r > 0, we have o；丄” > l / ( r + l). From Eq. (2.4), 
we use the same technique in proofing the lower bound of qi in Lemma 
2: 

Therefore, the upper bound of is obtained. For the lower bound of T ,̂ 
we have ajr < [1 + r ( l - Pj)]/{r + 1) because j3j < 1 and r > 0. Thus 

^ J = 1 L r=U J 户 1 j = l 

One can obtain an upper bound on the summation term as 

Eft = 
> W f i i 

— “ i ) ( i - r i ) [ i - ( 古 ) ( r i n ) ] 

l - e — i [ J 
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Finally, the lower bound of 7] can be obtained as 

i < 达 < 1 - � ( ¥ ) . -

Lower bound 

3 Upper bound i 

2.5 ； 

Ti ； 

2 / 
/ 

/ 

1.5l 5 10 15 20 25 30 35 40 45 49 
i 

Figure 2.3: Numerical results illustrated for the bounds of Ti for m = 1 when K = 50 

Figure 2.3 illustrates the upper and lower bounds of Ti for a file with 
K = 50 chunks and m = 1. Notice that the lower bound of is rather 
loose since it is not related to the index i. Nevertheless, the spread of 
the bounds is tight for most values of Another observation is that for 
small values of z, Ti is not close to 1 any more as in the case of Section 
2.2, but rather, close to 1/(1 - This performance degradation is 
contributed by the constraint on the upload capacity. In other words, if 
one limits the number of chunks that a peer can upload each time slot, 
it takes longer, on average, to obtain the file. Lastly, with the upper and 
lower bounds of T“ one can derive the average downloading time T. 

Theorem 5 The average downloading time T satisfies 

+ 0{\ogK) <T< - ^ ( A - - 2 + Hk) + 0{K-') 
1 — e_丄 丄 _ e丄 

Proof: Given the upper bound of Tj, one can use the approach similar to 
Lemma 2 to derive that T - Ti < { K - 2 + H K ) l { l - e - ^ ) + 0 { K - ^ ) . 
With the lower bound of Tj, we have 

K一 1 � 1 / % f f / ^ � l K 
� = E 了 p - 1 ) + o ( + ) j = r r ^ + o d o g i O . 

Compared with Theorem 1, the average downloading time has been 
scaled up by a factor of 1/(1 — when K is large. It is interesting to 
explore whether using FEC can improve the performance of the system. 
We have the following result. 
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Lemma 3 When one uses FEC in this system, the bounds ofTi as spec-
ified in Theorem 4 and the average downloading time T as specified in 
Theorem 5 will remain the same. 

Proof: Similar to Section 2.2.2, FEC will increase the value of pij 
and other equations remain the same. Thus the upper bound of in 
Theorem 4 still hold. Notice that we just replaced pij by 1 in the proof 
of the lower bound of Ti in Theorem 4. And pij < 1 still holds even with 
FEC, thus the lower bound of in Theorem 4 still holds too. We know 
that Theorem 5 is derived from 4 directly, thus the bounds in Theorem 
5 also remain the same. • 

Lemma 3 implies that FEC could not improve the performance very 
much. It can be explained as follows. The random peer selection policy 
may cause request collision since a peer may receive multiple chunk re-
quests but can only serve one peer. Other peers requesting chunk from 
the same peer will waste their time slot. 

2.4 Incentive File Sharing via Coordinated Match-
ing 

Prom Theorem 5, one can observe that when there are both upload / 
download capacity constraints on cooperative peers and peers use a ran-
dom peer selection policy, the average downloading time T = jz^ + 
0{\ogK), where the coefficient of the term K is 丄二一丄1.58. The 
system performance degrades as compared with the file sharing system 
without upload capacity constraint where the coefficient of term K is 1. 
The performance degradation can be explained as follows: the random 
peer selection may cause request collision since a peer may receive multi-
ple chunk requests but can only serve one request. Therefore, some peers 
may waste the download opportunity and remain idle for a time slot. 
For the case of unlimited upload capacity, all requests can be satisfied, 
hence, the performance is better. 

One may ask, in the system with both download and upload capacity 
constraints, can the system still achieve good performance by using peer 
selection algorithms other than the random policy? In the following, we 
show that by running a maximal matching algorithm (usually regard as 
an "easy problem" with efficient polynomial algorithm) at the beginning 
of every time slot, one can significantly improve the system performance. 
Also, we show that with built-in incentive mechanisms, this approach 
can also provide very good performance. 

2.4.1 Without Incentive Mechanism 

We assume at the beginning of each time slot, every peer will run some 
distributed maximal matching algorithm [17], or gets the help from some 
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central server, so that peer A will find peer B as its neighbor while peer 
B will also find A as its neighbor. If the matching process is independent 
of the chunks held by each peer, then given peer A, the probability that 
peer B is of type i is yi/y where 认 is the number of type i peers and y is 
the total number of peers in the system. At the current time slot, peer 
A can only communicate with peer B and vice versa and the matched 
peers can upload and download at most one chunk per time slot. 

Let us first study the system without incentive mechanism. When 
peer A and peer B are matched, peer A will help peer B if and only 
if peer A is useful to peer B (i.e. 0)； similarly peer B will 
help peer A if and only if ！Fb \ ^a ^ 0. Since the selection of neighbor 
is independent of peers' type, we get the differential equations for the 
number of type i peers as 

_ j x - m E f s r A , i = i (2 5� 

dt — \ y i - i { t ) - E f = - / ' i ^ P ^ j i = 2,...,K-i} . J 

One can find that, Eq. (2.5) is equivalent to the differential equations 
given in Eq. (2.2) where peers have unlimited upload capacity and m = 1. 
Thus, the asymptotic bounds given in Theorem 1 still holds for this 
model, which implies T = K + log(X) + 0(1) 
Remark: Both the download and upload capacity are one chunk per 
time slot, each peer has the same constraints as that in Section 2.3. 
However, we have better performance when matching is used instead 
of the random peer selection. The random peer selection may cause 
request collision (i.e. a peer may receive multiple chunk requests but it 
can only serve one request due to its upload capacity), so the download 
capacities of the unserved peers are wasted. But if peers are matched at 
the beginning of each time slot, then the performance is greatly improved, 
approaching the performance of the random peer selection with unlimited 
upload capacity. 

2.4.2 With Incentive Mechanism 

Let us study the system with coordinated matching but with an incentive 
mechanism. Namely, given a pair of neighboring peers: peer A and peer 
B, both of them will perform chunk transfer iff both of them are useful 
to each other (i.e., ^ ^ and Tb \ ^a 0)- In this case, peer 
A and B will obtain one new chunk from each other in the current time 
slot. We use this model to capture the “tit-for-taf incentive mechanism 
in the BT protocol. With this mechanism, the probability that a type i 
peer can exchange chunk with a type j peer is 

, f i - 多 ( 、 

Pi’j = ？ ( 2 . 6 
1 - 》 l < i < j < K - l . 
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Let us first state some important properties of p-j. 

Lemma 4 p'-j has the following properties: (1) pjj = p'j�i; (2) •= 
P'K_j,K-i and (3) p'�j is an increasing function of j when j < i, and p.^ 
is a decreasing function of j when j > i. 

Proof: The proof of property (1) is trivial. To prove property (2), we 
consider the following three cases: 

• C a s e 1: 1 < j <i: we have p ' � � = 1 - C / / C J . = 1 — C 约 C � . 
j < i implies K-i<K-j, therefore, p'K-j,K-i 二 l - C ^ l j / C ^ " ' = 
1 - C^lj/C),. So we get = VK-ĵ K-i 

• Case 2: z < j < A ' - l : We have = v'j^i = P'K-i’K-j = P'K-j,K-i-

To prove property (3), let us consider the following cases: 

• Case 1: l < j ' < j < i < K - l : 

八 厂 〜 ' = ( 1 - 远 ) - ( 1 - 远 ) = ( 1 - i r > • 

• Case 2: i < f < j < K - 1: Since K - j < K - f < K - i, we 
have 

p'ij — p'i,j' = P'K—i，K-j - P'K-i’K-j' < 0 . • 

To simplify our notation, let us denote Wij = + p'�K-j ih j = 
1,..., K — 1). It is easy to show that Wij = Wi,K-j = WK_i’j = Wj’i. 

Lemma 5 For a given i, Wij is an increasing (or decreasing) function 
of j for j < K/2 (forj>K/2). ‘ 

Proof: Consider i < Kjl first, in this case, 

(1) j < i, we have 

叫d ^iJ-l = PiJ + Pi,K-j - (P'ij-l + Pi,K-j+l) 
=(PiJ - K j - l ) + iPi,K-j - P'i,K-j+l) > 0. 

(2) i<j< K/2, we have 

w — w 1 = f i - H . + i _ 5 ! k z z ) _ f i _ Q z i , 
�h3 ⑴》，j-i - 丄 p i 十 丄 ri r^i 十 m 

\ ^K ^K J \ ^K ^K / 
= ^ K - j — ^ j - 1 � 0 . 

