
Stochastic Analysis of P2P
File Sharing Systems

LIN, Minghong

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Scicnce and Engineering

� T h e Chinese University of Hong Kong
September 2008

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)
intending to use a part or whole of the materials in the thesis in a proposed publication
must seek copyright release from the Dean of the Graduate School.

/ y 統 系 館 書 圆 n A

|(10 厕 aiT),丨
^^UNIVERsin

Thesis I Assessment Committee

Professor NG Wai Yin (Chair)

Professor LUI Chi Shing (Thesis Supervisor)

Professor NG Kam Wing (Committee Member)

Professor LAU Francis Chi Moon (External Examiner)

Abstract of thesis entitled:
Stochastic Analysis of P2P File Sharing Systems

Submitted by LIN, Minghong
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in June 2008

File sharing is one of the most important applications in P2P networks.
In this work, we propose stochastic models to analyze and improve the
P2P file sharing systems. In the first part, we analyze the performance
of the P2P file sharing systems under realistic settings. We first extend
the results of the coupon system [MassoulieOSj by providing a tighter
performance bound. Then we generalize the coupon system by consider-
ing limited upload capacity and incentive mechanism. We illustrate the
last-piece problem and show how to improve the performance. In the
second part, we analyze and design an ISP-friendly protocol to reduce
the inter-domain traffic generated by the traditional P2P file sharing sys-
tems. To carry out realistic study, we design and implement the protocol
which is compatible with the current BitTorrent protocol and show how
it can handle the “ black-hole attack". Large scale experiments are car-
ried out on the PlanetLab. This work suggests that stochastic modeling
is a powerful tool in analyzing P2P systems.

i

中文摘要

文件共享是P2P網絡最重要的應用之一。本文中我們提出一個隨機模型來分析並

提高P2P文件共享系統的性能。在前半部分，我們分析了P2P文件共享系統在現

實條件下的性能。首先我們擴展了Coupon System[Massoiilie05]的結果並得到

更加緊致的界，然後我們把這個系統一般化以考慮上傳帶寬限制和激勵機制。

我們闡述了” Last Piece Prob lem”以及如何提高系統性能。在後半部分，我們

分析並設計了一個ISP- fr iendly的協議以減少傳統P2P文件共享系統引起的大量

ISP之間的網絡流量。為了更加貼近現實，我們設計並實現了這個協議，這個協

議與現有的B i t T o r r e n t協議兼容。我們展示了這個協議如何應付” black-hole
a t tack"，並且在PlanetLab上進行了大規模的實驗。本文展示了隨機模型可以

作為一個很強的工具對P2P系統進行分析。

Contents

Abstract i

Acknowledgement v

1 Introduction 1

2 A Stochastic Framework 5
2.1 Model Description 5
2.2 Altruistic File Sharing System with Download Con-

straint 7
2.2.1 Model Formulation 8
2.2.2 Steady State Analysis 9

2.3 Altruistic File Sharing System with Download and
Upload Constraints 14
2.3.1 Model Formulation 14
2.3.2 Steady State Analysis 15

2.4 Incentive File Sharing via Coordinated Matching 18
2.4.1 Without Incentive Mechanism 18
2.4.2 With Incentive Mechanism 19

2.5 Simulation 23

3 An ISP-friendly Protocol 28
3.1 Simple Mathematical Models 28

3.1.1 Assumptions 29
3.1.2 Homogeneous Case Analysis 30
3.1.3 Heterogeneous Case Analysis 31
3.1.4 Flash Crowd Analysis 32

3.2 An ISP-friendly BitTorrent Protocol 33
3.3 Performance Evaluation Measurements 36

3.3.1 Choice of the BitTorrent Client 37
3.3.2 Experimental Setup 37
3.3.3 Regular Peer Arrival 38
3.3.4 Flash Crowd 41

3.4 Black Hole Security Attack 42

ii

4 Related Work 46

5 Conclusion 48

Bibliography 幼

Appendix 52

iii

List of Figures

2.1 A simple illustration of a transfer dynamic within one time
slot with = Ci U C2 … U C5 . 6

2.2 Illustration on the last-piece problem: bounds of Ti for
m = 1,2 and m > 1 with FEC. = 50 chunks 11

2.3 Numerical results illustrated for the bounds of for m = 1
when K = 50 17

2.4 Ti and T for m = 1, constraint on download capacity only 23
2.5 Ti and T for m = 2, constraint on download capacity only 25
2.6 Ti and T for m = 1, constraint on upload and download

capacity 26
2.7 Ti and T for coordinated matching, incentive mechanism,

with constraint on upload and download capacity 27

3.1 Illustration of the lower and the upper bound of cross-ISP
traffic 30

3.2 Average fraction of cross-ISP traffic vs. the average num-
ber of peers in the ISP 32

3.3 Performance of the Official BitTorrent under Steady Peer
Arrival 39

3.4 Performance of the ISP-friendly BitTorrent under Steady
Peer Arrival 40

3.5 Performance of the Official BitTorrent under Flash Crowd 41
3.6 Performance of the ISP-friendly BitTorrent under Flash

Crowd 42
3.7 Enhanced ISP-friendly BitTorrent under Regular Arrival 45

iv

Acknowledgement

I would like to start by expressing my thanks to my advisor, Prof. John
C.S. Lui. He spends lots of time helping me in reaching my potential
while maintaining my enthusiasm for the subject matter. Prom John I
have been learning not only the serious attitude towards research, but
also the profound insights and novel opinion to the challenging and excit-
ing research field. I will also express my gratitude to him for introducing
me to many talented researchers and giving me sincere advice for my
future study. I would like to thank my co-advisor, Prof. Dah-Ming Chiu.
He has been a true wealth of knowledge in my academic pursuits.The
moments that I discussed with him were really wonderful. His advices
on my research and comments on my work were priceless. I feel very-
fortunate I could study under John's and Dah-Ming's supervision during
my M.Phil study.

I am grateful to Prof. Will Wai-Yin Ng, Prof. Kam-Wing Ng, as well
as Prof. Francis Lau for taking time from their busy schedules to sit on
my committee and feedback on my work. I would express my gratitude
to the entire ANSR Lab too. The colleagues were not only friends but
excellent critiques of my work. I really enjoyed having them as my group-
mates, espeically those moments that we discuss together. I wish them
the best of luck in their future study and career.

On the personal level, I would like to thank my parents and my
brother. They have been incredibly understanding and supportive in
my efforts to pursuit my dreams. Mom and dad, thank you for teaching
me to never stop dreaming. Without your love, I would have been a very-
different person. I am grateful to you eternally.

V

Chapter 1

Introduction

In recent years, peer-to-peer (P2P) networks have emerged as a new
paradigm for creating network applications. Recent network measure-
ments have shown that P2P file-sharing applications constitute a large
percentage of the network traffic. Also, P2P networks have a significant
impact on the way new network services are designed. Unlike the tradi-
tional client-server computing paradigm, P2P networks allow individual
user (or peer) to play the role of a client and server at the same time.
Therefore, peers in a P2P network can help other peers in file searching,
file lookup, as well as file transfer.

File sharing is one of the most important applications in P2P net-
works. In general, a P2P file sharing application has a good scalability
property due to its collaborative mechanism, which can be intuitively
explained as follows: a file is first partitioned into many disjoint pieces.
Each peer can get these pieces either from a server, or from other peers
holding those pieces that it does not already have. Each peer offers up-
load service to other peers, and in return, each peer tries to obtain a
missing piece so as to maximize its ability to serve others hence also the
service it will receive. By coupling the service each peer can receive to
its contribution to others, P2P file sharing applications successfully make
each peer to play a role of a server and a client at the same time. There-
fore, as the number of peers increases, the service capacity of the whole
system increases as well. File sharing application is implemented in P2P
networks such as eDonkey, KaZaA, and it is the core functionality of the
popular BitTorrent (BT) [2] protocol.

The work by the authors in [34] suggest that P2P file sharing systems
(e.g., BT networks) is efficient in the sense that as the demand for the
file increases, the service capacity increases as well. However, it is not
completely understood which aspects of the system are critical to main-
tain the scalability property. The authors in [30] use a fluid model to
represent the BT file swarming protocol and derive a coarse approxima-
tion of the average file downloading time. Recently, a coupon model [27]
is proposed to represent a generic file swarming system. The authors

1

CHAPTER 1. INTRODUCTION 2

analyze the system under the large population regime and show the file
swarming system stabilizes around a finite equilibrium point and is in-
deed efficient. The results provide further support to the claim of [34],
and that the system performs well under the flash crowd scenario, even
when the rarest first piece selection policy is replaced by some random
coupon selection policies. However, strong assumptions are made in [27],
in particular, the authors assume that peers have infinite upload capacity
(or relatively large as compare with the download capacity).

The first part of the thesis aims to provide a deeper understanding
to the P2P file sharing protocols and the efficiency of BitTorrent-like file
sharing system. We propose a simple density dependent jump Markov
process to model the dynamics of a file sharing system, and we investi-
gate the performance of the system under constraints on upload capacity,
download capacity, peer selection policies (including random piece selec-
tion and coordinated matching). The contributions of this part of work
are

• We generalize some of the results in the coupon system [27] and pro-
vide a tighter bound for performance measures such as the average
file downloading time.

• We consider the last-piece problem and analytically show the im-
provement in performance when a file swarming system uses the
forward error correction (FEC) [32] coding technique for file shar-
ing.

• We relax the unlimited upload capacity assumption in [27], analyze
the file swarming system under a more realistic setting and provide
asymptotic bounds on the average file downloading time.

• We propose a stochastic model for an incentive-based file swarming
system with coordinated matching, wherein piece exchange is only
allowed when both peers are deemed to be useful to each other.

Extensive simulations are carried out to validate our models and to il-
lustrate some interesting design guidelines.

Although it performs quite well, the file sharing application like Bit-
Torrent introduces some challenging issues. Studies show that P2P appli-
cations account for over 60% of the traffic seen by an ISP [6]. Worse yet,
pre-dominant of the traffic goes through the cross-ISP links since these
applications do not distinguish between ISPs' boundaries. This not only
presents significant traffic-engineering challenges to ISPs, but the large
volume of cross-ISP traffic also implies an increasing congestion level and
more important, high operating cost for ISPs.

ISPs have several options to deal with the above problem. One ap-
proach is to control the file distribution traffic via packet throttling. How-
ever, this is not an effective solution since applications can always use

CHAPTER 1. INTRODUCTION 3

dynamic port to bypass detection. Also, throttling discourages users
within an ISP and these users may opt to switch to another ISP for ser-
vice. Another approach for an ISP is to perform caching so as to limit
the cross-ISP traffic. However, caching can be complicated since ISP
needs to accurately determine which file to cache or replace. Not only-
caching requires additional infrastructure and cost, but also introduces
legal problem to the ISPs due to the copyright issue.

Researchers propose some techniques to reduce the cross-ISP traffic.
One is to select a single peer, called the "gateway peer", to connect to
the external world [19]. This technique requires constant maintenance of
the gateway architecture and one has to deal with the potential selfish
behaviors of peers, e.g., the gateway peer may not want to upload to
other internal peers within this ISP and thereby brings down the system.
Another technique is to modify the tracker to return more internal peers
when a peer requests a neighbor list [5]. This technique weakens the
connectivity of the P2P network in order to reduce the cross-ISP traffic.
A potential problem is that the topology could not evolve accordingly
and this may degrade the downloading performance.

So in the second part of the thesis, we introduce an “ISP-friendly file
distribution protocor based on the BitTorrent protocol. The goal of the
protocol is to reduce the cross-ISP traffic, maintain good file downloading
performance and at the same time, do away with expensive infrastruc-
ture support. Prom each peer's point of view, all other peers could be
classified into two categories: internal peers and external peers. Internal
(external) peers are those peers which belong to the same (different) ISP
as itself. The protocol relies on the following idea: downloading pieces
from internal peers as many as possible, i.e., peers tend not to consider
external peers if the piece is held by some internal peers. To illustrate it
more formally, we call this the “exploiting-the-locality principle” (ELP).
The ELP is: never download information from external peers if there
exist at least one copy of the information among the internal peers. It
is possible to modify the BT clients' interested behaviors to follow this
principle without changing the topology of the BitTorrent network, so
that make the peer adapt to new situation much more quickly than the
topology maintenance approach. The contributions of this part of work
are:

• We analytically quantify the merits when file distribution protocols
follow the ELP. In particular, we derive the lower and upper bounds
of incoming cross-ISP traffic under regular peer arrival (i.e., Poisson
process) and bursty peer arrival (i.e., flash crowd).

• We propose and implement an ISP-friendly protocol on existing Bit-
Torrent client software. It is compatible with the current BitTorrent
protocol. We show that a client only needs to control the incoming
cross-ISP traffic and the outgoing cross-ISP traffic will be reduced

CHAPTER 1. INTRODUCTION 4

accordingly.

• We carry out experiments and measurements on Planet Lab to demon-
strate significant cross-ISP traffic reduction and good file download-
ing performance.

• We illustrate the black-hole security attack and show how the mod-
ified ISP-friendly protocol can overcome this problem.

• End of chapter.

Chapter 2

A Stochastic Framework

2.1 Model Description

Let us consider a peer-to-peer file sharing system that distributes a given
file to a number of peers. The file is divided into K equal size chunks,
the 产 chunk is denoted as Ci, and = UC2U...UC；^, with CinC). = 0
for i ^ j. To download the file a peer needs to download all K chunks
from other peers in this P2P file sharing system. Let Ta be the set
of chunks that peer A possesses. Peer A maintains a bitmap to denote
which chunks they possess. Whenever peer A finishes the downloading
of a new chunk, it will update its bitmap. Peer A can upload chunk
Ck to others only after it has completely downloaded Ck- New peers
arrive to this system according to a Poisson process with an average
rate A. Using the BitTorrent's terminology, a peer that has at least one
missing chunk of ^ is called a leecher, while a peer that has all K unique
chunks of JT is called a seeder. Note that, unlike the BitTorrent system
which has at least one seeder to start the file distribution and serve the
leechers, we assume that every newly arrived peer will initially obtain
one chunk from a server before entering this system^. This initial chunk
is randomly chosen by the server with equal probability l / K for chunks
Ci... Ck- When a peer finishes downloading all K chunks, the peer will
depart immediately.

