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Abstract 

This thesis presents a new photometric stereo method aiming to efficiently estimate 

BRDF and reconstruct object shapes from glossy surfaces. Rough specular surfaces 

exhibit wide specular lobes under most lighting configurations. They are ubiquitous 

and usually bring difficulties in both specular pixel removal and surface normal re-

covery. In our approach, we neither apply unreliable highlight separation nor adopt 

unrealibale direct specularity fitting method. An important visual cue, i.e. the cast 

shadow silhouette of the object, is employed to optimally recover global BRDF pa-

rameters. These parameters are then taken into our reflectance model for robustly 

computing the surface normals and local parameters using the iterative optimiza-

tion. Using only a small number of input images, our method can faithfully recon-

struct both the surface normals and textures even when the surface exhibits large 

overlapping hight-light regions. Our method is also efficient due to the reduced 

search space using the information from the cast shadow silhouette. Moreover, our 

method does not make any assumption of the light color and texture. So it works 

well even when the light color and the texture color are similar. Within the unified 

framework, our method can also be extended to handling object surfaces assembled 

with multiple materials. Using graph cuts, we can segment the surface according to 

material variations, and the corresponding BRDF parameters and surface shape can 

be recovered at the same time. 
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摘要 

這篇文章介紹了一種全新的光度立體方法，用以快速地對光亮物件計算雙向反 

射分布函數(BRDF)參數並恢復物件形狀。粗糖光亮表面在任何光暗環境都會顯 

示寬闊鏡面反射波瓣現象。常見的粗糖光亮表面會對光亮像素去除方法和表面 

法向量恢復方法帶來很大的困難。而我們的方法並不運用光亮去除步驟，也不 

使用不穩定的直接光亮似合法。我們首先運用陰影輪廓的資料去優化全局BRDF 
參數，繼而再用迭代的方法去計算局部參數。我們只需要少量的輸入圖像，在 

大光亮區域表面情況下也能正確恢復表面法向量和紋理。我們的方法也較直接 

光亮似合法有高效能。並且，因爲並没有假定光線的顏色和紋理的顏色’我 

們的方法能適用於所有不同的困難情況。我們的方法同時能處理多物料表面， 

我們用圖割的方法去根據物料去分割表面’也能同時計算BRDF參數和物件法 

向量。在文章中的多個困難的例子將足以說明我們方法的效能。 
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Chapter 1 

Introduction 

Shape reconstruction from different lightings has long been a fundamental problem 

in machine vision. Photometric stereo method is the most common technique in 

recovering surface shape and texture from multiple input images in different light-

ings. In this section, we are going to introduce the photometric stereo problem on 

the Lambertian surfaces and non-Lambertian surfaces. Then the problem of wide 

specular lobes will be discussed. 

1.1 Lambertian photometric stereo 

Photometric stereo is first proposed in [31] to deal with Lambertian surfaces. Lam-

bertian surface is the kind of surface from which the reflected light is independent 

of the view angle. In other words, the observer will perceive the same amount of 

light in different view angles. Lambertian property can be used to model surfaces 

like the cotton cloth and matte paper. At least three input images are required in 

photometric stereo to reconstruct the surface normal and albedo. We first describe 

the previous Lambertian photometric stereo algorithms: 

Assume we have H images of the same object with the fixed viewpoint but in 

different lightings. The light vectors are h ^ k - • - h respectively. The images are 

' • -in where imi^, y) is the pixel intensity at position (re, y) in image m. km 

is the photometric parameter of the camera which maps the irradiance to the pixel 
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Chapter 1 Introduction 2 

intensity. 

im(OC,y) = kmPm(x,y)Nm(x,y) . Lm. (1.1) 

k and L have the same values for all images m. Pm(工，v) and y) only depend 

on the position (a;, y) in images, i.e. p{x, y)N[x, y) = Pm(:r，y)Nm{x, y) for all m. 

Therefore we can rewrite Equation( 1.1) as 

im{x,y) = p(x,y)N{x,y) • kLm, (1.2) 

=g{x,y) • Vm, (1-3) 

(1.4) 

where 

” m — ^L-mi 

/c — ^Tfl • 

To recover normal and albedo, we have to recover p and N for all pixel locations 

(a;, y). We first construct the linear system: 

I{x,y) = VG[x,y), (1.5) 

where 

V = {yi,y2- • - vhV-

Since the light vectors, i.e. L爪 can be calculated from the experimental setup, 

we assume k is one. Then V is known. G{x,y) in Equation( 1.5) can therefore 
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be solved if H >= 3. This is the least number of images required for conven-

tional photometric stereo. When H > 3, the least square solution of G(x,y) can be 

obtained. 

For convenience, we express I(x,y) as I,G{x,y) as G. From Equation( 1.5), 

we get 

I = VG, (1.6) 

V'^ = V'^VG, (1.7) 

G 二 (1.8) 

where V* = is the pseudoinverse of V. 

G(x,y) is evaluated for every image position (x,y) based on Equation( 1.8). Unit 

normal and albedo reflectance for gray scale images can be estimated from the fol-

lowing equations: 

粉 eII：^’ （1.9) 
p{x,y) = \\G{x,y)\\. (1.10) 

Lambertian photometric stereo is well-established and widely used. But simple 

Lambertian model fails to model many natural objects, limiting the practical use of 

it. Therefore many research effort has been put into non-Lambertian photometric 

stereo in recently years. 

1.2 Non-Lambertian photometric stereo 

Most surfaces can be modeled as a combination of a Lambertian component and a 

specular component. This can be illustrated by the simplest Phong model: 

I = PdU- I + Ps{v • sY (1.11) 

where pd and ps are the diffuse and specular albedo respectively, I, v and s are 

light direction, viewing direction, and specular direction respectively. pdU • I is the 
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Lambertian component which is independent of the view angle, ps{n . s)" is the 

specular component which is nonlinear and depends on the view angle, n is the 

roughness coefficient which controls the size of the specular lobe. 

Many recent photometric stereo methods [16, 23, 2, 10] were proposed to deal 

with non-Lambertian surfaces. In order to handle complex reflection properties, 

most previous approaches either require that highlight regions in input images are 

relatively small and can be easily removed, or assume that the highlights in differ-

ent input images do not overlap such that Lambertian rule can be applied to the 

surface normal recovery. The details of these non-Lambertian photometric stereo 

algorithms can be found in Chapter 2. 

