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Abstract 

As the integration density continues to advance, energy efficiency has become one 

of the most important issues to be addressed in today's System-on-a-Chip (SoC) 

designs. One way to lower the power consumption is to reduce the supply volt-

age. Multiple Supply Voltage (MSV) is thus introduced to provide higher flexi-

bility in controlling the power and performance trade-off. In region-based MSV, 

circuits are partitioned into "voltage islands" where each island occupies a con-

tiguous physical space and operates at one supply voltage. These tasks of voltage 

island partitioning and voltage level assignments should be done simultaneously 

in the floorplanning process in order to take those important physical information 

into consideration. 

In this thesis, we formulate the MSV driven floorplanning problem and solve 

it. Particularly, we address this problem in two stages. In the first stage, we solve a 

simpler version of this problem by assuming that timing requirements of the given 

circuit can be achieved by all different voltage levels of the modules; in the second 

stage, we try to consider this problem in more details, i.e., the working voltage 

levels of the modules are properly assigned to meet the timing requirements. 

In the first stage, we focus on optimal voltage island partitioning and voltage 

assignment, where the voltage islands generated are rectangular in shape. An el-
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egant voltage island-driven floorplanner is provided to generate a floorplan with 

rectangular voltage islands. Given a candidate floorplan solution represented by a 

normalized Polish expression, optimal voltage level assignment and island parti-

tioning can be obtained simultaneously to minimize the total power consumption. 

Simulated annealing is used as the basic searching engine. By using this approach, 

significant power savings (up to 50%) can be achieved for all data sets. This floor-

planner can also be extended to minimize the number of level shifters between 

different voltage islands and to simplify the power routing step by placing the is-

lands in proximity to the corresponding power pins. 

In the second stage, we focus on solving the sub-problem of voltage assign-

ment on a given netlist under timing constraints. We first show that the voltage 

assignment task on a given netlist can be formulated as a convex cost dual network 

flow problem and can be solved optimally in polynomial time using a cost-scaling 

algorithm when the delay choices of each module are continuous in the real or 

integer domain. We can make use of this approach to obtain a feasible voltage as-

signment solution in the general cases with power consumption approximating the 

minimum one. Furthermore, we propose a framework to optimize power consump-

tion and physical layout of a circuit simultaneously during the floorplanning stage, 

by embedding this cost-scaling solver into a simulated annealing based floorplan-

ner. We compared our approach with the latest work [11] on the same problem, 

and the experimental results show that, using our framework, significant improve-

ment on power saving (18% less power cost on average) can be achieved in much 

less running time (7X faster on average) for all the test cases, which confirms the 

effectiveness of this approach. 
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摘要 

由於電路集成密度不斷增加，功耗逐漸成爲了當今片上系統(SoC)設計中最重要 

的問題之一。降低供電電壓是降低功耗的一種有效措施。因此，多供應電壓 

(MSV)設計方法爲平衡電路的功耗和性能提供了更大的靈活性。在區域性多供應 

電壓設計中，電路被分爲若干個"電壓島"，其中每一個電壓島佔據一塊連續的區 

域，而且同一個電壓島裏的電路單元工作於同一個電壓。在MSV設計中，同時 

考慮電壓島的劃分，供應電壓的分配和電路佈局將會很有利於整個設計的優化。 

在本論文中，我們提出並解決了多供電電壓驅動的電路佈局問題。具體來說，我 

們將這個問題分爲兩個階段進行解決。在第一個階段，我們認爲所有的電壓選 

擇都可以滿足電路的時序要求，從而解決了這個問題的一個比較簡單的版本；在 

第二個階段，我們通過在分配各個模組的供電電壓時考慮滿足電路時序要求，更 

深入的考慮了這個問題。 

在第一個階段，我們提供了一個電壓島驅動的佈局工具，它可以產生一個具有矩 

形電壓島的電路佈局。給出一個由標準化波蘭運算式表示的電路佈局，我們可 

以得到這個佈局上最優的電壓分配和電壓島的劃分，這裏最優指使得整個電路 

功耗最低。搜索引擎採用了類比退火方法。這種方法可以很有效地降低功耗(最 

大可以達到50%).另外,我們可以拓展這個佈局工具，使其同時考慮減少需要使 

用的電壓轉換器的數量，以及考慮電壓島和與其對應的供電引腳的ft鄰性。 

在第二個階段，我們主要考慮了解決在滿足時序要求下的電壓分配問題。在 

MSV設計中，電路單元的電壓分配一定要滿足電路時序要求。我們論證了在一 

個給定的電路網表上滿足時序要求的電壓分配問題可以歸結爲最小開銷網路流 

問題.當每一個電路單元的延遲的選擇範圍是一些連續整數時，cost-scaling演算 

法可以用多項式時間得到該電壓分配問題的最優結果。在一般情況下，即電路 

單元延遲的取値範圍不連續時，我們可以利用這種方法得到一個近似結果。而 

且，通過把cost-scaling solver嵌入一個基於類比退火方法的電路佈局工具，我們 

給出了一個用來同時優化功耗和佈局的框架。我們跟最近的針對相同問題的工 

作[11]做了比較，實驗結果顯示，我們的方法可以更在更短的時間內得到更好的 

結果，從而證明了我們的方法的優越性。 
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Chapter 1 

Introduction 

1.1 Background 

The technology of integrated circuit (IC) was widely adopted for computing de-

vices like microprocessors, memory modules, and many other interface chips since 

1960.s\ It is not surprising to find that we are suiTounded by a huge number of com-

puting devices in daily life, such as our personal computers, the ATM machines 

we use to withdraw cash, and many other electronic appliances. IC is one of the 

core components of those computing facilities. 

As the Very Deep Sub-Micron (VDSM) technology advances, IC has evolved 

from Small Scale Integmtion(SSI) to Very Large Scale IntegmtioniVLSI), which 

means the integration density becomes much higher while the interconnections 

tend to be much more complicated, thus introducing many new challenges to VLSI 

design automation. 

Producing a chip is quite a complicated process containing a couple of steps, 

each of which can be accomplished with the help of the specifically implemented 

CAD tools. Generally speaking, the process starts with a formal specification, 

and the final product is a fabricated chip. The VLSI design cycle traditionally 
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CHAPTER 1. INTRODUCTION 2 

consists of steps including Architecture Design, Functional Design, Logic Design, 

Circuit Design, Physical Design and finally, Fabrication. Among all these steps, 

Physical Design is of significant importance, whose task is to transform a circuit 

representation into a geometric representation. The geometric representation of a 

circuit is called a layout. During physical design, problems like where to place the 

modules, how the interconnections between the modules should be made, etc, will 

be addressed. As physical design is a crucial yet complex step in the design cycle, 

it can be further broken down into sub-steps, such as partitioning, floorplanning, 

placement, routing, and so on. 

Floorplanning is an important step in the physical design cycle, as a good plan-

ning in the early design phase is crucial to avoid unnecessary iteration in the de-

sign cycle. During the step of floorplanning, the blocks are positioned on the 

chip roughly, so as to optimize the circuit size and performance according to the 

circuit specification. A compact design is favorable, but there are many other im-

portant aspects that have to be taken care of. For example, issues like the block 

dimensions, overall delay and power consumption should be taken into account. 

In addition, there may also be some special constraints needed to be satisfied, e.g., 

some blocks are pre-placed, while some others are required to be placed adjacent 

to each other, etc. 

1,2 Floorplanning 

The input to the floorplanning phase is a set of blocks, the area of each block, the 

possible shapes of each block, the number of terminals of each block, and the in-

terconnections between blocks. In the floorplanning phase, we are going to plan 

the position and the shape of each block, together with the pin positions. The 

shapes for some blocks are fixed and cannot be altered. We called those blocks 

hard blocks. For other blocks, the shapes can be altered as long as their aspect 
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ratios are within the desired value range. Those blocks are called soft blocks. A 

formal definition of the floorplanning problem is given as follows: 

Definition 1 Floorplanning - Given a set ofn modules {Mi,M2,... where 

each module Mi is associated with an area A/, together with two aspect ratio 

bounds ri and Sj such that r/ < hi/wi < si, where h丨 and wi is the height and the 

width of module i respectively. The output of the problem is a packing of the set of 

modules, i.e., the x and y coordinates and the dimension (Zz/, w/) of each module. 

There should be no overlapping between modules, and the circuit performance 

should be optimized. 

There are several objectives to be optimized in floorplanning, like the total chip 

area, the total wire length, the critical path delay, etc. 

1. Chip Area - Area minimization is one of the most commonly adopted ob-

jectives. Minimizing the chip area implies minimizing the wire length, and 

hence reducing the circuit delay. 

2. Total Wire Length - In addition to minimizing the chip area, minimizing the 

total wire length directly is also another important goal. Beside the tim-

ing issues, using less wires to connect the modules means consuming less 

resources, and thus reducing the production cost. 

3. Delay - In some cases, minimizing the total wire length is not enough. Tim-

ing is and important issue. The final circuit performance can be optimized 

by minimizing the delay on the critical path. 

4. Routability - Routability refer to the possibility of completing all the connec-

tions. A non-routable floorplan is of no use even if it is area-optimized and 

delay-optimized. Enhancing the routability of a floorplan means to reduce 
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the chance of encountering routing problems in the downstream designing 

steps. 

5. Others - There are still some other objectives in floorplanning, like minimiz-

ing heat dissipation, minimizing power consumption, etc. 

1.3 Motivations 

As technology scales for increased circuit density and performance, the need to re-

duce power consumption increases in significance as designers strive to utilize the 

advancing silicon capabilities. The total power consumed by conventional CMOS 

circuitry is composed of two sources, namely, dynamic power and leakage power. 

The leakage power refers to the sub-threshold current of the transistors in the cir-

cuit f 1], while the dynamic power represents the power consumed by the intended 

work of the circuit to switch states and thus execute logic functions. Dynamic 

power is primarily composed of the power associated with the charging or dis-

charging of the capacitance of the switching nodes [10]. Generally, the dynamic 

power consumption can be computed by 

Pdymimic = k . Cload . Vj(丨• f 

where k is the circuit switching rate, Cioad is the loading capacitance, V /̂j is the 

supply voltage, and f is the clock frequency. Dynamic power dominates the total 

power consumption in today's logic design. The dynamic power consumption is 

proportional to the square of Vdd, implying that lowering supply voltages can ef-

fectively reduce dynamic-power consumption, although the performance also de-

grades. Therefore, Multiple supply voltage (MSV) is introduced to provide higher 

flexibility in controlling power and performance trade-off. 

MSV designs involve the partitioning of a chip into areas called "voltage is-

lands" that can be operated at different voltage levels, or be turned off when idle. 
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With the use of voltage islands, the chip design process is becoming more com-

plicated. We need to solve the problems of island partitioning, voltage assignment 

and floorplanning simultaneously under area, power, timing and other physical 

constraints. These problems must be solved at the same time since their results 

will significantly affect each other. In addition, there are other issues to be consid-

ered. For example, the voltage islands should be placed close to the power pins in 

order to minimize the power routing complexity and the IR drop. Besides, each 

island requires level shifters to communicate with others and overhead in area and 

delay will be resulted. These additional issues have created many new challenges 

in generating floorplans for designs using voltage islands. 

1.4 Design Implementation of Voltage Islands 

An SoC architecture based on voltage islands requires additional design compo-

nents to ensure reliable communications across island boundaries, distribute and 

manage power, and save and restore logic state during power-off and on. 

A voltage island represents a level of hierarchy with unique powering, and it 

exists within a parent block which constitutes the physical region in which the 

island is placed. An island's parent block may be the top level of a chip design 

or even another island at the next higher level of the chip hierarchy. The circuits 

within a voltage island are primarily powered from the island voltage, called VDDI 

(VDD-island), while the circuits in the parent terrain are powered from a supply 

voltage called VDDO (VDD-outside). With deeper hierarchy, the VDDO of one 

island may be equivalent to the VDDI of a parent island in which it is contained. 

When such a gate operates at a voltage sufficiently lower than the gate it drives, 

signal margins and performance will degrade, and the driven circuit will consume 

significantly higher power. Further increases in the voltage difference will eventu-

ally result in unreliable signal switching. Clearly, additional circuitry is necessary 
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to handle the differences in both magnitude and timing that can occur between 

VDDI and VDDO at island boundaries. Circuits called Voltage Island Receivers 

perform this function for signals going from the parent block into the island, while 

Voltage Island Driver cells perform similar task for signals going from the island 

to the parent block. These drivers and receivers must provide reliable voltage level 

shifting between VDDI and VDDO for a wide range of operating voltages, and do 

so with minimal impact to signal delay or duty cycle. 

Leakage or standby power can be reduced by lowering the voltage of functionally-

inactive islands well below the level required for reliable operation. However, 

some logic states, prior to power-down, may need to be preserved to resume oper-

ation once the island is powered up again, at the end of the inactive period. Spe-

cial state-saving latches provide a solution to this problem, eliminating the need 

to transfer logic states off-island and back in order to save and restore necessary 

logic states. 

A voltage island requires at least one power source and complete isolation from 

all other supplies on the chip, in order to enable independent power sequencing. 

Physical planning of voltage islands includes determining the number of power 

sources that meets all islands' power requirements. The following are possible 

types of off-chip and on-chip power source: 

• Solder bumps or C4 pads 

• Wire bond pads 

• Island power switches 

• Voltage regulators 

Some voltage island circuits require both the internal voltage island supply 

(VDDI) and the external voltage supply (VDDO) for proper operation. These 

include level-shifting circuits, state-saving latches, and power switches. Power-

routing tools must be aware of these constraints and make efficient VDDI and 
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VDDO connections without creating electrical or wireability issues. 

The P/G network of the chips using voltage islands can be much more complex 

than traditional one because many additional decisions must be made to fit the 

island design. These decisions may include the following: to use on-chip power 

regulator or off-chip power source, to use separate Vdd networks or use DC-DC 

converter in every local voltage island, and the topology of the power grid of each 

island (wire width, pitch, spacing, etc.). Many possibilities exist for powering 

voltage islands, driving further requirements for special design components. VDDI 

or VDDO may be supplied directly from a unique, non-switching power source. 

One or both may be the output of an on-chip voltage regulator, whose voltage value 

can be fixed or programmable. Finally, VDDI or VDDO may be a switched version 

of some other voltage supply, controlled by one or more PFET or NFET switches. 

