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Submitted by Zhou, Yipeng 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in July 2008 

P2P streaming tries to achieve scalability (like P2P file distribution) 
and at the same time meet real-time playback requirements. It is a 
challenging problem still not well understood. 

In this thesis, two work are done. First, we analyze the p2p 
streaming in synchronized case and describe a simple stochastic 
model that can be used to compare different data-driven download-
ing strategies based on two performance metrics: continuity (prob-
ability of continuous playback), and startup latency (expected time 
to start playback). We first study two simple strategies: Rarest 
First and Greedy. The former is a well-known strategy for P2P file 
sharing that gives good scalability, whereas the latter an intuitively 
reasonable strategy to optimize continuity and startup latency from 
a single peer's viewpoint. Greedy, while achieving low startup la-
tency, fares poorly in continuity by failing to maximize P2P sharing; 
whereas Rarest First is the opposite. This highlights the trade-off 
between startup latency and continuity, and how system scalabil-
ity improves continuity. Based on this insight, we propose a mixed 
strategy that can be used to achieve the best of both worlds. Our 
algorithm dynamically adapts to the peer population size to ensure 
scalability; at the same time, it reserves part of a peer's effort to 
the immediate playback requirements to ensure low startup latency. 
In addition, some assumptions in the model are modified and dis-
cussed, which can prove these assumptions are reasonable and our 
model is robust. 

However, in real-life P2P streaming, how the peers select play-
back offset and buffer size? In the second part, we generalize the 
previous work and study a number of interesting consequences of 
this reality. Given a set of neighbors, a reasonable strategy of a 
peer is to set its playback offset in order to maximize the overlap 
of its playback buffer with its neighbors' buffers. If a cluster of 
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peers all adopt this local strategy, we show that the Nash equilib-
rium is for all peers to have synchronized playback in the cluster. 
Secondly, if peers in a cluster have synchronized playback offset, we 
show that it is best for them to adopt the same buffer size, for a 
given total buffer size. These results imply that the simple model of 
relatively synchronized peers is still reasonable for studying peers in 
a cluster. For generalization, we show that for really large-scale P2P 
sessions, it makes sense to organize peers into different clusters with 
different (cluster-wide) playback offsets. This is shown analytically 
using two-cluster model; the results are supported by simulation ex-
periments. The analysis of this part is more realistic and provides 
further insights in the design of large-scale P2P streaming systems. 
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中文摘要 

点对点的流媒体网络不但可以满足用户数量的扩展性(例如点对点的文件传送软 

件BT)，并且能同时满足多媒体流文件播放所需要的实时性需求。目前这个系 

统的设计与可法有很多值得研究的课题。在这篇毕业论文中，主要讨论和研究了 

两个方面的问题。 

首先，用简单的随机过程模型研究点对点网络在一个近似同步的系统屮。在这个 

随机过程模型屮，我们可以比较各种文件块的选择策略的优缺点。在这两，我们 

设计了两个性能衡量指标：播放成功率和启动延迟。然后选取两种直观简单的文 

件块选择策略：最稀缺块优先策略和贪心策略。最稀缺块优先策略被广泛应用于 

文件共享系统并且取得了很好的用户扩展性。而贪心算法对单独用户来讲是一种 

非常简单直观来最大化满足播放成功的策略。贪心算法能和好的减少启动延迟但 

却不能得到很好的成功播放概率，而最稀缺块优先策略正好相反。通过研究启动 

延迟和播放成功概率之间的矛盾和系统扩展性与播放成功概率之间的矛盾，一种 

新的混合策略被提出。这种混合策略能同时满足系统扩展性和播放成功概率高要 

求之间的矛盾。并且这种策略是一种可根据系统用户量而自发调节的自适应算 

法。另外，在这个模型下面，文章做了很多假设，一些特定的实验被用来检测这 

些假设的合理性和模型的健壮性。 

其次，考虑的真实地点对点流媒体网络中的用户观看并不是完全同步的，我们进 

一步提出新的模型来分析在不同步的情况下，用户的选择策略以及由此造成的影 

响。这部分的工作是基于第一部分的模型的一种改进和提高。在实际系统中，任 

何一个用户只能拥有有限的邻居提供帮助。在这种情况下，用户的合理策略是最 

大化自己和邻居的缓冲区的公共区间以便获得最大的帮助。如果在一个网络里面 

所有用户都使用这种策略，我们可以证明，所有用户将达到那什均衡状态并且将 

是一个同步的网络。如果用户可以自行选择存储缓冲区的大小，我们可以证明这 

种选择的结果是所有用户选择相同大小的缓冲区并且是那什均衡。同时我们还分 

析了两个网络间流量很小的情况，并且证明在这种情况下，适当的延迟有助于提 

高整个系统的性能。这部分的研究更加接近真实网络，相信对点对点网络的设计 

更有帮助。 
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Chapter 1 

Introduction 

Summary 

There are three sections in this chapter. First, the background of 
P2P streaming and P2P VoD is introduced. Secondly, the contri-
bution and difference compared with other work of this thesis are 
discussed. At last the organization of the thesis is shown. 

1.1 Background 

Video streaming over the Internet is already part of our daily life. 
The engineering of video streaming from a server to a single client 
is well studied and understood. This, however, is not scalable to 
serve a large number of clients simultaneously. The earlier vision 
for solving this problem is based on IP multicast, which relies on 
the routers in the network to manage the distribution and duplica-
tion of content from one source to multiple receivers. Due to tech-
nical complexity and other deployment issues, IP multicast has not 
been widely deployed. Instead, what emerged is a form of multicast 
implemented by an overlay network. There are different types of 
overlay networks, but a peer-to-peer (P2P) overlay network proves 
to be especially scalable. In a P2P network, each client is also a 
server (when the P2P network is working well), thus when more 
clients join a multicast session more servers (peers themselves) are 
automatically added to share the additional load. 

The earlier work on P2P content distribution was known as ap-
plication layer multicast [10] or end-host multicast [15]. Since then, 
there has been a significant body of work on P2P streaming. In an 
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CHAPTER 1. INTRODUCTION 2 

invited paper [18], the existing approaches are classified into two cat-
egories： one is tree-based, the other is data-driven. Both tree-based 
and data-driven use multiple paths (i.e. multiple spanning trees) for 
distributing content from a source to each receiver, which is the key 
for achieving scalability. The data-driven approach [29, 28, 26, 11], 
by not focusing on trees explicitly, allows the distribution paths to 
be determined based on data availability, which can adapt to the 
dynamics of a P2P network. 

Another important contributor to P2P streaming is the body 
of work on P2P file sharing protocols. The most representative 
and most influential work (in academic circles) is BitTorrent (BT) 
8, 9]. P2P file sharing is subtly different from P2P streaming. On 

the one hand, it is less demanding since it does not have real-time 
requirements; but on the other hand, it is also more demanding 
because it requires the entire file (in P2P streaming, peers join the 
video session from the points determined by their arrival times). 
Nevertheless, both P2P file sharing and P2P streaming need to deal 
with scalability by connecting the peers together to serve each other, 
and the works on BT provided the necessary insight in this area. 

Recently, people become more and more interested in P2P Video 
on Demand systems, which use peer to peer technology to improve 
VoD systems. Several P2P VoD systems have been designed by 
PPlive [1] and PPstream [2]. However, Little is know about the 
effectiveness of the P2P technology in VoD systems because of its 
complication. In this thesis, some newest research work about P2P 
Vod is presented. The features, the strength, the merit and weakness 
are discussed based on these work. 

1.2 Contribution 

The contribution of the thesis is as follows. None of the studies on 
P2P streaming so far, to the best of our knowledge, has formulated 
a tractable analytical model to help understand the important sys-
tem level design issues in P2P streaming - this is the contribution 
of this paper. By assuming independent and homogeneous peers 
(using the same size playback buffer and chunk selection strategy) 
in a symmetric network setting, we construct a simple analytical 
model that allows us to compute the distribution of what each peer 
has in its buffer. We can use this model to evaluate and compare a 
variety of chunk selection strategies, which is the core of the data-
driven approach. Based on a simple model, one can understand the 
relationships of important system parameters and metrics. In par-
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ticular, we first study two strategies: Rarest First and Greedy. We 
show that Rarest First is much better in dealing with scale, whereas 
Greedy is able to produce better playback performance (continuity) 
in small scale networks. Also, if all peers use Greedy, the play-
back delay can be smaller. We also prove an important property of 
our model, that is a certain number of buffer spaces used together 
with the Rarest First strategy can convert a large peer population 
problem into a much smaller peer population problem with equiv-
alent playback performance. This insight allows us to propose a 
mixed strategy where a part of the buffer space is used to deal with 
the need for scalability, and the other part of the buffer space is 
used to achieve the best playback performance and delay. Actually, 
the Mixed strategy is asymptotic optimized strategy. Our model is 
discussed based on some assumptions. Furthermore, these assump-
tions are discussed one by one, which indicates the correctness of 
our model. The first model is under synchronized network system. 
Therefore, we extended it to unsynchronized case. The peers are 
classified different clusters and there are lags among these clusters, 
which can not be ignored. The unsynchronized case in one cluster 
is also analyzed. Through these analysis, we can understand how 
the lag affects the performance. 

To make the problem tractable, there is a major assumption that 
all peers are synchronized in their playback. In other words, all 
peers playback the same content (offset of the video content) at the 
same time, with exactly the same delay equal to the buffer size. The 
reality, there are many factors that will affect the peers' playback 
offset. For example, due to geographical reasons, some peers are 
closer to the source of the content and are matched to the source for 
direct downloading whereas other far away peers may not receive 
direct downloading from the source. The latter peers tend to have a 
lag in their playback offset compared to the former group. Secondly, 
the actually decision of when to start playback may not be centrally 
controlled, but rather determined locally based on each peer's buffer 
content reaching a threshold of reserve. For this reason, and the 
fact peers have different neighbors, the resulting playback offsets 
are likely to be randomly distributed to some extent. Furthermore, 
peers' buffer sizes may be different. Each peer is likely to have a 
(configured) maximum buffer size. The actual buffer size in use (to 
support P2P streaming) will depend on a peer's playback offset and 
its neighbors' offsets. So a natural consequence of unsynchronized 
playback implies likely unequal buffer size, assuming the configured 
maximum buffer size is generous. 
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A new model generalized from above simple model to allow un-
synchronized playback. The key insight of the above simple model 
is about better use of the peer buffer spaces to provide scalability 
while taking playback continuity into consideration. In contrast, 
the generalized model explain the role of differential lag and what 
drives peers to select the same playback offset and buffer size in one 
cluster. More specifically, we address the following questions: 

1. Given a cluster of peers (who have each other as neighbors), 
how would the peers choose their playback offset if they are 
allowed to choose? When they all choose to maximize their 
buffer overlap, we show that they will choose to have synchro-
nized playback. 

2. Given a cluster of peers choosing synchronized playback, would 
they choose different buffer sizes? We show the answer is neg-
ative. 

3. Given multiple clusters with different (cluster-wide) playback 
offsets, how much improvement can we expect compared to the 
single-cluster case? We characterize the improvements analyt-
ically for the two-cluster case, and study the multiple cluster 
case using simulation. 

1.3 Organization 

The organization of the thesis is as follows. Chapter 2 introduce 
some current popular research work, including P2P streaming and 
P2P VoD. Chapter 3 is on the basic probabilistic model; Chapter 4 
goes into the details of how to model different chunk selection strate-
gies; Chapter 5 provides various numerical examples, solved by both 
the discrete and the continuous version of our model, as well as val-
idated by simulation. This chapter also describes application of our 
protocol to real protocol design and discusses the reasonableness of 
the assumptions in our model. In Chapter 6，we present the model 
for unsynchronized playback and discuss on the buffer map overlap 
maximization problem. Then we go into the details of how to ana-
lyze the average playback continuity of peers in the unsynchronized 
cluster. Chapter 7 provides the simulation results. Chapter 8 make 
a conclusion of the whole research thesis. 

• End of chapter. 



Chapter 2 

Related Work 

Summary 

In this chapter, the current P2P streaming work completed by re-
searchers are introduced, especially two works, which are most re-
lated to our model. Then, a more challenging and novel research 
work P2P VoD and current work are discussed. 