Combine case (1) and (2), we know when i < K/2, Wij is increasing if 
j < K12. Since Wjj = Wi,K-j, Wij is decreasing if j > K/2. Because 
Wij = WK-i,j, the above results hold for i > K/2. • 



CHAPTER 2. A STOCHASTIC FRAMEWORK 21 

Lemma 6 Ti = Tk-l. 

Proof: We take a reverse view in the steady state so that (1) we regard 
the departure as arrival; (2) if peer A's storage is J^a�we just imagine 
there is no peer A but its complementary peer A with storage ！F^ 二 

T \ Ta- SO originally 7] is the average time for peer A to stay in type 
i(i.e. with i chunks), but now the average time for peer A to stay in 
type {K — i): T! = From Lemma 4 we know = p'K_i,K-j, So 
the "reversed system" is identical to the original system which implies 
Tl = Ti. Thus we get 7] = Tk-i- • 
Similar to the steady state analysis in previous section, we have the 
equations for ‘ 

Y . = E p P M ' i = l ’ 2 ， . . . , i ^ - l ， （2.7) 

where T - E i l T ' 

Lemma 7 For i < K {2, is a decreasing sequence: 2 � � T 2 � . . . > 

Proof: Let 1 < 2' < 2 < [K/2\. Based on Lemma 6, we have 
1 K-l T. 1 K-l rp 1 K-\ T. 

T. = E = 2 T ^ 2 

Similarly, ^ = | Y f̂Si 导Wi'’j. From Lemma 5 and Wij = we have 
1 1 K-l rp K-\ rp. 

—聊’J.) = E 切 > 0. 
丄 i j=l J- j = l � 

Thus Ti < Ti>, and the upper bound of T\ is 

2 2 2 

Ti = 导 < Ef=-ii 孕则’ 1 = ‘ = 2. • 

Theorem 6 Using the incentive mechanism stated above, the bounds on 
the average downloading time T are 

\ ^ ) \ ^ J 

Proof: Base on Lemma 5，Lemma 6 and Lemma 7, we have 

1 K-l rp 1 K-l T. 1 K-1 T- 1 K-l 

^ = g = 2 5 f 切、j T - = Y^l S 成 
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“ M cU MV 
— 1 [ i K-i 丄 -

广 1 K - l [K-i + l + i + 1 . 

Therefore, we obtain the lower bound of T as 
K-l K-u 1 K-l 1 

T = ^̂  - S 1 ~ 1 i I K-i F T � 1 1 r t I K-i~~^ 
i=\ i=\ 丄 — t i q r — 莎 J 丄 i + 1 丄J 

^ K + 2 K'^ + 2K\i K-i) 
I—丄匕 J \ z 

According to Eq. (2.7) and Lemma 7, we have 

CkJ [U T Cj, UiTC'k) 

^ T i f ' C j ^ 2 / i I K-i\ 

Thus for z = 3 . . . - 3 (assuming K > 5), we have 
1 ( i ^ — 驅 - “ 1 ) ( “ 1 ) 

(K - 1)(K - i + + 1) ^K -1 2(K -1) / I 1 \ 
< KH -K^-Kf + K = K K-2 \K - i - \ i^J “ 

Thus the upper bound of T is 

Remark: Given the upper and lower bounds in Theorem 6, one can con-
clude that when incentive mechanism is employed to enhance fairness, 
the performance of the file sharing system still achieves better than the 
random peer selection policy in Section 5 wherein no fairness is guaran-
teed and free riders can benefit from peers' altruistic service. Therefore, 
it is important for a system to help peers avoid waste of download ca-
pacity (request collision). Under the assistance of peer matching mech-
anism (such as coordinated matching presented) even if the uploading 
and download capacity is tightly constrained, the system can still pro-
vide good performance with a fairness guarantee. 
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2.5 Simulation 

In this section, we carry out simulations to (1) validate our analytical 
results and (2) obtain other performance measures such as probability 
distribution of file downloading time. Unless we state otherwise, the 
arrival process of peers is a Poisson process with A = 2.0. Since the 
system is slotted, peers arrive at time slot t will obtain the initial chunk 
and will start participating in the file sharing process in the beginning 
of time slot i + 1. The file that will be shared by all peers has K = 200 
chunks. We also have results for K — 500, but due to the lack of space 
we mainly discuss the case K = 200. 
Experiment 1: The goal of this experiment is to validate the analytical 
results in Section 2.2 and to illustrate the probability density function of 
the file download time. For this experiment, we set m = l or equivalently, 
this corresponds to the coupon model [27 . 

2 . 2 丨丨 . 2 . 2 | . 

Simulation Simulation 
9 Upper bound ？. Upper bound 

1.8 1.8-

T. 1.6 T. 1.6-

1.4 1.4-

1.2 J 1.2 
J ^丨 J 
1 50 100 150 199 1 50 100 150 199 

i i 

(a) average Ti, without FEC (b) average Ti, with FEC 

30 . I ——n 35 P • f ——n 

25 | M w i t h FEC(a=0.1)| 30 | l w i t h F工 
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� i is 
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199 205 210 215 220 499 505 510 515 520 
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(c) distribution of T, K=200 (d) distribution of T, K=500 

Figure 2.4: Ti and T for m = 1, constraint on download capacity only 

Fig. 2.4(a) presents the average sojourn time 7] for a file with K = 200 
chunks. We compare the simulation results and the analytical results^. 
This indicates that our analytical result is very accurate. Fig. 2.4(b) 

2 For the analytical results, since the spread of the bounds is very tight, we simply plot the upper 
bound of Ti 



CHAPTER 2. A STOCHASTIC FRAMEWORK 24 

illustrates 7] under similar setting but we enable the FEC with 10% 
redundancy (i.e., a = 0.1). One can conclude that the analytical model 
is again very accurate and that using FEC can resolve the last-piece 
problem. Fig. 2.4(c)-(d) illustrate the probability density function for 
the average file downloading time T, with and without using FEC, for 
K = 200 and 500 respectively. When K 二 200 {K = 500) without 
using FEC, the analytical average file downloading time is T = 203.88 
(T = 504.79), and the simulation average file downloading time is T = 
204.11 (T = 504.99). When K = 200 {K = 500) and FEC is enabled, the 
analytical average file downloading time isT = 200.64 (T = 500.64) while 
simulation average file downloading time isT = 200.72 (T = 500.64). We 
can observe that by using FEC, not only one can reduce the average T 
but also the variance of T. 
Experiment 2: This experiment is to validate the results in Section 
2.2 when m > 1. According to our analysis, there is not much difference 
between m = 2 and m > 2 since the average downloading time T will be 
bounded by K. For this experiment, we set m = 2. Fig.2.5(a) presents 
the average sojourn time 7] without FEC. The simulation results are 
similar to the analytical results again. Comparing Fig. 2.5(a) and Fig. 
2.4(a), one can find that last-piece problem is not so severe for m = 2. 
raises only for the last five chunks. If we deploy FEC {a = 0.1) together 
with m = 2, the last-piece problem can be resolved and this is illustrated 
in Fig. 2.5(b). Notice that we only give out a loose upper bound of in 
Fig. 2.5(b), which is also the upper bound of the system without FEC 
in Fig. 2.5(a). Now we examine the probability density function of T in 
Fig. 2.5(c). Without FEC, 50% peers finished in - 1 time slots and 
80% peers finished in less than or equal to K time slots. After we enable 
the FEC with a = 0.1，96% peers finished in - 1 time slots and all 
finished in less than or equal to K time slots. One can conclude that 
the average downloading time T is close to the optimal value of 199 (or 
K—1), and the variance of T is also reduced. When K = 200 {K = 500) 
and without FEC, our analysis gives an upper bound of the average 
downloading time T < 200 (T < 500), and the simulation is T = 199.83 
(T = 499.78). After using FEC with a = 0.1, the analytical upper bound 
of T still holds, while the simulation gives T = 199.04 (T = 499.01). 
Experiment 3: This experiment is to validate the altruistic system 
with download and upload capacity constraints in Section 2.3. We con-
sider m = 1 in our analysis thus we set m = 1 in this simulation. Fig.2.6(a) 
presents the average sojourn time without FEC. The simulation re-
sults and the analytical results match very well, i.e. our theoretical upper 
bound is very tight. Comparing Fig. 2.6(a) and Fig. 2.6(b), we observe 
that FEC eases the last-piece problem, but most of remain the same 
and they cannot approach to 1 even with FEC. The reason is that the per-
formance degradation is due to the request collision but not the last-piece 
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Figure 2.5: Ti and T for m = 2, constraint on download capacity only 

problem. Also note that when we have upload and download capacity 
constraints, the variance on T is significantly larger than the previous ex-
periments. This can by confirmed by Fig. 2.6(c), the downloading time 
T varies in a wide range, from 275 to 375, and using FEC does not reduce 
the variance very much. When K = 200 {K = 500) and without FEC, 
our analytical bound of the average downloading time is T < 322.53 
(T < 798.56), while the simulation gives T = 319.99 (T - 793.67). With 
FEC, the upper bound still holds, and the simulation result is T = 316.06 
(T = 791.01)，these show that using FEC in this type of system cannot 
improve T very much. 
Experiment 4: This experiment is to validate the coordinated match-
ing system with incentive mechanism as described in Section 5. Fig.2.7(a) 
presents the average sojourn time T] without FEC. One can observe that 
the gap between the simulation results and our analytical upper bound 
is small. Also, one can observe both the last-piece problem and first-piece 
problem^ in our analytical bound and simulation result. The first-piece 
problem can be explained as follows. When a peer has very few chunks, 
it can hardly help other peers. Due to the incentive mechanism, it is 

