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Abstract 

The task of named entity recognition (NER) benefits a lot from the uti-

lization of probabilistic frameworks recently. However, the development of 

Chinese N E R obviously has room for improvement when comparing with En-

glish NER. The main reason is that most of the probabilistic frameworks are 

developed for western languages, and therefore fail to capture some specific 

characteristics of Chinese language effectively. 

In this research work, we aim at incorporating some extensions to linear-

chain conditional random fields (CRFs), which have reported the best perfor-

mance on the Chinese N E R task. Our approach extends linear-chain CRFs 

by introducing dynamic potentials. Dynamic potentials enable the frame-

work to capture the dependencies across a number of states, rather than 

only the dependencies between adjacent states, while the inference can be 

kept efficient. Our experimental result shows that our proposed framework 

has improvement over the original CRF, which is consistent across several 

datasets. 
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摘要 

近年來，命名實體識別因著概率框架的運用得到很大的助益。然而，對 

比英文的命名實體識別，中文命名實體識別的發展顯然還有不少改善的 

空間。這主要是由於絕大多數的概率框架都是爲西方語言開發的，所以 

它們都不能有效地捕捉漢語某些方面的特徵。 

在這項硏究工作中，我們的目標是對線性鍵條件隨機場的框架進行 

擴展。（線性鏈條件隨機場是現時在中文命名實體識別上表現最佳的概 

率框架。）我們的方法是將動態勢的概念引進線性鍵條件隨機場中。動 

態勢讓條件隨機場不單可以捕捉鄰接狀態節點的依賴關係，還可以有效 

率地捕捉一些橫跨多個狀態節點的依賴關係。實驗結果註明，我們提出 

的概率框架比原來的條件隨機場在多個數據集上有一致的改善。 
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Chapter 1 

Introduction 

1.1 Chinese NER Problem 

Named entity recognition (NER) is a useful task in the area of information 

extraction. N E R aims at extracting and identifying all named entities (NE) 

precisely in text documents. The typical entity types of interest are persons, 

locations, and organizations. N E R has been an active research area over this 

decade, since it helps to boost the performance for many natural language 

processing tasks and can be widely applied in many text-based applications. 

N E R benefits a lot from the development of probabilistic frameworks. 

In fact, probabilistic frameworks have been actively applied to English N E R 

since about ten years ago [3, 4, 7, 20], and their current performance is shown 

to be satisfactory [25, 11, 19]. In contrast, the development of Chinese N E R 
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still has room for improvement in many aspects. Therefore, we have chosen 

to focus this research on Chinese N E R task. 

Rather than developing new frameworks for Chinese NER, most research 

works have chosen to adapt the frameworks for English N E R to Chinese 

N E R [23, 36, 34, 17]. However, the performance of Chinese N E R task is 

significantly lower than expected. This is mainly caused by some intrin-

sic properties of Chinese language, which either make Chinese N E R more 

difficult or make the approaches for English not suitable for Chinese. The 

following lists these properties: 

1. Lack of capitalization 

Undoubtedly, capitalization is an important clue in English NER. How-

ever, Chinese language has no analogous indicator as capitalization. 

2. Lack explicit delimiters to indicate word boundaries 

Unlike the space delimiters in English text, there are no explicit delim-

iters to indicate word boundaries in Chinese. Human usually implicitly 

identifies the word boundaries based on the meaning. 

3. Abbreviations 

The Chinese abbreviations are much harder to recognize, especially the 

organization names. In English, most abbreviations can be captured 

by a sequence of capital letters, e.g. IBM. 

2 



4. No "unknown words" 

Unknown words are quite strong indicators of named entities. In En-

glish, unknown words can be identified easily by matching against a 

lexicon. In Chinese, however, every unknown word can always be seg-

mented to a sequence of known words. 

Identifying these properties helps us to construct a suitable model for the 

Chinese N E R task. 