Similar to [27], we assume that this P2P file sharing is slotted in the
sense that uploading (or downloading) a single chunk takes one slot time.
The file distribution process in each time slot can be described as follow.
At the beginning of every time slot, a peer, say A, will select m > 1 other
peers in the system and fetches their bitmaps. Note that, the parameter
m and the way it chooses these m peers will greatly affect the system
performance, and we will further investigate this in later sections. Since
the bitmap information can be greatly compressed, the transfer time of
a bitmap is negligible compared to the transfer time of a chunk. Let

iThis assumption is similar to the one made in [27]

5

CHAPTER 2. A STOCHASTIC FRAMEWORK 6

peer B be one of these m peers. Upon receiving its bitmap, peer A can
determine whether peer B is useful (i.e. peer B possesses at least one
missing chunk of peer A, or J^b If no peer among these m
selected peers is useful to peer A, then peer A will take no action but
remain idle in the current time slot; otherwise, peer A will randomly
select one of the useful peers to request a useful chunk for download.
Assume the selected peer is B, then peer A will request one chunk which
is uniformly chosen from the set of chunks possessed by peer B and are
missing in peer A (i.e. a chunk Ck C Tb\ ^a)- Note that this can be
viewed as a blind chunk selection policy, in contrast to the rarest first
policy in the BitTorrent protocol by which peer A will select the chunk
among with the fewest number of copies among its neighbors [8].
As a result, peer B may receive multiple downloading requests. Based on
the upload capacity constraint and service rule, peer B will choose one
or more requests to satisfy (we will elaborate this in later sections). The
transfer time of this chunk will take one time slot. At the end of a time
slot, the process repeats.

声 rrrm % t t t i ô m m
i s x i / ' ' Dom T r m

••era •=•=• �*…--

o / ' � E o / OE o , OE E ™
BN^ B B

I T I X B ^ ' - X H U M t':il I O

、、Oj. I I I O I O j , I I I • I O f I I I • I

request for bitmap ^ 一
k- request for useful chunk tranfer of chunk

transfer of bitmap

(a) (b) (c)

Figure 2.1: A simple illustration of a transfer dynamic within one time slot with
= Ci U C2 ... U Cs

Figure 2.1 illustrates the P2P file sharing model with m — 2. We have
six peers: A, B, C, D, E and F. The file has five chunks and the shaded
boxes represent the chunks that peers possess. For example, peer A has
Ci,C3 and C4. In Figure 2.1(a), peer A (peer B) requests bitmaps from
peer C and D (peer D and F) and these peers reply with their respective
bitmaps. Peer A determines that peer C is not useful while peer D is
useful. Peer B, on the other hand, determines that both peer D and F
are useful. Both peers select one peer for a chunk transfer and Figure
2.1(b) shows that both peer A and B choose D for the chunk transfer.
Peer D receives two transfer requests, it randomly picks one peer to serve
in this example, and it chooses peer A. Figure 2.1(c) shows that peer D
transfers C5 which is requested by A. At the end of a time slot, peer A
obtains C5 while peer B wastes one time slot.

CHAPTER 2. A STOCHASTIC FRAMEWORK 7

The above model is in fact, quite general. For example, when one con-
siders the case that m = 1 (or each peer just randomly chooses one peer
to fetch the bitmap), and that there is no constraint on peers' upload
capacity, then this becomes the model studied in the coupon replication
system [27]. In this work, we generalize their model and study the per-
formance of the system when m > 1, which means that each peer can
first fetch multiple bitmaps from different peers but can choose at most
one peer to request chunk transfer. Surprisingly, such a simple modi-
fication can improve the performance of the system to achieve a near
optimal average file downloading time. Furthermore, we also relax the
assumption of large or infinite upload capacity in [27]. This is in fact
a very important step because for the current Internet, the bottleneck
is usually not at the network core but rather at the network edge, and
the upload capacity of an end host is indeed limited (e.g., ADSL system,
cable system). Therefore, this capacity constraint model is in fact a more
realistic representation for file sharing systems. In this uplink/downlink
constrained system, we study two different uploading policies.

1. Altruistic Uploading Service: Under this policy, a peer will provide
upload service to other peers regardless of whether these peers have
provided upload service or not to other peers. In other word, this
is a perfect collaborative system and it is similar to the "optimistic
unchoking" feature in the BitTorrent protocol.

2. Incentive Uploading Service: Under this policy, a peer follows a given
incentive mechanism similar to the "tit-for-tat" feature used in the
BitTorrent protocol to decide on uploading.

Although our system model is a simple representation of some realistic
P2P file sharing system (e.g., BitTorrent), it has already captured many
essential features such as the collaborative upload and download, as well
as incentive-based chunk exchange in P2P file sharing systems. In later
sections, we will derive the performance of such system, and show why
and how it can achieve good performance.

2.2 Altruistic File Sharing System with Download
Constraint

In this section, we consider the file sharing system where each peer has
a constraint in the download capacity and we place no upper bound re-
striction on the upload capacity. So at every time slot, each peer will
first contact m > 1 other peers randomly in the system to get their
bitmaps. If more than one peer are useful, it will randomly choose one to
request a useful chunk. It is possible that a peer may get many download-
ing requests. Since we assume that there is no restriction on uploading

CHAPTER 2. A STOCHASTIC FRAMEWORK 8

bandwidth, all requests will be satisfied. Also, due to the abundance of
uploading bandwidth, there is no need to enforce incentive mechanism
for data transfer. Lastly, it is important to note that when m = 1, this
corresponds to the model described in coupon replication system [27].

2.2.1 Model Formulation

First we assume that all types of chunks in the system are uniformly
distributed. This assumption can be guaranteed by the random chunk
selection policy (as described in Section 2.1). We classify peers into differ-
ent types according to the number of chunks it possesses. A peer holding
i chunks is called a type i peer, for z = 1,2,... ,K - 1 {i # K because
a peer will immediately depart from the system when it finishes down-
loading all K chunks). After receiving a new chunk, a type i peer will
become a type (i + 1) peer. Let pij denote the probability that a type j
peer B is useful to a type i peer A. When i < j, it is clear that Pij = 1;
When i > j , we have pij = 1 - Prob{^s ^ Ta\- Thus

I 1 l < i < j < K - l , .
Pi’j = j i - 夢 1 < j < i < K - is the binomial coefficieSf ̂

Let yi(t) denote the number of type i peers in the system at time t. The
total number of peers in the system at time t is y{t) — YlS^^ � . W h e n
a type i peer randomly picks another peer and requests its bitmap, the
probability that this selected peer is useful is qi{t) = Ylfji^ Pijyjit)/y{t),
i = l,2,...,K -1. ’

Given the system state Y{t) = {2/i(t)}ie{i’...’/^-i}，it is easy to verify
that (Y{t))t>o is a Markov process taking its values in is a
K — 1 dimensions vector with non-negative integer entities). Denoting by
ei the unit vector of whose z-coordinate equals 1, and with all other
coordinates equal to zero, the non-zero transition rates of this Markov
process are, for all i G {1，...，K — 1}，

Y ~ y + ei with rate A,
y ~ > y - ei + ei+iwith rate yi (1 - (1 - QiD, i e [l,..., K - 2}
y 一 Y - CK-i with rate 2//^_1(1-（1-収-1广).

We analyze the system under a large population asymptotic regime. Note
that this is a density dependent jump Markov process [22]. It converges
to the solution of the differential equations

_ = J A 1 1 � [1 - (1 - � n 2 =
dt — i 2 / , _ i w [i — (i - g i - i w n i “ 0 [i — (i - g i w n《 = 2， . . .， /〈坊」）

for some initial condition y (0) .

CHAPTER 2. A STOCHASTIC FRAMEWORK 9

2.2.2 Steady State Analysis

In this section, we derive the average file downloading time for the above
P2P file sharing system. We also extend our analysis to a file sharing
system that provides forward error correction (FEC) service.

Altruist ic File Sharing W i t hou t F E C

In this section we focus on the steady state performance and its equi-
librium point. An equilibrium point is the point Y = (yi,y2, • • •, VK-i)
such that if Y{t) = Y, then Y{t') = Y for all t' > t. The necessary
and sufficient condition for Y to be an equilibrium point is ^^^ = 0，

for 1 < i < K - 1. Apply these conditions to Eq. (2.2)，we have the
following equations at the equilibrium point Y: X = ？/j(l — (1 — gj"^),
i = 1，2，...，7^- 1.

Let Ti be the average sojourn time for type i peers, that is, the average
time for a type i peer to receive a new chunk and become type (z+l) . One
can derive this measure from the equilibrium point Y = (yi,... ,yK-i)
by using Little's theorem [21]: XTi = yi. Define T = Zfji^ Tj as the
average file downloading time in the P2P file sharing system, we have
Ui/y = Ti/T. Finally, one can obtain the following equations at the
equilibrium point Y:

I K-l rp

^ 1 _ (1 _ q.)m and - E -fP^.j^ for z - 1,2,..., - 1, (2.3)

One can observe that T] of Eq. (2.3) does not depend on A. So even
when the arrival rate A is large and the number of peers in the system
becomes very large, the average sojourn time (and also T) will not be
affected in the steady state. This is an important observation since this
indicates that the P2P file sharing system has a good scaling property:
when one increases the arrival rate, the performance will not degrade.
Since 7] is the average sojourn time for type i peers, i.e. it takes on
average, Ti unit of time slots to download the next chunk when a peer
holds i chunks, let us explore the relationships among the TVs at the
steady state.

Lemma 1 The sojourn time is an increasing sequence, i.e. 1 < Ti <
T2 < ... < Tk-1.

Proof: According to Eq. (2.3) we have qi < 1. Therefore, one can
conclude that T̂ > 1 for i = 1 , . . . , / f - 1. According to Eq. (2.1), when
i > i', pij < pi>j holds fov j = 1,... -1 and pij < pi>j holds for some
j. So Qi = E f = / 导Pi’j < Efji ^Pi'd = Qi'- Thus, we have > when
i>i'. I

CHAPTER 2. A STOCHASTIC FRAMEWORK 10

Lemma 2 The upper and lower bounds of are

1 �(^ 1 W ^ ^ r + 2)〈了2 < r / ^ N / _ 7 I T r '

where K is the number of chunks in T and Hk is the K^'^ harmonic
number.

Proof: The sequence {tj = Tj/T} is increasing and the sequence {aj =
Pij} in non-decreasing. From Chebyshev's sum inequality, we have

1 /K-I ji \ /K-I \ 1 , i Qj \

" 1 � D (S ^ (§ 叫 = 口 (f i - § 凉 J
= l - (— ^ f——-——)("Concrete Mathematics" [16], pl74.)

\K - 1/ \K - 2 + 1/
One can apply it to Eq. (2.3) and obtain the upper bound of Ti as
claimed. For the lower bound of T“ let us first derive an upper bound of
T, which is

= ¥ 1 < 丄 < 巧 i ^ - 驅 - i + l)
— 白 i - (i - � - iiQi h m - i) - i

We can apply it to Eq. (2.3) to obtain an upper bound of qi as

= (£ l \ < i)
"I — ^ M n c i ,) h c'k

With this upper bound of qi, one can substitute it to Eq. (2.3) to obtain
the lower bound of 7] as claimed. •
Remark: The importance of the above two lemmas is that one can use
them to understand the “last-piece” problem in P2P file sharing systems,
i.e. how long it takes for a peer to receive the last few chunks of the file
since it gets increasingly more difficult to find other peers that can help.

To illustrate this issue, let us consider the upper and lower bounds of
Ti for a file with = 50 chunks. The scenario is illustrated in Fig.2.2(a)
and Fig. 2.2(b). There are two important observations. First, one can
observe that the upper and lower bounds are indeed very tight, which
implies that we can use to give a very accurate measure of the average
file downloading time T. Secondly, one can observe that the sojourn
times Ti are very close to 1 for i « K - I, but when i approaches

CHAPTER 2. A STOCHASTIC FRAMEWORK 11

Lower bound Lower bound
Upper bound Upper bound

1.8
1.3.

1.6

丁丨 丁丨 1 . 2

1.4

12 j ” J
r — ‘ I — ‘ — ‘ ~ v ~ ‘ — ‘ — ‘ — • — . — . — . 1 1 —
1 5 10 15 20 25 30 35 40 45 49 1 5 10 15 20 25 30 35 40 45 49

i i

(a) m = 1 (b) m = 2

7 . I , , , - , , , , ,

「 Upper bound I

1.8

1.6

T.
I

1.4 •

1.2
/

、 5 10 15 20 25 30 35 40 45 49
i

(c) m > 1 with FEC

Figure 2.2: Illustration on the last-piece problem: bounds of Tj for m = 1,2 and
m > 1 with FEC. K == 50 chunks

K - 1, Fig. 2.2(a) (and Fig. 2.2(b)) shows that both bounds approach
2 (approach 1.4) quickly. The increasing downloading time, especially
for the last few chunks, depicts the last-piece problem. Intuitively, the
reason for this problem is that it becomes more and more difficult for a
peer to find other peers which are useful, especially when the peer is very
close to finish downloading the whole file. However, one can amend this
problem, at least to a certain degree, by simply changing the parameter
m. One can observe that when m = 1 (as shown in Fig. 2.2(a)), it costs
2 time slots on average to download the last chunk but when m = 2
(as shown in Fig. 2.2(b)), it only costs 1.4 time slots to obtain the last
chunk. The reason is that when m = 2, peers can ask for more peers for
bitmaps and thereby increase the chance to find useful peers. Given m,
we can derive the bounds of T from Lemma 2.

Theorem 1 When m = 1，the average downloading time T = K — 2 +

Proof: In the proof of Lemma 2，we have obtained T < K — 2 + Hk +

CHAPTER 2. A STOCHASTIC FRAMEWORK 12

For the lower bound of T, let us denote A = K-2 + Hk, then

K-l K-l 1

i=i i=i 丄 - I

= A + 盟 1 i) i ^) •
^ + 1 V J J \ ^ J \ K)

Combining the upper and lower bounds, we know that for any given
solution T, there exist two constants ai and 0；2，so that K - 2 + H^ +
Qi (^) < T < K - 2 + Hk + o^2 (^) . Thus Theorem 1 can be
shown as claimed. Note that the residual term approach 0 as increases.

I
Remark: Note that when m 二 1, the system corresponds to the “open
and flaf case of the coupon system [27], in which the authors give an
upper bound T < K + 0(-\/K). However, the result in Theorem 1 states
T = K - 2 + Hk + 0 We know that Hk is the K仇 harmonic
number, Hk = log/C + 7 + 0(K~^), where 7 = 0.5772... is the Euler-
Mascheroni constant. Thus T = K + \ogK 0{1). Therefore, we obtain
a tighter bound than [27].

Similarly, we can derive the lower and upper bounds of T from Lemma
2 when m >2. Due to the lack of space, we only show the derivation of
the upper bound in the following theorem.
Theorem 2 When m > 2， the average downloading time T < K +
O (l ^) .

