
Modeling and Analysis of
P2P Streaming

ZHOU, Yipeng

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

© T h e Chinese University of Hong Kong
August 2008

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the Graduate
School.

統系馆書圓

(1(2 0 a—i^l
UNIVERSITY/M/J

Abstract of thesis entitled:
Modeling and Analysis of P2P Streaming

Submitted by Zhou, Yipeng
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in July 2008

P2P streaming tries to achieve scalability (like P2P file distribution)
and at the same time meet real-time playback requirements. It is a
challenging problem still not well understood.

In this thesis, two work are done. First, we analyze the p2p
streaming in synchronized case and describe a simple stochastic
model that can be used to compare different data-driven download-
ing strategies based on two performance metrics: continuity (prob-
ability of continuous playback), and startup latency (expected time
to start playback). We first study two simple strategies: Rarest
First and Greedy. The former is a well-known strategy for P2P file
sharing that gives good scalability, whereas the latter an intuitively
reasonable strategy to optimize continuity and startup latency from
a single peer's viewpoint. Greedy, while achieving low startup la-
tency, fares poorly in continuity by failing to maximize P2P sharing;
whereas Rarest First is the opposite. This highlights the trade-off
between startup latency and continuity, and how system scalabil-
ity improves continuity. Based on this insight, we propose a mixed
strategy that can be used to achieve the best of both worlds. Our
algorithm dynamically adapts to the peer population size to ensure
scalability; at the same time, it reserves part of a peer's effort to
the immediate playback requirements to ensure low startup latency.
In addition, some assumptions in the model are modified and dis-
cussed, which can prove these assumptions are reasonable and our
model is robust.

However, in real-life P2P streaming, how the peers select play-
back offset and buffer size? In the second part, we generalize the
previous work and study a number of interesting consequences of
this reality. Given a set of neighbors, a reasonable strategy of a
peer is to set its playback offset in order to maximize the overlap
of its playback buffer with its neighbors' buffers. If a cluster of

i

peers all adopt this local strategy, we show that the Nash equilib-
rium is for all peers to have synchronized playback in the cluster.
Secondly, if peers in a cluster have synchronized playback offset, we
show that it is best for them to adopt the same buffer size, for a
given total buffer size. These results imply that the simple model of
relatively synchronized peers is still reasonable for studying peers in
a cluster. For generalization, we show that for really large-scale P2P
sessions, it makes sense to organize peers into different clusters with
different (cluster-wide) playback offsets. This is shown analytically
using two-cluster model; the results are supported by simulation ex-
periments. The analysis of this part is more realistic and provides
further insights in the design of large-scale P2P streaming systems.

ii

中文摘要

点对点的流媒体网络不但可以满足用户数量的扩展性(例如点对点的文件传送软

件BT)，并且能同时满足多媒体流文件播放所需要的实时性需求。目前这个系

统的设计与可法有很多值得研究的课题。在这篇毕业论文中，主要讨论和研究了

两个方面的问题。

首先，用简单的随机过程模型研究点对点网络在一个近似同步的系统屮。在这个

随机过程模型屮，我们可以比较各种文件块的选择策略的优缺点。在这两，我们

设计了两个性能衡量指标：播放成功率和启动延迟。然后选取两种直观简单的文

件块选择策略：最稀缺块优先策略和贪心策略。最稀缺块优先策略被广泛应用于

文件共享系统并且取得了很好的用户扩展性。而贪心算法对单独用户来讲是一种

非常简单直观来最大化满足播放成功的策略。贪心算法能和好的减少启动延迟但

却不能得到很好的成功播放概率，而最稀缺块优先策略正好相反。通过研究启动

延迟和播放成功概率之间的矛盾和系统扩展性与播放成功概率之间的矛盾，一种

新的混合策略被提出。这种混合策略能同时满足系统扩展性和播放成功概率高要

求之间的矛盾。并且这种策略是一种可根据系统用户量而自发调节的自适应算

法。另外，在这个模型下面，文章做了很多假设，一些特定的实验被用来检测这

些假设的合理性和模型的健壮性。

其次，考虑的真实地点对点流媒体网络中的用户观看并不是完全同步的，我们进

一步提出新的模型来分析在不同步的情况下，用户的选择策略以及由此造成的影

响。这部分的工作是基于第一部分的模型的一种改进和提高。在实际系统中，任

何一个用户只能拥有有限的邻居提供帮助。在这种情况下，用户的合理策略是最

大化自己和邻居的缓冲区的公共区间以便获得最大的帮助。如果在一个网络里面

所有用户都使用这种策略，我们可以证明，所有用户将达到那什均衡状态并且将

是一个同步的网络。如果用户可以自行选择存储缓冲区的大小，我们可以证明这

种选择的结果是所有用户选择相同大小的缓冲区并且是那什均衡。同时我们还分

析了两个网络间流量很小的情况，并且证明在这种情况下，适当的延迟有助于提

高整个系统的性能。这部分的研究更加接近真实网络，相信对点对点网络的设计

更有帮助。

iii

Acknowledgement

I would like to thank my supervisors professor Chiu DahMing and
professor John C.S. Lui. They gave great help in my research work
and thesis writing. Thank Tom fu very much for his help in my
second part work. Thank Bridge for his idea of the upper bound of
buffer length in synchronized case.

iv

Contents

Abstract i

Acknowledgement iv

1 Introduction 1
1.1 Background 1
1.2 Contribution 2
1.3 Organization 4

2 Related Work 5
2.1 Work of Streaming 5
2.2 Work of P2P VoD 6

3 Basic Model of Synchronized Case 8

4 Model of Chunk Selection Strategies 13
4.1 Chunk Selection Strategies 13

4.1.1 Greedy Strategy 14
4.1.2 Rarest First Strategy 15
4.1.3 Buffer Size, Peer Population and Conti-

nuity 16
4.1.4 Mixed Strategy 17

4.2 Some Conclusion and Extension 19
4.3 Metrics 20

4.3.1 Continuity 20
4.3.2 Start-up Latency 20

5 Experiment and Application 22
5.1 Numerical Examples and Analysis 22
5.2 Sensitivity study 30

5.2.1 Discrete Model with Factor 30
5.2.2 Validate Discrete Model with Factor . . 31
5.2.3 Server Use Pull Strategy 31

V

5.2.4 Vary Subset Size Touched by Server . . 32
5.3 Application to Real-world Protocols 32

6 Model of Unsynchronized Case 34
6.1 The model for unsynchronized playback 34

6.1.1 Overlap maximization problem 37
6.1.2 Properties of the synchronized cluster 38

6.2 Analysis of playback continuity 40
6.2.1 Peers with different buffer sizes 41
6.2.2 Analysis of two clusters with a lag 44

7 Performance Evaluation of Unsynchronized System 48
7.1 Performance Evaluation 48

8 conclusion 54
8.1 Conclusion 54

A Equation Derivation 56

Bibliography 64

vi

List of Figures

3.1 Sliding Window Mechanism of the buffer B 9

5.1 Buffer occupancy distribution for Rarest First and
Greedy policies from discrete, continuous and simu-
lation models 23

5.2 Comparison of Rarest First, Greedy and Mixed . . . 24
5.3 Performance Results for Exp. B 25
5.4 Performance Results for Exp. C 26
5.5 A v.s. best Mixed strategy 26
5.6 The small network 27
5.7 Second and Third Experiments in Exp. D 27
5.8 Continuity of the Network Simulation 28
5.9 Second Experiment in Exp. E 29
5.10 Performance Results from Exp. F 30
5.11 Buffer occupancy distribution of the network with

limited bandwidth 31
5.12 Buffer occupancy distribution of the network when

server uses pull strategy 32
5.13 Buffer occupancy distribution of the network when

server talks with a subset 33

6.1 Illustration of Buffer map, Overlap and Playback offset 36
6.2 Illustration of an unsynchronized cluster in the proof

of unique Nash Equilibrium 39
6.3 An example of the proof of uniqueness in Nash Equi-

librium 40
6.4 Comparing synchronized and unsynchronized cluster

with different buffer length 42
6.5 Comparing one single cluster with two smaller clusters 45

7.1 Simulation result of the start-up latency and the ap-
proximate normal distribution 49

7.2 Simulation results of the playback continuity with dif-
ferent average buffer length 50

vii

7.3 The playback continuity of two types of clusters when
average buffer length n = 25 51

7.4 The playback continuity of single cluster and two
smaller cluster during time slot 1000 — 2000 51

7.5 The playback continuity of single cluster and two
smaller clusters with different population ratio. . . . 52

7.6 The playback continuity of single cluster, two small
clusters and five smaller clusters 52

viii

List of Tables

7.1 Coordinates of points for the normal distribution . . 49

ix

Chapter 1

Introduction

Summary

There are three sections in this chapter. First, the background of
P2P streaming and P2P VoD is introduced. Secondly, the contri-
bution and difference compared with other work of this thesis are
discussed. At last the organization of the thesis is shown.

1.1 Background

Video streaming over the Internet is already part of our daily life.
The engineering of video streaming from a server to a single client
is well studied and understood. This, however, is not scalable to
serve a large number of clients simultaneously. The earlier vision
for solving this problem is based on IP multicast, which relies on
the routers in the network to manage the distribution and duplica-
tion of content from one source to multiple receivers. Due to tech-
nical complexity and other deployment issues, IP multicast has not
been widely deployed. Instead, what emerged is a form of multicast
implemented by an overlay network. There are different types of
overlay networks, but a peer-to-peer (P2P) overlay network proves
to be especially scalable. In a P2P network, each client is also a
server (when the P2P network is working well), thus when more
clients join a multicast session more servers (peers themselves) are
automatically added to share the additional load.

The earlier work on P2P content distribution was known as ap-
plication layer multicast [10] or end-host multicast [15]. Since then,
there has been a significant body of work on P2P streaming. In an

1

CHAPTER 1. INTRODUCTION 2

invited paper [18], the existing approaches are classified into two cat-
egories： one is tree-based, the other is data-driven. Both tree-based
and data-driven use multiple paths (i.e. multiple spanning trees) for
distributing content from a source to each receiver, which is the key
for achieving scalability. The data-driven approach [29, 28, 26, 11],
by not focusing on trees explicitly, allows the distribution paths to
be determined based on data availability, which can adapt to the
dynamics of a P2P network.

Another important contributor to P2P streaming is the body
of work on P2P file sharing protocols. The most representative
and most influential work (in academic circles) is BitTorrent (BT)
8, 9]. P2P file sharing is subtly different from P2P streaming. On

the one hand, it is less demanding since it does not have real-time
requirements; but on the other hand, it is also more demanding
because it requires the entire file (in P2P streaming, peers join the
video session from the points determined by their arrival times).
Nevertheless, both P2P file sharing and P2P streaming need to deal
with scalability by connecting the peers together to serve each other,
and the works on BT provided the necessary insight in this area.

Recently, people become more and more interested in P2P Video
on Demand systems, which use peer to peer technology to improve
VoD systems. Several P2P VoD systems have been designed by
PPlive [1] and PPstream [2]. However, Little is know about the
effectiveness of the P2P technology in VoD systems because of its
complication. In this thesis, some newest research work about P2P
Vod is presented. The features, the strength, the merit and weakness
are discussed based on these work.

1.2 Contribution

The contribution of the thesis is as follows. None of the studies on
P2P streaming so far, to the best of our knowledge, has formulated
a tractable analytical model to help understand the important sys-
tem level design issues in P2P streaming - this is the contribution
of this paper. By assuming independent and homogeneous peers
(using the same size playback buffer and chunk selection strategy)
in a symmetric network setting, we construct a simple analytical
model that allows us to compute the distribution of what each peer
has in its buffer. We can use this model to evaluate and compare a
variety of chunk selection strategies, which is the core of the data-
driven approach. Based on a simple model, one can understand the
relationships of important system parameters and metrics. In par-

CHAPTER 1. INTRODUCTION 3

ticular, we first study two strategies: Rarest First and Greedy. We
show that Rarest First is much better in dealing with scale, whereas
Greedy is able to produce better playback performance (continuity)
in small scale networks. Also, if all peers use Greedy, the play-
back delay can be smaller. We also prove an important property of
our model, that is a certain number of buffer spaces used together
with the Rarest First strategy can convert a large peer population
problem into a much smaller peer population problem with equiv-
alent playback performance. This insight allows us to propose a
mixed strategy where a part of the buffer space is used to deal with
the need for scalability, and the other part of the buffer space is
used to achieve the best playback performance and delay. Actually,
the Mixed strategy is asymptotic optimized strategy. Our model is
discussed based on some assumptions. Furthermore, these assump-
tions are discussed one by one, which indicates the correctness of
our model. The first model is under synchronized network system.
Therefore, we extended it to unsynchronized case. The peers are
classified different clusters and there are lags among these clusters,
which can not be ignored. The unsynchronized case in one cluster
is also analyzed. Through these analysis, we can understand how
the lag affects the performance.

To make the problem tractable, there is a major assumption that
all peers are synchronized in their playback. In other words, all
peers playback the same content (offset of the video content) at the
same time, with exactly the same delay equal to the buffer size. The
reality, there are many factors that will affect the peers' playback
offset. For example, due to geographical reasons, some peers are
closer to the source of the content and are matched to the source for
direct downloading whereas other far away peers may not receive
direct downloading from the source. The latter peers tend to have a
lag in their playback offset compared to the former group. Secondly,
the actually decision of when to start playback may not be centrally
controlled, but rather determined locally based on each peer's buffer
content reaching a threshold of reserve. For this reason, and the
fact peers have different neighbors, the resulting playback offsets
are likely to be randomly distributed to some extent. Furthermore,
peers' buffer sizes may be different. Each peer is likely to have a
(configured) maximum buffer size. The actual buffer size in use (to
support P2P streaming) will depend on a peer's playback offset and
its neighbors' offsets. So a natural consequence of unsynchronized
playback implies likely unequal buffer size, assuming the configured
maximum buffer size is generous.

CHAPTER 1. INTRODUCTION 4

A new model generalized from above simple model to allow un-
synchronized playback. The key insight of the above simple model
is about better use of the peer buffer spaces to provide scalability
while taking playback continuity into consideration. In contrast,
the generalized model explain the role of differential lag and what
drives peers to select the same playback offset and buffer size in one
cluster. More specifically, we address the following questions:

1. Given a cluster of peers (who have each other as neighbors),
how would the peers choose their playback offset if they are
allowed to choose? When they all choose to maximize their
buffer overlap, we show that they will choose to have synchro-
nized playback.

