
Pseudo-Functional Testing: Bridging

the Gap between Manufacturing

Test and Functional Operation

YUAN, Feng

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

August 2009

Thesis/Assessment Committee

Professor Yu Liang Wu (Chair)
Professor Qiang Xu (Thesis Supervisor)

Professor Kin Hong Lee (Committee Member)
Professor Tim Cheng (External Examiner)

摘要

隨著半導體工業的不斷發展，晶片在正常工作狀態下和在結構性測試環境下表現

出的差異性對生產測試造成日益嚴重的負面效應。僞功能測試能夠有效的解決這

一問題，這一技術首先識別出那些正常工作狀態下無法出現的狀態（非法狀態），

然後在測試向量生成的時候避免這些非法狀態的出現。然而由於各種因素的存在

現有的僞功能測試方法只能提取很小一部分的非法狀態。另外，相比起傳統的結

構性測試向量來說，僞功能測試通常需要在測試向量設置更多的比特，因此非確

定性的比特所占的比例會相應減少。這一特點使得一些測試向量壓縮技術不利於

運用在僞功能測試向量上。

在這篇論文裏，爲了解決上訴問題，我們首先說明了晶片裏存在非法狀態的主要

原因是晶片的組合邏輯網路中存在多扇出結構的連接線，根據這一特點，我們又

提出了一種用於提取非法狀態的高效演算法。除此之外’我們還提出了一種非常

適用于測試向量壓縮技術的僞功能測試解決方案，這一方案能達到與傳統結構性

測試向量基本相同故障覆蓋率，同時可以消除過度測試問題並且不損失測試向量

壓縮率。綜上所述，通過縮小晶片的生產測試模式與正常工作模式的差距，本文

所提出的各種技術極大地加強了生產測試的有效性。

Abstract

The discrepancy between integrated circuits' activities in normal functional mode

and that in structural test mode has an increasingly adverse impact on the effec-

tiveness of manufacturing test. By identifying functionally-unreachable states in

the circuit and avoiding them during the test generation process, pseudo-functional

testing is an effective technique to address this problem. Existing methods, how-

ever, can only extract a small set of illegal states in the system due to various lim-

itations. In addition, to avoid violating functional constraints, pseudo-functional

patterns typically feature much fewer dont-care bits when compared to conven-

tional structural patterns, making them less friendly to the de-facto test compres-

sion techniques widely-used in the industry.

To address the above issues, in this thesis, we first show that illegal states in a

circuit are mainly caused by multi-fanout nets in it, and we develop efficient and

effective heuristics to identify them. Then, we introduce our solutions to apply

pseudo-functional tests in linear decompressor-based test compression environ-

ment, which is able to achieve similar fault coverage as conventional structural

patterns, without incurring over-testing to the circuits neither sacrificing test com-

pression ratio loss. The effectiveness of IC tests can be significantly enhanced

with the proposed techniques that bridge the gap between manufacturing test and

functional operation of the circuit under test.

Acknowledgement

At the very beginning, I am deeply indebted to my supervisor, Professor Qiang Xu,

who patiently motivated me to conceive and develop the main ideas in the thesis. I

would like to express to him my sincere gratitude for his seasoned guidance from

the very early stage of this research work as well as providing constructive advices

throughout the entire study. In particular, I also would like to thank him and his

wife for their concerns about my daily life.

My research partners Yubin Zhang, Lin Huang, Xiao Liu and Li Jiang in the

CUhk REliable Computing Laboratory (CURE), thank you for your insightful

comments on my research work. I am also grateful to all the colleagues in 506

EDA office, Linfu Xiao, Liang Li, Minqi Jiang, Zaichen Qian, Xiaoqing Yang,

Zigang Xiao and Yan Jiang, it is you who bring me laugher and make my post-

graduate study life colorful. Special thanks are also to my friends Qiang Ma and

Lei Shi, who helped me to settle down when I just came to this campus.

Last but not the least, my father Guangfu Yuan, my mother Guangpin Gui, my

girlfriend Rong Huang and all my family members, without your love and support,

I cannot achieve anything. I would like to give my greatest appreciation to you.

Contents

Abstract i

Acknowledgement ii

1 Introduction 1

1 • 1 Manufacturing Test 1

1.1.1 Functional Testing vs. Structural Testing 2

1.1.2 Fault Model 3

1.1.3 Automatic Test Pattern Generation 4

1.1.4 Design for Testability 6

1.2 Pseudo-Functional Manufacturing Test 13

1.3 Thesis Motivation and Organization 16

2 On Systematic Illegal State Identification 19

2.1 Introduction 19

2.2 Preliminaries and Motivation 20

2.3 What is the Root Cause of Illegal States? 22

2.4 Illegal State Identification Flow 26

2.5 Justification Scheme Construction 30

2.6 Experimental Results 34

2.7 Conclusion 35

111

3 Compression-Aware Pseudo-Functional Testing 36

3.1 Introduction 36

3.2 Motivation 38

3.3 Proposed Methodology 40

3.4 Pattern Generation in Compression-Aware Pseudo-Functional Test-

ing 42

3.4.1 Circuit Pre-Processing 42

3.4.2 Pseudo-Functional Random Pattern Generation with Multi-

Launch Cycles 43

3.4.3 Compressible Test Pattern Generation for Pseudo-Functional

Testing 45

3.5 Experimental Results 52

3.5.1 Experimental Setup 52

3.5.2 Results and Discussion 54

3.6 Conclusion 56

4 Conclusion and Future Work 58

Bibliography 65

IV

List of Figures

,1 An Example Path Delay Fault 3

.2 Flowchart of General ATPG Process 6

.3 Transform the D Flip-Flop to Scan Flip-Flop 7

.4 Linear Decompressor-Based Test Compression Infrastructure . . . 8

.5 An Example Linear Decompressor 10

.6 Fault Classification 13

.7 Pseudo-Functional Test Pattern Generation 15

.8 Illustration of Incomplete Identified Illegal State 17

2.1 Unreachable State Analysis 23

2.2 Sequential Loop-Induced Unreachable States 26

2.3 An Example Circuit for Illegal State Identification 27

2.4 Flowchart for the Proposed Illegal State Identification Scheme . . 29

2.5 Propagation Rules for Justification Schemes 30

2.6 Generation of Sophisticated Justification Schemes 31

2.7 The Impact of Reconvergent Nodes 32

3.1 Specified Bits in Pseudo-Functional Patterns and Structural Pat-

terns for s9234 38

3.2 Pattern Generation Framework in Compression-Aware Pseudo-Functional

Testing 39

Chapter 1

Introduction

1.1 Manufacturing Test

Integrated circuit (IC) fabrication is an extremely complex process, and it is in-

evitable that some manufactured chips are defective, due to various hard-to-controlled

factors (e.g., impure material, temperature variation and quantum effect). Semi-

conductor industry thus relies on manufacturing test to identify those defect-free

ICs and ship them to customers.

Manufacturing test is typically conducted with the help of automatic test equip-

ment (ATE). When testing a circuit, both test patterns and the expected test re-

sponses are stored in the ATE. During the manufacturing test process, test patterns

are transported from ATE to the circuit, and then the actual responses captured

by the circuit are sent back to ATE to compare against the expected responses.

Those circuits that have different responses from the expected ones are marked as

defective products.

CHAPTER 1. INTRODUCTION 2

1.1.1 Functional Testing vs. Structural Testing

Functional testing was historically used to test IC products, wherein a large amount

of test patterns are required to completely excise the circuit's functionalities. Gen-

erally speaking, the number of input patterns for functional testing will be 2" for a

circuit with n inputs. Taking a 64-bit ripple-carry adder as example, patterns

are needed to apply complete functional test, which would take 2.158 x years

to finish such test on a 1 GHz ATE [4], Due to such exhaustive nature of functional

testing, it is impractical for any reasonable-sized circuits. In addition, due to the

need of applying functional tests at speed, the functional tester is much more ex-

pensive. The semiconductor industry hence mainly resorts to structural testing for

this duty, wherein test patterns are selected based on circuit structural information

and a set of fault models. One of the greatest advantages of structural test is that it

allows us to develop structural search algorithms to achieve efficient testing. For

the same 64-bit ripple-carry adder, 1728 patterns are enough for structural testing

based on stuck-at fault model (introduced later).

Defects in an electronic system is defined as the unintended differences be-

tween the implemented hardware and its intended design [4]. It is very hard to

generate tests for every possible type of physical defects. Fault models, therefore,

are proposed to abstract faulty behaviors induced by defects. To generate test pat-

terns effectively, faults are always modeled at a certain level of design abstraction,

such as behavioral level, logic/gate level or transistor level. Fault models at behav-

ioral level usually have no clear correlation to manufacturing defects and hence are

used more often in design verification rather than manufacturing test. Transistor

level fault models are also known as technology-dependent faults and are mainly

used in analog circuit testing. Fault models at logic level (i.e., circuit is modeled

as an interconnection of boolean gates, called netlist) are technology-independent

and over time have been proven to be quite efficient and effective for testing digital

CHAPTER 1. INTRODUCTION 1

On-lnput Va lue

H Side-Input Va lue

Figure 1.1: An Example Path Delay Fault

circuits [4]. Here, we introduce two main kinds of fault models that

used in the industry.

widely-

1.2 Fault Model

• Stuck-at Fault Model

Stack-at fault model is the fundamental fault model used in IC testing, which

assumes a single line of the logic network to be stuck at a logic 0 (s-a-0) or

logic 1 (s-a-1).

• Delay Fault Model

Delay faults model those defects that cause the combinational delay of a cir-

cuit to exceed its clock period. Commonly-used delay fault models include

the transition fault model (also called gross-delay fault model) and the path

delay fault model. Transition fault model is based on the assumption that

only a single gate delay is changed. It has the advantages of easy test pattern

generation and comparably small test set size, but it is less accurate due to

CHAPTER 1. INTRODUCTION 13

its simplistic assumption. Path delay fault model, on the other hand, consid-

ers the cumulative propagation delay of a combinational path and hence is

much more accurate, but test pattern generation for path delay faults is quite

complicated and it is also associated with a large number of test patterns due

to the exponential number of paths in a sequential circuit.

Fig. 1.1 depicts an example path delay fault. In this example, the targeted

fault is on path {FF1,A,D,F,G,FF4}, which is manifested by the cumu-

lated delay induced by propagating transitions on this path. To sensitize

such transitions, two consecutive patterns < 1,0,1;X, 1,1 > need apply on

{FF0,FF\,FF2}. The correct response for this circuit at output FF4 is

< 1 ; 0 � . Due to the fact that delay on the targeted path exceeds clock pe-

riod, logic 0 cannot arrive at FF4 before the capture clock edge. The faulty

response is therefore < 1; 1 > at FF4.

It is important to note, as technology scales, at-speed delay testing has become

increasingly popular to ensure the quality of shipped products.

1.1.3 Automatic Test Pattern Generation

Given a fault model, the task of automatic test pattern generation (ATPG) tool is

to find out vectors that can activate the targeted faults and propagate their faulty

effects to observable outputs. In essence, most structural ATPG algorithms are

based on branch-and-bound principle, which try to quickly find a solution to detect

targeted faults and backtrack immediately when some pre-determined values at

circuit nodes are found to be infeasible. According to the nature of the circuit in

test mode, it can be categorized into combinational ATPG and sequential ATPG.

Both have been proved to be NP-Complete problem [4],

• Combinational ATPG

List of Tables

2.1 Experimental Results for Illegal State Identification 33

3.1 Conventional Structural ATPG vs. Pseudo-Functional ATPG for

Transition Faults 52

3.2 Results with 2-Input Decompressor 54

3.3 Results with 4-Input Decompressor 55

Vll

3.3 Insertion and Activation of Functional Constraints as Phantom Gates 42

3.4 Algorithm for Pseudo-Functional Random Test Pattern Generation. 44

3.5 Effective Fan-in Cone for a Fault 45

3.6 Algorithm for Constraint-Aware Input Vector Generation 47

3.7 Algorithm for Constraint-Aware X-Assignment 49

3.8 Regulated Detectable Faults 53

3.9 Runtime Comparison 55

VI

CHAPTER 1. INTRODUCTION 5

Combinational ATPG is the fundamental problem for IC testing and it has

been subject to extensive research over the past decades. In the following we

list a few milestone work in this area: (i) D-algorithm proposed by Roth [28],

which established the calculus and algorithms for ATPG using D-cubes; (ii)

Goel's PODEM algorithm [10] proposed to use path propagation constraints

to efficiently limit the search space of the ATPG engine; (iii) Fujiwara and

Shimono's FAN algorithm further improved the efficiency of ATPG and is

widely used in the industry. The basic idea of this technique is to detect

infeasible solutions as early as possible so that the processing time between

backtracks can be significantly reduced.