Proof:

K-l 1 K-l lY丄）
T ^ - = I V I A k - \ K - i + l j \

[(由) (“)] 「

… 1 + 臺 劃 + 0 � … o (宇) . •

Remark: Since it is necessary to require at least K - l time slots to
finish the downloading of the whole file we can conclude by fetching
multiple bitmaps (setting m > 2), the average downloading time is near
optimal. To see this, one can compare it with the result in Theorem 1,
which states that it takes at least K + \og{K) + 0(1) time slots to finish
the downloading, and we remove the log(i^) term by getting more than

CHAPTER 2. A STOCHASTIC FRAMEWORK 13

one bitmap. Setting m 二 2 is sufficient for achieving the near optimal
performance. This result is encouraging and insightful, it shows that due
to the diversity of chunks held and the altruistic uploading for every peer,
a "simple-design" can achieve very good performance.

Altruist ic File Sharing with F E C

We have seen that by fetching bitmaps from multiple peers, the system
performance can reach near optimal levels. Here, we provide an alterna-
tive approach to reach the near optimal performance by using the forward
error correction (FEC) coding technique [32]. Given a file one can en-
code the original K chunks to Q = (1 + a)K chunks with erasure codes
before the distribution process. Any peer can reconstruct the original
file T after it receives any K distinct chunks of these Q chunks. This
technique makes it unnecessary to download the "last" chunk and will
ease the last-piece problem, making the system more efficient. To make
this claim formally, we have the following theorem:

Theorem 3 For m > 1, using FEC with redundancy rate of a > 0, the
average downloading time Tpsc < - 2 + (1 + a) log ^ +

Proof: Note that FEC makes pij = 1 - when l < j < i < K-l
and all other equations remain the same. Similarly to the proof of Lemma
2, one can derive that Ti < I - (；^^ (q4+i) . S �

刚 < S i - ⑷ (南 广 丁 - (i + ^ l ^ J

= i ^ + (P ， + i) ! + 等 1)

八 八 j=Q-K+\ J

= K - 2 + {l + a)log + 0{K-'). I
a

Remark: Compared with Theorem 1, the harmonic term Hk is replaced
with the term (1 + a) log Note that, when a = 0.1 (i.e. 10% redun-
dancy), this term is less than 2.7. Thus given a particular redundancy
rate a, Tfec is bounded by — 1 plus a small constant. So by using
FEC codes, even if a peer only contacts one other peer for bitmap (i.e.
m = 1), the average downloading time T can still approach the near
optimal value.

Gkantsidis et al. [15] declare that traditional P2P content distribution
software as BitTorrent usually suffers from last-piece problem and it could
be settled by the network coding technique they propose. In our model
we have seen that there exists last-piece problem as Fig. 2.2(a) and Fig.
2.2(b) show. It takes about 2 time slots in average to download the
last piece. To illustrate how FEC affects the last-piece problem, let us

CHAPTER 2. A STOCHASTIC FRAMEWORK 14

consider the upper bound of 7] for a file with K = 50 chunks again. By
setting OL = 0.1 (i.e. 10% redundancy), we show the upper bound of in
Fig. 2.2(c). This bound holds for all m > 1. From Fig. 2.2(c), one can
observe that the last-piece problem can be eased if we use FEC technique
to generate a few redundant chunks. This observation is helpful for the
advanced P2P content distribution system design in the future.

2.3 Altruistic File Sharing System with Download
and Upload Constraints

In this section, we consider the P2P file sharing system where each peer
has a limited bandwidth on the download and upload capacity. Note
that this is a more realistic setting than the unlimited upload bandwidth
assumption in Section 2.2 and the coupon replication system [27]. This is
a very important point since the current Internet, the bottleneck is not at
the network core but rather at the edge, and usually the upload capacity
of a host is indeed limited (e.g., ADSL or cable system). To simplify our
analysis, we only consider the case m = 1 (i.e. in each time slot, peer
A will first contact one other peer randomly in the system to obtain its
bitmap). If this peer can help peer A, peer A will request a useful chunk.
It is possible that a peer may get multiple requests for chunk. Due to the
upload capacity constraint, this peer will only randomly pick one peer to
upload. If peer A is chosen, then peer A can download one useful chunk
within the current time slot. Otherwise, peer A will remain idle for the
current time slot.

2.3.1 Model Formulation

As in Section 2.2, let pij denote the probability that a type j peer is
useful to the type i peer, yi{t) denote the number of type i peers in the
system at time t. The total number of peers in the system at time t is
y{t) = yi{t). When a type j peer is requested by another peer for
its bitmap, the probability that this request comes from a type i peer is
yi(t)/y{t). Thus, the probability that the type j peer is useful to a peer
who contacts it is (3j(t) = ^^^^ Pijyi{t)/y{t).

Assume that peer A contacts peer B and B is of type j. Peer A finds
that B is useful and sends B a request for a chunk. Let us consider
the probability that A will be chosen by B for service. To derive this
probability, we consider how many other peers contacted B for its bitmap.
Since there are y-2 peers (ignoring A and B) in the system selecting
others to contact and B is contacted by a particular peer with probability
l/{y - 1) (each peer does not contact itself). Thus the number of peers
that contacted B, denoted by the random variable R, is the number of
successes in a sequence of y - 2 independent Bernoulli trials, or i? ~

CHAPTER 2. A STOCHASTIC FRAMEWORK 15

Bernoulli — 2，由)• Since ^ — 2 is large and (y — 2)/{y — 1) � 1 , R can
be approximated as a Poisson random variable with mean 1，thus R has
a probability mass function of /i?(/c) = /k\, for k e {0,1,...}.

Assume R = r (i.e. peer B was contacted by r peers for its bitmap).
The probability that peer B is useful to a peer in R is Pj{t). Thus B
receives k requests for chunk with probability C，(3�{f}{l — for
k <r. When A contacts B, finds B is useful and also sends B a request
for chunk, the probability that A is chosen by B for service is

The system can be modeled as a Markov process Y(t) = {队⑴)

Again, it is easy to verify that (Y(t))t>o is a Markov process taking its
values in The non-zero transition rates of this Markov process,
for a i n e { 1， . . .，— 1} is

Y ——y + ei with rate A,
K-l \y. OO e-1 -

y ^ Y -ei + ei+i with rate yi ^ — ^ —
j=l Iy r = 0 广 .

i e { l , . . . , K - 2]
K - l � OO g-1 .

y ~ ^ y - e K - i with rate yn-i ^ —PK-i,j .
j=l Ly r=0 T, -

For a large population asymptotic regime, this density dependent jump
Markov process converges to the solution of the system of differential
equations

dyAt) � “ � • � f e - i , .1

K-l「？厂⑷ OO - 1 1
m E E � ， … 2 ” • • ’ - 1.

with some initial condition y (0) .

2.3.2 Steady State Analysis

We focus on the steady state performance and we are interested in its
equilibrium point. In other words, the operating point wherein dyi/dt = 0
iov 1 < i < K — 1. Define as the sojourn time for type i peer. It follows
from Little's theorem that XTi = 队 . L e t the average file downloading

CHAPTER 2. A STOCHASTIC FRAMEWORK 16

time be T = Tj, one can obtain the following equations at the
equilibrium point:

1 K-l rp OO

不 = E (如 E T T V) ， i = l ’ 2 ，， i ^ - l (2.4)
丄 i j=l 丄 r=0

where

= (� + 1) ‘ and ft 二 石 - P i j , j = l,2,...,K-l.

In Section 2.2, we have shown that a P2P file sharing system that has
only download capacity constraint is very efficient. With both download
and upload capacity constraints, the performance of the system will not
be as good. In this section, we seek to derive the bounds of (and
thereby T) to gain insight on how the upload capacity constraint can
affect the system performance. Let us first state the upper and lower
bounds of the sojourn time

Theorem 4 The sojourn times Ti satisfies

1 I J 1 1 [1 “
口+o (丁广 < ir^J [i - (^) � - •

Proof: Because ft- < 1, r > 0, we have o；丄” > l / (r + l). From Eq. (2.4),
we use the same technique in proofing the lower bound of qi in Lemma
2:

Therefore, the upper bound of is obtained. For the lower bound of T ,̂
we have ajr < [1 + r (l - Pj)]/{r + 1) because j3j < 1 and r > 0. Thus

^ J = 1 L r=U J 户 1 j = l

One can obtain an upper bound on the summation term as

Eft =
> W f i i

— “ i) (i - r i) [i - (古) (r i n)]

l - e — i [J

CHAPTER 2. A STOCHASTIC FRAMEWORK 17

Finally, the lower bound of 7] can be obtained as

i < 达 < 1 - � (¥) . -

Lower bound

3 Upper bound i

2.5 ；

Ti ；

2 /
/

/

1.5l 5 10 15 20 25 30 35 40 45 49
i

Figure 2.3: Numerical results illustrated for the bounds of Ti for m = 1 when K = 50

Figure 2.3 illustrates the upper and lower bounds of Ti for a file with
K = 50 chunks and m = 1. Notice that the lower bound of is rather
loose since it is not related to the index i. Nevertheless, the spread of
the bounds is tight for most values of Another observation is that for
small values of z, Ti is not close to 1 any more as in the case of Section
2.2, but rather, close to 1/(1 - This performance degradation is
contributed by the constraint on the upload capacity. In other words, if
one limits the number of chunks that a peer can upload each time slot,
it takes longer, on average, to obtain the file. Lastly, with the upper and
lower bounds of T“ one can derive the average downloading time T.

Theorem 5 The average downloading time T satisfies

+ 0{\ogK) <T< - ^ (A - - 2 + Hk) + 0{K-')
1 — e_丄 丄 _ e丄

Proof: Given the upper bound of Tj, one can use the approach similar to
Lemma 2 to derive that T - Ti < { K - 2 + H K) l { l - e - ^) + 0 { K - ^) .
With the lower bound of Tj, we have

K一 1 � 1 / % f f / ^ � l K
� = E 了 p - 1) + o (+) j = r r ^ + o d o g i O .

Compared with Theorem 1, the average downloading time has been
scaled up by a factor of 1/(1 — when K is large. It is interesting to
explore whether using FEC can improve the performance of the system.
We have the following result.

CHAPTER 2. A STOCHASTIC FRAMEWORK 18

Lemma 3 When one uses FEC in this system, the bounds ofTi as spec-
ified in Theorem 4 and the average downloading time T as specified in
Theorem 5 will remain the same.

Proof: Similar to Section 2.2.2, FEC will increase the value of pij
and other equations remain the same. Thus the upper bound of in
Theorem 4 still hold. Notice that we just replaced pij by 1 in the proof
of the lower bound of Ti in Theorem 4. And pij < 1 still holds even with
FEC, thus the lower bound of in Theorem 4 still holds too. We know
that Theorem 5 is derived from 4 directly, thus the bounds in Theorem
5 also remain the same. •

Lemma 3 implies that FEC could not improve the performance very
much. It can be explained as follows. The random peer selection policy
may cause request collision since a peer may receive multiple chunk re-
quests but can only serve one peer. Other peers requesting chunk from
the same peer will waste their time slot.

2.4 Incentive File Sharing via Coordinated Match-
ing

Prom Theorem 5, one can observe that when there are both upload /
download capacity constraints on cooperative peers and peers use a ran-
dom peer selection policy, the average downloading time T = jz^ +
0{\ogK), where the coefficient of the term K is 丄二一丄1.58. The
system performance degrades as compared with the file sharing system
without upload capacity constraint where the coefficient of term K is 1.
The performance degradation can be explained as follows: the random
peer selection may cause request collision since a peer may receive multi-
ple chunk requests but can only serve one request. Therefore, some peers
may waste the download opportunity and remain idle for a time slot.
For the case of unlimited upload capacity, all requests can be satisfied,
hence, the performance is better.

One may ask, in the system with both download and upload capacity
constraints, can the system still achieve good performance by using peer
selection algorithms other than the random policy? In the following, we
show that by running a maximal matching algorithm (usually regard as
an "easy problem" with efficient polynomial algorithm) at the beginning
of every time slot, one can significantly improve the system performance.
Also, we show that with built-in incentive mechanisms, this approach
can also provide very good performance.

2.4.1 Without Incentive Mechanism

We assume at the beginning of each time slot, every peer will run some
distributed maximal matching algorithm [17], or gets the help from some

CHAPTER 2. A STOCHASTIC FRAMEWORK 19

central server, so that peer A will find peer B as its neighbor while peer
B will also find A as its neighbor. If the matching process is independent
of the chunks held by each peer, then given peer A, the probability that
peer B is of type i is yi/y where 认 is the number of type i peers and y is
the total number of peers in the system. At the current time slot, peer
A can only communicate with peer B and vice versa and the matched
peers can upload and download at most one chunk per time slot.

Let us first study the system without incentive mechanism. When
peer A and peer B are matched, peer A will help peer B if and only
if peer A is useful to peer B (i.e. 0)； similarly peer B will
help peer A if and only if ！Fb \ ^a ^ 0. Since the selection of neighbor
is independent of peers' type, we get the differential equations for the
number of type i peers as

_ j x - m E f s r A , i = i (2 5�

dt — \ y i - i { t) - E f = - / ' i ^ P ^ j i = 2,...,K-i} . J

One can find that, Eq. (2.5) is equivalent to the differential equations
given in Eq. (2.2) where peers have unlimited upload capacity and m = 1.
Thus, the asymptotic bounds given in Theorem 1 still holds for this
model, which implies T = K + log(X) + 0(1)
Remark: Both the download and upload capacity are one chunk per
time slot, each peer has the same constraints as that in Section 2.3.
However, we have better performance when matching is used instead
of the random peer selection. The random peer selection may cause
request collision (i.e. a peer may receive multiple chunk requests but it
can only serve one request due to its upload capacity), so the download
capacities of the unserved peers are wasted. But if peers are matched at
the beginning of each time slot, then the performance is greatly improved,
approaching the performance of the random peer selection with unlimited
upload capacity.

2.4.2 With Incentive Mechanism

Let us study the system with coordinated matching but with an incentive
mechanism. Namely, given a pair of neighboring peers: peer A and peer
B, both of them will perform chunk transfer iff both of them are useful
to each other (i.e., ^ ^ and Tb \ ^a 0)- In this case, peer
A and B will obtain one new chunk from each other in the current time
slot. We use this model to capture the “tit-for-taf incentive mechanism
in the BT protocol. With this mechanism, the probability that a type i
peer can exchange chunk with a type j peer is

, f i - 多 (、

Pi’j = ？ (2 . 6
1 - 》 l < i < j < K - l .

CHAPTER 2. A STOCHASTIC FRAMEWORK 20

Let us first state some important properties of p-j.

Lemma 4 p'-j has the following properties: (1) pjj = p'j�i; (2) •=
P'K_j,K-i and (3) p'�j is an increasing function of j when j < i, and p.^
is a decreasing function of j when j > i.