2.1 Work of Streaming 

Recently, a number of mesh-pull P2P streaming systems such as 
Coolstreaming[29], BASS[7], AnySee[17], BiToS[26], and [19, 22’ 
28] are proposed by researchers. Usually these systems are eval-
uated through simulation or run on the testbed like Planet-lab [3 . 
Meanwhile, there are also some measurement-based studies of P2P 
streaming systems[12, 4’ 21, 24’ 25’ 27]. In these measurement stud-
ies two measuring techniques have been applied: passive sniffing and 
active crawling. 

There are a number of analytical studies on P2P file sharing sys-
tems. An important contributor to P2P file sharing is the body of 
work based on the BitTorrent[9, 23]. Since P2P file sharing does not 
have real-time requirements, it is very different from P2P streaming 
application. For analytical models on P2P streaming, [30] was the 
first study on formulating tractable analytical models to help under-
stand important system designing level issues such as buffer design 
and chunk selection policies so as to provide good playback continu-
ity and at the same time, scalability to the system. There is another 
theoretical study applying the stochastic fluid model to model the 
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CHAPTER 2. RELATED WORK 6 

P2P streaming[14]. In [14], the authors only considered the whole 
system's performance, whether to perform universal streaming or 
not. There are two most closely related to our work are CoolStream-
ing [29] and BiTos [26]. The two papers are discussed in more details 
as following: 

CoolStreaming [29] is a very important prior study on data-driven 
P2P streaming protocols because it is based on a real prototype 
implementation and a relatively large scale experiment (involving 
thousands of simultaneous peers) in the real Internet. It serves as a 
proof of concept, and a benchmark for a real working system. Our 
model captures the main ingredients of the CoolStreaming system 
while stays simple enough for analysis. The chunk selection strat-
egy, Rarest First (originally from BitTorrent), is one of the basic 
algorithms we model. The playback performance derived from our 
model matches closely to that observed in CoolStrearning's experi-
mental results. Our abstract model allows us to consider different 
chunk selection strategies and gain insight into the trade-off of dif-
ferent metrics. In the end, we propose a better chunk selection 
strategy and explain why it is better. 

Another interesting data-driven P2P streaming study is BiTos 
[26]. BiTos is also based on BitTorrent. In BiTos, the chunk buffer 
is divided into two parts, one part for high priority chunks and the 
other for lower priority chunks. As playback deadline nears, a low 
priority chunk (still missing) becomes high priority. A peer down-
loads high priority chunks with probability p, and downloads lower 
priority chunks with probability 1 一 p. For each part of the buffer, 
BiTos still adopts the Rarest First Strategy. This is somewhat sim-
ilar to the mixed strategy we study, although there are important 
differences. [26] provides no modeling and analysis of the chunk se-
lection strategy, and little experimentation to show the advantages 
and disadvantages. All these issues are dealt with in this paper. In 
fact, BiTos can also be analyzed by our model; but based on our 
theory, our mixed strategy should be superior to BiTos. 

2.2 Work of P2P VoD 

There are some most coming research on P2P VoD system. Some 
of them study the framework of the P2P VoD system, such as [1, 2 . 
Some of them focus on measurement such as [6 . 

In paper [6], the authors measured performance from a real sys-
tem GirdCast. They measured the gap between GirdCast and the 
best case, studied the reasons causing large latency and how the 
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peers' behavior affect the average performance. However, there are 
some weak points. There were not many users in the system, about 
20000 totally, and several hundreds concurrent peers. Most of users 
came from CERNET, who had quite good network bandwidth. 

In paper [16], the authors did a great work including P2P VoD 
framework design, user behavior and system performance. Actually, 
the work is based on PPLive [1], which is real P2P VoD software 
and support tens of thousands of users on the internet with several 
hundreds channels. 

In paper [5], the authors presented one measurement studies of 
a large VOD system, using data covering 219 days and more than 
150,000 users in a VOD system deployed by China Telecom. Their 
study focuses on user behavior, content access patterns, and their 
implications on the design of multimedia streaming systems. There 
are many ways to design the P2P VoD framework, however the user 
behavior will not change. Study of the user behavior is helpful for 
various system design in P2P VoD. 

Paper [5] proposed a novel framework for P2P VoD system. It 
is a ring based overlay network, in which each peer maintains a 
gossip-ring to explore appropriate data suppliers and several skip-
rings with power law radius to assist the quick relocation of VCR 
operations. However, the shortcoming of this framework is that, the 
authors only solve it in simulation instead of implementing it in real 
network. 

Paper [5] analyzed large volume of user behavior logs during 
playing multimedia streaming and extracted a user viewing pattern. 
Through analysis the authors proposed a new efficient prefetching al-
gorithm to facilitate the random seek functionality. The authors set 
up an analogy between the optimization problem of minimizing the 
seeking distance and the optimal scalar quantization problem and 
then propose an optimal prefetching scheduling algorithm based on 
the optimal scalar quantization theory. 

• End of chapter. 



Chapter 3 

Basic Model of 
Synchronized Case 

Summary 

Some basic knowledge based on synchronized case is introduced. 
Some basic definition and relationship of these definition are dis-
cussed. This is a foundation of the further study. 

In this section, we present the mathematical model for P2P stream-
ing applications. Let us first define the notations and assumptions. 

Let there be M peers in the network^. There is a single server 
which streams chunks of (video) content, in playback order, to the 
M peers. Each chunk has a sequence number, starting from 1. Time 
is slotted and the server selects a peer randomly in time slot t and 
sends chunk t to that peer. 

Each peer maintains a buffer B that can cache up to n chunks 
received from the network. We reference the buffer positions accord-
ing to the age of the chunks stored: B{n) is reserved for the chunk 
to be played back immediately; B{1) is used to store the newest 
chunk that the server is distributing in the current time slot. In 
other words, when the server is distributing chunk t (at time t), if 
t > n — 1 then chunk t — n + 1 is the chunk being played back by 
that peer. After each time slot, the chunk played back in the pre-
vious time slot is removed from B and all other chunks are shifted 
up by 1. In other words, the buffer acts as a sliding window into 
the stream of chunks distributed by the server, as shown in Figure 

l A s we will see later, if M is reasonably large then our results are essentially independent 
of M , nor do they require M to be a constant. 
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Playback 

\ Sliding Window 

n n-i k 1 

One time slot later 

Playback Sliding Window 

T • 
n k+1 k 2 1 

Figure 3.1: Sliding Window Mechanism of the buffer B 

1. Each buffer space is initially empty, and gets filled by the P2P 
streaming protocol, either from the server or from other peers. The 
goal is to ensure B{n) is filled in as many time slot as possible, so 
as to support the continuous video playback and reduce the frame 
loss probability. 

Let denote the probability that the buffer space, B(i), 
of peer k is filled with the correct chunk at time t. We assume this 
probability reaches a steady state for sufficiently large t, namely 
Pa：WW = Pkii)- We call pk{i) the buffer occupancy probability of 
the kth peer2. 

Let us first consider a simple case that the server is the only 
means for distributing chunks to peers, then the buffer occupancy 
distribution can be expressed as follows: 

Pfc � = | V/c, (3.1) 

pk(i+l)=p(i+l)=p(i) i = l’2’...，n—1 V/c. (3.2) 

Eq. (3.1) reflects the odds for the local peer to be picked by the 
server, while Eq. (3.2) reflects the fact that successful downloading 
only occurs at the first location of the buffer (from the server). The 
playback performance, given by p(n), is equal to 去，would obviously 
be very poor for any M > 1. This simple mathematical argument 
shows the scalability problem when the server is the only means of 
distributing the media. 

To improve playback performance, peers help each other when 
asked. We model the P2P mechanism as a pull process: each peer 
selects another peer in each time slot to try to download a chunk 
not already in its local buffer. This P2P downloading model has the 
following implications: 

2Note, the buffer occupancy probability is not a probability distribution of i since it is not 
necessarily true that ^ pk {i) = 1. 
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• A peer may be contacted by multiple other peers in a single 
time slot. In this case, it is assumed that the selected peer's 
uploading capacity is large enough to satisfy all the requests in 
the same time slot. If peers are selected randomly, the proba-
bility that it will be selected by /c > 0 peers is /3(k), where 

for k >0. The likelihood of being selected by many other peers 
is low, i.e., when there are M = 100 peers, the probability that 
it is selected by more than three peers is only around 1.8%. 

• If the selected peer has no useful chunk, the selecting peer loses 
the chance to download anything in a time slot. This simpli-
fying assumption can help us to derive closed-form expression, 
and this type of assumption is also made in other P2P file shar-
ing models, i.e.,[20]. 

Furthermore, we assume homogeneous peers, namely, all peers 
use the same strategy to select other peers and chunks to down-
load. The implication is that in the steady state, all peers have 
the same distribution p{i) for the buffer occupancy, as in the server-
only downloading case above. In this paper, we do not consider peer 
selection strategies. Intuitively and from previous results in the lit-
erature, we know peer selection strategy is an important factor when 
peers have different uplink bandwidth, or when the paths to different 
peers have different bottleneck capacity. In these scenarios, peers 
are non-homogeneous and asymmetric. Peer selection has implica-
tions on system performance and peers' incentive to contribute [9]. 
Since the focus of this paper is on the performance of P2P stream-
ing systems, we focus on the case that peers are homogeneous and 
adopt the same (random) peer selection strategy. 

Once a peer is selected, a chunk for downloading must also be 
specified. The chunk selection policy can be represented by a prob-
ability distribution q, where q{i) > 0’ gives the probability that the 
chunk needed to fill B{i) is selected. Hence, Eq. (3.2) becomes: 

+ + i = 1 , . . . , n — 1, (3.3) 

with the boundary condition of p(l) = 1/M. For i > 0, q(i) is 
expected to be greater than 0 since there is a non-zero probability 
that a peer may be found to fill B(i) if it is not already filled. This 
implies p{i) is an increasing function of i, hence collaboration by 
peers improve the playback performance as expected. 
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Consider a particular peer /c, and assume it selected peer h to 
download a chunk. The selection of a particular chunk to download 
is the base on the following events: 

• WANT(k,i)： B{i) of peer k is unfilled; we abbreviate this event 
as W(k, i). 

• HAVE(h,i): B{i) of peer h is filled; we abbreviate this event as 
H(h,i). 

• SELECT(h,k,i): Using the chunk selection strategy, peer k can-
not find a more preferred chunk than that of B{i) that satisfies 
the WANT and HAVE conditions; we abbreviated this event 
as S(h, k,i). 

Therefore, we can express q{i) as: 

q{i) = Pr[iy(A;,Onii^(/i，i)n<S(/i’/c’i): 
=FY[W(k,i)]FvlH(h,i)\W{k,i)] x 

Pi[S{h, k, i)\W{k, i) n H(h, 0]. (3.4) 

The following assumptions help us to simplify Eq. (3.4): 

• All peers are independent: the probability of the buffer state 
at the same position for different peers, p{i), are the same. 
Therefore, Pr[W(/c,i)]= 1 — p{i). 

• There are a large enough number of peers so that knowing the 
state of one peer does not significantly affect the probability of 
the state at another peer. This implies that: 

PT[H{h,i)\W{k,i)] ^ Pr[i^'(/i,i)] =p{i). 

• The chunks are independently distributed in the network. The 
probability distribution for position i is not strongly affected 
by the knowledge of the state at other positions. This allows 
us to write the selection function as 

s{i) = Fv[S{h, k, i)\W{k,{)flH(Ji,k,«)), 

which is independent of the actual state at position i. As we 
will show, this assumption is more accurate for some chunk 
selection strategies than others. 

Based on the above assumptions, Eq. (3.4) is: 

q{i) ~ = [1-p(i ) ]p(i )s(z) . (3.5) 
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Since each of the terms in Eq. (3.5) is a probability (in particular 
p{i) < 1 and p{i)s{i) < 1), Eq. (3.3) becomes: 

p{i + l) = p(i)-^ll-p(i)]p{i)s{i) < 1. (3.6) 

The chunk selection strategy s(i), the focus of this study, is discussed 
in the next section. 

In the model, every peer has a strong constraint that one peer can 
only download one chunk per time slot. Based on this constraint, 
every peer has to adopt a chunk selection strategy, which is high 
related to the continuity and start up latency. Here, we relax the 
constraint so that the function s(i) is equal to 1 all the time. That 
means if a peer find a neighbor from his neighbor list, the peer will 
download all these chunks in one time slot, which are absent from 
his own buffer. However, in real network, it is almost impossible 
to satisfy so large bandwidth. Therefore, we get an upper bound. 
Through letting s{i) = 1，we can derive the function for the upper 
bound based on equation Eq. (3.5): 

P{i + 1) = 

• End of chapter. 