3 This problem is reported as first block problem in [23] by measurement study as the slow startup 
due to choking. 
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Figure 2.6: Ti and T for m = 1，constraint on upload and download capacity 

difficult for this peer to obtain service from others. We can observe that 
FEC does well in easing the last-piece problem, but is not so good at eas-
ing the first-piece problem^ as Fig. 2.7(b) has indicated. From Fig. 2.7(c) 
and 2.7(d), one can observe that the average and variance of file down-
loading time can be reduced when FEC is deployed. Another important 
observation is that when FEC is deployed, the performance measures 
of T (both for the average and variance) are significantly improved as 
compared with the results in Experiment 3 wherein both systems are 
under the upload and download capacity constraints. When K = 200 
(K = 500) and without FEC, our analysis gives an upper bound of the 
average downloading time T < 221.50 (T < 525.17)，and the simulation 
is T = 211.78 (T = 513.10). After using he FEC with a = 0.1’ the ana-
lytical upper bound of T still holds, and the simulation gives T = 203.90 
(T = 503.77). This validates our analytical models. 

• End of chapter. 
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Chapter 3 

An ISP-friendly Protocol 

3.1 Simple Mathematical Models 

We consider a P2P file distribution system which disseminates files to a 
large number of peers. The file to be disseminated, say T^ is divided into 
many pieces. Formally, we have T = {Ci,C2,..., C^} in which the file T 
has K > 1 pieces, Ci is the i仇 piece of T and Ci n Cj•二 0 for i — A 
peer that holds all pieces of the file is called a seeder while a peer that 
holds a subset of pieces is called a leecher. To download the file, a peer 
(or leecher) needs to download all K pieces. 

Before we present the analysis of an ISP-friendly protocol, let us con-
sider the current P2P file distribution system, such as BitTorrent, in 
which peers do not consider the boundary between ISPs in their data 
transfer. We call such kind of P2P file distribution as “random down-
loading" .What we are interested in is the amount of cross-ISP traffic. 
Assume that the number of peers in the P2P system is N, n of which are 
within the ISP a. Considering a randomly chosen peer which resides in 
the ISP a, the probability of choosing a peer outside ISP a for the data 
transfer is 

f = (3.1) 

Thus the expected fraction of file content which is downloaded from(upload 
to) peers outside ISP a is (1 — n/N). The total amount of incom-
ing(outgoing) cross-ISP traffic is approximately (n(l — ； )̂ * file size). 
This represents a large volume of cross-ISP traffic because usually there 
are many peers in a P2P file distribution system, for instance, N is much 
larger than n and n is relatively large. 

In analyzing the performance of an ISP-friendly protocol, we seek to 
derive the amount of cross-ISP traffic if peers are willing to follow the 
exploiting-the-locality principle (ELP). Obviously, only when the reduc-
tion of cross-ISP traffic is high, then one should consider designing and 
implementing an ISP-friendly file distribution protocol. In our analysis, 
we concentrate on two common scenarios in P2P file distribution: regular 

28 
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peer arrival and a big bursty peer arrival (flash crowd). 

3.1.1 Assumptions 

Unlike previous work which focused on the performance modeling of file 
downloading time, we model the amount of cross-ISP traffic. For our 
mathematical model, we make the following assumptions: 

• Peer arrival process is characterized by a Poisson process with an 
average rate A. 

• Peers are all persistent in the sense that they will not abort before 
they finish the file download. 

• To ensure file availability, we assume there exists at least one seeder 
in the system: some peers are willing to publish the original file to 
the P2P network. 

• Whenever a peer (or leecher) obtains all pieces of a file, the peer 
will leave the system immediately. 

• The piece diversity of the P2P system is very good so that peers 
will be interested in each other with high probability. 

Note that the last assumption is a common assumption for most fluid 
models of P2P systems [12,31j. One may argue that the last piece problem 
may destroy this assumption, but the measurement results in [1,23] and 
the stochastic analysis [24] show that peers show interest of each other 
most of the time and the last piece problem only affects the last few 
pieces. Its effect in the mathematical model can be safely ignored for a 
large file which contains thousands of pieces. This assumption means that 
the downloading rate for a given peer can be represented by a random 
variable which is independent of its downloading progress. 

Note that based on the ELP, if there exists a seeder in an ISP, then 
all peers in that ISP will never download pieces from external peers and 
the incoming cross-ISP traffic is zero. This is a trivial case. We consider 
a more interesting case wherein the seeder does not reside in an ISP. The 
derivation of the cross-ISP traffic for an ISP-friendly protocol is compli-
cated and it depends on the specific implementation of the protocol, but 
instead, one can derive a upper and lower bound of this measure. Before 
we present the formal analysis, let us use an example as shown in Figure 
3.1 to illustrate the idea. The file has 20 pieces and at this moment, 
there are 3 peers within the ISP. Let Vi be the fraction of progress in the 
file download for peer i. In this example, we have Vi = 0.3 (6 pieces), 
V2 = 0.15 (3 pieces) and v̂  = 0.2 (4 pieces). Since peers follows the ELP, 
only those missing pieces by all peers would be downloaded through the 
cross-ISP link. How many pieces would be downloaded through the cross-
ISP link before the next peer departure? In the best case, when all peers 
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possess different pieces from each others, then the external download will 
he d = 1 — E L i 机 二 0.35 (7 pieces) and this is the lower bound. In the 
worst case, the set of pieces possessed by any peer is a subset of the 
set of pieces possessed by the peer with the maximum progress. In this 
case, we need to download all missing pieces of peer 1 and it is equal to 
d = 1 - max^il^i} = 0.7 (14 pieces), which is the upper bound. The 
remaining question is how to uncondition the number of peers and ？Vs. 
We are now in the position to develop the mathematical model. As men-
tioned before, we consider two scenarios: regular peer arrival case and 
flash crowd case. Let us first focus on the analysis of regular arrival case. 
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Figure 3.1: Illustration of the lower and the upper bound of cross-ISP traffic 

3.1.2 Homogeneous Case Analysis 

Let us first consider the homogeneous case: the file downloading time is 
the same for all peers. Without loss of generality, assume the file size is 
1 and the file downloading time is T. We have the following result. 
Theorem 7 For a given ISP in which all peers use an ISP-friendly file 
distribution protocol, if there is no seeder in that ISP, peers arrival process 
is characterized by a Poisson process with an average rate 入 and all peers 
in that ISP have the same downloading time T, then the average amount 
of incoming cross-ISP traffic caused by each peer in the steady state, 
denoted by E[d)，is lower hounded by 

where n — XT and Ii (x) is the modified Bessel function. 

Note that n = XT is the average number of peers in that ISP, and this 
lower bound is a decreasing function of n. 
Proof: Please refer to Appendix for derivation. I 
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Assume that each peer is aware of other peers' state in real time, then 
for a P2P system which follows the ELP, one can derive an upper bound 
of the average cross-ISP traffic as follows. 

Theorem 8 For a given ISP in which all peers use an ISP-friendly file 
distribution protocol, if there is no seeder in that ISP, peers arrival process 
is characterized by a Poisson process with an average rate A and all peers 
in that ISP have the same downloading time T, then the average amount 
of incoming cross-ISP traffic caused by each peer in the steady state, 
denoted by E{d), is upper bounded by 

where n = XT. 

Proof: Please refer to Appendix for derivation. I 

3.1.3 Heterogeneous Case Analysis 
In here, we extend our model to consider the heterogeneous case where 
peers have different downloading time. 

In a large P2P system, the total service capacity of the system scales 
up as the number of peers increases [34], and the downloading time is 
roughly independent of the number of peers in the system. We use T, 
which is now a random variable, to represent the file downloading time of 
a peer and extend the model to derive the bounds of the heterogeneous 
case. 