1.2 Contribution of Our Proposed Framework 

Our proposed framework is based on conditional random fields (CRFs) [15], 

one of the state-of-the-art probabilistic frameworks for sequence labeling 

problems. The linear-chain version of CRFs reported the best performance 

on Chinese N E R tasks in the 3rd International Chinese Language Processing 

BakeofF [8, 9, 40，32]. One of our research works, which was accepted in the 

4th International Chinese Language Processing Bakeoff, also uses linear-chain 

CRFs as the framework and was the only group that achieved consistently 

high performance (higher than 90.0% in the overall F-measure) on all the 

corpora in the open track of the Chinese N E R task in the 6th SIGH A N 

Workshop [35]. Therefore, the framework we propose in this thesis aims 

at preserving the powerful inference of linear-chain CRFs, as well as im-
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porting the ability to capture some useful long-range dependencies among 

states, which is similar to that in the general-graph version of CRFs [31]. 

Although general-graph CRFs can also capture the Markov dependencies as 

in linear-chain CRFs, the inference it offers can only be an approximation 

and inefficient. Therefore, rather than resorting to general-graph CRFs, we 

introduce dynamic potentials to linear-chain CRFs. 

In our proposed framework, the desired long-range state dependencies are 

captured by dynamic potentials on a linear-chain structure, rather than using 

the potentials on some fixed edges in a graphical structure. By modifying the 

common Viterbi procedure and forward-backward procedure for linear-chain 

CRFs, the effectiveness and the efficiency of the exact inference can be kept. 

In practice, the extra time required by the new inference algorithm is at most 

60% of the time required by the original one in linear-chain CRFs. 

By means of dynamic potentials, it is much more easy and effective to em-

bed human knowledge about named entities, e.g. name structures, grammar 

rules, etc., in the model as a form of features. This is usually not possible in 

original linear-chain CRFs. This is especially true for Chinese NER, because 

a Chinese named entity usually occupies no less than 3 states, and the range 

of state dependencies in linear-chain CRFs cannot be more than 2 states in 

order to keep its inference tractable. 

Another probabilistic framework called semi-Markov CRFs (semi-CRFs) 
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27] shares some similarities with our proposed framework, mainly on the 

ability to capture those long-range state dependencies. However, due to the 

differences between the formulations of the two frameworks, our proposed 

framework does not suffer from the problems found in semi-CRFs on N E R 

tasks, including hard entity length limit and search space problem. In addi-

tion, our model can also capture the dependencies of two entities which are 

separated by a sequence of "out-of-entity" states while semi-CRFs cannot. 

These issues will be discussed in detail in Chapter 3. 

Our experimental result shows that our framework has improvement over 

the original CRFs. Such improvement is consistent across several datasets. 

The details will be presented in Chapter 4. 
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Chapter 2 

Related Work 

A variety of probabilistic frameworks have been applied to Chinese N E R 

tasks, including the hidden Markov model (HMM), the maximum entropy 

model (MaxEnt), the conditional random field (CRF), etc. In this chapter, 

some of these research models will be reported. The limitations of these 

probabilistic frameworks will also be discussed. 

In most of these research models, some techniques were developed and 

applied upon the probabilistic frameworks, e.g. heuristics, preliminary word 

segmentation, separate models for different NE, etc. Although these tech-

niques sometimes help to boost the performance, they will not be discussed 

in depth in this thesis, as the aim of this research is to improve the un-

derlying probabilistic framework. Nevertheless, it should not be difficult to 

apply these techniques on the improved framework to boost the performance 
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further. 

2.1 Hidden Markov Models 

The hidden Markov model (HMM) is the first statistical framework that 

was successfully applied to N E R tasks [4]. Many Chinese N E R researches 

used H M M as the underlying framework and achieved promising performance 

33’ 29, 37, 12；. 

The reason why the H M M approach can achieve good performance on 

N E R is its capability to capture the most important information to recognize 

a name, including the local context and the internal information of a name, 

as well as the linear structure of the sentence. 