1.3 Large specular lobe problems 

An ideal specular surface is perfectly smooth and behaves like a mirror. It reflects 

light only alone the specular direction, obtained by reflecting the incident radiation 

direction about the surface normal. But most surfaces are not perfectly smooth, and 

can only be modeled as a layer of microfacets with varying normals in microscopic 

level. Each microfacet reflects light in a direction, and the distribution of the nor-

mals of microfacets determines the roughness of this specular surface, i.e. rough 

surfaces have more microfacets whose normals deviate with large angles from the 

surface normal. Figure 1.1(b) shows an microfacet illustration of a smooth specular 

surface. The normals of the microfacets point to the similar directions. Thus the 

reflected light will be in the similiar directions, causing a narrow specular lobe. On 

the other hand, the microfacets of the rough specular surface in Figure 1.1(a) have 

very dissimilar normals. The reflected lights spread within a wider range of angles. 

Therefore the wide specular lobe is produced. 

When the specular surface is relatively smooth, the specular lobe is narrow and 

there is a sharp spike of reflected radiation, we call it specular spike. Figure 1.1(d) 

shows a smooth specular ball. The non-highlighted pixels can be easily separated 
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(a) (b) 

參參 
(c) (d) 

Figure 1.1: (a) and (b) illustrate the microfacets of rough specular surface and that 
of smooth specular surface respectively. The red arrow points to the direction of the 
surface normal, the green arrow points to the direction of the micro-facet normal, 
(c) and (d) show a rough specular black sphere and a smooth specular black sphere. 
Note that there is a large highlight area with fuzzy boundary on the rough specular 
sphere surface. 

from the highlighted ones in the input images, and the non-highlighted ones then 

can be used in photometric stereo. Most previous work like [15], [16], [6], [23], 

[2], [10] is based on this idea to handle specular surfaces in photometric stereo. 

When the specular surface becomes rougher, and the specular lobe gets larger like 

the ball shown in Figure 1.1(c)，it will be problematic to those methods. Large 

specular lobe means a large highlight area and there is a blurred boundary be-

tween the non-highlighted area and highlighted one. Large highlight will overlap in 

some input images. In photometric stereo, at least three corresponding unshadowed 
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non-highlighted pixels (without any specular components) in three input images are 

needed to reconstruct one pixel normal. In a set of rough specular object images, 

three non-highlighted pixels may not be obtained since some points are under high-

light in most light configurations. 

Obviously, specular component removal is not easy on objects with rough spec-

ular surfaces. The micro-facets on rough surface reflect light differently, producing 

a wide specular lobe with highly blurred boundary under directional light. Four 

examples are shown in Figure 1.2. Moreover, it is usually not easy to determine 

whether the reflected light from the surface contains any specular components. An 

imprecise specularity segmentation makes the surface normal recovery error-prone. 

In order to remove the wide specular lobe on surface, Mallick et aL[\A] proposed 

a data-dependent specular separation method using color space. It requires that the 

diffuse color of the surface and the color of incident light are not similar. Georghi-

ades [9] fits specularities from the input images to reflectance model in order to 

directly estimate the normal and BRDF parameters. This method does not work 

well in estimating complex object surfaces due to the inherently huge search space 

of the surface reconstruction problem. 

In this thesis, we present an efficient photometric stereo method to robustly es-

timate both surface normals and BRDF parameters. Our method does not require 

specularity separation in order to recover surface normals, thereby is capable of au-

tomatically and precisely reconstructing convex object surfaces with different level 

of roughness from a small number of images. The object surface is allowed to have 

complex textures and colors without influencing the computation accuracy. 

We adopt a two-step optimization to precisely compute the normals and all re-

flectance parameters. In the first step, we use the visual information from shadow 

to estimate the normals of some surface points. These recovered normals play a key 

role in estimating the global reflectance parameters. In the second step, with the 

reduced number of unknowns, a robust iterative optimization process is applied to 

estimate the surface normals and diffuse albedo for all surface points. This two-step 
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(a) (b) 

• • 
(c) (d) 

Figure 1.2: Rough surface examples. The specular lobes on the surfaces are wide 
under point light source and there is no clear boundary of the lobes. 

approach is proven to be more efficient and robust than direct specularities fitting 

methods. 

In the unified framework, our method can also be applied to dealing with sur-

faces assembled with several different materials. The material segmentation, param-

eter estimation and normal computation can be achieved automatically in our ap-

proach. Moreover, our method is the first attempt to incorporate the sparse shadow 

information in the surface normal and BRDF parameter estimation. We will show 

that the shadow boundary provides useful information for computing the surface 

normals. 

The rest of this thesis is organized as follows. Section 2 first reviews the related 

work of both Lambertian and non-Lambertian photometric stereo. Then, in Section 

3 we present our photometric stereo method to construct single material surface and 
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to estimate BRDF parameters. We compare our method and the direct specularity 

fitting method in Section 4. The multiple managerial surfaces reconstruction is 

described in Section 5，then followed by the conclusion in Section 6. 



Chapter 2 

Related Work 

2.1 Lambertian photometric stereo 

In pioneer work [31], Woodham first proposed photometric stereo method to esti-

mate surface normal and diffuse albedo of Lambertian surface in 1980. It started the 

wide research field of photometric stereo. While the Lambertian photometric stereo 

is widely used, many work have been done to tackle surfaces with specularities. 

2.2 Non-Lambertian photometric stereo 

Several different approaches have been investigated by researchers to reconstruct 

non-Lambertian surfaces using photometric stereo. They are described in the fol-

lowing subsections. 

2.2.1 Analytic models to reconstruct non-Lambertian surface 

[24] developed the theory for a class of non-Lambertian surfaces.Most related work 

on non-Lambertian surface reconstruction uses various bi-directional reflection dis-

tribution function (BRDF) models. [15] used the Torrance-Sparrow model to re-

cover both the surface normal and parameters of the reflectance models, but it as-

sumed that surfaces are smooth and specular pixels can be treated as outliers and 

9 
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can be separated from the pure Lambertian ones. In this case, the separation of 

Lambertian pixels and the specular ones is not difficult since the specular lobe is 

narrow. 