Theorem 9 For a given ISP in which all peers use an ISP-friendly file 
distribution protocol, there is no seeder in that ISP and the peers arrival 
process is characterized by a Poisson process with an average rate A. Let 
Qi be the probability that the downloading time for a peer will be 1\’ then 
the average amount of incoming cross-ISP traffic caused by each peer in 
the steady state, denoted by E{d), is hounded by 

< E(d) < i ( l 一 e"^), 
n 

where n = XqiTi + \q2T2 + .. •，and Ii (a;) is the modified Bessel function. 

Proof: Please refer to Appendix for derivation. I 
Remark: In summary, Theorem 9 gives the lower bound and upper 
bound of the average cross-ISP traffic caused by each peer when all peers 
adopt the ELP. To illustrate the spread of these bounds, we consider an 
ISP with different values of n. Figure 3.2 illustrates the spread of these 
two bounds on the cross-ISP traffic, as well as the average cross traffic 
when one uses the random downloading strategy (e.g., the conventional 
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P2P file distribution protocol) with N = 200 peers in the P2P system. 
One can observe that both bounds decrease quickly when n, the average 
number of peers within that ISP, increases. Notice that the cross-ISP 
traffic for random downloading remains high. This justifies the design 
and implementation of an ISP-friendly file distribution protocol. 

Someone may notice that the upper bound is almost equal to 1 /n and 
argue why not just design a gateway-architecture to achieve this bound: 
at any moment for a given ISP, there is only one peer which connects 
to external peers and all other internal peers subscribe to this peer. So 
why we still need to design a new ISP-friendly protocol? Because the 
gateway-architecture has several disadvantages: a) It needs someone to 
organize the architecture, b) It is difficult to deal with selfish behaviors, 
e.g. the gateway peer may not want to upload to other internal peers, c) 
More important, it is not compatible with current BitTorrent protocol so 
that it could not be deployed gradually. We aim to design an ISP-friendly 
protocol to overcome these problems. 
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Figure 3.2: Average fraction of cross-ISP traffic vs. the average number of peers in 
the ISP 

3.1.4 Flash Crowd Analysis 

Let us now consider the flash crowd scenario when a large number of 
peers arrive to the ISP in a very short period of time. This occurs, for 
example, when a very popular movie or an OS kernel update is being first 
published to the Internet. Based on the same assumptions we made in 
the regular arrival analysis (except that peer arrival process is no longer 
Poisson), we can derive the upper and lower bound of the cross-ISP 
traffic. 

Theorem 10 For a given ISP in which all peers use an ISP-friendly file 
distribution protocol and there is no seeder in that ISP. At time t = 0, n 
peers arrive and there is no more peer arrival after t > 0. Let Tmin (Tmax) 
be the shortest (longest) downloading time of these peers. The average 
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amount of incoming cross-ISP traffic caused by each peer, denoted by 
E[d), is bounded by 

l/n < E{d) < (l+log(— 
V \Tmin " 

Proof: Please refer to Appendix for derivation. I 
Remark: Notice that Tmax is the downloading time of peers with the 
lowest downloading rate, Tmin is the downloading time of peers with the 
highest downloading rate. It is interesting to observe that the upper 
bound of the cross-ISP traffic depends on Tmax/Tmin and n only. • 

3.2 An ISP-friendly BitTorrent Protocol 

In this section, we present our ISP-friendly file distribution protocol which 
uses the ELP to reduce the cross-ISP traffic. To appreciate the proposed 
protocol, we first provide a brief review of the BitTorrent (BT) protocol. 
Note that one design requirement of our protocol is that it has to be 
“compatible” with the current BitTorrent software and our clients can 
communicate directly with existing BT peers. This feature is particularly 
important since this new service can then be incrementally deployed. 

Under the BT protocol, a file is to be divided into many non-overlapping 
pieces (the default size is 256 KB) and there is at least one peer, which 
is called a seeder, who holds all these pieces and this seeder wants to 
publish the file. A peer can get the file either from the seeder, or from 
other peers holding those pieces it does not possess. Each peer offers 
upload service to other peers only to the extend that the service is re-
ciprocated. By coupling the service each peer can receive to its upload 
contribution, the BT protocol successfully makes each peer play a role 
of a server and thereby improve the performance of the system. There 
is a special node called the tracker, which keeps track of all peers in the 
system. A peer needs to first contact the tracker to get a subset of peers 
who are downloading the file. This peer then establishes connections to 
other peers and finds out what pieces these peers possess. Then this peer 
will send out an INTERESTED message to its connected peers, indicating 
that there exists some pieces it does not possess and this peer wishes to 
receive some download service. One important point is that the INTER-
ESTED message does not indicate which piece this peer wants. The piece 
selection is determined in later step. 

Uploading is called unchoking in BitTorrent. Each peer unchokes a 
fixed number of peers simultaneously (the default number is four). Which 
peers to unchoke is determined by the current downloading rate from 
these peers, i.e., each peer uploads to the four peers who provide it with 
the top four downloading rates. This unchoking mechanism is called the 
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tit-for-tat policy, and one implication of this policy is that it deters free-
riding. Beside the tit-for-tat policy, there is another unchoking mecha-
nism called the optimistic unchoking, which allows each peer to explore 
the downloading rates of other peers. Under the optimistic unchoking, 
each peer randomly selects another peer to upload without considering 
the service contribution of the selected peer. Optimistic unchoking serves 
two purposes: (1) it helps new peers to get some pieces so that they can 
contribute to the community, and (2) it is an attempt to discover another 
peer with a higher uploading rate. If this kind of peer is found, then the 
peer with the smallest downloading rate in the regular unchoking set will 
be replaced by this peer. 

Downloading in BitTorrent is determined by the piece selection pol-
icy called the local rarest first. When a peer is ready to download from 
another peer, usually there are several potential choices of pieces to down-
load. Under the local rarest first strategy, a peer will choose the piece 
which has the least number of copies among its connected neighbors to 
download first. The local rarest first policy not only can balance the 
distribution of pieces in the system, but can also enhance the overall file 
availability. 

Let us now present our ISP-friendly protocol. In essence, it is a variant 
of the BitTorrent protocol which exploits ELP. The goal is to reduce 
the amount of cross-ISP traffic and at the same time, maintain good 
performance (e.g., small file downloading time). There are many details 
in our protocol, but the basic idea is: a peer will not download a piece 
from external neighbors if he finds that this piece is held by some internal 
neighbors. 

To adopt ELP, it is necessary for a peer to distinguish peers that are 
within the ISP and peers that reside in other ISPs. For a BitTorrent peer, 
it obtains the IP addresses of its connected neighbors from the tracker. 
Therefore, a peer needs to find the relationship between an IP address 
and its associated ISP. This type of association can be easily constructed 
using tools like the ASFinder in the CoralReef suite [3]. In fact, an ISP 
can set up a "whois" server to provide this mapping service to all peers 
within its domain. It only needs to map all IP addresses belonging to 
itself and its customer ISPs as internal peers, and this can be easily 
constructed using the CIDR address format. An important point is that 
there is an economic incentive for an ISP to provide this type of mapping 
service. It can encourage peers to use the ISP-friendly protocol, therefore 
reduce the cross-ISPs traffic and its operating cost. 

Being able to distinguish between internal peers and external peers, 
each peer can exploit the ELP via the following steps: 

1. Divides its neighbors into two type, internal neighbors are the neigh-
boring peers which belong to the same ISP as itself, and external 
neighbors are the neighboring peers which belong to other ISPs. 
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2. Creates a list C! where C/[j] records the number of copies of the 产 

piece that are within the internal neighbors. Similarly, creates a list 
CE where Cslj] records the number of copies of the 产 piece that 
are within the external neighbors. 

3. For a given peer, let J^L denote the set of pieces held by this peer 
(or localhost). For a neighboring peer, let TR denote the set of 
pieces held by this neighbor. If it is an internal neighbor, sends 
an INTERESTED message to it if it has some pieces which are not 
possessed by the localhost, i.e., + 0. If it is an external 
neighbor, sends an INTERESTED message to it if it has some pieces 
which are not possessed by all internal peers, i.e., Ci[j] — 0 for some 
j e :FR\:FL-

4. Upon an unchoking event, the peer has to handle it differently de-
pending on whether it was unchoked by an internal neighbor or 
external neighbor. If the peer was unchoked by an internal neigh-
bor, the peer will request a piece k using the local rarest first policy 
over Ci: 

k = argnin {Ci[j]}，j e (3.2) 

If the peer was unchoked by an external neighbor, the peer will 
request only those pieces which are not available in the internal 
neighbors and using the local rarest first policy over CE-

k = ar^ in { C ^ j ] } ， j € TrXJ'l, Cj[j] = 0. (3.3) 

All other parts of the ISP-friendly protocol remain the same as the cur-
rent BitTorrent protocol, e.g., tracking, tit-for-tat, optimistic unchoking 
and so forth. 