2. Given a cluster of peers choosing synchronized playback, would
they choose different buffer sizes? We show the answer is neg-
ative.

3. Given multiple clusters with different (cluster-wide) playback
offsets, how much improvement can we expect compared to the
single-cluster case? We characterize the improvements analyt-
ically for the two-cluster case, and study the multiple cluster
case using simulation.

1.3 Organization

The organization of the thesis is as follows. Chapter 2 introduce
some current popular research work, including P2P streaming and
P2P VoD. Chapter 3 is on the basic probabilistic model; Chapter 4
goes into the details of how to model different chunk selection strate-
gies; Chapter 5 provides various numerical examples, solved by both
the discrete and the continuous version of our model, as well as val-
idated by simulation. This chapter also describes application of our
protocol to real protocol design and discusses the reasonableness of
the assumptions in our model. In Chapter 6，we present the model
for unsynchronized playback and discuss on the buffer map overlap
maximization problem. Then we go into the details of how to ana-
lyze the average playback continuity of peers in the unsynchronized
cluster. Chapter 7 provides the simulation results. Chapter 8 make
a conclusion of the whole research thesis.

• End of chapter.

Chapter 2

Related Work

Summary

In this chapter, the current P2P streaming work completed by re-
searchers are introduced, especially two works, which are most re-
lated to our model. Then, a more challenging and novel research
work P2P VoD and current work are discussed.

2.1 Work of Streaming

Recently, a number of mesh-pull P2P streaming systems such as
Coolstreaming[29], BASS[7], AnySee[17], BiToS[26], and [19, 22’
28] are proposed by researchers. Usually these systems are eval-
uated through simulation or run on the testbed like Planet-lab [3 .
Meanwhile, there are also some measurement-based studies of P2P
streaming systems[12, 4’ 21, 24’ 25’ 27]. In these measurement stud-
ies two measuring techniques have been applied: passive sniffing and
active crawling.

There are a number of analytical studies on P2P file sharing sys-
tems. An important contributor to P2P file sharing is the body of
work based on the BitTorrent[9, 23]. Since P2P file sharing does not
have real-time requirements, it is very different from P2P streaming
application. For analytical models on P2P streaming, [30] was the
first study on formulating tractable analytical models to help under-
stand important system designing level issues such as buffer design
and chunk selection policies so as to provide good playback continu-
ity and at the same time, scalability to the system. There is another
theoretical study applying the stochastic fluid model to model the

5

CHAPTER 2. RELATED WORK 6

P2P streaming[14]. In [14], the authors only considered the whole
system's performance, whether to perform universal streaming or
not. There are two most closely related to our work are CoolStream-
ing [29] and BiTos [26]. The two papers are discussed in more details
as following:

CoolStreaming [29] is a very important prior study on data-driven
P2P streaming protocols because it is based on a real prototype
implementation and a relatively large scale experiment (involving
thousands of simultaneous peers) in the real Internet. It serves as a
proof of concept, and a benchmark for a real working system. Our
model captures the main ingredients of the CoolStreaming system
while stays simple enough for analysis. The chunk selection strat-
egy, Rarest First (originally from BitTorrent), is one of the basic
algorithms we model. The playback performance derived from our
model matches closely to that observed in CoolStrearning's experi-
mental results. Our abstract model allows us to consider different
chunk selection strategies and gain insight into the trade-off of dif-
ferent metrics. In the end, we propose a better chunk selection
strategy and explain why it is better.

Another interesting data-driven P2P streaming study is BiTos
[26]. BiTos is also based on BitTorrent. In BiTos, the chunk buffer
is divided into two parts, one part for high priority chunks and the
other for lower priority chunks. As playback deadline nears, a low
priority chunk (still missing) becomes high priority. A peer down-
loads high priority chunks with probability p, and downloads lower
priority chunks with probability 1 一 p. For each part of the buffer,
BiTos still adopts the Rarest First Strategy. This is somewhat sim-
ilar to the mixed strategy we study, although there are important
differences. [26] provides no modeling and analysis of the chunk se-
lection strategy, and little experimentation to show the advantages
and disadvantages. All these issues are dealt with in this paper. In
fact, BiTos can also be analyzed by our model; but based on our
theory, our mixed strategy should be superior to BiTos.

2.2 Work of P2P VoD

There are some most coming research on P2P VoD system. Some
of them study the framework of the P2P VoD system, such as [1, 2 .
Some of them focus on measurement such as [6 .

In paper [6], the authors measured performance from a real sys-
tem GirdCast. They measured the gap between GirdCast and the
best case, studied the reasons causing large latency and how the

CHAPTER 2. RELATED WORK 7

peers' behavior affect the average performance. However, there are
some weak points. There were not many users in the system, about
20000 totally, and several hundreds concurrent peers. Most of users
came from CERNET, who had quite good network bandwidth.

In paper [16], the authors did a great work including P2P VoD
framework design, user behavior and system performance. Actually,
the work is based on PPLive [1], which is real P2P VoD software
and support tens of thousands of users on the internet with several
hundreds channels.

In paper [5], the authors presented one measurement studies of
a large VOD system, using data covering 219 days and more than
150,000 users in a VOD system deployed by China Telecom. Their
study focuses on user behavior, content access patterns, and their
implications on the design of multimedia streaming systems. There
are many ways to design the P2P VoD framework, however the user
behavior will not change. Study of the user behavior is helpful for
various system design in P2P VoD.

Paper [5] proposed a novel framework for P2P VoD system. It
is a ring based overlay network, in which each peer maintains a
gossip-ring to explore appropriate data suppliers and several skip-
rings with power law radius to assist the quick relocation of VCR
operations. However, the shortcoming of this framework is that, the
authors only solve it in simulation instead of implementing it in real
network.

Paper [5] analyzed large volume of user behavior logs during
playing multimedia streaming and extracted a user viewing pattern.
Through analysis the authors proposed a new efficient prefetching al-
gorithm to facilitate the random seek functionality. The authors set
up an analogy between the optimization problem of minimizing the
seeking distance and the optimal scalar quantization problem and
then propose an optimal prefetching scheduling algorithm based on
the optimal scalar quantization theory.

• End of chapter.

Chapter 3

Basic Model of
Synchronized Case

Summary

Some basic knowledge based on synchronized case is introduced.
Some basic definition and relationship of these definition are dis-
cussed. This is a foundation of the further study.

In this section, we present the mathematical model for P2P stream-
ing applications. Let us first define the notations and assumptions.

Let there be M peers in the network^. There is a single server
which streams chunks of (video) content, in playback order, to the
M peers. Each chunk has a sequence number, starting from 1. Time
is slotted and the server selects a peer randomly in time slot t and
sends chunk t to that peer.

Each peer maintains a buffer B that can cache up to n chunks
received from the network. We reference the buffer positions accord-
ing to the age of the chunks stored: B{n) is reserved for the chunk
to be played back immediately; B{1) is used to store the newest
chunk that the server is distributing in the current time slot. In
other words, when the server is distributing chunk t (at time t), if
t > n — 1 then chunk t — n + 1 is the chunk being played back by
that peer. After each time slot, the chunk played back in the pre-
vious time slot is removed from B and all other chunks are shifted
up by 1. In other words, the buffer acts as a sliding window into
the stream of chunks distributed by the server, as shown in Figure

l A s we will see later, if M is reasonably large then our results are essentially independent
of M , nor do they require M to be a constant.

8

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 9

Playback

\ Sliding Window

n n-i k 1

One time slot later

Playback Sliding Window

T •
n k+1 k 2 1

Figure 3.1: Sliding Window Mechanism of the buffer B

1. Each buffer space is initially empty, and gets filled by the P2P
streaming protocol, either from the server or from other peers. The
goal is to ensure B{n) is filled in as many time slot as possible, so
as to support the continuous video playback and reduce the frame
loss probability.

Let denote the probability that the buffer space, B(i),
of peer k is filled with the correct chunk at time t. We assume this
probability reaches a steady state for sufficiently large t, namely
Pa：WW = Pkii)- We call pk{i) the buffer occupancy probability of
the kth peer2.

Let us first consider a simple case that the server is the only
means for distributing chunks to peers, then the buffer occupancy
distribution can be expressed as follows:

Pfc � = | V/c, (3.1)

pk(i+l)=p(i+l)=p(i) i = l’2’...，n—1 V/c. (3.2)

Eq. (3.1) reflects the odds for the local peer to be picked by the
server, while Eq. (3.2) reflects the fact that successful downloading
only occurs at the first location of the buffer (from the server). The
playback performance, given by p(n), is equal to 去，would obviously
be very poor for any M > 1. This simple mathematical argument
shows the scalability problem when the server is the only means of
distributing the media.

To improve playback performance, peers help each other when
asked. We model the P2P mechanism as a pull process: each peer
selects another peer in each time slot to try to download a chunk
not already in its local buffer. This P2P downloading model has the
following implications:

2Note, the buffer occupancy probability is not a probability distribution of i since it is not
necessarily true that ^ pk {i) = 1.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 10

• A peer may be contacted by multiple other peers in a single
time slot. In this case, it is assumed that the selected peer's
uploading capacity is large enough to satisfy all the requests in
the same time slot. If peers are selected randomly, the proba-
bility that it will be selected by /c > 0 peers is /3(k), where

for k >0. The likelihood of being selected by many other peers
is low, i.e., when there are M = 100 peers, the probability that
it is selected by more than three peers is only around 1.8%.

• If the selected peer has no useful chunk, the selecting peer loses
the chance to download anything in a time slot. This simpli-
fying assumption can help us to derive closed-form expression,
and this type of assumption is also made in other P2P file shar-
ing models, i.e.,[20].

Furthermore, we assume homogeneous peers, namely, all peers
use the same strategy to select other peers and chunks to down-
load. The implication is that in the steady state, all peers have
the same distribution p{i) for the buffer occupancy, as in the server-
only downloading case above. In this paper, we do not consider peer
selection strategies. Intuitively and from previous results in the lit-
erature, we know peer selection strategy is an important factor when
peers have different uplink bandwidth, or when the paths to different
peers have different bottleneck capacity. In these scenarios, peers
are non-homogeneous and asymmetric. Peer selection has implica-
tions on system performance and peers' incentive to contribute [9].
Since the focus of this paper is on the performance of P2P stream-
ing systems, we focus on the case that peers are homogeneous and
adopt the same (random) peer selection strategy.

Once a peer is selected, a chunk for downloading must also be
specified. The chunk selection policy can be represented by a prob-
ability distribution q, where q{i) > 0’ gives the probability that the
chunk needed to fill B{i) is selected. Hence, Eq. (3.2) becomes:

+ + i = 1 , . . . , n — 1, (3.3)

with the boundary condition of p(l) = 1/M. For i > 0, q(i) is
expected to be greater than 0 since there is a non-zero probability
that a peer may be found to fill B(i) if it is not already filled. This
implies p{i) is an increasing function of i, hence collaboration by
peers improve the playback performance as expected.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 11

Consider a particular peer /c, and assume it selected peer h to
download a chunk. The selection of a particular chunk to download
is the base on the following events:

• WANT(k,i)： B{i) of peer k is unfilled; we abbreviate this event
as W(k, i).

• HAVE(h,i): B{i) of peer h is filled; we abbreviate this event as
H(h,i).

• SELECT(h,k,i): Using the chunk selection strategy, peer k can-
not find a more preferred chunk than that of B{i) that satisfies
the WANT and HAVE conditions; we abbreviated this event
as S(h, k,i).

Therefore, we can express q{i) as:

q{i) = Pr[iy(A;,Onii^(/i，i)n<S(/i’/c’i):
=FY[W(k,i)]FvlH(h,i)\W{k,i)] x

Pi[S{h, k, i)\W{k, i) n H(h, 0]. (3.4)

The following assumptions help us to simplify Eq. (3.4):

• All peers are independent: the probability of the buffer state
at the same position for different peers, p{i), are the same.
Therefore, Pr[W(/c,i)]= 1 — p{i).

• There are a large enough number of peers so that knowing the
state of one peer does not significantly affect the probability of
the state at another peer. This implies that:

PT[H{h,i)\W{k,i)] ^ Pr[i^'(/i,i)] =p{i).

• The chunks are independently distributed in the network. The
probability distribution for position i is not strongly affected
by the knowledge of the state at other positions. This allows
us to write the selection function as

s{i) = Fv[S{h, k, i)\W{k,{)flH(Ji,k,«)),

which is independent of the actual state at position i. As we
will show, this assumption is more accurate for some chunk
selection strategies than others.

Based on the above assumptions, Eq. (3.4) is:

q{i) ~ = [1-p(i)]p(i)s(z) . (3.5)

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 12

Since each of the terms in Eq. (3.5) is a probability (in particular
p{i) < 1 and p{i)s{i) < 1), Eq. (3.3) becomes:

p{i + l) = p(i)-^ll-p(i)]p{i)s{i) < 1. (3.6)

The chunk selection strategy s(i), the focus of this study, is discussed
in the next section.

In the model, every peer has a strong constraint that one peer can
only download one chunk per time slot. Based on this constraint,
every peer has to adopt a chunk selection strategy, which is high
related to the continuity and start up latency. Here, we relax the
constraint so that the function s(i) is equal to 1 all the time. That
means if a peer find a neighbor from his neighbor list, the peer will
download all these chunks in one time slot, which are absent from
his own buffer. However, in real network, it is almost impossible
to satisfy so large bandwidth. Therefore, we get an upper bound.
Through letting s{i) = 1，we can derive the function for the upper
bound based on equation Eq. (3.5):

P{i + 1) =

• End of chapter.

Chapter 4

Model of Chunk Selection
Strategies

Summary

First, two basic chunk selection strategies are discussed. Based on
the discussion of the two basic strategies, a novel Mixed strategy is
proposed, which can achieve best performance. Some propositions
and conclusions are shown then. These propositions and conclusion
are main contribution of the first part. At last, some metrics are
defined.