However, H M M s also suffer from a number of limitations: 

1. Generative modeling 

An H M M is a generative mo'del, which means it learns how to gen-

erate the observation sequence. The consequence is that an H M M is 

required to enumerate the whole space of observation sequences, such 

to guarantee all possible sequence can be generated by the model. 

2. Inability to use rich representation of observations 

As a result of generative modeling, rich representation of observations 
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can make the inference intractable. Therefore, besides Markov assump-

tion, additional independence assumptions are enforced among the ob-

servation tokens within a sequence. The reality is that, within an ob-

servation sequence, there exists a number of features which give very 

useful information when they are used together. In practice, ignoring 

inter-dependent features and making such independence assumptions 

hurt the performance a lot. 
I 

2.2 Maximum Entropy Models 

The maximum entropy model (MaxEnt) [2] is very popular among English 

N E R researches [6, 5, 10], but this is not the case for Chinese NER. Never-

theless, applying MaxEnts to Chinese N E R has been investigated [13, 39], 

and they show that MaxEnts generally outperforms H M M s . 

The MaxEnt is a probabilistic framework that is based on the principle 

of maximum entropy in the field of information theory. The main idea of the 

MaxEnt is that, given some known statistics information about a classifica-

tion task, the objective is to maximize the entropy (i.e. the uncertainty about 

correct classification) such that the assumption is minimized and therefore 

the parameter estimation would not be biased. 

Unlike H M M s , an MaxEnt is a discriminative model, i.e. an MaxEnt 
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learns how to discriminate, rather than generate, an observation sequence 

21]. For general classification task, as reported by [22], it is theoretically 

proved that discriminative models converge to the limit of linear classifiers 

when given enough training data, and therefore should not be worse than 

generative models. In practice, the performance of discriminative models is 

usually better than generative models. 

Discriminative modeling does not require the model to enumerate the 

whole observation space. Therefore, a discriminative model is able to use 

much richer representation of observations and allows exploiting inter-dependent 

features within an observation sequence simultaneously. 

One major drawback of the MaxEnt is that, it has to give up either 

the probabilistic state transition or the optimal state sequence searching 

algorithm. Chieu and Ng chose to have deterministic state transitions for 

optimal state sequences [10], while Ratnaparkhi et al. chose to use beam 

search for third Markov order probabilistic state transitions [24]. Obviously, 

both are desired components for the framework. Giving up either one of 

them just significantly hurts the performance. 

In addition, the MaxEnt suffers from the label bias problem [15]. This 

problem is common to all discriminative models which are trained by per-

state normalization. Such normalization makes these models bias to choose 

the paths that pass through the states with fewer outgoing transitions or with 
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lower entropy next state distribution in general, because the probabilities of 

the paths getting through these states are always estimated higher. 

2.3 Conditional Random Fields 

The conditional random field (CRF) [15] is a sequence labeling framework 

that aims at bringing together the power of the H M M and the MaxEnt, as 

well as dealing with the label bias problem. As it has inherited the strengths 

and overcome the limitations of the previous frameworks, it generally per-

forms the best on sequence labeling task. 

Currently, the C R F is the most active framework that is being applied 

to Chinese N E R task. In the 3rd International Chinese Language Processing 

Bakeoff of SIGH A N [16], almost all top-ranked Chinese N E R systems used 

CRFs as the basic framework [8, 9, 40, 32]. This competition was divided into 

close track and open track. Close track does not allow to use any external 

resources, while open track does allow. 

Among these research models, Chen and Shan et al. used only the C R F 

of the simplest form with basic features [8] to achieve comparatively good 

performance in close track, which was also consistent across a few data sets 

16]. In their paper, it is shown that their C R F models significantly out-

performed their MaxEnt model, even though they used much more features 
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for the MaxEnt model in order to capture more information. They also 

show that heuristic post-processing to CRFs output may degrade the overall 

performance. 