According to the above mentioned modifications, whether piece /c is a 
potential choice for downloading from a neighboring peer can be deter-
mined by the following decision function: 

def want⑷： 

return k G and 
{ISPneighbor == ISPiocalhost O f Ci[k] = = 0 ) 

If want(A;) returns "False" for all piece index k, then the peer is not 
interested in this neighbor. If it returns "True" for some piece index k, 
then the peer will send an INTERESTED message to this neighbor and 
wait to be unchoked. 

Upon unchoked by an internal (external) neighbor, the peer can use 
the function want(A;) to find out all potential pieces to request, and then 
look up the table Cj (CE) to determine which piece to request first based 
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on the local rarest first policy. Notice that when all neighbors are inter-
nal neighbors or all neighbors are external neighbors, this ISP-friendly 
protocol behaves exactly the same as the current BitTorrent protocol. 

In summary, the ISP-friendly protocol proposed above uses the ELP to 
send the INTEREST message, and during the piece selection process, uses 
the ELP and the local rarest first policy. By doing so, a peer determine 
which peers to download from and also attempts to avoid downloading 
any duplicate piece which resides within the same ISP. 

Before we leave this section, it is important for us to comment about 
the difference between the proposed ISP-friendly protocol and the ideal-
ized model as presented in Sec. 3.1. In practice, the BitTorrent protocol 
(and the proposed ISP-friendly protocol) is quite involved. It contains 
many mechanisms to ensure good performance, such as random first piece 
selection, endgame mode, anti-snubbing and so on. Furthermore, each 
peer only has a partial view of the whole P2P system and can only make 
decisions based on its local information. In addition, it takes time for in-
formation (e.g., piece availability) to be propagated throughout the P2P 
network. Therefore, this ISP-friendly protocol may deviate from the ELP 
in the sense that 

• Each peer may not be connected to all internal peers. 

• The piece availability information cannot be updated instantaneously. 

The above scenarios may lead to the situation that duplicated pieces 
could be downloaded from external peers. The impact of the first scenario 
can be reduced if peers can contact the tracker more often to request for 
more neighbors. The impact of the second scenario can be reduced if 
peers can update their local information (e.g., piece availability) more 
frequently with each other. 

Notice that the ISP-friendly protocol only aims at reducing the incom-
ing cross-ISP traffic. By doing so, it also reduces the outgoing cross-ISP 
traffic because of the built-in tit-for-tat mechanism in BitTorrent. This 
mechanism enforces certain degree of fairness in data exchange and there-
fore the total amount of outgoing cross-ISP traffic is approximately equal 
to the incoming cross-ISP traffic. This is verified by our experiments 
which are presented in the following section. 

3.3 Performance Evaluation & Measurements 

In order to evaluate the cross-ISP traffic reduction and the average file 
downloading time of the proposed ISP-friendly protocol, we modify a 
BitTorrent software to implement the ISP-friendly features mentioned in 
Sec. 3.2 and carry out experiments and measurements on the PlanetLab. 
To compare the proposed ISP-friendly protocol to the current BitTorrent 
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protocol, we also instrument the same BitTorrent software to collect traf-
fic information for comparison. In the following, we describe in detail on 
how we carry out the experiment. 

3.3.1 Choice of the BitTorrent Client 

The first BitTorrent client was developed by Bram Cohen, the inventor of 
the BitTorrent protocol [9]. Note that there are many other BitTorrent 
clients available, such as /^Torrent, BitComet, Azureus and so on. Since 
there is no de facto standard, Cohen's BitTorrent client is considered as 
the reference for the BitTorrent protocol. Thus, this client is also called 
the "Official BitTorrent client". It is an open source software, written 
in Python and can be executed on many different platforms. Most Bit-
Torrent clients maintain compatibility with the official BitTorrent client. 
The main differences of these clients are the user interface, configuration 
options (e.g., caching option to reduce disk access) and certain exten-
sions to the BitTorrent protocol (e.g., UDP transport to traverse NAT). 
Our goal is to evaluate the basic BitTorrent protocol and the proposed 
ISP-friendly BitTorrent protocol. Thus, we choose the official BitTorrent 
client and we instrument the official BitTorrent client version 4.4.0 which 
was released in 2006. 

3.3.2 Experimental Setup 

We carry out experiments under two scenarios: regular peer arrival and 
flash crowd. For each scenario, we run the experiment twice with the 
same settings, one with the official BitTorrent client, the other one with 
the ISP-friendly BitTorrent client, thus there will be four experiments in 
total. In order to compare their cross-ISP traffic and the file downloading 
performance, each client logs at least the following information: starting 
time, ending time, bytes downloaded from internal/external neighbors, 
bytes uploaded to internal/external neighbors. 

There are many configuration options for the official BitTorrent clients. 
The main default parameters are: the maximum upload rate (default is 
20 KB/s), the maximum number of peers to upload to (default is 4), the 
number of pieces downloaded before switching from random to rarest first 
piece selection (default is 4), time interval to request more peers from the 
tracker (default is 300 sees.)，the minimum number of neighbors before 
requesting more peers from the tracker (default is 20), the maximum 
number of neighbors (default is 80) and so on. It is outside the scope 
of this study to evaluate the impact of each BitTorrent's parameter. In 
our experiments, we use the default parameters except that: the time 
interval to request more peers from the tracker is set to 60 seconds, the 
minimum number of neighbors before requesting more peers from the 
tracker is set to 80. We set these two parameters to help peers discover 
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other peers and connect to them sooner. 
The typical file size of a BT file distribution ranges from tens to hun-

dreds megabytes (files can be music albums, TV shows, movies and so 
on). Usually users will set the maximum uploading rate larger than the 
default setting 20KB/s to speed up their downloading. To avoid con-
suming too much bandwidth and other resource of the PlanetLab nodes, 
we use a relatively small file (20MB) for downloading, and the piece size 
is also scaled down to 32KB. There is a seeder in the system to ensure 
file availability in all our experiments. To avoid the seeder become the 
bottleneck, its maximum uploading rate is set to 50KB/s，larger than 
the maximum uploading rate of other peers. 

Since most nodes in the PlanetLab are within universities, one can 
consider each university as an "ISP", and construct a database to map 
each PlanetLab node to "ISP" (There are some differences between “ AS" 
and "ISP", but it does not matter to our experiments, or we may call 
it "AS-friendly protocol"). In our experiments, we consider six "ISPs": 
Berkeley (16 nodes), Columbia (3 nodes), Cornell (6 nodes), MIT (7 
nodes), Princeton (11 nodes), and OTHER (32 nodes). Since there may 
be more than 60 peers for some experiments, we may assign several peers 
to the same node. But to avoid overloading the node, no more than three 
peers will be running on the same node at any time. 

3.3.3 Regular Peer Arrival 

In the following experiments, we study the cross-ISP traffic and the file 
downloading time of the official BitTorrent and the proposed ISP-friendly 
BitTorrent in regular peer arrival scenario, i.e., peer arrival to the ISP 
is a Poisson process. To carry out meaningful and realistic experiments, 
we instrument each ISP with a different peer arrival rate and peers from 
different ISPs participate in the same torrent file sharing. Note that we 
have six ISPs: Berkeley, Columbia, Cornell, MIT, Princeton, OTHER. In 
our experiments, we initiate the seeder and the tracker in Columbia and 
there is no other peer in Columbia. Peers are launched in the other five 
ISPs according to Poisson processes. We know that the sum of several 
independent Poisson arrival streams is still Poisson arrival, thus the peer 
arrival for the whole P2P network(containing five ISPs) is still Poisson. 
We carry out the experiment multiple times with the peer's average in-
terarrival time as 250s, 167s, 125s, 100s, 67s and 50s respectively for 
a certain ISP(we choose Berkeley), and the peer arrival for other ISPs 
are adjusted accordingly to make sure that the peer arrival for the whole 
P2P network is a Poisson process with an average interarrival time being 
16s. This implies that the ratio of peers in Berkeley and the peers in the 
whole P2P networks will be about 4/64，6/64, 8/64，10/64，15/64 and 
20/64 respectively. The experiment lasts for 48 hours each time. With 
the log file, we can calculate the average downloading time T in Berkeley, 
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and then derive the average number of peers by n = XT. 
Experiment 1: Regular Peer Arrival for Official BitTorrent 
We carry out the experiment using the official BitTorrent client with the 
settings mentioned above. Since the maximum uploading rate of a peer is 
20KB/s, and there is only one seeder in the system whose upload rate is 
negligible comparing to the aggregate upload rates of all peers, therefore, 
the expected downloading rate of a peer in the system is upper bounded 
by 20 KB/s. For the experiment, the size of the published file is 20MB, 
thus the average file downloading time would be larger than 1000s. This 
is confirmed by our experiment. Figure 3.3 illustrates the experimental 
results. . 
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Figure 3.3: Performance of the Official BitTorrent under Steady Peer Arrival 

Figure 3.3(a) shows the average fraction of incoming and outgoing 
cross-ISP traffic generated by each peer in Berkeley with different average 
interarrival time. In Equation (3.1), we show the fraction of cross-ISPs 
traffic for the random downloading strategy and we also plot this curve 
in the figure. As stated in Equation (3.1)，the expression is / = 1 - n/N 
where n is the average number of peers in a certain ISP (It is Berkeley 
here.) and N is the average number of peers in the whole P2P system. 
Both n and N can be calculated by the average interarrival time and the 
average downloading time. From the figure, one can observe that the 
cross-ISP traffic generated by the official BitTorrent client is very similar 
to the random downloading strategy. It generates a lot of incoming and 
outgoing cross-ISP traffic. One can also observe that outgoing traffic 
is slightly less than the incoming traffic. The reason is that there is a 
seeder in the system and this seeder uploads to other peers but never 
perform any downloading. Therefore, other ISPs observe more incoming 
cross-ISP traffic. 