4.1 Chunk Selection Strategies

The simple stochastic model in the previous section set the stage
for us to model and analyze different chunk selection strategies. We
begin by considering some familiar strategies. The first one is the
“Rarest First Strategf, which is widely adopted in P2P file dis-
tribution protocol BitTorrent [8, 9], and P2P streaming protocol
CoolStreaming [29]. The second one is the “Greedy Strategy” (or
the nearest deadline first strategy), and lastly the mixed strategy,
which is a combination of the above two algorithms.

By intention, a peer using the Rarest First Strategy will select
a chunk which has the fewest number of copies in the system. To
describe the Rarest First Strategy from the perspective of the buffer
B = {B(n), B{n — 1) ,…，B(l) } , let us consider a particular peer,
say peer k. From Eq. (3.3), we know that p{i) is an increasing
function of i, therefore p(i-\- 1) > p{i) for i = 1 , . . . ,n - 1. Since

13

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 14

peers are homogeneous, this inequality implies that the expected
number of copies of chunk in B{i + 1) is greater than or equal to
the expected number of copies of chunk in B{i). Therefore, under
the Rarest First Strategy, peer k will first select 5(1) to download if
B{1) is not available in B, else peer k will select B{2) to download
if B(2) is not in the system and so on.

For the Greedy Strategy, peer k will select a chunk which is closest
to its playback deadline. Prom buffer B,s point of view, B{n) is
the closest to playback time, then B(n — 1) is the next, and so
on. Therefore, peer k will first select B(n) to download if it is
not available in B, else peer k will select B(n— 1) to download if
B(n—1) is not in B and so on. Note that the Greedy Strategy seems
intuitively the best strategy for streaming at the first sight. Through
our analysis, we will show that while from a single peer's point of
view Greedy may be the best for playback, it is often too short-
sighted from a system's point of view, when the peer population
is large. Instead, Rarest First is very effective in maximizing peer
contribution as the population grows, hence produces good system-
wide playback performance. On the other hand, Greedy is good in
minimizing the start-up latency.

In trying to achieve the best of both worlds, we propose a new
strategy, called the mixed strategy, which is a combination of Rarest
First and Greedy. In the following subsections, we derive analytical
results to analyze and compare the performance of these strategies.
The key is to model the selection function s{i) for each case, sub-
stitute it into the probabilistic model, and derive the buffer state
probability distribution.

4.1.1 Greedy Strategy

We first present the analysis of the Greedy Strategy. This strategy
aims to fill the empty buffer location closest to the playback time
first. The chunk selection function, s(z), which is the probability of
selecting B(i), can be expressed as follows:

外) = (1 - i) ' f f (p � + (1 1 �) 2) . (4-1)

Since the event that downloading does not occur for a buffer at
position B{j) (for j > i) is -^{W{kJ)H{h,j)), hence, the probability
of this event is:

FiHWikJ)H{hJ))]=

Pk{j) + (l-Pk{j)){l-PkU))- (4.2)

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 15

Eq. (4.1) models the event that the server selects other peers to up-
load, and the chunk selection does not occur for all those positions
closer to the deadline than with the buffer position indepen-
dence assumption stated earlier. Note, the first term of Eq. (4.2) is
the probability the local peer already has the chunk for B{j). The
second term is the probability that the local peer does not have
the chunk for B{j) and the selected peer (h) does not have that
chunk either. The rather complicated formula for s(i) (Eq. 4.1) has
a surprisingly simple alternative form:

Lemma 1 The selection function s{i) for the Greedy Strategy can
be expressed as

s(i) = 1 - (p(n) - p(i + 1)) - p(l) for i = 1, ...,n - 1.

The proof is presented in the Appendix. Intuitively, it can be un-
derstood as follows. The term (p(n) - p{i + 1)) is the probability
that any particular chunk is downloaded into buffer positions be-
tween B{n) to B{i + 1); and the term p{l) is the probability that
any particular chunk is downloaded directly from the server. The
above expression for s{i) is thus the probability that neither of these
two scenarios are true.

Substituting the above formula for s(i) into Eq. (3.6), we get the
following “difference equation” for p{i):

P{i + l) = P{i) +P(i) (l-P(i)) (l —P(l) -P(n) +P(i +1))
for i 二 1,...，n - 1. (4.3)

4.1.2 Rarest First Strategy

The Rarest First Strategy is the opposite of the Greedy Strategy.
Based on Eq. (3.3), we know p(i) is an increasing function in i) This
means the expected rarest chunk is the latest chunk distributed by
the server that is missing from the all local peers' buffer. So the
chunk selection function s{i) for the Rarest First Strategy can be
expressed as:

明去頂 (K7 .) + (1 - P «) (1 - K ? .)) . (4.4)

The meaning of each term is similar as before. The main point is
that the search for missing chunks starts from the latest chunk B{1),
then to B(2) and so on. Again, Eq. (4.4) has a simple form:

i ln general, p(i) is a non-decreasing function. But for both Greedy and Rarest First,
q{i) > 0 for all buffer positions, so p{i) is an increasing function.

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 16

Lemma 2 The selection function s{i) for the Rarest First Strategy
can be expressed as

s{i) = 1 — p{i).

The proof is presented in the Appendix. The rationale for this result
is the same as that for the Greedy Strategy. The term p{i) represents
the probability that any particular chunk is downloaded into buffer
positions B{1) to B(i — 1). Therefore s(i) as shown above represents
the probability that this event does not occur.

Again, substituting s(i) into Eq. (3.6), we have the following
difference equation:

p(z+l) for i = 1, . . . , n - l . (4.5)

4.1.3 Buffer Size, Peer Population and Continuity

The difference equations for p(i) in Eq. (4.3) and Eq. (4.5) help
us to derive closed-form solutions of the distribution p{i). Also,
the model allows us to derive some relationships between the key
performance metrics and design parameters of the streaming system,
these parameters are:

• n, the buffer size;

• M, the population size (or equivalently p(l)’ which is equal to
1/M);

• p(n), probability that B(n) is available, which reflects the con-
tinuity and playback performance (or e = l—p(n) is the proba-
bility of discontinuity).

To facilitate the derivation of these relationships, we convert the
difference equations of Eq. (4.3) and (4.5) into continuous differential
equations. They become:

dy ^ y{l - y){y - p{l)e) ； yfy
dx 1 + — y dx

respectively. The symbol y stands for p{i) and the symbol x corre-
sponds to i in the discrete case. These continuous differential equa-
tions can be derived by substituting dy/dx for p(计ij-冲)and y for
p{i). Based on these equations, we obtain the following sensitivity
relationships among these parameters:

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 17

Lemma 3 For the Greedy Strategy, the sensitivity of buffer size n
to peer population M (or p(l) = 1/M) and discontinuity e can be
expressed as

dn ^ 1_ . .
； 、 ）

Lemma 4 For the Rarest First Strategy, the sensitivity of buffer
size n to peer population M and discontinuity e can be expressed as

dn 1 dn I 1 , .
兩 而 ； ()

The proofs are included in the appendix.
Eq. (4.6) to (4.7) characterize the key difference between the

Greedy and Rarest First Strategy. These results indicate that more
buffer space is needed for larger peer population size M (or smaller
p(l))，and higher continuity (or smaller e). This is due to the neg-
ative gradient of n relative to p(l) and e respectively. But as peer
population grows, the need for additional buffer space when using
the Rarest First Strategy is 1 /e times less than that for the Greedy
Strategy, which means that the Rarest First is more scalable than
the Greedy strategy as the peer population increases. On the other
hand, in order to increase continuity, the need for additional buffer
space by the Greedy Strategy is about p(l) /e times less than that for
the the Rarest First. This means for sufficiently large p(l) (hence
sufficiently small M), the Greedy Strategy can achieve better conti-
nuity than Rarest First. This will be illustrated in the next section.

4.1.4 Mixed Strategy

The intuition about the different strengths of the Greedy and Rarest
First strategies derived from our model lead us to propose a mixed
strategy that can take advantage of both of these chunk selection
algorithms.

Let the buffer B be partitioned by a point of demarcation rn,
1 < m < n. The Rarest First Strategy is used first with buffer
spaces B (l) , B (m) . If no chunk can be downloaded using the
Rarest Strategy, then the Greedy Strategy is used using the other
partition of the buffer, B{m + 1), B(m + 2), ...，B(n). When m =
n — 1，the Mixed Strategy is the same as the Rarest First Strategy;
when m = 1, the Mixed becomes the same as the Greedy Strategy.
Through variation of m, a peer can adjust the download probability
assigned for each partition.

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 18

The buffer state probability for B(l) to B{m) satisfies the fol-
lowing equations:

K l) = l /M，

p{i + 1) =p{i) -\-p(i)(l — p(i))2 for z = 1 , . . . , m - 1 .

The probability for B(m+1) to B(n) can be derived from Eq. (4.3)
by substituting p(l) with p(m):

p(i + l) = p(i)+p(i)(l -p(i))
x(l-p(m)-p(n)-hp(i + l)). (4.8)

Another perspective that helps us to understand the advantage
of the mixed strategy is the following observation about the equiv-
alence between peer population size M and buffer size n. Consider
two P2P networks. The first is a reference network with popula-
tion M, buffer size n and some chunk selection strategy that yields
buffer state distribution p(i). The second is a baby network with
a fraction of the population size equal to l/p{m) and buffer size
n — m, that uses the same chunk selection strategy as that used for
buffer positions B{m-\-l) to B{n) in the reference network. Let the
buffer state distribution of the baby network be denoted p'{i) for
i = m + 1 , . . . , n. We have the following result.

Lemma 5 The continuity for the reference network, p(n), is equal
to the continuity for the baby network, p'(n - m).

Proof: Due the same chunk selection strategy used, q(i) in the ref-
erence network is the same as q'{i - m) of the baby network^. This
means p{i) = p'{i — m), for i = m + 1 , . . . ,n，hence p{n) = p'{n-m).

I

The implication of this proposition is that we should use a mixed
strategy, whenever the peer population size M relative to the desired
playback performance (continuity) is larger than a threshold (given
by p (l) / e > 1). For the baby network part of the buffer positions,
we used the Greedy Strategy to maximize continuity. For the rest of
the buffer positions, Rarest First is used as it is the more economical
strategy (in terms of buffer space needed) to support a large peer
population.

2As with the rest of the results in our model, this relies on the independence assumption
to be true.

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 19

4.2 Some Conclusion and Extension

Lemma 6 For a p2p streaming network with large population, Greedy
Strategy achieves better continuity than Rarest First Strategy, if the
buffer length is large enough.

The proof is presented in the appendix. The results indicate that
Greedy saves buffer length compared with RF if the continuity re-
quirement is very high given fixed peer population.

Proposition 1 In p2p streaming network with large population, if
the number of peers is fixed, Greedy Strategy is good at continuity,
while if continuity requirement is fixed, Rarest First Strategy is good
at scalability.

Proof: The result can be derived from Lemma 3,4. For given peer
population, we can do differential n over discontinuity e. Prom the
Eq. (4.6) and (4.7), the absolute value for Rarest First Strategy is
bigger than Greedy when discontinuity requirement e is less than
p(l) , that means the buffer length is more sensitive when continu-
ity requirement increases for Rarest First Strategy. This result is
consistent with lemma 6. Similarly, given discontinuity e fixed, we
do differential n over p(l) . The absolute value of Greedy is much
bigger than Rarest First. That means the Greedy is more sensitive
when the peer population increases.

Proposition 2 Given peer population, Greedy Strategy certainly can
achieve better continuity than Rarest First, if buffer length is large
enough. Mixed Strategy beat both Greedy and Rarest First.

Proof: The result is derived from the lemma 5,6. According to the
proof of lemma 6，let e = p(l) , we can get the result that Greedy
consumed less buffer length than Rarest First. While Mixed Strat-
egy can be converted into a Greedy Strategy only with smaller peers
as lemma 5 shows. Compared with Greedy, the Mixed Strategy has
smaller peer population and achieves better performance. In other
word, Mixed Strategy is the best one.

Proposition 3 Assume the consumed buffer length for different strate-
gies is a function of discontinuity e and number of peers M. That
is n = /(e, M). The Mixed Strategy is an asymptotic optimized
strategy.

Proof: The proof is presented in appendix.
Actually, for Mixed strategy, the p(n) in the Rarest First part

is p{l) for the Greedy part. The buffer length consumed is riMix =

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 20

^RF + ncreedy Assume the in the Rarest First part is A, we can
get a function UMixed = ^(e, M, A). Given e and M, there is only one
variable A. Through calculus, it is not hard to get the A, which can
minimize the buffer length. The closed form is quite complicate, so
numerical results is shown in the next section.

4.3 Metrics

In this section, two metrics which are used to measure performance
of p2p streaming system are shown as follow:

4.3.1 Continuity

So far we have focused on continuity p(n) as the performance metric
for evaluating various chunk selection strategies. Prom Eq. (3.3) and
by defining q^(0)=p(l)’3 we have:

n-l

P{n) = Y^qii)'
i=0

4.3.2 Start-up Latency

Another metric worth paying attention to is the start-up latency.
which is the time a peer should wait before starting playback. As
long as all peers cooperate by following the same chunk selection
strategy and offering downloading when requested, a peer may choose
to start its own playback independently without affecting other peers
except itself. But what is the best start-up latency for a newly arriv-
ing peer (with empty buffer) to choose, assuming all the other peers
have already reached steady state? We argue each peer should wait
until its buffer has reached steady state, which means:

n

startup latency = ^ p{i)/R. (4.9)
i=l

where R is the average downloading rate of chunks experienced
by the newly arriving peer. Since all other peers are in their steady
state, R should be the same as the average steady state downloading
rate, which must also equal to the effective playback rate. For all the

^By defining g(0) = p (l) , we are treating the buffer update from server the same as updates
from peers. This is just for convenience.

CHAPTER 4. MODEL OF CHUNK SELECTION STRATEGIES 21

chunk selection strategies we are interested in, the effective down-
loading rate must be close to 1 (chunk per time slot), the video's
playback rate. Therefore we have

startup latency w ^ p (z)

Why is the quantity in the above equation a good representation for
startup latency? When a peer starts with an empty buffer, every
peer it contacts is likely to result in a successful download. After
ZliLi time slots, the newly arriving peer is expected to have
acquired the same number of chunks as the rest of the peers in
steady state, which also equals to X^JLiP(̂)- If the newly arriving
peer starts with earlier, it is likely to suffer from below steady state
playback quality initially. If the newly arriving peer waits longer
(than that in Eq. (4.9), it will not improve its long-term steady
state playback quality. Can we improve mixed strategy through a
small change? Change the priority from discrete to continuous?