Chapter 4 

Model of Chunk Selection 
Strategies 

Summary 

First, two basic chunk selection strategies are discussed. Based on 
the discussion of the two basic strategies, a novel Mixed strategy is 
proposed, which can achieve best performance. Some propositions 
and conclusions are shown then. These propositions and conclusion 
are main contribution of the first part. At last, some metrics are 
defined. 

4.1 Chunk Selection Strategies 

The simple stochastic model in the previous section set the stage 
for us to model and analyze different chunk selection strategies. We 
begin by considering some familiar strategies. The first one is the 
“Rarest First Strategf, which is widely adopted in P2P file dis-
tribution protocol BitTorrent [8, 9], and P2P streaming protocol 
CoolStreaming [29]. The second one is the “Greedy Strategy” (or 
the nearest deadline first strategy), and lastly the mixed strategy, 
which is a combination of the above two algorithms. 

By intention, a peer using the Rarest First Strategy will select 
a chunk which has the fewest number of copies in the system. To 
describe the Rarest First Strategy from the perspective of the buffer 
B = {B(n), B{n — 1) ,…，B(l) } , let us consider a particular peer, 
say peer k. From Eq. (3.3), we know that p{i) is an increasing 
function of i, therefore p(i-\- 1) > p{i) for i = 1 , . . . ,n - 1. Since 

13 
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peers are homogeneous, this inequality implies that the expected 
number of copies of chunk in B{i + 1) is greater than or equal to 
the expected number of copies of chunk in B{i). Therefore, under 
the Rarest First Strategy, peer k will first select 5(1) to download if 
B{1) is not available in B, else peer k will select B{2) to download 
if B(2) is not in the system and so on. 

For the Greedy Strategy, peer k will select a chunk which is closest 
to its playback deadline. Prom buffer B,s point of view, B{n) is 
the closest to playback time, then B(n — 1) is the next, and so 
on. Therefore, peer k will first select B(n) to download if it is 
not available in B, else peer k will select B(n— 1) to download if 
B(n—1) is not in B and so on. Note that the Greedy Strategy seems 
intuitively the best strategy for streaming at the first sight. Through 
our analysis, we will show that while from a single peer's point of 
view Greedy may be the best for playback, it is often too short-
sighted from a system's point of view, when the peer population 
is large. Instead, Rarest First is very effective in maximizing peer 
contribution as the population grows, hence produces good system-
wide playback performance. On the other hand, Greedy is good in 
minimizing the start-up latency. 

In trying to achieve the best of both worlds, we propose a new 
strategy, called the mixed strategy, which is a combination of Rarest 
First and Greedy. In the following subsections, we derive analytical 
results to analyze and compare the performance of these strategies. 
The key is to model the selection function s{i) for each case, sub-
stitute it into the probabilistic model, and derive the buffer state 
probability distribution. 

4.1.1 Greedy Strategy 

We first present the analysis of the Greedy Strategy. This strategy 
aims to fill the empty buffer location closest to the playback time 
first. The chunk selection function, s(z), which is the probability of 
selecting B(i), can be expressed as follows: 

外 ) = ( 1 - i ) ' f f ( p � + ( 1 1 � ) 2 ) . (4-1) 

Since the event that downloading does not occur for a buffer at 
position B{j) (for j > i) is -^{W{kJ)H{h,j)), hence, the probability 
of this event is: 

FiHWikJ)H{hJ))]= 

Pk{j) + (l-Pk{j)){l-PkU))- (4.2) 



CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 15 

Eq. (4.1) models the event that the server selects other peers to up-
load, and the chunk selection does not occur for all those positions 
closer to the deadline than with the buffer position indepen-
dence assumption stated earlier. Note, the first term of Eq. (4.2) is 
the probability the local peer already has the chunk for B{j). The 
second term is the probability that the local peer does not have 
the chunk for B{j) and the selected peer (h) does not have that 
chunk either. The rather complicated formula for s(i) (Eq. 4.1) has 
a surprisingly simple alternative form: 

Lemma 1 The selection function s{i) for the Greedy Strategy can 
be expressed as 

s(i) = 1 - (p(n) - p(i + 1)) - p( l ) for i = 1, ...,n - 1. 

The proof is presented in the Appendix. Intuitively, it can be un-
derstood as follows. The term (p(n) - p{i + 1)) is the probability 
that any particular chunk is downloaded into buffer positions be-
tween B{n) to B{i + 1); and the term p{l) is the probability that 
any particular chunk is downloaded directly from the server. The 
above expression for s{i) is thus the probability that neither of these 
two scenarios are true. 

Substituting the above formula for s(i) into Eq. (3.6), we get the 
following “difference equation” for p{i): 

P{i + l) = P{i) +P(i) ( l-P(i)) (l —P(l) -P(n) +P(i +1)) 
for i 二 1,...，n - 1. (4.3) 

4.1.2 Rarest First Strategy 

The Rarest First Strategy is the opposite of the Greedy Strategy. 
Based on Eq. (3.3), we know p(i) is an increasing function in i) This 
means the expected rarest chunk is the latest chunk distributed by 
the server that is missing from the all local peers' buffer. So the 
chunk selection function s{i) for the Rarest First Strategy can be 
expressed as: 

明去頂 (K7 . ) + ( 1 - P « ) ( 1 - K ? . ) ) . (4.4) 

The meaning of each term is similar as before. The main point is 
that the search for missing chunks starts from the latest chunk B{1), 
then to B(2) and so on. Again, Eq. (4.4) has a simple form: 

i ln general, p(i) is a non-decreasing function. But for both Greedy and Rarest First, 
q{i) > 0 for all buffer positions, so p{i) is an increasing function. 



CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 16 

Lemma 2 The selection function s{i) for the Rarest First Strategy 
can be expressed as 

s{i) = 1 — p{i). 

The proof is presented in the Appendix. The rationale for this result 
is the same as that for the Greedy Strategy. The term p{i) represents 
the probability that any particular chunk is downloaded into buffer 
positions B{1) to B(i — 1). Therefore s(i) as shown above represents 
the probability that this event does not occur. 

Again, substituting s(i) into Eq. (3.6), we have the following 
difference equation: 

p(z+l) for i = 1, . . . , n - l . (4.5) 

4.1.3 Buffer Size, Peer Population and Continuity 

The difference equations for p(i) in Eq. (4.3) and Eq. (4.5) help 
us to derive closed-form solutions of the distribution p{i). Also, 
the model allows us to derive some relationships between the key 
performance metrics and design parameters of the streaming system, 
these parameters are: 

• n, the buffer size; 

• M, the population size (or equivalently p(l)’ which is equal to 
1/M); 

• p(n), probability that B(n) is available, which reflects the con-
tinuity and playback performance (or e = l—p(n) is the proba-
bility of discontinuity). 

To facilitate the derivation of these relationships, we convert the 
difference equations of Eq. (4.3) and (4.5) into continuous differential 
equations. They become: 

dy ^ y{l - y){y - p{l)e) ； yfy 
dx 1 + — y dx 

respectively. The symbol y stands for p{i) and the symbol x corre-
sponds to i in the discrete case. These continuous differential equa-
tions can be derived by substituting dy/dx for p(计ij-冲)and y for 
p{i). Based on these equations, we obtain the following sensitivity 
relationships among these parameters: 
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Lemma 3 For the Greedy Strategy, the sensitivity of buffer size n 
to peer population M (or p(l) = 1/M) and discontinuity e can be 
expressed as 

dn ^ 1_ . . 
； 、 ） 

Lemma 4 For the Rarest First Strategy, the sensitivity of buffer 
size n to peer population M and discontinuity e can be expressed as 

dn 1 dn I 1 , . 
兩 而 ； ( ) 

The proofs are included in the appendix. 
Eq. (4.6) to (4.7) characterize the key difference between the 

Greedy and Rarest First Strategy. These results indicate that more 
buffer space is needed for larger peer population size M (or smaller 
p(l))，and higher continuity (or smaller e). This is due to the neg-
ative gradient of n relative to p(l) and e respectively. But as peer 
population grows, the need for additional buffer space when using 
the Rarest First Strategy is 1 /e times less than that for the Greedy 
Strategy, which means that the Rarest First is more scalable than 
the Greedy strategy as the peer population increases. On the other 
hand, in order to increase continuity, the need for additional buffer 
space by the Greedy Strategy is about p(l ) /e times less than that for 
the the Rarest First. This means for sufficiently large p(l) (hence 
sufficiently small M), the Greedy Strategy can achieve better conti-
nuity than Rarest First. This will be illustrated in the next section. 

4.1.4 Mixed Strategy 

The intuition about the different strengths of the Greedy and Rarest 
First strategies derived from our model lead us to propose a mixed 
strategy that can take advantage of both of these chunk selection 
algorithms. 

Let the buffer B be partitioned by a point of demarcation rn, 
1 < m < n. The Rarest First Strategy is used first with buffer 
spaces B ( l ) , B ( m ) . If no chunk can be downloaded using the 
Rarest Strategy, then the Greedy Strategy is used using the other 
partition of the buffer, B{m + 1), B(m + 2), ...，B(n). When m = 
n — 1，the Mixed Strategy is the same as the Rarest First Strategy; 
when m = 1, the Mixed becomes the same as the Greedy Strategy. 
Through variation of m, a peer can adjust the download probability 
assigned for each partition. 
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The buffer state probability for B(l) to B{m) satisfies the fol-
lowing equations: 

K l ) = l /M， 

p{i + 1) =p{i) -\-p(i)(l — p(i))2 for z = 1 , . . . , m - 1 . 

The probability for B(m+1) to B(n) can be derived from Eq. (4.3) 
by substituting p(l) with p(m): 

p(i + l) = p(i)+p(i)(l -p(i)) 
x(l-p(m)-p(n)-hp(i + l)). (4.8) 

Another perspective that helps us to understand the advantage 
of the mixed strategy is the following observation about the equiv-
alence between peer population size M and buffer size n. Consider 
two P2P networks. The first is a reference network with popula-
tion M, buffer size n and some chunk selection strategy that yields 
buffer state distribution p(i). The second is a baby network with 
a fraction of the population size equal to l/p{m) and buffer size 
n — m, that uses the same chunk selection strategy as that used for 
buffer positions B{m-\-l) to B{n) in the reference network. Let the 
buffer state distribution of the baby network be denoted p'{i) for 
i = m + 1 , . . . , n. We have the following result. 

Lemma 5 The continuity for the reference network, p(n), is equal 
to the continuity for the baby network, p'(n - m). 

Proof: Due the same chunk selection strategy used, q(i) in the ref-
erence network is the same as q'{i - m) of the baby network^. This 
means p{i) = p'{i — m), for i = m + 1 , . . . ,n，hence p{n) = p'{n-m). 

I 

The implication of this proposition is that we should use a mixed 
strategy, whenever the peer population size M relative to the desired 
playback performance (continuity) is larger than a threshold (given 
by p ( l ) / e > 1). For the baby network part of the buffer positions, 
we used the Greedy Strategy to maximize continuity. For the rest of 
the buffer positions, Rarest First is used as it is the more economical 
strategy (in terms of buffer space needed) to support a large peer 
population. 

2As with the rest of the results in our model, this relies on the independence assumption 
to be true. 
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4.2 Some Conclusion and Extension 

Lemma 6 For a p2p streaming network with large population, Greedy 
Strategy achieves better continuity than Rarest First Strategy, if the 
buffer length is large enough. 

The proof is presented in the appendix. The results indicate that 
Greedy saves buffer length compared with RF if the continuity re-
quirement is very high given fixed peer population. 

Proposition 1 In p2p streaming network with large population, if 
the number of peers is fixed, Greedy Strategy is good at continuity, 
while if continuity requirement is fixed, Rarest First Strategy is good 
at scalability. 

Proof: The result can be derived from Lemma 3,4. For given peer 
population, we can do differential n over discontinuity e. Prom the 
Eq. (4.6) and (4.7), the absolute value for Rarest First Strategy is 
bigger than Greedy when discontinuity requirement e is less than 
p( l ) , that means the buffer length is more sensitive when continu-
ity requirement increases for Rarest First Strategy. This result is 
consistent with lemma 6. Similarly, given discontinuity e fixed, we 
do differential n over p(l) . The absolute value of Greedy is much 
bigger than Rarest First. That means the Greedy is more sensitive 
when the peer population increases. 