A given SoC design may use one or more of these approaches depending upon the 

product design objectives. An example of power network design for a chip with 

voltage islands is shown below: 

• Cells with different supply voltages share the same ground network, but use 

different power supply networks. 

• There is a global power network, to which cells not in any voltage island are 

connected. For each voltage island, there is a separate Vdd network, connected to 

special power pads. 

• The global power network is part of a uniform mesh, with the same width and 

pitch across the chip, except the parts over voltage islands are removed. 

• There is a boundary power ring along the outer edges of the global power net-

work. The width of the power ring is several times wider than that of the top-level 

wires in the global power network. The power ring connects the global network to 

power pads, and is very helpful to ensure power delivery integrity. 
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1.5 Problem Formulation 

In the MSV driven floorplanning problem, we are given a set of n modules with 

areas Ai .. and aspect ratio bounds [/；, w/] for i = 1 .. .n. Each module i is as-

sociated with a power table T] that specifies the legal voltage levels for the module 

and the corresponding average power consumption values. In MSV designs, the 

timing requirements of the circuits should be satisfied. Besides, the power network 

resource should also be minimized. Given a floorplan, the power network resource 

<i>g for the modules working at voltage Vq can be estimated by the half-perimeter of 

the bounding box of all those modules 11IJ, while the total power network resource 

is the sum of O^̂ , for y 二 1,2,...,/: where k is the number of different voltage levels 

available. 

We can define the MSV driven floorplanning problem as follows: 

Definition 2 MSV Driven Floorplanning - Given a netlist, a timing constraint 

and a set of modules, each of which has multiple choices of supply voltage, gen-

erate a floorplan in which each module is assigned to work at a specific voltage 

level such that the timing constraint is satisfied and a weighted sum of the power 

consumption, power network resource, area and interconnect length is minimized. 

In this thesis, we address this problem in two stages. In the first stage, we 

solve a simpler version of this problem by assuming that timing requirements of 

the given circuit can be achieved by all different voltage levels of the modules; in 

the second stage, we try to consider this problem in more details, i.e., the working 

voltage levels of the modules are properly assigned to meet the timing require-

ments. 

In the first stage, we focus on optimal voltage island partitioning and voltage 

assignment, where the voltage islands generated are rectangular in shape. In this 

work, the timing requirement is not explicitly taken into consideration, and we 



CHAPTER 1. INTRODUCTION 9 

assume that the given voltage levels of each module can meet timing. Given a 

constant K and a chip-level voltage Vc, our goal is to generate a floorplan F with K 

rectangular voltage islands so that a weighted sum of the total power consumption, 

area and interconnect length is minimized. Each island will be supplied with the 

lowest possible voltage level common to all the modules in that island while the 

remaining modules not assigned to any island will be operated at the chip-level 

voltage. 

In the second stage, we consider timing more explicitly. Each module m丨 is 

given ki choices of supply voltages v � f o r \ <q < kj, and the power-delay tradeoff 

in m/ is represented by a delay-power curve (DP Curve)，{ {cI- .pj), (clf.pj),..., 

(d’,p�丨、}，where each pair {d^-.p^-) is the corresponding delay and power con-

sumption when 777/ is operated at � Note that each is in Z+ (positive integer 

set), since the delay of a module is measured in terms of the number of clock 

cycles. Fig. 1.1(a) is an example of a DP Curve, which contains three choices 

of supply voltages for this module. Moreover, we assume that for each module, 

power is a convex function of delay when each point (<if is connected to its 

neighboring point(s) by a linear segment in the DP Curve. We are also given a tim-

ing requirement Tcycie’ called clock cycle time, of this circuit and require that the 

critical path delay is at most Tcycie. We first focus on solving the sub-problem of 

voltage assignment on a given netlist under timing constraints, objective of which 

is to select a delay-power pair for each module in its DP Curve such that the sum of 

power consumption is minimized while the timing constraint is satisfied. Globally, 

the voltage assignment procedure is incorporated into a simulated annealing based 

floorplanner to solve the MSV driven floorplanning problem. 
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Figure 1.1: DP curve of (a) a vertex and (/?) an edge in G 

1.6 Progress on the Problem 

A number of previous works addressed the voltage assignment and island gener-

ation problem in floorplanning and placement. In these previous works, MSV is 

considered at various design stages, including the floorplanning and placement 

stages [8], [9], [11], [13], [14], and the post-floorplanning and post-placement 

stages [5],�121，[161，[191，[20]. 

For the latter category, Wu et al [19] minimized the number of voltage islands 

generated on a slicing floorplan using a dynamic programming based approach, 

Ching et al [51 then considered voltage islands that are non-rectangular in shape, 

and they also targeted at minimizing the number of voltage island generated by 

iteratively partitioning a tree structure, which is initially constructed according to 

an adjacency graph of a candidate floorplan to reflect the similarities of required 

working voltage levels among adjacent blocks. Mak et al. [I6J formulated the 

voltage assignment and island generation problem as an integer linear program 

(ILP). In this approach, a few candidate floorplan solutions are generated based 

on metrics like area and interconnect cost, then voltage assignment and partition-
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ing are performed on these candidate floorplans using an ILP approach to identify 

the best candidate solution. A fragmentation cost (number of adjacent cores op-

erating at different voltages) is used to model the power network complexity but 

this cost is not related to the number of islands directly. [20J and [12] take tim-

ing constraints into consideration. In [20]，Wu et ai proposed an approximation 

algorithm based on a zero slack algorithm to minimize the power cost and to sim-

plify the power network resource under timing constraints; Lee et al. [12] tackled 

the voltage assignment problem using an ILP based approach with a set of lin-

ear inequalities representing the timing requirements. An inevitable deficiency of 

all these post-floorplanning and post-placement works is that physical layout and 

power optimization are done separately, hence the solution quality is restricted to 

a certain extent. 

Concurrent physical layout and power optimization will be much more favor-

able. Hu et al. [8] considered this simultaneous voltage assignment, voltage island 

generation, and floorplanning problem in SoC designs. Simulated annealing is 

used as the basic searching engine. Given a candidate solution, perturbations are 

performed to split an island, change the voltage of an island or change all the is-

lands of one voltage to another voltage. Chip-level floorplanning is then performed 

to find a floorplan in which compatible islands (islands with the same voltage) are 

likely to be adjacent. An island merging process is then applied to reduce the 

number of islands. At the end, island-level floorplanning is done to each newly 

formed island to shrink its area. The whole process is repeated until a satisfac-

tory solution is obtained. The large search space made their approach relatively 

timing consuming. In one recent work [11], Lee et al. handled the voltage assign-

ment problem under timing constraints by dynamic programming, and developed 

a power network aware floorplanner to generate floorplans with voltage islands af-

ter the voltage assignment step. Given a netlist represented by a directed acyclic 
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graph (DAG), voltage assignment is first performed according to the timing re-

quirements before the floorplanning step. Level shifters are then inserted into the 

nets according to the voltage assignment result. At last, a power-network aware 

floorplanner is invoked to pack the blocks such that the power-network resource, 

estimated as the sum of the half-perimeters of the voltage islands, will be mini-

mized. As a result, blocks in the same voltage island will be placed close to each 

other. In their approach, the voltage assignment step and the floorplanning step are 

done separately. 

There are other works addressing issues like reliability [21J and temperature 

reduction [9] in SoC voltage island partitioning and floorplanning. 

1.7 Contributions 

In this thesis, we address the MSV driven floorplanning problem (definition 2 in 

section 1.5) in two stages, and propose two approaches to solve it. 

In the first stage, we propose a floorplanning method for MSV designs that is 

tightly integrated with the island partitioning and voltage assignment steps. Sim-

ulated annealing is used with normalized Polish expression [IS] as the floorplan 

representation. Normalized Polish expression is used because the slicing tree is 

a suitable data structure on which island partitioning and voltage assignment can 

be done optimally and efficiently given one slicing floorplan. Simulated annealing 

is adopted to perform the random search. In each step of the annealing process, 

a candidate floorplan solution is generated on which optimal island partitioning 

and voltage assignment will be performed simultaneously to compute the smallest 

possible power consumption for that candidate floorplan solution. This is done by 

dynamic programming with an efficient cost table update technique. In this way, 

we can integrate the three steps closely, and reduce the searching space (instead 

of doing voltage assignment by the "move" operations of the annealing process as 
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in 181). In this floorplanning framework, we can also generate islands with power 

down mode to optimize the total power consumption further. Our floorplanner can 

be extended to consider the number of level shifters and the ease of power network 

routing (proximity to power pins and shapes of voltage islands). By using this 

approach, we can achieve significant power savings (up to 50%) for all data sets, 

without any significant increase in area and wire length. 

In the second stage, we explicitly take timing requirements into account in 

the MSV driven floorplanning problem by proposing another framework, which 

is able to simultaneously optimize power consumption and physical layout of the 

circuit with the given timing constraints being satisfied. We will first show that 

the voltage assignment problem under timing constraints can be solved optimally 

under some conditions, i.e., given a netlist and a number of working voltage levels 

for each module, a specific voltage level can be assigned to each module on the 

netlist ill such a way that maximum power saving can be achieved without violat-

ing the timing constraints, if a feasible solution exists. This problem can be solved 

optimally when the delay choices (each delay choice corresponds to a choice of 

the working voltage level) are continuous in the real or integer domain. We will 

present a general formulation of this voltage assignment problem as a set of linear 

inequalities to represent the timing requirements, with an objective to minimize the 

sum of the power cost in each cell. This problem can be transfomied to a convex 

cost network flow problem [2], after applying the Lagrangian relaxation technique 

and can be solved optimally by a cost-scaling algorithm [7] in polynomial time. 

We can then make use of this method to obtain a feasible voltage assignment so-

lution in which each module has just a discrete number of delay choices. Because 

of the short running time of this cost-scaling algorithm and, particularly, its ca-

pability of handling efficiently incremental changes on edge costs, we can embed 

this voltage assignment step in a simulated annealing based floorplanner, so that 
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power consumption and physical information can be taken into consideration si-

multaneously. We compared our approach with [11], the most updated previous 

work on this problem, on the data sets provided by the authors of [ 111. Experimen-

tal results show that our approach performs much better than [11] in terms of both 

power saving and running time. An average of 24.61 % (v.s. 6.68% by [ 11 ]) power 

saving can be achieved in an average running time of 213s (v.s. 19115 by [ 111) 

with our approach on those data sets. 

1.8 Thesis Organization 

The remaining of this thesis is organized as follows. In chapter 2, a number of pre-

vious works addressing the voltage island generation problem in the floorplanning 

context are briefly discussed. A voltage island driven floorplanner is provided in 

chapter 3, and another floorplanning framework for MSV designs is proposed in 

chapter 4 to further take timing constraints into consideration. Finally, chapter 5 

concludes this thesis. 

• End of chapter. 



Chapter 2 

Literature Review on MSV 

2.1 Introduction 

Voltage islands enable core-level power optimization for SoC designs by utiliz-

ing a unique supply voltage for each core. Architecting voltage islands involves 

island partition creation, voltage level assignment and floorplanning. The task of 

island partition creation and level assignment have to be done simultaneously in 

a floorplanning context due to the physical constraints involved in the design pro-

cess. This leads to a floorplanning problem formulation that is very different from 

the traditional floorplan design. A number of previous works have addressed this 

problem. According to the design stage at which MSV is applied, these previous 

works basically fall into two categories. 

15 
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2.2 MSV at Post-floorplan/Post Placement Stage 

2.2.1 "Post-Placement Voltage Island Generation under Per-

formance Requirement” 

This work [19] considered power versus design cost trade-off for the post-placement 

voltage island generation problem. 

In this paper, a candidate placement is viewed as a 2-D array, and the value at 

each entry of the array is set to be the square of the required working voltage level 

of the cell occupies the corresponding entry position. Let A be an m x n array, and 

A[/] [y] denotes the value of the element at position (/，,/). A subarray A[/ . . .rjy.. .u 

is the rectangular region in A with (/,/)) (resp. (r, w)) as the bottom-left (resp. 

upper-right) corner. A subarray is refereed as a rectangle region. Let /ii{R)= 

m a x ( , 力 b e the maximum value of all elements in a subarray rectangle R. 

The weight of a rectangle R is defined as 

co(R) = X ("⑷—斗•][./•]) 
(JJ)^R 

The weight of a rectangle R represents the power wastage resulted if rectangle R 

form a voltage island, since the cells in one voltage island are restricted to work at 

the same voltage level, which should be ^/"(尺)as the voltage level assigned to a 

cell can not be lower than its required working voltage level, 

A partitioningof A is a set of disjoint rectangles (subarrays) n = ，7?2,... ,Rk} 

that cover A; k = | n | is called the size of this partitioning. The weight of a parti-

tioning n , is defined as 

co(n)= X � ( 叫 
\<t<k 

In their voltage island generation problem, they want to subdivide the place-

ment region into a small number of voltage islands (where every cell in the same 
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voltage island will eventually receive the same voltage), while keeping the total 

power consumption low. 

They defined the Voltage-partitioning problem as follows: 

Definition 3 Voltage-partitioning Problem, or VPP Given anmxn array A and 

an error threshold 6, among all partitionings whose weight is at most 5, find one 

with the smallest size. Let K(A, 6) be the size of this optimal partitioning. 

They also defined the dual version of VPP, or DVPP. The dual version of this 

problem (DVPP) is defined as the problem of minimizing the weight of the parti-

tioning with a bound on the size. 

They first the dual DVPP problem under the slicing model can be solved op-

timally by dynamic programming, then proposed an approximation approach to 

handle primal VPP by using binary search. 

Let co*(/.. .r,/7.. .m) denote the minimum weight of any rectangle (subarray) R 

in A with at most 5 sub-rectangles, where R = A[l.. .r,b.. .u]. The ultimate goal 

is to compute w认 I …r，b... u). At the base level, if 5 = 1, or if co(R) = 0, and 

(D*(l.. .r,b.. .u) is set as co(R). Otherwise, the recursion can be written as follows: 

(})*{l.. .r,b.. .u) = min { 

(0*(/.../,/?...w) + co*_,(/-h I.. .r,b.. .u). 
min } 

� � " � " t co,*(L.rA�y) + co;—,(L.r，j.+ l . j ) 

The second minimization term enumerates all horizontal and vertical cuts, and 

the first term (1 < t < .v) enumerates all possible ways to assign the number of 

rectangles {t and s — t) for the two separated parts obtained by some horizontal or 

vertical cut. 