• Sequential ATPG

For circuits with state elements that cannot be directly controlled in test

mode, sequential ATPG is required when generating test patterns. Generally

speaking, sequential ATPG is much more complicated than combinational

ATPG. This is because: (i). the test responses of the circuit are dependent

not only on input test pattern, but also on the initial states of the circuit's

sequential elements; (ii). activating a fault from primary outputs requires

the circuit to be driven to a known state, which itself requires more than one

pattern and essentially involves multiple combinational ATPG procedure;

(iii). propagating faulty effects to primary outputs also takes multiple clock

cycles and incurs high computational complexity.

It is worth to note that, test patterns generated from ATPG process typically

feature a large percentage of "dont-care" bits (also known as X-hits) and they can

be assigned to any logic value without affecting the fault coverage of the test set.

Fig. 1.2 presents the flowchart for a typical ATPG framework, containing two

stages. In the first stage, random patterns are generated and fault simulation is

conducted in the hopes that some easy-to-detect faults can be covered by such pat-

Fault list

No

Fault simulation o
pattern

random
. R a n d o m
I Pat tern Faul t
I S imula t ion

(̂ Terminat̂

Figure 1.2: Flowchart of General ATPG Process

terns. This process continues until no fault can be detected by random patterns.

Next, deterministic ATPG is used for those random-resistant faults. Since a test

pattern generated by ATPG can potentially detect several other faults, fault simu-

lation is again applied for every pattern. The whole flow terminates when all faults

are detected or we have reached the runtime limit for the ATPG process.

1.1.4 Design for Testability

DfT is the design process which embeds special hardware for testing purpose only.

This section presents the de-facto DfT techniques widely-used in the industry.

Scan-Based DfT

With the ever increasing transistor-to-pin ratio in IC products, sequential ATPG is

no longer applicable on today's complex sequential circuits. The main purpose for

CHAPTER 1. INTRODUCTION 17

z
e
t
l
i
s
t

一

 I

Clk—•

D flip-flop Scan flip-flop

Figure 1.3: Transform the D Flip-Flop to Scan Flip-Flop

scan-based DfT is to increase the controllability (i.e., the ability to set a particu-

lar circuit node to logic ‘0，or logic ‘1，）and the observability (i.e., the ability to

observe the state of a logic signal within the circuit) of the circuit's internal node

so that it is easier to generate test patterns for the circuit. In scan-based circuits,

we substitute normal flip-flops (FFs) with scan FFs (SFFs), making them directly

accessible in test mode. By doing so, from the test generation point of view, the

circuit under test is a combinational circuit and hence the more tractable combina-

tional ATPG can be used to generate test patterns.

SFFs can be implemented in various manners, e.g., mux-based SFFs, double

latched SFFs, level sensitive scan latches SFFs [1，4]. Fig. 1.3 depicts the trans-

formation from a normal FF into a mux-based SFF. In the mux-based SFF, a mul-

tiplexor is inserted before the input of the FF with two inputs D and SD, which

represent the original data input and the scan data input, respectively. Scan enable

(SE) signal is used to select which channel as input of FF. By replacing normal

FFs with SFFs, these state elements can be connected serially to form one or more

long shift registers (called scan chain) through SD input, and the first and the last

SFF of each scan chain are connected with an input pin and an output pins of the

circuit. All the SFFs can be set as arbitrary states by shifting logic values into the

scan chains. Similarly, the states of these SFFs can be observed by shifting out the

contents of the shift registers.

CHAPTER 1. INTRODUCTION 18

S
>

SE-
SD-

i \ D •
^ Clk.

— Q
>

CHAPTER 1. INTRODUCTION 19

a-bit Input
Variables
from ATE

- o

S A
g S -]/

t s

Scan Chain

Phase Shifter

h*<±)

b-bit Scan Slice

X-Tolerant
Compactor

ATE

Figure 1.4: Linear Decompressor-Based Test Compression Infrastructure

The test procedure in scan-based testing can be divided into three phases.

• Scan in: SE signal is asserted to configure the circuit as scan mode. Test

pattern is then shifted into scan chains for Ngc clock cycles, where Ngc is the

length of longest scan chain;

• capture: SE signal is de-asserted, and the circuit applies the test pattern in

functional mode and capture its responses into the same SFFs;

• Scan out: test responses are shifted out in the similar manner as the scan in

process.

Test Data Compression

The rapidly-growing test data volume has becmoe a serious concern for the in-

dustry because it not only prolongs the ICs，testing time, but also raises memory

CHAPTER 1. INTRODUCTION 9

depth requirements for the ATE. Test data compression, consisting of test stimulus

compression at the input side and test response compaction at the output side, has

become the de facto test strategy for today's large circuits.

For test stimulus compression, various techniques (as surveyed in [34]) have

been proposed in the literature, all of which exploit the large amount of X-bits in

the given test cubes to reduce test data volume. Among the existing TDC method-

ologies, linear decompressor-based technique is the most popular one used in the

industry due to its ease of implementation and high compression ratio (e.g., [2, 25,

35，37]).

As shown in Fig. 1.4，a typical linear decompressor consists of a n-bit finite

state machine that receives a-bit input variables from the ATE to generate test

sequences and a phase shifter (typically implemented with XOR network) used

to expand these sequences to a large amount of scan chains with reduced linear

dependencies. In each clock cycle, b-bit (b » a) values are shifted into scan

slices. Typically, a two-pass ATPG flow is utilized to generate compressible test

patterns. That is, after ATPG generates a test cube, a linear solver is invoked to

compress it. If the solver cannot find a solution, a different test cube would be

generated to target the fault.

Traditionally, for test response compaction, multiple input signature register

(MISR) is used to generate a small signature. This simple compactor, however,

suffers from fault coverage loss due to aliasing and unknown logic values in test

responses (e.g., due to bus contention and multiple clock domains). To tackle the

above problem, a number of X-tolerant compactors were proposed [8, 22, 23，26,

33, 36], which are able to tolerate a small percentage of X-bits in test responses

at the cost of higher DfT overhead and less compaction ratio. Generally speak-

ing, with the growth of X-bits, the compaction ratio is decreased and the silicon

area used to tolerate these X-bits increases. Therefore, the number of X's in test

CHAPTER 1. INTRODUCTION 10

Ve Vs
V4 V3 Input Vector
V2 vi (from ATE)

S3 S2 S1

J U P3_ Pl__

Pa P7 Pe Ps

P12 P11 P10 P9

Test Pattern
(to Scan Chain)

Scan Slice

Figure 1.5: An Example Linear Decompressor

responses cannot be too high.

Linear Algebra in Decompressor and Compactor

In linear decompressor-based TDC technique, we generate the large-sized deter-

ministic test cubes by expanding small input variables. We use an example linear

decompressor shown in Fig. 1.5 to demonstrate the test compression process. For

the sake of simplicity, we omit phase shifter in this example.

The inputs supplied to the linear decompressor are comprised of the initial state

of the linear FSM and the input variables coming from the ATE; while the output

from the linear decompressor is the actual test pattern applied to the circuit. The

structure of the linear decompressor can be represented by a transformation matrix

and it determines the linear relationship between the input vector and the output

vector M xV = P, as shown in the following:

CHAPTER 1. INTRODUCTION 11

0 1

0 0 1 0

0 1 0 0

0 1

Vo

•Tl
Si

S4
VI
V2
V3
V4

V5

w

丨、
P2

PS
P6
PI
PS
P9
P\0
PU

WJ

(1.1)

It is important to note that, for each deterministic test cube, we only need to

solve a subset of linear equations that correspond to the specified bits in P. Suppose

we are given a test cube a s P = (l X O X A ' X 1 X X 1 X X)^, by omitting those

equations that correspond to X-bits, we have Ms xV = Ps as:

0 0

0 0

0 0 0

S\

乃

VI

VI
vj
V4

V5

V'6/

1

0

1

w
(1.2)

According to linear algebra theory, the above equation system is solvable if

and only if the coefficient matrix Ms has the same rank as that of the correspond-

ing augmented matrix (Mj|Pv)- Gaussian elimination is a widely used algorithm

CHAPTER 1. INTRODUCTION 12

to find the rank of a matrix, which reduce a matrix to row echelon form by ele-

mentary row operations. After conducting it, we can obtain the following reduced

augmented matrix

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0

(1.3)

We name M'^ and P'^ as reduced coefficient matrix and reduced result column,

respectively. The first non-zero entry in each row of is called a pivot, and its

corresponding column is a pivot column (in bold) which only includes one non-

zero entry. Consequently, the test pattern is compressible if and only if the reduced

result column P'̂ is not a pivot column.

For test response compaction, in addition to traditional compactors based on

multiple input signature registers (MISR), a number of compactors have been pro-

posed to handle fault coverage loss due to aliasing and unknown logic values in

test responses (e.g., arise from bus contention and multiple clock domains). We

briefly introduce the X-compact technique presented in [22J here as it is used in

this thesis work. X-compactor in [22] is essentially a combinational XOR network

that can be also represented as a transformation matrix. The authors proved that it

is able to detect k\ error bits in present of any hi X-bits within a single scan slice.

Consequently, with the help of such circuit-independent compactor, it is not nec-

essary to store the transformation matrix of compactor during the ATPG process.

Instead, we only need to control the number of X-bits in every scan slice and the

number of bits used to detect error in it. Obviously, with the increase of k\ and

k2, the DfT area overhead for the compactor increases and the compaction ratio is

reduced.

CHAPTER 1. INTRODUCTION 13

Struclurally-Testable
Functionalfy-Untestable

Faults

Iructurally-Untestable
unclionally-Testable

Faults

Figure 1.6: Fault Classification

Pseudo-Functional Manufacturing Test

The manufacturing test itself, unfortunately, is also not perfect. On one hand, as

it is impossible to model all the possible manufacturing defects and generate test

patterns for them, some bad chips may pass the test, leading to test escapes. On

the other hand, since a circuit in test mode oftentimes operates differently from the

one in functional mode, some good chips that would work in application may fail

the test and are marked as defective, leading to test overkills.

We can classify manufacturing defects based on their detectabilities as shown

in Fig. 1.6 [19]. As can be observed, there might be a small number of defects

that are functionally-testable but structurally-untestable (FT-SU). For instance, in-

serting test logic between random logic and RAM blocks may cause some defects

in the functional paths to become untestable. At the same time, there are many

functionally-untestable while structurally-testable (FU-ST) defects. This is mainly

due to the fact that the functional constraints existing in the circuit are possibly vio-

lated in structural test mode. Consider a finite state machine encoded with one-hot

code, the legal combinations of values in these state elements are only those with

a single logic 1 and all the others logic 0. Without taking this functional constraint

into consideration, we may have structural patterns that contain multiple logic Is

and hence are illegal in functional mode. Those defects that are detectable only

CHAPTER 1. INTRODUCTION 14

with such patterns are FU-ST defects. It can be also seen from the figure that not

all structurally-testable defects are covered by test patterns due to imperfect fault

modeling and test cost considerations. Test escapes occur for those ICs containing

functionally-testable defects that are not covered by test patterns; while the ICs

that would work in application but are rejected in manufacturing test become test

overkills (also known as false rejects). Test overkills can be attributed to FU-ST

defects covered by test patterns and/or excessive noises in test mode.

Traditionally, the primary objective of manufacturing test is to obtain low test

escapes in order to ensure the quality of the shipped products, and a limited num-

ber of false rejects are considered as acceptable loss. For ICs fabricated with lat-

est technology, however, at-speed testing is essential to ensure the quality of the

shipped IC products, rendering over-testing due to the discrepancy between cir-

cuits' activities in functional mode and that in test mode a serious concern for

the industry [27, 29, 5]. Recent design evaluations have revealed that at-speed

scan patterns were up to 20% slower than any functional pattern [30]. Conse-

quently, some good ICs that would work in application might fail at-speed delay

tests [21]. With today's tight profit margins, particularly for chips that go into

consumer products, achieving a high manufacturing yield can mark the difference

between success and failure, and just a small variation in yield percentage can

translate to millions of dollars of revenue change. Therefore, how to reduce yield

loss caused by test overkills has become a main concern for the industry.