Proof: The proof of property (1) is trivial. To prove property (2), we
consider the following three cases:

• C a s e 1: 1 < j <i: we have p ' � � = 1 - C / / C J . = 1 — C 约 C � .
j < i implies K-i<K-j, therefore, p'K-j,K-i 二 l - C ^ l j / C ^ " ' =
1 - C^lj/C),. So we get = VK-ĵ K-i

• Case 2: z < j < A ' - l : We have = v'j^i = P'K-i’K-j = P'K-j,K-i-

To prove property (3), let us consider the following cases:

• Case 1: l < j ' < j < i < K - l :

八 厂 〜 ' = (1 - 远) - (1 - 远) = (1 - i r > •

• Case 2: i < f < j < K - 1: Since K - j < K - f < K - i, we
have

p'ij — p'i,j' = P'K—i，K-j - P'K-i’K-j' < 0 . •

To simplify our notation, let us denote Wij = + p'�K-j ih j =
1,..., K — 1). It is easy to show that Wij = Wi,K-j = WK_i’j = Wj’i.

Lemma 5 For a given i, Wij is an increasing (or decreasing) function
of j for j < K/2 (forj>K/2). ‘

Proof: Consider i < Kjl first, in this case,

(1) j < i, we have

叫d ^iJ-l = PiJ + Pi,K-j - (P'ij-l + Pi,K-j+l)
=(PiJ - K j - l) + iPi,K-j - P'i,K-j+l) > 0.

(2) i<j< K/2, we have

w — w 1 = f i - H . + i _ 5 ! k z z) _ f i _ Q z i ,
�h3 ⑴》，j-i - 丄 p i 十 丄 ri r^i 十 m

\ ^K ^K J \ ^K ^K /
= ^ K - j — ^ j - 1 � 0 .

Combine case (1) and (2), we know when i < K/2, Wij is increasing if
j < K12. Since Wjj = Wi,K-j, Wij is decreasing if j > K/2. Because
Wij = WK-i,j, the above results hold for i > K/2. •

CHAPTER 2. A STOCHASTIC FRAMEWORK 21

Lemma 6 Ti = Tk-l.

Proof: We take a reverse view in the steady state so that (1) we regard
the departure as arrival; (2) if peer A's storage is J^a�we just imagine
there is no peer A but its complementary peer A with storage ！F^ 二

T \ Ta- SO originally 7] is the average time for peer A to stay in type
i(i.e. with i chunks), but now the average time for peer A to stay in
type {K — i): T! = From Lemma 4 we know = p'K_i,K-j, So
the "reversed system" is identical to the original system which implies
Tl = Ti. Thus we get 7] = Tk-i- •
Similar to the steady state analysis in previous section, we have the
equations for ‘

Y . = E p P M ' i = l ’ 2 ， . . . , i ^ - l ， （2.7)

where T - E i l T '

Lemma 7 For i < K {2, is a decreasing sequence: 2 � � T 2 � . . . >

Proof: Let 1 < 2' < 2 < [K/2\. Based on Lemma 6, we have
1 K-l T. 1 K-l rp 1 K-\ T.

T. = E = 2 T ^ 2

Similarly, ^ = | Y f̂Si 导Wi'’j. From Lemma 5 and Wij = we have
1 1 K-l rp K-\ rp.

—聊’J.) = E 切 > 0.
丄 i j=l J- j = l �

Thus Ti < Ti>, and the upper bound of T\ is

2 2 2

Ti = 导 < Ef=-ii 孕则’ 1 = ‘ = 2. •

Theorem 6 Using the incentive mechanism stated above, the bounds on
the average downloading time T are

\ ^) \ ^ J

Proof: Base on Lemma 5，Lemma 6 and Lemma 7, we have

1 K-l rp 1 K-l T. 1 K-1 T- 1 K-l

^ = g = 2 5 f 切、j T - = Y^l S 成

CHAPTER 2. A STOCHASTIC FRAMEWORK 22

“ M cU MV
— 1 [i K-i 丄 -

广 1 K - l [K-i + l + i + 1 .

Therefore, we obtain the lower bound of T as
K-l K-u 1 K-l 1

T = ^̂ - S 1 ~ 1 i I K-i F T � 1 1 r t I K-i~~^
i=\ i=\ 丄 — t i q r — 莎 J 丄 i + 1 丄J

^ K + 2 K'^ + 2K\i K-i)
I—丄匕 J \ z

According to Eq. (2.7) and Lemma 7, we have

CkJ [U T Cj, UiTC'k)

^ T i f ' C j ^ 2 / i I K-i\

Thus for z = 3 . . . - 3 (assuming K > 5), we have
1 (i ^ — 驅 - “ 1) (“ 1)

(K - 1)(K - i + + 1) ^K -1 2(K -1) / I 1 \
< KH -K^-Kf + K = K K-2 \K - i - \ i^J “

Thus the upper bound of T is

Remark: Given the upper and lower bounds in Theorem 6, one can con-
clude that when incentive mechanism is employed to enhance fairness,
the performance of the file sharing system still achieves better than the
random peer selection policy in Section 5 wherein no fairness is guaran-
teed and free riders can benefit from peers' altruistic service. Therefore,
it is important for a system to help peers avoid waste of download ca-
pacity (request collision). Under the assistance of peer matching mech-
anism (such as coordinated matching presented) even if the uploading
and download capacity is tightly constrained, the system can still pro-
vide good performance with a fairness guarantee.

CHAPTER 2. A STOCHASTIC FRAMEWORK 23

2.5 Simulation

In this section, we carry out simulations to (1) validate our analytical
results and (2) obtain other performance measures such as probability
distribution of file downloading time. Unless we state otherwise, the
arrival process of peers is a Poisson process with A = 2.0. Since the
system is slotted, peers arrive at time slot t will obtain the initial chunk
and will start participating in the file sharing process in the beginning
of time slot i + 1. The file that will be shared by all peers has K = 200
chunks. We also have results for K — 500, but due to the lack of space
we mainly discuss the case K = 200.
Experiment 1: The goal of this experiment is to validate the analytical
results in Section 2.2 and to illustrate the probability density function of
the file download time. For this experiment, we set m = l or equivalently,
this corresponds to the coupon model [27 .

2 . 2 丨丨 . 2 . 2 | .

Simulation Simulation
9 Upper bound ？. Upper bound

1.8 1.8-

T. 1.6 T. 1.6-

1.4 1.4-

1.2 J 1.2
J ^丨 J
1 50 100 150 199 1 50 100 150 199

i i

(a) average Ti, without FEC (b) average Ti, with FEC

30 . I ——n 35 P • f ——n

25 | M w i t h FEC(a=0.1)| 30 | l w i t h F工

« 20 0)25
3 2 20

� i is

” I , ： I QlnBiiiBilLI 11111 OIJIBBIBLI M 111 •. - .
199 205 210 215 220 499 505 510 515 520

T T

(c) distribution of T, K=200 (d) distribution of T, K=500

Figure 2.4: Ti and T for m = 1, constraint on download capacity only

Fig. 2.4(a) presents the average sojourn time 7] for a file with K = 200
chunks. We compare the simulation results and the analytical results^.
This indicates that our analytical result is very accurate. Fig. 2.4(b)

2 For the analytical results, since the spread of the bounds is very tight, we simply plot the upper
bound of Ti

CHAPTER 2. A STOCHASTIC FRAMEWORK 24

illustrates 7] under similar setting but we enable the FEC with 10%
redundancy (i.e., a = 0.1). One can conclude that the analytical model
is again very accurate and that using FEC can resolve the last-piece
problem. Fig. 2.4(c)-(d) illustrate the probability density function for
the average file downloading time T, with and without using FEC, for
K = 200 and 500 respectively. When K 二 200 {K = 500) without
using FEC, the analytical average file downloading time is T = 203.88
(T = 504.79), and the simulation average file downloading time is T =
204.11 (T = 504.99). When K = 200 {K = 500) and FEC is enabled, the
analytical average file downloading time isT = 200.64 (T = 500.64) while
simulation average file downloading time isT = 200.72 (T = 500.64). We
can observe that by using FEC, not only one can reduce the average T
but also the variance of T.
Experiment 2: This experiment is to validate the results in Section
2.2 when m > 1. According to our analysis, there is not much difference
between m = 2 and m > 2 since the average downloading time T will be
bounded by K. For this experiment, we set m = 2. Fig.2.5(a) presents
the average sojourn time 7] without FEC. The simulation results are
similar to the analytical results again. Comparing Fig. 2.5(a) and Fig.
2.4(a), one can find that last-piece problem is not so severe for m = 2.
raises only for the last five chunks. If we deploy FEC {a = 0.1) together
with m = 2, the last-piece problem can be resolved and this is illustrated
in Fig. 2.5(b). Notice that we only give out a loose upper bound of in
Fig. 2.5(b), which is also the upper bound of the system without FEC
in Fig. 2.5(a). Now we examine the probability density function of T in
Fig. 2.5(c). Without FEC, 50% peers finished in - 1 time slots and
80% peers finished in less than or equal to K time slots. After we enable
the FEC with a = 0.1，96% peers finished in - 1 time slots and all
finished in less than or equal to K time slots. One can conclude that
the average downloading time T is close to the optimal value of 199 (or
K—1), and the variance of T is also reduced. When K = 200 {K = 500)
and without FEC, our analysis gives an upper bound of the average
downloading time T < 200 (T < 500), and the simulation is T = 199.83
(T = 499.78). After using FEC with a = 0.1, the analytical upper bound
of T still holds, while the simulation gives T = 199.04 (T = 499.01).
Experiment 3: This experiment is to validate the altruistic system
with download and upload capacity constraints in Section 2.3. We con-
sider m = 1 in our analysis thus we set m = 1 in this simulation. Fig.2.6(a)
presents the average sojourn time without FEC. The simulation re-
sults and the analytical results match very well, i.e. our theoretical upper
bound is very tight. Comparing Fig. 2.6(a) and Fig. 2.6(b), we observe
that FEC eases the last-piece problem, but most of remain the same
and they cannot approach to 1 even with FEC. The reason is that the per-
formance degradation is due to the request collision but not the last-piece

CHAPTER 2. A STOCHASTIC FRAMEWORK 25

1 4, . _ . 1.4| ,
Simulation Simulation
Upper bound Upper bound

1.3 1.3

T 丨 1.2. T. 1.2

1.1 • 1.1 •]

1 J �
1 50 100 150 199 1 50 100 150 199

i i
(a) average Ti, without FEC (b) average Ti, with FEC

lOOn , . I 10011 • I

80 I “ . 80 • ‘ ——'

f 60 f 60
S I g
I 4 o | I 4。

20 y 20

oI IL^ 一 oil 1.1 I.
199 205 210 215 220 499 505 510 515 520

T T

(c) distribution of T, K=200 (d) distribution of T, K=500

Figure 2.5: Ti and T for m = 2, constraint on download capacity only

problem. Also note that when we have upload and download capacity
constraints, the variance on T is significantly larger than the previous ex-
periments. This can by confirmed by Fig. 2.6(c), the downloading time
T varies in a wide range, from 275 to 375, and using FEC does not reduce
the variance very much. When K = 200 {K = 500) and without FEC,
our analytical bound of the average downloading time is T < 322.53
(T < 798.56), while the simulation gives T = 319.99 (T - 793.67). With
FEC, the upper bound still holds, and the simulation result is T = 316.06
(T = 791.01)，these show that using FEC in this type of system cannot
improve T very much.
Experiment 4: This experiment is to validate the coordinated match-
ing system with incentive mechanism as described in Section 5. Fig.2.7(a)
presents the average sojourn time T] without FEC. One can observe that
the gap between the simulation results and our analytical upper bound
is small. Also, one can observe both the last-piece problem and first-piece
problem^ in our analytical bound and simulation result. The first-piece
problem can be explained as follows. When a peer has very few chunks,
it can hardly help other peers. Due to the incentive mechanism, it is

3 This problem is reported as first block problem in [23] by measurement study as the slow startup
due to choking.

CHAPTER 2. A STOCHASTIC FRAMEWORK 26

3 . 5 r p = = = " " " . . 3.5 丨丨 ， ~ , ,
Simulation Simulation
Upper bound Upper bound

3 3

2.5 2.5 1

丁丨 丁丨 ；

2 I 2 r
• f »III. 11.1-Ln,-. -r -|L.|-l~-l-.l

1l 50 100 150 199 "S 50 100 150 199
i i

(a) average Ti, without FEC (b) average Ti, with FEC

4| • ,1 2.5| • . • ,|
without FEC • I without FEC

A ---with FEC(a=0.1)| , i l | … w i t h FEC(a=0.1)|

i： f \ : r： A :

L J L . . . L J l _ _ _ , v
275 300 325 350 375 700 750 800 850 900

T T

(c) distribution of T, K=200 (d) distribution of T, K=500

Figure 2.6: Ti and T for m = 1，constraint on upload and download capacity

difficult for this peer to obtain service from others. We can observe that
FEC does well in easing the last-piece problem, but is not so good at eas-
ing the first-piece problem^ as Fig. 2.7(b) has indicated. From Fig. 2.7(c)
and 2.7(d), one can observe that the average and variance of file down-
loading time can be reduced when FEC is deployed. Another important
observation is that when FEC is deployed, the performance measures
of T (both for the average and variance) are significantly improved as
compared with the results in Experiment 3 wherein both systems are
under the upload and download capacity constraints. When K = 200
(K = 500) and without FEC, our analysis gives an upper bound of the
average downloading time T < 221.50 (T < 525.17)，and the simulation
is T = 211.78 (T = 513.10). After using he FEC with a = 0.1’ the ana-
lytical upper bound of T still holds, and the simulation gives T = 203.90
(T = 503.77). This validates our analytical models.

• End of chapter.

CHAPTER 2. A STOCHASTIC FRAMEWORK 27

2.2|, , , 2.2| .
Simulation Simulation

2 Upper bound! ? , Upper bound ‘

1.8: I 1.8； ；

T丨1.6丨 ； 丁丨1.6:丨 _•

1 2 � J J
l l — — ' ' --I ‘ " ‘ |' I • _ • • •• B -̂ ―‘
1 50 100 150 199 1 50 100 150 199

i i
(a) average Ti, without FEC (b) average Ti, with FEC

20 r ‘ ,1 20 n . • . ,
• without FEC 丨 • w i t h o u t 际 I

l l w i t h FEC(a=0.1)| | l w i t h FEC(a=0.1)|

15. 15

a> ®
O) O) B S §10 §10
I I 5 5

j j iy i i i i i ty i i i i i i i i i i i i oUiUMityjjj j jJi jjjj^^
199 210 220 230 499 505 510 515 520 525 530

T T

(c) distribution of T, K=200 (d) distribution of T, K = 5 0 0

Figure 2.7: % and T for coordinated matching, incentive mechanism, with constraint
on upload and download capacity

Chapter 3

An ISP-friendly Protocol

3.1 Simple Mathematical Models

We consider a P2P file distribution system which disseminates files to a
large number of peers. The file to be disseminated, say T^ is divided into
many pieces. Formally, we have T = {Ci,C2,..., C^} in which the file T
has K > 1 pieces, Ci is the i仇 piece of T and Ci n Cj•二 0 for i — A
peer that holds all pieces of the file is called a seeder while a peer that
holds a subset of pieces is called a leecher. To download the file, a peer
(or leecher) needs to download all K pieces.