This provides an optimal solution for the dual DVPP problem under the slicing 

model. Then, the approximation approach for the primal VPP problem under the 
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same model can be easily obtained by guessing the optimal number of rectangles 

k in 0{logk) time by a binary search, starting with k= \ . 

2.2.2 “Post-Placement Voltage Island Generation" 

Similar with the paper in the previous sub-section, this w o r k � 5 ] also targeted at 

minimizing the number of voltage islands generated on a candidate placement, 

while keeping the power wastage under a certain threshold. The main difference 

between this work and the previous one lies in that non-rectangular voltage islands 

are allowed in this work. 

The non-rectangular voltage-partitioning problem (NVPP) is defined as fol-

lows: 

Definition 4 Non-rectangular Voltage-partitioning Problem, or (NVPP) Given 

an mx n array A and an error threshold 5，find a partitioning O of connected 

regions whose weight co(n) is at most 5 and the size | n | is as small as possible. 

The input grid (the candidate placement) size m x n is usually huge and it is 

inefficient to work on it directly. Therefore, they first coarsen the grid G to a size of 

0{N) where N is the number of cells, after which a new grid G' is obtained, where 

each cell in the original grid G belongs to one and only element of the new grid G', 

At the second step, a tree T of the elements in the coarsened grid is built according 

to their adjacencies and their differences in power requirement. Basically, this is 

a bottom-up recursive clustering of G'. At each level, pairs of adjacent nodes are 

clustered to form a "super-node" at the next level according to the amount of power 

wastage incurred. The binary tree T is constructed to represent this multi-level 

clustering process, in which the leave nodes are the nodes in G' and the internal 

nodes are the super-nodes. Subsequently, a dynamic programming will be applied 

to partition this tree optimally into subtrees (each subtree will correspond to a 



CHAPTER 2. LITERATURE REVIEW ON MSV 19 

connected region) such that the total power wastage is minimized. Since the NVPP 

also targeted at minimizing the number of voltage islands generated, this dynamic 

programming procedure starts with k = I, where parameter k denotes the size of 

the partitioning. The procedure stops if the power wastage is below threshold 5; 

else, k is increased by 1 and the procedure is invoked again. Furthermore, this 

tree T will be reconstructed and partitioned repeatedly, so that the nodes can be 

redistributed among subtrees to refine the solution. 

2.2.3 "Timing-Constrained and Voltage-Island-Aware Voltage 

Assignment" 

This paper [20] is also a work on post-floorplanning voltage island generation. 

They present an approximation algorithm to produce an initial voltage assignment 

that meets timing, while considering proximity of high voltage cells on a candidate 

floorplan. 

They formulate the voltage assignment problem as a delay budgeting problem, 

with the special objective of physical proximity. Based on the framework of a 

classic delay budgeting algorithm, the zero slack algorithm (ZSA)，they design an 

algorithm to allocate delay budget and assign voltage to cells towards an objective 

of physical proximity. 

ZSA iteratively assigns delay budget to non-critical cells in the circuit. At each 

iteration, it first computes the slacks of all cells and find the minimum positive 

slack Smin', then it finds a path with this minimum positive slack, and distributes 

s„ji„ evenly among the cells on the path. Then it updates the delay of these cells and 

go to the next iteration. The algorithm stops when the slacks of all cells become 

zero. They adopted the iterative framework of ZSA to solve the voltage assignment 

problem. The major difference lies in how the path slack is allocated among the 

cells on each selected path, since the physical proximity of the high voltage cells 
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has to be taken into consideration. 

At first, they compute for each cell c the delay budget r^ it needs for voltage 

reduction. Let the slack of this cell be Sc, Those cells satisfying Sc < 厂c will be 

assigned high voltage because they can not have any voltage reduction. Then at 

each iteration, for each cell c on the selected path, they calculate its distance to 

the closest high voltage cell, denoted as dc- The larger this distance value is, the 

more likely it's sitting in a potentially non-critical low-voltage region, the more 

cost there is if this cell becomes a high voltage cell, thus, they give higher priority 

to it for voltage reduction. Therefore they sort all cells on the selected path with 

decreasing value of dc, and allocate the path slack in the order of this sorted list, 

giving each cell the delay budget it needs for voltage reduction. If at certain cell 

in the list, the remaining slack is less than its needed delay budget, then it will be 

skipped and the next one is proceeded. The allocation stops when it reaches the 

end of the list, or when there is no more slack left. Such allocation guarantees that 

high voltage are always assigned to cells as close to the existing high voltage cells 

as possible, thereby maintains the physical proximity of the high voltage cells. 

2.2.4 "Voltage Island Generation under Performance Require-

ment for SoC Designs” 

In this work [16]，they considered how to perform voltage island floorplanning 

with multiple supply voltages for SoC design. 

In their approach, a few candidate floorplan solutions are first generated based 

on area and interconnect cost using an ordinary floorplanner, then voltage assign-

ment and partitioning are performed on these candidate floorplans using the ILP 

approach to identify the best candidate solution. Therefore, this work actually be-

longs to the post-floorplanning voltage island generation category, although floor-

planning has been considered in their framework. 
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In their approach, the voltage assignment and island partitioning problem is 

formulated as a 0-1 integer linear program, when an input floorplan is given. They 

presented two formulations for the voltage assignment and voltage island genera-

tion problem. The first is exact but takes longer time to compute a solution. The 

second use some approximation techniques, and it can be solved much faster with 

insignificant sacrifice on solution quality. The goal of voltage level assignment is 

to reduce the total power consumption while controlling the level conversion area 

overhead and the power network complexity without compromising system per-

formance. A fragmentation cost (number of adjacent cores operating at different 

voltages) is used to model the power network complexity when assigning working 

voltage levels to cores, but this cost is not related to the number of islands directly. 

The separation between the floorplanning step and the voltage assignment step 

largely confined their solution quality. Besides, the ILP formulation made their 

approach relatively time consuming. 

2.2.5 “An ILP Algorithm for Post-Floorplanning Voltage-Island 

Generation Considering Power-Network Planning，， 

In this paper [12], they presented a general formulation of this problem that consid-

ers level-shifter planning and power-network routing resources at post-floorplanning 

stage. 

The problem inputs include a floorplan with a number of blocks, a netlist spec-

ifying the interconnections between the blocks, a timing constraint Tcxrie such that 

the delay of the critical path in the netlist can not exceed Tcycu>, a constant I that 

defines the relaxed block adjacency, and the legal working voltage levels of each 

block. The objective is to assign each block with an available supply voltage and 

insert necessary level shifters, such that the total power consumption and the total 

power-network routing resource are minimized, the total size of level shifters do 
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not exceed the white space in the floorplan, and the timing constraint is satisfied. 

They proposed a general problem formulation which considers level-shifter 

planning and power-network routing resource. Moreover, the cost function is dy-

namic in nature, since they do not have the information on the number of voltage 

islands during the optimization. To capture the block adjacency in a floorplan for 

voltage-island generation, they proposed a graph-based representation such that 

the number of nodes in the graph is linear to the number of blocks. To tackle the 

addressed problem, an ILP formulation was employed, in which they proposed 

(1) a box-growing wirelength estimation method to predict the timing overhead 

incurred by level shifters, (2) a set of linear voltage-island-clustering inequalities 

to avoid complicated constraint transformations, and (3) a set of linear inequali-

ties to capture the usage of the power-network routing resource. Solving this ILP 

would give a solution to the problem addressed. 

2,3 MSV at Floorpian/PIacement Stage 

2.3.1 “Architecting Voltage Islands in Core-based System-on-

a-Chip Designs” 

In this paper [8|, the authors addressed the problem of voltage islands planning 

for core-based SoC designs, which involves partitioning cores into several islands 

and floorplanning both at chip and island-level. A graph-based representation is 

used so that the partitioning and floorplanning steps are modeled in an integrated 

fashion. 

Their approach is based on simulated annealing which guides the floorplanning 

and the island merging processes through a Voltage Island Compatibility Graph 

(VICG) graph G{V,E), a complete undirected graph which captures the current 

voltage island partitioning solution in an abstract way. Each vertex v, G V denotes 
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a voltage island, and each edge characterize the "attraction" between island v, 

and island v, by its weight, which is dependent on and interconnections between 

the two islands as well as their working voltage levels. In this way, the floorplanner 

can be guided in such a way that two compatible voltage islands (working at the 

same voltage level) with heavy interconnections are placed adjacently. 

Given an initial voltage island partitioning and its associated floorplanning, 

the approach iteratively improves the solution quality by local perturbation, re-

floorplanning and islands merging. This perturbation is then reflected back to the 

corresponding VICG. Next, a chip-level floorplanning is applied with the goal of 

finding a floorplan where compatible islands are likely to be placed adjacently. The 

island merging process consists of detecting the regions that contain potentially 

inergeable islands, and eventually merging them. In order to shrink the area of 

these islands, an island-level floorplanning is applied to each of the newly merged 

islands with the goal of minimizing its bounding box. Finally, this new solution 

is evaluated and its costs calculated. The above process is repeated until a satis-

factory solution is found. The cost function is a weighted sum of different metrics 

including the number of islands, average power consumption, and area overhead. 

The solution perturbations during their annealing process contain island split 

move, island voltage change move, and multi-island voltage change move, which 

produce a large search space and thus make their approach quite timing consuming. 

2.3.2 "Voltage Island Aware Floorplanning for Power and Tim-

ing Optimization" 

In this work [11], Lee et al handled the voltage assignment problem under tim-

ing constraints by dynamic programming, and developed a power network aware 

floorplanner to generate floorplans with voltage islands after the voltage assign-

ment step. In the following the approach of this paper is explained in more details, 
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as we will mainly compare with this paper in chapter 4. Here is their problem 

formulation. 

Definition 5 Multi-Voltage Floorplanning [MVF] Problem Given multiple supply-

voltage choices, a set of blocks, a netlist, a static-timing and a fixed-outline con-

straints, assign each block with a supply voltage and its coordinate in a floorplan 

so that the power consumption and the power-network resource requirement are 

minimized and both the static-timing and fixed-outline constraints are satisfied. 

Algorithm Flow 

The flow consists of three phases: (I)voltage assignment, (11) level-shifter (block) 

insertion, and (III) power-network aware floorplanning. For Phase I, they present 

a dynamic programming (DP) based method to solve the voltage assignment prob-

lem. As supply voltages are assigned to the circuit blocks in Phase I, they check 

in Phase II whether a net needs a level shifter and insert one as a soft block if 

needed. Finally in Phase III，they transform the precomputed slack into the wire-

length constraint and perform floorplanning on all blocks, circuit blocks and level 

shifters (soft blocks), to minimize the power-network resource requirement. The 

floorplanning is based on simulated annealing (SA) using the -tree floorplan 

representation [4]. 

In Phase I，they first represent the netlist by a DAG, and then handle voltage 

assignment by dynamic programming (DP) on the DAG. Given a netlist without 

reconvergent fanouts, the DP can guarantee an optimal solution for the voltage 

assignment. Phase I contains mainly the following steps. 

Step 1. DP-curve initialization. Represent the delay-power properties of a 

block as a Del ay-Power-curve (DP-curve). DP-curve is a monotonic decreasing 

chain as shown in Figure 2.1. 

Step 2. Joint Curve Generation. For an unvisited node in the DAG, they will 
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' ' (3,4)@VDD1 

^ (4,3)@VDD2 VDD1 is the highest voltage 

O 2)@VDD3 VDD3 is the lowest voltage 

Delay 

Figure 2.1: An Example DP-Curve (The three points of the DP-curve represent the 

delay-power characteristics of different supply voltages) 

calculate the joint curve of this node and each of its fanins, after which a set of 

joint curves will be generated. 

Step 3. Lower-Bound Merge Operation. During this step the set of previously 

generated joint curves will be merged into one curve. 

Step 4. Redundant Point Pruning. After all the points on the DP-curve have 

been produced after the merging operation, a pruning procedure will be employed 

to delete those redundant points which are dominated by others in terms of both 

power and delay, so that a monotonic decreasing DP-curve can be obtained for the 

node that is currently visited. 

Step 5. Solution Backtracing. Having generated the new accumulative DP-

curve at POs, they trace a netlist to get an good solution of voltage assignment. 

Among all the points that satisfy the timing constraints in the accumulative DP-

curve at a PO, the one with lowest power consumption will be chosen, so the delay 

and power of the whole circuit will be determined. Consequently, they repeat 

tracing solutions until Pis to assign a voltage level for each core. 

In the Phase II of their algorithm flow, level shifters are inserted into a net that 

connects two blocks in different power domains. After voltage assignment, they 

trace the circuits from Pi's to PO's to search the nets that need level shifters by 
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Figure 2.2: The backtracing procedure in [11] for getting a solution 

breadth-first search. Those level shifters are treated as soft blocks during floor-

planning stage. 

In Phase III, they conduct power-network aware floorplanning for the origi-

nal hard blocks and the additional level-shifter (soft) blocks together to make the 

critical paths satisfy the timing constraint. The objective in this phase is to find 

a floorplan which simultaneously minimizes the power-network resource require-

ment and satisfies the timing and the fixed-outline constraints. During the anneal-

ing process of floorplanning, they adopted the following cost function to minimize 

the powernetwork resource without violating the constraints. 

0 ( r ) 二 a<i>PMR + (1 - a)<^^area + ^timing + 屯mtUne 

where Op/v/? denotes the cost of power-network resource, ^area is the area of the 

floorplan, and a is a weighting factor. timing and ^outline are the penalty for timing 

and outline violation, respectively. 
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Figure 2.3: A reconvergent structure in the netlist 

This paper proposed a reasonable design flow, however, their solution quality 

suffers in several aspects. First of all, the optimality of its voltage assignment step 

can only be guaranteed when there are no reconvergent structures in the netlist, but 

there are surely many of such structures in real circuits, which can significantly 

worsen the quality of their voltage assignment result. Fig. 2.3 shows an example 

of a reconvergent structure, in which the signals emanating from vertex one re-

converges at vertex four, after traversing two disjoint paths. Secondly, physical 

information is not taken into account while performing the voltage assignment 

step. Lastly, the length of an interconnect is restricted to stay within a certain 

range during floorplanning in order to satisfy the timing constraints, which may 

degrade the solution quality. 