One way to reduce test overkills is to identify FU-ST delay faults in the cir-

cuit and do not target them during test generation. A significant amount of re-

search work has been conducted in this direction (e.g., [3, 6, 7，11，32]). However,

FU-ST delay fault identification generally has the same complexity as that of se-

quential ATPG [19], which is exponential in terms of circuit's size. In addition,

while test patterns are only generated for those functionally-testable faults in the

CHAPTER 1. INTRODUCTION 15

Figure 1.7: Pseudo-Functional Test Pattern Generation

above methods, it is still possible that they incidentally detect some FU-ST faults

and hence lead to test overkills [19]. Moreover, even for patterns that detect only

functionally-testable faults, as we typically let them target as many faults as possi-

ble to reduce testing time, they might lead to excessive noises that could not occur

in functional mode, again, rendering possible test overkills.

Instead of identifying FU-ST delay faults in the circuits, Lin et al. [16] pro-

posed the concept of pseudo-functional testing to tackle the above problem. The

overall flow of pseudo-functional testing is illustrated in Fig. 1.7，wherein functional-

like patterns were generated for manufacturing test by identifying illegal states

(i.e., functionally-unreachable states, we refer the functional constraints as the

constraints that test pattern cannot include functionally-unreachable states) in func-

tional mode and avoiding them during the test pattern generation process.

One of the key issues in pseudo-functional testing is to identify illegal states.

In [16, 17], Lin et al. used a sequential boolean satisfiability (SAT) solver [20]

to extract the functional constraints in the system. Wu and Hsiao [38] proposed

a mining-based strategy for illegal state identification. In this scheme, the circuit

CHAPTER 1. INTRODUCTION 16

is expanded to multiple time-frames first and then simulated with a number of

random patterns. By analyzing the obtained data, some suspicious functional con-

straints are extracted and they use SAT solver to verify whether they are actually

functionally-illegal. Zhang et al [39] proposed an implication-based technique

for illegal state identification, which try to detect values combination on FFs to

imply impossible logic scenario on a single gate (e.g. both input and output of a

NOT gate are logic，1’).

When illegal states are available, the constrained ATPG process can be con-

ducted as shown in [17], in which illegal states are represented as clauses in con-

junctive normal form (CNF), for example {A(0)八5(0)} V {A(l) A5(l) AC(1)}.

Whenever the ATPG engine tries to assign value on an FF, say A = 0’ all the clauses

including A(0) are first extracted (e.g., {A(0),5(0)}). If B is the only un-assigned

FF in this clause, ATPG automatically assign B to be logic ‘ 1 ’ to satisfy this func-

tional constraint. Because of this, pseudo-functional test patterns typically feature

much fewer X-bits when compared to conventional structural test patterns without

considering functional constraints.

1.3 Thesis Motivation and Organization

It is important to note that, pseudo-functional test patterns do not necessarily guar-

antee to be within the functionally-reachable space even after imposing functional

constraints, because the set of extracted illegal states is usually incomplete and

thus a subset of the complete illegal-state set (see Fig. 1.8). Therefore, whether we

could minimize the discrepancy between functional mode and test mode highly re-

lies on whether we could effectively identify as complete illegal states as possible.

Although the SAT-based technique can ensure the completeness, such a brute-force

method can only be applied to a small circuit (or a sub-circuit) at a time. Other

existing methods cannot even answer the question "how far are they from the com-

CHAPTER 1. INTRODUCTION 17

ctionally-Reachable

Figure 1.8: Illustration of Incomplete Identified Illegal State

pleteness?". Motivated by the above challenges, the first part of this thesis tries to

investigate the fundamental problem of why there are illegal states in the system

from the structural point of view. Such root cause analysis is important since the

solution space for illegal state identification can be significantly reduced without

sacrificing its completeness.

Recently, test compression has become the de facto DfT methodology to han-

dle the growth of test data [25, 34]. As discussed earlier, to avoid a large amount

of illegal states, the percentage of X-bits in pseudo-functional patterns can be quite

low. This has a severe impact on the effectiveness of test data compression tech-

niques, since they mainly exploit X-bits in test cubes to achieve significant test

volume reduction without sacrificing fault coverage. Therefore, how to effectively

apply pseudo-functional patterns in test compression environment is another rele-

vant problem for the success of pseudo-functional testing and it is the focus of the

second part of this thesis work.

The remainder of this thesis is organized as follows. Chapter 2 presents the

theorem and proof for the structural root cause of illegal state. Based on this,

effective and efficient algorithms are proposed to systematically identify illegal

states in the circuit under test. Next, Chapter 3 describes our solutions to apply

pseudo-functional tests in linear decompressor-based test compression environ-

CHAPTER 1. INTRODUCTION 18

ment, which is able to achieve similar fault coverage as conventional structural

patterns, without incurring over-testing to the circuits and sacrificing test compres-

sion ratio loss. Finally, chapter 4 concludes this thesis and points out our future

research directions.

• End of chapter.

Chapter 2

On Systematic Illegal State

Identification

2.1 Introduction

Pseudo-functional testing seems to have great potential for resolving the discrep-

ancy problem between structural test mode and functional mode. However, whether

we could realize this potential highly relies on whether we could effectively iden-

tify as many illegal states as possible. That is, if the extracted illegal states are far

from complete, there is still a high possibility that the generated pseudo-functional

test patterns are not within the circuit's functionally-reachable space, which inval-

idates the objective of pseudo-functional testing.

Several approaches were proposed for illegal state identification in the litera-

ture, including SAT-based methods [16], implication-based strategies [31, 39], and

mining-based techniques [38]. None of the above techniques, however, answers

the fundamental question why some states are functionally-unreachable from a

structural point of view. They also have their own specific limitations and can only

extract a small set of illegal states in the circuit (detailed in chapter 2.2). Conse-

19

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 20

quently, for the success of pseudo-functional testing, more effective techniques are

required for illegal state identification.

In this chapter, we propose novel solutions to tackle the above problem. The

contributions of our work include:

• we show that the illegal states in circuit are mainly caused by the multi-

fanout nets in the circuit.

• we propose novel algorithms that are able to effectively identify much more

functionally-unreachable states when compared to state-of-the-art techniques.

The remainder of this chapter is organized as follows. Chapter 2.2 reviews re-

lated prior work and motivates this chapter. In Chapter 2.3, we study the structural

root cause for illegal states. The main flow and the key concept for the proposed

illegal state identification scheme are then detailed in Chapter 2.4 and Chapter

2.5, respectively. Next, Chapter 2.6 presents our experimental results on several

ISCAS'89 benchmark circuits. Finally, Chapter 2.7 concludes this chapter.

2.2 Preliminaries and Motivation

Illegal state identification has been studied in the context of sequential ATPG in

several earlier works [12,14], wherein they were used to prune the search space for

sequential tests. In [12], known illegal states are used to generate larger candidate

illegal spaces by eliminating one assignment in the illegal states at a time and

trying to justify them. [14], on the other hand, identified invalid states by exploring

all valid states through simulation from an unknown initial state. These techniques

used in sequential ATPG are not practically viable for today's large ICs due to their

extremely high computational complexity.

In [16], Lin et al. used a sequential boolean satisfiability (SAT) solver to extract

the functional constraints in the system. While theoretically a SAT solver is able

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 21

to find almost all the unreachable states in a circuit, its computational complexity

is extremely high and hence cannot be applied to a large circuit. Therefore, the au-

thors in [16] proposed to divide the flip-flops (FFs) in the circuit into a number of

much smaller groups based on topological analysis and the targeted fault informa-

tion, each containing few FFs only (e.g., less than 10)，and run a SAT solver within

each group to identify illegal states. Apparently, it is possible that functional con-

straints exist among different groups and this method cannot identify such kind

of illegal states. Moreover, the SAT solver might still abort the computation even

within a small group of FFs.

Zhang et al. [39] proposed an implication-based technique for illegal state

identification. The method starts from any gate, say gate A, and finds the implica-

tions when its output value is logic '1’ and logic ‘0’，respectively. Suppose B and C

are internal flip-flops in the circuit, and there exist two implications: [A(0) —>5(1)

(i.e., A = 0 implies B = \) and [A(l) C(0)]’ we then have [5(0) 一 A(l)] and

C(l) — A(0)] according to the contrapositive law. Consequently, we can con-

clude {5(0),C(l)} is an illegal state cube. The approach proposed in [39] also

considered the implications from impossible input-output combinations (e.g., for

a 2-input AND gate, when an input is logic ‘0’ while the output is logic ‘1，).

To keep the computational complexity manageable, their approach implies val-

ues based on a single node in one time-frame only. This, however, significantly

restricts the number of identified illegal states.

Syal et al. [31] considered multi-node functional constraints obtained through

sequential implications, which cannot be identified within a single time-frame as

in [39]. They also advocated to represent illegal states in the form of boolean ex-

pressions on arbitrary nets in the circuit instead of values on the state elements.

Unlike what the authors claimed, however, using this representation may increase

the storage overhead for the constraints significantly, because the number of arbi-

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 22

trary nets is much larger than the number of state elements in the circuit and lots

of their obtained functional constrains are redundant in nature.

Recently, Wu and Hsiao [38] proposed a mining-based illegal state identifica-

tion strategy. In this work, the circuit is expanded to multiple time-frames first and

then simulated with a number of random patterns. By analyzing the obtained data,

some suspicious functional constraints are extracted and they use a SAT solver

to verify whether they are actually functionally-unreachable. While this dynamic

learning method accelerates the search procedure, due to the large amount of data,

it can only check pair-wise and three-node relations within small groups of state

elements and hence cannot find many illegal states in the system.

To sum up, identifying illegal states using SAT-based [16] or mining-based

techniques [38] can be classified as brute-force approaches, which can only be ap-

plied to one small sub-circuit at a time. Implication-based methods [31, 39] that

consider circuit structural information to tackle this problem seem more promis-

ing. Unfortunately, none of them answers the fundamental question why there are

illegal states in the system from the structural point of view. Finding the root cause

of illegal states is extremely important for this problem, as with this information

the solution exploration space can be significantly reduced without sacrificing its

completeness. This facilitate pseudo-functional testing to be applicable to real in-

dustrial designs. It is the above observation that motivates this work.

2.3 What is the Root Cause of Illegal States?

Let us examine an example circuit as shown in Fig. 2.1 to demonstrate our struc-

tural root cause analysis for illegal states. This is the gate netlist of a finite state

machine that contains six illegal state cubes (see Fig. 2.1). A closer observation of

the circuit shows that except {FF2(0),FF3{0) ,FF4(0)}, all the other five illegal

state cubes imply logic violation at a multi-fanout net. For example, let us try to

InputO
Inputi
Input2

- { > - [E

Contradiction

0

FF1 FF2 FF3

0

Contradiction
Inputi

- - - - rn j iu f f l；
x" " " o " ” " i “ … 6 FFl"
X 0 0 1 FF1
X 1 1 1 F F 1

FF2 —

m a FF3 —

[U M

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 23

Figure 2.1: Unreachable State Analysis

justify illegal state {FF2(1),FF3(0),FF4(0)}. First, we can learn Input0{0) and

0(0) through OR gate Q, and G(l) and FFO(O) through OR gate N. We can then

derive 7(0) and A:(0) through OR gate O and H(\) through the inverter H. Next,

FFl(O) is justified through AND gate J. Finally, we can infer InputO{l) through

AND gate P with FFl(O) and FF4{0), which, however, contradicts to the afore-

mentioned {/npMrO(O)} justified through another fanout going through gate Q. On

the other hand, although the illegal state cube {FF2(0),FF3(0),FF4(0)} do not

imply any logic violation at a multi-fanout net directly, it actually infers another

illegal state cube {FFO(\),FF\{\)}. In other words, this particular illegal state

also causes logic violation on a multi-fanout net Inputi implicitly, which occurs at

another time frame. This example motivates us to consider whether multi-fanout

nets are the main root cause of illegal states.

Definition 1 Consider a circuit that does not contain any multi-fanout nets, de-

noted as circuit C. FFi is the i仇 flip-flop in circuit C. The flip-flop set ^ contains

all flip-flops that do not belong to any sequential loop. The flip-flop set Lj contains

all flip-flops belonging to the / h sequential loop, and 丄（X = IJj Lj) is the set of

all flip-flops belonging to any sequential loops.

1
 X

 .
复

 X
 X

 Y

w

扎

 B
I
S

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 24

Definition 2 S{FFi) is defined as the father-cone set of FFi, including all state

elements (including both primary inputs and flip-flops) that directly determine the

next state of FFi. Ancestor-cone set J^(FFi) includes all state elements that di-

rectly or indirectly determine the state of FFi in one or more clock cycle(s).