Figure 3.3(b) shows the cumulative distribution function (CDF) of the 
file downloading time for Berkeley. It can be seen that the curve is sharp, 
which means that the downloading time for most peers are roughly the 
same. 
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Experiment 2: Regular Peer Arrival for the ISP-friendly Pro-
tocol 
We use the same setting as Experiment 1 except the clients are replaced 
by our ISP-friendly clients discussed in Section 3.2. The results are illus-
trated in Figure 3.4. 
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Figure 3.4: Performance of the ISP-friendly BitTorrent under Steady Peer Arrival 

Figure 3.4(a) shows the average fraction of incoming and outgoing 
cross-ISP traffic generated by each peer in Berkeley with different aver-
age interarrival time using ISP-friendly protocol. We also show the lower 
and upper bounds of the derived cross-ISP traffic model. One can ob-
serve that the cross-ISP traffic is greatly reduced compared to the official 
BitTorrent client. The experiment curve for the incoming traffic falls 
between the bounds when n, the average number of peers in Berkeley is 
larger than 7. When n is small, the experiment curve exceeds the upper 
bound. The reason is that the peers in Berkeley are so rare compared 
to the whole P2P system, it is usually difficult for a newly arriving peer 
in Berkeley to discover and establish connection to other peers within 
Berkeley soon. Then this newly arriving peer may request pieces from 
external peers even these pieces are held by some internal peers, resulting 
an increase in the cross-ISP traffic. However, if n is small in Berkeley, 
the aggregate cross-ISP traffic will not be very significant. Notice that 
the ISP-friendly protocol differs from the official BitTorrent client only 
in the downloading strategy. However, the outgoing cross-ISP traffic is 
also significantly reduced. It is interesting to observe that the outgoing 
traffic is much less than the incoming traffic when n is small, and it can 
be interpreted like this: the newly arriving peer in Berkeley performs 
little uploading to external peers compared to downloading, since it has 
not many pieces to upload. 

Figure 3.4(b) shows the cumulative distribution function (CDF) of 
the file downloading time for Berkeley. The first observation is that the 
downloading time is slightly larger(< 10%) than the official BitTorrent. 
There are two reasons for the increase in file downloading time. First, 



CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 41 

since peers follow the ELP, the seeder, which resides in a different ISP, 
may remain idle since downloading from seeder is considered as cross-ISP 
traffic. Second, since some pieces can only be downloaded from internal 
peers according to the ELP, it will also degrade some downloading chance. 
However, the gap is not very large and it will be reduced if there are more 
peers within Berkeley. Another observation is that the variance of the 
file downloading time is a little larger than the official BitTorrent. 

3.3.4 Flash Crowd 

In here, we study the cross-ISP traffic and the file downloading time of 
the official BitTorrent and the ISP-friendly BitTorrent under the flash 
crowd scenario. There are five ISPs: a seeder and a tracker are located 
in Columbia. All peers arrive at i = 0 to the four ISPs. Number of 
peers in the ISPs are: 6 (Cornell), 12 (MIT), 18 (Princeton) and 24 
(Berkeley). We run each experiment multiple times to obtain a good 
confidence interval. 
Experiment 3: Flash Crowd for Official BitTorrent 
We use the official BitTorrent clients in this experiment. The results are 
shown in Figure 3.5. 
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Figure 3.5: Performance of the Official BitTorrent under Flash Crowd 

Figure 3.5(a) shows the average cross-ISP traffic generated by each 
peer in different ISPs. The total number of peers in the system is 60, 
thus we plot the curve / = 1 一 7i/60 (using Eq. (3.1)) to represent the 
random downloading strategy. One can observe that the cross-ISP traffic 
generated by the official BitTorrent client is very close to Eq. (3.1). It 
means that the official BitTorrent client also generates significant amount 
of cross-ISP traffic in the flash crowd scenario. Another observation is 
that the outgoing cross-ISP traffic is slightly less than the incoming cross-
ISP traffic. This is justified due to the tit-for-tat policy in BitTorrent. 
The reason for the slight difference is that there is a seeder in the system 
who uploads to other peers but never perform any downloading. 
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Figure 3.5(b) shows the CDF of the file downloading time. The results 
indicate that it is very "deterministic" in the sense that most peers finish 
the file download approximately at the same time. 
Experiment 4: Flash Crowd for the ISP-friendly Protocol 
The setting of this experiment is exactly the same as Experiment 3 except 
we use the ISP-friendly client. The results are shown in Figure 3.6. 
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Figure 3.6: Performance of the ISP-friendly BitTorrent under Flash Crowd 

Figure 3.6(a) shows the average cross-ISP traffic generated by each 
peer in different ISPs. One can observe that the cross-ISP traffic is 
significantly reduced compared to the official BitTorrent client (Figure 
3.5(a)). We can also observe that outgoing cross-ISP traffic is slightly 
less than incoming cross-ISP traffic due to the tit-for-tat policy. 

Figure 3.6(b) shows the cumulative distribution function of the file 
downloading time. Again, it is very deterministic in that most peers can 
finish the file download around the same time. Compared with Figure 
3.5(b), one can observe that the file downloading time of the ISP-friendly 
client is only slightly worse (< 5%) than the official BT client. 

3.4 Black Hole Security Attack 

We have seen that the ISP-friendly protocol can greatly reduce the cross-
ISP traffic while keeping good file downloading performance. In this 
section, we present the “black hole attack'', which may have a detrimental 
effect on the ISP-friendly file distribution protocol. 

Consider a free-rider in a file distribution session. This free-rider will 
advertise to other peers that it has a lot of pieces (or all pieces of the file) 
but it refuses to provide any upload service to other peers. This type of 
free-riders do exist in the current BitTorrent file distribution but they 
only receive minimal amount of service: free riders can only download 
pieces via the the "optimistic unchoked" connection. Therefore, the file 
downloading time of these free-riders is significantly larger than those 
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normal peers who are willing to provide upload service. This type of 
free-riding, however, can be detrimental to the ISP-friendly protocol. 
In particular, when the free-rider announces that it has all pieces of 
the file (or it pretends to be a seeder), it prevents other internal peers 
obtaining information from external peers, and this may halt the whole 
file download process within the ISP. We call this the “black hole attacW. 

To overcome the black hole attack, one needs to provide some mech-
anism to filter out the attackers or peers with very low uploading rate. 
One may first consider the black listing technique to do the peers filter-
ing. But black listing needs addition collaboration among peers since 
one peer could not detect the attacker based on his own local view. This 
addition collaboration, will make the ISP-friendly protocol incompatible 
with the current BitTorrent protocol. Instead, we propose an Enhanced 
ISP-friendly protocol which can filter bad peers effectively while keeping 
the compatibility with the current BitTorrent protocol. 

Similar to the ISP-friendly protocol proposed in Section 3.2，each peer 
classifies its neighbors into two categories: internal peers and external 
peers. In the Enhanced ISP-friendly protocol, each peer will pick less 
than or equal to q internal peers as its active co-agents (we will show 
how to select active co-agents later). Denote the following set: 

S = {c|piece c is missed by all its active co-agents}. 

the only thing we need to modify compared to the previous ISP-friendly 
protocol is the decision function want^k). Whether piece A; is a poten-
tial choice for downloading from a neighbor can be determined by the 
following new decision function: 

def want(A;): 
return k G and 

{ISPneighbor == ISPiocalhost OT k E S) 

If want(/c) returns "False" for all piece index k, then the peer is not 
interested in this neighbor. If it returns "True" for some piece index k, 
then the peer will send an INTERESTED to this neighbor and wait to 
be unchoked. Upon unchoked by an internal (external) neighbor, the 
peer can use the new function want(A:) to find out all potential pieces to 
request, and then look up the table Cj (CE) to determine which piece to 
request first based on the local rarest first policy. 