Proposition 2 Given peer population, Greedy Strategy certainly can 
achieve better continuity than Rarest First, if buffer length is large 
enough. Mixed Strategy beat both Greedy and Rarest First. 

Proof: The result is derived from the lemma 5,6. According to the 
proof of lemma 6，let e = p(l) , we can get the result that Greedy 
consumed less buffer length than Rarest First. While Mixed Strat-
egy can be converted into a Greedy Strategy only with smaller peers 
as lemma 5 shows. Compared with Greedy, the Mixed Strategy has 
smaller peer population and achieves better performance. In other 
word, Mixed Strategy is the best one. 

Proposition 3 Assume the consumed buffer length for different strate-
gies is a function of discontinuity e and number of peers M. That 
is n = /(e, M). The Mixed Strategy is an asymptotic optimized 
strategy. 

Proof: The proof is presented in appendix. 
Actually, for Mixed strategy, the p(n) in the Rarest First part 

is p{l) for the Greedy part. The buffer length consumed is riMix = 
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^RF + ncreedy Assume the in the Rarest First part is A, we can 
get a function UMixed = ^(e, M, A). Given e and M, there is only one 
variable A. Through calculus, it is not hard to get the A, which can 
minimize the buffer length. The closed form is quite complicate, so 
numerical results is shown in the next section. 

4.3 Metrics 

In this section, two metrics which are used to measure performance 
of p2p streaming system are shown as follow: 

4.3.1 Continuity 

So far we have focused on continuity p(n) as the performance metric 
for evaluating various chunk selection strategies. Prom Eq. (3.3) and 
by defining q^(0)=p(l)’3 we have: 

n-l 

P{n) = Y^qii)' 
i=0 

4.3.2 Start-up Latency 

Another metric worth paying attention to is the start-up latency. 
which is the time a peer should wait before starting playback. As 
long as all peers cooperate by following the same chunk selection 
strategy and offering downloading when requested, a peer may choose 
to start its own playback independently without affecting other peers 
except itself. But what is the best start-up latency for a newly arriv-
ing peer (with empty buffer) to choose, assuming all the other peers 
have already reached steady state? We argue each peer should wait 
until its buffer has reached steady state, which means: 

n 

startup latency = ^ p{i)/R. (4.9) 
i=l 

where R is the average downloading rate of chunks experienced 
by the newly arriving peer. Since all other peers are in their steady 
state, R should be the same as the average steady state downloading 
rate, which must also equal to the effective playback rate. For all the 

^By defining g(0) = p ( l ) , we are treating the buffer update from server the same as updates 
from peers. This is just for convenience. 
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chunk selection strategies we are interested in, the effective down-
loading rate must be close to 1 (chunk per time slot), the video's 
playback rate. Therefore we have 

startup latency w ^ p ( z ) 

Why is the quantity in the above equation a good representation for 
startup latency? When a peer starts with an empty buffer, every 
peer it contacts is likely to result in a successful download. After 
ZliLi time slots, the newly arriving peer is expected to have 
acquired the same number of chunks as the rest of the peers in 
steady state, which also equals to X^JLiP(̂ )- If the newly arriving 
peer starts with earlier, it is likely to suffer from below steady state 
playback quality initially. If the newly arriving peer waits longer 
(than that in Eq. (4.9), it will not improve its long-term steady 
state playback quality. Can we improve mixed strategy through a 
small change? Change the priority from discrete to continuous? 

• End of chapter. 



Chapter 5 

Experiment and 
Application 

Summary 

In this chapter, to convince our model, various simulation and com-
putation results are shown and discussed. These experiment vali-
date the correctness of our model. What is more, some issues of 
the application in real system are discussed at last. 

5.1 Numerical Examples and Analysis 

In this section, we consider a number of numerical examples to illus-
trate our results and their application to protocol design. For each 
numerical example, the results can be computed in the following 
ways: 

Discrete model: The discrete model is given by the difference 
equations corresponding to the various chunk selection strategies 
(Eq. 3.1,3.3,3.5,4.1,4.4,4.8). The solution for the buffer state distri-
bution p{i) can be derived numerically. For the Greedy Strategy, we 
first give p(n) a fixed value, substitute n steps inversely from p(n) 
to p{l) and then compare p(l) with 1/M. If p(l) is approximately 
equal to 1 /M then we get the solution; else p(n) is adjusted ac-
cordingly and the inverse substitution process is repeated. For the 
Rarest First Strategy, substitute p(i) from p(l) until p(n). For the 
Mixed Strategy, we compute the first part, from 1 to rn, using the 
same substitution process as that for Rarest First and then compute 
what is left using the same trick as that for Greedy. 

22 
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Figure 5.1: Buffer occupancy distribution for Rarest First and Greedy policies 
from discrete, continuous and simulation models 

Continuous model: The continuous model is given by the dif-
ferential equations in Eq. (4.3) and (4.5). In general, they can be 
solved numerically using MatLab. For some relationships, we also 
derived closed-form solutions. 

Simulation model: We built a simulation program based on 
our discrete model. There is one server and M peers. In each time 
slot, the server distributes one chunk to a random peer; each peer 
randomly selects only one other peer to contact and download one 
chunk, but may upload at most two chunks to its neighbors. The 
peers form an overlay network where each peer is neighbor with a 
subset of the peers, randomly selected from the peer population. 
The values of various parameters, such as M, n, and average de-
gree are specified as part of the description of the experiment. The 
simulation model is used to check to what extent the independence 
assumption may affect the analytical models, specially in the case 
with small peer population. Furthermore, simulation can produce 
a lot more details about specific peer behavior and the dynamics of 
the system including transient behavior. 
Exp. A: Comparing Discrete and Continuous Results with 
Simulation 

Our first task is to compare our discrete model, the continuous 
model based on the differential equation approximation, with simu-
lation. 

In this experiment, M 二 1000 and n = 40. In the simulation, 
the number of neighbors for each peer is L < 60. The results are 
shown in Figure 5.1. There are two groups of curves, one for Greedy 
and one for Rarest First. In each group, there are three curves: 
one calculated using the discrete iterative equations, one calculated 
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Figure 5.2: Comparison of Rarest First, Greedy and Mixed 

using the approximate continuous differential equations, and one 
from simulation. 

We will compare Greedy and Rarest First later on. At this point, 
let us focus on the accuracy of the different methods. First, we note 
that the analytical results are reasonably close to the simulation 
results. Secondly, we expect the discrepancy between the discrete 
model and simulation is mainly due to the independence assumption. 
For Greedy, there are fewer chunks in the buffers, hence the inde-
pendence assumption is less accurate. Thirdly, we expect the dis-
crepancy between the discrete and the continuous models is mainly 
due to the approximation of 1) —p{i) by a continuous gradient, 
which happens to have a bigger effect on the equation for Rarest 
First this time. 
Exp. B: Comparing Rarest First, Greedy and Mixed 

To compare the three chunk selection strategies, we keep the 
buffer size at n = 40; and set m = 10 for Mixed (this means the 
number of buffer positions running Rarest First is 10). The results 
(from the discrete model) are shown in Figure 5.2. The Rarest 
First Strategy is able to maximize the contribution of peers, hence 
its buffer occupancy probability is higher than other strategies in 
most buffer positions. When using the Greedy Strategy, all peers 
are focusing on the short-term playback needs; hence the buffer 
occupancy probability stays low except for those positions close to 
the playback position (p(n)). This has the advantage of minimizing 
the startup latency as we defined in Eq. (4.9). For Mixed, the buffer 
probability distribution is the same as Rarest First for positions 
m < 10，and follows the same shape as Greedy for m > 10. By 
devoting a fraction of the buffer positions to Rarest First and the 
rest to Greedy, the Mixed Strategy can achieve higher continuity 
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Figure 5.3: Performance Results for Exp. B. 

(than both Greedy and Rarest First) and lower startup latency (than 
Rarest First). 

To further compare the different strategies for different buffer 
sizes, we plot the continuity and startup latency for buffer sizes be-
tween 20 and 50 in Figure 5.3(a) and Figure 5.3(b) respectively. It 
is observed that Rarest First consistently beats Greedy in continu-
ity. The reason is evident from our analysis and Figure 5.1. Rarest 
First works hard at distributing new chunks from the server, achiev-
ing a performance not far from the theoretical limit of log2(i). The 
Greedy, however, is somewhat like a procrastinator, making a great 
effort to fill the buffers only near the playback time for each chunk. It 
is interesting to note that the Mixed Strategy usually out-performs 
Rarest First in continuity. When the buffer length is larger than a 
relative small value 30, the gap between Mixed strategy and Upper 
bound becomes quite small. In terms of startup latency, Greedy 
and Rarest First take opposite positions. To guarantee good play-
back continuity, Rarest First occupies a significant amount of buffer 
space. On the other hand, Greedy uses relatively less buffer space, 
hence it takes a newly arriving peer much less time to reach the 
steady state buffer occupancy. It is important to note that, Mixed 
is able to keep startup latency lower than Rarest First. 
Exp. C: Optimizing the Mixed Strategy 

We now take a closer look at the Mixed Strategy. In the last 
experiment, the parameter used to partition the buffer, m, is a con-
stant. Here, we fix the buffer size to be 40 and vary m. The per-
formance of continuity and startup latency are plotted against m in 
Figure 5.4(a) and 5.4(b). 

If m is large, the strategy is essentially Rarest First, hence there 
is a significant startup latency. When m increases, the startup la-
tency decreases monotonically, and eventually the scheme becomes 
sufficiently like the Greedy Strategy with low startup latency. For 
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continuity, it is quite interesting. There is an optimal m when con-
tinuity is maximized. These two plots show that there is a knee, 
occurring at m !=： 10 when a balance of high continuity and low 
startup latency is achieved. 

Another way to view the Mixed strategy is the value of A, which 
discussed in the proposition 3. In this numerical experiment, the 
number of peers is 1000. In the first experiment, the buffer length 
is given 40，while the value of A varies. The continuity is not very 
sensitive for the varying A. When A is approximately equal to 0.3, 
the continuity is best. In the simulation, we assume A = 0.3. In 
the second experiment, the discontinuity is fixed at 0.5%, while A 
varies. The two figures show that continuity is not very sensitive 
when A varies. In the dynamic network, the value A is controlled to 
achieve good performance. 
Exp. D: Performance for Small Scale Networks 

In here, we consider the sensitivity of buffer size to continuity 
requirements and buffer size. We focus on some examples for small 
population size to illustrate when Greedy can perform better than 
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Rarest First in terms of continuity. 
There are three examples in this experiment and the result in 

each case is derived from simulation (the analytical models are less 
accurate for small networks). Each result is calculated based on the 
average values of 3000 time slots. 

In the first experiment, the number of peers in the network varies 
from 5 to 15 and each peer sets n = 15. We compare the continuity 
achieved by Greedy and Rarest First. Figure 5.6 shows that Greedy 
achieves better continuity when the number of peers is sufficiently 
few relative to the value of continuity (in this case 9), as we expect. 

In the second experiment, we let the number of peers be fixed, 
M = 40. However, the peers have different quality requirements 
(denoted 1 — e), and have to change their buffer length to meet the 
requirements. The result is shown in Figire 5.7(a). 

In the third experiment, we let the peers' continuity requirement 
be fixed at 0.93, but the number of peers (M) vary from 5 to 40. In 
order to make sure the continuity is larger than 0.93, each peer ha^ 
to enlarge its buffer if the number of peers increases. The result is 
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Figure 5.8: Continuity of the Network Simulation 

shown in Figure 5.7(b). 
The results from the above two experiments are consistent with 

Proposition 3 and 4，namely Greedy is able to provide a high quality 
requirement with less buffer length while Rarest First can provide 
good playback performance for a large number of peers. 
Exp. E: Study of Dynamics 

While the analytical model is able to give us average steady state 
system behavior, simulation has the advantage of giving us the dy-
namic behavior of specific settings. In this experiment, we simulate 
the case of M = 1000 and n = 40’ and look at how continuity and 
startup latency evolve over time. 

First, we compare the continuity achieved by different strategies. 
We simulate 2000 time slots. In each time slot, the continuity is the 
average continuity of all peers, that is the number of peers being 
played chunks divided by total peers. As shown in Figure 5.8, Mixed 
not only achieves the best continuity, but its continuity is also much 
more steady than that of other two strategies. 