Tagare and deFigueiredo [25] estimated both the shape and reflectance map for 

diffuse surfaces which consist of forescatter lobes, normal lobes and backscatter 

lobes. In our work, we estimate the shape and reflectance of surfaces containing 

both specular and diffuse components. 

[6] used four combination of three light sources to compute four albedo values, 

the difference in one of these albedo values helps to detect which pixel is in specular 

lobe. This method only need four images. [23] extended [6] and used Torrance-

Sparrow model to compute the surface roughness. [2] also refined [6] to handle the 

presence of shadows and used color information to help the detection of specular 

pixels. But all these methods assumed that there is no specular component in at 

least three observations for each surface point, and this assumption is usually valid 

in surfaces with narrow specular lobes. 

Recently, [10] computed both shape and spatially-varying BRDFs of target ob-

ject using photometric stereo. It assumed that the object surface can be modeled by 

a linear combination of two fundamental materials, they used the shape obtained by 

conventional photometric stereo as the initialization, and alternatively optimized the 

BRDF parameters and shape until convergence. Again, they assumed the specular 

lobe is narrow so they can remove specular highlight pixels by intensity thresholds. 

[32] used a set of more than one thousand of photometric stereo images to com-

pute the surface normal using graph cut algorithms. The thesis demonstrated re-

covery of complex surfaces with discontinuities, highlight and transparency, but the 

application of this method is limited by its huge number of input images. 
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2.2.2 Reference object based 

[12] reconstructd the shape of object with arbitary BRDF with the help of a refer-

ence object with the same material. Orientation consistency enabled them to estab-

lish the correspondence between the known shape reference object and the target 

object. 

2.2.3 Highlight removal before shape reconstruction 

In order to robustly reconstruct surface, the specular components, i.e., the high-

light, are usually required to be removed such that traditional photometric stereo 

method on Lambertian surface can be applied. Most highlight removal methods are 

based on dichromatic reflection model [22].[13] separated highlights from diffuse 

components by considering RGB color space. 

Sato et a/. [20] proposed a metod based on the color difference between diffuse 

and specular components to separate components and estimate reflectance. 

[14] introduced a data-dependent SUV color space, it is obtained by rotating the 

RGB color space such that R channel is aligned with the color of the light source 

(it assumed light source color is the same as the highlighted color), then the BG 

channels contain only diffuse color components which can be used in photometric 

stereo. But it does not work on textured objects whose body color is similar to the 

light source color. 

[21] separated diffuse and specular components of a homogeneous dichromatic 

surface by using color histogram analysis. [19] used more light sources direction 

to obtain color histogram for each surface point and then work on inhomogenous 

surface, but they are all limited by the problem of similarity of light source color 

and body color. They also assumed the specular lobe is narrow with respect to the 

surface curvature. 

In [26，28, 27, 34], highlight components were removed on single image. Most 

of these methods assume that the diffuse color does not change too much inside 
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and outside the highlight region or the specular color is different from the surface 

texture.When these assumptions are violated, the recovered diffuse color is noisy or 

incorrect. 

Most of previous image-based highlight removal methods have assumptions in 

colors, shape, or brightness. When the specular surface becomes rough, the specular 

lobe is getting wide, largely blurring its boundary. This causes problems in deter-

mining the specular component in the reflected light. Consequently, the highlight 

removal methods may fail on these objects especially when the surface has complex 

textures. 

2.2.4 Polarization based method 

[30],[17] make use of different polarizing angles to separate diffuse and specular 

components, but specular lobe is assumed to be narrow and filters are needed to get 

the polarization images. 

2.2.5 Specularity fitting method 

Georghiades [8] showed that the specularities of surfaces can be used to disam-

biguate uncalibrated photometric stereo. In [9], he proposed to recover shape and 

reflectance by fitting the specularities to Torrance and Sparrow reflection model. 

This method iteratively optimizes over a very large set of variables, including re-

flectance parameters, light directions, and surface normals. To avoid local optimum 

due to the large search space, a good initialization of all unknowns are generally 

required. Direct specularity fitting also does not work well on complicated surfaces 

with wide specular lobes, which we shall show examples in Chapter 4.1. Besides, 

the efficiency is also an issue for high-dimensional optimization. 



Chapter 2 Related Work 13 

2.2.6 Photometric stereo with shadow 

In [4] and [1], shadow clue was used to constrain the depth construction of object 

surface. In our method, the shadow information is explored in a novel way, that 

is using the cast shadow boundary normal to assist recovery of surface normal and 

BRDF measurement. 



Chapter 3 

Our System 

Similar to the configuration of calibrated photometric stereo methods in previous 

work, our input image set I = {/i, /之，…’ /„} are taken by a static camera where the 

target object is illuminated by varying directional light source. We put light source 

far from the object such that parallel light can be assumed, in our experiments, 

the distance between the object and light source is about 2.5m. Input images are 

assumed to be taken under orthographic projection. The photometric calibration 

is carried out such that the pixel intensities represent the radiance. The incident 

radiance direction in each image is measured using a chrome sphere. 

For simplicity's sake, we first assume that the object is built of a single mate-

rial. Our method can be naturally extended to the objects assembled with different 

materials, which will be described in Chapter 5. 

We model the reflectance property of the object's glossy surface using the Ward 

BRDF model [29]: 

胁 ， + W 二 械 - ， ， (3.1) 

where i and o denote the incident and outgoing light directions. 6i and Q�are polar 

angles of i and o respectively, a is the roughness coefficient, determining the size 

of the specular lobe on object surface. Larger a value causes wider specular lobe 

with severely blurred boundary, pd and Ps measure the diffuse and the specular 

reflectance respectively. (5 is the angle between surface normal and halfway vector 

14 
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[29]. Note that other parametric reflectance models can also be employed similarly 

in our method. 

Ward model is a combination of two terms. ^ is the diffuse term. Other parame-

ters form the specular term which is highly non-linear with respect to the unknowns. 

Directly optimizing all the unknowns in (3.1) is usually a slow and unstable process. 

In our method, we separate the unknowns into two classes and estimate them sepa-

rately: 

• The global parameters ps and a have fixed values for all the surface points 

and they can be estimated in the first pass. For computation efficiency, a few 

selected samples are sufficient to robustly estimate these parameters. This 

step is described in Chapter 3.1. 