• End of chapter.

Chapter 5

Experiment and
Application

Summary

In this chapter, to convince our model, various simulation and com-
putation results are shown and discussed. These experiment vali-
date the correctness of our model. What is more, some issues of
the application in real system are discussed at last.

5.1 Numerical Examples and Analysis

In this section, we consider a number of numerical examples to illus-
trate our results and their application to protocol design. For each
numerical example, the results can be computed in the following
ways:

Discrete model: The discrete model is given by the difference
equations corresponding to the various chunk selection strategies
(Eq. 3.1,3.3,3.5,4.1,4.4,4.8). The solution for the buffer state distri-
bution p{i) can be derived numerically. For the Greedy Strategy, we
first give p(n) a fixed value, substitute n steps inversely from p(n)
to p{l) and then compare p(l) with 1/M. If p(l) is approximately
equal to 1 /M then we get the solution; else p(n) is adjusted ac-
cordingly and the inverse substitution process is repeated. For the
Rarest First Strategy, substitute p(i) from p(l) until p(n). For the
Mixed Strategy, we compute the first part, from 1 to rn, using the
same substitution process as that for Rarest First and then compute
what is left using the same trick as that for Greedy.

22

CHAPTER 5. EXPERIMENT AND APPLICATION 23

Ice. / P — \
t o . V r - - / / .
ro I f Greedy-,Sim / J
§"0.2 I / Greedy-Dis--___/ / •

0 � 10 20 30 40
Position in Slidina Window

Figure 5.1: Buffer occupancy distribution for Rarest First and Greedy policies
from discrete, continuous and simulation models

Continuous model: The continuous model is given by the dif-
ferential equations in Eq. (4.3) and (4.5). In general, they can be
solved numerically using MatLab. For some relationships, we also
derived closed-form solutions.

Simulation model: We built a simulation program based on
our discrete model. There is one server and M peers. In each time
slot, the server distributes one chunk to a random peer; each peer
randomly selects only one other peer to contact and download one
chunk, but may upload at most two chunks to its neighbors. The
peers form an overlay network where each peer is neighbor with a
subset of the peers, randomly selected from the peer population.
The values of various parameters, such as M, n, and average de-
gree are specified as part of the description of the experiment. The
simulation model is used to check to what extent the independence
assumption may affect the analytical models, specially in the case
with small peer population. Furthermore, simulation can produce
a lot more details about specific peer behavior and the dynamics of
the system including transient behavior.
Exp. A: Comparing Discrete and Continuous Results with
Simulation

Our first task is to compare our discrete model, the continuous
model based on the differential equation approximation, with simu-
lation.

In this experiment, M 二 1000 and n = 40. In the simulation,
the number of neighbors for each peer is L < 60. The results are
shown in Figure 5.1. There are two groups of curves, one for Greedy
and one for Rarest First. In each group, there are three curves:
one calculated using the discrete iterative equations, one calculated

CHAPTER 5. EXPERIMENT AND APPLICATION 24

3 IRarest Fir̂ ^ 1 . -̂ Greedy ^ ,,,, C I —Mixed I

面
0 10 20 30 40

Position in Sliding Window
Figure 5.2: Comparison of Rarest First, Greedy and Mixed

using the approximate continuous differential equations, and one
from simulation.

We will compare Greedy and Rarest First later on. At this point,
let us focus on the accuracy of the different methods. First, we note
that the analytical results are reasonably close to the simulation
results. Secondly, we expect the discrepancy between the discrete
model and simulation is mainly due to the independence assumption.
For Greedy, there are fewer chunks in the buffers, hence the inde-
pendence assumption is less accurate. Thirdly, we expect the dis-
crepancy between the discrete and the continuous models is mainly
due to the approximation of 1) —p{i) by a continuous gradient,
which happens to have a bigger effect on the equation for Rarest
First this time.
Exp. B: Comparing Rarest First, Greedy and Mixed

To compare the three chunk selection strategies, we keep the
buffer size at n = 40; and set m = 10 for Mixed (this means the
number of buffer positions running Rarest First is 10). The results
(from the discrete model) are shown in Figure 5.2. The Rarest
First Strategy is able to maximize the contribution of peers, hence
its buffer occupancy probability is higher than other strategies in
most buffer positions. When using the Greedy Strategy, all peers
are focusing on the short-term playback needs; hence the buffer
occupancy probability stays low except for those positions close to
the playback position (p(n)). This has the advantage of minimizing
the startup latency as we defined in Eq. (4.9). For Mixed, the buffer
probability distribution is the same as Rarest First for positions
m < 10，and follows the same shape as Greedy for m > 10. By
devoting a fraction of the buffer positions to Rarest First and the
rest to Greedy, the Mixed Strategy can achieve higher continuity

CHAPTER 5. EXPERIMENT AND APPLICATION 25

l| .»...».-:1mttt-- ' ••.！....!....̂ 40|
0.9 / “!!ili^ |—RarestFirst|

f 丨 ： 丨 t ：
i� .6 / / IUpper Bound f
^ 0.5 i / —Mixed I

04 / -̂ Rarest First � 10,
0:3|/ I…"...

15 2°Bu2再erl�ena 4 � 4 5 5 �知 25 luffer̂ Eengtl? 45 5 �

(a) Continuity versus buffer size (b) Start-up latency versus buffer size

Figure 5.3: Performance Results for Exp. B.

(than both Greedy and Rarest First) and lower startup latency (than
Rarest First).

To further compare the different strategies for different buffer
sizes, we plot the continuity and startup latency for buffer sizes be-
tween 20 and 50 in Figure 5.3(a) and Figure 5.3(b) respectively. It
is observed that Rarest First consistently beats Greedy in continu-
ity. The reason is evident from our analysis and Figure 5.1. Rarest
First works hard at distributing new chunks from the server, achiev-
ing a performance not far from the theoretical limit of log2(i). The
Greedy, however, is somewhat like a procrastinator, making a great
effort to fill the buffers only near the playback time for each chunk. It
is interesting to note that the Mixed Strategy usually out-performs
Rarest First in continuity. When the buffer length is larger than a
relative small value 30, the gap between Mixed strategy and Upper
bound becomes quite small. In terms of startup latency, Greedy
and Rarest First take opposite positions. To guarantee good play-
back continuity, Rarest First occupies a significant amount of buffer
space. On the other hand, Greedy uses relatively less buffer space,
hence it takes a newly arriving peer much less time to reach the
steady state buffer occupancy. It is important to note that, Mixed
is able to keep startup latency lower than Rarest First.
Exp. C: Optimizing the Mixed Strategy

We now take a closer look at the Mixed Strategy. In the last
experiment, the parameter used to partition the buffer, m, is a con-
stant. Here, we fix the buffer size to be 40 and vary m. The per-
formance of continuity and startup latency are plotted against m in
Figure 5.4(a) and 5.4(b).

If m is large, the strategy is essentially Rarest First, hence there
is a significant startup latency. When m increases, the startup la-
tency decreases monotonically, and eventually the scheme becomes
sufficiently like the Greedy Strategy with low startup latency. For

CHAPTER 5. EXPERIMENT AND APPLICATION 2 6

7 • 30| 丨 . • I

严 / |20 /

I / /
0 / 一Rarest First ^ / -•-Rarest First

。 0 . 9 / 一Greedy ra 10 / 一Greedy

/ I—Mixed I 25 乂 I—Mixed |

/
5 10 15 20 ° 5 ^ 10 15 20

Parameter m Parameter m
(a) T h e effect of varying m on conti- (b) The effect of varying m on startup
nuity of the Mix Strategy latency of the Mix strategy

F i g u r e 5 . 4 : P e r f o r m a n c e R e s u l t s f o r E x p . C .

I 1 90|f—

1 ' 。 。 广 ‘ ~ ‘ 8 0 \ |M = 1000 I
f 、 £ = 0.005

r t:\ J
叫.90 niTTWl |40 V ^ ^

o.asi ；qI
0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 09 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p(m) P (m)

(a) T h e effect of varying A on continu- (b) The effect of varying A on buffer
ity of the M i x Strategy length of the Mix strategy

F i g u r e 5 . 5 : A v . s . b e s t M i x e d s t r a t e g y

continuity, it is quite interesting. There is an optimal m when con-
tinuity is maximized. These two plots show that there is a knee,
occurring at m !=： 10 when a balance of high continuity and low
startup latency is achieved.

Another way to view the Mixed strategy is the value of A, which
discussed in the proposition 3. In this numerical experiment, the
number of peers is 1000. In the first experiment, the buffer length
is given 40，while the value of A varies. The continuity is not very
sensitive for the varying A. When A is approximately equal to 0.3,
the continuity is best. In the simulation, we assume A = 0.3. In
the second experiment, the discontinuity is fixed at 0.5%, while A
varies. The two figures show that continuity is not very sensitive
when A varies. In the dynamic network, the value A is controlled to
achieve good performance.
Exp. D: Performance for Small Scale Networks

In here, we consider the sensitivity of buffer size to continuity
requirements and buffer size. We focus on some examples for small
population size to illustrate when Greedy can perform better than

CHAPTER 5. EXPERIMENT AND APPLICATION 2 7

0.98|

N. Rarest First

0.96 I 一 Greedy

t
0.94

a ^ ^ ^ ^ ^
0.92

to 15
Number of Peers

F i g u r e 5 . 6 : T h e s m a l l n e t w o r k

100j r 30|

f "••"Rarest First

80 I—Rarest First I I 25 ^ G r e e d y _ _ ^ ^ ^

° 0.92 0.94 0.96 0.98 10 15 20 25 30 35 40

Continuitv Number of Peers

(a) The small network with fixed peers (b) The small network with fixed con-
tinuity

F i g u r e 5 . 7 : S e c o n d a n d T h i r d E x p e r i m e n t s in E x p . D .

Rarest First in terms of continuity.
There are three examples in this experiment and the result in

each case is derived from simulation (the analytical models are less
accurate for small networks). Each result is calculated based on the
average values of 3000 time slots.

In the first experiment, the number of peers in the network varies
from 5 to 15 and each peer sets n = 15. We compare the continuity
achieved by Greedy and Rarest First. Figure 5.6 shows that Greedy
achieves better continuity when the number of peers is sufficiently
few relative to the value of continuity (in this case 9), as we expect.

In the second experiment, we let the number of peers be fixed,
M = 40. However, the peers have different quality requirements
(denoted 1 — e), and have to change their buffer length to meet the
requirements. The result is shown in Figire 5.7(a).

In the third experiment, we let the peers' continuity requirement
be fixed at 0.93, but the number of peers (M) vary from 5 to 40. In
order to make sure the continuity is larger than 0.93, each peer ha^
to enlarge its buffer if the number of peers increases. The result is

CHAPTER 5. EXPERIMENT AND APPLICATION 28

O i i
0.7. I R a r e s t Fititl

-̂ Greedy
一 Mix

o.ef . .
1000 1200 1400 1600 1800 2000

Time Slot

Figure 5.8: Continuity of the Network Simulation

shown in Figure 5.7(b).
The results from the above two experiments are consistent with

Proposition 3 and 4，namely Greedy is able to provide a high quality
requirement with less buffer length while Rarest First can provide
good playback performance for a large number of peers.
Exp. E: Study of Dynamics

While the analytical model is able to give us average steady state
system behavior, simulation has the advantage of giving us the dy-
namic behavior of specific settings. In this experiment, we simulate
the case of M = 1000 and n = 40’ and look at how continuity and
startup latency evolve over time.

First, we compare the continuity achieved by different strategies.
We simulate 2000 time slots. In each time slot, the continuity is the
average continuity of all peers, that is the number of peers being
played chunks divided by total peers. As shown in Figure 5.8, Mixed
not only achieves the best continuity, but its continuity is also much
more steady than that of other two strategies.

Secondly, consider the case that a new peer with empty buffer
joins the network. Before the new peer arrives, we give 1000 time
slots to let the existing (1000) peers reach steady state first. The
newly arriving peer waits for D = 16 time slots before it starts
playback. The arrival time is 1000 — D so that playback starts
at the 1000th time slot. In Figure 5.9(a), we compare the playback
performance of the newly arriving peer using each of the three chunk
selection strategies. The continuity value in each case is computed
as 二 where s is the number of time slot with successful playback.

Figure 5.9(b) shows the number of chunks stored in the buffer of

CHAPTER 5. EXPERIMENT AND APPLICATION 29

0.8 \ z L / ^ ^ ^ I R a r e s t First I
V / j2。A —Greedy

/ . §20 -Mixed f

？ u.o f .Rarest First I g ^̂ / \ r ^
1 / -Greedy ^ ̂ V
Q 0.4 I I —Mixed S 厂

0.2 / . /̂•/H/î r̂t̂ f̂tn̂ f̂ f̂W V̂Wŷ a

1?K30 1050 1100 1150 1200 1250 1300 lftoO 1200 1400 1600 1800 2000
Time Slot Time Slot

(a) Start-up latency of the Network (b) Stored Chunks of the Network
Simulation Simulation

Figure 5.9: Second Experiment in Exp. E.

the newly arriving peer as a function of time. Prom our model, we
know the average number of chunks of a peer is simply
This computation yields the expected number of chunks for each of
the three strategies to be 27.4,3.5，15.5 respectively, which is con-
sistent with the steady state number achieved in the Figure. These
numbers correspond to the appropriate startup latency suitable for
each strategy.
Exp. F: Adapting the Mixed Strategy to Peer Population

Based on our analysis and the numerical examples, we show that
the Mixed Strategy can achieve the best continuity and low startup
latency given a fixed peer population size in the network. In reality,
the peer population size is unknown and is likely to change over
time. Here we describe an algorithm to adaptively adjust the Mixed
Strategy's m to the network dynamics.

In the previous experiments, m is fixed (at 10). One way to adapt
m is by observing of the value of p(m), which actually is A. We can
set a target value for p(m), say Pm = 0.3. When a peer finds the
average value of p(m) is less than pm, the peer increases m, else
the peer decreases m. In our simulation, every peer calculates the
average value of p(m) for 20 time slots and then decides the value
of m based the average value.