Lemma 1 In circuit C, S{FFk) A 二 0 when k^n.

proof 1 If there exist a common state element within S{FFk) and S(FFn), there

must he a multi-fanout net in the circuit, which is conflicted with the definition of

circuit C,

Lemma 2 The states of any elements in Lj cannot affect the states of elements

outside of this set.

proof 2 Suppose there is a flip-flop FF^ belonging to the flip-flop set L, whose

father-cone set S{FFf^) includes at least one flip-flop FFn belonging to Lj. Since

all jiip-fiops in Lj are connected one by one to form a sequential loop, FF^ also

belongs to the father-cone set of another flip-flop FFq in Lj. Therefore, S[FFk)

and S{FFq) have a common state element, which contradicts Lemma 1.

Definition 3 The sequential level of a flip-flop FFi set L is set to be the maximal

sequential level of all state elements in S{FFi) plus one, assuming the sequential

level of all primary inputs is 0.

Theorem I In a circuit C, suppose the maximum sequential level of the elements

in L is n, any state of L can be reachable within n clock cycles from the primary

inputs.

The above theorem proves that no functionally-unreachable states exists in the

NLF of CS. However, it cannot guarantee the same conclusion holds true for

sequential loop structure (i.e. some FFs are connected by combinational logic and

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 25

form a cycle). Consider the circuit shown in Fig. 2.2 as an example, we observe

that if FFO and FF\ are initialized as {FF0(0),FF1(0)}, it would never escape

from this state even if we change the states of FF2 — FF5, the other three states for

FFO and FF\, therefore, are not reachable. Such sequential loop-induced illegal

states are very difficult, if not impossible, to be found by any automatic illegal state

identification method. This is because: (i). a sequential loop expands their effects

to different sequential levels in an infinite number of time frames; (ii). which states

are reachable depends on the initial state of the involved flip-flops.

Fortunately, the illegal states caused by sequential loop are rare cases, because

the conditions to form sequential loop-induced unreachable states are quite strin-

gent: (i). between any connected flip-flops on the loop, there must be a controlling

path as shown in Fig. 2.2，which is a logical path where a controlling value can

be directly propagated from the beginning to the end; (ii). all controlling paths

should have transitivity, i.e., the output controlling value of a path should be the

input controlling value of the next path. If any one of the above two conditions is

not true, any states in the sequential loop is functionally-reachable. For example,

in Fig. 2.2, suppose we just change the NOR gate which connects with FFO to

an OR gate, the controlling path from FFl to FFO is broken. The value of FFO

is not solely dependent on its previous on-loop flip-flop F F l . Starting from this

flip-flop, we first set its value by assigning FF4 二 1 and FF5 = 1 such that FFO

can be flipped to logic 1 and then controlling path between FFO and FFl will be

also broken. Therefore, the state of the sequential loop in next clock cycle can be

determined by FFl — FF5, thus can reach any state. Moreover, even for these rare

sequential loop-induced unreachable states, their impact on testing is rather lim-

ited because the involved state elements typically span a number of clock cycles

while we target defects in combinational logic between adjacent cycles in testing.

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 26

Figure 2.2: Sequential Loop-Induced Unreachable States

Because of the above reasons, we can simply ignore the unreachable states

caused by sequential loops without damaging the effectiveness of pseudo-functional

testing much.

2.4 Illegal State Identification Flow

As discussed earlier, illegal states would imply logic violations at different branches

of the same multi-fanout net, explicitly or implicitly. A first thought to generate

illegal states is then to propagate contradictive logic values at different branches of

multi-fanoiits concurrently, and find out which state cubes can justify this combi-

nation. These state cubes can then be deemed as illegal. We initially tried out for

this intuitive method and found out it is not a good solution. This is because: (i).

we need to avoid the case that two fanout branches with contradictive values propa-

gate through the same logic elements (as we cannot determine its value under such

circumstances), which results in incomplete identified illegal states; (ii). as we

need to propagate contradictive logic values at the branches of each multi-fanout

net pairwisely, for those nets that contain a high number of branches, we need to

propagate along each branch multiple times and it is a waste of computational ef-

forts. To resolve the above problems, instead of propagating contradictive values at

{FF2(0) ,FF4(0) } ->FF1(l \
{FF2(0),FF3(0)}->FF1{1)

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 27

Figure 2.3: An Example Circuit for Illegal State Identification

multi-fanout nets, we determine which state cubes can justify logic ‘1’（‘0，）at the

multi-fanout nets independently and use this information to obtain illegal states.

We use the an exemplar circuit shown in Fig. 2.3 to explain the main flow of the

proposed illegal state identification scheme, as depicted in Fig. 2.4.

Let us define the so-called justification scheme at every circuit node in the

format of CubeO — 0 and Cubel —> 1，denoting that a state cube CubeO/Cubel

justifies logic ‘0/1’ on this node. For example, a justification scheme FFO(l) —>•

lnput\{Qi) in Fig. 2.3 means that FFO = 1 can justify logic ‘0’ at circuit node

In put I. All such justification schemes are systematically built for each net be-

fore unreachable state extraction (detailed in Chapter 2.5). According to previous

discussion, we always start from a multi-fanout net and try to derive illegal states

using contradictory justification schemes. In this example, for the multi-fanout at

Input], we have {F尸0(1)} lnputl(0) and {FF\(\)} — Input\{\). We can

therefore conclude that the state cube {FFO{\) ,FF\{\)} is illegal as they justify

contradictory values in this fanout. The above procedure needs to be conducted

for every multi-fanout nets.

As the illegal state cubes obtained from different paths may contain redundant

\

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 28

information (e.g., the set of illegal state cubes shown in Fig. 2.1 is not the most

compact one), we need to remove such redundancy so that all the cubes are min-

imized and disjoint to each other. This step is conducted by gradually building

up a hypergraph for identified illegal state cubes. That is, each flip-flop (FFx) is

split into two vertices (FFx(O) and FFx(\)) to denote its two possible logic val-

ues, and an illegal state cube can be represented as a hyperedge that connects the

corresponding vertices. We define the following relationships between hyperedges

A and B:

• if A connects to only a subset of vertices of B, we denote this relationship as

A dominates B. Apparently, the corresponding illegal state cube for hyper-

edge A contains that of B.,

• if both A and B connect to n vertices, and among them n — 1 vertices are the

same and the remaining one corresponds to the same flip-flop with different

logic values, we denote this relationship as A and B complement each other.

These two hyperedges can be replaced by a single hyperedge that connects

to the n - 1 common vertices according to our definition.

Every time we add a new hyperedge into the graph, we check the above re-

lationships for its related edges and finally we get a compact set of illegal state

cubes without redundancy. For example, for the illegal state cubes shown in Fig.

1，they can be finally compacted into five illegal state cubes: {FF0(1),FF1(1)},

{FF3(0) ,FF4(0)} ,{FF2(0) ,FF3(0)} ,{FF2(0) ,FF3(l) ,FF4(0)} ,and{FF2(l) ,

FF3(1) ,FF4(1)}, using the above method.

Next, we expand the current illegal state cubes to the next sequential level,

again, using the justification scheme information. For the example circuit in Fig. 2.3,

according to structural analysis, two justification schemes at FFO and FF\ are de-

tected. We explore all possible combinations of expanded unreachable cubes, and

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 29

Figure 2.4: Flowchart for the Proposed Illegal State Identification Scheme

obtain new cubes, e.g., {FF2(0),FF4(0)} and {FF2(0),FF3(0)}. As shown

in our flowchart in Fig. 2.4，this step is conducted in a stack-like manner. That

is, whenever we generate new illegal state cubes through expansion, they will be

pushed into the illegal state set for later expansion as well. Compared to prior work

that explicitly expand the circuit into a few time frames for illegal state justifica-

tion, the above procedure is able to implicitly walk through an unlimited number

of time frames of the circuit efficiently. Finally, the whole procedure for our illegal

state justification terminates when there is no unexpanded illegal state.

So far we have discussed how to conduct illegal state extraction, expansion, and

compaction, with available justification schemes at every circuit node. In the rest

of the chapter, the key issue in our algorithm, how to construct these justification

CHAPTER 2 O N SYSTEMATIC ILLEGAL STATE IDENTIFICATION 30

CubeO->O^II>h„hon->i Cube1-><-^,,hpi.>n CubeM->l'C^,.hpn->n

Cube0->0

CubeM=Merge(Cube1,CubeO)

(a) Backward (b) Forward (c) Dependent

Figure 2.5: Propagation Rules for Justification Schemes

schemes in an efficient and effective manner, is discussed in detail.

2.5 Justification Scheme Construction

We start our justification scheme construction at the input of each flip-flop, which

can be obtained directly with the state of the flip-flop. We then propagate these ini-

tial justification schemes to every circuit node based on the following propagation

rules:

Rule 1: Backward Propagation

A non-controlled value at the output of a logic gate (e.g., logic ‘1’ for a NOR

gate) will imply non-controlling value for its inputs of this logic gate. Therefore,

a justification scheme that justifies a non-controlled value at the output of a logic

gate can be propagated to all inputs of this logic gate to justify the non-controlling

value there, referred as backward propagation. The backward propagation of justi-

fication schemes over a two-input NOR gate is shown in Fig. 2.5(a) as an example.

Rule 2: Forward Propagation

A justification scheme that justifies the controlling value at any input of a logic

gate also justifies the controlled value at its output (e.g., logic ‘1’ for an OR gate).

If this scenario occurs, we can propagate the justification scheme from the input

to the output directly, referred forward propagation. Similarly, an example for

two-input NOR gate is shown in Fig. 2.5(b).

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 31

Figure 2.6: Generation of Sophisticated Justification Schemes

Rule 3: Dependent Propagation

Generally speaking, to justify a controlling value at a certain input of a logic

gate, we need to justify its output to be the controlled value as well as all other

inputs to be the non-controlling value. Therefore, dependency exist when propa-

gating such justification schemes and we need to merge state cubes to obtain such

justification schemes, referred as dependent propagation. Again, an example for

NOR gate is shown in Fig. 2.5(c). Please note that, no justification schemes would

be generated if there is any conflict when merging state cubes.

Let us use an example circuit (see Fig. 2.6) to show how we can build so-

phisticated justification schemes based on the above propagation rules. After ini-

tialization, three schemes FFO(l) ->A(1), FF2{\) - ^ C (l) and FF\{\)B{\)

are built. Then, justification scheme FF2{\) —̂ C(l) is propagated along path

C - D - £： and we can obtain justification scheme FF2[1) £(0) at E. Together

with F F l (l) — 5(1), we have {FF1(1),FF2(1)} — F(l) . According to the

above and FFO(l) - ^A(l) , we can finally obtain {FF0(1) ,FF1(1) ,FF2(1)}—

G(0). The last two schemes which is generated based on dependent rule cannot

be extracted by implication based technique since such method can only generate

justification schemes between single flip-flop and single node.

The above propagation rules, however, are not enough for us to build complete

{FF1{0)}->K(0)

FFO

一 FF1

{FF0(0)}->M(0)

(b)

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 32

Figure 2.7: The Impact of Reconvergent Nodes

justification schemes. For example, for the example circuit shown in Fig. 2.7(a),

if we would like to propagate justification scheme FFl(O) —> £(0) backwardly, as

logic ‘0’ is a controlled value for AND gate E, based on dependent propagation

rule, we need to merge FFl(O) with the cube that justifies H{\) (i.e., F F l (l))

to obtain the cube that justifies D(0). Apparently, this merging is not possible

and hence we have to stop propagation through gate D. Consequently, we cannot

obtain justification scheme FF 1(0) A (0) based on our earlier propagation rules.

This justification scheme, however, does exist, because £(0) implies D(0) and/or

H{0) while both D(0) and H{0) imply A(0). Similarly, the justification schemes

shown in Fig. 2.7(b) cannot be obtained with the above propagation rules. A closer

examination of the circuit shown in Fig. 2.7(a) reveals that the existence of the

justification scheme FFl(O) —> A(0) is due to the fact that gate E is a reconvergent

node of multi-fanout net Inl. That is, both inputs of gate E are affected by In2

and this essentially leads to the implication of A(l) — In2{\) E(\) and hence

FFl(O) E(0) — A(0). For the circuit in Fig. 2.7(b), even though there is no

reconvergent node in the traditional sense, considering logic cubes are propagated

both forwardly and backwardly, gates K and M can be also deemed as virtual

reconvergent nodes.

As the occurrence of the above missing justification schemes can be attributed

to reconvergent nodes, to resolve this problem, we conduct implication at every

(a)

I

I
I

li

I
I

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 33

Benchmark

[39] Proposed

Benchmark
Total #

o f

2-bit

o f

3-bit

o f

4-bit
Total #

o f

2-bit

o f

3-bit

o f

4-bil

#01�

5-bit

#ot.