• The estimated global parameters are taken into (3.1) to simplify the specular 

term. We then apply iterative optimization to computing the surface normals 

and other local parameters respectively on each pixel. This step is described 

in Chapter 3.2. 

3.1 Estimation of global parameters 

We first show that if the normal of one surface point is known on the object, the 

global parameters can be computed. In order to use the normal information, we 

first study the BRDF measurement on object surface using single directional light 

source. The amount of outgoing light, Lo, is given by: 

La = BRDF{9i,(j)i,eo,(f)o)LiCosei, (3.2) 

where Li is the incoming light. Substituting (3.1) into (3.2), and generally assuming 

the unit intensity of the incoming light, we obtain 

r Pd Q , Ps I COS Oi -tafp 
Lo = — COS Oi + - - W - e x p ^ ^ . (3.3) 

TT ATVa^ V COS do 



Chapter 3 Our System 16 

Note that if the corresponding normal of one surface point q is known (the details 

of deriving this normal will be depicted in Chapter 3.1.3 and 3.1.4)，the formulation 

of Lo can be greatly simplified since do, Oi, and (3 are determined. We can estimate 

other BRDF parameters by minimizing 

g[(l) = {h{q) - Lo{q, fh, a , n, pd))2’ （3.4) 

0<i<n 

where U is one of the input images. In the rest of the thesis, without causing am-

biguity, we simplify the notation of Lo{q, Ps^a^n, pd) to Lo(g). We propose the 

following iterative optimization algorithm to minimize g and estimate the BRDF 

parameters. 

1. Initialization of BRDF parameters. 

a is initialized to a value between 0 and 0.4 while pd and ps are initialized to 

values between 0 and 1. 

2. Optimize pd by fixing other parameter values. 

In the diffuse term, p^ is the only parameter to be estimated on the pixel. It 

can be exactly computed by setting 為 = 0 . 

3. Optimize ps and a by fixing p .̂ 

In the specular term, ps and a are optimized together using the Levenberg-

Marquet method. 

4. Termination. 

Step 2 and 3 are iterative!y performed until the energy of objective function 

does not decrease in successive iterations. 

Since the energy of g in step 2 and 3 are monotonically decreasing, so the whole 

process is guaranteed to converge to an optimal solution. This optimization process 

converges rapidly given the small number of unknowns. 

The above optimization process shows that the global BRDF parameters can be 

efficiently estimated from one or a set of known surface normals. In the following, 
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we describe our method of estimating the surface normals using the shadow visual 

clue. 

3.1.1 Shadow separation 

Since directional light source is used in photometric stereo methods, we notice that 

the lighting in each image not only forms a specular lobe on the object but also 

produces cast shadow of the object on the background. These shadows are caused 

by the occlusion of incident light. 

In order to capture the shadow of the object under different lighting, we place 

a small Lambertian board on the back of the object. To reduce the possible inter-

reflection, the board is painted with mid-grey color to absorb most of the incident 

light while the shadow can still be faithfully detected. We show one example in 

Figure 3.1 (a). To verify that using the board does not influence our result much, 

we carried out several experiments with and without the grey board and found that 

the differences are constantly very small. One comparison is given in Figure 3.1 (a) 

and (b) where the root mean square (RMS) difference on the object pixels including 

image noise is only 0.0024. 

3.1.2 Separation edges of shadow and edges of foreground ob-

ject 

For automatically separating the shadow and the foreground object in the input im-

ages, we observe that the shadow region changes among the images due to the 

change of lighting directions. Statistically, one shadow edge pixel in one image has 

small chance to be an edge point in all other images. The object in the image has 

fixed position. So its boundary and textures constantly appear in multiple images. 

We detect the edges combining multiple images using the method presented in [33] 

where a two-component GMM is constructed for each pixel to robustly reject out-

liers. In the following, the method to robustly extract the edges of the shadow and 
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(a) (b) 

• n 
(C) (d) 

Figure 3.1: Mid-grey backboard configuration, (a) A mid-grey board is placed be-
hind the object to capture the cast shadow. The reflection from the board is low. (b) 
Same scene captured with black background. The object color difference between 
(a) and (b) is very small, (c) and (d) show the automatic foreground extraction, (c) 
The edge detected using input image information. Most shadows boundary pixels 
are removed, (d) Using level set method, the foreground map is formed on the edge 
map by curve evolving from the background. 

that of the foreground object is introduced. 

First, to remove high frequency noise from input image / , the input image is 

convolved with a low pass Gaussian filter G�to obtain the smoothed image I'. 

I' = “ (3.5) 

The gradients along x-axis and y-axis of the smoothed image I' can be obtained by 

= 华 “ ' (3.6) 
ox 

Qy = 孕 “ ' (3.7) 
dy 
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And the magnitude w and orientation 9 of the gradient for each pixel position can 

be computed byw = y/Ql + Ql and 6 = tan—i (象). 

Two component gaussian mixture model (GMM) is used to model the local gra-

dient orientation distribution at each pixel position. The main Gaussian distribution 

models the edges of the foreground object (inliers) while the outliers are the edges 

due to shadow or image noise, which are captured by the second Gaussian distribu-

tion. The Expectation Maximization can be used to decompose the mixture model 

and identify the inliers. 

Let the total number of orientation bins be K and denote bin i a s M i ) where 

9i and Mi are the center orientation and the magnitude of bin i respectively. For a 

pixel position {x, y), we collected N gradient samples within the sampling window 

centered at (x, y) from all input images. And the gradient magnitude w and orien-

tation 9 for each gradient sample are computed, gradient sample j belongs to bin i 

if Oi - We/2 < 9j〈氏 + We/2 where We is the width of the bin. Membership 

function rriijof sample j with respect to bin i is set to 1 if sample j belongs to bin i, 

else set to 0. Then magnitude of bin i is then computed by Mi = Y^^^i Wiiriij. 