We conduct the following experiment. Let there be 100 peers in
the network initially. After every 100 time slots, another 100 new
peers with empty buffer are added to the network, which means
there are i x 100 peers in the network after i x 100 time slots. For
all the peers, the initial value of m is 10. We calculate the average
continuity and average value of m for the initial 100 peers in the
network as a function of time. Prom Figure 5.10(a) and 5.10(b), we
observe that the average value of m (of the 100 tagged peers) adapts
to the increasing peer population. Furthermore, the continuity of

CHAPTER 5. EXPERIMENT AND APPLICATION 30

丨：國
. J ‘ ‘ < * —Rarest Firsl

y\r 0.92 I—Mixed——
7。 200 400 600 800 1000 200 400 600 800 1000

Time Slot Time Slot
(a) Average continuity as a function of (b) How m adapts to network dynam-
time ics

Figure 5.10: Performance Results from Exp. F.

the Mixed Strategy is quite steady (except a glitch between time
slot 700-800) compared to that of Rarest First.

5.2 Sensitivity study

Up to now, our model is discussed based on some assumptions made
in previous sections. However, are these assumptions reasonable?
What should be corrected if some assumption is relaxed? Is the
model robust under various network environments? These issues
would be discussed in this section.

5.2.1 Discrete Model with Factor

One basic assumption in the model is that: there is enough band-
width resource in the network to support the playback rate of all
peers. However, in the real network, maybe the bandwidth is so
limited that it is not sufficient to satisfy all peers' requirement. As-
sume the total playback rate is P and the total download rate of
all peers is f x P and / is a real number in (0,1) expressing the
limited bandwidth. We can prove that even in this case, it is not
necessary to change our model much. The only difference compared
with the original model is just the chunk selection function s(i). Be-
cause of the limited bandwidth, each peer only can upload a chunk
successfully with probability / . The server still push one chunk per
time slot. For Greedy Strategy, s(n — 1) is changed to / - 去 due
to the limited bandwidth. Similar, for Rarest First Strategy, s(l)
is changed to / 一去.Therefore, the corresponding s(i) for Greedy
Strategy becomes s(i) = f-p(l) -p(n)+p(i+) and s(i) for Rarest
First Strategy becomes s(i) = f — p{i). To sum up, the results for

CHAPTER 5. EXPERIMENT AND APPLICATION 31

0.8|
S RF-Dis
？0.6 V ^
•I f RF- Sim i

10.4 j Greedy-Sim^^,

J Greedy - Dis I f

r / y
� 0 _

0 10 20 30 40
Position in Sliding Window

Figure 5.11: Buffer occupancy distribution of the network with limited band-
width

discrete model become the following Eq. (5.1) and (5.2):

1) =p{i) (1 -p(ij) (f-p(l)-p(n) +p(i+lj)

for i = 1，…’n — 1. (5.1)

1) = p(i) ^p(i) (1 (/ - p (i))

for z = 1 , . . . , n — 1. (5.2)

The simulation results in the next section will validate this new
model.

5.2.2 Validate Discrete Model with Factor

This experiment is designed to validate our discrete model under
limited bandwidth environment. In the simulation, there are 1000
peers. Each peer has a buffer with length 40. Set the factor f = 0.7.
We run Greedy Strategy and Rarest First Strategy separately and
compare them with the results, which are computed from discrete
model Eq. (5.1) and (5.2). Figure 5.11 shows the comparing result.

5.2.3 Server Use Pull Strategy

In our model, the server is assumed to use push strategy to distribute
the newest chunks. However, how it will affect the performance, if
the server also adopts pull strategy? Here, a simulation is designed
to observe the performance when the server uses pull strategy. Still

CHAPTER 5. EXPERIMENT AND APPLICATION 32

0.7|

3 0 . 6 ^

！0.5 /

i�.4 /
5 . 0 . 3 / _
^ I -^RF-S im

|"0.2 f -^Greedy-Sim

老。.1 J
TT

0 10 20 30 40
Position in Sliding Window

Figure 5.12: Buffer occupancy distribution of the network when server uses pull
strategy

1000 peers stay in the network and buffer length is 40 for each peer.
Figure 5.12 shows the result which indicates quite poor performance
especially for Greedy Strategy. The result indicates the assumption
that server uses push strategy is reasonable.

5.2.4 Vary Subset Size Touched by Server

In the original model, we assume the server could randomly push out
newest chunk to the whole network. However, in the real network,
the server can only talk with a subset peers of the network. How it
will affect our model? In the simulation, we pick out a particular
subset of peers from network and only peers in the subset could
get the newest chunks pushed by server. Through varying the size
of the subset, how it affect the performance can be seen from the
Figure 5.13. When the subset size is relative small, for example 40,
the curve has become quite flat. That means the difference between
real network and our model is quite small.

5.3 Application to Real-world Protocols

In this section, we briefly discuss the applicability of the Mixed
Strategy in real P2P streaming protocols. There are two points we
would like to make.

First, the Mixed Strategy can be viewed as an optimization of the
CoolStreaming protocol. Although our analytical model does not
try to capture all aspects of the implementation of CoolStreaming,
our chunk selection strategy can be easily incorporated into that

CHAPTER 5. EXPERIMENT AND APPLICATION 33

1 | • • • 書 • • 飞

I广
50-4 I

J Rarest First

0.2. f —"Greedy

0。 20 40 60 80 100
Subset Size

Figure 5.13: Buffer occupancy distribution of the network when server talks
with a subset

protocol as an improvement of the existing algorithm. This makes us
quite confident about the practical utility of our results, in addition
to the insights we get from the model.

Second, the Mixed Strategy is also compatible with BiTos, and
can be viewed as an alternative (very likely enhancement) of BiTos.
Since p{m) = we can make our algorithm quite similar
to BiTos which uses a probability p for high priority buffer positions
and (1 —p) for the rest. In fact, as we explained in the last section,
we can implement the Mixed Strategy by using a fixed probability
for the Rarest First part of the buffer, allowing m to adapt to a
suitable value for the prevailing peer population. There is a subtle
difference between the Mixed Strategy and BiTos: the latter uses
Rarest First for both high priority and low priority chunks whereas
we use Greedy for our high priority chunks.

• End of chapter.

Chapter 6

Model of Unsynchronized
Case

Summary

This chapter is a generalization of last model. An unsynchronized
model is constructed and the same issues are discussed under the
unsynchronized case. Some interesting results are derived, which
can give us more insights of the P2P streaming system.

6.1 The model for unsynchronized playback

In above model, we assume a P2P streaming session with M peers,
fed by one server. We are interested in deriving Pk(i), the probability
that peer A:'s buffer space i is filled with the correct content in steady
state. The departure from last part is that the playback offset is no
longer assumed to be synchronized for all peers.

How do peers end up having different playback offsets? There
are at least two major factors:

a) Peers have different neighbors. Some peers may have the server
as one of the neighbors; while other peers may never get any
chunk from the server directly. Generally speaking, those peers
closer to the server tend to have less playback delay (or smaller
playback offset).

b) The peers' playback start-up algorithm plays a role.
In order to analyze these factors, let us define some notations and

terminologies.

34

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 35

• Neighbors: Each peer has L neighbors. Peers will only exchange
chunks with its neighbors. Peers can acquire their neighbors in
a variety of ways. For example, there exists some tracker that
keeps track all M peers in the P2P session, and try to assign
peers as neighbors to each newly arriving peer. Alternatively, a
newly arriving peer may discover neighbors using some kind of
search algorithm which tends to discover neighbors with some
locality property.

• Playback Offset: In each time slot, the server will send out a
new chunk of content; the time slot then marks the birth time
of that chunk. To mask network jitter and to support other
peers, each peer chooses to playback chunks with a delay. The
playback offset of a peer is the delay of playback relative to the
birth time of a chunk, normally denoted as Ok for the k仇 peer.
The unit of offset is in number of time slots. Different peers
may have different playback offsets for a variety of reasons.

• Buffer map: Each peer has a buffer map, which labels the
chunks in that peer's buffer. For streaming, the playback is
assumed to be sequential, hence the buffer map is contiguous.
Therefore, the buffer map can be represented by two offsets:
Buffer Head Offset and Buffer End Offset, normally denoted
by Hk and Ek for the k̂ ^ peer. The difference rik = Ek — Bk + 1
is the buffer length of peer k. Unless a peer is particularly
altruistic in helping others, it would discard the chunks after
playback. That means Hk = Ok-

• Overlap: Overlap is simply the intersection of two peers' buffer
maps. It is normally denoted k) for peer j and k. The
overlap V{j, k) represents the maximum number of chunks each
of the two peer can expect the other peer to provide help on,
taking the optimistic view that the other peer has all its buffer
filled with content.

• Lag: Lag is the difference between two peers' playback offsets.

A simple two-peer example illustrating the definition of Buffer map,
Overlap and Playback offset is shown in Fig. 6.1. Assume the server
sends out chunk 1 at time t = 1 and this chunk arrives to peer I's
buffer at position 1 (denote as PI in the figure). At time slot t 二 2�

server sends out chunk 2 while peer 1 performs a sliding window
operation: chunk 1 in position 1 will move to position 2 (or P2)
while chunk 2 will be placed in F l . kt t = 7，chunk 1 is in P7,
which is the buffer head offset of peer 1, and peer 1 can start to

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 36

^ _ O v e r l a p _ ^

1 I I S 4 I

r ^ r i L ^ H i = Oi
PI P2 P4 P5 P6 P7 ^

> 1 � J
Z PI P2 P3 P4 P^ P6 PV Peer 1 I~ ~ ~~ Duffer I length 7 p Peer 2 2 Buffer Hj = O2 length 7 ‘

Figure 6.1: Illustration of Buffer map, Overlap and Playback offset

consume the data. In this case, peer 1 has a playback offset Oi = 7.
Similarly, due to network delay, chunk 1 only arrives to peer 2，s
buffer at t = 4 and it is placed in position PI. At t = 10, peer 2 can
start to consume the data so O2 = 10. Therefore, the lag between
these two peers is 3. At time t = 7, the content of peer 1 in positions
P4 to P7 are exactly the same as the content of peer 2 in positions
PI to P4, and this is the overlap between peer 1 and peer 2.

We now make two assumptions, and explain the rationale for
each. First, we assume the neighbor lists of peers form clusters.
Formally, clustering is a partition of the set of M peers into non-
overlapping subsets, satisfying the condition:

Lintii) » Lexti-i^ Vz

where Lint{i) and Lextif) are the number of peer i's neighbors in
the same cluster as i, and not in the same cluster as i respectively.
If each peer's neighbors are chosen randomly, then they would not
form clusters as above. However, measurement results show that
peers normally form clusters [12] intentionally due to policy or un-
intentionally due to geographic locality. For the same reasons, we
further assume that the network bandwidth between peers in the
same cluster is essentially unlimited whereas with external peers
is constrained. Modeling the process in which the peer overlay is
formed is beyond the scope of this paper. The clustering model gives
the framework for subsequent analysis.

The second assumption is that peers decide on their playback
offsets based on buffer overlap maximization. In a unicast stream-
ing scenario, the major consideration for a receiver to buffer is to
mask out network jitter and enhance reliability. A plausible start-
up algorithm is simply to let the buffer accumulate enough reserves
before starting playback. In a P2P streaming scenario, a good start-
up algorithm should also take into consideration of the buffer maps
neighboring peers choose to use. To formalize this consideration, we
postulate that peers pick their own buffer maps (and playback off-

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 37

set) by solving a neighbor buffer overlap maximization problem for
a fixed maximum buffer size n. It is intuitively appealing for a pear
to carry this optimization since a peer can put itself in a position
to maximize the ability for its neighbors to help it download con-
tent. Although such playback start-up algorithms may be built into
the peer software (not changeable), it is interesting to explore the
consequences of letting each peer choose the buffer map selfishly.

6.1.1 Overlap maximization problem

Assume each peer is aware of all its neighbors' buffer maps. To
simplify our explanation without loosing generality, let us assume
each peer picks the playback offset to be the head of the buffer;
namely Hk = Ok and Ek = Oa： + n — 1. This means peer k's
buffer map is explicitly represented by its offset Ok- For peer k, let
its neighbors be denoted as ak{i), i = 1 ,2 , . . . , L. The neighbors'
offsets are Oa“i)’ i = 1，2’ … ’ L.

For a simple pair of neighbors j and k, the buffer overlap can be
expressed in terms of their respective offsets:

V(j, k) = min{0, n - \0j — (6.1)

This is clearly illustrated in Fig. 6.1. Then the overlap maximization
problem for peer k can be written as:

L

a r g m ^ Ffc(O) = J] V (0 ， (6 - 2)
i = l

Due to the clustering assumption, L in t {k)�Lext (k) , we refine
the overlap maximization problem to focus only on the neighbors
within the same cluster. That means:

Lint(k)
a r g m ^ F k (0) ^ V (0 , 0 a , (i)) . (6.3)

i=l

According to Eq. (6.1), V has an upper bound of n. So Fk{0) is
bounded by Lint * n. This upper bound is reached when this peer
and all its Lint neighbor peers have the same playback offset as in
Eq. (6.4),

O = Oafc � = O a , i 2) = . . . = Oa“Liru), (6.4)

Meanwhile because these Lint neighbor peers of peer k are arbitrarily
selected from /c's cluster, one can conclude that all the peers in the
cluster have the same playback offset. Such a cluster is referred to
as a synchronized cluster.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 38

6.1.2 Properties of the synchronized cluster

We make several observations about the synchronized cluster, under
the assumption that each peer can see all other peers in the cluster.
Therefore, each cluster becomes the neighbor set for all peers in the
cluster.

First, define the total overlap of a cluster, Vduster as the sum
of overlaps between all pairs of neighbors in a cluster. Suppose a
cluster has M peers and each peer has a fixed buffer size n, then we
observe:

Proposition 4 The upper bound of the total overlap of a cluster
is M * (M — 1) * n and the total overlap of a synchronized cluster
achieves this bound.