Large

o f

Expanded Cubes

s208 16 If) 0 0 23 23 0 0 0 0 0

s444 16 12 4 0 49 14 20 15 0 0 0

s953 116 101 15 0 365 153 133 78 1 0 0

si 196 35 10 25 0 138 10 43 42 20 23 0

s5378 1006 293 711 2 8516 399 2584 266 2383 2884 681

s9324 195 47 148 0 1109 47 168 108 204 582 17

si 3207 2809 1222 1330 257 82291 1445 4156 14002 27760 34928 60140

si 5850 507 112 392 3 5568 239 399 777 261 3892 65

S 3 8 4 1 7 988 483 496 9 90983 864 3094 16544 34641 3 5 8 4 0 4 2 5 5 9

S 3 8 5 8 4 1 0 6 0 9 1591 9 0 1 8 0 6 3 5 5 8 2 1 6 3 1 1 9 4 7 2 3 5 1 0 7 8 3 2 8 4 3 0 3 9 2 1 3

Table 2.1: Experimental Results for Illegal State Identification.

circuit node and we record those implications that lead to the same non-controlling

value of a logic gate (if not, there is no reconverging effects). For example, by

doing so, we can learn A(l) implies the non-controlling logic T at both inputs

of logic gate E. Hence we have A(l) E{\) and we would record E{0) —> A(0),

which can be used during propagation through gate E to obtain FFl(O) A(0).

Based on the same principle, we would record A (̂0) —M(0) and M(0) — K(0)

for the circuit shown in 2.7(b), which can then be used to build the justification

schemes shown in the figure. It is important to note that, those implications that

do not lead to the same non-controlling value of a logic gate would be discarded,

as they can be obtained based on our propagation rules.

By conducting the above implication procedure before the justification scheme

propagation process, we are able to build complete justification schemes for the

circuit.

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 34

2.6 Experimental Results

To evaluate the effectiveness of the proposed solution, we perform experiments on

several ISCAS'89 benchmark circuits, comparing against the implication-based

algorithm in [39], which is shown to be able to obtain much more illegal states

than the SAT-based method in [16]. We do not compare against [31] and [38]

because they do not store functional constraints in the format of illegal states (in

arbitrary nets instead). Our experiments are conducted on a 2GHz PC with 1GB

memory.

In [39], the authors reported the total number of illegal state cubes only. Let

us first compare this value obtained using the two algorithms, as shown in Table

3.2 (see Columns 2 and 7). Apparently, we can find much more illegal states when

compared to [39]. It should be also highlighted that our algorithm is generally

more effective for those large circuits.

As one 2-bit illegal state cube can be represented as two 3-bit illegal state

cubes, this makes comparing the total number of illegal state cubes not quite de-

pendable. As a result, for fair comparison, we re-implement the algorithm in [39]

and all illegal state cubes detected by the two algorithms are compacted in the

same manner to remove redundancy ^ In Table 1, we classify all the illegal state

cubes according to the number of specified bits. We can observe that most illegal

state cubes detected by [39] are 2-bit or 3-bit cubes (there are no cubes with size

more than 4). This is because their rather simple implication scheme can only

obtain relatively small-sized functional constraints. The proposed method, on the

other hand, is able to generate a great amount of large-sized illegal state cubes (i.e.,

cube size larger than 3). More importantly, our method also obtains much more

2-bit and 3-bit cubes than [39], which is able to restrict the functional space more

' D u e 10 the different implementations, our results for [39] are different from thai re-

ported in [39]. We have sent the source code for our implementation to the authors of [39].

CHAPTER 2. ON S YSTEMATIC ILLEGAL STATE IDENTIFICATION 35

effectively. It can be also observed from the table that our illegal state expansion

technique is quite effective. For certain benchmark circuits (e.g., si3207), the il-

legal cubes generated by expansion can reach nearly 80% of the total identified

illegal states.

Finally, we carefully examine the illegal state cubes generated from the two

algorithms, and we find out that all the illegal states obtained in [39] are covered in

the illegal state cubes obtained using our proposed method. This further proves that

multi-fanout nets are the main structural root cause for functionally-unreachable

states, and gives us more confidence to realize the potential of pseudo-functional

testing using the proposed methodology.

2.7 Conclusion

The discrepancy between ICs’ activities in normal functional mode and that in

structural test mode has an increasingly adverse impact on the effectiveness of

manufacturing test with technology advancement, as reported in several industrial

studies (e.g., [5, 29, 30]). Pseudo-functional testing seems to have great potential

to resolve this problem, but whether we could realize this potential highly relies

on whether we could effectively identify as many illegal states as possible. In

this chapter, we show that the main structural root cause for illegal states is the

multi-fanout nets in the circuit. Based on this observation, we develop efficient

and effective algorithms for illegal state identification. Experimental results on

ISCAS'89 benchmark circuits demonstrate that the proposed technique is much

more effective when compared to state-of-the-art solutions.

• End of chapter.

Chapter 3

Compression-Aware

Pseudo-Functional Testing

3.1 Introduction

Since pseudo-functional tests need to avoid a large amount of identified illegal

sates, the number of specified bits in pseudo-functional patterns are usually much

larger than that of structural patterns. In other words, the percentage of X-bits

in pseudo-functional patterns can be quite low. This has a severe impact on the

effectiveness of test data compression techniques, since they mainly exploit X-

bits in test cubes to achieve significant test volume reduction without sacrificing

fault coverage. Since on-chip test compression has become a de facto DfT tech-

nique used in the industry, how to effectively apply pseudo-functional patterns in

test compression environment is a key issue for the success of pseudo-functional

testing.

Method [15] targeted the same problem as ours, by adding decompression

logic into CUT and activating illegal states as constraints, they can generate the

compressible and pseudo-functional test patterns directly. However, as number

36

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

of illegal states identified by our method is much larger than that used in [15],

their method is not suitable for current situation. In this chapter, we propose novel

compression-aware pseudo-functional testing techniques to address the above prob-

lem. Firstly, we insert functional constraints as phantom gates into the circuit so

that the ATPG engine could take them into account automatically. Then, instead

of activating all the functional constraints during ATPG, which inevitably leads to

a large amount of specified bits in obtained patterns, we only activate the relevant

ones for the targeted fault to generate compression-friendly patterns. Obviously,

it is possible that the decompressed test patterns violate certain functional con-

straints as they are not considered. This issue is addressed by: (i). we propose

novel heuristics to fill the free X-bits in test cubes so that the number of vio-

lated constraints is as small as possible; (ii). for the violated constraints (if any)

that might lead to incidental test overkills, we take advantage of the available X-

tolerant compactor in TDC architecture to mask the error effects from those faults

that are detectable only because of the illegal states. Moreover, we also show how

to generate compressible random patterns that do not violate functional constraints,

by applying multiple launch cycles before the actual capture cycle. Experimental

results on ISCAS'89 benchmark circuits show the effectiveness of our proposed

compression-aware pseudo-functional testing technique.

The remainder of this chapter is organized as follows. Chapter 3.2 reviews

related work and motivates this chapter. In Chapter 3.3 and Chapter 3.4，we detail

our proposed methodology for compression-aware pseudo-functional testing and

our test pattern generation process, respectively. Experimental results on several

large ISCAS'89 benchmark circuits are then presented in Chapter 3.5 to show the

effectiveness of the proposed solution. Finally, Chapter 3.6 concludes this chapter.

* P s e u d o - f u n c t i o n a l p a t t e r n s

I S t r u c t u r a l p a t t e r n s

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

3.2 Motivation

The functionally-unreachable space for an integrated circuit can be quite large.

Consequently, when we generate only functionally-reachable patterns during ATPG,

the number of specified bits in pseudo-functional patterns would be much higher

than conventional structural patterns that do not consider such functional con-

straints. Let us use benchmark circuit ^9234 as an example (see Fig. 3.1), after

applying functional constraints, more than 80 percent of the pseudo-functional

patterns have specified bits in the range of 20% - 30%. In contrast, only less than

two percent of structural patterns have more than 20% specified bits.

Since TDC techniques rely on the large percentage of X-bits in test cubes for

efficient test data volume reduction, if we directly apply pseudo-functional pat-

terns in test compression environment, the compression ratio is reduced dramat-

ically when compared to applying traditional structural patterns. Polian and Fu-

jiwara [24] studied this issue using a code-based TDC technique and showed the

compression ratio loss due to functional constraints.

As on-chip test compression techniques, in particular, linear decompressor-

� � • % � h
P e r c e n t a g e o f

S p e c i f i e d B i t s

Figure 3.1: Specified Bits in Pseudo-Functional Patterns and Structural Patterns

for s9234

帐

咖

帆

9
 8

 7

 6

S
E
S
e
d

J
O
 W
S
B
l
u
a
D
J
S
d

Circuit
pre-processing

C/3 二 ft) O
广 �

z
a

广 �
z
a

Insert constraints as
phantom gales

� F a u l t list

Modified circuit
for test generation

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Random pattern
generation

Pseudb-functiorial random
pattern generation ‘

f'ATPG with activation of -t
relevant constraints

[Y^

Deterministic
pattern generation

躍Constraint-aware
獨input vector generatioin ‘怎 ion »

Constraint-aware ’…�

X-assignment

""yyiT
Fault simulation

(T e r m i n a t e)

Figure 3.2: Pattern Generation Framework in Compression-Aware Pseudo-

Functional Testing

based TDC has become the de facto DfT methodology widely used in the indus-

try. How can we apply pseudo-functional tests in test compression environment

effectively is an important and challenging problem. The above has motivated

the compression-aware pseudo-functional testing methodology investigated in this

chapter, as detailed in the rest of this chapter.

D
e
c
i
-

p
r
e
s
s
o
r

M
a
t
r
i
x

r

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

3.3 Proposed Methodology

Our proposed methodology for compression-aware pseudo-functional testing is

based on the following observation:

That is, Non-functional patterns do NOT always lead to over-testing.

In another word, only if a non-functional pattern detects delay faults onfunctionally-

infeasible paths, good circuit may fail this test pattern. Therefore, instead of apply-

ing pseudo-functional patterns only, we allow non-functional patterns to be applied

to the circuit in our proposed technique.

By doing so, we do not need to activate all the functional constraints dur-

ing ATPG. Instead, we propose to only activate those relevant constraints for the

targeted fault, which facilitates to generate compression-friendly test cubes with

fewer specified bits. Obviously, it is possible that the decompressed test patterns

violate some functional constraints as they are not considered. The question be-

comes how can we avoid test yield loss induced by these violated functional con-

straints (if any), and we tackle it as follows.

Firstly, for a compressible test cube, typically we still have many X-bits left in

it after solving the linear equations corresponding to its specified bits. We propose

novel heuristics to fill them so that the number of violated functional constraints is

as small as possible.

Then, for the remaining violated constraints (if any), we take advantage of the

available X-tolerant compactor in on-chip test compression architecture to mask

the error effects from those faults that are detectable only because of the illegal

states. To be specific, for every illegal state existing in the decompressed test pat-

tern, we break the corresponding violation by setting one of its involved state ele-

ments to be ‘X’ during fault simulation. By doing so, if a delay fault is detectable

by a decompressed test pattern only due to the existence of the illegal states in

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

the pattern, its error effect in test response will be also ‘X，. Then, since we mask

them in the X-tolerant compactor, such an unexpected fault becomes untestable

with this pattern and hence the applied non-functional pattern would not result in

test overkill.

In conventional broad-side delay testing, we typically apply two-pattern tests,

i.e., one cycle for launch and one cycle for capture. If we are able to apply mul-

tiple launch cycles before the capture cycle, however, the chance to have non-

functional patterns during capture is significantly reduced [18]. The reason is sim-

ple: instead of being scanned in with any possible values, the applied patterns have

gone through the functional logic for several cycles and are largely functionally-

constrained (not guaranteed though, due to the initial illegal launch pattern). While

introducing multiple launch cycles in the deterministic test pattern generation pro-

cess is usually prohibited due to the associated huge computational complexity, we

propose to apply multi-launch cycles for random patterns, which is able to avoid

over-testing without incurring high ATPG effort.

Based on the above, the overall framework for our compression-aware pseudo-

functional testing methodology is presented in Fig. 3.2. It is worth noting that,

while this framework is generic enough to be applicable for detecting any kinds

of faults in linear decompressor-based test compression environment when over-

testing is of a concern, we focus on transition faults in this work and we assume

broad-side testing is applied to detect them. The pattern generation procedure is

detailed in the following subchapter.