2.4 Summary 

In these previous works, MSV is considered at various design stages, including the 

floorplanning and placement stages [8], [I 1 ], and the post-floorplanning and post-

placement stages [5], [12], [16], [19], [201. For the latter category, Wu et al [191 

and Ching et al [5] targeted at minimizing the number of voltage islands gener-

ated, and Mak et al [16] formulated the voltage assignment and island generation 

problem as an integer linear program (ILP). The other two works also considered 

timing. In [20], Wu et al proposed an approximation algorithm based on a zero 
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slack algorithm to minimize the power cost and to simplify the power network 

resource under timing constraints; Lee et al [12J tackled the voltage assignment 

problem using an ILP based approach with a set of linear inequalities representing 

the timing requirements. An inevitable deficiency of all these post-floorplanning 

and post-placement works is that physical layout and power optimization are done 

separately, hence the solution quality is restricted to a certain extent. Concurrent 

physical layout and power optimization will be much more favorable. In (11 j, 

voltage islands are generated during floorplanning, however, the voltage assign-

ment step is done prior to floorplanning, which largely restricted their solution 

quality. Hu et al. [8] considered this simultaneous voltage assignment, voltage is-

land generation, and floorplanning problem, however, the large solution space of 

their approach rendered their approach quite time consuming, besides, they didn't 

explicitly considered timing in their problem formulation. 

• End of chapter. 



Chapter 3 

MSV Driven Floorplanning 

The content of this chapter is included in the proceedings of IE EE/ACM Interna-

tional Conference of Computer-Aided Design (ICCAD) 2007 [14]. 

3.1 Introduction 

Energy efficiency has become one of the most important issues to be addressed in 

today's System-on-a-Chip (SoC) designs because of the increasing power density 

and the wide use of portable systems. There are two kinds of power consump-

tion: dynamic and leakage. Dynamic power is caused by the charging and dis-

charging of the load capacitance during switching. Leakage power is due to the 

sub-threshold currents when a device is turned off. There are many techniques to 

reduce power consumption. One of the most effective methods is by lowering the 

voltage supply. Multi-voltage design is thus introduced to provide "just enough" 

power to support different functional operations. Both dynamic and leakage power 

consumption can be reduced in multi-voltage designs. For dynamic power, since 

the consumption is proportional to the square of the voltage, a minor adjustment 

to the voltage level can result in a significant reduction. For leakage power, the 

2 9 
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consumption can be reduced by powering down parts of a chip when the functions 

are inactive. 

Multi-voltage designs involve the partitioning of a chip into areas called "volt-

age islands" that can be operated at different voltage levels, or be turned off when 

idle. With the use of voltage islands, the chip design process is becoming more 

complicated. We need to solve the problems of island partitioning, voltage as-

signment and floorplanning simultaneously under area, power, timing and other 

physical constraints. These problems must be solved at the same time since their 

results will significantly affect each other. In addition, there are other issues to be 

considered. For example, the voltage islands should be placed close to the power 

pins in order to minimize the power routing complexity and the IR drop. Besides, 

each island requires level shifters to communicate with others and overhead in area 

and delay will be resulted. These additional issues have created many new chal-

lenges in generating floorplans for designs using voltage islands. An example is 

shown in Figure 3.1. In this example, the possible voltage levels of each core and 

groupings of similar inactive periods (to generate islands with power down mode) 

are shown on the right hand side. Assuming that the number of islands is three, one 

possible partitioning is to group cores A, B and C as one island operating at voltage 

I .OV, core D on its own as one island at voltage 1.5V and cores I, K, L and M as 

one island at 1.2V. Notice that other cores will be operated at the chip-level volt-

age and the island containing I, K, L and M can be powered down during sleep. 

A candidate floorplan solution for such a partitioning and voltage assignment is 

shown on the left hand side. 

In this chapter, we propose a floorplanning method for SoC designs that is 

tightly integrated with the island partitioning and voltage assignment steps. Sim-

ulated annealing is used with normalized Polish expression [18] as the floorplan 

representation. Normalized Polish expression is used because the slicing tree is 
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li n A:U.OV’UV} H:{1.0V, I.IV} 
A _ B _ B:{1.0V,1.1V,1.2V} I: {1.2V} 

1 C:{1.0V，1.1V} J:{1.0V，l.m 
D:{1.5V} K:{1.1V,1.2V} 

c E:{1.1V，1.5V} L:{1.1V，1.2V} 
U J 機 , > ' 1 F: {l.iv, 1.2V} M: {1.IV, 1.2V} 

„ . ； ,, \ G: {I.IV, 1.2V} 
, , - ‘ ,, J-

£ p D , , … I d l e State Grouping: 
l � i i Group 1: {D, I, K, L, M} 

_ Power saving = 50% 
G H J Group 2: {H, J} 

丨……一〒丨 ^ — Power saving = 30% 

Figure 3.1: An example of the voltage island driven floorplanning problem 

a suitable data structure on which island partitioning and voltage assignment can 

be done optimally and efficiently given one slicing floorplan. Note that the re-

stricted use of slicing floorplan can also give satisfactory results since many input 

cores have flexibilities in shape at this stage. Simulated annealing is adopted to 

perform the random search. In each step of the annealing process, a candidate 

floorplan solution is generated on which optimal island partitioning and voltage 

assignment will be performed simultaneously to compute the smallest possible 

power consumption for that candidate floorplan solution. This is done by dynamic 

programming with an efficient cost table update technique. In this way, we can 

integrate the three steps closely, and reduce the searching space (instead of doing 

voltage assignment by the "move" operations of the annealing process as in [8]). 

In this floorplanning framework, we can also generate islands with power down 

mode to optimize the total power consumption further. Our floorplanner can be 

extended to consider the number of level shifters and the ease of power network 

routing (proximity to power pins and shapes of voltage islands). By using this 

approach, we can achieve significant power savings (up to 50%) for all data sets, 

without any significant increase in area and wire length. 

We will define the problem in section 3.2，then the methodology used will be 
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discussed in section 3.3. Experimental results will be reported in section 3.6 before 

the conclusion and discussion in the last section. 

3.2 Problem Formulation 

In this problem, we are given a set of n cores with areas A],A2.. and aspect 

ratio bounds [li,Ui] for i = 1 .. .n. Each core i is associated with a power table 7] 

that specifies the legal voltage levels for the core and the corresponding average 

power consumption values. The power table of a core can be characterized by a 

core designer. For example, they can run simulations that try applying different 

supply voltages to the core, and a voltage level will be regarded as a legal one as 

long as the timing assertion can be satisfied [8]. We assume that the given voltage 

levels of each core can meet timing, so we do not consider timing explicitly in 

our formulation. The power consumption corresponding to each legal voltage can 

then be estimated. In this work, we compute the power cost of a core i operated 

at voltage v as v^A/. We are also given a set of m nets {N\ ,N2..-N,n] and a set of 

groupings {G\, G2. . . Gp} between the cores such that the cores in each group G/ 

have similar inactive periods and will have a s-flo saving in power consumption if 

they are grouped together as an island with power down mode. 

Given a constant K and a chip-level voltage V�our goal is to generate a floor-

plan F with K rectangular voltage islands so that the total power consumption is 

minimized. Each island will be supplied with the lowest possible voltage level 

common to all the cores in that island while the remaining cores not assigned to 

any island will be operated at the chip-level voltage. Islands containing blocks all 

belonging to the same group G, can have a further reduction in power consumption 

by Si% by shutting it down during sleep. 
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3.3 Algorithm Overview 

Our floorplanner is based on simulated annealing using normalized Polish expres-

sion (NPE) as the representation. For each candidate floorplan solution represented 

by an NPE, we will perform an optimal island partitioning and voltage assignment 

to maximize the total power saving. The cost function of the annealing process is 

to minimize a weighted sum of the area, wire length and power. We can also extend 

our floorplanner to consider level shifters and proximity to power pins. Details will 

be given in the following sections. 

3.4 Optimal Island Partitioning and Voltage Assign-

ment 

Given a candidate floorplan solution represented by a normalized Polish expres-

sion, we can construct the corresponding slicing tree and perform optimal island 

partitioning and voltage assignment on it. This can be done efficiently by dynamic 

programming. The pseudo code is shown below: 

Pseudocode TreePart(u, k) 

// Partition the subtree under node u into k subtrees to 

//minimize the total power consumption such that the cores 

// (leaf nodes) in each of these k subtree will form one island 

//operated at one common voltage possibly with power down 

"mode while the remaining cores not belonging to any of 

// these k subtrees will be operated at the chip level voltage Vc 

1. min^cost = � 

2. I f k is 0, return(power{u)). 
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3. IfcostJable[u] [k] is updated, retum(cost Jahle[u] [k]). 

4. I f k is 1, 

5. C[ = TreePart{lchild{u), 1) + power{rchild{u)) 

6. C2 二 Tree Part (jchild(ji), 1) + power{lchUd{u)) 

7. C3 = nonSubtree{u, 1) 

8. C4 = cost{{u]) 

9. min—cost = niin{Ci ,€2, €3,04} 

10. Store min_cost into cost Jahle[u\ [1]. 

11. Re turn (m in —cost). 

12. Else 

13. min—cost = nonSuhtree{u^k) 

14. For i = Q to k 

15. C = TreePart{lchild{u)J)+ 

TreePart{rchild{u),k- i) 

16. Ifmin-cost > C, min_cost 二 C 

17. Store min—cost into cost J able [u] [k]. 

18. Return( min—cost). 

At the beginning, Tree Part {root, K) is called to obtain an optimal island par-

titioning and voltage assignment of the whole floorplan, where root is the root of 

the slicing tree corresponding to the normalized Polish expression under consider-

ation and K is the number of voltage islands we want to produce. When k is zero 

(line 2), no voltage island is formed in the subtree of lu so the power consumption 

power(u) will be computed as (Vc)2A{,小 where Vc is the chip-level voltage and 

is the total area of the cores in the subtree of u. For non-zero k, we will first 

check whether this optimal cost has been computed before and is available in the 

table for immediate return (line 3). If this value is not available, we will consider 
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the situations when k is one and when k is larger than one separately. When k 

is one (line 4)，there are four cases: case 1 (line 5), we continue to search for a 

voltage island in the left subtree of u and let the right subtree operates at the chip-

level voltage Vc； case 2 (line 6), similarly, we look for a voltage island in the right 

subtree of u and let all the cores in the left subtree work at K：; case 3 (line 7)，use 

the function nonSubtree{) to group the cores across a number of subtrees along 

the left tree branches of u into a voltage island (details will be given in the next 

sub-section); case 4 (line 8)，the entire subtree u is regarded as one voltage island 

and the power consumption cost{{u}) will be computed as where Vĵ ĵ 

is the smallest common voltage among all the cores in the subtree rooted at u and 

is the total area of the cores in the subtree rooted at u. We will compute 

the costs of the four cases respectively, and the smallest one will be returned and 

recorded in the table for future use. When k is more than one (line 12), we will 

recursively call the procedure Tree Part {) to exhaust all the possible partitionings 

of the subtree of u, including both inter-subtree partitionings (line 13) and intra-

subtree ones (line 14-16). The minimum one will be returned and recorded in the 

table. 

3.4.1 Voltage Islands in Non-subtrees 

Notice that a voltage island (a rectangular region) may be formed by a set of con-

tiguous right subtrees linked by internal nodes of the same operational type. An 

example is shown in Figure 3.2. Therefore, we need the procedure nonSuhtree{) to 

enumerate these cases. The pseudo code of nonSiihtree{) is shown in the follow-

ing. In this procedure, we exhaust all the cases of forming one island with two or 

more contiguous right subtrees and the one with the smallest power consumption 

will be returned. On line 7, we compute the cost of grouping the right subtrees in S 

as one island and having the remaining k 一 1 islands in the last left subtree (subtree 
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D in the example of Figure 3.2). 

Pseudocode nonSuhtree(u, k) 

// Exhaust the cases of forming one island by a number 

// of contiguous right subtrees, while the remaining k — 1 

// islands are formed in the remaining left subtree. 

1. mill—cost = oo 

2. S = rchild{ii) 

3. op 二 operator{u) 

4. While ope rat or{lchild{u)) is op, 

5. Li — lchiJd[ii) 

6. S 二 S[Jrchild�ii) 

7. C = TreePart(lchild{u),k - l ) + cost � 

8. If min —cost > C, rnin.cost — C 

9. Return(minjcost). 

3.4.2 Proof of Optimality 

The procedure TreePart() will give the optimal partitioning to minimize the to-

tal power consumption. Given a candidate floorplan solution represented by a 

normalized slicing tree rooted at u and the number of voltage islands required k, 

TreeParti) will exhaust all the possible cases recursively and return the best solu-

tion. When k is zero, there is only one case that all the cores in the tree rooted at u 

(called Tn) are operated at the chip voltage. When k is one, there is only one volt-

age island among all the cores in T". Three of the cases are obvious: (1) the island 

is in the left subtree of u’ (2) the island is in the right subtree and (3) all the cores 
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Same operator 

歷i = 
/ D \ 丨、 / c \ / Subtrees 

~ ~ ^ \ � " ^ \ / along the ^ 
��-一一一 left tree branches 

A, B and C, not in one subtree, can form one voltage island. 

Figure 3.2: An example of forming an island across subtrees 

in Tu form one island. There is still a case that the island is formed between the 

left and right subtrees of u. This may happen only when two consecutive internal 

nodes are of the same type (both “+,，or both “*，，). In a normalized slicing tree, 

an internal node will not be of the same type as its right child, so this will happen 

only along the left branch. nonSiibtree() will exhaust this last case of forming one 

island by a set of contiguous right subtrees along the left branch rooted at u. When 

k is larger than one, the cases are similar to those when k is one and Tree Par t() 

will exhaust all different ways of distributing the k islands between the left and 

right subtrees of u and the case of having an island lying between the two subtrees. 

Since TreePart() has exhausted all different cases of forming k islands in a given 

candidate floorplan, the solution returned by TreePart() is optimal. 

3.4.3 Handling Island with Power Down Mode 

Voltage islands with power down mode can be easily handled in our framework. 