Before we present the analysis of an ISP-friendly protocol, let us con-
sider the current P2P file distribution system, such as BitTorrent, in
which peers do not consider the boundary between ISPs in their data
transfer. We call such kind of P2P file distribution as “random down-
loading" .What we are interested in is the amount of cross-ISP traffic.
Assume that the number of peers in the P2P system is N, n of which are
within the ISP a. Considering a randomly chosen peer which resides in
the ISP a, the probability of choosing a peer outside ISP a for the data
transfer is

f = (3.1)

Thus the expected fraction of file content which is downloaded from(upload
to) peers outside ISP a is (1 — n/N). The total amount of incom-
ing(outgoing) cross-ISP traffic is approximately (n(l — ；)̂ * file size).
This represents a large volume of cross-ISP traffic because usually there
are many peers in a P2P file distribution system, for instance, N is much
larger than n and n is relatively large.

In analyzing the performance of an ISP-friendly protocol, we seek to
derive the amount of cross-ISP traffic if peers are willing to follow the
exploiting-the-locality principle (ELP). Obviously, only when the reduc-
tion of cross-ISP traffic is high, then one should consider designing and
implementing an ISP-friendly file distribution protocol. In our analysis,
we concentrate on two common scenarios in P2P file distribution: regular

28

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 29

peer arrival and a big bursty peer arrival (flash crowd).

3.1.1 Assumptions

Unlike previous work which focused on the performance modeling of file
downloading time, we model the amount of cross-ISP traffic. For our
mathematical model, we make the following assumptions:

• Peer arrival process is characterized by a Poisson process with an
average rate A.

• Peers are all persistent in the sense that they will not abort before
they finish the file download.

• To ensure file availability, we assume there exists at least one seeder
in the system: some peers are willing to publish the original file to
the P2P network.

• Whenever a peer (or leecher) obtains all pieces of a file, the peer
will leave the system immediately.

• The piece diversity of the P2P system is very good so that peers
will be interested in each other with high probability.

Note that the last assumption is a common assumption for most fluid
models of P2P systems [12,31j. One may argue that the last piece problem
may destroy this assumption, but the measurement results in [1,23] and
the stochastic analysis [24] show that peers show interest of each other
most of the time and the last piece problem only affects the last few
pieces. Its effect in the mathematical model can be safely ignored for a
large file which contains thousands of pieces. This assumption means that
the downloading rate for a given peer can be represented by a random
variable which is independent of its downloading progress.

Note that based on the ELP, if there exists a seeder in an ISP, then
all peers in that ISP will never download pieces from external peers and
the incoming cross-ISP traffic is zero. This is a trivial case. We consider
a more interesting case wherein the seeder does not reside in an ISP. The
derivation of the cross-ISP traffic for an ISP-friendly protocol is compli-
cated and it depends on the specific implementation of the protocol, but
instead, one can derive a upper and lower bound of this measure. Before
we present the formal analysis, let us use an example as shown in Figure
3.1 to illustrate the idea. The file has 20 pieces and at this moment,
there are 3 peers within the ISP. Let Vi be the fraction of progress in the
file download for peer i. In this example, we have Vi = 0.3 (6 pieces),
V2 = 0.15 (3 pieces) and v̂ = 0.2 (4 pieces). Since peers follows the ELP,
only those missing pieces by all peers would be downloaded through the
cross-ISP link. How many pieces would be downloaded through the cross-
ISP link before the next peer departure? In the best case, when all peers

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 30

possess different pieces from each others, then the external download will
he d = 1 — E L i 机 二 0.35 (7 pieces) and this is the lower bound. In the
worst case, the set of pieces possessed by any peer is a subset of the
set of pieces possessed by the peer with the maximum progress. In this
case, we need to download all missing pieces of peer 1 and it is equal to
d = 1 - max^il^i} = 0.7 (14 pieces), which is the upper bound. The
remaining question is how to uncondition the number of peers and ？Vs.
We are now in the position to develop the mathematical model. As men-
tioned before, we consider two scenarios: regular peer arrival case and
flash crowd case. Let us first focus on the analysis of regular arrival case.

File LLLmkl ‘M.�NH-f . . IJTTT]

— T h e Best Case
, I v i ii m _ m t却

i _ ” _ V2 I m n：̂

VI I I V3 坡丨 _ m m
I -i-T"
I I \/3

！ v2 , The Worst Case
•!• I r 丄 VI I _ _ _ _]

V2 I ta m ifi 1
Peer1 peer2 peerS V3 i l U — — — M J

Figure 3.1: Illustration of the lower and the upper bound of cross-ISP traffic

3.1.2 Homogeneous Case Analysis

Let us first consider the homogeneous case: the file downloading time is
the same for all peers. Without loss of generality, assume the file size is
1 and the file downloading time is T. We have the following result.
Theorem 7 For a given ISP in which all peers use an ISP-friendly file
distribution protocol, if there is no seeder in that ISP, peers arrival process
is characterized by a Poisson process with an average rate 入 and all peers
in that ISP have the same downloading time T, then the average amount
of incoming cross-ISP traffic caused by each peer in the steady state,
denoted by E[d)，is lower hounded by

where n — XT and Ii (x) is the modified Bessel function.

Note that n = XT is the average number of peers in that ISP, and this
lower bound is a decreasing function of n.
Proof: Please refer to Appendix for derivation. I

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 31

Assume that each peer is aware of other peers' state in real time, then
for a P2P system which follows the ELP, one can derive an upper bound
of the average cross-ISP traffic as follows.

Theorem 8 For a given ISP in which all peers use an ISP-friendly file
distribution protocol, if there is no seeder in that ISP, peers arrival process
is characterized by a Poisson process with an average rate A and all peers
in that ISP have the same downloading time T, then the average amount
of incoming cross-ISP traffic caused by each peer in the steady state,
denoted by E{d), is upper bounded by

where n = XT.

Proof: Please refer to Appendix for derivation. I

3.1.3 Heterogeneous Case Analysis
In here, we extend our model to consider the heterogeneous case where
peers have different downloading time.

In a large P2P system, the total service capacity of the system scales
up as the number of peers increases [34], and the downloading time is
roughly independent of the number of peers in the system. We use T,
which is now a random variable, to represent the file downloading time of
a peer and extend the model to derive the bounds of the heterogeneous
case.

Theorem 9 For a given ISP in which all peers use an ISP-friendly file
distribution protocol, there is no seeder in that ISP and the peers arrival
process is characterized by a Poisson process with an average rate A. Let
Qi be the probability that the downloading time for a peer will be 1\’ then
the average amount of incoming cross-ISP traffic caused by each peer in
the steady state, denoted by E{d), is hounded by

< E(d) < i (l 一 e"^),
n

where n = XqiTi + \q2T2 + .. •，and Ii (a;) is the modified Bessel function.

Proof: Please refer to Appendix for derivation. I
Remark: In summary, Theorem 9 gives the lower bound and upper
bound of the average cross-ISP traffic caused by each peer when all peers
adopt the ELP. To illustrate the spread of these bounds, we consider an
ISP with different values of n. Figure 3.2 illustrates the spread of these
two bounds on the cross-ISP traffic, as well as the average cross traffic
when one uses the random downloading strategy (e.g., the conventional

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 32

P2P file distribution protocol) with N = 200 peers in the P2P system.
One can observe that both bounds decrease quickly when n, the average
number of peers within that ISP, increases. Notice that the cross-ISP
traffic for random downloading remains high. This justifies the design
and implementation of an ISP-friendly file distribution protocol.

Someone may notice that the upper bound is almost equal to 1 /n and
argue why not just design a gateway-architecture to achieve this bound:
at any moment for a given ISP, there is only one peer which connects
to external peers and all other internal peers subscribe to this peer. So
why we still need to design a new ISP-friendly protocol? Because the
gateway-architecture has several disadvantages: a) It needs someone to
organize the architecture, b) It is difficult to deal with selfish behaviors,
e.g. the gateway peer may not want to upload to other internal peers, c)
More important, it is not compatible with current BitTorrent protocol so
that it could not be deployed gradually. We aim to design an ISP-friendly
protocol to overcome these problems.

V - — ^ ‘

E ‘ —

2 1
f 0.8 i Random downloading(N=200)‘

7 ELP upper bound

g 0.6 ？ ELP lower bound •
5 V.
o
§ 0.4 \\
C \\
•2 \ \
昏 0.2 r
2 \ 、--•〜
5： •••...
m 0 ‘：：：^. .

0 5 10 15 20 25 n

Figure 3.2: Average fraction of cross-ISP traffic vs. the average number of peers in
the ISP

3.1.4 Flash Crowd Analysis

Let us now consider the flash crowd scenario when a large number of
peers arrive to the ISP in a very short period of time. This occurs, for
example, when a very popular movie or an OS kernel update is being first
published to the Internet. Based on the same assumptions we made in
the regular arrival analysis (except that peer arrival process is no longer
Poisson), we can derive the upper and lower bound of the cross-ISP
traffic.

Theorem 10 For a given ISP in which all peers use an ISP-friendly file
distribution protocol and there is no seeder in that ISP. At time t = 0, n
peers arrive and there is no more peer arrival after t > 0. Let Tmin (Tmax)
be the shortest (longest) downloading time of these peers. The average

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 33

amount of incoming cross-ISP traffic caused by each peer, denoted by
E[d), is bounded by

l/n < E{d) < (l+log(—
V \Tmin "

Proof: Please refer to Appendix for derivation. I
Remark: Notice that Tmax is the downloading time of peers with the
lowest downloading rate, Tmin is the downloading time of peers with the
highest downloading rate. It is interesting to observe that the upper
bound of the cross-ISP traffic depends on Tmax/Tmin and n only. •

3.2 An ISP-friendly BitTorrent Protocol

In this section, we present our ISP-friendly file distribution protocol which
uses the ELP to reduce the cross-ISP traffic. To appreciate the proposed
protocol, we first provide a brief review of the BitTorrent (BT) protocol.
Note that one design requirement of our protocol is that it has to be
“compatible” with the current BitTorrent software and our clients can
communicate directly with existing BT peers. This feature is particularly
important since this new service can then be incrementally deployed.

Under the BT protocol, a file is to be divided into many non-overlapping
pieces (the default size is 256 KB) and there is at least one peer, which
is called a seeder, who holds all these pieces and this seeder wants to
publish the file. A peer can get the file either from the seeder, or from
other peers holding those pieces it does not possess. Each peer offers
upload service to other peers only to the extend that the service is re-
ciprocated. By coupling the service each peer can receive to its upload
contribution, the BT protocol successfully makes each peer play a role
of a server and thereby improve the performance of the system. There
is a special node called the tracker, which keeps track of all peers in the
system. A peer needs to first contact the tracker to get a subset of peers
who are downloading the file. This peer then establishes connections to
other peers and finds out what pieces these peers possess. Then this peer
will send out an INTERESTED message to its connected peers, indicating
that there exists some pieces it does not possess and this peer wishes to
receive some download service. One important point is that the INTER-
ESTED message does not indicate which piece this peer wants. The piece
selection is determined in later step.

Uploading is called unchoking in BitTorrent. Each peer unchokes a
fixed number of peers simultaneously (the default number is four). Which
peers to unchoke is determined by the current downloading rate from
these peers, i.e., each peer uploads to the four peers who provide it with
the top four downloading rates. This unchoking mechanism is called the

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 34

tit-for-tat policy, and one implication of this policy is that it deters free-
riding. Beside the tit-for-tat policy, there is another unchoking mecha-
nism called the optimistic unchoking, which allows each peer to explore
the downloading rates of other peers. Under the optimistic unchoking,
each peer randomly selects another peer to upload without considering
the service contribution of the selected peer. Optimistic unchoking serves
two purposes: (1) it helps new peers to get some pieces so that they can
contribute to the community, and (2) it is an attempt to discover another
peer with a higher uploading rate. If this kind of peer is found, then the
peer with the smallest downloading rate in the regular unchoking set will
be replaced by this peer.

Downloading in BitTorrent is determined by the piece selection pol-
icy called the local rarest first. When a peer is ready to download from
another peer, usually there are several potential choices of pieces to down-
load. Under the local rarest first strategy, a peer will choose the piece
which has the least number of copies among its connected neighbors to
download first. The local rarest first policy not only can balance the
distribution of pieces in the system, but can also enhance the overall file
availability.

Let us now present our ISP-friendly protocol. In essence, it is a variant
of the BitTorrent protocol which exploits ELP. The goal is to reduce
the amount of cross-ISP traffic and at the same time, maintain good
performance (e.g., small file downloading time). There are many details
in our protocol, but the basic idea is: a peer will not download a piece
from external neighbors if he finds that this piece is held by some internal
neighbors.

To adopt ELP, it is necessary for a peer to distinguish peers that are
within the ISP and peers that reside in other ISPs. For a BitTorrent peer,
it obtains the IP addresses of its connected neighbors from the tracker.
Therefore, a peer needs to find the relationship between an IP address
and its associated ISP. This type of association can be easily constructed
using tools like the ASFinder in the CoralReef suite [3]. In fact, an ISP
can set up a "whois" server to provide this mapping service to all peers
within its domain. It only needs to map all IP addresses belonging to
itself and its customer ISPs as internal peers, and this can be easily
constructed using the CIDR address format. An important point is that
there is an economic incentive for an ISP to provide this type of mapping
service. It can encourage peers to use the ISP-friendly protocol, therefore
reduce the cross-ISPs traffic and its operating cost.

Being able to distinguish between internal peers and external peers,
each peer can exploit the ELP via the following steps:

1. Divides its neighbors into two type, internal neighbors are the neigh-
boring peers which belong to the same ISP as itself, and external
neighbors are the neighboring peers which belong to other ISPs.

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 35

2. Creates a list C! where C/[j] records the number of copies of the 产

piece that are within the internal neighbors. Similarly, creates a list
CE where Cslj] records the number of copies of the 产 piece that
are within the external neighbors.

3. For a given peer, let J^L denote the set of pieces held by this peer
(or localhost). For a neighboring peer, let TR denote the set of
pieces held by this neighbor. If it is an internal neighbor, sends
an INTERESTED message to it if it has some pieces which are not
possessed by the localhost, i.e., + 0. If it is an external
neighbor, sends an INTERESTED message to it if it has some pieces
which are not possessed by all internal peers, i.e., Ci[j] — 0 for some
j e :FR\:FL-

4. Upon an unchoking event, the peer has to handle it differently de-
pending on whether it was unchoked by an internal neighbor or
external neighbor. If the peer was unchoked by an internal neigh-
bor, the peer will request a piece k using the local rarest first policy
over Ci:

k = argnin {Ci[j]}，j e (3.2)

If the peer was unchoked by an external neighbor, the peer will
request only those pieces which are not available in the internal
neighbors and using the local rarest first policy over CE-

k = ar^ in { C ^ j] } ， j € TrXJ'l, Cj[j] = 0. (3.3)

All other parts of the ISP-friendly protocol remain the same as the cur-
rent BitTorrent protocol, e.g., tracking, tit-for-tat, optimistic unchoking
and so forth.