Proof 1 Given any two peers j and k, from Eq. (6.1), the overlap
is given by

V{j,k)<n

Hence,

Vduster = X l v y ’ 幻

{hi)

Vduster < M{M l)n. (6 . 5)

For the synchronized cluster, the overlap between each pair of peers
is exactly n, so the upper bound is achieved.

Considered as a game, the solution for the synchronous cluster is a
unique Nash Equilibrium achieved by selfish peers:

Proposition 5 The synchronized cluster is a Nash Equilibrium.

Proof 2 Let us consider peer k ’s optimal offset when the other M - 1
peers in the cluster are synchronized, with the same buffer length n
and same playback offset O*. The payoff function for peer k is given
in Eq. (6.3), which can be expressed as:

Lintik)

Fk{0) « V (0 ’ a 湘 ） (6.6)
i=l

= (M - l) (n - (0 - 0 *)) . (6.7)

This quantity is obviously maximized if O = 0*. In other words,
when the cluster is synchronized, peers have no incentives to change
their offsets and therefore the synchronized cluster is a Nash Equi-
librium.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 3 9

j 1 1 1 1 I I I I I
I GrouA I I P1|P2 P3 P5 t.. |• • K Pn [| M, | j • • • — “
I Group, I |?1 pj" P3 pT P5 7777 ..i..|..|Pn | I M. |
I Group. I j H P2 P? pT "p5|. . . 1.7 TT 77 ?n ' | M, |

…i 口 二 二 二 ; I …
I GrouR I I PI P2 P3 P4 P5 . . 1. . |. . | ~ 二 ?n j | M； |

I !
… I I … I Group, J j TT p2|p3|p̂[p5 77 77 777777 pĵ In.. J

I I
I Grouts I PI P2|P3|P4|?5|. . 77 777777 P̂ { I M,, I

I _ I 1 _ _ I ,

[^ 品 么 � I 0 S B

F i g u r e 6 .2 : I l lus trat ion o f an u n s y n c h r o n i z e d c luster in the p r o o f o f un ique Nash
Equilibrium

Proposition 6 The synchronized cluster is the only Nash Equilib-
rium.

Proof 3 Let us assume the contrary and prove by contradiction.
Assume there is another equilibrium where the cluster is not syn-
chronized. A general representation of unsynchronized cluster is to
let there be G groups of peers, where peers in each group share the
same playback offset. The numbers of peers in these G groups are
Mi,i = 1，... ’ G with = M, and the playback offset of group i
is denoted Oi, see Fig. 6.2. Let us denote the total overlap for any
member of group i with the rest of the cluster as Vgroup{i)- It can be
expressed as:

Vgraupii) = + (6.8)

We have two cases to consider. (1) peers in different groups
should have the same total overlap with other peers in the cluster,
which means Eq. (6.9) should be satisfied.

Vgroupil) = VgroupU) G [1 , G] . (6 . 9)

Otherwise, there will exist i,j E [1,G] and Vgrouv[^) < VgroupU)- U
a peer of group i moves to group j by changing its playback offset,
its total overlap after moving will become:

VgroupU) = 簡 P � + 几 - y { O i , Oj) > Vgraupii). (6.10)

which is greater than its total overlap before moving. That means
some peers have the incentive to change their playback offsets, which
contradicts the Nash Equilibrium condition. So Eq. (6.9) should be
satisfied.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 40

group 1 group 】•

\

\ I I I I I I • I • I • I •

、 • group 2 group之

Before moving After moving

Figure 6.3: An example of the proof of uniqueness in Nash Equilibrium.

(2) Even when Vgroupii) = Vgroupij) (case 1) holds, it is not a
stable situation. Peers still have incentive to change their playback
offset to get larger payoffs. In this situation, any peer moving from
Group i to j where Oi # Oj (or vice versa), its total overlap after
moving becomes = Vgroup(j)-^n-V{Ou Oj), which is larger
than that before moving, Vgroup{i)- The logic is as follows:

. . . O i 仲 i
V{0i,0j) <n

� KroupU) = V^roupU) + ^ - \/(0„ O,)

> VgroupU) = Vgroupii)' (6.11)

This proves that any unsynchronized cluster is not stable，and the
synchronized cluster is the only Nash Equilibrium.

An intuitive illustration of the uniqueness of this Nash Equilibrium
is shown in Fig. 6.3. Let us consider there are two groups in the
cluster, groupi and group2 and both groups have 4 peers with same
buffer length of 4. Prom Eq. (6.8), the total overlap of member in
either group before any peer's moving is VgroupW = ^roup(2) = 20,
(left part in Fig. 6.3). After a peer moves from groupi to group2,
VJ讓p(l) = 18 and V；'簡p(2) = 22 (right part in Fig. 6.3), which
means this peer gains two more chunks of its total overlap after
moving.

6.2 Analysis of playback continuity

While buffer overlap is a useful consideration for the start-up algo-
rithm, the ultimate measure of performance for each peer is playback
continuity. We now further evaluate unsynchronized playback based
on continuity. In particular, we are interested in the following ques-
tions:

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 41

• Does it make sense for peers that are in the same cluster to
have different playback buffers?

• In a large P2P session with multiple (synchronized) clusters,
does lag between clusters help the P2P system scale?

In the following analysis, we assume the chunk selection algo-
rithm is Rarest First�which is shown to achieve very good continu-
ity asymptotically as population grows. Our methodology is similar
to previous chapters, which assumes large peer population size.

6.2.1 Peers with different buffer sizes

Although based on buffer overlap consideration, peers in the same
cluster would choose to maximize their buffer overlap, and hence
have the same playback offset, that is a highly idealized scenario. In
reality, the peers' playback offsets tend to be less synchronized, even
in t he same cluster. For peers in the same cluster, it is reasonable
to assume they have the same buffer end offsets Ek, since they are
assumed to know each other's buffer maps. If peers have the same Ek
but different playback offset Ok, it means they have different buffer
sizes rik. An example is shown in the second cluster in Fig. 6.4. An
interesting question is whether different buffer sizes help improve
continuity.

To make an apple-to-apple comparison, let us consider the “different-
buffer-size” case with the “same-buffer-size case under the following
conditions: (a) The number of peers in both clusters are the same;
(b) The average buffer size of both clusters are the same. The con-
clusion, to be proven later in this subsection, is that the average
continuity in the synchronous cluster (same buffer size) is better
than that in the unsynchronized cluster (different buffer sizes but
same buffer end offset).

To begin, let us consider a simple example illustrating the two
kinds of clusters in Fig. 6.4. Both clusters have four peers. In the
synchronized cluster (labeled Ci), all peers have the same buffer
size (seven). In the unsynchronized cluster (C2), peers have differ-
ent buffer sizes but with the same average as that of Ci, for fair
comparison.

For the synchronized cluster case, the methodology of previous
chapters can be applied to derive the average continuity. We briefly
explain it here again for convenience. Since all peers are symmetric
in all respects, their playback buffer states are expected to have
the same probability distribution for occupancy, where p{i) denotes
the probability that buffer position i has the appropriate chunk.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 42

“ I I I [I I —I C l u s t e r 1

I I I I I • Ci
I I I I I I I Average buffer

I I I I I I ~ I length is 7

I I I I I I C l u s t e r 2

I I I I I I C2

I I I I I I I 1 Average buffer

_ I I I I I I I I length is 7 一

Figure 6.4: Comparing synchronized and unsynchronized cluster with different
buffer length

For streaming, one buffer's worth of content is consumed in each
time slot, and the rest of the buffer positions slide forward by one
position. This leads to a difference equation for p{i):

P(l) = (6.12)

p{i + 1) = p{i) + q{i)
= p { i) ^ { l - p { i)) p m - p { i)) . (6.13)

where M is the number of peers in the cluster. Eq. (6.12) is true
because it is the probability that the server selects this peer and de-
livers the chunk to position 1. The first term of Eq. (6.13) represents
the probability the local buffer already has the chunk; the second
term q{i) is the product of three components, representing respec-
tively (1) the probability the local buffer does not have the chunk;
(2) the probability a randomly selected neighbor has the chunk; (3)
the probability the chunk for buffer i is the highest priority chunk
to be fetched. These equations can be solved to derive p(n), the
probability of playback continuity.

In fact, Eq. (6.13) can be used to recursively derive the continuity
p{n) for any buffer size n. Furthermore, since the second term of
Eq. (6.13)，q{i) is a probability density distribution (in z), p{i) can
be viewed as a cumulative probability distribution, that is increasing
in i and p{n) approaches 1 as the buffer size n increases.

For a cluster of unsynchronized buffer sizes, it turns out that
Eq. (6.13) can still be used to derive the buffer occupancy distri-
bution for peers of different buffer sizes, with the assumption of
rational peer selection and large peer population. When peers have
different buffer sizes, given a particular chunk (at buffer position i
in the current time slot, say), this chunk may not be part of the

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 43

buffer map of all peers. Rational peer selection assumes only those
neighbors whose buffer maps contain the buffer position (i) for the
desired chunk will be selected for sending the downloading request.

Lemma 7 Assuming rational peer selection and large peer popu-
lation, the function p(i) derived from Eq. (6.13) can be used to
compute the continuity p(n) of peers with different buffer sizes n in
an unsynchronized cluster.

The proof follows obviously from the recursive nature of Eq. (6.13)
once the rational peer selection assumption is satisfied. Note, the ra-
tional peer selection assumption is only needed for the second term
in the three term product in Eq. (6.13). In a cluster with unsyn-
chronized peers, if a random peer is selected in each time slot to
download, then the probability that peer is helpful for buffer posi-
tion i will be smaller than p{i). So the assumption of rational peer
selection yields an upper bound for the unsynchronized case. Since
even this upper bound will be proven to be worse than the syn-
chronized cluster, the unsynchronized cluster without rational peer
selection will be even worse in the playback continuity performance
metric.

Another important fact needed for our comparison concerns the
nature of p{i) as a function of i, as stated in the following lemma.

Lemma 8 Using the Rarest First chunk selection strategy, the steady-
state buffer occupancy distribution p{i) is a concave function in i for
i above some threshold n* = O(logM) where M is the population
size.

The proof is included in the Appendix.
Prom Lemma 7’ we know that the continuity of peers with buffer

size n in an unsynchronized cluster can be computed as p(n). The
implication of Lemma 8 is that the contribution of peers with buffer-
size n> n* increases with a decreasing rate with n. We refer to the
threshold n* as the concave buffer threshold.

Suppose there is an unsynchronized cluster C with G groups of
peers. The number of peers in group i is Mi, and the total number
of peers in C is M, so 券 = 1 . Peers of group i use th as the
buffer size.

Based on Lemma 7，the average continuity for Cluster C, can be
computed as

i=l

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 44

Let us denote the average continuity of a synchronized cluster by
Csyn- To ensure fair comparison, we also denote the average buffer
size by n. For C, n = XliLi 给.

Proposition 7 Given a synchronized cluster with M peers, buffer
size n, and any comparable unsynchronized cluster with the same
population size M, average_buffer size n with n = n and average
continuity C, we have C < Csyn, provided all the buffer sizes in the
unsynchronous cluster are above the concave buffer threshold n*.

The proof of this proposition is straightforward given Lemma
7 and 8，and is stated informally here. It follows from Jensen's
Inequality that given a concave function p(),

J - M ^ ’

where n̂ denote the buffer sizes of individual peers. This proves the
above proposition since we are focusing on buffer sizes when p(i) is
concave. Note, since n* is of order logM, it is justifiably smaller
than normally adopted buffer sizes.

Finally, we observe that peers in an unsynchronized cluster have
no reason to prefer different buffer sizes even from their selfish view
point.

Proposition 8 Picking equal buffer sizes is a Nash Equilibrium.

If only one peer enlarges its buffer without others' cooperation, it
cannot gain anything if all other peers continue to use the same
smaller buffers. If any peer uses buffer length larger than others,
others can improve continuity by enlarging buffer length until they
use buffers of same length.

6.2.2 Analysis of two clusters with a lag

So far, we have shown that peers in the same cluster tend to synchro-
nize their playback; yet when peer population increases, it helps scal-
ability to desynchronize the playback. One practical way for peers
to re-organize themselves into groups with different lags is to split
themselves into separate clusters. From measurement studies, it is
apparent that peers in the same session are organized into different
clusters [12]. A study of such cluster-forming algorithms is beyond
the scope of this paper. Instead, assume peers are partitioned into
separate clusters, and each cluster is more or less synchronized. An

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 45

/ Cluster l\ K / Cluster 2\

f) X links)(C. j
\ Ml peersy 1/\ M2 peers /

C S i n g l e Cluster

c)
(Ml + M2) p e e r s乂

Figure 6.5: Comparing one single cluster with two smaller clusters

interesting question is how the multi-cluster scenario compares with
the scenario of a single cluster with the combined population size.

Earlier, by considering peers as part of the same cluster, peers
are assumed to have high connectivity with each other. Now, when
we split peers into separate clusters, peers from different clusters
are assumed to have only sparse connectivity with each other. This
affects the extent different clusters help each other; but it also helps
us to be more explicit about how different clusters help each other.
Also, by modeling each cluster as a synchronized cluster, the prob-
lem for each cluster becomes tractable. Under these assumptions,
the cluster with a smaller playback offset behaves like a server to the
lagging cluster. This indeed is the basic approach we use to analyze
the two-cluster model as shown in Fig. 6.5. Our goal is to compare
the two cases in the figure: (a) the two-cluster with a lag case (with
X peer connections per time slot and lag equal to D), and (b) the
single cluster with the combined population (Mi + M^).

For case (b), if we treat it as a synchronized cluster, the method-
ology to derive the average continuity is already known, which is
explained in previous chapters. For case (a), we can treat each of
the clusters as a synchronized cluster, derive the average continuity
of each cluster and take the weighted average. The methodology
is approximately correct, as verified by simulation to be explained
later. But from a theoretical point of view, there are two effects
that need to be understood.

The first cluster (the one with a smaller playback offset) is di-
rectly connected to the server, with population Mi. Suppose the
average continuity we derive using the standard methodology for a
synchronous cluster is ci(Mi). Since the peers of the first cluster
collectively help the second cluster, however, the first cluster gives
up a small percentage of its capacity for serving itself. After incor-
porating this factor, the actual average continuity _of Ci should be
(?i(Mi) which is smaller. Denote d： = ci(Mi) — ^i(Mi). We will
describe a method to estimate di later in this section.