PPI Phantom Gates " legal States

OA(像⑴}

Figure 3.3: Insertion and Activation of Functional Constraints as Phantom Gates

3.4 Pattern Generation in Compression-Aware Pseudo-

Functional Testing

As shown in Fig. 3.2, our proposed pattern generation framework takes the circuit

netlist, the transformation matrix for the linear decompressor and the functional

constraints (i.e., illegal state cubes) in the circuit extracted using the tool proposed

in chapter 2 as inputs and output compression-aware input vectors to be stored

in the ATE. It is comprised of three main phases: circuit pre-processing, pseudo-

functional random pattern generation and compression-aware deterministic pattern

generation for pseudo-functional testing.

3.4.1 Circuit Pre-Processing

In the circuit pre-processing phase, we first expand the circuit into two time frames,

by changing the internal flip-flops to be pseudo-primary inputs (PPIs) and pseudo-

primary outputs (PPOs).

Then, for the functional constraints that are given as illegal state cubes (e.g.,

{A(0),C(1)}), different from prior work that represents such constraints as in-

dependent formulas in conjunctive normal form (CNF) during the ATPG pro-

cess [19], we insert phantom logic AND gates into the circuit to represent them,

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

、o
>
、o
>

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

as shown in the example in Fig. 3.3. Each phantom gate corresponds to an illegal

state by linking its corresponding PPIs (directly or through an inverter), and its

output would be logic ‘ 1 ’ if and only if a fully specified test pattern contains this

illegal state.

The above representation has several advantages: (i). the ATPG engine does

not need to maintain a great number of independent CNF formulas; (ii). by in-

tegrating functional constraints into the circuit, it is more convenient to generate

pseudo-functional patterns since we only need to set the outputs of the phantom

AND gates as logic ‘0，and label them as an unjustified value. The ATPG engine

will automatically take such functional constraints into account, (iii). we have

the flexibility to activate a subset of the functional constraints in each ATPG run,

which is important for our proposed methodology, as shown in Chapter 3.3.

3.4.2 Pseudo-Functional Random Pattern Generation with Multi-

Launch Cycles

The functionally-unreachable space for an integrated circuit can be quite large.

Take the ISCAS'89 benchmark circuit s9234 as an example, we can obtain forty

seven 2-bit illegal state cubes.

For each of the 2-bit illegal state, a random pattern has 3/4 probability to avoid

it, but the probability will decrease to (3/4)" if there are n independent 2-bit ille-

gal states. Directly applying random test patterns, therefore, is almost certain to

violate one or more functional constraints.

Fortunately, as discussed earlier, if we apply multiple launch cycles before the

capture cycle, the chance for a test pattern to be a functional pattern is significantly

increased. Based on this observation, we propose to generate pseudo-functional

random patterns with the algorithm shown in Fig. 3.4.

In line 1, we initialize a variable Num.Valid-Pattern to be zero. Then, in each

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Num.ValidJ'attern=0\

whihiNiim.Valid J'aiteni < 16) {

Generate 32 random input vectors //^{32};

Obtain 32 patterns S/'{32} in the first launch cyclc;

for((= 0;i < NiiiiiJRandom.Cycles-, i++) {

Simulate 5P{32}, output OP{32};
SP{32} = C;P{32};}

A'u/H.Va/W.ftjf?c'r/i=Constraint.Check(OP{32});}
A'MmJ5e/ec7crf.Fai<//i=faull.simulation(OP{32});
if(,Num.Det eel ed.Faul I s\=Q){

update.faulllistO;

goto line 1;}

else

terminale;

Figure 3.4: Algorithm for Pseudo-Functional Random Test Pattern Generation.

iteration (lines 2-10), we generate 32 random input vectors V{32} supplied to

the linear decompressor (by taking advantage of the parallel fault simulator). By

doing so, the test vectors applied in the first launch cycle 5P{32} are guaranteed

to be compressible. Next, we conduct functional simulation for a consecutive of

NumJiandomJCycle cycles, which is a pre-defined value for the launch cycles and

it is set as four in our experiment, to obtain the actual test patterns applied in the

capture cycle O尸{32}.

Next, we check how many patterns in OP{32} do not violate any functional

constraints, and record it in NumJValid J^attern. If Num-Valid J^attern is equal or

larger than 16, we conduct fault simulation for this batch of test patterns. Other-

wise, they are abandoned. The idea behind this is that fault simulation takes longer

time than logic simulation and we do not want to waste time to simulate only few

functionally-constrained patterns.

Note that, we only conduct fault simulation with those patterns in OP{32}

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Figure 3.5: Effective Fan-in Cone for a Fault.

that do not violate any functional constraints and the number of detected faults

is stored in NumJ)etectedJ^aults. If we able to detect any new transition faults

with these patterns, the procedure goes back to line 1 to generate another batch

of random patterns. Otherwise, we abort random pattern generation and resort to

deterministic patterns to cover the remaining faults, as detailed in the following

subchapters.

3.4.3 Compressible Test Pattern Generation for Pseudo-Functional

Testing

We implement a constrained ATPG engine based on the FAN algorithm [9] for de-

terministic pattern generation. In such an ATPG engine, we can put the values for

internal gates as to-be-justified values and we are able to backtrack to try another

solution whenever a logic conflict occurs.

Dynamic Activation of Functional Constraints

As discussed earlier, the illegal states in large ICs are enormous and if we activate

all of them in test compression environment, dramatic fault coverage loss would

be incurred because we are not able to generate many compressible patterns that

O
b
s
e
r
v
a
t
i
o
n

P
o
i
n
t

E
f
f
e
c
t
i
v
e

F
u
n
i
n

 C
o
n
e

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

satisfy such large number of constraints.

In our proposed methodology, when generating a deterministic pattern for a

particular transition fault, we only activate its relevant functional constraints (sim-

ply by assigning logic ‘0’ at the output of its corresponding phantom gate), which

is obtained as follows. During the ATPG process, the targeted fault propagates its

faulty value to POs or PPOs (referred as observation points). For each observa-

tion point, we define its fan-in logic cone as an effective fan-in cone (E-cone) for

the targeted fault (see Fig. 3.5). Since, if we want to detect the fault with a par-

ticular observation point, only those functional constraints existing in its E-cone

can affect the detection of this fault, they are defined as the relevant functional

constraints and therefore need to be activated during test generation.

Note that, there may exist more than one propagation path for a fault, and they

correspond to different observation points and hence different E-cones for this

fault. Our constrained ATPG tool selects one of them in each run and backtracks

to try another one if conflicts occur (e.g., a functional constraint within its E-cone

is violated or the pattern is not compressible). Whenever backtracking occurs,

we dynamically activate a new set of functional constraints and at the same time

de-activate the previous functional constraints.

Constraint-Aware Input Vector Generation

Whenever we generate a deterministic test pattern P, we need to check whether

this pattern is compressible (see Chapter 3.2.3). If not, we try to generate a differ-

ent pattern. Otherwise, we need to solve the linear equations corresponding to the

specified bits and get the input vector V for this pattern. Since a compressible test

cube may have more than one solution, for the ease of pseudo-functional testing,

we would like to have a solution that violates the least number of functional con-

straints (if any). A greedy heuristic is proposed in this subchapter to achieve the

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

1. V=getinitialV();

2. Gom=IFINITE;

3. while(Ca/Vi = = 0) {

4. MGain = Gain = QMhit = - 1 ;

5. P=M X V:

6. A''/wi.V/o=violation-checking(P);

/* select a bit which reduce the most constraints*/

7. lor(/ = 0; i < Niim.Vhif,/ + +) {

"sk ip if this bit pivot input bit or it has been flipped*/

8. if(i.s.pivolbii(V[i]) II has.nipped(V/[i]))

9. continue;

nip(v[(])；

P = MxV\

Gtfm=NHw.Vio-violation.checking(P):

flip(V ['•]);

[{(Gain > MGain) {

5. MGain = Gain..

6. Mbit = (•;}

Gain = MGain-,}

ifiGain > 0)

flip(V[Mb/V]);}

Figure 3.6: Algorithm for Constraint-Aware Input Vector Generation.

above objective.

Before introducing our algorithm, we first divide all the bits in an input vector

into three categories: pivot-bits, free-bits and stack-bits, which correspond to pivot

columns, all zero columns and the rest columns in the reduced coefficient matrix

M � . Take the example reduced augmented matrix shown in Eq. 1.3 as an example

(see Chapter 3.2.3), the pivot-bits are ^i, S2, 54 and V5； the free-bits are 53, vi, V3

and V6； while V2 is a stack-bit.

When solving the equations, the value for the pivot-bits are determined and

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

they are equal to the scalar multiplication between P; and the corresponding pivot

column (e.g., = (1 0 0 0) • (0 1 0 0)^ = 0), stack-bits can be set as 0，free-bits

can be freely assigned with 0/1. Therefore, for this example, we can get an initial

solution as V = (0, 1，1, 0, 0，0, 1, 0, 0, 1 , , where the bold values represent

those bits that are fixed.

Starting from a given input vector, we define a flip(i,V) operation that trans-

forms V from current solution to another valid solution by flipping the bit in V

provided it is not a pivot-bit. Apparently, for free-bits, they can be freely flipped.

However, the flipping of a stack-bit involves flipping some other bits to guaran-

tee the generated vector is valid. Let us demonstrate how this is done by flipping

stack-bit V2. We first scan in its corresponding column in M((i.e., (1, 0, 1, 0)^),

and then we find all the non-zero entries (the first entry and the third one) and

locate the pivots in the same rows (i.e., 1) and M^(4,3)). Pivot bits of input

vector which correspond to the first and forth columns also need to be flipped, and

we can obtain a new valid input vector V=(l, 1, 1, 1, 0, 1, 1, 0, 0, 1).

Based on the above, Fig. 3.6 presents the pseudo-code of our proposed constraint-

aware input vector generation algorithm. V, P and M represent the input vector, the

test pattern and the transformation matrix, respectively. Procedure violation^checking(P)

returns the number of violated functional constraints in pattern P and NumJVio is

used to record this value. Gain represents the reduced number of violated func-

tional constraints benefited from a////?() operation. MGain denotes the maximum

gain that we can achieve by flipping one bit in current input vector and Mbit is the

index to that bit. Our algorithm starts from an initial input vector, and then enters

a while loop to iteratively reduce the number of violated functional constraints. In

each iteration, we try to flip one free-bit or stack-bit in V and evaluate the Gain, and

we select the bit with the maximum Gain to flip. Finally, the algorithm terminates

itself when there is no Gain any more.

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

iniiializalionO;

/*break more constraints with lessX-assignmenl*/

�vhile(TRUE){

index = getmaxvioIation();

Assign P/[index] as X.�

updix{c,consUain{(ViolatedJ^OfUstraiiits)\
upcIate_effecl.oconc(5am.C<9wm); }

else

break:}

" f o r a particular constraint, select to assign X to the PPl

that makes potential X-response distributed more evenly*/

10. \s\\\\t{yiolaiedJConstramis is not emply){

11. Constraint = \^QyA{Violated-Const raints)\

12. M//iCav/=INFlNITE, Cayr=0，MPP!=-1 ；

"se lec t a PPl from illegal cube making

potential X response distributing evenly*/

13. for(/=0;/ < Constraint./Vwm;/++)

/*cosl is the standard variation of ScanJCoimi*!

14. Cost-%Qico%K(Constraint, /, Scan.Count)\

15. ifiCost < MinCost){

16. MinCost = Cost\

17. MPPI = i\}}

18. Assign Constrainf.P![MFPI] as X;

19. \}pd^Xcxonsiram(ViolatedJConstraints)\

20. upciate-effeci-ocone(.S'crtn-Cr7/^///)；}

Figure 3.7: Algorithm for Constraint-Aware X-Assignment.

Constraint-Aware X-Assignment

After the above input vector generation process, we have the fully-specified de-

compressed patterns and they may contain some illegal states since we only acti-

vate a few relevant functional constraints in our constrained ATPG tool.

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Suppose we have a test pattern P containing an illegal state (p\ = 0’ p3 = 0), as

discussed earlier, we can break it by assigning either p\ = X or p2 = X^ and mask

the error effects in our X-tolerant compactor. The two choices, however, may lead

to multiple X-bits in the test response, denoted as X-response hereafter. Recall that

the X-compactor used in our design is able to tolerate only one X-bit in each scan

slice, a bad choice may lead to significantly long runtime as we need to backtrack

to try other choices.

While we can obtain the detailed information for X-response of each choice by

conducting simulation, it is not wise to try out for all the options due to the as-

sociated high computational complexity, especially considering the decompressed

pattern may violate many functional constraints. Therefore, we propose a novel

heuristic to guide our X-assignment process, based on the impact of the PPIs that

are involved in violated functional constraints and structural analysis for the cir-

cuit, as shown in Fig. 3.7.