According to the above mentioned modifications, whether piece /c is a
potential choice for downloading from a neighboring peer can be deter-
mined by the following decision function:

def want⑷：

return k G and
{ISPneighbor == ISPiocalhost O f Ci[k] = = 0)

If want(A;) returns "False" for all piece index k, then the peer is not
interested in this neighbor. If it returns "True" for some piece index k,
then the peer will send an INTERESTED message to this neighbor and
wait to be unchoked.

Upon unchoked by an internal (external) neighbor, the peer can use
the function want(A;) to find out all potential pieces to request, and then
look up the table Cj (CE) to determine which piece to request first based

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 36

on the local rarest first policy. Notice that when all neighbors are inter-
nal neighbors or all neighbors are external neighbors, this ISP-friendly
protocol behaves exactly the same as the current BitTorrent protocol.

In summary, the ISP-friendly protocol proposed above uses the ELP to
send the INTEREST message, and during the piece selection process, uses
the ELP and the local rarest first policy. By doing so, a peer determine
which peers to download from and also attempts to avoid downloading
any duplicate piece which resides within the same ISP.

Before we leave this section, it is important for us to comment about
the difference between the proposed ISP-friendly protocol and the ideal-
ized model as presented in Sec. 3.1. In practice, the BitTorrent protocol
(and the proposed ISP-friendly protocol) is quite involved. It contains
many mechanisms to ensure good performance, such as random first piece
selection, endgame mode, anti-snubbing and so on. Furthermore, each
peer only has a partial view of the whole P2P system and can only make
decisions based on its local information. In addition, it takes time for in-
formation (e.g., piece availability) to be propagated throughout the P2P
network. Therefore, this ISP-friendly protocol may deviate from the ELP
in the sense that

• Each peer may not be connected to all internal peers.

• The piece availability information cannot be updated instantaneously.

The above scenarios may lead to the situation that duplicated pieces
could be downloaded from external peers. The impact of the first scenario
can be reduced if peers can contact the tracker more often to request for
more neighbors. The impact of the second scenario can be reduced if
peers can update their local information (e.g., piece availability) more
frequently with each other.

Notice that the ISP-friendly protocol only aims at reducing the incom-
ing cross-ISP traffic. By doing so, it also reduces the outgoing cross-ISP
traffic because of the built-in tit-for-tat mechanism in BitTorrent. This
mechanism enforces certain degree of fairness in data exchange and there-
fore the total amount of outgoing cross-ISP traffic is approximately equal
to the incoming cross-ISP traffic. This is verified by our experiments
which are presented in the following section.

3.3 Performance Evaluation & Measurements

In order to evaluate the cross-ISP traffic reduction and the average file
downloading time of the proposed ISP-friendly protocol, we modify a
BitTorrent software to implement the ISP-friendly features mentioned in
Sec. 3.2 and carry out experiments and measurements on the PlanetLab.
To compare the proposed ISP-friendly protocol to the current BitTorrent

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 37

protocol, we also instrument the same BitTorrent software to collect traf-
fic information for comparison. In the following, we describe in detail on
how we carry out the experiment.

3.3.1 Choice of the BitTorrent Client

The first BitTorrent client was developed by Bram Cohen, the inventor of
the BitTorrent protocol [9]. Note that there are many other BitTorrent
clients available, such as /^Torrent, BitComet, Azureus and so on. Since
there is no de facto standard, Cohen's BitTorrent client is considered as
the reference for the BitTorrent protocol. Thus, this client is also called
the "Official BitTorrent client". It is an open source software, written
in Python and can be executed on many different platforms. Most Bit-
Torrent clients maintain compatibility with the official BitTorrent client.
The main differences of these clients are the user interface, configuration
options (e.g., caching option to reduce disk access) and certain exten-
sions to the BitTorrent protocol (e.g., UDP transport to traverse NAT).
Our goal is to evaluate the basic BitTorrent protocol and the proposed
ISP-friendly BitTorrent protocol. Thus, we choose the official BitTorrent
client and we instrument the official BitTorrent client version 4.4.0 which
was released in 2006.

3.3.2 Experimental Setup

We carry out experiments under two scenarios: regular peer arrival and
flash crowd. For each scenario, we run the experiment twice with the
same settings, one with the official BitTorrent client, the other one with
the ISP-friendly BitTorrent client, thus there will be four experiments in
total. In order to compare their cross-ISP traffic and the file downloading
performance, each client logs at least the following information: starting
time, ending time, bytes downloaded from internal/external neighbors,
bytes uploaded to internal/external neighbors.

There are many configuration options for the official BitTorrent clients.
The main default parameters are: the maximum upload rate (default is
20 KB/s), the maximum number of peers to upload to (default is 4), the
number of pieces downloaded before switching from random to rarest first
piece selection (default is 4), time interval to request more peers from the
tracker (default is 300 sees.)，the minimum number of neighbors before
requesting more peers from the tracker (default is 20), the maximum
number of neighbors (default is 80) and so on. It is outside the scope
of this study to evaluate the impact of each BitTorrent's parameter. In
our experiments, we use the default parameters except that: the time
interval to request more peers from the tracker is set to 60 seconds, the
minimum number of neighbors before requesting more peers from the
tracker is set to 80. We set these two parameters to help peers discover

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 38

other peers and connect to them sooner.
The typical file size of a BT file distribution ranges from tens to hun-

dreds megabytes (files can be music albums, TV shows, movies and so
on). Usually users will set the maximum uploading rate larger than the
default setting 20KB/s to speed up their downloading. To avoid con-
suming too much bandwidth and other resource of the PlanetLab nodes,
we use a relatively small file (20MB) for downloading, and the piece size
is also scaled down to 32KB. There is a seeder in the system to ensure
file availability in all our experiments. To avoid the seeder become the
bottleneck, its maximum uploading rate is set to 50KB/s，larger than
the maximum uploading rate of other peers.

Since most nodes in the PlanetLab are within universities, one can
consider each university as an "ISP", and construct a database to map
each PlanetLab node to "ISP" (There are some differences between “ AS"
and "ISP", but it does not matter to our experiments, or we may call
it "AS-friendly protocol"). In our experiments, we consider six "ISPs":
Berkeley (16 nodes), Columbia (3 nodes), Cornell (6 nodes), MIT (7
nodes), Princeton (11 nodes), and OTHER (32 nodes). Since there may
be more than 60 peers for some experiments, we may assign several peers
to the same node. But to avoid overloading the node, no more than three
peers will be running on the same node at any time.

3.3.3 Regular Peer Arrival

In the following experiments, we study the cross-ISP traffic and the file
downloading time of the official BitTorrent and the proposed ISP-friendly
BitTorrent in regular peer arrival scenario, i.e., peer arrival to the ISP
is a Poisson process. To carry out meaningful and realistic experiments,
we instrument each ISP with a different peer arrival rate and peers from
different ISPs participate in the same torrent file sharing. Note that we
have six ISPs: Berkeley, Columbia, Cornell, MIT, Princeton, OTHER. In
our experiments, we initiate the seeder and the tracker in Columbia and
there is no other peer in Columbia. Peers are launched in the other five
ISPs according to Poisson processes. We know that the sum of several
independent Poisson arrival streams is still Poisson arrival, thus the peer
arrival for the whole P2P network(containing five ISPs) is still Poisson.
We carry out the experiment multiple times with the peer's average in-
terarrival time as 250s, 167s, 125s, 100s, 67s and 50s respectively for
a certain ISP(we choose Berkeley), and the peer arrival for other ISPs
are adjusted accordingly to make sure that the peer arrival for the whole
P2P network is a Poisson process with an average interarrival time being
16s. This implies that the ratio of peers in Berkeley and the peers in the
whole P2P networks will be about 4/64，6/64, 8/64，10/64，15/64 and
20/64 respectively. The experiment lasts for 48 hours each time. With
the log file, we can calculate the average downloading time T in Berkeley,

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 39

and then derive the average number of peers by n = XT.
Experiment 1: Regular Peer Arrival for Official BitTorrent
We carry out the experiment using the official BitTorrent client with the
settings mentioned above. Since the maximum uploading rate of a peer is
20KB/s, and there is only one seeder in the system whose upload rate is
negligible comparing to the aggregate upload rates of all peers, therefore,
the expected downloading rate of a peer in the system is upper bounded
by 20 KB/s. For the experiment, the size of the published file is 20MB,
thus the average file downloading time would be larger than 1000s. This
is confirmed by our experiment. Figure 3.3 illustrates the experimental
results. .

u 、 I Downloading time|

So.8 "̂̂ "̂̂ "̂̂ î̂ L��� I 0.8 /
！ ^ " ^ ^ ^ ^ � J /
s 0.6 • S2 0.6 • /
« I /
g 0.4 o 0.4 /

5 Random downloading 'C /

5-0.2 „ . ^ „ ^ 2 0.2 /
» —Incoming traffic ••“ /

S -O- Outgoing traffic /

"o' ‘ i . o' L ‘
0 5 10 15 20 25 0 500 1000 1500

n, time(s)
(a) Cross-ISP traffic vs. # of peers (b) CDF of downloading time

Figure 3.3: Performance of the Official BitTorrent under Steady Peer Arrival

Figure 3.3(a) shows the average fraction of incoming and outgoing
cross-ISP traffic generated by each peer in Berkeley with different average
interarrival time. In Equation (3.1), we show the fraction of cross-ISPs
traffic for the random downloading strategy and we also plot this curve
in the figure. As stated in Equation (3.1)，the expression is / = 1 - n/N
where n is the average number of peers in a certain ISP (It is Berkeley
here.) and N is the average number of peers in the whole P2P system.
Both n and N can be calculated by the average interarrival time and the
average downloading time. From the figure, one can observe that the
cross-ISP traffic generated by the official BitTorrent client is very similar
to the random downloading strategy. It generates a lot of incoming and
outgoing cross-ISP traffic. One can also observe that outgoing traffic
is slightly less than the incoming traffic. The reason is that there is a
seeder in the system and this seeder uploads to other peers but never
perform any downloading. Therefore, other ISPs observe more incoming
cross-ISP traffic.

Figure 3.3(b) shows the cumulative distribution function (CDF) of the
file downloading time for Berkeley. It can be seen that the curve is sharp,
which means that the downloading time for most peers are roughly the
same.

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 40

Experiment 2: Regular Peer Arrival for the ISP-friendly Pro-
tocol
We use the same setting as Experiment 1 except the clients are replaced
by our ISP-friendly clients discussed in Section 3.2. The results are illus-
trated in Figure 3.4.

y ELP upper bound | Downloading tim^ /

竞 I ELP lower bound ^ f
^ 0-8 Incoming traffic ^0-8 /

岂 t -0 " Outgoing traffic /

S 0.6 \ «0.6 /
S I , I /
g 0.4 \\ \ ° 0.4 /

•6 \\ \ I /

to.2 V � � \ I 0-2 /
2)

0 5 10 15 20 25 0 500 1000 1500
？1 time(s)

(a) Cross-ISP traffic vs. # of peers (b) CDF of downloading time

Figure 3.4: Performance of the ISP-friendly BitTorrent under Steady Peer Arrival

Figure 3.4(a) shows the average fraction of incoming and outgoing
cross-ISP traffic generated by each peer in Berkeley with different aver-
age interarrival time using ISP-friendly protocol. We also show the lower
and upper bounds of the derived cross-ISP traffic model. One can ob-
serve that the cross-ISP traffic is greatly reduced compared to the official
BitTorrent client. The experiment curve for the incoming traffic falls
between the bounds when n, the average number of peers in Berkeley is
larger than 7. When n is small, the experiment curve exceeds the upper
bound. The reason is that the peers in Berkeley are so rare compared
to the whole P2P system, it is usually difficult for a newly arriving peer
in Berkeley to discover and establish connection to other peers within
Berkeley soon. Then this newly arriving peer may request pieces from
external peers even these pieces are held by some internal peers, resulting
an increase in the cross-ISP traffic. However, if n is small in Berkeley,
the aggregate cross-ISP traffic will not be very significant. Notice that
the ISP-friendly protocol differs from the official BitTorrent client only
in the downloading strategy. However, the outgoing cross-ISP traffic is
also significantly reduced. It is interesting to observe that the outgoing
traffic is much less than the incoming traffic when n is small, and it can
be interpreted like this: the newly arriving peer in Berkeley performs
little uploading to external peers compared to downloading, since it has
not many pieces to upload.

Figure 3.4(b) shows the cumulative distribution function (CDF) of
the file downloading time for Berkeley. The first observation is that the
downloading time is slightly larger(< 10%) than the official BitTorrent.
There are two reasons for the increase in file downloading time. First,

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 41

since peers follow the ELP, the seeder, which resides in a different ISP,
may remain idle since downloading from seeder is considered as cross-ISP
traffic. Second, since some pieces can only be downloaded from internal
peers according to the ELP, it will also degrade some downloading chance.
However, the gap is not very large and it will be reduced if there are more
peers within Berkeley. Another observation is that the variance of the
file downloading time is a little larger than the official BitTorrent.

3.3.4 Flash Crowd

In here, we study the cross-ISP traffic and the file downloading time of
the official BitTorrent and the ISP-friendly BitTorrent under the flash
crowd scenario. There are five ISPs: a seeder and a tracker are located
in Columbia. All peers arrive at i = 0 to the four ISPs. Number of
peers in the ISPs are: 6 (Cornell), 12 (MIT), 18 (Princeton) and 24
(Berkeley). We run each experiment multiple times to obtain a good
confidence interval.
Experiment 3: Flash Crowd for Official BitTorrent
We use the official BitTorrent clients in this experiment. The results are
shown in Figure 3.5.

0 1| ‘ ‘ 1| , ‘ 7~‘
爱 、 I Downloading time| 广

卜 I 0.8 /
！。.6 】。.6 /

1 0.4 • o 0.4 I

1 I /
Random downloading <J I

10.2. Incoming traffic . ^ 0.2. j
fe -e-Outgoing traffic j
“。5 10 15 20 25 。0 500 1000 1500

n time(s)

(a) Cross-ISP traffic vs. # of peers (b) CDF of downloading time

Figure 3.5: Performance of the Official BitTorrent under Flash Crowd

Figure 3.5(a) shows the average cross-ISP traffic generated by each
peer in different ISPs. The total number of peers in the system is 60,
thus we plot the curve / = 1 一 7i/60 (using Eq. (3.1)) to represent the
random downloading strategy. One can observe that the cross-ISP traffic
generated by the official BitTorrent client is very close to Eq. (3.1). It
means that the official BitTorrent client also generates significant amount
of cross-ISP traffic in the flash crowd scenario. Another observation is
that the outgoing cross-ISP traffic is slightly less than the incoming cross-
ISP traffic. This is justified due to the tit-for-tat policy in BitTorrent.
The reason for the slight difference is that there is a seeder in the system
who uploads to other peers but never perform any downloading.