Similar to the previous group, Chen and Zhang et al. participated in close 

track and used the C R F of the simplest form as the framework, but they 

implemented a much richer set of feature functions for their C R F model [9 . 

However, this did not help them to achieve a significantly higher performance 

than the previous group. This group also implemented a post-processing 

algorithm to correct the inconsistent tags by utilizing the top 20 output 

sequences of each sentence. The general idea of the algorithm is to accept 

the named entities in the output with high confidence score and use them to 

correct those output with low confidence score. This algorithm consistently 

raised the performance, but not significantly. 

Zhou et al. constructed a multi-phase model by arranging a few C R F 

models in cascading manner, i.e. the output of a C R F model would be the 

input of the next C R F model [40]. The first layer is a character-level C R F 

for word segmentation. The next layer is a word-level C R F for labeling 

person names, followed by the word-level C R F models for location name and 

organization names. In close track, this construction gave an insignificant 

gain in F-score over the simplest C R F model on one dataset. In open track, 

this system successfully achieved the best performance among those systems 
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which used CRFs as framework, but it still significantly lagged behind the one 

achieving the first place, which used the MaxEnt as the basic framework [38 . 

This indicates that there should be room for improvement in incorporating 

external knowledge to CRFs. 

To conclude, the C R F significantly outperforms other probabilistic frame-

works in learning statistical information from a corpus, while it may not be as 

good in incorporating external knowledge. The current ways to improve the 

performance can be generalized into three categories, i.e. using richer feature 

set in CRFs, preprocessing (e.g. preliminary word segmentation), and post-

processing. Although these techniques helps to improve performance when 

external knowledge is supplied, they in fact do not help CRFs much to learn 

more information from the corpus. 

In this research, we choose to improve the performance of Chinese N E R 

by overcoming the limitations of the underlying probabilistic framework. The 

following lists the limitations of the CRF:, 

1. Inability to incorporate some external knowledge 

As discussed before, the C R F is not as good as other probabilistic 

frameworks in this aspect. Much knowledge cannot be naturally repre-

sented as features in CRFs, e.g. structures of names. The most natural 

way to define feature functions in CRFs for Chinese N E R is to join local 
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tokens together. Such features are not easy to understand for human. 

2. Inability to capture long-range dependencies between states 

Although the C R F has already solved the long-range dependencies be-

tween tokens, there exists useful long-range dependencies not captured 

by the framework. An extreme example is reported by Chen and Shan 

et al. in [8]. They found that their C R F models failed to recognize 

many person names in a name list that appeared in a sentence. In such 

situation, it would be valuable if the long-range dependencies between 

entities, which are across the separating punctuations or words, can be 

captured. 

The details of these limitations and their solutions will be presented in 

the next chapter. 
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Chapter 3 

Our Proposed Model 

3.1 Background 

3.1.1 Problem Formulation 

Chinese N E R problem can be formulated as a sequence labeling problem. In 

such formulation, a Chinese sentence is treated as a sequence of tokens and 

each Chinese character is treated as a token. The objective is to decide the 

appropriate label to each token. 

However, since an entity may consist of two or more tokens, the entity 

labels have to be designed in such a way that the boundaries of the entities 

can be identified. Different labeling schemes have been investigated. The 

most basic scheme is to add "B" and "I" to each entity label to form entity 
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tags. The B-tag of entity type ̂  (denoted by (e) is to tag the beginning token 

of an entity of type f, while the I-tag (denoted by ̂ j) is to tag the remaining 

tokens inside the entity. 0 is to label the tokens which are not any part of 

the entities. This scheme is know as BIO. Another basic scheme is to add 

"I" and "E" to each entity label to form entity tags instead. The functions 

of I-tags and 0 are the same as in the previous scheme, while the E-tag 

of entity type ̂  (denoted by ̂ e) is to tag the ending token of an ^ entity. 