When computing the power consumption of an island formed with the cores in 

the set of subtrees rooted at a node in set X by calling cost{X) in the procedures 
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Tree Pan Q and nonSubtree{), we only need to check if all the cores within this 

island belong to one group G, for some i=\ ...p. If this is true, the island formed 

can be shut down during sleep and have an additional power saving of sfh. In this 

way, our floorplanner can give optimal island partitioning and voltage assignment 

taking into account islands with power down mode given any candidate floorplan 

solution. 

3.4.4 Speedup in Implementation and Complexity 

A table costJable[v\ [j] for j = \ ...K is kept at each internal node v of the slicing 

tree to record the optimal power consumption of partitioning the cores in the sub-

tree rooted at v into j islands. This data structure can help to minimize the number 

of recursive calls and to avoid repetitive computations. It can be seen from the 

the procedure Tree Par t() that whenever we want to find the optimal power saving 

at a node u with k voltage islands, we will first check whether this is computed 

before and the required information is available from cost Jable[u] [k]. If it is avail-

able, the optimal value is returned immediately (line 3). Otherwise, it is computed 

recursively and the computed value will be saved in the costJable to be used in 

some later steps (line ]0 and 17). After a move in the annealing process, only a 

small part of the whole slicing tree will be changed and we only need to update 

the tables of the affected nodes once. The affected nodes will be those lying on 

the paths from the modified parts of the tree to the root. For those affected nodes, 

the corresponding cost—tables will be flagged as "not updated" and will be updated 

during the recursive calls. 

For each affected node v, we need to update all the K entries of its table 

once. Since each entry is just updated once, the time complexity will be the 

same as that of updating all the affected nodes in a bottom-up fashion from the 

leaves to the root. If the nodes were updated from the leaves to the root, the 
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time taken to update a table at a node v was because there were K en-

tries and each entry took 0(K) time (the tables of y's children have already been 

updated). Therefore the total time to perform all the updates in each iteration is 

(number of affected nodes ) x O(K^). This is 0[K^n) in the worst case, and is 

{K^logn) on average. 

3.4.5 Varying Background Chip-level Voltage 

In the problem formulation, it is assumed that a background chip-level voltage Vc is 

given. Our approach can also be applied when there is no such voltage and the final 

chip-level voltage is determined by the minimum feasible voltage level among all 

the cores which are not grouped into any voltage island. To achieve this, we only 

need to expand the table at each node L times where L is the number of possible 

voltage levels among all the cores. In this case, each entry cost Jahle[v\ [j] [V/] will 

be the optimal power consumption of partitioning the cores in the subtree rooted 

at V into j islands when the background chip-level voltage is V/ where 1 < / < L. 

Notice that all entries in the tables corresponding to different chip-level voltages 

can be updated simultaneously during the recursive calls and the run time is only 

linearly scaled up by L. This is very affordable in practice since the number of 

possible voltage levels L is usually small. 

3.5 Simulated Annealing 

3.5.1 Moves 

There are three kinds of moves to change the normalized Polish expression of 

a candidate floorplan solution in the annealing process. This set of moves has 

been proven to be complete to change any arbitrary solution to any other arbitrary 

solution. 
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1. Swap - Swap two adjacent blocks. 

2. Complement - Complement a chain of operators. 

3. SwapOp - Swap a block with its adjacent operator. 

3.5.2 Cost Function 

We use the cost function \|/ = A -f X^W + XpP to evaluate a floorplan where A is 

the area of the floorplan, W is the total wire length estimated by the half perimeter 

bounding box method and P is the total power consumption. The parameters 入“ 

and Xp are the weights which will be set at the beginning of the annealing process 

by random walks to make the three terms similar in weighting. This cost function 

can be modified to consider the fixed-outline constraint by replacing the area term 

A (since we are not minimizing the area) by X,oo(max{0, w —W )̂ +max{0,/z — 

where Xoo is a large positive constant, vv and h are the width and height of the 

candidate floorplan solution, and W' and H' are the fixed width and height required 

for the final floorplan design. 

3.6 Experimental Results 

We have done experiments on the GSRC floorplanning benchmarks. Since no 

voltage information is provided in those benchmarks, we have randomly generated 

the voltage levels for each block from the set {1 .OV, 1.1 V’ 1.2V, 1.3V, 1.5V} and 

1.5V is assumed to be the chip-level voltage. In each data set, groups of blocks 

with similar inactive periods are also randomly generated. Table 3.1 shows the 

details of each data set, the fourth column indicates the grouping information of 

similar inactive periods, e.g., for n30, there are two groups: one contains five cores 

with an additional 30% power saving if being grouped together, and the other 
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Table 3.1: Data sets for MSV driven floorplanning 

Data Block No. Net No. Groups 
nlO 10 ~ m 3(30%) 
n30 30 — 349 ~ 5(30%), 5(20%) 
n50 50 485 “ 5(50%), 5(30%), 5(20%) 

m o o 100 885 10(30%), 5(50%), 6(40%) 
n2()() 200 ~ 1585 10(50%), 10(40%). 9(30%), 9(20%) 

"i^OO 300 1893 ~15(6()%j, 15(50%), 15(40%), 15(30%； 

one contains five cores with an additional 20% power saving if being grouped 

together. Our algorithm is implemented in the C programming language and all 

the experiments were performed on a Sun Blade 2500 with a 1.6 GHz CPU and 2 

GB RAM. 

The results are shown in Table 3.3. For each data set, we performed voltage 

island driven floorplanning with the number of voltage islands generated ranges 

from zero to six. We can see from the results that up to 50% power saving can be 

achieved without any significant degradation in area and wire length. In addition, 

the speed is very acceptable and promising. Some resultant floorplans are shown 

in Figure 3.3 and Figure 3.4. Figure 3.3 is a resultant packing of data set ^100, 

with four voltage islands generated. In Figure 3.4, we aim at testing a particular 

situation in which some cores can be operated at very low voltages (compared with 

the chip-level voltage). We use play out of the MCNC benchmark as the testing 

data set, and assign 0.6V to cores {2-9} and 0.8V to cores {12-19} respectively as 

their minimum working voltages, while the other cores' working voltages are all 

set to 1.5V. The floorplanning procedure is then performed with K = 2 and 1.5V 

being the chip-level voltage. In the result, two islands are generated as expected, 

one with cores {2,3,4,8,9} and the other one with {12，13，14,15，17}. The cores 

{5,6,7} and {16,18,19} are not included in the islands due to other factors like 

interconnect and area. Their sizes are small and will not cause large power wastage 

even if being operated at a higher voltage. 
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Table 3.2: Comparisons of our MSV driven floorplanner with [16) 

Data Power Saving (%) Dead Space (%) Run Time* (s) 

Set with without [16] with wilhoul [16] with without [ 16| 

idle island idle island idle island idle island idle island idle island 

apte 52.47 47.91 53.78 1.264 1.232 3.422 3.016 3.002 5.482 

xerox 50,21 41.76 22.85 1.137 1.085 5.259 3.235 3.185 7.079 

hp 47.85 39.19 25.37 1,324 1.318 5.700 3.827 3.367 122.9 

ami33 54.26 46.96 44.12 3.865 3.582 5.784 40.69 36.84 89.39 

am 149 52.63 45.50 41.13 3.791 3.805 6.440 98.36 91.23 90.46 

2xerox 50.86 41.76 33.53 2.062 3.067 3.765 10.64 9.026 74.75 

2hp 55,13 39.19 17.47 2.451 2.238 5.650 12.74 11.12 26.86 

ami75 49.32 40.05 39.06 4.379 4.871 6.330 276.1 251.2 316.5 

ami99 48.68 45.57 41.16 6.388 7.036 7.666 441.4 428.3 684.4 

ami200 43.87 39.88 41.90 8.116 8.011 10.88 1657 1598 3851 

ami300 42.54 40.54 40.69 10.08 11.42 12.02 3369 3243 7380 

Average 49,78 42.57 36.46 4.078 4.333 6.655 537.8 516.7 1150 

*[16J is run on a Linux machine with a 2.1 GHz CPU and 4 GB RAM. 

In order to compare with the previous related work on SoC designs 116|, we 

have done another set of experiments with the benchmarks provided by the authors 

of [161. In their data sets, the available voltage levels for each cell are chosen 

from the set {1.1V, 1.3V, 1.5V, 1.8V}. The comparisons are displayed in Table 3.2. 

Note that two different comparisons have been done, one of which enables the idle 

island option while the other disables it. Result shows that our approach is much 

more efficient and is able to save more power in most cases, while with less area 

overhead. In this set of experiments, we set AT = 4 for all data sets, i.e., four voltage 

islands are generated for each test case. 
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Table 3.3: Experimental results of MSV driven floorplanning 

Data K Total Power Area Dead Wire Idle Island Run 
Set Power Saving (%) Space (%) Length No. Time (s) 
nlO 0 4 9 8 7 1 8 0.000 223588 0.854 0 3.236 

1 406653 18.47 223918 1.003 1865 丨 3.259 

2 357723 28.28 224457 1.238 1986 丨 3.343 

3 303755 39.16 224546 丨.277 1929 丨 3.351 

4 277569 44.35 224335 1.184 � 8 9 7 1 3.374 
5 268342 46.22 224314 1.175 2106 1 3.388 
6 267145 46.44 224355 1.193 2075 1 3.454 

n30 0 4 6 9 3 3 0 0.000 211720 l A ^ ^ 0 29.65 
1 322429 31.30 214040 2.543 8823 0 31.34 
2 251420 46.43 213453 2.278 8425 1 32.47 
3 243300 48.16 214763 2.874 9016 1 32.83 
4 237621 49.37 216481 3.645 8969 2 37.14 

5 233623 50.22 220572 5.432 9113 2 39.88 

6 228047 51.41 217022 3.885 9084 2 42.64 
n5() 0 4 4 6 8 0 2 0. ()()() 200465 15324 0 90.26 

丨 326612 26.90 200852 1.132 16233 0 94.25 

2 286310 35.92 202101 1.743 17659 0 95.73 

3 255838 42.74 202332 1.855 16983 1 95.46 
4 229835 48.56 202875 2.118 17241 2 100.3 
5 217369 51.35 202495 1.934 16815 3 113.7 

6 216788 51.48 206309 3.747 17927 2 134.1 
n l O O 0 4 1 7 9 2 8 0.000 187899 M ^ 17638 0 325.8 

1 365143 12.63 190173 2.338 17962 0 333.7 
2 350558 16.12 195880 5.174 18267 0 367.6 
3 327864 21.55 196858 5.645 18663 1 396.7 

4 307553 26.41 198599 6.472 18135 丨 438.1 

5 282686 32.36 200187 7.214 19579 2 451.5 
6 250064 40.17 200429 7.326 18851 2 492.4 

n 2 0 0 0 4 1 9 2 2 3 0.000 188092 0.942 21501 0 1489 
1 382449 8.761 195633 4.762 22419 0 1523 
2 363843 13.21 196582 5.224 22946 1 1568 
3 350804 16.32 199979 6.831 23017 1 1626 
4 325484 22.36 203808 8.586 22838 1 1648 

5 295216 29.58 206267 9.670 23519 丨 1723 

6 271572 35.22 209939 丨 1.26 23485 2 1838 

n 3 0 0 0 6 6 8 2 9 0 0.000 302007 i T ^ 27924 0 ^ 
1 624303 6.582 317022 6.310 28318 0 2869 
2 598988 10.37 325061 8.627 28254 0 2913 
3 563502 15.68 326493 9.028 29247 1 2966 
4 515518 22.86 331086 10.29 28761 1 3202 
5 483508 27.65 335348 11.43 29388 1 3635 
6 453167 32.19 342858 13.37 29289 2 3828 
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Table 3.4: Extending for minimization of level shifter number 

Data No. ofLS Power Saving (%) Run Time (s) 
w/o LS Opt. with LS Op"t~ w/o LS Opt, with LS Opt, w/o LS Opt, with LS Opt. 

nlO 43 27 44.35 — 38.25 3.374 
n30 “ 79 45 49.37 ~ 35.89 — 37.14 42.82 — 
n50 192 - 137 48.56 40.63 1003 

nlOO “ 267 _ 62 — 26.41 — 丨7.82 — 438.1 440.6 — 
n200 — 345 “ 96 “ 22.36 — 15.34 — r m 
n300 — 569 “ 126 22.86 \2M ^ 
Avg 249.2 82.1 35.65 26.80 — 904.8 _ 920.2 _ 

Diff(%) ^ -24.82 +1.7 

3.6.1 Extension to Minimize Level Shifters 

Level shifters (LS) are needed for connections between two blocks in different 

power domains. These level shifters will lead to area and delay overhead and 

should be minimized. We can extend our floorplanner to minimize the usage of 

level shifters by having an additional term in the cost function (with a weight 

determined by random walk before the annealing process) to represent the number 

of level shifters used. We assume that a level shifter is needed whenever a wire 

is connecting two blocks operating at different voltages � . F o r example, if a net 

connects a source in voltage island A to three sinks, two in island B and one in 

island C, two level shifters will be inserted, one between A and B and one between 

A and C. Since the operating voltage of each block is known after the voltage 

assignment and voltage island partitioning procedure, the number of level shifters 

needed can be counted trivially. The result is shown in Table 3.6.1. In this set of 

experiments, the numbers of voltage islands K are all four. The results have shown 

that our method can reduce the number of level shifters by 67.1 % on average with 

some penalty in power saving and run time. 

^We can also consider adding a level shifter only when one core with a lower voltage level 

drives another core with a higher voltage level. 
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3.6.2 Extension to Consider Power Network Routing 

The voltage islands should be placed in proximity to the power pins to simplify 

the power routing step and to minimize the IR drop. The power network resources 

can be modeled by the sum of the half perimeters of the islands [11]. We can 

also extend our floorplanner to consider these power network issues by having 

additional terms in the cost function (with weights determined by random walk) to 

represent (1) the total distance of the voltage islands from their respective power 

pins, and (2) the sum of the half perimeters of the islands. In our experiments, 

we assume that the positions of the K power pins are given. In each iteration of 

the annealing process, each island is matched to a power pin such that the total 

distance between them is the smallest possible. This total distance and the sum of 

the islands' half perimeters will be minimized during the annealing process. 