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 42

Figure 3.5(b) shows the CDF of the file downloading time. The results
indicate that it is very "deterministic" in the sense that most peers finish
the file download approximately at the same time.
Experiment 4: Flash Crowd for the ISP-friendly Protocol
The setting of this experiment is exactly the same as Experiment 3 except
we use the ISP-friendly client. The results are shown in Figure 3.6.

£ ELP upper bound | Dow门loading t i i ^ 飞~‘

-ELP lower bound(x H . =4/3) „ /
Or 0 , 8 � m a x mm ' . 0 . 8 . /

Incoming traffic -g j
« -e-Outgoing traffic = f

gO.6 gO.6 /

o g. /

.9 0.4 • "S 0.4 /

暮 "L. /
I 。 卞 “ ° [/
™ °5 10 15 20 25 °0 500 1000 1500

n time(s)

(a) Cross-ISP traffic vs. # of peers (b) CDF of downloading time

Figure 3.6: Performance of the ISP-friendly BitTorrent under Flash Crowd

Figure 3.6(a) shows the average cross-ISP traffic generated by each
peer in different ISPs. One can observe that the cross-ISP traffic is
significantly reduced compared to the official BitTorrent client (Figure
3.5(a)). We can also observe that outgoing cross-ISP traffic is slightly
less than incoming cross-ISP traffic due to the tit-for-tat policy.

Figure 3.6(b) shows the cumulative distribution function of the file
downloading time. Again, it is very deterministic in that most peers can
finish the file download around the same time. Compared with Figure
3.5(b), one can observe that the file downloading time of the ISP-friendly
client is only slightly worse (< 5%) than the official BT client.

3.4 Black Hole Security Attack

We have seen that the ISP-friendly protocol can greatly reduce the cross-
ISP traffic while keeping good file downloading performance. In this
section, we present the “black hole attack'', which may have a detrimental
effect on the ISP-friendly file distribution protocol.

Consider a free-rider in a file distribution session. This free-rider will
advertise to other peers that it has a lot of pieces (or all pieces of the file)
but it refuses to provide any upload service to other peers. This type of
free-riders do exist in the current BitTorrent file distribution but they
only receive minimal amount of service: free riders can only download
pieces via the the "optimistic unchoked" connection. Therefore, the file
downloading time of these free-riders is significantly larger than those

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 43

normal peers who are willing to provide upload service. This type of
free-riding, however, can be detrimental to the ISP-friendly protocol.
In particular, when the free-rider announces that it has all pieces of
the file (or it pretends to be a seeder), it prevents other internal peers
obtaining information from external peers, and this may halt the whole
file download process within the ISP. We call this the “black hole attacW.

To overcome the black hole attack, one needs to provide some mech-
anism to filter out the attackers or peers with very low uploading rate.
One may first consider the black listing technique to do the peers filter-
ing. But black listing needs addition collaboration among peers since
one peer could not detect the attacker based on his own local view. This
addition collaboration, will make the ISP-friendly protocol incompatible
with the current BitTorrent protocol. Instead, we propose an Enhanced
ISP-friendly protocol which can filter bad peers effectively while keeping
the compatibility with the current BitTorrent protocol.

Similar to the ISP-friendly protocol proposed in Section 3.2，each peer
classifies its neighbors into two categories: internal peers and external
peers. In the Enhanced ISP-friendly protocol, each peer will pick less
than or equal to q internal peers as its active co-agents (we will show
how to select active co-agents later). Denote the following set:

S = {c|piece c is missed by all its active co-agents}.

the only thing we need to modify compared to the previous ISP-friendly
protocol is the decision function want^k). Whether piece A; is a poten-
tial choice for downloading from a neighbor can be determined by the
following new decision function:

def want(A;):
return k G and

{ISPneighbor == ISPiocalhost OT k E S)

If want(/c) returns "False" for all piece index k, then the peer is not
interested in this neighbor. If it returns "True" for some piece index k,
then the peer will send an INTERESTED to this neighbor and wait to
be unchoked. Upon unchoked by an internal (external) neighbor, the
peer can use the new function want(A:) to find out all potential pieces to
request, and then look up the table Cj (CE) to determine which piece to
request first based on the local rarest first policy.

Now let us discuss how to pick the active co-agents. The intuitive
notion of active coagents is that, if peer A considers peer B as its active
co-agent, it implies that peer A detects that peer B works well on upload-
ing to internal peers, thus it may not be necessary for peer A to download
the pieces which are held by B from external peers. As we emphasized
earlier, we want to design a protocol which is compatible with the current
BitTorrent protocol, thus we can pick the active co-agent based on the

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 44

local information only. A credible evidence that an internal peer works
well on uploading to internal peers is that it uploads to you recently.
Based on this notion, we develop the selection algorithm as follows.

1. Measuring the downloading rate from each internal peer, where
Ti is the average rate for the last T seconds.

2. Ranking the internal peers in a list according to 7\ in decreasing
order.

3. Truncating the list for peers with Ti < R.

4. Picking the top q peers as active co-agents.

There are three parameters in this algorithm, T, R and q. We do not
want the active co-agents to change too rapidly. So we select T to be
within 1 to 2 minutes. Threshold R is to prevent anti-snubbing attack in
which a peer schedules to satisfy just one request per 60 seconds to avoid
getting snubbed. A reasonable value for R is between 0.5KB/s — 2KB/s.
Lastly, q is crucial to reducing the cross-ISP traffic. Our measurement
study shows that it is sufficient to set g > 5. To evaluate the enhanced
ISP-friendly protocol, we carry out the regular peer arrival experiments
as follows.

We configure our enhanced ISP-friendly client to the same settings as
sections.3(e.g., maximum uploading rate is 20KB/s, maximum number
of peers to upload to is 4，etc). But the size of the file for downloading
is now doubled to 40MB. The peer arrival for the whole P2P network
is a Poisson process with average interarrival time being 31s. We carry
out the experiment multiple times with the peer's average interarrival
time as 500s, 333s, 250s, 166s and 125s respectively for Berkeley. This
implies that the ratio of peers in Berkeley and the peers in the whole
P2P network is about 2/32, 3/32, 4/32, 6/32 and 8/32 respectively. In
the experiment, there is always one malicious free rider (or faked seeder)
in Berkeley. The three parameters of the enhanced ISP-friendly protocol
are set as T = 2mm, R — 0.5KB/s and q = 10. The results are shown
in Figure 3.7.

In Figure 3.7(a), one can observe that the cross-ISP traffic is signifi-
cantly reduced compared to the official BitTorrent (reduced to about 1/3
in our experiments). In Figure 3.7(b), one can see that there is only
a slight performance degradation (< 10%) in the file downloading time
compared to the official BitTorrent. Notice that the performance of the
enhanced ISP-friendly protocol is not seriously affected by the malicious
free rider. The slight performance degradation in file downloading is ac-
ceptable, given that the large reduction of cross-ISP traffic. And the
performance gap of file downloading time can be even reduced if there
are more peers in Berkeley. Actually the experiment results are similar

CHAPTER 3. AN ISP-FRIENDLY PROTOCOL 45

1|| ^ ^
1 <>-•»->«�� ---Official BT ^ ^
！ 0.8 � � , © • • w 0.8 I — New protocol / /
^ I .7
« -X-Incomingtraffic(OfficialBT) w r> c ‘ /
2 . - e-Outgoing trafficlOfficial BT) O 0.6. / /
•o —*— Incoming traffic(New protocol) q_ ‘ I

§0.4. Outgoing traffic(New protocol) O 0.4 • <7
C c .7
2 、 ， . — O ' /

i J . . . ^ I J
。0 5 10 15 20 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

n time(s)

(a) cross-ISP traffic (b) CDF of downloading time

Figure 3.7: Enhanced ISP-friendly BitTorrent under Regular Arrival
to Figure 3.7 when there are several malicious peers. And the enhanced
ISP-friendly protocol works well in the Flash Crowd experiments too.

• End of chapter.

Chapter 4

Related Work

There are numerous empirical studies on the BT protocol, for instance,
[4,10,18,23,29]. Izal et al. [18] present the traffic information on peers
behavior collected during a five-month period. Pouwelse et al. [29] study
the availability, the integrity, the flash crowd effect and the download
performance from a trace which was collected for eight months. Erman
et al. [10] study the session interarrival times, sizes and durations and
propose to use the hyper-exponential distribution to model the session
interarrivals, and use the log-normal distribution to fit session durations
and sizes. Legout et al. [23] evaluate the two core components of Bit-
Torrent: choking and the rarest first algorithm and claim that they are
enough to guarantee the efficiency and viability. Bindal et al. [4] re-
port great variability of downloading time and claim that instead of net-
work bandwidth, “close neighbor set"{\.e. those peers in a stable data-
exchange relationship) is the major contributing factor for the variability.
However, a major limitation of these empirical studies is that the data
collected is usually from a local view (i.e. the tracker log or a modified
client), and the behavior is very time-dependent. Therefore, it is not an
easy task to understand the efficiency of the BT protocol simply based
on empirical studies.

There are also several analytical studies of BT protocol. Yang et
al. [34] study the service capacity of BT protocols. Their result indi-
cates the service capacity of BT protocols increases exponentially at the
beginning and scales well with the number of peers, thus providing fast
downloading independent of demand rate. Qiu et al. [30] extend the
coarse-grain Markovian model in [34] by providing an analytical solution
to a fluid model in steady state which shows high scalability and stabil-
ity of BT protocols. Our work differs from [30,34] in that we provide a
detailed probabilistic model to capture the peers' diversity (in terms of
downloading progress) and show the change of downloading speed during
the whole session. We also analyze the peer selection and chunk selec-
tion which are not considered in [30,34]. Fan et al. [13] also generalize
Qiu's model by dividing peers into three types according to number of

46

/

CHAPTER 4. RELATED WORK 47

chunks they hold. Our work extends the number of types from 3 to
X — 1 so as to capture the system more accurately. Under the assump-
tion that "uplink is the only constraint", Mundinger et al. [28] propose
a deterministic scheduling algorithm to achieve the optimal makespan
which requires global knowledge. Sanghavi et al. [33] also propose a
gossip-like randomized algorithm requiring only local knowledge. Both
studies in [28] and [33] are orthogonal to ours as they only consider the
"closed system" where no new peer will arrive during the file dissemi-
nation while we consider an "open system" which new peers are joining
in according to Poisson process. The work that is closely related to our
study is [27]. In that paper, the authors provide a detailed probabilistic
model to investigate the stability and effectiveness of a peer-to-peer file
swarming system. Their results state that even by the "random chunk
selection" policy, the system throughout is still asymptotically optimal.
Our work improves and extends the result in [27] by providing tighter
asymptotic bounds and relaxing its assumption of unlimited upload ca-
pacity. Moreover, we study the peer selection by both random selection
and coordinated matching policies. Gaeta et al. [14] also use a proba-
bilistic model to study the large-scale P2P network but they are focusing
on searching strategy. There are some other analytical studies in fairness
of BT besides performance modeling. In [7,25,26], the authors present a
mathematical analysis on service differentiation in resource allocation for
P2P networks. In [11], the authors present a mathematical framework to
study the tradeoff between performance and fairness in BT-like systems.
In [35]，authors present the first analytical model of BT-like systems and
quantify the tradeoff between scalability and QoS support for multimedia
streaming applications.

There are only few studies addressing the issue of cross-ISP traffic.
One approach is caching [6] but one has to address the copyright legal
issue. In [19], authors propose to place some "gateway peers" to connect
to external peers and other peers only download within the ISP. However,
one has to address the issue of service availability due to sudden departure
of gateway peers. Authors in [5] examine a technique named "biased
neighbor selection" to explore traffic reduction, but the study was only
carried out via simulation. In our work, we propose to exploit the content
locality which requires no extra hardware investment from the ISP. We
analytically evaluate the cross-ISP traffic reduction, and at the same
time, propose and implement such mechanism to achieve the reduction
while keeping good downloading performance.

• End of chapter.

Chapter 5

Conclusion

In this thesis, we propose a probabilistic model which generalizes the
model in [27] to capture the basic properties of a file swarming sys-
tem. Under the same assumption as [27] (i.e. unlimited upload capac-
ity), we first improve its asymptotic bound of the average downloading
time. Then we provide two different approaches, namely fetching multi-
ple bitmaps and using FEC code, to help the system achieve nearly op-
timal performance. Besides showing that FEC code can also remedy the
last-piece problem, we also remove the assumption of "unlimited upload
capacity" and analyze the performance under the random peer selection
algorithm. Since the performance deteriorates due to request collision,
we propose a matching scheme to improve the performance. We show
that under the coordinated matching, if peers are altruistic the system
performance can achieve as good as the system with unlimited upload
capacity. Even when the system deploys certain incentive mechanism
(tit-for-tat), the average downloading time is still good. The result sug-
gests that the performance of a peer-to-peer file swarming system does
not depend critically on altruistic peers, but rather due to the diversity
of peers stored data so the system can achieve good performance. We
also address how one can reduce the cross-ISP traffic for file distribution
applications. We use a simple and effective idea: exploit the content
locality to reduce the traffic. We analytical show the significant cross-
ISP traffic reduction when one uses the above principle, and then design
and implement such mechanism on a BT software, carry out extensive
experiments and measurements on the PlanetLab to demonstrate its ef-
fectiveness. Lastly, we illustrate the black hole security attack and how
one can modify the proposed protocol to address this problem.

• End of chapter.

48

Bibliography

[1] http://multiprobe.ewi.tudelft.nl/dataset.html.

[2] Bittorrent protocol, http://www.bittorrent.com/protocol.html.

[3] CAIDA. CoralReef suite, http://www.caida.org/tools/measurement/coralreef.

[4] R. Bindal and P. Cao. Can self-organizing P2P file distribution
provide qos guarantees? In OSR Special Issue on Self-Organizing
Systems, 2006.

[5] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang. Improving traffic locality in bittorrent via biased neighbor
selection. In IEEE ICDCS, 2006.

[6] CacheLogic. Advanced solutions for peer-to-peer networks,
http://www.cachelogic.com/.

7] F. Clevenot-Perronnin and K. R. P. Nain. Multiclass P2P networks:
Static resource allocation for service differentiation and bandwidth
diversity. In IFIP WG7.3 Performance, Juan-les-Pins, France, 2005.

[8] B. Cohen. Incentives build robustness in bittorrent.
http://www.bittorrent.org/bittorrentecon.pdf, May 2003.