The two-component GMM can be formulated as: 

2 

g{e) = ^ a M O \ m k , ( J k ) (3.8) 
fc=i 

where ak is the mixing coefficient,砍 is the probability distribution function of the 

A:'th component Gaussian distribution and it is defined as: 

qk{0 TTifc, CTfc = ——exp( ；r-2 } (3.9) 
V^Tral 2cr̂  

EM algorithm is used to iteratively update the parameters in the mixture model 

until convergence. The parameters are updated at each iteration according to these 

functions: 

( 瑪 
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4 叫 = ⑷） （3.11) 

= E f = i M冲 ( f c |氏， e � ) � s氏 

‘ E ^ L I M访⑷札 e � ) s切氏 ‘ 

乂 t+i) = E f = i M g i ( m ， e � 3 1 3 ) 

‘ E二 iM油⑷久，e⑷） ‘ 

where k represent the A:'th component Gaussian distribution and k can be 0 or 

1. Q � = { o ^ O , m^O’ is the parameter set at iteration t, Df^ is the circular 

distance between 9i and rr^,) and is defined as: 

Df^ = min[\e - - - m^'^l) (3.14) 

The EM algorithm produces two set of parameters (mi, a i Mi)，（爪2’ 

ol2 Mi) for each pixel, suppose ai > a2, we say component 1 is the main 

component at this pixel, then the gradient orientation mean of the main component 

nil captures the orientation of the foreground object edge in each pixel, its corre-

sponding magnitude is a i X)工i M . The composite gradient map of the foreground 

object can be obtained from extracting the gradient orientation mean of all main 

components at all pixel positions. 

After that, the postprocessing techniques of Canny edge detector are employed 

to improve the result. Non-maximum suppression is first applied to the gradient 

map, such that each pixel is set to zero unless it is a local maximum along a line 

oriented along the gradient direction. Then hysteresis is then used to eliminate 

streaking. Two thresholds are used, Th and T] where Th > T/. Any pixel has a value 

greater than T" is set to edge pixel immediately, then any pixels connected to edge 

pixels and have a value greater than 7] are set to edge pixels. 

After these postprocessing steps, the output is the edge pixels detected on the 

object as shown in Figure 3.1 (c). 
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个 z 

(a) (b) 

Figure 3.2: (a) Shadow formation, ip shows the lighting direction. The object casts shadow 
on the back plane The camera is fixed as shown, rip is the shadow boundary normal of 
p in <E>. p* is the corresponding surface point and rip* is the surface normal, (b) Shadow 
silhouette. pi is at the junction formed by two hills' cast shadow. The gradient computed 
on Pi does not map to any surface normal. 

To extract the object in each image, the smallest closure of the edge points can 

be computed using flood fill or the geometric level set method [18]. One example 

is shown in Figure 3.1 (d). 

When the object has been separated, shadow remains in the images. Due to 

the use of directional light, the shadow penumbra is narrow. We, thus, can detect 

shadow boundary using edge detection. 

3.1.3 Normal estimation using shadow boundary 

Once the shadow boundary pixels are detected, we compute image gradients on 

these pixels. As shown in Figure 3.2 (a), each of the shadow boundary pixels p 

in back plane 少 can be mapped to at least one object surface point p*. We study 

the following two classes of cast shadow boundary in order to compute the surface 

normal np. at p*. The illustration is shown in Figure 3.2. 



Chapter 3 Our System 22 

Class 1: The shadow boundary pixel, e.g., p in Figure 3.2 (a), maps to a single 

surface point p* along the light ray and the first order derivative exists at p*. It can be 

easily proven that the surface normal Up* at p* is projected to the shadow boundary 

normal rip in continuous space. The proof is included in the Appendix section. In 

discrete image space, there may exist quantization errors in the computed shadow 

boundary gradient, we shall propose a robust estimation which will be depicted in 

Chapter 3.1.4 to diminish their unfavorable effects. 

Class 2: The shadow boundary pixel, for example, pi in Figure 3.2 (b), is at the 

junction formed by two or more hills' cast shadow. The normal of the surface point 

cannot be determined since there exist at least two surface points projected to that 

pixel. 

In order to estimate the surface normal using cast shadow, the pixels in class 2 

should be rejected. We employ the feature detection method to filter out the shadow 

boundary pixels at junctions. We construct the Harris matrix M(x, y) [11] on each 

shadow boundary pixel I(x, y): 

r /2 I I 
= ^ (3.15) 

U V Ixly ly 

where = /y = and w{u, v) is a Gaussian filter with a = 1. 

The junctions are detected when the comer strength S{x, y) = 二 二 ) is larger 

than a threshold. 

After feature removal, we compute the gradients on the remaining cast shadow 

boundary pixels. We denote the remaining shadow gradient set as . . . n ^ J 

in each image / � . T h e corresponding surface normal for n^ is n一 吟 is computed 

by applying the following constraints. 

• nj,. is a surface normal on the self-shadow boundary, its direction must be 

perpendicular to the lighting direction ip： 

i p . n 卜 0. (3.16) 
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Figure 3.3: Determining the surface points. On object surface, the point p*, on which the 
normal n* is computed, is only known along the ray ip, as shown in green. 

• njj. ’ nj, and ip are coplanar, we thus have 

(ip X n；) • n；, = 0. (3.17) 

• Hp. is a unit vector 

l |n ; . | | = l . (3.18) 

Combining (3.16), (3.17), and (3.18), we solve a set of linear equation systems 

to compute the surface normals corresponding to the shadow boundary pixels. 

Note that our feature removal may not be sufficient to reject all shadow pixels in 

class 2 in computing surface normals. In addition, the possible noise produced by 

inaccurate image gradient and shadow boundary computation may also contaminate 

the results. In the next Chapter, we introduce a robust clustering method to further 

refine the parameter estimation. 

3.1.4 Global parameter estimation and refinement 

We have recovered a set of possible surface normals corresponding to the cast 

shadow boundary pixels. In order to robustly estimate the BRDF parameters in 

(3.1), the positions of corresponding surface points should also be known so that 

(3.4) can be optimized. 
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In most cases, the attached shadow on object fades gradually and no clear 

boundary exists between the illuminated area and the attached shadow region. One 

example is shown in Figure 3.3. We only know that p* corresponding to normal 

Up* is along the light ray ip passing through p. It is difficult to determine its exact 

position. In our approach, a small number of surface candidates Sp of p* along ip 

are collected. Each candidate is in the transition region between fully illuminated 

and shadowed pixels. The region is shown in green in Figure 3.3. 