This scheme is known as lOE. These two schemes are actually capturing 

slightly different information. The former scheme is better in capturing the 

front boundary of the entity, while the latter is better in capturing the rear 

boundary. And they seldom perform significantly better than the other. A 

more complicated scheme is to add “B”, T', “E" and "S" to each entity label 

to form entity tags. The B-, I-, E-tags and 0 have the same functions as in 

previous labeling schemes. The additional S-tag for entity type ( (denoted by 

^s) is to label those f entities which consist of only one single character. W e 

call this scheme BIOES. This scheme generally leads to a better performance 

than BIO and lOE, since it provides more information for the probabilistic 

framework to capture. 

Depending on the probabilistic framework, it may be additionally re-

quired that the document should be segmented by sentences rather than by 

paragraphs. Such requirement helps the framework to estimate the param-
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eters more accurately. The conditional random field (CRF) is one of these 

frameworks. And since our proposed framework is based on the CRF, it also 

has this requirement. 

3.1.2 Conditional Random Fields 

In this section, the linear-chain version of the C R F will be briefly introduced. 

The notations for the C R F will be adapted from [31] and [28]. This will serve 

as the basis for developing the notations for our proposed framework. The 

limitations of the C R F will also be discussed in detail. 

A linear-chain C R F defines the conditional probability distribution of la-

bel sequences given observation sequences. The label sequence is also known 

as the output sequence of the CRF. In the following, y and x are used to rep-

resent the output sequence and the observation sequence respectively, while 

Hi and Xi are used to represent the single output and observation variables at 

position i respectively. Note that an observation in CRFs is not necessarily 

a token, but can also be a vector of features. 

The term "linear-chain" refers to the shape of the graph formed by the 

output variables, i.e. the output variables line up in order and link with the 

adjacent ones to form a chain. To illustrate it with a diagram, we adopt the 

representation from [31], and it is shown in Figure 3.1. 
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X # ® # ® ® 

Figure 3.1: Graphical illustration of a typical linear-chain CRF. 

In Figure 3.1, each unshaded node represents an output random variable 

while each shaded node represents an observation. Each edge represents a 

dependency relationship, while each small black square on an edge represents 

the corresponding potential function. W e use 少 to denote a potential. Re-

gardless of the observation variables, there are two basic types of potentials: 

^(i, yj) denotes the potential occurring at position i which depends only on 

y“ and 少(i,队_i yi) denotes the potential occurring at position i which 

depends on both yi-i and yi. ^{i,yi-iyi) is the composite potential that rep-

resents the product of the two potentials. Note that these potentials are also 

dependent on the corresponding observation variables. However, since the 

observations variables do not matter much in this research, they are omitted 

here to keep the formulation simpler. Figure 3.1 can then be simplified to 

Figure 3.2. 

J 

Figure 3.2: Simplified graphical illustration of a typical linear-chain CRF. 

The value of a potential function depends on the corresponding feature 
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functions and their weights. There are two types of features correspond-

ing to the two basic types of potentials. Sk denotes the k̂ ^ state feature 

and Sk{i,yi,Xi) gives its value for the potential tk denotes the k̂ ^ 

transition feature and tk{i,yi-i —> Vi, Xi) gives its value for the potential 

^(i, yi-i —> Hi). Each feature has a weight that is denoted by A. The values 

of the potentials are given by the following formulae: 

= exp i^'^Xsi^SkihyuXi)^ , where i > 1, (3.1) 

and 

M�yi-1 — Vi) = exp i ^ ' ^ X t k h i h y i - i , where i > 1. (3.2) 

The composite potential is defined as: 

彻 善 卜 一 編 ⑷ (3.3) 

To make the notation of feature functions more uniform, we also use the 

following to represent the original ones: 

Sk(h = Sk{i,yi,Xi) 

Vi, ^i) i > 1 
tk{hy,x)= < 

0 i = l 
\ 

And we use the feature function vector /(i, y, x) to group all these state 

features and transition features together, and it gives the vector of values 
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outputted by these feature functions for position i. W e also use the weight 

vector A to group the weights for these feature functions. Therefore, 

�(i,yi-iyi) = eX.f(i’y,尤）. (3.4) 

Since a C R F normalizes according to the whole sequence, there is a global 

feature vector that accounts for all the feature function vectors in the se-

quence: “ 

i 

where i ranges over the possible positions of the sequence. 