Now let us discuss how to pick the active co-agents. The intuitive 
notion of active coagents is that, if peer A considers peer B as its active 
co-agent, it implies that peer A detects that peer B works well on upload-
ing to internal peers, thus it may not be necessary for peer A to download 
the pieces which are held by B from external peers. As we emphasized 
earlier, we want to design a protocol which is compatible with the current 
BitTorrent protocol, thus we can pick the active co-agent based on the 
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local information only. A credible evidence that an internal peer works 
well on uploading to internal peers is that it uploads to you recently. 
Based on this notion, we develop the selection algorithm as follows. 

1. Measuring the downloading rate from each internal peer, where 
Ti is the average rate for the last T seconds. 

2. Ranking the internal peers in a list according to 7\ in decreasing 
order. 

3. Truncating the list for peers with Ti < R. 

4. Picking the top q peers as active co-agents. 

There are three parameters in this algorithm, T, R and q. We do not 
want the active co-agents to change too rapidly. So we select T to be 
within 1 to 2 minutes. Threshold R is to prevent anti-snubbing attack in 
which a peer schedules to satisfy just one request per 60 seconds to avoid 
getting snubbed. A reasonable value for R is between 0.5KB/s — 2KB/s. 
Lastly, q is crucial to reducing the cross-ISP traffic. Our measurement 
study shows that it is sufficient to set g > 5. To evaluate the enhanced 
ISP-friendly protocol, we carry out the regular peer arrival experiments 
as follows. 

We configure our enhanced ISP-friendly client to the same settings as 
sections.3(e.g., maximum uploading rate is 20KB/s, maximum number 
of peers to upload to is 4，etc). But the size of the file for downloading 
is now doubled to 40MB. The peer arrival for the whole P2P network 
is a Poisson process with average interarrival time being 31s. We carry 
out the experiment multiple times with the peer's average interarrival 
time as 500s, 333s, 250s, 166s and 125s respectively for Berkeley. This 
implies that the ratio of peers in Berkeley and the peers in the whole 
P2P network is about 2/32, 3/32, 4/32, 6/32 and 8/32 respectively. In 
the experiment, there is always one malicious free rider (or faked seeder) 
in Berkeley. The three parameters of the enhanced ISP-friendly protocol 
are set as T = 2mm, R — 0.5KB/s and q = 10. The results are shown 
in Figure 3.7. 

In Figure 3.7(a), one can observe that the cross-ISP traffic is signifi-
cantly reduced compared to the official BitTorrent (reduced to about 1/3 
in our experiments). In Figure 3.7(b), one can see that there is only 
a slight performance degradation (< 10%) in the file downloading time 
compared to the official BitTorrent. Notice that the performance of the 
enhanced ISP-friendly protocol is not seriously affected by the malicious 
free rider. The slight performance degradation in file downloading is ac-
ceptable, given that the large reduction of cross-ISP traffic. And the 
performance gap of file downloading time can be even reduced if there 
are more peers in Berkeley. Actually the experiment results are similar 
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Figure 3.7: Enhanced ISP-friendly BitTorrent under Regular Arrival 
to Figure 3.7 when there are several malicious peers. And the enhanced 
ISP-friendly protocol works well in the Flash Crowd experiments too. 

• End of chapter. 



Chapter 4 

Related Work 

There are numerous empirical studies on the BT protocol, for instance, 
[4,10,18,23,29]. Izal et al. [18] present the traffic information on peers 
behavior collected during a five-month period. Pouwelse et al. [29] study 
the availability, the integrity, the flash crowd effect and the download 
performance from a trace which was collected for eight months. Erman 
et al. [10] study the session interarrival times, sizes and durations and 
propose to use the hyper-exponential distribution to model the session 
interarrivals, and use the log-normal distribution to fit session durations 
and sizes. Legout et al. [23] evaluate the two core components of Bit-
Torrent: choking and the rarest first algorithm and claim that they are 
enough to guarantee the efficiency and viability. Bindal et al. [4] re-
port great variability of downloading time and claim that instead of net-
work bandwidth, “close neighbor set"{\.e. those peers in a stable data-
exchange relationship) is the major contributing factor for the variability. 
However, a major limitation of these empirical studies is that the data 
collected is usually from a local view (i.e. the tracker log or a modified 
client), and the behavior is very time-dependent. Therefore, it is not an 
easy task to understand the efficiency of the BT protocol simply based 
on empirical studies. 

There are also several analytical studies of BT protocol. Yang et 
al. [34] study the service capacity of BT protocols. Their result indi-
cates the service capacity of BT protocols increases exponentially at the 
beginning and scales well with the number of peers, thus providing fast 
downloading independent of demand rate. Qiu et al. [30] extend the 
coarse-grain Markovian model in [34] by providing an analytical solution 
to a fluid model in steady state which shows high scalability and stabil-
ity of BT protocols. Our work differs from [30,34] in that we provide a 
detailed probabilistic model to capture the peers' diversity (in terms of 
downloading progress) and show the change of downloading speed during 
the whole session. We also analyze the peer selection and chunk selec-
tion which are not considered in [30,34]. Fan et al. [13] also generalize 
Qiu's model by dividing peers into three types according to number of 
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chunks they hold. Our work extends the number of types from 3 to 
X — 1 so as to capture the system more accurately. Under the assump-
tion that "uplink is the only constraint", Mundinger et al. [28] propose 
a deterministic scheduling algorithm to achieve the optimal makespan 
which requires global knowledge. Sanghavi et al. [33] also propose a 
gossip-like randomized algorithm requiring only local knowledge. Both 
studies in [28] and [33] are orthogonal to ours as they only consider the 
"closed system" where no new peer will arrive during the file dissemi-
nation while we consider an "open system" which new peers are joining 
in according to Poisson process. The work that is closely related to our 
study is [27]. In that paper, the authors provide a detailed probabilistic 
model to investigate the stability and effectiveness of a peer-to-peer file 
swarming system. Their results state that even by the "random chunk 
selection" policy, the system throughout is still asymptotically optimal. 
Our work improves and extends the result in [27] by providing tighter 
asymptotic bounds and relaxing its assumption of unlimited upload ca-
pacity. Moreover, we study the peer selection by both random selection 
and coordinated matching policies. Gaeta et al. [14] also use a proba-
bilistic model to study the large-scale P2P network but they are focusing 
on searching strategy. There are some other analytical studies in fairness 
of BT besides performance modeling. In [7,25,26], the authors present a 
mathematical analysis on service differentiation in resource allocation for 
P2P networks. In [11], the authors present a mathematical framework to 
study the tradeoff between performance and fairness in BT-like systems. 
In [35]，authors present the first analytical model of BT-like systems and 
quantify the tradeoff between scalability and QoS support for multimedia 
streaming applications. 

There are only few studies addressing the issue of cross-ISP traffic. 
One approach is caching [6] but one has to address the copyright legal 
issue. In [19], authors propose to place some "gateway peers" to connect 
to external peers and other peers only download within the ISP. However, 
one has to address the issue of service availability due to sudden departure 
of gateway peers. Authors in [5] examine a technique named "biased 
neighbor selection" to explore traffic reduction, but the study was only 
carried out via simulation. In our work, we propose to exploit the content 
locality which requires no extra hardware investment from the ISP. We 
analytically evaluate the cross-ISP traffic reduction, and at the same 
time, propose and implement such mechanism to achieve the reduction 
while keeping good downloading performance. 

• End of chapter. 



Chapter 5 

Conclusion 

In this thesis, we propose a probabilistic model which generalizes the 
model in [27] to capture the basic properties of a file swarming sys-
tem. Under the same assumption as [27] (i.e. unlimited upload capac-
ity), we first improve its asymptotic bound of the average downloading 
time. Then we provide two different approaches, namely fetching multi-
ple bitmaps and using FEC code, to help the system achieve nearly op-
timal performance. Besides showing that FEC code can also remedy the 
last-piece problem, we also remove the assumption of "unlimited upload 
capacity" and analyze the performance under the random peer selection 
algorithm. Since the performance deteriorates due to request collision, 
we propose a matching scheme to improve the performance. We show 
that under the coordinated matching, if peers are altruistic the system 
performance can achieve as good as the system with unlimited upload 
capacity. Even when the system deploys certain incentive mechanism 
(tit-for-tat), the average downloading time is still good. The result sug-
gests that the performance of a peer-to-peer file swarming system does 
not depend critically on altruistic peers, but rather due to the diversity 
of peers stored data so the system can achieve good performance. We 
also address how one can reduce the cross-ISP traffic for file distribution 
applications. We use a simple and effective idea: exploit the content 
locality to reduce the traffic. We analytical show the significant cross-
ISP traffic reduction when one uses the above principle, and then design 
and implement such mechanism on a BT software, carry out extensive 
experiments and measurements on the PlanetLab to demonstrate its ef-
fectiveness. Lastly, we illustrate the black hole security attack and how 
one can modify the proposed protocol to address this problem. 