Notice that using shadow boundary, we compute several surface normals in im-

age i, each normal nj,. has a set of candidates Sj, of its possible position. To simulta-

neously find the true normal position and to estimate the global BRDF parameters, 

we introduce the following optimization process. 

1. For each surface normal nj,*: 

(a) We select one candidate normal position from SJ, and take it into the 

iterative optimization described in Chapter 3.1 to minimize (3.4). The 

residual error is also recorded. 

(b) If there exists candidate in Sj, that is not used in the above computation, 

repeat (a). 

(c) If one surface point from all candidates in Sj, produces the smallest 

residual error, we record the BRDF parameters ps(i,p) and a(i,p) pro-

duced by using that surface point. 

2. For all recorded BRDF parameters ps and a , we apply the mean shift cluster-

ing [7] to robustly estimate parameter values. 

Regarding step 1，among all candidates for a normal position, we regard the one 

producing the least residual error in the optimization as the true surface point. It is 

proven to be a reliable measurement in our experiments. The computation is also 

efficient. 
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Step 2 is based on observation that there may exist small noise and outliers. We 

use the statistical clustering method to refine the parameter estimation. The cor-

rectly estimated parameter values form high density in the parameter space. For a 

few normal outliers, the correspondingly estimated parameters have small probabil-

ity to be similar to each other. So the point density around these values is small. 

3.2 Surface shape and texture reconstruction 

After estimating the specular parameters, surface normals and diffuse albedo for 

all surface points can be reconstructed without highlight separation. The surface 

texture is the recovered diffuse albedo. We first rewrite (3.3) as 

TT 4-Ka^ y o . n(p) 

where i and o are the incident and outgoing light directions respectively, h and n 

are the half-way vector and surface normal respectively. We minimize the energy 

function g{p) similar to (3.4) to reconstruct surface normals: 

9(P)= (3-19) 

0<i<n 

Comparing to previous methods constructing normals using only Lambertian com-

ponent [31，6, 23，14], our formulation has the same number of unknowns. We 

employ an iterative optimization to estimate them: 

1. For each pixel q on object surface: 

(a) The normal n^ of q is initialized as the interpolation of the recovered 

normals in neighborhood. 

(b) Optimize pdijp). pd(p) can be exactly computed by s e t t i n g = 0 . 

(c) Optimize normal rig. The normal vector is estimated using gradient 

descending optimization. Given the small number of unknowns, it con-

verges rapidly and produces optimal result. 



Chapter 3 Our System 26 

(d) Repeat (b) and (c) until convergence. 

The energy in steps (b) and (c) is monotonically decreasing, so the convergence 

is guaranteed. In all our experiments, the process converges within 10 iterations. 

3.3 Single material results 

We show experimental results in this section. Most of the surfaces contain wide 

specular lobes in input images. Since our algorithm does not rely on separation of 

specular components, we can faithfully recover surface textures even if the highlight 

color is similar to the texture color. 

(a) (b) 

_ • 

(c) (d) 

Figure 3.4: (a)’(b) are two of six sphere images for reconstruction, note the large 
area of overlap of hightlight between them even though the lights come from very 
different directions, (c) Reconstructed surface normal encoded by RGB-channels. 
(d)Reconstructed surface texture. 

The first example is a synthetic rough specular sphere with complicated texture 
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as shown in the top row of Figure 3.4. Note that the color of light source is similar 

to that of the texture on the sphere, it is an error-prone step to separate the highlight 

using highlight removal methods mentioned in Section 2.2.3. The large specular 

lobe makes a large area of hightlight and the highlight regions overlap in most of 

the input images. Using our method, the BRDF parameters and surface normal are 

faithfully recovered. The surface normal and the texture image are shown in (c) and 

(d). Comparing to the ground truth surface, the surface normal is very accurate, 

with only 0.94 degree in average error. 

Figure 3.5 shows a "mouse" example with large highlight area, (a) and (b) 

illustrate two out of the six input images where the object and the shadow boundary 

can be automatically extracted. The surface normal and texture shown in (c) and (d) 

are faithfully reconstructed. We evaluate the efficacy of our method by rendering 

the object under a novel lighting condition as shown in (e) and comparing it with 

the ground truth image (f), the RMS error is only 0.0326, proving that our recovered 

BRDF parameters and surface normals are accurate. 

Figure 3.6 shows another object in which the reflection is complex and highlight 

can be seen in different regions in the image. We only use 5 input images in this 

example. We faithfully recover surface normals and texture as shown in (b) and (c). 

The rendered image (d) under novel lighting is visually satisfying. 
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• • 

BM̂ i H H H B B ^ H I 
(b) 

raMf J I H H ^ ^ I 
(C) (d) 

Figure 3.5: Mouse, (a) and (b) are two out of six input images contain large regions 
of highlight, (c) The recovered surface normal map encoded in RGB channels, (d) 
Surface textures, (e) Rendered mouse under a novel lighting direction, (f) The 
camera captured image using the same lighting direction, which is similar to our 
rendering result (e). (g) Reconstructed shape in a synthetic view, (h) Rendered 
image under novel lighting with the same view as (g). 
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(a) W 

— I M 
(C) (d) 

Figure 3.6: Saving box. (a) One of the input images, (b) and (c) Reconstructed 
normals and textures, (d) The rendered image under novel lighting. 



Chapter 4 

Comparison between Our Method 

and Direct Specularity Fitting 

Method 

4.1 Summary of direct specularity fitting method [9] 

[9] introduces the direct specularity fitting method to incorporate the Torrance and 

Sparrow reflectnace model in uncalibrated photometric stereo. It demonstrates that 

the specularity can help to resolve the GBR ambiguity in uncalibrated photometric 

stereo. The details in GBR ambiguity of uncalibrated case can be found in [5]. The 

following is the summary of this specularity fitting method: 

Let the surface of the object be modeled by a height function z{x, y), where 

(x, y) denotes the Euclidean coordinate system in the image plane. Then the surface 

normal is 

如 ) = ( 严 “ ( 工 ’ y)，-1) (4.1) 
yJxl(x,y)-\-xl{x,y)-\-l 

y\c[w)) = ^ c{w)ip{x, y\w) (4.2) 

To enforce continuity of the surface, the surface z{x, y) can be expanded using a set 

30 
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of discrete cosine basis functions y; w) in 4.2. c{w) is the discrete consine tran-

sorm coefficients of z{x, y). The summation is performed over the two dimensional 

index w where w = {y, v). 