Secondly, consider the case that a new peer with empty buffer 
joins the network. Before the new peer arrives, we give 1000 time 
slots to let the existing (1000) peers reach steady state first. The 
newly arriving peer waits for D = 16 time slots before it starts 
playback. The arrival time is 1000 — D so that playback starts 
at the 1000th time slot. In Figure 5.9(a), we compare the playback 
performance of the newly arriving peer using each of the three chunk 
selection strategies. The continuity value in each case is computed 
as 二 where s is the number of time slot with successful playback. 

Figure 5.9(b) shows the number of chunks stored in the buffer of 
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Figure 5.9: Second Experiment in Exp. E. 

the newly arriving peer as a function of time. Prom our model, we 
know the average number of chunks of a peer is simply 
This computation yields the expected number of chunks for each of 
the three strategies to be 27.4,3.5，15.5 respectively, which is con-
sistent with the steady state number achieved in the Figure. These 
numbers correspond to the appropriate startup latency suitable for 
each strategy. 
Exp. F: Adapting the Mixed Strategy to Peer Population 

Based on our analysis and the numerical examples, we show that 
the Mixed Strategy can achieve the best continuity and low startup 
latency given a fixed peer population size in the network. In reality, 
the peer population size is unknown and is likely to change over 
time. Here we describe an algorithm to adaptively adjust the Mixed 
Strategy's m to the network dynamics. 

In the previous experiments, m is fixed (at 10). One way to adapt 
m is by observing of the value of p(m), which actually is A. We can 
set a target value for p(m), say Pm = 0.3. When a peer finds the 
average value of p(m) is less than pm, the peer increases m, else 
the peer decreases m. In our simulation, every peer calculates the 
average value of p(m) for 20 time slots and then decides the value 
of m based the average value. 

We conduct the following experiment. Let there be 100 peers in 
the network initially. After every 100 time slots, another 100 new 
peers with empty buffer are added to the network, which means 
there are i x 100 peers in the network after i x 100 time slots. For 
all the peers, the initial value of m is 10. We calculate the average 
continuity and average value of m for the initial 100 peers in the 
network as a function of time. Prom Figure 5.10(a) and 5.10(b), we 
observe that the average value of m (of the 100 tagged peers) adapts 
to the increasing peer population. Furthermore, the continuity of 
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Figure 5.10: Performance Results from Exp. F. 

the Mixed Strategy is quite steady (except a glitch between time 
slot 700-800) compared to that of Rarest First. 

5.2 Sensitivity study 

Up to now, our model is discussed based on some assumptions made 
in previous sections. However, are these assumptions reasonable? 
What should be corrected if some assumption is relaxed? Is the 
model robust under various network environments? These issues 
would be discussed in this section. 

5.2.1 Discrete Model with Factor 

One basic assumption in the model is that: there is enough band-
width resource in the network to support the playback rate of all 
peers. However, in the real network, maybe the bandwidth is so 
limited that it is not sufficient to satisfy all peers' requirement. As-
sume the total playback rate is P and the total download rate of 
all peers is f x P and / is a real number in (0,1) expressing the 
limited bandwidth. We can prove that even in this case, it is not 
necessary to change our model much. The only difference compared 
with the original model is just the chunk selection function s(i). Be-
cause of the limited bandwidth, each peer only can upload a chunk 
successfully with probability / . The server still push one chunk per 
time slot. For Greedy Strategy, s(n — 1) is changed to / - 去 due 
to the limited bandwidth. Similar, for Rarest First Strategy, s(l) 
is changed to / 一去.Therefore, the corresponding s(i) for Greedy 
Strategy becomes s(i) = f-p(l) -p(n)+p(i+) and s(i) for Rarest 
First Strategy becomes s(i) = f — p{i). To sum up, the results for 
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discrete model become the following Eq. (5.1) and (5.2): 

1) =p{i) (1 -p(ij) (f-p(l)-p(n) +p(i+lj) 

for i = 1，…’n — 1. (5.1) 

1) = p(i) ^p(i) (1 ( / - p ( i ) ) 

for z = 1 , . . . , n — 1. (5.2) 

The simulation results in the next section will validate this new 
model. 

5.2.2 Validate Discrete Model with Factor 

This experiment is designed to validate our discrete model under 
limited bandwidth environment. In the simulation, there are 1000 
peers. Each peer has a buffer with length 40. Set the factor f = 0.7. 
We run Greedy Strategy and Rarest First Strategy separately and 
compare them with the results, which are computed from discrete 
model Eq. (5.1) and (5.2). Figure 5.11 shows the comparing result. 

5.2.3 Server Use Pull Strategy 

In our model, the server is assumed to use push strategy to distribute 
the newest chunks. However, how it will affect the performance, if 
the server also adopts pull strategy? Here, a simulation is designed 
to observe the performance when the server uses pull strategy. Still 
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1000 peers stay in the network and buffer length is 40 for each peer. 
Figure 5.12 shows the result which indicates quite poor performance 
especially for Greedy Strategy. The result indicates the assumption 
that server uses push strategy is reasonable. 

5.2.4 Vary Subset Size Touched by Server 

In the original model, we assume the server could randomly push out 
newest chunk to the whole network. However, in the real network, 
the server can only talk with a subset peers of the network. How it 
will affect our model? In the simulation, we pick out a particular 
subset of peers from network and only peers in the subset could 
get the newest chunks pushed by server. Through varying the size 
of the subset, how it affect the performance can be seen from the 
Figure 5.13. When the subset size is relative small, for example 40, 
the curve has become quite flat. That means the difference between 
real network and our model is quite small. 

5.3 Application to Real-world Protocols 

In this section, we briefly discuss the applicability of the Mixed 
Strategy in real P2P streaming protocols. There are two points we 
would like to make. 

First, the Mixed Strategy can be viewed as an optimization of the 
CoolStreaming protocol. Although our analytical model does not 
try to capture all aspects of the implementation of CoolStreaming, 
our chunk selection strategy can be easily incorporated into that 
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protocol as an improvement of the existing algorithm. This makes us 
quite confident about the practical utility of our results, in addition 
to the insights we get from the model. 

Second, the Mixed Strategy is also compatible with BiTos, and 
can be viewed as an alternative (very likely enhancement) of BiTos. 
Since p{m) = we can make our algorithm quite similar 
to BiTos which uses a probability p for high priority buffer positions 
and (1 —p) for the rest. In fact, as we explained in the last section, 
we can implement the Mixed Strategy by using a fixed probability 
for the Rarest First part of the buffer, allowing m to adapt to a 
suitable value for the prevailing peer population. There is a subtle 
difference between the Mixed Strategy and BiTos: the latter uses 
Rarest First for both high priority and low priority chunks whereas 
we use Greedy for our high priority chunks. 

• End of chapter. 



Chapter 6 

Model of Unsynchronized 
Case 

Summary 

This chapter is a generalization of last model. An unsynchronized 
model is constructed and the same issues are discussed under the 
unsynchronized case. Some interesting results are derived, which 
can give us more insights of the P2P streaming system. 

6.1 The model for unsynchronized playback 

In above model, we assume a P2P streaming session with M peers, 
fed by one server. We are interested in deriving Pk(i), the probability 
that peer A:'s buffer space i is filled with the correct content in steady 
state. The departure from last part is that the playback offset is no 
longer assumed to be synchronized for all peers. 

How do peers end up having different playback offsets? There 
are at least two major factors: 

a) Peers have different neighbors. Some peers may have the server 
as one of the neighbors; while other peers may never get any 
chunk from the server directly. Generally speaking, those peers 
closer to the server tend to have less playback delay (or smaller 
playback offset). 

b) The peers' playback start-up algorithm plays a role. 
In order to analyze these factors, let us define some notations and 

terminologies. 

34 
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• Neighbors: Each peer has L neighbors. Peers will only exchange 
chunks with its neighbors. Peers can acquire their neighbors in 
a variety of ways. For example, there exists some tracker that 
keeps track all M peers in the P2P session, and try to assign 
peers as neighbors to each newly arriving peer. Alternatively, a 
newly arriving peer may discover neighbors using some kind of 
search algorithm which tends to discover neighbors with some 
locality property. 

• Playback Offset: In each time slot, the server will send out a 
new chunk of content; the time slot then marks the birth time 
of that chunk. To mask network jitter and to support other 
peers, each peer chooses to playback chunks with a delay. The 
playback offset of a peer is the delay of playback relative to the 
birth time of a chunk, normally denoted as Ok for the k仇 peer. 
The unit of offset is in number of time slots. Different peers 
may have different playback offsets for a variety of reasons. 

• Buffer map: Each peer has a buffer map, which labels the 
chunks in that peer's buffer. For streaming, the playback is 
assumed to be sequential, hence the buffer map is contiguous. 
Therefore, the buffer map can be represented by two offsets: 
Buffer Head Offset and Buffer End Offset, normally denoted 
by Hk and Ek for the k̂ ^ peer. The difference rik = Ek — Bk + 1 
is the buffer length of peer k. Unless a peer is particularly 
altruistic in helping others, it would discard the chunks after 
playback. That means Hk = Ok-

• Overlap: Overlap is simply the intersection of two peers' buffer 
maps. It is normally denoted k) for peer j and k. The 
overlap V{j, k) represents the maximum number of chunks each 
of the two peer can expect the other peer to provide help on, 
taking the optimistic view that the other peer has all its buffer 
filled with content. 

• Lag: Lag is the difference between two peers' playback offsets. 

A simple two-peer example illustrating the definition of Buffer map, 
Overlap and Playback offset is shown in Fig. 6.1. Assume the server 
sends out chunk 1 at time t = 1 and this chunk arrives to peer I's 
buffer at position 1 (denote as PI in the figure). At time slot t 二 2� 

server sends out chunk 2 while peer 1 performs a sliding window 
operation: chunk 1 in position 1 will move to position 2 (or P2) 
while chunk 2 will be placed in F l . kt t = 7，chunk 1 is in P7, 
which is the buffer head offset of peer 1, and peer 1 can start to 
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Figure 6.1: Illustration of Buffer map, Overlap and Playback offset 

consume the data. In this case, peer 1 has a playback offset Oi = 7. 
Similarly, due to network delay, chunk 1 only arrives to peer 2，s 
buffer at t = 4 and it is placed in position PI. At t = 10, peer 2 can 
start to consume the data so O2 = 10. Therefore, the lag between 
these two peers is 3. At time t = 7, the content of peer 1 in positions 
P4 to P7 are exactly the same as the content of peer 2 in positions 
PI to P4, and this is the overlap between peer 1 and peer 2. 

We now make two assumptions, and explain the rationale for 
each. First, we assume the neighbor lists of peers form clusters. 
Formally, clustering is a partition of the set of M peers into non-
overlapping subsets, satisfying the condition: 

Lintii) » Lexti-i^ Vz 

where Lint{i) and Lextif) are the number of peer i's neighbors in 
the same cluster as i, and not in the same cluster as i respectively. 
If each peer's neighbors are chosen randomly, then they would not 
form clusters as above. However, measurement results show that 
peers normally form clusters [12] intentionally due to policy or un-
intentionally due to geographic locality. For the same reasons, we 
further assume that the network bandwidth between peers in the 
same cluster is essentially unlimited whereas with external peers 
is constrained. Modeling the process in which the peer overlay is 
formed is beyond the scope of this paper. The clustering model gives 
the framework for subsequent analysis. 

The second assumption is that peers decide on their playback 
offsets based on buffer overlap maximization. In a unicast stream-
ing scenario, the major consideration for a receiver to buffer is to 
mask out network jitter and enhance reliability. A plausible start-
up algorithm is simply to let the buffer accumulate enough reserves 
before starting playback. In a P2P streaming scenario, a good start-
up algorithm should also take into consideration of the buffer maps 
neighboring peers choose to use. To formalize this consideration, we 
postulate that peers pick their own buffer maps (and playback off-
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set) by solving a neighbor buffer overlap maximization problem for 
a fixed maximum buffer size n. It is intuitively appealing for a pear 
to carry this optimization since a peer can put itself in a position 
to maximize the ability for its neighbors to help it download con-
tent. Although such playback start-up algorithms may be built into 
the peer software (not changeable), it is interesting to explore the 
consequences of letting each peer choose the buffer map selfishly. 

6.1.1 Overlap maximization problem 

Assume each peer is aware of all its neighbors' buffer maps. To 
simplify our explanation without loosing generality, let us assume 
each peer picks the playback offset to be the head of the buffer; 
namely Hk = Ok and Ek = Oa： + n — 1. This means peer k's 
buffer map is explicitly represented by its offset Ok- For peer k, let 
its neighbors be denoted as ak{i), i = 1 ,2 , . . . , L. The neighbors' 
offsets are Oa“i)’ i = 1，2’ … ’ L. 