• End of chapter. 
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Appendix 

Proof for Theorem 7: Due to the self scaling property of P2P systems, 
the service capacity of the system is proportional to the number of peers. 
Therefore, one can model the P2P file distribution system within this 
ISP as an M/D/oo queueing system with arrival rate A and service time 
T. 

Let Pn denote the probability that there are n peers in the ISP. Since 
the service time is T, the probability that there are n peers in the ISP is 
equal to the probability that there are n arrivals between time [t — T,t]. 
Since the number of peers arriving in a time interval of length T is Poisson 
distributed with mean AT, we immediately obtain 

nl nl 

The above statement is valid for all t > T, and thus also for the limiting 
distribution. 

Now consider when these peers have to download content from exter-
nal peers, e.g., peers which belong to other ISPs. Assume that there are 
n peers within this ISP at a certain time. Let Vi denote the fraction of 
file content that peer i has obtained so far. Since the size of the file is 
1，we have < 1 for z G { 1 , . . . , n}. li v = Ya=i '^i < 1, then these n 
peers need to download at least (1 — v) fraction of the file content from 
external peers before the next peer departure from this ISP. 

We use the method of the imbedded Markov Chain [20] and select the 
departure points as our observation points. Since the arrival is a Poisson 
process, we have 

Pn = Prob (departure leaves n peers in the systems). 

When a peer departs and observes that there are n peers within this ISP 
with V = Vi < 1, then this ISP needs to consume at lease (1 — v) of 
incoming cross-ISP traffic before the next peer departure. 

When there are exactly n arrivals from a Poisson process in [0, t], the 
unordered arrival times are uniformly, independently distributed over 
[0,t]. In our system, it means that all these n downloading progresses 
are uniformly, independently distributed over [0,1]. Formally, let Xi be 
the random variable denoting Vi, we have Xi ~ U[0, = 1 , . . . , n. We 

52 



are interested in Yn = Er=i Xi and its corresponding density function 
f{v\n). To derive Yn and /(f|n), one can use Laplace transformation 
method: 

⑷ = 全 ( 1 - e - s ) 

K � = f l X , { s ) = ^ { l - e - r = 
1=1 S s 

Thus 

j=0 I几—丄入 

_ f e u i ) > - 力 “ 

— h o ) ( - - 1 ) ! 

Focusing on the range 0 < < 1, we have 

f{v\n) = ( : 1)!， 0 S ” < 1，n = 1’ 2 ” ... 

Let d denote the incoming cross-ISP traffic between two consecutive peers 
departures. Since these n peers need to download at least ( l - t * ) fraction 
of the file through the cross-ISP link before the next peer departure, we 
have 

E(d\n) v)f(v\n)dv = n = 1’ 2,….• 

Now consider the case n = 0. When a departing peer observes that 
there is no peer in the ISP, this means that new arriving peers need to 
download exactly one copy of the file via the cross-ISP link before the 
next peer departure. Thus 

聊 ) = 1 = 

Given E{d\n) and Pn, one can derive E[d), the average cross-ISP traffic 
caused by each departure. 

oo 

E(d) = E{E(d\n)) = J2pnE(d\n) 
n=0 

where h (x) is the modified Bessel function. • 
Proof for Theorem 8: Similar to the M/D/oo formulation in the proof 
of Theorem 7，one can use the method of the Imbedded Markov Chain 
and select the departure points as the observing points. 
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Consider the situation that a peer departs and observes that there 
are n peers within this ISP. The progress of these n peers are uniformly 
and independently distributed over [0,1]，i.e., Xi �[/[0,1], z = 1，...，n. 
Consider the peer whose progress is maximal. According to the ELP, 
those content held by this peer would not generate any cross-ISP traffic 
before the next peer departure. On the other hand, those content that 
are not being held by this peer may or may not cause a data transfer over 
the cross-ISP link before the next peer departure (the content may be 
held by other internal peers). To derive the upper bound, we ignore the 
collision of two or more peers request the same chunk from external peers 
at the same time. We consider Zn = max二i Xi and its corresponding 
density function as g{v\n). 

Since Prob(Z„ < v ) = U7=i Fvoh{Xi < v), we have 

g{v\n) = 0<v <l,n = 1 , 2 , . . . 

This requires at most (1 - v) fraction of the file via the cross-ISP link 
before the next peer departure. We have 

E{d\n) v)giv\n)dv = n = 1’ 2，... 

Consider the case that n — 0. When a departing peer observes that there 
are no peer in the ISP, the new arriving peers need to download one copy 
of the file via the cross-ISP link before the next peer departure. Thus 

E(d\0) = 1 = 
乂 I ) 0 + 1 

Given the upper bound of E{d\n) and pn, one can derive the upper bound 
of E{d), the average cross-ISP traffic caused by each departure. 

oo 
E{d) = E(E(d\n)) = '£PnE{d\n) 

n=0 
oo , 1 1 

- 么 n ! n + 1 n 、 

Proof for Theorem 9: Let T denote the random variable of the file 
downloading time of peers. Suppose T is a discrete random variable with 
possible outcomes of Ti,r2,. . . ,Tm and 

m 

Prob(T = Ti) = Qi, i = 1,2,…，m, a n d ^ g ^ = 1. 
i=l 

Let us first derive Pn, the probability that there are n peers in the ISP. 
One can split the Poisson arrival with rate A into m independent Poisson 
arrival streams. The arrival rate of peers with downloading time Tj is 
denoted by Xi. Thus 

X i = X q i , i = 1 , 2 , . . . ， m . 
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Using similar argument as in the previous section, the number of peers 
with downloading time Ti in the ISP is Poisson distributed with mean 
入iTi, therefore the probability that we have n peers of downloading time 
Ti is 

Pn,i = • ^ ^ ^ e - A f i = z. = 1，2’...，m，n = 0’ 1’ …. 
n ! n ! 

where fU = XiTi = XqiTi. The number of peers with downloading time Ti 
is independent of the number of peers with other downloading time in 
the ISP. Since the sum of independent Poisson random variables is again 
Poisson, it follows that the total number of peers in the ISP is Poisson 
distributed. 

__ 
Pn = - r e " " , n = 0， l ’ . . . 

n\ 
where n = ET=i^i = 

Assume that there are n peers in the ISP at a given time. Similar to 
the homogenous case analysis, we know that the content that peer i holds, 
denoted as Vi, is uniformly and independently distributed over [0，1]. Let 
Xi be the random variable denoting Vi, we have Xi � t / [ 0 , 1 ] , z = 1 , . . . , n. 
Given Pn and Xi, one can derive the lower bound and upper bound of 
the cross-ISP traffic similar to Theorem 7 and Theorem 8. The result is 

e -%- i / 2 /i ( 2v^) < E(d) < i ( l - e-”， 
TI 

where n = A X^Ili Qi^i and Ii{x) is the modified Bessel function. 
In fact, since each distribution function can be approximated arbitrary-

close by a discrete distribution function, one can conclude that the result 
holds for general downloading time distribution. I 
Proof for Theorem 10: Since there is no file content within the ISP 
at time t = 0, peers in this ISP should download at least one copy of the 
file through cross-ISP link. Thus the average cross-ISP traffic generated 
by each peer, denoted by E{d), satisfies 

To derive the upper bound of the average cross-ISP traffic, similar to 
the analysis in the regular arrival case, suppose the downloading time 
T is a discrete random variable. Its possible values are ti, r2 , . . . , r^, 
Without loss of generality, we assume that ti < T2 < … < Tm- Peers 
arrive to the ISP at the same time 亡=0，and peers may depart the 
system at time t = 丁“ i = 1,2,... ,m. 

Let di denote the incoming cross-ISP traffic during the time interval 
[Ti-i,Ti] ([0, Ti] for di). Let D denote the total incoming cross-ISP traffic 
during the whole flash crowd downloading, we have D = X ^ i di. 

Consider those peers which depart at t = ri. The incoming cross-ISP 
traffic generated during [0，n] is di, which is one copy of the file. After the 
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departure of peers at TI , the maximal progress of downloading in the ISP 
at time ri are those peers who will finish at T2, their progress at this time 
is Ti/r2. Thus during [7"i,T2], the internal peers will at most download 
(1 — T1/T2) of the file context from external peers, i.e. d) < 1 — T\/t2. 
Similarly, one can consider the time interval [ri_i,rij, the cross-ISP traffic 
di<l — Ti-ijTi. Therefore, the total cross-ISP traffic during [0, Tm] is 

m m m 
D = + 

i=l i=2 丁i i=2 Ti 
/ n \i/(m-i) 

< m - (m - 1) — m > 2. 
\TmJ 

The function y = x - (x - l)ai/(工—i) is an increasing function of x when 
a: > 2, 0 < a < 1. Thus 

D < lim m - ( m - l ) ('ZlV^^'^ ^̂  = 1 + log f — V 

Since there are n peers, the average cross-ISP traffic each peer generated, 
denoted by E(d), satisfies 
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