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 46

For the second cluster, we can assume it is served by a virtual
server that is feeding content with a lag equal to the lag between the
two clusters. We assume the average number of connections between
the two clusters, x, is 1 per time slot. Suppose the lag is D. In each
time slot, a random peer in Ci would be selected to provide content
to a peer in C2. If the virtual server (the selected peer in Ci) does
not have content in buffer position D, it may alternatively feed
any content in position {{D + 1)，(D + 2) , . . . , n}. But in reality,
the virtual server cannot be as good as a real server, since there
is a small probability that the selected peer in C\ does not have
any content in buffer position {D, (D + 1) , . . . ,n}. Furthermore, a
virtual server for position D + J is not as good to C2 as a virtual
server for position D. Let us denote this—degradation factor by d),
so the actual continuity of cluster C2 is c'2 = (h议M2"). The value
of d2 can be approximately computed from the solution for Ci as

which is very close to 1. Therefore, we are going to skip the detailed
accounting of this factor.

Let us return to the problem of computing di, which is actually
non-trivial. We came up with an alternative method to estimate di
as follows. Consider adding a server to serve Ci, feeding it content
at buffer position D. It is possible to compute the additional average
continuity this second server will bring, which is denoted ai. It can
be argued that the effect of Ci serving C2 is approximately the same
as the effect gained due to the additional server, that is, di = ai.
This gives us a way to estimate di. The following Lemma gives what
we can say about ai：

Lemma 9 ai is a decreasing function of the lag D. ai is bounded
by

The proof is in the Appendix. It is intuitive that ai is a decreasing
function of D. When D is large, the extra server providing content
to buffer position D does not help the scalability of Ci as much. Sim-
ilarly, it is more important for Ci to disseminate chunks in smaller
buffer positions to its own cluster first. In larger buffer positions,
more peers in Ci have those chunks, hence it costs less to help C2
with those chunks. The important conclusion from this lemma is
that the magnitude of ai, hence di is also very small, based on the
bounds in the Lemma. This will be further validated by simulation
in the next section.

Once we have masked the possible effects of di and <̂ 2’ we can
easily compare the two cases in Fig. 6.5, by applying the standard

CHAPTER 3. BASIC MODEL OF SYNCHRONIZED CASE 47

methodology of synchronized clusters to each of the clusters in the
figure.

Proposition 9 For sufficiently large population, if there is a lag
between two clusters and the lag is smaller than the buffer length n,
the lag will help both clusters improve average continuity compared
to the case of a single synchronized cluster of combined population.
Furthermore, the larger the lag the more is the improvement.

The proof is given in the Appendix. The implication of Propo-
sition 9 is as follows. When the number of peers in a synchronized
cluster increases, the average continuity will decrease. There are
two ways to compensate for this degradation of average continuity.
One is to increase the buffer sizes of all peers; and the other is to
split the original cluster into two smaller synchronized clusters with
a lag between them.

Proposition 10 When the number of peers in the two smaller clus-
ters between which there is a lag is the same 設 = 1 , the improve-
ment of the average continuity achieve the maximum value.

The proof is given in the Appendix.

• End of chapter.

Chapter 7

Performance Evaluation of
Unsynchronized System

Summary

To validate our discussion of last chapter, the experiments are de-
signed. Through these experiment results, we can better under-
stand how the lag affect the performance of P2P streaming system.

7.1 Performance Evaluation

We carry out simulations to validate the theoretical claims that we
made in previous sections. Results are presented in this section.
Experiment A: Comparison between synchronized cluster
and unsynchronized cluster with different buffer length: In
this experiment, we want to validate that the average playback con-
tinuity of peers in a synchronized cluster (in which peers have the
same playback offset and buffer length) is better than peers in an
unsynchronized cluster with different buffer length (in which peers
have different buffer lengths but the same Buffer End Offsets). For
the unsynchronized cluster, peers are divided into different groups
according to their buffer length.

Before we start this experiment one needs to determine the dis-
tribution of peers population of each group in the unsynchronized
cluster. In previous chapters when we discuss the reason why peers
in the unsynchronized buffer length cluster have the same Buffer
End Offsets but different buffer length, we argue that it is equiva-
lent to the case that peers have the same Buffer End Offsets. This

48

CHAPTER 7. PERFORMANCE EVALUATION OF UNSYNCHRONIZED SYSTEM49

implies that peers request the same newest chunk from the server at
the same time slot, but they playback that chunk at different time
slot (different Playback Offsets) according to the start-up algorithm
mentioned in [12, 13]. The description of the start-up algorithm
is that each peer will not start the playback until they have suc-
cessfully downloaded certain number (a pre-defined parameter) of
consecutive chunks. To determine this distribution, we run a sim-
ulation to see what is the distribution of time slots that peers take
to download the first N chunks. In the simulation, we set the total
number of peers in a cluster M = 1000, buffer length n 二 40，and
TV = 10 (which means that peers will start as long as they get the
first ten chunks). The result is shown in Fig. 7.1. According to the
points conjuncted by the solid line, the time slots when peers start
to playback is distributed between [19,42] and the mean is 25.26.
From Fig. 7.1, one can see that the curve of simulation result is very

• Simulation result
�•̂ - NormaldJstrlbututon

I
|0-1S •： ^ I .

i — :

: j v .：
o' •••<••••»<•»»•>•»«<" ‘ 1 ‘~~
0 S 10 IS 20 25 30 35 40 Tlltw Slot

Figure 7.1: Simulation result of the start-up latency and the approximate normal
distribution

similar to a normal distribution (the dotted curve in Fig. 7.1) with
fj, = 25 and cr = 2.8. In later experiments, this normal distribution
(dotted line) is used to approximate the original curve (solid line).
This normal distribution is listed in Table 7.1.

~x 19 I 20 I 21 I 22 I 23 I 24 I 25
~ y 0 . 0 1 5 0.03 一 0.053 0.112 0.136 0.144 _

T 丨 26 丨 27 I 28 29 30 | 31 | —
" V 0.136 "0J12 0.082 0.053 0.03 0.015

Table 7.1: Coordinates of points for the normal distribution

To evaluate the performance of playback continuity between these
two types of clusters, we first use the above mentioned normal dis-
tribution to determine the distribution of buffer lengths for peers

CHAPTER 7. PERFORMANCE EVALUATION OF UNSYNCHRONIZED SYSTEM49

in the unsynchronized cluster. In order to have a fair comparison
between these two types of clusters, we make both clusters to have
the same average buffer length n, and vary n from 20 to 40. For
the unsynchronized cluster with different buffer length, there are
G = 13 groups (based on the 13 points in Table 7.1). In addition,
when the average buffer length n is changed, we use a different nor-
mal distribution with the same variance but adjust fi = n. Fig.
7.2 shows the simulation results of the average playback continuity
when n varies from 20 to 40 for these two types of clusters. For
each value of n, we run the simulation for 2000 time slots. In each
time slot, the average playback continuity is the ratio of number of
peers which playback the chunks to the number of all peers in the
cluster. As shown in Fig. 7.2，the synchronized cluster has better
playback continuity than the unsynchronized cluster with different
buffer length.

ii .

I � , ,
r •

• aynchronlzsd cluitor
�.• .. unsynchronized cluster with different buffw l*ngth

25 30 35 40 But»»r Ungth (n)

Figure 7.2: Simulation results of the playback continuity with different average
buffer length

Fig. 7.3 shows the average playback continuity for these two
clusters between 1000 to 2000 time slots when n is fixed at 25. The
simulation results indicate that the average playback continuity of
synchronized cluster is better than that of unsynchronized cluster
with different buffer length under fair comparison. These validate
the theoretical claim of Proposition 7.
Experiment B: Comparing the playback continuity of sin-
gle cluster vs. two smaller clusters with Lag: In this experi-
ment, we examine the performance of a single synchronized cluster
containing totally M peers with buffer length n, and two smaller
synchronized clusters containing Mi and M2 peers respectively with
the same buffer length n, where M = Mi + M2. We carry out three
different types of simulations by varying a parameter while keeping
all other parameters fixed.

CHAPTER 7. PERFORMANCE EVALUATION OF UNSYNCHRONIZED SYSTEM49

1| • • ~ ^
j^faq* bufff Ungth n "25 |

I o.es

< • • • synchronlzvd cluster
0.8 •

u unsynchronlnd cluster with
diffortnl buffM* 丨•ngth

**"000 1200 1400 1600 1800 2000
Tim* Slot

Figure 7.3: The playback continuity of two types of clusters when average buffer
length n — 25.

i i • . J

••I Two chisttr with Lag

—H— SIngk clutt»r
•C I
I

I。，
t o.ss
S M • 4000
i M - 2000,

0.8 .
n-20,
Ug -1«;

。•？000 1200 1400 1S00 1800 2000
TkrwSlol

Figure 7.4: The playback continuity of single cluster and two smaller cluster
during time slot 1000 — 2000.

Exp. B . l : Performance under different buffer length: In
this simulation, the total number of peers M is fixed to 4000 and
the ratio of the population of two small clusters is fixed to 1，or
Ml = M2 = 2000. In order to make sure that the second cluster
could get the newest chunk with a high probability, we set Lag —
n — 1. Fig. 7.4 shows the average playback continuity of both the
single cluster and the two smaller clusters from time slot 1000 to
2000，with the buffer length n = 20 and the Lag is set to 19. In
each time slot, the average playback continuity is the ratio of the
number of peers doing the playback and the total number of peers
in the cluster. Fig. 7.4 shows that the two smaller clusters with
Lag perform better in terms of playback continuity than the single
cluster. The result validate Proposition 9.

Experiment B.2: Performance under different popula-
tion ratio in the two smaller clusters: For this experiment,
the total number of peers in the single cluster is M = 4000, buffer

CHAPTER 7. PERFORMANCE EVALUATION OF UNSYNCHRONIZED SYSTEM49

0.91 . . . ‘ .

0.895 , • _ L

r /-^inX
c 0.W- / M>400a ^S.
t / n-SO
e U g • n - 1
1 0.U5
S� . “ . I _ , _ “ . _ _ ,, II

0J7S —A— Two clutter wtth Lag

M Sing I* ckit l t r

"''o.l OJ 0.3 0.4 0.5 0.8 0.7 0.8 0.9
M,/M

Figure 7.5: The playback continuity of single cluster and two smaller clusters
with different population ratio.

length is n = 20 and Lag = 19. However, the ratio of the population
of the two smaller clusters is not fixed, but rather vary from 0.1 to
0.9. As shown in Fig. 7.5, the average continuity of the two smaller
cluster is better than the single cluster under all population ratio.
One can find that when Mi is relatively small or large compared
to M (e.g. ^ = 0.1 and 0.9), the average playback continuity be-
comes poorer, whereas, when the ratio of M � t o M2 is close to 1
(e.g. ^ E [0.4’ 0.6])’ the average playback continuity is quite good.
This result validates Proposition 10.

No. of Ckittor • 5

f SIngI* Ctuittr I

0.8? r No. of CkJtltr _ 2 |
M, • M, • M / 2

•̂"ao 21 22 23 24 25 26 27 2S 29 30
Buffer length (n)

Figure 7.6: The playback continuity of single cluster, two small clusters and five
smaller clusters.

Experiment B.3: Average playback continuity under dif-
ferent number of smaller clusters: In the simulation, the total
number of peers is fixed as M = 6000, we vary the number of small
clusters but all these small clusters have the same number of peers.
Fig. 7.6 depicts the average playback continuity for the single clus-
ter, two small cluster, and five smaller cluster. All three curves
increase when the buffer length n increases. As indicated in Fig.

CHAPTER 7. PERFORMANCE EVALUATION OF UNSYNCHRONIZED SYSTEM53

7.6, when the P2P system has more small clusters, the system will
have a better average playback continuity. To analyze and seek the
optimal number of small clusters is beyond the scope of this pa-
per and part of our future work. We believe that, in real life, the
topology is very similar to this multi-cluster topology, forming a
multi-cast tree with clusters being the nodes.

• End of chapter.

Chapter 8

conclusion

Summary

This is a summary of our work and contribution.

8.1 Conclusion
The art of modeling is on the one hand to capture the essential
aspects of the original system, and on the other hand to be simple
enough to yield some insights about the original system. We feel that
is what our model accomplished for the P2P streaming problem. In
addition, the insights from our first model also lead to some practical
algorithm that can be incorporated into well established systems as
improvements.

In the last model, the P2P system is modeled as a synchronized
system. In the second model, relaxed several assumptions in pre-
vious chapter to study the effect of unsynchronized peers. We de-
fine the terminology and formulated several different perspectives
of looking at this problem. The conclusion is that under decentral-
ized algorithms, there are reasons for forming synchronized clusters.
However, in order to support a large number of peers with a fixed
amount of buffer space, having different playback offsets for different
clusters can help improve overall continuity.

There are a number of interesting directions for further studies.
We believe the simple probability model can be extended to analyze
other chunk selection and peer selection algorithms. Additional ex-
perimentation and prototyping would also help further validate our
ideas.

54

CHAPTER 8. CONCLUSION 55

• End of chapter.

Appendix A

Equation Derivation

Summary

Give equation proof in Appendix.

Appendix

Proof of Lemma 1: Prom Eq. (3.6), we have

p{i + l)-pii) = s{i)p{i)(l-p{i)).

Prom Eq. (4.1), we have

s{i + 1) - s{i) = s(z + l) p (i + l) (l - K ^ + l)) .

Note the right-hand-side of the above two equations are the same,
except the index i versus i + 1. This means

s{i + 1) - s{i) 二 p(i + 2) - p (i + l),

+ 1) - s{j)) = ^(p(j + 2)-Ki + l)),
j=i j=i

s{i) = s{n - 1) - p{n) + p{i + 1).

Prom the equation of s{i) (Eq. 4.1), we get s{n - 1) = 1 - 1/M.
Therefore, we have s{i) = I - p{l) - p(n) -\-p{i + 1). I

Proof for Lemma 2: Again, from Eq. (3.6), we have

p{i + 1) - pii) = .

56

APPENDIX A. EQUATION DERIVATION 57

Prom Eq. (4.4), we have

s{i + 1) - s{i) = s(i)p(i + l) (j o (i + l) — 1) .