For a simple pair of neighbors j and k, the buffer overlap can be 
expressed in terms of their respective offsets: 

V(j, k) = min{0, n - \0j — (6.1) 

This is clearly illustrated in Fig. 6.1. Then the overlap maximization 
problem for peer k can be written as: 

L 

a r g m ^ Ffc(O) = J ] V ( 0 ， ( 6 - 2 ) 
i = l 

Due to the clustering assumption, L in t {k )�Lext (k ) , we refine 
the overlap maximization problem to focus only on the neighbors 
within the same cluster. That means: 

Lint(k) 
a r g m ^ F k ( 0 ) ^ V ( 0 , 0 a , ( i ) ) . (6.3) 

i=l 

According to Eq. (6.1), V has an upper bound of n. So Fk{0) is 
bounded by Lint * n. This upper bound is reached when this peer 
and all its Lint neighbor peers have the same playback offset as in 
Eq. (6.4), 

O = Oafc � = O a , i 2 ) = . . . = Oa“Liru), (6.4) 

Meanwhile because these Lint neighbor peers of peer k are arbitrarily 
selected from /c's cluster, one can conclude that all the peers in the 
cluster have the same playback offset. Such a cluster is referred to 
as a synchronized cluster. 
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6.1.2 Properties of the synchronized cluster 

We make several observations about the synchronized cluster, under 
the assumption that each peer can see all other peers in the cluster. 
Therefore, each cluster becomes the neighbor set for all peers in the 
cluster. 

First, define the total overlap of a cluster, Vduster as the sum 
of overlaps between all pairs of neighbors in a cluster. Suppose a 
cluster has M peers and each peer has a fixed buffer size n, then we 
observe: 

Proposition 4 The upper bound of the total overlap of a cluster 
is M * (M — 1) * n and the total overlap of a synchronized cluster 
achieves this bound. 

Proof 1 Given any two peers j and k, from Eq. (6.1), the overlap 
is given by 

V{j,k)<n 

Hence, 

Vduster = X l v y ’ 幻 

{hi) 

Vduster < M{M l)n. ( 6 . 5 ) 

For the synchronized cluster, the overlap between each pair of peers 
is exactly n, so the upper bound is achieved. 

Considered as a game, the solution for the synchronous cluster is a 
unique Nash Equilibrium achieved by selfish peers: 

Proposition 5 The synchronized cluster is a Nash Equilibrium. 

Proof 2 Let us consider peer k ’s optimal offset when the other M - 1 
peers in the cluster are synchronized, with the same buffer length n 
and same playback offset O*. The payoff function for peer k is given 
in Eq. (6.3), which can be expressed as: 

Lintik) 

Fk{0) « V ( 0 ’ a 湘 ） (6.6) 
i=l 

= ( M - l ) ( n - ( 0 - 0 * ) ) . (6.7) 

This quantity is obviously maximized if O = 0*. In other words, 
when the cluster is synchronized, peers have no incentives to change 
their offsets and therefore the synchronized cluster is a Nash Equi-
librium. 
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Proposition 6 The synchronized cluster is the only Nash Equilib-
rium. 

Proof 3 Let us assume the contrary and prove by contradiction. 
Assume there is another equilibrium where the cluster is not syn-
chronized. A general representation of unsynchronized cluster is to 
let there be G groups of peers, where peers in each group share the 
same playback offset. The numbers of peers in these G groups are 
Mi,i = 1，... ’ G with = M, and the playback offset of group i 
is denoted Oi, see Fig. 6.2. Let us denote the total overlap for any 
member of group i with the rest of the cluster as Vgroup{i)- It can be 
expressed as: 

Vgraupii) = + (6.8) 

We have two cases to consider. (1) peers in different groups 
should have the same total overlap with other peers in the cluster, 
which means Eq. (6.9) should be satisfied. 

Vgroupil) = VgroupU) G [ 1 , G ] . ( 6 . 9 ) 

Otherwise, there will exist i,j E [1,G] and Vgrouv[^) < VgroupU)- U 
a peer of group i moves to group j by changing its playback offset, 
its total overlap after moving will become: 

VgroupU) = 簡 P � + 几 - y { O i , Oj) > Vgraupii). (6.10) 

which is greater than its total overlap before moving. That means 
some peers have the incentive to change their playback offsets, which 
contradicts the Nash Equilibrium condition. So Eq. (6.9) should be 
satisfied. 
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Figure 6.3: An example of the proof of uniqueness in Nash Equilibrium. 

(2) Even when Vgroupii) = Vgroupij) (case 1) holds, it is not a 
stable situation. Peers still have incentive to change their playback 
offset to get larger payoffs. In this situation, any peer moving from 
Group i to j where Oi # Oj (or vice versa), its total overlap after 
moving becomes = Vgroup(j)-^n-V{Ou Oj), which is larger 
than that before moving, Vgroup{i)- The logic is as follows: 

. . . O i 仲 i 
V{0i,0j) <n 

� KroupU) = V^roupU) + ^ - \/(0„ O,) 

> VgroupU) = Vgroupii)' (6.11) 

This proves that any unsynchronized cluster is not stable，and the 
synchronized cluster is the only Nash Equilibrium. 

An intuitive illustration of the uniqueness of this Nash Equilibrium 
is shown in Fig. 6.3. Let us consider there are two groups in the 
cluster, groupi and group2 and both groups have 4 peers with same 
buffer length of 4. Prom Eq. (6.8), the total overlap of member in 
either group before any peer's moving is VgroupW = ^roup(2) = 20, 
(left part in Fig. 6.3). After a peer moves from groupi to group2, 
VJ讓p(l) = 18 and V；'簡p(2) = 22 (right part in Fig. 6.3), which 
means this peer gains two more chunks of its total overlap after 
moving. 

6.2 Analysis of playback continuity 

While buffer overlap is a useful consideration for the start-up algo-
rithm, the ultimate measure of performance for each peer is playback 
continuity. We now further evaluate unsynchronized playback based 
on continuity. In particular, we are interested in the following ques-
tions: 
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• Does it make sense for peers that are in the same cluster to 
have different playback buffers? 

• In a large P2P session with multiple (synchronized) clusters, 
does lag between clusters help the P2P system scale? 

In the following analysis, we assume the chunk selection algo-
rithm is Rarest First�which is shown to achieve very good continu-
ity asymptotically as population grows. Our methodology is similar 
to previous chapters, which assumes large peer population size. 

6.2.1 Peers with different buffer sizes 

Although based on buffer overlap consideration, peers in the same 
cluster would choose to maximize their buffer overlap, and hence 
have the same playback offset, that is a highly idealized scenario. In 
reality, the peers' playback offsets tend to be less synchronized, even 
in t he same cluster. For peers in the same cluster, it is reasonable 
to assume they have the same buffer end offsets Ek, since they are 
assumed to know each other's buffer maps. If peers have the same Ek 
but different playback offset Ok, it means they have different buffer 
sizes rik. An example is shown in the second cluster in Fig. 6.4. An 
interesting question is whether different buffer sizes help improve 
continuity. 

To make an apple-to-apple comparison, let us consider the “different-
buffer-size” case with the “same-buffer-size case under the following 
conditions: (a) The number of peers in both clusters are the same; 
(b) The average buffer size of both clusters are the same. The con-
clusion, to be proven later in this subsection, is that the average 
continuity in the synchronous cluster (same buffer size) is better 
than that in the unsynchronized cluster (different buffer sizes but 
same buffer end offset). 

To begin, let us consider a simple example illustrating the two 
kinds of clusters in Fig. 6.4. Both clusters have four peers. In the 
synchronized cluster (labeled Ci), all peers have the same buffer 
size (seven). In the unsynchronized cluster (C2), peers have differ-
ent buffer sizes but with the same average as that of Ci, for fair 
comparison. 

For the synchronized cluster case, the methodology of previous 
chapters can be applied to derive the average continuity. We briefly 
explain it here again for convenience. Since all peers are symmetric 
in all respects, their playback buffer states are expected to have 
the same probability distribution for occupancy, where p{i) denotes 
the probability that buffer position i has the appropriate chunk. 
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Figure 6.4: Comparing synchronized and unsynchronized cluster with different 
buffer length 

For streaming, one buffer's worth of content is consumed in each 
time slot, and the rest of the buffer positions slide forward by one 
position. This leads to a difference equation for p{i): 

P(l) = (6.12) 

p{i + 1) = p{i) + q{i) 
= p { i ) ^ { l - p { i ) ) p m - p { i ) ) . (6.13) 

where M is the number of peers in the cluster. Eq. (6.12) is true 
because it is the probability that the server selects this peer and de-
livers the chunk to position 1. The first term of Eq. (6.13) represents 
the probability the local buffer already has the chunk; the second 
term q{i) is the product of three components, representing respec-
tively (1) the probability the local buffer does not have the chunk; 
(2) the probability a randomly selected neighbor has the chunk; (3) 
the probability the chunk for buffer i is the highest priority chunk 
to be fetched. These equations can be solved to derive p(n), the 
probability of playback continuity. 

In fact, Eq. (6.13) can be used to recursively derive the continuity 
p{n) for any buffer size n. Furthermore, since the second term of 
Eq. (6.13)，q{i) is a probability density distribution (in z), p{i) can 
be viewed as a cumulative probability distribution, that is increasing 
in i and p{n) approaches 1 as the buffer size n increases. 

For a cluster of unsynchronized buffer sizes, it turns out that 
Eq. (6.13) can still be used to derive the buffer occupancy distri-
bution for peers of different buffer sizes, with the assumption of 
rational peer selection and large peer population. When peers have 
different buffer sizes, given a particular chunk (at buffer position i 
in the current time slot, say), this chunk may not be part of the 
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buffer map of all peers. Rational peer selection assumes only those 
neighbors whose buffer maps contain the buffer position (i) for the 
desired chunk will be selected for sending the downloading request. 

Lemma 7 Assuming rational peer selection and large peer popu-
lation, the function p(i) derived from Eq. (6.13) can be used to 
compute the continuity p(n) of peers with different buffer sizes n in 
an unsynchronized cluster. 

The proof follows obviously from the recursive nature of Eq. (6.13) 
once the rational peer selection assumption is satisfied. Note, the ra-
tional peer selection assumption is only needed for the second term 
in the three term product in Eq. (6.13). In a cluster with unsyn-
chronized peers, if a random peer is selected in each time slot to 
download, then the probability that peer is helpful for buffer posi-
tion i will be smaller than p{i). So the assumption of rational peer 
selection yields an upper bound for the unsynchronized case. Since 
even this upper bound will be proven to be worse than the syn-
chronized cluster, the unsynchronized cluster without rational peer 
selection will be even worse in the playback continuity performance 
metric. 

Another important fact needed for our comparison concerns the 
nature of p{i) as a function of i, as stated in the following lemma. 

Lemma 8 Using the Rarest First chunk selection strategy, the steady-
state buffer occupancy distribution p{i) is a concave function in i for 
i above some threshold n* = O( logM) where M is the population 
size. 

The proof is included in the Appendix. 
Prom Lemma 7’ we know that the continuity of peers with buffer 

size n in an unsynchronized cluster can be computed as p(n). The 
implication of Lemma 8 is that the contribution of peers with buffer-
size n> n* increases with a decreasing rate with n. We refer to the 
threshold n* as the concave buffer threshold. 

Suppose there is an unsynchronized cluster C with G groups of 
peers. The number of peers in group i is Mi, and the total number 
of peers in C is M, so 券 = 1 . Peers of group i use th as the 
buffer size. 

Based on Lemma 7，the average continuity for Cluster C, can be 
computed as 

i=l 
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Let us denote the average continuity of a synchronized cluster by 
Csyn- To ensure fair comparison, we also denote the average buffer 
size by n. For C, n = XliLi 给. 

Proposition 7 Given a synchronized cluster with M peers, buffer 
size n, and any comparable unsynchronized cluster with the same 
population size M, average_buffer size n with n = n and average 
continuity C, we have C < Csyn, provided all the buffer sizes in the 
unsynchronous cluster are above the concave buffer threshold n*. 

The proof of this proposition is straightforward given Lemma 
7 and 8，and is stated informally here. It follows from Jensen's 
Inequality that given a concave function p(), 

J - M ^ ’ 

where n̂  denote the buffer sizes of individual peers. This proves the 
above proposition since we are focusing on buffer sizes when p(i) is 
concave. Note, since n* is of order logM, it is justifiably smaller 
than normally adopted buffer sizes. 