Since X value on a PPI can only be propagated to its fanout cone, we use the

distribution of fanout cone to evaluate the impact of a PPL For a circuit under

test containing n PPIs (i.e., scan cells) and m scan slices, for each PPI[i] that is

involved in an illegal state, we count, in advance, how many PPOs in its fan-out

cone are located on each scan slice, and this information is stored in a 2-dimension

matrix PP.Count[n x m]. The entry PP-Count[iJ] record the number of PPOs in

the fan-out cone of PPI[i] that are located in the scan slice. Vector Scan.Count

is the summation of all the row PP^Count[i] where the corresponding PPI[i\ has

been assigned as an unknown value (i.e., X). Violated-Constraints denotes all

violated constraints.

In the beginning of our algorithm, function initialization() is applied to con-

struct the matrix PP-Count and to reset the vector Scan-Count. Afterwards, we

Note, Pi or P2 is treated as an unknown value X、their values are still pi = 0 and p3 = 0 in the

actual applied pattern.

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

apply X-assignment intelligently via two loops, which tackle this problem from

two different angles.

In our X-compactor, the number of X-response bits within each scan slice can-

not exceed 1. Based on the observation that less X-bits in PPIs induce less X-

response bits, an intuitive method is to use a few X-bits to break as many violated

functional constraints as possible, which motivates the procedure conducted in

the first while loop (lines 2-9). Function getmaxviolation() returns the index of the

PPI that is involved with the largest number of violated functional constrains. This

procedure returns -1 if no PPI is involved in more than one violated constraints. X

is always assigned to those PPIs that gives us the most benefit referring to maxi-

mum violated constraints reduction, and then we update Violated jConstraints and

Scan.Count. Finally, we jump out this loop when there is no overlapping of PPIs

between violated functional constraints or all of them have been broken.

The idea behind the second while loop (lines 10-20) is that we wish the poten-

tial X-response position to be evenly distributed on different scan slices. Since the

Scan-Count records the distribution of X-response, we use the standard variation

of Scan-Count as cost function. Constraint represents the functional constraint

that is currently targeted, which has two members: Constraint.Num. is the number

of PPh in its illegal cube, and Constraint .PPI is an array pointed to its corre-

sponding PPIs. Variable MPPI is the index pointed to the most beneficial PPI.

Focusing on one violated Constraint in each iteration, the method tries to find

pseudo-primary input Constraint.PPI[i\ within its illegal state cubes with min-

imal cost and assign it as X. Function get cost adds the row corresponding to

Constraint.PPI[i] in matrix PP-Count with Scan-Count, and returns the standard

variation. After assigning X to Constraint.PPI[MPPI], we update the values of

Violated.Constraints and ScanJCount. The procedure for X-Assignment termi-

nates when either all the functional constraints have been broken or we find out

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Benchmark
Conventional Structural ATPG Pseudo-Functional ATPG FCA - FCtt

(%)
Benchmark

FCA (%) ave^pe (%) CPU time (s) FCn (%) avejipe (%) CPU lime (s)

FCA - FCtt

(%)

s382 82.105 30.037 0.033 78.663 48.186 0.017 3 . 4 4 2

si 238 95.957 22.609 0.233 90.352 56.522 0.173 5.605

s5378 87.915 8.032 8.467 83.413 44.578 12.917 4 . 5 0 2

S 9 2 3 4 88.806 8.834 69.717 83.396 26.148 33.517 5 . 4 1 0

si 3207 89.395 2.493 23.333 86.368 33.228 131.983 3 . 0 2 7

si 5850 86.099 3.634 65.900 84.524 17.878 77.083 1 . 5 7 5

S 3 8 4 1 7 98.463 2.069 194.017 95.695 12.648 545.32 2 , 7 6 8

S 3 8 5 8 4 93.961 1.997 226.283 89.133 39.86 705.62 4.828

Table 3.1: Conventional Structural ATPG vs. Pseudo-Functional ATPG for Tran-

sition Faults.

that some constraints cannot be broken and then we need to abandon this test pat-

tern.

It should be noted that, as our X-compactor can tolerate one X-bit in a scan

slice provided that no greater than two bits are used to detect faults, if during fault

simulation, a particular fault results in more than two error bits for a scan slice

with an X-bit, this fault is deemed to be undetected with this pattern.

3.5 Experimental Results

3.5.1 Experimental Setup

We implement our proposed compression-aware pseudo-functional pattern gener-

ation framework targeting transition faults on top of an academic ATPG tool Ata-

lanta [13], which originally targets stuck-at faults using the FAN algorithm [9].

We extract the functional constraints with the tool proposed in chapter 2. Ex-

periments are conducted on various ISCAS'89 benchmark circuits, and the linear

decompressors that we use in our experiments consist of an 8-bit ring generator

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Aborted faults

FU faults: functionally

S* /Regulated DIU faults: decompressor-
y detectable / induced untestable faults

SU faults: Structurally untestable

Figure 3.8: Regulated Detectable Faults

(with either 2-input vector or 4-input vector) and an 8-to-20 phase shifter.

Table 1 presents the test pattern generation results for transition faults using

conventional structural ATPG and pseudo-functional ATPG, in which FC denotes

fault coverage while avejspe represents the average percentage of specified bits

in test patterns. It can be easily observed that, by taking the functional constraints

into consideration, the fault coverage with only pseudo-functional patterns is lower

than that of conventional structural ATPG, mainly due to the structurally testable

while functionally untestable faults existing in the circuit. At the same time, we

can observe that the number of specified bits in pseudo-functional patterns is much

larger than that of conventional structural ATPG.

Since there are many reasons for ATPG tool to abort detecting a fault, before

demonstrating our experimental results, we first define a concept namely regulated

detectable faults to make fair comparison among different approaches. As can be

seen in Fig. 3.8，we have structurally-untestable faults (SU faults), functionally-

untestable faults (FU faults), and decompressor-induced untestable faults (DIU

faults), and also some hard-to-detect faults that are aborted. Apparently, for com-

pressible patterns targeting functionally-testable faults with a given ATPG tool, the

faults we are after are only the rest of the faults, defined as regulated detectable

faults.

To generate test patterns for the above regulated faults for fair comparison, we

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

Regulated Decompressor wiih All Cons Our Proposed Comparison

Benchmark /•'CK
(%) l\Utern

Runtime

(s) (%)

/<(imhni
Pattern

f-'Cro
(%)

材 Total
hitteni

Runtime

(s)

FCo
(%)

Patient
Runtime

(s)
rco-i-VK FCo-FCro Pattern

lucrease{%)
s382 74.869 77 0.1 43.512 42 55.759 56 0.133 73.298 65 0.15 • 1.571 17.539 -15.58

SI238 77.872 332 1.5 50.387 208 5X617 219 3.000 76.277 340 1.583 -1.595 22.66 2.41

！;5378 79.586 614 7.883 49.756 257 49.756 257 144.217 79.103 656 29.783 -0.483 29.347 6.84

S 9 2 3 4 74.811 931 55.383 43.687 437 43.687 437 159.45 73.447 981 85.883 •1.364 29.76 5.37

si 3207 84.01 \ 968 83.205 42.953 365 42.953 365 1314.383 83.036 1 1 9 2 -0.'>7S 40.083 23.14

s15850 82.259 11H4 64.9 62.086 5 6 2 62.086 5 6 2 511.817 81.493 1174 90.3 - (K 7 6 6 19.407 -0.84

S 3 8 4 I 7

S 3 8 5 8 4

9 5 . 5 7 1

8 8 . 1 4 2

3 1 0 2

2 2 5 4

2 1 8 . 8 8 3

3 8 2 . 1 5 7

7 4 . 6 9 8

7 1 . 6 0 8

9 8 5

W

7 5 . 8 9

72.873

9 9 6

9 4 1

3 2 6 0

5338.233

9 5 . 3 7

87.525

3 0 5 7

2 4 6 2

1925.583

2 8 5 ! . 8 1 7

• 0 . 2 0 1

- 0 . 6 1 7

19.48

14.652

-1.45

9.23

Average -0.946 24.116 3.064

Table 3.2: Results with 2-Input Decompressor.

first conduct pseudo-functional APTG and take its detectable fault list as the input

to a compression-aware ATPG to obtain the regulated detectable fault list and their

corresponding test patterns. It should be noted the runtime reported for the above

regulated ATPG process is only the compression-aware ATPG runtime.

3.5.2 Results and Discussion

Table 3.2 and Table 3.3 present detailed comparison for the test pattern generation

results from three approaches: regulated ATPG, ATPG in test compression envi-

ronment with all functional constraints enabled, and our proposed compression-

aware pseudo-functional ATPG, with 2-input linear decompressor and 4-input lin-

ear decompressor, respectively.

From these tables, we can observe that, if all the functional constraints are en-

abled in test compression environment, the fault coverage {FCjo in Column 7)

suffers from great loss when compared to regulated ATPG {FCR in Column 2). As

a matter of fact, it can be observed that most of the detected faults are covered by

our multi-launch pseudo-functional random patterns (see FCRS in Column 5). For

example, for s9234 with 4-input decompressor, only 2 deterministic patterns are

generated to cover extra faults. This is expected, since when all the functional con-

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

R e g u l a t e d D e c o m p r e s s o r w i t h All C o n s O u r P r o p o s e d C o m p a r i s o n

B e n c h m a r k R u n t i m e

(s))

Kumlont

Pal tern

f'Cro R u n t i m e

(s)

FCo
(%)

R u n t i m e

(s)
FCo — rca rCo-FCro Ibttern

lncrecLxe{%)

S5.178

S9234

s i 3 2 0 7

s i 5 8 5 0

S 3 8 4 1 7

S 3 8 5 8 4

7 5 . 9 1 6

8 3 . 9 2

8 1 . 8 8 1

8 5 . 1 3 2

9 5 . 6 2 3

1134

1302

1252

3 0 0 6

0 . 1 6 7

1 .533

7 . 6 3 3

7 1 . 9 8 3

92.686

4 9 . 6 8 3

4 6 0 . 6 3 3

7 6 9 . 1 5 8

2 6

2 2 1

2 9 9

5 8 5

1 2 2 0

1061

5 5 3 1 2

5 4 . 1 8 5

4 3 . 5 8 8

4 8 . 5 2 6

6 2 3 1 1

7 6 . 2 8 9

7 3 . 3 2 9

2 9 9

5 6 8

4 1 8

591

1246

1085

2 . 7 8 3

9 5 . 1 S 3

1 8 4 . 6 3 3

1172

4 6 6 . 4

4 5 9 6 . 4 3 3

5 4 1 2 . 5 6 7

8 4 . W 8

9 5 . 3 9 9

m
1165

1 2 6 8

1248

3 1 2 5

2 2 7 8

0 . 7 3 3

25.K83

6 2 . 7 5

4 9 4 . 3 1 7

9 7 . 4

1 9 1 1 . 3 8 3

2 7 9 7 . 9 1 7

1 .094

0 . 4 7 9

0 . 4 8

1 .032

(K224

3 0 . 0 0

2 9 . 2 5 5

3 6 . 2 8 4

2 2 . 5 9 7

19 .11

15 .61

1 3 . 4 3

- 0 , 5 1

3 . iM

2 . 7 3

A v e r a g e 2 5 . 7 2 9

Table 3.3: Results with 4-Input Decompressor.

3 0 0 0

2 5 0 0

2 _

1 5 0 0

1 0 0 0

5 0 0

Siruclural A T K i

Pseudo-Functioniil ATPG
Compression-Aware Pseudo-
Funciioniil ATPCi

/ / / / y
Figure 3.9: Runtime Comparison.

straints are activated, the patterns generated from the ATPG engine contains a large

number of specified bits and it is very unlikely that such patterns are compressible.

Consequently, in most cases, the ATPG engine backtracks multiple times to try

different patterns and eventually aborts to detect the targeted faults. This also ex-

plains why the runtime for this kind of ATPG is the longest (Column 9)，even

though it only generate limited or even zero deterministic patterns.

With our proposed method that only activates the relevant functional con-

straints for the targeted fault, the fault coverage loss when compared to the reg-

ulated ATPG case is quite small, with at most 1.6% and on average 0.946% (Col-

umn 14) for the case with 2-input decompressor. The fault coverage loss with the

4-input decompressor case are even smaller, on average 0.473%. When compared

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTINGS 1

to the ATPG method that activates all the functional constraints, the fault coverage

increases by around 25% for both decompressor cases (Column 15). As can be

seen from the last column in both tables, our proposed compression-aware APTG

has a slightly higher test pattern count when compared to the regulated ATPG

case (around 3% on average). This is because, for a particular pattern that violate

certain functional constraints, since we need to mask the error effects from those

faults that are detectable due to the existence of illegal states in the pattern, these

faults are deemed as untestable with this pattern, requiring other patterns to cover

it. There are also some cases that our ATPG tool leads to fewer test patterns, and

we attribute this phenomenon to the uncertainty for the faults covered by random

patterns.