Two resultant packings of the nSOO data set consisting of 300 blocks are shown 

in Figure 3.5, and they are produced with the fixed-outline constraint. The packing 

in Figure 3.5(a) is obtained by the original floorplaner，without taking into con-

sideration the power network issues, while the one in Figure 3.5(Z?) is obtained 

by this extended version. There are four power pins located at the center of each 

boundary in this example. We can see from the figures that the four islands are 

shifted to the sides of the chip containing the pins in order to be located closer to 

their respective power pins. Besides the islands are closer to square in shape that 

will favor IR drop reduction and power network routing. 

3.7 S u m m a r y 

In this chapter, we have proposed a simulated annealing-based approach for the 

floorplanning problem with simultaneous island partitioning and voltage assign-

ment. The three factors area, wire length and power consumption of the resultant 
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Figure 3.5: Resultant floorplans considering proximity constraints to power pins 
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floorplan are concurrently taken into consideration. The experiment results have 

shown that we are able to achieve a significant power saving of up to 50% for the 

testing data sets. 

In addition, when extended to minimize the number of level shifters, our method 

can reduce 67.1% of the LS used on average, with some penalty in power saving. 

It also functions well to generate voltage islands in proximity to their correspond-

ing power pins, by having additional terms in the cost function to minimize the 

total distance between voltage islands and power pins, and to restrict the islands to 

be more square-like in shape. 

• End of chapter. 



Chapter 4 

MSV Driven Floorplanning with 

Timing 

The content of this chapter will appear in the 26th IE EE/ACM International Con-

ference of Computer-Aided Design (ICCAD) 2008 [15]. 

4.1 Introduction 

In MSV designs, one prerequisite is an initial voltage assignment at the standard 

cell level that meets timing. Therefore, the timing slacks of the cells are traded for 

power saving by assigning appropriate supply voltage levels to the cells while still 

satisfying the timing constraints. Basically, high voltage level will be assigned to 

critical cells and low voltage level is assigned to non-critical cells, so that power 

‘ can be saved without violating the timing constraints. Therefore, an effective and 

efficient voltage assignment method is desirable to minimize power consumption 

under timing requirements. Moreover, it is beneficial to consider the problem of 

voltage assignment, voltage island generation and floorplanning simultaneously 

under the timing, power, area and other physical constraints, since these steps will 

4 9 
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significantly affect each other. 

A number of previous works addressed the voltage assignment and island gen-

eration problem in floorplanning and placement. In these previous works, some of 

them explicitly considered the timing constraints [11], [12] [13] [20], while others 

did not [51J81, [9], [16], [191. 

In one recent work 111], Lee et al. handled the voltage assignment problem un-

der timing constraints by dynamic programming, and developed a power network 

aware floorplanner to generate floorplans with voltage islands after the voltage 

assignment step. Given a netlist represented by a directed acyclic graph (DAG), 

voltage assignment is first performed according to the timing requirements before 

the floorplanning step. Level shifters are then inserted into the nets according to 

the voltage assignment result. At last, a power-network aware floorplanner is in-

voked to pack the blocks such that the power-network resource, estimated as the 

sum of the half-perimeters of the voltage islands, will be minimized. As a result, 

blocks in the same voltage island will be placed close to each other. This paper 

proposed a reasonable design flow, however, their solution quality suffers in sev-

eral aspects. First of all, the optimality of its voltage assignment step can only 

be guaranteed when there are no reconvergent structures in the netlist, but there 

are surely many of such structures in real circuits, which can significantly worsen 

the quality of their voltage assignment result. Secondly, physical information is 

not taken into account while performing the voltage assignment step. Lastly, the 

length of an interconnect is restricted to stay within a certain range during floor-

planning in order to satisfy the timing constraints, which may degrade the solution 

quality. 

In this chapter, we will first show that the voltage assignment problem under 

timing constraints can be solved optimally under some conditions, i.e., given a 

netlist and a number of working voltage levels for each module, a specific voltage 
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level can be assigned to each module on the netlist in such a way that maximum 

power saving can be achieved without violating the timing constraints, if a feasi-

ble solution exists. This problem can be solved optimally when the delay choices 

(each delay choice corresponds to a choice of the working voltage level) are con-

tinuous in the real or integer domain. We will present a general formulation of this 

voltage assignment problem as a set of linear inequalities to represent the timing 

requirements, with an objective to minimize the sum of the power cost in each 

cell. This problem can be transformed to a convex cost network flow problem |2|, 

after applying the Lagrangian relaxation technique and can be solved optimally 

by a cost-scaling algorithm [7] in polynomial time. We can then make use of this 

method to obtain a feasible voltage assignment solution in which each module has 

just a discrete number of delay choices. Because of the short running time of this 

cost-scaling algorithm and, particularly, its capability of handling efficiently in-

cremental changes on edge costs, we can embed this voltage assignment step in 

a simulated annealing based floorplanner, so that power consumption and physi-

cal information can be taken into consideration simultaneously. We compared our 

approach with 111 ], the most updated previous work on this problem, on the data 

sets provided by the authors of [11]. Experimental results show that our approach 

performs much better than [11] in terms of both power saving and running time. 

An average of 24.61 % (v.s. 6.68% by [11]) power saving can be achieved in an 

average running time of 213s (v.s. 1911 .v by [1 1]) with our approach on those data 

sets. 

The remainder of this chapter is organized as follows. We define the problem 

in section 4.2, then the methodology used will be discussed in section 4.3. Experi-

mental results will be reported in section 4.6 before the conclusion and discussion 

in the last section. 
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Figure 4.1: The DAG representation of a netlist 

4.2 Problem Formulation 

We are given a set of n modules mi,m2, with areas and aspect ratio bounds. 

Each module m/ is given Iq choices of supply voltages v^ for \ < q < Iq, and 

the power-delay tradeoff in nv, is represented by a delay-power curve (DP Curve), 

{[d] ( j f ' .p f ' )} , where each pair is the corresponding de-

lay and power consumption when m, is operated at � Note that each df is in 

Z+ (positive integer set), since the delay of a module is measured in terms of the 

number of clock cycles. Fig. 1.1(a) is an example of a DP Curve, which contains 

three choices of supply voltages for this module. Moreover, we assume that for 

each module, power is a convex function of delay when each point { d ^ i s con-

nected to its neighboring point(s) by a linear segment in the DP Curve. We are 

also given a timing requirement Tcyde’ called clock cycle time, of this circuit and 

require that the critical path delay is at most Tcyde-

We denote a netlist by a directed acyclic graph (DAG), G 二 {V,E). Each 

vertex i e V denotes a module m/，while each directed edge e{Lj) G E denotes an 

interconnect through which a signal is sent from m/ to mj. Fig. 4.1 is an example 

of the DAG representation of a netlist. In this DAG, each vertex is associated with 

a DP Curve representing the power-delay tradeoff of the corresponding module, 

while each edge is attributed with a wire delay. 

To facilitate our problem formulation, we will first transform G — {V,E) into 

G = {V, E) in such a way that each vertex / E V is split into an input vertex and an 



CHAPTER 4. MSV DRIVEN FLOORPLANNING WITH TIMING 53 

® . . . . . . 

Figure 4.2: The transformed DAG G of the graph G in Fig. 4.1 

output vertex, and the input vertex is connected to the output vertex by a directed 

edge. We denote this set of newly created edges and the set of original edges by 

E\ and Ei, respectively. Hence E = E\ U E2. Fig. 4.2 illustrates the resultant DAG 

of the graph in Fig. 4.1 after this transformation, where dashed edges are in Ei 

and solid edges are in Ei. After this transformation, the DP Curve of a vertex 

in G will be associated with its corresponding edge in E\. For example, after this 

transformation, vertex one and vertex six in G of Fig. 4.2 are, respectively, the input 

and output vertex of vertex one in G of Fig. 4.1, thus the DP Curve of vertex one in 

G is now associated with the edge <?( 1,6) in G, and we will use /:i’6 to denote the 

number of voltage level choices of this DP Curve. We can assume that each edge 

e{ij) E E2 (corresponding to a wire) is also associated with a DP Curve in which 

the delay is an integer ranging from the wire's minimum delay to the maximum 

allowed delay Tcycie’ and here we assume the power cost is zero at all points (the 

power cost on interconnects can be estimated as a function of total wire length and 

will be considered at the floorplanning level). Fig. 1.1 (^) is an example DP Curve 

corresponding to an edge e{i, j) G E2. Therefore, each edge j) e E of G is now 

associated with one and only DP Curve, while the vertices in G simply represent 

the starting or ending point of a time interval and are not associated with any DP 

Curves. For each edge e{ij) G E, we use dij to denote the delay on it, and use 

Pjj to represent the function that maps delay to power consumption on edge e(i\ j), 

i . e . , P , j { d f j ) = pI f o r \ < q < k.j if e[i,j) G £：,, a n d 户 = 0 if e{i.j) G £ 2 . 

Moreover, we use /" and Ujj to denote the lower and upper bound of the delay dij 
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on edge e(/.,./), i.e., /,：； < dij < uij, \/e(i, ./•) G E. For each edge e人i, ,/•) G Ei，kj = djj 

and Uij 二 d?厂 For each edge e{i, j) G E2, w/, is T^yd^, while //y is the minimum wire 

delay of the corresponding connection, and is estimated by scaling wire length to 

delay according to equation (4.1)，when physical information is available. 

lij = d-wlij (4.1) 

where w//y is the estimated length of the wire connecting module i and module ./， 

and 5 is a constant scaling factor. Let // e Z+ denote the arrival time at vertex / in 

V, then it follows that 

t j - t i > d i j , ^ e { i J ) e E (4.2) 

and 

0 < < Tcycie. V/GV (4.3) 

The static timing constraint and the voltage assignment problem can be defined as 

follows: 

Definition 6 Static Timing Constraint - Given a clock cycle time Tcycie cmd a 

DAG, G = {V.E) corresponding to a netUst, the static timing constraint of the 

netlist is that the arrival time ti satisfies equation (4.2) and (4.3), V/ G V. 

Definition 7 Voltage Assignment Problem - Given a clock cycle time Tcycie and a 

，E) where each edge e is associated with a DP Curve, select a delay-

power pair for each edge in its DP Curve such that the sum of power consumption 

is minimized while the static timing constraint is satisfied. 

According to the above definitions and notations, the voltage assignment prob-

lem can be easily formulated into the following mathematical program. 
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Minimize Z 彻) e f 户 ( l a ) 

Subject to 

tj-ti>d,j, W(/，,/)G£ (\h) 

0 < t , < Tcycie； V/G V (Ic) 

hj < d,j < {\d) 

而 e{4，J‘.，，々}’ (1 )̂ 

dij G z+, Ve(/,./)e£2 (I/) 

ti e z+ V/G V (Ig) 

Problem (1) without the discrete choice constraint (1 e) is a convex cost integer 

dual network flow problem (or simply a dual network flow problem) [2]，since its 

dual can be transformed to a minimum cost flow problem. This problem can be 

solved optimally in polynomial time, and we w川 show it in the following sections. 

Then, we will make use of the optimal solution to this problem to generate a fea-

sible solution to the general cases of discrete choices for the module delay, with a 

power consumption approximating the optimal one. 

In MSV designs, the power network resource should also be minimized. Given 

a floorplan, the power network resource Ôy for the modules working at voltage 

Vq can be estimated by the half-perimeter of the bounding box of all those mod-

ules [11], while the total power network resource is the sum of O^, for <7= 1,2,...,/: 

where k is the number of different voltage levels available. Our ultimate goal in 

this work is to solve the MSV driven floorplanning problem ( 2 in section 1.5). 
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4.3 Algorithm Overview 

Globally, we use a simulated annealing based FAST-SP 117] floorplanner to ex-

plore the solution space. The voltage assignment problem (definition 7) is a sub-

problem of the MSV-driven floorplanning problem (definition 2), since the former 

is needed in order to evaluate a candidate solution for the latter problem. After 

each random move of the annealing process, the length of some interconnects may 

be changed which will cause changes in the minimum delay of the corresponding 

wires, thus / " for those affected wires e{ij) e E2 of G should be re-computed 

with equation (4.1) after the floorplan is realized. With these changes, the oper-

ating voltage level of each module is re-assigned by computing another solution 

to problem (I). The power network resource is evaluated afterwards. In the fol-

lowing sub-section, we will first focus on solving the voltage assignment problem 

before discussing how this voltage assignment solver can be incorporated into a 

MSV-driven floorplanner. 

4.4 Voltage Assignment Problem 

The voltage assignment problem is equivalent to the mathematical program (1) in 

Section 4.2. We will show in the following that problem (1) without the discretiza-

tion constraint {\e) can be transformed into a minimum cost flow problem and can 

be solved optimally in polynomial time [2]. 

To simplify the problem, we will first make some modifications to the DP 

Curves. First of all, we connect each pair of neighboring points in a DP Curve by 

a linear segment, resulting in a piecewise linear convex function of power versus 

delay. It can be shown that there always exists an optimal solution to the dual 

network flow problem (problem (1) without constraint {\e)) with integral vari-

ables [2]. Therefore, the constraints (1/) and (Ig) can be removed. 
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Figure 4.3: Delay power curve Pij(dij) of (a) an edge e(i,J) e Ei； (b) an edge 

e(J,j) e E2; (C) an edge e{ij) G E3 

In the second step of simplification, the lower and upper bounds on variables 

dij and r, in constraints (Ic) and {Id) are eliminated. We first eliminate bounds on 

dij by defining a new power delay function for each edge e{ij) e E as follows: 

^ijii^ij) + 似 X (dij — Uij), if dij > Uij 

W / ) 二 \ Pijid^j). if kj < du < uu 

Pij{lij)-Mx{dij-lij), if dij < kj 

V 

where M is a sufficiently large number, and here, we set M = D + 1，where D = 

- 户"（〜.).Actually, M can be viewed as a penalty for 

violating the lower and upper bounds of the variables, and we set the penalty to 

be large enough to guarantee that a solution with variables violating the bounds 

is impossible to be an optimal one, if a feasible solution of problem (1) exists. 

Therefore, by replacing Pijidij) with Pij[dij], we are able to remove the constraint 

(Ic) and {\d), with variables in the optimal feasible solution guaranteed to stay 

in the range specified by (Ic) and {\d). An example transformed DP Curve of an 

edge in E\ and that of an edge in Ei are illustrated in Fig. 4.3(a) and Fig. 4.3(/?), 

respectively. 

Similarly, we define as follows and put it into the objective function so 
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that the lower and upper bounds on ti can also be eliminated. 