The partial derivatives of z{x, y) can be expressed in this expansion form, so 

does the surface normal. 

y\c(w)) = c{w)'ijj^{x, y\w) (4.3) 

y; c{w)) = c{w)iljy{x, y; w) (4.4) 

Using Torrance and Sparrow model, the intensity of a surface point at {x, y) 

lighted by light source U can be expressed as 

rf I ! W ( \ , � T, , Psexp(-uj^[arccos'^{K)]) .. /(n(a;’ y\c{w)), pd{x, y), h) = pan丄 k + -——^——^ (4.5) 
n/ V 

where 

；^ = … (4.6) 

u is the surface roughness and v is the viewing direction. pd{x, y),ps are the 

diffuse and specular coefficients. 

Direct fitting algorithm solve the following minimization problem using itera-

tive scheme, the optimization steps are listed in Table 4.1: 

i.P{c{w),pd{x, CJ, k) (4.7) 

=X^lMj. — /(n(a;, y] c{w)),pd(x, y), p,, cj, /i)p (4.8) 
ij 

Direct specularity fitting method depends heavily on the result of the initial-

ization step, due to the fact that the search space is inherently huge in this prob-

lem, unsatisfactory initialization makes the algorithm easily trap in local minimum. 

Moreover, the algorithm is very slow, more than 2000 iterations are needed before 

convergence for complicated examples. 
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1. Run the algorithm for a number of iterations using Lambertian model by set-
ting ps fixed to zero. This provides the algorithm a reasonable initialization. 
Initialize the DCT coefficients c{w) = 0, /9s = 0 and uj = 2. 

2. Perform SVD on matrix X to get the light light matrix L, each column of L 
is used as initialization of the light sources. 

3. Update c{w) using steepest descent by calculating ^ 盜 ^ . 

4. Update albedo pd[x, y) using linear least squares while keeping other opti-
mization parameters fixed. 

5. Update each of light source directions U using Newton's method. The partial 
derivative \yP{li)sind Hessian v^-P(^t) can be estimated. 

6. Repeat steps 3-5 until P ( c ( w ; )， y ) , ps.uj, /j) is smaller than a threshold. 

7. Perform inverse DCT on the c{w) to obtain the surface z{x, y). 

Table 4.1: Algorithm of Direct Specularity Fitting Method 

4.2 Comparison results 

In Figure 4.1, we compare our method with the one introduced in [9] using the 

"mouse" example. This direct specularity fitting process involves a large set of 

unknowns, the result is shown in 4.1(a). The large scale of artifact can be seen in the 

recovered surface, showing that the overlapping large highlight problem prohibit the 

algorithm to converge to a satisfactory result. The huge search space is also another 

significant problem, this method run more than 4.5 hours before convergence, which 

is very inefficient. 

In our implementation, we assign known values to lighting variables. So their 

method is simplified by including less unknowns. The search space of the problem 

is reduced, and it work as a calibrated photometric stereo method just similar to our 

method. As shown in Figure 4.1(b), the reconstructed surface using this simplified 

version of method still contains problems . Most of the errors occur in pixels where 

strong highlight overlaps in the input images. It takes 2.6 hours to produce the 
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國 面 
(a) (b) 

1 rflW 
(C) 

Figure 4.1: (a) shows the result from [9], (b) is result by our implementation of mod-
ifying the method in [9] using known light directions and fixing the corresponding 
variables. So the optimization is simplified with less unknowns, (c) shows the result 
by our method for comparison. 

surface result. 

Figure 4.1(b) shows the result computed by our method. Since our method uses 

shadow visual clue to estimate the global parameters, the complexity of normal 

estimation is reduced. Moreover, our method runs very fast, using only 50 minutes 

in computation for this example. 



Chapter 5 

Reconstructing Multiple-Material 

Surfaces 

Our method can also be naturally applied to surface reconstruction of multiple ma-

terials. With the similar configuration, we can obtain object silhouettes projected 

on the backboard. Similarly applying the method described in Section 3.1, a set of 

surface normals are computed. Then we use the method described in Section 3.1.4 

to compute several optimal specular parameter sets from these normals. We place 

these values in the parameter space. Assuming there are M different materials with 

different specular properties where M > 1, rather than using mean shift clustering 

to find a unique parameter configuration, here we employ mean shift segmentation 

to initially form M partitions in the parameter space. Then the center of each parti-

tion has high density in which M different specular parameter sets can be robustly 

obtained. 

After specular estimation, we use the parameters to recover the surface normal 

for each pixel. Using the optimization described in Section 3.2, we are able to com-

pute a set of optimal n*(j) and where 0 < j < M, in terms of minimizing 

the residual error “ � j where 

= E ihip) -
0<i<n 
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There should exists only one true surface normal for each pixel p, but simply com-

paring all ^pj for different j and selecting normal corresponding to the smallest ^pj 

is unreliable. Considering the material continuity property of the object surface, 

we treat the selection of optimal specular parameter set as a labeling problem in 

Markov Random Field where the parameter set of each pixel can be selected from 

M different assignments. Then we minimize the energy defined as 

U { f ) = Udataif) + UsmoothU) (5.1) 

= + ^ 叫 s / ( p ) ’ s / � ) ’ （5.2) 
pev {p,q)eM 

where f V — S, and V and S denote the pixel set and label set respectively. 

So f{p) returns the label at p. Sj = [ps(j), denoting the j th set of specular 

parameters, where 0 < j < M. J\f is the set of neighborhood, a is a weight. 

Y^ is the data term. Y^ H{a, b) is the smoothness term defined by H{a, b)= 

1 - exp[-1 (a - ( a - b)], encoding the labeling smoothness between adjacent 

pixels. E denotes the covariance matrix between vector a and b. We solve (5.2) 

using graph cuts [3]. The whole surface is thereby segmented into partitions with 

computed optimal normal and albedo for each pixel. 

Note that in order to faithfully reconstruct normals for object surface consisting 

of M different materials, M sets of global parameters must be recovered. Therefore, 

there should exist surface points from each material projecting to at least one of 

the cast shadow boundaries. This condition, in our experiments, can be generally 

satisfied when several input images under different lighting are used. 