[9] B. Cohen. Incentives build robustness in bittorrent, 2003.

[10] D. Erman, D. Hie, and A. Popescu. Bittorrent session characteristics
and models. In HET-NETs '05, Third International Working Con-
ference on Performance Modelling and Evaluation of Heterogeneous
Networks, Ilkley, United Kingdom, 2005.

[11] B. Fan, D.-M. Chiu, and J. C. S. Lui. The delicate tradeoffs in
bittorrent-like file sharing protocol design. In ICNP, 2006.

[12] B. Fan, D. M. Chiu, and J. C. S. Lui. The delicate tradeoffs in
bittorrent-like file sharing protocol design. In IEEE ICNP, 2006.

[13] B. Fan, D.-M. Chiu, and J. C. S. Lui. Stochastic analysis and file
availability enhancement for bt-like file sharing systems. In Four-
teenth IEEE International Workshop on Quality of Service (IWQoS)
2006, New Haven, CT, USA, 2006.

49

http://multiprobe.ewi.tudelft.nl/dataset.html
http://www.bittorrent.com/protocol.html
http://www.caida.org/tools/measurement/coralreef
http://www.cachelogic.com/
http://www.bittorrent.org/bittorrentecon.pdf

BIBLIOGRAPHY 50

[14] R. Gaeta, G. Galbo, S. Bruell, M. Gribaudo, and M. Sereno. A
simple analytical framework to analyze search strategies in large-
scale peer-to-peer networks. In Performance Evaluation, volume
62(1-4), October 2005.

[15] C. Gkantsidis and P. Rodriguez. Network coding for large scale
content distribution. In Proceedings of IEEE Infocom, 2005.

[16] R. Graham, D. Knuth, and 0 . Patashnik. Concrete mathematics,
2nd edition. In Addis on-Wesley, 1994.

[17] M. Hanckowiak, M. Karonski, and A. Panconesi. A faster distributed
algorithm for computing maximal matchings deterministically. In
Proc., 18th ACM Symp. on Principles of Distributed Computing,
1999.

[18] M. Izal, G. Urvoy-Keller, E. E. Biersack, P. Felber, A. A. Hamra,
and L.Garces-Erice. Dissecting bittorrent: Five months in a torrents
lifetime. In PAM, Antibes Juan-les-Pins, Prance, Apr 2004.

[19] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should internet
service providers fear peer-assisted content distribution? In ACM
IMC, 2005.

[20] L. Kleinrock. Queueing Systems. Volume 1: Theory. John Wiley &
Sons, 1975.

[21] L. Kleinrock. Queueing Systems. Wiley-Interscience, 1976.

[22] T. Kurtz. Approximation of Population Processes, Vol. 36. CBMS-
NSF Regional Conf. in Applied Mathematics, 1981.

[23] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke
algorithms are enough. In ACM SIGCOMM/USENIX IMC'2006,
October 2006.

[24] M. Lin, B. Fan, J. C. S. Lui, and D. M. Chiu. Stochastic analysis of
file swarming systems. In Performance, 2007.

[25] T. Ma, C. Lee, J. C. S. Lui, and D. K. Yau. Incentive and service
differentiation in P2P networks: A game theoretic approach. In
IEEE/ACM Transactions on Networking, volume 14(5), 2006.

[26] T. Ma, S. C. Lee, J. C. S. Lui, and D. K. Yau. A game theoretic
approach to provide incentive and service differentiation in P2P net-
works. In ACM SIGMETRICS/PERFORMANCE, June 2004.

27] L. Massoulie and M. Vojnovic. Coupon replication systems. In Proc.
ACM SIGMETRICS, Banff, Alberta, Canada, 2005.

BIBLIOGRAPHY 51

[28] J. Mundinger, R. Weber, and G. Weiss. Optimal scheduling of peer-
to-peer file dissemination. Preprint version in arXiv, 2006.

[29] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The
bittorrent P2P file-sharing system: Measurements and analysis. In
4th International Workshop on Peer-to-Peer Systems, Ithaca, NY,
USA, Feb 2005.

[30] D. Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proc. ACM SIGCOMM,
Portland, Oregon, USA, August 2004.

[31] D. Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proc. ACM SIGCOMM,
2004.

[32] I. Reed and G. Solomon. Polynomial codes over certain finite fields.
In Journal of the Society of Industrial and Applied Mathematics,
1960.

[33] S. Sanghavi, B. Hajeck, and L. Massoulie. Efficient data dissemina-
tion in unstructured networks, in submission, 2006.

34] X. Yang and G. de Veciana. Service capacity of peer to peer net-
works. In IEEE INFOCOM, March 2004.

[35] Y. Zhou, D. M. Chiu, and J. C. S. Lui. A simple model for analyz-
ing P2P streming protocols. In IEEE International Conference on
Network Protocols (ICNP), 2007.

Appendix

Proof for Theorem 7: Due to the self scaling property of P2P systems,
the service capacity of the system is proportional to the number of peers.
Therefore, one can model the P2P file distribution system within this
ISP as an M/D/oo queueing system with arrival rate A and service time
T.

Let Pn denote the probability that there are n peers in the ISP. Since
the service time is T, the probability that there are n peers in the ISP is
equal to the probability that there are n arrivals between time [t — T,t].
Since the number of peers arriving in a time interval of length T is Poisson
distributed with mean AT, we immediately obtain

nl nl

The above statement is valid for all t > T, and thus also for the limiting
distribution.

Now consider when these peers have to download content from exter-
nal peers, e.g., peers which belong to other ISPs. Assume that there are
n peers within this ISP at a certain time. Let Vi denote the fraction of
file content that peer i has obtained so far. Since the size of the file is
1，we have < 1 for z G { 1 , . . . , n}. li v = Ya=i '^i < 1, then these n
peers need to download at least (1 — v) fraction of the file content from
external peers before the next peer departure from this ISP.

We use the method of the imbedded Markov Chain [20] and select the
departure points as our observation points. Since the arrival is a Poisson
process, we have

Pn = Prob (departure leaves n peers in the systems).

When a peer departs and observes that there are n peers within this ISP
with V = Vi < 1, then this ISP needs to consume at lease (1 — v) of
incoming cross-ISP traffic before the next peer departure.

When there are exactly n arrivals from a Poisson process in [0, t], the
unordered arrival times are uniformly, independently distributed over
[0,t]. In our system, it means that all these n downloading progresses
are uniformly, independently distributed over [0,1]. Formally, let Xi be
the random variable denoting Vi, we have Xi ~ U[0, = 1 , . . . , n. We

52

are interested in Yn = Er=i Xi and its corresponding density function
f{v\n). To derive Yn and /(f|n), one can use Laplace transformation
method:

⑷ = 全 (1 - e - s)

K � = f l X , { s) = ^ { l - e - r =
1=1 S s

Thus

j=0 I几—丄入

_ f e u i) > - 力 “

— h o) (- - 1) !

Focusing on the range 0 < < 1, we have

f{v\n) = (: 1)!， 0 S ” < 1，n = 1’ 2 ” ...

Let d denote the incoming cross-ISP traffic between two consecutive peers
departures. Since these n peers need to download at least (l - t *) fraction
of the file through the cross-ISP link before the next peer departure, we
have

E(d\n) v)f(v\n)dv = n = 1’ 2,….•

Now consider the case n = 0. When a departing peer observes that
there is no peer in the ISP, this means that new arriving peers need to
download exactly one copy of the file via the cross-ISP link before the
next peer departure. Thus

聊) = 1 =

Given E{d\n) and Pn, one can derive E[d), the average cross-ISP traffic
caused by each departure.

oo

E(d) = E{E(d\n)) = J2pnE(d\n)
n=0

where h (x) is the modified Bessel function. •
Proof for Theorem 8: Similar to the M/D/oo formulation in the proof
of Theorem 7，one can use the method of the Imbedded Markov Chain
and select the departure points as the observing points.

53

Consider the situation that a peer departs and observes that there
are n peers within this ISP. The progress of these n peers are uniformly
and independently distributed over [0,1]，i.e., Xi �[/[0,1], z = 1，...，n.
Consider the peer whose progress is maximal. According to the ELP,
those content held by this peer would not generate any cross-ISP traffic
before the next peer departure. On the other hand, those content that
are not being held by this peer may or may not cause a data transfer over
the cross-ISP link before the next peer departure (the content may be
held by other internal peers). To derive the upper bound, we ignore the
collision of two or more peers request the same chunk from external peers
at the same time. We consider Zn = max二i Xi and its corresponding
density function as g{v\n).

Since Prob(Z„ < v) = U7=i Fvoh{Xi < v), we have

g{v\n) = 0<v <l,n = 1 , 2 , . . .

This requires at most (1 - v) fraction of the file via the cross-ISP link
before the next peer departure. We have

E{d\n) v)giv\n)dv = n = 1’ 2，...

Consider the case that n — 0. When a departing peer observes that there
are no peer in the ISP, the new arriving peers need to download one copy
of the file via the cross-ISP link before the next peer departure. Thus

E(d\0) = 1 =
乂 I) 0 + 1

Given the upper bound of E{d\n) and pn, one can derive the upper bound
of E{d), the average cross-ISP traffic caused by each departure.

oo
E{d) = E(E(d\n)) = '£PnE{d\n)

n=0
oo , 1 1

- 么 n ! n + 1 n 、

Proof for Theorem 9: Let T denote the random variable of the file
downloading time of peers. Suppose T is a discrete random variable with
possible outcomes of Ti,r2,. . . ,Tm and

m

Prob(T = Ti) = Qi, i = 1,2,…，m, a n d ^ g ^ = 1.
i=l

Let us first derive Pn, the probability that there are n peers in the ISP.
One can split the Poisson arrival with rate A into m independent Poisson
arrival streams. The arrival rate of peers with downloading time Tj is
denoted by Xi. Thus

X i = X q i , i = 1 , 2 , . . . ， m .

54

Using similar argument as in the previous section, the number of peers
with downloading time Ti in the ISP is Poisson distributed with mean
入iTi, therefore the probability that we have n peers of downloading time
Ti is

Pn,i = • ^ ^ ^ e - A f i = z. = 1，2’...，m，n = 0’ 1’ ….
n ! n !

where fU = XiTi = XqiTi. The number of peers with downloading time Ti
is independent of the number of peers with other downloading time in
the ISP. Since the sum of independent Poisson random variables is again
Poisson, it follows that the total number of peers in the ISP is Poisson
distributed.

__
Pn = - r e " " , n = 0， l ’ . . .

n\
where n = ET=i^i =

Assume that there are n peers in the ISP at a given time. Similar to
the homogenous case analysis, we know that the content that peer i holds,
denoted as Vi, is uniformly and independently distributed over [0，1]. Let
Xi be the random variable denoting Vi, we have Xi � t / [0 , 1] , z = 1 , . . . , n.
Given Pn and Xi, one can derive the lower bound and upper bound of
the cross-ISP traffic similar to Theorem 7 and Theorem 8. The result is

e -%- i / 2 /i (2v^) < E(d) < i (l - e-”，
TI

where n = A X^Ili Qi^i and Ii{x) is the modified Bessel function.
In fact, since each distribution function can be approximated arbitrary-

close by a discrete distribution function, one can conclude that the result
holds for general downloading time distribution. I
Proof for Theorem 10: Since there is no file content within the ISP
at time t = 0, peers in this ISP should download at least one copy of the
file through cross-ISP link. Thus the average cross-ISP traffic generated
by each peer, denoted by E{d), satisfies

To derive the upper bound of the average cross-ISP traffic, similar to
the analysis in the regular arrival case, suppose the downloading time
T is a discrete random variable. Its possible values are ti, r2 , . . . , r^,
Without loss of generality, we assume that ti < T2 < … < Tm- Peers
arrive to the ISP at the same time 亡=0，and peers may depart the
system at time t = 丁“ i = 1,2,... ,m.

Let di denote the incoming cross-ISP traffic during the time interval
[Ti-i,Ti] ([0, Ti] for di). Let D denote the total incoming cross-ISP traffic
during the whole flash crowd downloading, we have D = X ^ i di.

Consider those peers which depart at t = ri. The incoming cross-ISP
traffic generated during [0，n] is di, which is one copy of the file. After the

55

departure of peers at TI , the maximal progress of downloading in the ISP
at time ri are those peers who will finish at T2, their progress at this time
is Ti/r2. Thus during [7"i,T2], the internal peers will at most download
(1 — T1/T2) of the file context from external peers, i.e. d) < 1 — T\/t2.
Similarly, one can consider the time interval [ri_i,rij, the cross-ISP traffic
di<l — Ti-ijTi. Therefore, the total cross-ISP traffic during [0, Tm] is

m m m
D = +

i=l i=2 丁i i=2 Ti
/ n \i/(m-i)

< m - (m - 1) — m > 2.
\TmJ

The function y = x - (x - l)ai/(工—i) is an increasing function of x when
a: > 2, 0 < a < 1. Thus

D < lim m - (m - l) ('ZlV^^'^ ^̂ = 1 + log f — V

Since there are n peers, the average cross-ISP traffic each peer generated,
denoted by E(d), satisfies

56

.

5

.

.
 ‘

 •

.

1

广
.

^

.

,

.
 •

 -

 .

..

 .

 .•

、

 」”、.l̂
,.;、：、..：：.-.

•

 V,

 乂
-

 V
.
i

.‘..

 ，
，
；
：

 ...

 V

 .

.

…..

.

.

 .

,

.

 .
-
.
.
.
‘
-

—-〜-丄；..,,.‘--—，-.

‘

*

 -

 r

 ̂

 V

〔

.
T

為

、

：

\

I
 ̂

 ‘

：
‘

.

.

•

.

-
 ?
.
.
.
‘
.
.
；
>
:
,
!
,
f
.
.
/
p

 ..ss:、i..:v我•」.，""•

 •
；

 ..

•

V

 ̂

 ̂

 .

•

”

•

•

•

•

.
 ...—、-‘.、、

.
•
；
广
〔
w
f
s
-
t
:
、
•
她
叫
.
’
、
.

-
 ！.

人
.

 .-.:.•.••”-,,...-.•、.：•..<&-、、.：：

 一：

 .•..」，.；•.•.”：，.：、：.、？”.•

 ..

 .
.
.
.

：

 •
•

,

r
w
.
;
:
.
.
.

 •’—•：、：：-

 .r.:

 ...;>.”*-:?.

 •..<•...」-“，---r

 “

 .

 r.

 .

 .
.
i
f
.

 .

.
 -
r

 ̂

>

>

 /
 “
 \

 .
.
.
.

 .

 .

I

A
.
:
/

:

-

I
t
:
,
?

 ~

I
i
i

‘ \

I
；i

I

1

. i

•J j

5

%

i

彳

— • I
<

•1

: : .i
J
d
i "1

CUHX L i b r a r l t s 1

l l l l l l l l l l 00^561535^