Finally, we observe that peers in an unsynchronized cluster have 
no reason to prefer different buffer sizes even from their selfish view 
point. 

Proposition 8 Picking equal buffer sizes is a Nash Equilibrium. 

If only one peer enlarges its buffer without others' cooperation, it 
cannot gain anything if all other peers continue to use the same 
smaller buffers. If any peer uses buffer length larger than others, 
others can improve continuity by enlarging buffer length until they 
use buffers of same length. 

6.2.2 Analysis of two clusters with a lag 

So far, we have shown that peers in the same cluster tend to synchro-
nize their playback; yet when peer population increases, it helps scal-
ability to desynchronize the playback. One practical way for peers 
to re-organize themselves into groups with different lags is to split 
themselves into separate clusters. From measurement studies, it is 
apparent that peers in the same session are organized into different 
clusters [12]. A study of such cluster-forming algorithms is beyond 
the scope of this paper. Instead, assume peers are partitioned into 
separate clusters, and each cluster is more or less synchronized. An 
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Figure 6.5: Comparing one single cluster with two smaller clusters 

interesting question is how the multi-cluster scenario compares with 
the scenario of a single cluster with the combined population size. 

Earlier, by considering peers as part of the same cluster, peers 
are assumed to have high connectivity with each other. Now, when 
we split peers into separate clusters, peers from different clusters 
are assumed to have only sparse connectivity with each other. This 
affects the extent different clusters help each other; but it also helps 
us to be more explicit about how different clusters help each other. 
Also, by modeling each cluster as a synchronized cluster, the prob-
lem for each cluster becomes tractable. Under these assumptions, 
the cluster with a smaller playback offset behaves like a server to the 
lagging cluster. This indeed is the basic approach we use to analyze 
the two-cluster model as shown in Fig. 6.5. Our goal is to compare 
the two cases in the figure: (a) the two-cluster with a lag case (with 
X peer connections per time slot and lag equal to D), and (b) the 
single cluster with the combined population (Mi + M^). 

For case (b), if we treat it as a synchronized cluster, the method-
ology to derive the average continuity is already known, which is 
explained in previous chapters. For case (a), we can treat each of 
the clusters as a synchronized cluster, derive the average continuity 
of each cluster and take the weighted average. The methodology 
is approximately correct, as verified by simulation to be explained 
later. But from a theoretical point of view, there are two effects 
that need to be understood. 

The first cluster (the one with a smaller playback offset) is di-
rectly connected to the server, with population Mi. Suppose the 
average continuity we derive using the standard methodology for a 
synchronous cluster is ci(Mi). Since the peers of the first cluster 
collectively help the second cluster, however, the first cluster gives 
up a small percentage of its capacity for serving itself. After incor-
porating this factor, the actual average continuity _of Ci should be 
(?i(Mi) which is smaller. Denote d： = ci(Mi) — ^i(Mi). We will 
describe a method to estimate di later in this section. 
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For the second cluster, we can assume it is served by a virtual 
server that is feeding content with a lag equal to the lag between the 
two clusters. We assume the average number of connections between 
the two clusters, x, is 1 per time slot. Suppose the lag is D. In each 
time slot, a random peer in Ci would be selected to provide content 
to a peer in C2. If the virtual server (the selected peer in Ci) does 
not have content in buffer position D, it may alternatively feed 
any content in position {{D + 1)，(D + 2 ) , . . . , n}. But in reality, 
the virtual server cannot be as good as a real server, since there 
is a small probability that the selected peer in C\ does not have 
any content in buffer position {D, (D + 1) , . . . ,n}. Furthermore, a 
virtual server for position D + J is not as good to C2 as a virtual 
server for position D. Let us denote this—degradation factor by d), 
so the actual continuity of cluster C2 is c'2 = (h议M2"). The value 
of d2 can be approximately computed from the solution for Ci as 

which is very close to 1. Therefore, we are going to skip the detailed 
accounting of this factor. 

Let us return to the problem of computing di, which is actually 
non-trivial. We came up with an alternative method to estimate di 
as follows. Consider adding a server to serve Ci, feeding it content 
at buffer position D. It is possible to compute the additional average 
continuity this second server will bring, which is denoted ai. It can 
be argued that the effect of Ci serving C2 is approximately the same 
as the effect gained due to the additional server, that is, di = ai. 
This gives us a way to estimate di. The following Lemma gives what 
we can say about ai： 

Lemma 9 ai is a decreasing function of the lag D. ai is bounded 
by 

The proof is in the Appendix. It is intuitive that ai is a decreasing 
function of D. When D is large, the extra server providing content 
to buffer position D does not help the scalability of Ci as much. Sim-
ilarly, it is more important for Ci to disseminate chunks in smaller 
buffer positions to its own cluster first. In larger buffer positions, 
more peers in Ci have those chunks, hence it costs less to help C2 
with those chunks. The important conclusion from this lemma is 
that the magnitude of ai, hence di is also very small, based on the 
bounds in the Lemma. This will be further validated by simulation 
in the next section. 

Once we have masked the possible effects of di and <̂ 2’ we can 
easily compare the two cases in Fig. 6.5, by applying the standard 
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methodology of synchronized clusters to each of the clusters in the 
figure. 

Proposition 9 For sufficiently large population, if there is a lag 
between two clusters and the lag is smaller than the buffer length n, 
the lag will help both clusters improve average continuity compared 
to the case of a single synchronized cluster of combined population. 
Furthermore, the larger the lag the more is the improvement. 

The proof is given in the Appendix. The implication of Propo-
sition 9 is as follows. When the number of peers in a synchronized 
cluster increases, the average continuity will decrease. There are 
two ways to compensate for this degradation of average continuity. 
One is to increase the buffer sizes of all peers; and the other is to 
split the original cluster into two smaller synchronized clusters with 
a lag between them. 

Proposition 10 When the number of peers in the two smaller clus-
ters between which there is a lag is the same 設 = 1 , the improve-
ment of the average continuity achieve the maximum value. 

The proof is given in the Appendix. 

• End of chapter. 



Chapter 7 

Performance Evaluation of 
Unsynchronized System 

Summary 

To validate our discussion of last chapter, the experiments are de-
signed. Through these experiment results, we can better under-
stand how the lag affect the performance of P2P streaming system. 

7.1 Performance Evaluation 

We carry out simulations to validate the theoretical claims that we 
made in previous sections. Results are presented in this section. 
Experiment A: Comparison between synchronized cluster 
and unsynchronized cluster with different buffer length: In 
this experiment, we want to validate that the average playback con-
tinuity of peers in a synchronized cluster (in which peers have the 
same playback offset and buffer length) is better than peers in an 
unsynchronized cluster with different buffer length (in which peers 
have different buffer lengths but the same Buffer End Offsets). For 
the unsynchronized cluster, peers are divided into different groups 
according to their buffer length. 

Before we start this experiment one needs to determine the dis-
tribution of peers population of each group in the unsynchronized 
cluster. In previous chapters when we discuss the reason why peers 
in the unsynchronized buffer length cluster have the same Buffer 
End Offsets but different buffer length, we argue that it is equiva-
lent to the case that peers have the same Buffer End Offsets. This 

48 
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implies that peers request the same newest chunk from the server at 
the same time slot, but they playback that chunk at different time 
slot (different Playback Offsets) according to the start-up algorithm 
mentioned in [12, 13]. The description of the start-up algorithm 
is that each peer will not start the playback until they have suc-
cessfully downloaded certain number (a pre-defined parameter) of 
consecutive chunks. To determine this distribution, we run a sim-
ulation to see what is the distribution of time slots that peers take 
to download the first N chunks. In the simulation, we set the total 
number of peers in a cluster M = 1000, buffer length n 二 40，and 
TV = 10 (which means that peers will start as long as they get the 
first ten chunks). The result is shown in Fig. 7.1. According to the 
points conjuncted by the solid line, the time slots when peers start 
to playback is distributed between [19,42] and the mean is 25.26. 
From Fig. 7.1, one can see that the curve of simulation result is very 

• Simulation result 
�•̂ - NormaldJstrlbututon 
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Figure 7.1: Simulation result of the start-up latency and the approximate normal 
distribution 

similar to a normal distribution (the dotted curve in Fig. 7.1) with 
fj, = 25 and cr = 2.8. In later experiments, this normal distribution 
(dotted line) is used to approximate the original curve (solid line). 
This normal distribution is listed in Table 7.1. 

~x 19 I 20 I 21 I 22 I 23 I 24 I 25 
~ y 0 . 0 1 5 0.03 一 0.053 0.112 0.136 0.144 _ 

T 丨 26 丨 27 I 28 29 30 | 31 | — 
" V 0.136 "0J12 0.082 0.053 0.03 0.015 

Table 7.1: Coordinates of points for the normal distribution 

To evaluate the performance of playback continuity between these 
two types of clusters, we first use the above mentioned normal dis-
tribution to determine the distribution of buffer lengths for peers 
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in the unsynchronized cluster. In order to have a fair comparison 
between these two types of clusters, we make both clusters to have 
the same average buffer length n, and vary n from 20 to 40. For 
the unsynchronized cluster with different buffer length, there are 
G = 13 groups (based on the 13 points in Table 7.1). In addition, 
when the average buffer length n is changed, we use a different nor-
mal distribution with the same variance but adjust fi = n. Fig. 
7.2 shows the simulation results of the average playback continuity 
when n varies from 20 to 40 for these two types of clusters. For 
each value of n, we run the simulation for 2000 time slots. In each 
time slot, the average playback continuity is the ratio of number of 
peers which playback the chunks to the number of all peers in the 
cluster. As shown in Fig. 7.2，the synchronized cluster has better 
playback continuity than the unsynchronized cluster with different 
buffer length. 

ii . 

I � , , 
r • 

• aynchronlzsd cluitor 
�.• .. unsynchronized cluster with different buffw l*ngth 

25 30 35 40 But»»r Ungth (n) 

Figure 7.2: Simulation results of the playback continuity with different average 
buffer length 

Fig. 7.3 shows the average playback continuity for these two 
clusters between 1000 to 2000 time slots when n is fixed at 25. The 
simulation results indicate that the average playback continuity of 
synchronized cluster is better than that of unsynchronized cluster 
with different buffer length under fair comparison. These validate 
the theoretical claim of Proposition 7. 
Experiment B: Comparing the playback continuity of sin-
gle cluster vs. two smaller clusters with Lag: In this experi-
ment, we examine the performance of a single synchronized cluster 
containing totally M peers with buffer length n, and two smaller 
synchronized clusters containing Mi and M2 peers respectively with 
the same buffer length n, where M = Mi + M2. We carry out three 
different types of simulations by varying a parameter while keeping 
all other parameters fixed. 
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Figure 7.3: The playback continuity of two types of clusters when average buffer 
length n — 25. 
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Figure 7.4: The playback continuity of single cluster and two smaller cluster 
during time slot 1000 — 2000. 

Exp. B . l : Performance under different buffer length: In 
this simulation, the total number of peers M is fixed to 4000 and 
the ratio of the population of two small clusters is fixed to 1，or 
Ml = M2 = 2000. In order to make sure that the second cluster 
could get the newest chunk with a high probability, we set Lag — 
n — 1. Fig. 7.4 shows the average playback continuity of both the 
single cluster and the two smaller clusters from time slot 1000 to 
2000，with the buffer length n = 20 and the Lag is set to 19. In 
each time slot, the average playback continuity is the ratio of the 
number of peers doing the playback and the total number of peers 
in the cluster. Fig. 7.4 shows that the two smaller clusters with 
Lag perform better in terms of playback continuity than the single 
cluster. The result validate Proposition 9. 

Experiment B.2: Performance under different popula-
tion ratio in the two smaller clusters: For this experiment, 
the total number of peers in the single cluster is M = 4000, buffer 
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Figure 7.5: The playback continuity of single cluster and two smaller clusters 
with different population ratio. 

length is n = 20 and Lag = 19. However, the ratio of the population 
of the two smaller clusters is not fixed, but rather vary from 0.1 to 
0.9. As shown in Fig. 7.5, the average continuity of the two smaller 
cluster is better than the single cluster under all population ratio. 
One can find that when Mi is relatively small or large compared 
to M (e.g. ^ = 0.1 and 0.9), the average playback continuity be-
comes poorer, whereas, when the ratio of M � t o M2 is close to 1 
(e.g. ^ E [0.4’ 0.6])’ the average playback continuity is quite good. 
This result validates Proposition 10. 
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Figure 7.6: The playback continuity of single cluster, two small clusters and five 
smaller clusters. 