5.1 Multiple material results 

Figure 5.1 shows our result on a synthetic kettle example. Eight input images are 

used. The kettle consists of two material, one is painted wood on the lid and the 

handle, the other is the metal body of the kettle. Our computed composition map in 

(b) correctly separate the two material components. The computed surface normal 
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mB^M 
(c) (d) 

• I H l 
(e) (f) 

Figure 5.1: Kettle, (a) The kettle is made of two materials, (b) Recovered material 
composition map. (c) and (d) The computed surface normals and textures, (e) We 
re-render the kettle under a novel lighting condition, (f) The ground truth image for 
comparison. 
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and texture are shown in (c) and (d) respectively. We compare the recovered surface 

normal with the ground-truth surface model, the average difference is only 1.14 

degree. Using the kettle surface normal and texture, we can relight the kettle in 

different lighting (e), which is very comparable to the the ground truth one in (f). 

Figure 5.2 illustrates a very challenging daily-life example. It is a toy model 

with multiple materials on surface. Each material has its own roughness and spec-

ularity properties. We use 10 input images and the reflections in the input images 

are complex. Using our method, different materials can be successfully recovered 

as shown in (b). The material shown in green is a kind of hard plastic which has 

strong and overlapping highlight in all images. The material in blue shows smaller 

highlight whereas the red material is near Lambertian. The recovered normals in (c) 

preserve sufficient fine details and structures. Comparing our rendered image with 

the image taking by the camera under the same lighting condition, the RMS error is 

only 0.0423. 
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(a) (b) (c) 
(d) (e) (f) 

Figure 5.2: Toy. (a) The toy surface consists of multiple materials, and the reflection 
is very complex, (b) Recovered material composition map. (c) and (d) The com-
puted surface normals and textures, (e) We re-render the toy under a novel lighting 
condition, (f) The ground truth image taken by the camera for comparison. 



Chapter 6 

Conclusion 

To conclude, in this thesis, we have proposed an efficient photometric stereo method 

to estimate the BRDF parameters and to reconstruct surface normals. We focus on 

the examples that wide specular lobes can be seen in the input images. This kind of 

surfaces is problematic to all related work on non-Lambertian photometric stereo. 

Our method is the first work to use the cast shadow silhouette information to help 

estimate the BRDF parameters and surface normal. Our method does not require 

general specular component separation and shows better performance than direct 

specularity fitting methods, in terms of accuracy and convergence rate. Our method 

uses a new configuration to capture the cast shadow of the object on back planes. 

Using the small number of input images, the shadow is applied to estimating the 

normal samples and computing the global parameters. Once the global parameters 

are estimated, the local reflectance parameters and normals can be optimized sepa-

rately on each pixel. This largely reduces the computation complexity and improves 

the quality of the computed object surface and texture map. All our experimental 

results shows that our algorithm is an efficient and accurate method to solve wide 

specular lobe problem, allowing the photometric stereo method applicable to more 

complicated surfaces. 
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Appendix A 

Proof of Surface Normal Projecting 

to Gradient of Cast Shadow 

Boundary 

个 z 

/ n； P2 / z = 0 

X 

Figure A.l : Illustrative figure shows the configuration with surface S and a shadow 
plane. 

As shown in Figure A.l, let S(oc, y,z) = 0 denote a 3D surface and S e C^, i.e. 

S is differentiable with respect to x, y, z and its first order derivative is continuous. 

^ = 0 is the shadow plane, - I is the direction of the light rays, pi is the examined 

surface point on S, p\ is the point on the shadow boundary which is produced by 
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V\ blocking the incident light, n! is the surface normal of S at point pi. We define 

the 3D position o f p i as {xi,yi,Z]). According to the basic theorem of differential 

geometry, we have 

几 1 = {Sxi , Sy^ , 'S'̂ 1 ), 

where S^^, Sy^ and S^^ are the first order derivatives of S with respect to x, y and 

z respectively at point pi. Then the projection of w! onto the shadow plane can be 

written as 

= 乂 + 炉 ( A . l ) 

Obviously, pi and p[ should be on the same light, thus 

p'l = Pi - \\Pi - P'lh • I 

p'l = Pi +Pug • I, (A.2) 
1 

q = - f 

We assume that there exists a point p2 on the surface S such that \\p2 lb — 0’ 

and it produces a shadow point p'̂  on the shadow boundary. This assumption is 

reasonable in most cases. 

Let = (rci + dx, yi + dy, zi + dz), obviously dy, dz)\\2 0. Therefore 

P2 must be on the tangent plane of S at point pi. So 

{dx, dy, dz)丄 ni Sxidx + Sy^dy + S^^dz = 0 

Similar to pi, 

P'2 = P2 + P2无q • I (A.3) 

Since p\ lies on the shadow boundary, the light ray producing has only one 

intersection with the surface S. So 

ni 丄/ Sxilx + SyJ^y + Szilz = Q 
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Since ||p2 - Pi "2 — 0, combining Eqn. (A.2) and (A.3), 

V'2 - pi = P2 — Pi + dz . q . I 

\\P2-P'ih < \\P2 - pih ^ \\dz ' q • l\\2 (A.4) 

lb '2-P' l l |2 — 0 

Let n\ be the normal direction of the shadow boundary on point p[, since \\p2 -

P'llh — 0,we have 

n ; 丄 （ p ' 2 i ' i ) (A.5) 

On the other hand, using Eqn. (A.l), we have 

{n\(p2-p'i)) = -{dx-^-dz-q- Q + Sy, - (dydz • q - ly) 

=dxS^, + dySy, - dzyS^, — d J f S y , 

=-dzS,, - dz^fS：,, - dz^fSy, 
h U 

dz 
—一"T~ \hSzi + Ix^xi + lySyi) Lz 

= 0 

So 

n* 丄 ( P ' 2 - P ' i ) (A.6) 

Since n*, n\ and (p'2 — p'J are on the same shadow plane, combining Eqn. (A.5) 

and (A.6), we have 

• 
The above proof shows that the shadow boundary normal is the same as the 

projection of surface normal on the shadow plane, the only assumptions here are 

the surface should be C^ and the neighboring pixels on the shadow boundary should 

be produced by neighboring points on the surface, which are reasonable for natural 

objects. 
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