This time, the right-hand-side of these equations are again the same
except the sign (and index off by 1). This gives us

s{i + 1) - s(i) = - (p (“ l) l �) ，

j=0 j=o

s{i) = s{l)+p(l)-p{i).

When there are M peers in the network, p(l) = 1/M, which is
the probability the sever selects it for sending the newest chunk.
Prom Eq. (4.4), we have s(l) = 1 - 1/M. Therefore, we have s(i)=
1 - 淋 I

Proof of Lemma 3: Assume e = 1 - p (n) and e-p(l) + 0, which
covers all the chunk selection strategies we are interested in. We get
the following solution for the differential equation:

i n (^) i n (^)
工 - 6 - p (l) 十 1 + 6 1 (1)

- l n (2 / + e - p (l)) - C .

Here C is a constant that can be derived from the boundary condi-
tion y = p{l) = 1/M:

C 二 + 普 1.
e-p{l) 1 + e-Kl)

Solving the above equation, we can express n, the buffer size, in
terms of the other parameters p(l) and e:

- W) - . � r T ^ + i + i n (i ^) .
Although n is an integer, we can still study its sensitivity with re-
spect to p(l) and e by differentiation, which yields the results in the
Proposition. I

APPENDIX A. EQUATION DERIVATION 58

Proof of Lemma 4: With a similar method as in the proof for
Lemma 3，we derive the solution for the differential equation for the
Rarest First algorithm:

1-2/ 乂 1 — 2/乂

^ In (P � ^ 小 P �

Again, p(l) and e represent the number of peers and the streaming
quality respectively, and y(n) = 1 — e. Similarly, we express n as a
function of p(l) and e:

Differentiating, we get the results in the Proposition. I

Proof of lemma 6: The proof is derived from the continuous
model. In the continuous model, let e = p(l) , the necessary buffer
length for each strategy can be derived through the model. For
Greedy strategy, the continuous function can be simplified as:

包 = " 2 (1 - y)

dx 1 + y^ - y

Through solving the function, we can get the following equation:

X = -- - ln (l -y) -C,
y

C = - ^ - l n (l - p (l)) - l
P �

let € = pi, the derived buffer length is:

1 , , 1 _ e � e
几 G = 7 +

The continuous function for RF strategy is unchange. The required
buffer length njiF is：

1 1 — e e
riRF = - + 2 1 n (— —) - - -

€ e 1 — e

The results indicate that Greedy saves buffer length compared with
RF if the continuity requirement is bigger than 1 — pi •

APPENDIX A. EQUATION DERIVATION 59

Proof of Proposition 3:[changed by yipeng] First, we derive
the continuous form of Upper Bound from the discrete model.

rc 二 I n � - l n (l 1) - C7，

The complexity of the buffer length uub is 0(ln(^) + ln(M)). From
the proof of lemma 4, we can get the complexity of buffer length
for Rarest First Strategy is 0{\ + ln(M)), while the complexity for
Greedy Strategy is + ln(M))). Complexities of buffer
length for both Rarest First Strategy and Greedy Strategy are larger
than Upper Bound's. However, for Mixed Strategy, the Rarest First
part is given a relative large discontinuity and the Greedy part is
given a relative large p{l). Assume the discontinuity for Rarest First
Strategy is A. Therefore, the complexity of combined buffer length
is + ln(M) + ^ (I n (^) + ln(M))). Here, we can control the
value A in a range, such as from 0.2 to 0.4. Then, the complexity
of Mixed strategy can be simplified 0(ln(去）+ ln(M)), which is the
same with the Upper Bound's.

A. Proof of Lemma 8

Proof 4 In [30], from the continuous model of Rarest First Strategy,
we can obtain the closed form of the relationship between n (buffer
size), e {= 1 — p{n), discontinuity) and M (= number of peers
in the system) Eq. (A.l).

H + l n (许 l n (輪 — 备 (A .)

When we fixed M, the total number of peers in Eq. (A.l), the dis-
continuity e only relates to buffer length n. In order- to take a close
look at the relationship between, we rewrite the formula, in which
we define e = p{n) = I — e to denote the continuity and take the
derivative on n, since now the part — In (y ^ ^) — j i ^ is just a
constant and its derivative on n is zero. We derive the first and
second derivative in Eq. (A.2) and (A.3).

i = … 1 - 旬 2 , (A.2)

APPENDIX A. EQUATION DERIVATION 60

g = 3 e - (l - 6) 2 (6 - (A . 3)

Because e = p(n) is the probability that the nth chunk position of
the buffer is filled or not, e is a real number between 0 and 1. The
following conclusions hold based on Eq. (A.4) and (A.5).

(i) The first derivative ofe and n is always non-negative. In other
words, the continuity function p{n) related to buffer size is an
non-decrease function.

(ii) When buffer size is small (n < n* and e < the second
derivative is positive, which means the continuity function p{n)
is convex.

(Hi) When buffer size is large enough (n > n* and e > the second
derivative is negative, which means the continuity function p{n)
is concave.

字 > 0, (A.4)
an

‘ > 0 (0 < e < ^ (0 < n < n *)

芸 < 0 (i < 6 - < l) ^ (n > n *)

. = 0 (H) 台 （ n 二 n*)’
(A.5)

where,

* 3 " 0 � 1 (p(l) � P(l)

= 0 (l o g (M)) .

C. Proof of Lemma 9

Proof 5 Refer to Eq. (A.l), if the number of peers M varies,
the discontinuity would vary accordingly when the buffer length n
is fixed. Do differentiation to both sides of Eq. (A.l), one could
derive Eq. (A.6).

^ — � — e)
• P(l) (l — p(l))2 � P (l) . ^ • ^

APPENDIX A. EQUATION DERIVATION 61

We make the approximation based on the basic assumption that the
total number of peers M is very large and in result, 1 — p(l)=

Then, assume that there are already M peers and one server in
the cluster. Another server joins in and in each time slot it provides
a chunk, which locate position D in peers ‘ buffer. At position D,
the system is equivalent to another baby network in [30], where the
number of peers is buffer length is n — D. From Eq. (A.6),
one more server can improve the continuity:

Jp(D) P(l)

= — e 2 (l - e) l n (l + ^) ’ （A.7)

where p(l)=去.Because p(D) is an increasing function with D,
I (III is decreasing when D increases. When D = 1, |ai| reaches the
maximum value — e) In 2. On the other hand, when D = n,
the last position of the buffer, p{n) = 1 - e is very close to 1 and
ln(l + 费)•？费 (p { l) is very small) at which point, the lower
hound is achieved.

D . Proof of Proposition 9

Proof 6 In order to see the improvement on the average continuity
when there is a lag between two clusters, we need to consider a single
larger cluster C, with M = Mi+ M2 peers that have the same buffer
length n and playback offset, to be the benchmark, as depicted in
Fig. 6.5.

In each time slot, Ci sends a chunk, of which the position in the
buffer is D, to C2. For Ci, it is just as a server at position D leaves
the cluster and for C2, it is equivalent that there is a server sending
one newest chunk in each time slot. And the condition for the larger-
cluster C is the same as described in [30].

Prom Eq. (A.6), the change of the e comparing C and Ci is in
Eq. (A.8):

= (A . 8)

APPENDIX A. EQUATION DERIVATION 62

And the change of the e comparing C and C2 is in Eq. (A.9):

= (A . 9)

And the influence on the discontinuity when a server provide chunks
at position D of the buffer leave is in Eq. (A.10):

- - — � (1 — 侧 1 + 殺 t) = ‘ （A.10)
The total change of discontinuity is in Eq. (A.11):

M l M2 . M l
八e = ^ A e i + - A e ^ - - a ,

2,1 ..Ml, M M

- � • •)] . (A.11)

Then focusing on other terms of Ae, because > 0 and

M l / . M 1 , 1 , 1 ��

M l , , M l + M2 . „ , , … � 1

(A.12)
Under the assumptions that both Mi and M2 are large enough and
p(D) is close to 1，inequality (A.12) could be easily held and conse-
quently Ae is negative which means the continuity is increased. In
addition, |Ae| increases when D increases which indicates that the
larger the D is, the more the improvement of the average playback
continuity is.

E. Proof of Proposition 10

Proof 7 In fact, the term ln(l + in Eq. (A.11) could be
simplified as:

1 1
ln(l + p (D) M i) 记 綱 Ml

Ml 1 � 1

(A.13)

APPENDIX A. EQUATION DERIVATION 63

When we fix M andp{D), Ae in Eq. (A.11) becomes:

M M .) = 命 5 + 知 M (A.14)

where, Ai = - 二 ~p{d)m are not related to M:. It
could be derived that |Ae| has a maximum value |i4i(ln2 - 2̂)!；

when Ml = M2 =专 which means when 德二 1，the increment of
the average continuity will be the largest.

• End of chapter.

Bibliography

1] "PPLive," http://www.pplive.com/.

[2] "ppstream," http://www.pps.tv/.

[3] "Planet-Lab," http://www.planet-lab.org/.

4] S. Ali, A. Mathur, and H. Zhang. Measurement of commercial
peer-to-peer live video streaming. In P亡 Workshop on Recent
Advances in P2P Streaming, Aug. 2006.

[5] B. Cheng, H. Jin, and X. Liao. Rindy: A ring based overlay
network for peer-to-peer on-demand streaming. In UIC, 2006.

[6] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A measurement study
of a peer-to-peer video-on-demand system. In ICPCS�Feb.
2007.

7] C. Dana, D. Li, D. Harrison, and C. N. Chuah. Bass: Bittor-
rent assissted streaming system for video-on-demang. In IEEE
MMSP, Oct. 2005.

8] R. S. Dongyu Qiu. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In ACM SIGCOMM,
2004.

9] B. Fan, D. M. Chiu, and J. C. S. Lui. The delicate trafeoffs in
bit torrent like file sharing protocol design. In Proceedings of
IEEE ICNP, 2006.

[10] P. Francis. Yoid: Extending the internet multicast architecture.
In http://www.icir.org/yoid/docs/index.html, 2000.

[11] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang.
Delving into internet streaming media delivery: A quality and
resource utilization perspective. In Internet Measurement Con-
ference Proceedings of the 6th ACM SIGCOMM on Internet
measurement, 2006.

64

http://www.pplive.com/
http://www.pps.tv/
http://www.planet-lab.org/
http://www.icir.org/yoid/docs/index.html

BIBLIOGRAPHY 65

12] X. Hei, C. Liang, Y. Liu, and K. W. Ross. Insights into pplive:
A measurement study of a large-scale P2P iptv system. In IPTV
workshop in WWW2006, May 2007.

13] X. Hei, Y. Liu, and K. W. Ross. Inferring network-wide quality
in p2p live streaming system, to appear: IEEE Transactions on
Multimedia, November 2007.

[14] X. Hei, Y. Liu, and K. W. Ross. Stochastic fluid theroy for p2p
streaming systems. In Proceedings of INFO COM, 2007.

15] Y. hua Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In IEEE J on Selected Areas in Communications,
2002.

16] Y. Huang, T. Fu, D. Chiu, and J. C. L. and. Challenges, design
and analysis of a large-scale p2p-vod system. In Sigcoram, 2008.

17] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. Anysee: Peer-
to-peer live streaming. In IEEE INFOCOM, Apr. 2006.

18] J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast. In (invited)
Proceedings of the IEEE, Special Issue on Recent Advances in
Distributed Multimedia Communications, 2007.

[19] N. Magharei and R. Rejaie. Understanding mesh-based peer-
to-peer streaming. In NOSSDAV '06, May 2006.

20] L. Massoulie and M. Vojnovic. Coupon replication systems. In
ACM Sigmetrics, 2005.

[21] M. Pinson and S. Wolf. A new standardized method for objec-
tively measureing video quality. IEEE Transaction on Broad-
casting, 50(3):312-322, Sep 2004.

22] T. Piotrowski, S. Banerjee, S. Bhatnagar, S. Ganguly, and R. Iz-
mailov. Peer-to-peer streaming of stored media: the indirect
approach. SIGMETRICS/Performance, pages 371-372, 2006.

[23] D. Qiu and R. Srikant. Modeling and perfromance analysis of
bittorrent-like peer-to-peer networks. In Proceedings of ACM
Sigcomm, Portland, OR, Aug 2004.

[24] T. Silverson and 0 . Fourmaux. P2p iptv measurement: A case
study of tvant. In ACM CONEXT '06, 2006.

BIBLIOGRAPHY 66

25] T. Silverson and 0 . Fourmaux. P2p iptv measurement: A com-
parison study. University Paris 6 C LIP6/NPA Laboratory,
Tech. Rep., Oct 2006.

[26] A. Vlavianos, M. Iliofotou, and M. Faloutsos. Bitos: Enhancing
bittorrent for supporting streaming applications. In INFO COM
25th IEEE International Conference on Computer Communi-
cations. Proceedings, 2006.

27] L. Vu, I. Gupta, J. Liang, and K. nahrstedt. Mapping the
pplive network: studying the impacts of media streaming on
p2p overlays. Dept. of Computer Science, UIUC, Tech. Rep.
UIUCDCS-R-2006-275, Aug 2006.

28] M. Zhang, L. Zhao, Y. Tang, J. G. Luo, and S. Q. Yang. Large-
scale live media streaming over peer-to-peer networks through
global internet. P2PMMS'05, pages 21-28, 2005.

29] X. Zhang, J. Liu, B. Li, and T. S. P. Yum. Coolstream-
ing/donet: A data-driven overlay network for efficient live me-
dia streaming. In INFOCOM, 2005.

30] Y. Zhou, D. M. Chill, and J. C. S. Lui. A simple model for
analyzing p2p streaming protocols. In Proceedings of IEEE
ICNP, 2007.

； • . . •

• . •

r ‘•: . ‘ . .
- . , ‘ ‘ • .

. , • r - . ： . . .‘’‘

• � .，.•... . . V , ‘：...
, . ‘•-- … ， . • . - 〜 . , ••‘ • • 'v ., •； •

. , “ • , • . .

• ,• - • • . 、 ， . . . •

• , ‘ . .. ‘ 、 - . .

. • • ‘ • . •
• 、 , •

. • ••:..‘ - t • ‘ 、 . ， - • .

C U H K L i b r a r i e s

_圓_1111111
004561337