In addition, we compare runtime of our proposed method with traditional struc-

tural ATPG and normal pseudo-functional ATPG. It is shown in fig.3.9，runtime of

our proposed method increases faster as the scaling of circuit size, because it needs

to spend more time on X-assignment for those patterns containing illegal states.

3.6 Conclusion

With technology scaling, the discrepancy between integrated circuits' activities in

normal functional mode and that in structural test mode has an increasing adverse

impact on the effectiveness of manufacturing test. Pseudo-functional testing has

been proposed to resolve this issue, but the generated patterns typically feature

much less X-bits when compared to conventional structural patterns. Directly ap-

plying such patterns in test compression environment hence may lead to significant

fault coverage loss. In this chapter, we propose novel compression-aware pseudo-

functional testing techniques to tackle the above problem. Experimental results on

ISCAS'89 benchmark circuits show that our proposed solution is able to achieve

similar fault coverage as conventional structural patterns, without incurring over-

CHAPTER 3. COMPRESSION-AWARE PSEUDO-FUNCTIONAL TESTING57

testing to the circuits.

• End of chapter.

Chapter 4

Conclusion and Future Work

The discrepancy between ICs，activities in normal functional mode and that in

structural test mode has an increasingly adverse impact on the effectiveness of

manufacturing test with technology advancement, as reported in several industrial

studies (e.g., [5’ 29’ 30]).

Pseudo-functional testing has great potential to resolve the above problem, but

whether we could realize this potential highly relies on whether we could effec-

tively identify as many illegal states as possible. In this dissertation, we show that

the main structural root cause for illegal states is the multi-fanout nets in the circuit.

Based on this, we develop efficient and effective illegal state identification algo-

rithms. Experimental results on ISCAS'89 benchmark circuits demonstrate that

the proposed technique is much more effective when compared to state-of-the-art

solutions.

As pseudo-functional test patterns typically feature much less X-bits when

compared to conventional structural patterns, directly applying such patterns in

test compression environment may lead to significant fault coverage loss. In this

dissertation, we propose novel compression-aware pseudo-functional testing tech-

niques to tackle the above problem. Experimental results on ISCAS'89 benchmark

8

5

CHAPTER 4. CONCLUSION AND FUTURE WORK 59

circuits show that our proposed solution is able to achieve similar fault coverage

as conventional structural patterns, without incurring over-testing to the circuits.

There are several important topics yet to explore for future work. Firstly, while

this thesis work facilitate to avoid over-testing by generating patterns that are more

function-like, under-testing may happen since the current solution cannot guaran-

tee to sensitize the worst case delay for the circuit in at-speed delay testing. The

fundamental problem in delay testing is, How can we exercise the worst-case tim-

ing of the circuits under test in their functional mode during manufacturing test?

We plan to take our extracted functional constraints into ATPG and try to generate

patterns that activate the maximum electrical noises on targeted delay faults in our

future work. Secondly, effective removal of false paths from static timing analysis

(STA) is a critical task, because STA is used in the inner loop of many circuit opti-

mization tools to resolve timing issues and the effectiveness of such optimization

processes is deteriorated with the presence of false paths, leading to sub-optimal

solution or even failure to achieve timing closure. Existing techniques, however,

regard a path as a true path as long as a vector pair can be found to sensitize it. This

is rather pessimistic since such a path might be activated only with illegal states

in the circuit and hence it is actually functionally-unsensitizable. Hence, with the

help of this thesis work, it is possible to identify more false paths in the circuit,

thus dramatically improving the efficiency of STA tools.

• End of chapter.

Bibliography

[1] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and

Testable Design. IEEE Press, 1990.

[2] C. Bamhart et al. Extending OPMISR Beyond lOx Scan Test Efficiency.

IEEE Design & Test of Computers, 19(5):65-73, 2002.

[3] D. Brand and V. S. Iyengar. Identification of Redundant Delay Faults. IEEE

Transactions on Computer-Aided Design, 13(5):553-565, May 1994.

[4] M. Bushnell and V. Agrawal. Essentials of Electronic Testing. Kluwer Aca-

demic Publishers, 2000.

[5] C. Shi and R. Kapur. How Power Aware Test Improves Reliability and Yield.

EE Times, Sept. 15,2004.

[6] G. Chen, S. M. Reddy, and I. Pomeranz. Procedures for Identifying

Untestable and Redundant Transition Faults in Synchronous Sequential Cir-

cuits. In Proceedings International Conference on Computer Design (ICCD),

pages 36-41,2003.

[7] K.-T. Cheng and H.-C. Chen. Classification and Identification of Nonrobust

Untestable Path Delay Faults. IEEE Transactions on Computer-Aided De-

sign, 15(8):845-853, August 1996.

60

BIBLIOGRAPHY 61

[8] V. Chickermane, B. Foutz, and B. Keller. Channel Masking Synthesis for

Efficient On-Chip Test Compression. In Proceedings IEEE International

Test Conference (ITC), pages 452-461, 2004.

[9] H. Fujiwara and T. Shimono. On the Accelaration of Test Generation Algo-

rithms. C-32(12): 1137-1144, Dec. 1983.

[10] P. Goel. An Implicit Enumeration Algorithm to Generate Tests for Combina-

tional Logic Circuits. C-30(3):215-222, March 1981.

[11] K. Heragu, J. H. Patel, and V. D. Agrawal. Fast Identification of Untestable

Delay Faults Using Implications. In Proceedings International Conference

on Computer-Aided Design (ICCAD), pages 642-647, 1997.

[12] M. Konijnenburg, J. van der Linden, and A. van de Goor. Illegal State

Space Identification for Sequential Circuit Test Generation. In Proceedings

IEEE/ACM Design, Automation, and Test in Europe (DATE), pages 741-746,

1999.

[13] H. K. Lee and D. S. Ha. On the Generation of Test Patterns for Combi-

national Circuits. Technical Report 12-93, Dept. of Electrical Eng., Virginia

Polytechnic Institute and State University, 1993.

[14] H.-C. Liang, C. L. Lee, and J. E. Chen. Identifying Invalid States for Sequen-

tial Circuit Test Generation. IEEE Transactions on Computer-Aided Design,

16(9): 1025-1033, Sept. 1997.

[15] Y. C. Lin and K. T. Cheng. A Unified Approach to Test Generation and Test

Data Volume Reduction. In Proceedings IEEE International Test Conference

(ITC), pages 1-10, 2006.

BIBLIOGRAPHY 62

[16] Y.-C. Lin, F. Lu, and K. Cheng. Pseudofunctional Testing. IEEE Transactions

on Computer-Aidecl Design, 25(8): 1535-1546, August 2006.

[17] Y. C. Lin, F. Lu, K. Yang, and K. T. Cheng. Constraints Extraction for

Pseudo-Functional Scan-based Delay Testing. In Proceedings IEEE Asia

South Pacific Design Automation Conference (ASP-DAC), pages 166-171,

2005.

[18] H. Liu, H. Li, Y. Hu, and X. Li. A Scan-Based Delay Test Method for Reduc-

tion of Overtesting. In Proceedings International Symposium on Electronic

Design, Test and Applications (DELTA), pages 521-526, 2008.

[19] X. Liu and M. S. Hsiao. A Novel Transition Fault ATPG that Reduces Yield

Loss. IEEE Design & Test of Computers, 22(6):576-584, Nov.-Dec. 2005.

[20] F. Lu, M. K. Iyer, G. Parthasarathy, and K. T. Cheng. An Efficient Sequential

SAT Solver With Improved Search Strategies. In Proceedings IEEE/ACM

Design, Automation, and Test in Europe (DATE), pages 1102-1107, 2005.

[21] P. Maxwell, I. Hartanto, and L. Bentz. Comparing Functional and Structural

Tests. In Proceedings IEEE International Test Conference (ITC), pages 400-

407，2000.

[22] S. Mitra and K. S. Kim. X-Compact: An Efficient Response Compaction

Technique. IEEE Transactions on Computer-Aided Design, 23(3):421-432,

March 2004.

[23] J. H. Patel, S. S. Lumetta, and S. M. Reddy. Application of Saluja-Karpovsky

Compactors to Test Responses with Many Unknowns. In Proceedings IEEE

VLSI Test Symposium (VTS), pages 107—112’ 2003.

BIBLIOGRAPHY 63

[24] I. Polian and H. Fujiwara. Functional Constraints vs. Test Compression in

Scan-Based Delay Testing, In Proceedings IEEE/ACM Design, Automation,

and Test in Europe (DATE), pages 1039-1044, 2006.

[25] J. Raj ski, J. T^szer，M. Kassab, and N. Mukherjee. Embedded Deterministic

Test. IEEE Transactions on Computer-Aided Design, 23(5):776-792, May

2004.

[26] J. Raj ski, J. Tyszer, C. Wang, and S. M. Reddy. Finite Memory Test Re-

sponse Compactors for Embedded Test Applications. IEEE Transactions on

Computer-Aided Design, 24(4):622—634，April 2005.

[27] J. Rearick. Too Much Delay Fault Coverage Is A Bad Thing. In Proceedings

IEEE International Test Conference (ITC), pages 624-633, Nov. 2001.

[28] J. Roth. Diagnosis of Automata Failures: A calculus and a Method. IBM

Journal of Research and Development, 10(4):278-291, July 1967.

[29] J. Saxena, K. Butler, V. Jayaram, and S. Kundu. A Case Study of IR-Drop in

Structured At-Speed Testing. In Proceedings IEEE International Test Con-

ference (ITC), 2003.

[30] S. Sde-Paz and E. Salomon. Frequency and Power Correlation between At-

Speed Scan and Functional Tests. In Proceedings IEEE International Test

Conference (ITC), paper 13.3’ 2005.

[31] M. Syal, K. Chandrasekar, V. Vimjam, M. S. Hsiao, Y,S. Chang, and

S. Chakravarty. A Study of Implication Based Pseudo Functional Testing.

In Proceedings IEEE International Test Conference (ITC), page paper 24.3’

2006.

BIBLIOGRAPHY 64

[32] M. Syal and M. S. Hsiao. New Techniques for Untestable Fault Identifica-

tion in Sequential Circuits. IEEE Transactions on Computer-Aided Design,

25(6):1117-1131,2006.

[33] N. Touba. X-canceling MISR - An X-Tolerant Methodology for Compact-

ing Output Responses with Unknowns using a MISR. In Proceedings IEEE

International Test Conference (ITC), paper 6.2, 2007.

[34] N. A. Touba. Survey of Test Vector Compression Techniques. IEEE Design

& Test of Computers, 23(4):294-303，April 2006.

[35] L.-T. Wang, X. Wen, S. Wu, Z. Wang, Z. Jiang, B. Sheu, and X. Gu. Virtu-

alScan: Test Compression Technology Using Combinational Logic and One-

Pass ATPG. IEEE Design & Test of Computers, 25(2): 122-130, March-April

2008.

[36] P. Wohl, J. A. Waicukauski, S. Patel, and M. B. Amin. X-Tolerant Com-

pression and Application of Scan-ATPG Patterns in a BIST Architecture. In

Proceedings IEEE International Test Conference (ITC), pages 727-736, Oct.

2003.

[37] P. Wohl, J. A. Waicukauski, S. Patel, F. DaSilva, T. W. Williams, and R. Ka-

pur. Efficient Compression of Deterministic Patterns into Multiple PRPG

Seeds. In Proceedings IEEE International Test Conference (ITC), page pa-

per 36.1, Oct. 2005.

[38] W. Wu and M. S. Hsiao. Mining Sequential Constraints for Pseudo-

Functional Testing. In Proceedings IEEE Asian Test Symposium (ATS), pages

19-24, 2007.

BIBLIOGRAPHY 65

[39] Z. Zhang, S. Reddy, and I. Pomeranz. On Generate Pseudo-Functional Delay

Fault Tests for Scan Designs. In Proceedings IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT), pages 215-226, 2005.

i

章 .

寒

丨 群 麵 I f 驟 #

議

_

-

M

vrr̂ .：?.

、一tf
 f
 I.,

_
_

:.r .

蒙
-
1
袭
_

i
袋

雲

S
1
I

r

 I
誓
r

i

'•r.tr-'̂

f

 广
，

^
I
f
 丫

•mi < ,

C U H K L i b r a r i e s

0 0 4 6 5 9 9 2 3