Experiment B.3: Average playback continuity under dif-
ferent number of smaller clusters: In the simulation, the total 
number of peers is fixed as M = 6000, we vary the number of small 
clusters but all these small clusters have the same number of peers. 
Fig. 7.6 depicts the average playback continuity for the single clus-
ter, two small cluster, and five smaller cluster. All three curves 
increase when the buffer length n increases. As indicated in Fig. 
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7.6, when the P2P system has more small clusters, the system will 
have a better average playback continuity. To analyze and seek the 
optimal number of small clusters is beyond the scope of this pa-
per and part of our future work. We believe that, in real life, the 
topology is very similar to this multi-cluster topology, forming a 
multi-cast tree with clusters being the nodes. 

• End of chapter. 



Chapter 8 

conclusion 

Summary 

This is a summary of our work and contribution. 

8.1 Conclusion 
The art of modeling is on the one hand to capture the essential 
aspects of the original system, and on the other hand to be simple 
enough to yield some insights about the original system. We feel that 
is what our model accomplished for the P2P streaming problem. In 
addition, the insights from our first model also lead to some practical 
algorithm that can be incorporated into well established systems as 
improvements. 

In the last model, the P2P system is modeled as a synchronized 
system. In the second model, relaxed several assumptions in pre-
vious chapter to study the effect of unsynchronized peers. We de-
fine the terminology and formulated several different perspectives 
of looking at this problem. The conclusion is that under decentral-
ized algorithms, there are reasons for forming synchronized clusters. 
However, in order to support a large number of peers with a fixed 
amount of buffer space, having different playback offsets for different 
clusters can help improve overall continuity. 

There are a number of interesting directions for further studies. 
We believe the simple probability model can be extended to analyze 
other chunk selection and peer selection algorithms. Additional ex-
perimentation and prototyping would also help further validate our 
ideas. 

54 
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• End of chapter. 



Appendix A 

Equation Derivation 

Summary 

Give equation proof in Appendix. 

Appendix 

Proof of Lemma 1: Prom Eq. (3.6), we have 

p{i + l)-pii) = s{i)p{i)(l-p{i)). 

Prom Eq. (4.1), we have 

s{i + 1) - s{i) = s(z + l ) p ( i + l ) ( l - K ^ + l ) ) . 

Note the right-hand-side of the above two equations are the same, 
except the index i versus i + 1. This means 

s{i + 1) - s{i) 二 p(i + 2 ) - p ( i + l), 

+ 1) - s{j)) = ^(p(j + 2)-Ki + l)), 
j=i j=i 

s{i) = s{n - 1) - p{n) + p{i + 1). 

Prom the equation of s{i) (Eq. 4.1), we get s{n - 1) = 1 - 1/M. 
Therefore, we have s{i) = I - p{l) - p(n) -\-p{i + 1). I 

Proof for Lemma 2: Again, from Eq. (3.6), we have 

p{i + 1) - pii) = . 
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Prom Eq. (4.4), we have 

s{i + 1) - s{i) = s( i )p( i + l ) ( j o ( i + l ) — 1 ) . 

This time, the right-hand-side of these equations are again the same 
except the sign (and index off by 1). This gives us 

s{i + 1) - s(i) = - ( p ( “ l ) l � ) ， 

j=0 j=o 

s{i) = s{l)+p(l)-p{i). 

When there are M peers in the network, p(l) = 1/M, which is 
the probability the sever selects it for sending the newest chunk. 
Prom Eq. (4.4), we have s( l ) = 1 - 1/M. Therefore, we have s(i)= 
1 - 淋 I 

Proof of Lemma 3: Assume e = 1 - p ( n ) and e-p(l) + 0, which 
covers all the chunk selection strategies we are interested in. We get 
the following solution for the differential equation: 

i n ( ^ ) i n ( ^ ) 
工 - 6 - p ( l ) 十 1 + 6 1 ( 1 ) 

- l n ( 2 / + e - p ( l ) ) - C . 

Here C is a constant that can be derived from the boundary condi-
tion y = p{l) = 1/M: 

C 二 + 普 1. 
e-p{l) 1 + e-Kl) 

Solving the above equation, we can express n, the buffer size, in 
terms of the other parameters p(l) and e: 

- W ) - . � r T ^ + i + i n ( i ^ ) . 
Although n is an integer, we can still study its sensitivity with re-
spect to p( l ) and e by differentiation, which yields the results in the 
Proposition. I 
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Proof of Lemma 4: With a similar method as in the proof for 
Lemma 3，we derive the solution for the differential equation for the 
Rarest First algorithm: 

1-2/ 乂 1 — 2/乂 

^ In ( P � ^ 小 P � 

Again, p(l) and e represent the number of peers and the streaming 
quality respectively, and y(n) = 1 — e. Similarly, we express n as a 
function of p(l) and e: 

Differentiating, we get the results in the Proposition. I 

Proof of lemma 6: The proof is derived from the continuous 
model. In the continuous model, let e = p(l) , the necessary buffer 
length for each strategy can be derived through the model. For 
Greedy strategy, the continuous function can be simplified as: 

包 = " 2 ( 1 - y) 

dx 1 + y^ - y 

Through solving the function, we can get the following equation: 

X = -- - ln ( l -y) -C, 
y 

C = - ^ - l n ( l - p ( l ) ) - l 
P � 

let € = pi, the derived buffer length is: 

1 , , 1 _ e � e 
几 G = 7 + 

The continuous function for RF strategy is unchange. The required 
buffer length njiF is： 

1 1 — e e 
riRF = - + 2 1 n ( — — ) - - -

€ e 1 — e 

The results indicate that Greedy saves buffer length compared with 
RF if the continuity requirement is bigger than 1 — pi • 
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Proof of Proposition 3:[changed by yipeng] First, we derive 
the continuous form of Upper Bound from the discrete model. 

rc 二 I n � - l n ( l 1 ) - C7， 

The complexity of the buffer length uub is 0(ln(^) + ln(M)). From 
the proof of lemma 4, we can get the complexity of buffer length 
for Rarest First Strategy is 0{\ + ln(M)), while the complexity for 
Greedy Strategy is + ln(M))). Complexities of buffer 
length for both Rarest First Strategy and Greedy Strategy are larger 
than Upper Bound's. However, for Mixed Strategy, the Rarest First 
part is given a relative large discontinuity and the Greedy part is 
given a relative large p{l). Assume the discontinuity for Rarest First 
Strategy is A. Therefore, the complexity of combined buffer length 
is + ln(M) + ^ ( I n ( ^ ) + ln(M))). Here, we can control the 
value A in a range, such as from 0.2 to 0.4. Then, the complexity 
of Mixed strategy can be simplified 0(ln(去）+ ln(M)), which is the 
same with the Upper Bound's. 

A. Proof of Lemma 8 

Proof 4 In [30], from the continuous model of Rarest First Strategy, 
we can obtain the closed form of the relationship between n (buffer 
size), e {= 1 — p{n), discontinuity) and M (= number of peers 
in the system) Eq. (A.l). 

H + l n ( 许 l n ( 輪 — 备 ( A . ) 

When we fixed M, the total number of peers in Eq. (A.l), the dis-
continuity e only relates to buffer length n. In order- to take a close 
look at the relationship between, we rewrite the formula, in which 
we define e = p{n) = I — e to denote the continuity and take the 
derivative on n, since now the part — In ( y ^ ^ ) — j i ^ is just a 
constant and its derivative on n is zero. We derive the first and 
second derivative in Eq. (A.2) and (A.3). 

i = … 1 - 旬 2 , (A.2) 
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g = 3 e - ( l - 6 ) 2 ( 6 - ( A . 3 ) 

Because e = p(n) is the probability that the nth chunk position of 
the buffer is filled or not, e is a real number between 0 and 1. The 
following conclusions hold based on Eq. (A.4) and (A.5). 

(i) The first derivative ofe and n is always non-negative. In other 
words, the continuity function p{n) related to buffer size is an 
non-decrease function. 

(ii) When buffer size is small (n < n* and e < the second 
derivative is positive, which means the continuity function p{n) 
is convex. 

(Hi) When buffer size is large enough (n > n* and e > the second 
derivative is negative, which means the continuity function p{n) 
is concave. 

字 > 0, (A.4) 
an 

‘ > 0 ( 0 < e < ^ ( 0 < n < n * ) 

芸 < 0 ( i < 6 - < l ) ^ ( n > n * ) 

. = 0 ( H ) 台 （ n 二 n*)’ 
(A.5) 

where, 

* 3 " 0 � 1 ( p( l ) � P(l) 

= 0 ( l o g ( M ) ) . 

C. Proof of Lemma 9 

Proof 5 Refer to Eq. (A.l), if the number of peers M varies, 
the discontinuity would vary accordingly when the buffer length n 
is fixed. Do differentiation to both sides of Eq. (A.l), one could 
derive Eq. (A.6). 

^ — � — e ) 
• P( l ) ( l — p(l))2 � P ( l ) . ^ • ^ 
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We make the approximation based on the basic assumption that the 
total number of peers M is very large and in result, 1 — p(l)= 

Then, assume that there are already M peers and one server in 
the cluster. Another server joins in and in each time slot it provides 
a chunk, which locate position D in peers ‘ buffer. At position D, 
the system is equivalent to another baby network in [30], where the 
number of peers is buffer length is n — D. From Eq. (A.6), 
one more server can improve the continuity: 

Jp(D) P(l) 

= — e 2 ( l - e ) l n ( l + ^ ) ’ （A.7) 

where p(l)=去.Because p(D) is an increasing function with D, 
I (III is decreasing when D increases. When D = 1, |ai| reaches the 
maximum value — e) In 2. On the other hand, when D = n, 
the last position of the buffer, p{n) = 1 - e is very close to 1 and 
ln(l + 费 )•？费 ( p { l ) is very small) at which point, the lower 
hound is achieved. 

D . Proof of Proposition 9 

Proof 6 In order to see the improvement on the average continuity 
when there is a lag between two clusters, we need to consider a single 
larger cluster C, with M = Mi+ M2 peers that have the same buffer 
length n and playback offset, to be the benchmark, as depicted in 
Fig. 6.5. 

In each time slot, Ci sends a chunk, of which the position in the 
buffer is D, to C2. For Ci, it is just as a server at position D leaves 
the cluster and for C2, it is equivalent that there is a server sending 
one newest chunk in each time slot. And the condition for the larger-
cluster C is the same as described in [30]. 

Prom Eq. (A.6), the change of the e comparing C and Ci is in 
Eq. (A.8): 

= ( A . 8 ) 
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And the change of the e comparing C and C2 is in Eq. (A.9): 

= ( A . 9 ) 

And the influence on the discontinuity when a server provide chunks 
at position D of the buffer leave is in Eq. (A.10): 

- - — � ( 1 — 侧 1 + 殺 t ) = ‘ （A.10) 
The total change of discontinuity is in Eq. (A.11): 

M l M2 . M l 
八e = ^ A e i + - A e ^ - - a , 

2,1 ..Ml, M M 

- � • • ) ] . (A.11) 

Then focusing on other terms of Ae, because > 0 and 

M l / . M 1 , 1 , 1 �� 

M l , , M l + M2 . „ , , … � 1 

(A.12) 
Under the assumptions that both Mi and M2 are large enough and 
p(D) is close to 1，inequality (A.12) could be easily held and conse-
quently Ae is negative which means the continuity is increased. In 
addition, |Ae| increases when D increases which indicates that the 
larger the D is, the more the improvement of the average playback 
continuity is. 

E. Proof of Proposition 10 

Proof 7 In fact, the term ln(l + in Eq. (A.11) could be 
simplified as: 

1 1 
ln(l + p ( D ) M i ) 记 綱 Ml 

Ml 1 � 1 

(A.13) 
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When we fix M andp{D), Ae in Eq. (A.11) becomes: 

M M . ) = 命 5 + 知 M (A.14) 

where, Ai = - 二 ~p{d)m are not related to M:. It 
could be derived that |Ae| has a maximum value |i4i(ln2 - 2̂)!； 

when Ml = M2 =专 which means when 德二 1，the increment of 
the average continuity will be the largest. 

• End of chapter. 
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