M X [ti - Tcycle), if ti > Tcycle 

糊 0 , if 0 < r, < 

、 — M X ⑷， if ti<0 

After all the above simplifications, problem (1) without the discretization con-

straint (le) can be transformed into problem (2) as follows. 

Minimize Wy) + (2(0 

Subject to tj — ti > dij, \/e{i, ,/•) G E (2b) 

In the following sub-section, problem (2) is further simplified by using the La-

grangian relaxation technique. 

4.4.1 Lagrangian Relaxation 

The Lagrangian relaxation technique is useful to eliminate difficult constraints. 

Here, we want to eliminate the constraints tj — t,- > dij in (2b). We apply the 

Lagrangian relaxation technique to problem (2), by introducing a nonnegative La-

grangian multiplier vector x, and the corresponding Lagrangian sub-problem is to 

compute: 

L(x) = min X Z i t j—t i — dii)Xij 
eii,mE ieV e{iJ)eE 

where xij is the nonnegative Lagrangian multiplier associated with the constraint 

tj 一 ti > dij. Note that: 

X (“ - tj)xij = X ( Z ^ij - Z 久jdti 
eiiJ)€E i£V j:e{iJ)€E j:e{j,i)^E 
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We define 

•^0/ = X Xij - Z Xji, Mi e V 

Then we can rewrite L{x) as follows: 

L � = m i n X � 7 ) + E (召'("） 

，r e(iJ)eE iev 

In order to convert this problem to a network flow problem, we add an extra 

vertex 0 into G, and add an edge e(0, /) for each vertex i G V. Lets denote this set 

of newly added edges by £3 and denote the resultant DAG by G* = so 

that y* = {0}UV and = £1 U £2 U £"3. Particularly, for each newly added edge 

6'(0,/), we put doi 二 ti, loi 二 0，UQi = Tcycie and Fq/ =召/. The delay power curve 

Pij{dij) of an edge e{i,J) G £3 is shown in Fig. 4.3(c). Upon these notations, the 

Lagrangian sub-problem (problem (3)) can be restated as to compute: 

Ux) - min X {3a) 
e(iJ)eE* 

Subject to 

I Xij— Z 乂 = V/€V* {3b) 

xu > 0, y e { i , j ) e E i U E 2 (3c) 

Since each Pij{dij) is a piecewise linear convex function, Pij(dij) + Xijdij is 

also a convex function of dtj for a given value of x/y. It is important to note that, 

for a given value of vector Z each term min而{P/y⑷）+Xijdij} can be optimized 

separately, since djj is now independent of each other among all the edges e{i, j) G 

E*. We define function Hij(xij) for each e(ij) G E* as follows: 

f^ij(xij) = -hxijdij} dij 
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Then problem (3) can be rewritten as to compute: 

Hij[Xij), subject to (3b) and (3c). 

The Lagrange dual problem is to determine x* such that 

乙(•Jf*) 二 max.L(_x) = max ^ H i j { x i j ) (4a) 

Subject to 

S 义"-X 义尸 0, v / e v * (4b) 

Xij > 0, y e { i , j ) e E i U E 2 (4c) 

The following well-known theorem [3] establishes a connection between problem 

(2) and problem (4): 

Theorem 1 Let be a solution to the Lagrange dual problem, then L(x*) equals 

the optimal objective value of the original convex dual network flow problem. 

4.4.2 Transformation into the Primal Minimum Cost Flow Prob-

lem 

We first derive an explicit expression for //,/(义/,’）. As shown in Fig. 4.4, P " � / ) 

is a piecewise linear convex function. Let be a break point (where 

the slope changes) on this function, and let s— and denote the left slope and the 

right slope at this point, respectively. We can prove the following two lemmas. 

Lemma 1 Hij{xij) = Pijid-j) + 义(/"f力 < ^ij < 一厂. 
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Figure 4.4: Left slope 厂 and right slope at {dfj,Pij{d'lj)) in a DP curve 

Proof: When dij < 略 let /⑷） = s — d " + c (c is a constant) be the equation of 

the straight line on the left hand side of d̂ -j (with slope .v"). Due to the convexity of 

Pij, Pijidij) > /("")，for dij < 4 . Thus P,j{dij) > / � = ( 厂 + 

Xij)dij + c. Note that 厂 < 0，so (厂 - \ - x i j ) d i j i s monotonically decreasing. 

Therefore, for < 4，Pij{dij) 力"“ > (厂 + c � > (厂 + c = 

Pij(dfj) -i-Xijdfj. Similarly, when dij > ctjj, let f{dij) = s+dij + c' (c' is a constant) 

be the equation of the straight line on the right hand side of d^- (with slope 力 . 

Then ？丨八山/) + Xijchj > / � / ) = {s+^Xij)dij + c'• Since > 0, 

(5+ -\-Xij)dij -\-c' is monotonically increasing. Therefore, Pij{dij) + ^ijdij > (‘5"+ + 

X i j ) d i j { s + +Xij)d'/j + c ,=尸 , 7 (4 ) + 义 f o r d " > d^. Combining the two 

cases completes the proof. • 

Lemma 2 //,:.(义"）二 — � ifxij < —M or xtj > M. 

Proof: Consider the DP Curve Pi j {dij) of an edge e{'L,j) in E*. If x/j < —M, 

Pi j {dij) + Xijdjj is minimum (with a value of -00) when dij tends to 00 since x/yJ/y 

dominates Pijidij) when dij tends to 00 (the slope of the rightmost segment of Pij 

is M). Similarly, if xij > M, Pij{dij) Xijdij is minimum (with a value of — � ) 
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when dij approaches — � since Xijdij dominates Pij{dij) as dij tends to — � ( t h e 

slope of the leftmost segment of Pij is - M ) . Therefore, we can conclude that 

^ i M i j ) == nim^.j{F/j(cIij)+Xijdij}=-⑵，if < —M or x/j > M. • 

Recall that the objective of the Lagrange dual problem is to maximize 

Hi j (X i j ) o v e r £ Therefore, we can safely add the constraint -M < Xjj < M \/e{i, j) G 

E*, according to Lemma 2. 

Note that, for the function Hij{xij) corresponding to an edge e{ij) G the 

Lagrangian multiplier x/y must be nonnegative, therefore, it can be further bounded 

as 0 < Xij < M ye{ij) G E\. Together with Lemma 1 and the DP Curve in 

Fig. 4.3(a)，we are able to express Hij{xij) of each edge e{i,j) G E\ in the fol-

lowing manner. 

PiMn+d^y� 0<xij<hij{kij) 
1) + � — 小 b,j{kij) < Xij < — 1) 

Hj 八Xij) = < • 

P,, ( 4 ) + BIJ{Q + ! ) < XIJ < HIJ{Q) 

、Pij{4�+d}jXij, b,j{2)<Xij<M 

where b i j { q ) = 户义 ) ; ' ( ( � ) . N o t e that it directly follows from the convexity of 

Pij{d,j) that bij{q+\) <bij{q). 

Similarly, the constraint 0 < xij < M can also be added for each function 

Hi八Xij) that corresponds to an edge e{i,j) G E2, since the variable Xij of an edge 

e{ij) G E2 is also a nonnegative Lagrangian multiplier. According to Lemma 1 

and the power delay curve Pij(dij) in Fig. 4.3(b), the corresponding Hij{xij) of an 

edge e{i,j) G E2 can be written as follows: 

H,j{xij) = hjXij, 0<Xij<M 
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Figure 4.5: Function Hij{xij) of (a) an edge in E\ \ (b) an edge in E2; and (c) an 

edge i n £ 3 

For the function Hij{xij) corresponding to an edge e{i,j) G £3, the variable 

Xij is not a Lagrangian multiplier, and it is bounded by —M < xij < M, accord-

ing to Lemma 2. The corresponding function Hij{xij) can be written as follows, 

according to Lemma 1 and the delay power curve in Fig. 4.3(c). 

TcycleXij, -M < Xij < 0 
^iA^ij)=� 

0, 0<X,y<M 
V. 

Fig. 4.5 shows the bounds and shapes of all these functions Hij{xij). It is 

easy to observe that these functions Hjj{xij) are piecewise linear concave. Then, 

we let Cij{xij) = —Hi八Xij), so that Cij{xij) is a piecewise linear convex function. 

We can subsequently transform problem (4) into problem (5) as shown below, by 

replacing Hij{xij) with -Ci j{xi j ) . 

Minimize le{ij)eE* Cijixy) {5a) 

Subject to 
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S 乂ij— I 〜 二 0, V/GV* {5b) 
j:e{iJ)eE* j:e{j,i)eE^ 

-M<xij<M 五3 (5c) 

0<Xij<M ye(iJ)eEiUE2 {5d) 

4.4.3 Cost-Scaling Algorithm 

Problem (5) is a convex cost flow problem in which the cost associated with the 

flow on an edge e{i,j) is a piecewise linear convex function containing a num-

ber of linear segments. We can transform problem (5) into a minimum cost flow 

problem in an expanded network G' = and solve it using a cost-scaling 

algorithm [7]. 

In the transformation from G* to G', each edge e{ij) in G* will be replaced by 

one or more edges, depending on the number of linear segments in the correspond-

ing function Cij{xij). There are three categories of edges to consider, namely, E\, 

El, and Ey. 

• Edge in E\: An edge in E\ represents an input and output relationship of a 

module. For each edge e{i,j) e E\, k = k f j edges are introduced in G', with one 

edge corresponding to one linear segment in the cost function C". These edges 

have costs — � - d ^ f ^ , - d ) j ’ upper capacities bij{k), hij{k - 1)— 

bij{k), bij(k - 2) - bij{k — 1), ..., M - respectively, and lower capacities of 

zero for all of them. 

• Edge in 五2: An edge in Ei represents an interconnect. Each edge e(ij) e E2 is 

directly copied to G'’ with its cost, lower and upper capacity set as —//y, 0 and M 

respectively. 

• Edge in Ey. Edges belonging to this category emanate from vertex 0 in G*. For 

each of them, two edges are introduced in G'. The cost, lower capacity and upper 

capacity are respectively — -M and 0 for one edge, and 0，0 and M for the 

other edge. 
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It is well known that solving the convex cost flow problem in G* is equivalent to 

solving the minimum cost flow problem in G ' J Particularly, due to the fact that the 

costs of the edges (corresponding to delay) are all integers in our problem, we can 

directly apply the cost-scaling algorithm on G' to find a minimum cost flow (as the 

correctness of the cost-scaling algorithm in [7] relies on the fact that all edge costs 

must be integer). Since this cost-scaling algorithm is a commonly known method 

to solve the minimum cost network flow problem, we will just briefly explain its 

major steps in the following, and more details can be found from [7 ], [6|. 

The cost-scaling algorithm maintains a pseudoflow A— at each step such that 

^ satisfies the upper and lower capacity constraints for all the edges but might 

violate the flow conservation constraint. For any pseudoflow x, the excess of a 

vertex i is defined as exc{i) = ^ji _ l^j:e{ij)eE'^U for all i E Vertex 

i is called an excess vertex if exc{i)�0. A potential 兀(/) is maintained for each 

vertex i. The cost-scaling algorithm proceeds by constructing and manipulating a 

residual network G'{x) with respect to a pseudoflow x The residual network con-

sists only of edges with positive residual capacity. For a given residual network 

G'{x) and a potential vector TC, the reduced cost of an edge e{i,j) is defined as 

c f j = Cij —兀(/) + n[j�’ where c" is the cost of edge e{i, j). A flow or a pseudoflow 

X is said to be e-optimal for some 8 > 0 if for some potential vector 兀，c'fj > —£ for 

every edge e{ij) in the residual network G'{x). The cost-scaling algorithm treats 

8 as a parameter and iteratively obtains e-optimal flows for successively smaller 

values of e. Initially, £ = max{|c/y| : e{i,j) G E'} (Jcyde in our problem) and 

any feasible flow is £-optimal. The algorithm then performs cost-scaling phases 

by repeatedly applying an improve-approximation procedure that transforms an 

£-optimal flow into an 8/2-optimal flow. The improve-approximation procedure 

terminates when there are no excess vertices. After 0{log{n'Tcycic)) cost-scaling 

1 There is a constant difference ( 户"（"'7) ) between the cost of minimum convex cost 

flow in G* and the cost of minimum cost flow in G'. 
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phases, 8 < \ / n ' and the algorithm terminates with an optimal flow where n' is the 

number of vertices in the network G'. 

Time complexity analysis: The cost-scaling algorithm solves the minimum 

cost flow problem in 0(n'm'log(n''^/m')log{n'U')) time, with n\ m' and U' being 

the number of vertices, the number of edges and an upper bound of the edge costs, 

respectively. As for our problem, it is not difficult to see that there are 0{nk) 

vertices and 0(m + nk) edges in the expanded network G' where n and m are 

the numbers of vertices and edges in the original DAG G = {V.,E), and k is the 

maximum number of voltage level choices for each module. Therefore, the time 

complexity of solving our power optimization problem under timing constraint by 

this approach is 0{nk{m-\-nk)log{k^rr/m)log{knTcycie)), where Tcyde is the circuit 

timing constraint. The overhead is still acceptable since k is usually a very small 

number. 

4.4.4 Solution Transformation 

The convex cost-scaling algorithm upon termination gives an optimal flow x* and 

the corresponding optimal node potentials TC*. Both the solutions jc* and TU* may 

be non-integer. Since all the edge costs are integers, there always exist integral 

optimal vertex potentials 兀.To determine them, we construct G\x*) and determine 

the shortest path distance sd(i) from vertex 0 to every other vertex i G V'. Since 

all edge costs in are integers, each sd(i) is also an integer. Then 兀(/)= 

-sd(i) for each i G V' gives an integral optimal set of vertex potentials for problem 

(5). According to [2], an optimal solution to problem (2) can be obtained by first 

assigning ti 二 兀/，then set d" = tj — ti for each e{i, j) e E\. Note that we do not need 

to assign the value of djj for each e{ij) G £2，since the power consumption on a 

wire is zero, and the timing constraints will be automatically satisfied if there exists 

a feasible solution to the original voltage assignment problem (problem (1)). If no 
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/ Cp( , ,v ) < -Tcyc , e -1 / G ^ ^ ^ C D 

© 0 0 (d 
0 0 T一 e 0 

(a) (b) 

Figure 4.6: Paths in the proof of Lemma 3 

feasible solutions of the voltage assignment problem exist, the total flow passing 

through vertex 0 will be larger than D, as stated in the following lemma. 

Lemma 3 Given an instance of the voltage assignment problem, there exists a 

feasible solution to this instance if and only if the flow value through vertex 0 in 

the min-cost network flow problem in G' as constructed above is such that /() < D, 

^^here D = M- 1 二 lLe(ij)eE, ^ijOu) _ ！e(i，j)哦户 

Proof: (only if part) Suppose a feasible solution exists for the voltage assign-

ment problem. Let C be the total cost of the flow network. Initially, C = 0 when 

the flow on each edge is zero, and this is automatically the minimum cost flow 

if there is no negative cycle. Note that every negative cycle must pass vertex 0， 

since the original netlist is a DAG. Now suppose, without loss of generality, the 

edge e{0, u), the path from vertex u to vertex v (denoted by p{u, v)) and the edge 

e{v,0) form a negative cycle, as shown if Fig. 4.6(a). Recall that the edge cost 

are all integers, thus the cost through p(u, v) (denoted by must be integral, 

i.e., Cp—) < —Tcycie - 1, otherwise the above mentioned negative cycle cannot 

be formed. This yields that one unit flow through vertex 0 will decrease the to-

tal cost C by at least one, and hence C < -/o，where /o denotes the flow value 

through vertex 0. Note that the optimal objective value of the Lagrange dual prob-
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lem (problem (4)) L(a:*) = (—C) + ： ! 小 户 I f , / o > D, then C < - D , thus 

乙(X*) > Ẑ  + X 外 戶 / . / ( � < " ) = 户 / . / _ ( � / ) • According to theorem 1, L(x*) 

equals the optimal objective value of problem (2) (the dual network flow prob-

lem), so the objective value of problem (2) is also greater than 戶"(々 /)， 

which corresponds to the highest possible total power consumption of all the mod-

ules. This is impossible and we can thus conclude that no feasible solutions exist 

for the original voltage assignment problem exists, contradictory to our original 

assumption. 

(if part) Suppose the flow through vertex 0 is less than or equal to D，i.e., 

/o < D. Again, we prove by contradiction. If there is no feasible solution to the 

original voltage assignment problem, it means that the timing constraint Tcycie will 

be violated by some critical path p(u, v) even if each module on p(u, v) is assigned 

to work at its highest legal voltage level. Given this, there must be at least one 

module with its input vertex as i and output vertex as j in the expanded network 

G', such that all the edges between vertex i and vertex j are saturated, since a 

negative cycle will be formed with vertex 0 otherwise (as shown in Fig. 4.6{h), all 

the red edges are saturated). Note that the sum of the capacities of these thickened 

red edges is M = 1 and the flow through these edges must go through vertex 0. 

Therefore, we can conclude that /() > D, contradictory to our original assumption. 
• 

If the flow through vertex 0 is not more than D, we can construct a feasible 

solution for the original problem (problem (1)) with discretization constraint (\e) 

from this optimal solution to problem (2), by taking the largest possible delay 

choice d^^j smaller than or equal to djj for each edge e{ij) G E\. It can be easily 

shown that this solution is feasible to our original problem, and we can see from the 

experimental results that this transformation method can approximate the optimal 

power consumption well and gives large power savings. 
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4.5 Simulated Annealing 

A candidate floorplan will be generated by a FAST-SP [17] floorplanner in each 

iteration of the annealing process, after which the wire delays are estimated and 

the voltage levels of the modules are assigned by solving the dual network flow 

problem. The quality of the current solution will then be evaluated by an objective 

function. When the annealing process terminates, the best found solution will be 

returned. 

4.5.1 Moves 

There are three kinds of moves to perturb the sequence pair representation of a 

candidate floorplan solution in the annealing process. This set of moves has been 

proven to be complete to change any arbitrary solution to any other arbitrary solu-

tion. 

• Change aspect ratio - The aspect ratio of an arbitrary block m/ is changed. 

參 Swap two blocks in the a sequence - Two randomly chosen blocks are swapped 

in the a sequence. 

• Swap two blocks in both sequences - Two randomly chosen blocks are swapped 

in both the a and (3 sequences. 

4.5.2 Speeding up heuristic 

The cost-scaling algorithm is capable of re-computing a minimum cost flow upon 

incremental changes of the edge costs with relatively less effort, in comparison 

with solving the whole problem once again. This property can potentially speedup 

the whole engine when we embed the cost-scaling solver into the annealing pro-

cess. In practice, only a small portion of nets will get their lengths changed after 

a random move. This results in a high chance that the minimum cost flow found 
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previously is also optimal (or close to optimal) after the random move. Therefore, 

in our implementation, we will first check whether the previous solution is still 

optimal in the new iteration. If this is true, the previous solution will be directly 

returned; otherwise, refinement will be conducted based on the previous solution. 

This heuristic has proven to be very helpful in improving the efficiency of our 

approach, according to the experiments. 

4.5.3 Cost Function 

We use the following cost function to evaluate a candidate floorplan. 

\ | / = A + + 州料 

In this function, A is the area of the floorplan; W is the total wire length estimated 

by the half perimeter bounding box method; <1> represents the power network re-

source; P denotes the total power consumption, and particularly, P is set to a large 

number to give a heavy penalty when the resultant floorplan violates timing (when 

the amount of flow passing through vertex 0 exceeds D). Note that there exists a 

possibility of accepting a move that results in a floorplan violating timing in our 

searching process, and this strategy allows us to explore the whole solution space 

effectively. In addition, it is reasonable to estimate the total power cost on inter-

connects as a function of the total wire length, and this part of power cost can be 

taken into consideration by adding a corresponding term into the cost function. In 

our implementation, we assume that the power cost on interconnects are zero, but 

this can be easily taken care of according to our discussion above. The parameters 

A.VV, and Xp can be used to adjust the relative weighting between the contribut-

ing factors, and they are determined in a random walk with 1000 random moves 

before the annealing process starts, in such a way that the four factors, area, wire 

length, power network resource and power cost, are contributing similarly to the 

cost function. 
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4.5.4 Annealing Schedule 

In our annealing engine, the temperature is set to 10^ at the beginning and will 

drop at a rate of 0.95. At each temperature, njl random moves are performed, 

where n is the number of modules in the test case. The annealing process stops 

when the temperature falls below 10-5. 

4.6 Experimental Results 

The previous work [ 11 ] is the most updated one in handling the floorplanning prob-

lem under timing constraint in the context of MSV. In order to compare with [11], 

we performed a set of experiments on the test cases provided by the authors of [11]. 

There are totally six test cases, with the number of blocks ranging from 10 to 300. 

These test cases are based on the GSRC benchmarks, with power and delay specifi-

cations added for each block. In these test cases, every block has two legal working 

voltage levels, each of which is associated with both a power consumption value 

and a delay value. 

Note that the approach in [11] performed level shifter insertion into the netlist, 

after the voltage assignment step. Whenever there is a net through which signal is 

sent from a module at low voltage level to a module at high voltage level, a level 

shifter will be inserted into this net. Each level shifter is associated with fixed 

delay and power values, and will affect the timing and power consumption of the 

whole circuit. In order to consider level shifters so as to have a fair comparison 

with [11], we extended our fioorplanner with a conservative approach to take level 

shifters into consideration. When the DAG representation of the input netlist is 

given, we will first compute the longest path L (in terms of the number of edges on 

a path) from primary input to primary output in the DAG. It is trivial that at most 

L level shifters will be inserted on any path of the DAG after voltage assignment. 
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This indicates that after level shifter insertion, the delay of the whole circuit will 

be increased by L • dj^ units in the worst case where di^ denotes the delay of a 

level shifter. Therefore, in order to guarantee that the timing constraint can still 

be satisfied after level shifter insertion, we simply put Tcyde — L • di^ as the timing 

constraint of the circuit while solving the voltage assignment problem. 

The comparisons are displayed in Table 4.1. The column Max Power (MaxP) 

denotes the total power consumption when each module of the circuit works at its 

highest legal voltage level, and the column Power Cost with LS (P) shows the sum 

of the actual power consumption of each module plus the power consumption of all 

the level shifters inserted. The power saving is calculated by {MaxP - P)/MaxP. 

We can see that more power saving can be achieved in much less running time 

by using our approach. An average of 24.61% (v.s. 6.68% by [11]) power saving 

can be achieved in an average running time of 213s (v.s. 191 Lv by [11]) with our 

approach. Besides, we further demonstrated the effectiveness of our approach by 

performing another set of experiments in which the same set of circuits is used 

but the number of legal working voltage levels for each module is augmented to 

either three or four. For this second set of experiments, the resultant floorplans of 

all the six circuits are displayed in Fig 4.7, and the detailed results are listed in 

Table 4.2, from which we can see that an average of 28.62% power saving can be 

achieved. Our algorithm was implemented in the C programming language and all 

the experiments were performed on a Linux machine with a 3.20 GHz CPU and 

2 GB RAM. 

4.7 Summary 

In this chapter, we proposed a framework for power optimization under timing 

constraints in floorplanning. We show that the voltage assignment problem un-

der timing constraint can be formulated as a dual network flow problem that can 
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Figure 4.7: Resultant floorplanns with each module having multiple legal working 

voltage levels 
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Table 4.1: Comparisons of our framework with previous work [11 

Data Max Power Power Cost Power Saving Power Network LS Dead Space Run Time 

Set (MaxP) with LS (P) (%) Resource Number (%) (s) 

ours (111 ours f i l l ours [II] ours 111] ours 1111 ours 1111 

nlO 216841 189942 216841 12.40 0 1516 965 4 0 2.32 4.87 1.09 6.00) 

n30 205650 153526 190717 25.35 7.26 173K 1369 26 57 7.74 9.03 9.31 115.069 

n5() 195140 152684 172884 21.76 11.40 1589 �514 34 119 8.96 21.10 25.34 569.360 

nlOO 180022 120450 179876 33.09 0.10 1612 1671 77 92 7.53 34,07 121.61 1768 

n2()() 177633 135250 174818 23.86 1.58 1619 2040 129 399 7.19 46.52 454.60 4212 

n300 273499 188113 219492 31.22 19.75 1844 2147 151 452 IX.ll 44.10 1026.68 4800 

Average - 156661 192438 24.61 6.68 1653 1617.7 70 186 8.64 26.61 273.10 1911.74 

Difference - 1 1,23 1 0.27 I 0.98 1 2.66 1 3.08 1 7 

Table 4.2: Results with more legal working voltage levels 
Dala Max Power Power Cost Power Saving Power Nelwork I,S De:icJ Space Run Time 

Set (MaxP) with LS (%) Resource Number (%) (s) 

nIO 216841 167012 22.9X 1818 9 4.08 1.46 

n30 205650 142717 30.60 2012 37 16.80 13.79 

n5() 195140 143562 26.4.3 1945 43 10.66 43.44 

nlOO 180022 124428 3 0 . 2 3 7 7 108 8.9K 195.85 

n2(K) 177633 133360 24.93 2382 176 11.16 7K().74 

n300 273499 175281 35.91 2413 188 12.83 1812,37 

Average - 147726 28.62 2157 94 10.75 474.61 
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be transformed into a primal minimum cost network flow problem using the La-

grangian relaxation technique and can subsequently be solved optimally by a cost-

scaling algorithm in polynomial time when the delay choices of each module are 

continuous in the real or integer domain. We can make use of this approach to 

obtain a feasible voltage assignment solution in the general cases with power con-

sumption approximating the minimum one. Globally, a simulated annealing based 

FAST-SP floorplanner is employed to pack the modules providing physical infor-

mation to the voltage assignment engine. In each iteration, the cost-scaling solver 

is invoked to assign voltage levels, after updating the wire delays. Experimen-

tal results show that our approach is very effective and efficient in reducing power 

consumption and power network resource. In comparison with previous work [111, 

our framework achieves an additional 18% power saving on average, in much less 

running time. 

• End of chapter. 



Chapter 5 

Conclusion 

As technology scales for increased circuit density and performance, the need to 

reduce power consumption increases significantly as designers strive to utilize the 

advancing silicon capabilities. The consumer product market further drives the 

need to minimize chip power consumption. As power consumption is proportional 

to the square of supply voltage, reducing supply voltage can significantly reduce 

power consumption. Multiple Supply Voltage (MSV) has previously been intro-

duced to provide higher flexibility in controlling power and performance trade-

off. In this thesis, we are interested in handling the simultaneous voltage island 

partitioning, voltage level assignment and floorplanning problem under various 

constraints in MSV designs, so as to optimize both the power consumption and 

physical layout of the circuitry. 

We first propose a simulated annealing based approach to handle the floor-

planning problem with simultaneous island partitioning and voltage assignment, 

where the three factors area, wire length and power consumption of the resultant 

floorplan are concurrently taken into consideration. In each step of the annealing 

process, a candidate floorplan solution is generated on which optimal island parti-

tioning and voltage assignment can be performed to compute the smallest possible 

7 6 
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power consumption for that candidate floorplan solution. This is done by dynamic 

programming with an efficient cost table update technique. The experiment results 

demonstrate the effectiveness of our approach. 

One important requirement of MSV design is that timing constraints of the cir-

cuit must be satisfied after voltage assignment of the cells. Basically, high voltage 

level will be assigned to critical cells and low voltage level is assigned to non-

critical cells, so that power can be saved without violating the timing constraints. 

In order to take timing constraints into account, we propose another floorplan-

ning framework for MSV designs. We show that the voltage assignment problem 

under timing constraint can be formulated as a dual network flow problem that 

can be transformed into a primal minimum cost network flow problem using the 

Lagrangian relaxation technique and can subsequently be solved optimally by a 

cost-scaling algorithm in polynomial time when the delay choices of each module 

are continuous in the real or integer domain. We can make use of this approach 

to obtain a feasible voltage assignment solution in the general cases (when the 

delay choices are discrete) with power consumption approximating the minimum 

one. Globally, a simulated annealing based FAST-SP floorplanner is employed to 

pack the modules providing physical information to the voltage assignment en-

gine. In each iteration, the cost-scaling solver is invoked to assign voltage levels, 

after updating the wire delays. Experimental results show that our approach is 

very effective and efficient in reducing power consumption and power network 

resource. 

• End of chapter. 
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