Then, the conditional probability distribution that a C R F defines can be 

expressed as: 

Pxivl^) = ‘ 6 入 认 购 (3.5) 

where 

y 

The most probable label sequence for input sequence x is 

y = argmaxj9\ (2/|a;) 

y 
y 

=argmaxffeA.力',2^’怎） 
y i 

- y i 
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Let S(i,y) be the maximum likelihood among all the output sequences 

that end at position i with output y. Note that x, f and A are omitted here 

for simplicity, although the value of S{i, y) also depends on them. The famous 

Viterbi algorithm for CRFs can then be implemented using the following 

recursion: 

S{hy) = { y (3.6) 
[ 1 i = 0 

The maximum likelihood is given by max(|a;2/), and its corresponding 
y 

path is the best output sequence for x. 

Given a training set T = {{xk^ yk)}k=i^ a C R F model is trained by max-

imizing the log-likelihood Qy. 

Qx = Y.^ogpx{yk\xk) (3.7) 
k 

= ( 3 . 8 ) 
k 

For the convexity of Eq. (3.8), Q ^ is optimized when the gradient of Q ^ 

is zero. 

V Q a = E a..) - E F [ y \ ‘ . _ J _ 
k _ y _ 

k [ y _ 

k 
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The interpretation of this equation is that, when the expected value of 

F under the empirical distribution equals to the expectation of F under the 

model distribution, the maximum of Q ^ is reached. 

The model expectation can be computed using the forward-backward 

algorithm of the CRF. First, let the forward variable a{i, y) be the sum 

of likelihood scores of all the output sequences that end at position i with 

output y. W e can use the following recursion to calculate each a: 

‘ o < i < 

a{hy) = < y' (3.9) 
1 i = 0 

、 

The normalization factor Z^{xk) can be obtained using the forward vari-

ables: 

= (3.10) 
y' 

Then, let the backward variable /3{i,y) be the sum of likelihood scores of 

all the labelings from the end of the sequence to position (i + 1) with output 

y at position i. W e can use the following recursion to calculate each (3: 

' + 1 , 2 / 2 / ) +1,2/)} 0 < 2 < 
P{hy)=\ y' (3.11) 

I 1 i = \x 

To compute the model expectation of the feature functions, we need to 

compute the marginal distributions. This can be done by utilizing the for-
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ward and backward variables: 

P(yi-h yi\x) = - 1, yi-iyif(i, yi-iyi讽i, yi) • \、 (3.12) 

Z入⑷ 

After describing the whole framework of the CRF, we explain its limi-

tations in details. The first limitation is its inability to incorporate some 

external knowledge for Chinese NER. 

As discussed in Chapter 2, the most natural and effective way to define 

feature functions in CRFs for Chinese N E R is to use the local tokens and to 

join them together, which is supported by [8]. This research work also found 

that, when determining the output for position i, the most helpful informa-

tion would be from the characters from position {i - 2) to {i + 2), namely 

Ci-2, Ci—i, Ci, Ci+1 and Ci+2- W e use the sequence shown in Figure 3.3 as 

an example. 

position 1 2 3 4 5 6 7 8 9 10 

token 香 港 工 程 師 學 會 即 將 假 

output Org/? Org/ Org, Org, Org, Org, Org^ 0 0 0 
(cont.) 11 12 13 14 15 16 17 18 19 20 21 

香 港 會 展 新 翼 舉 辦 講 座 。 

Locb Loc/ Locf Locf Locr Locr O 0 0 0 0 

Figure 3.3: An example sentence with the correct labeling 

The features activated to recognize the first entity in the example sentence 

would be like those shown in Figure 3.4. 

22 



position transition features state features 

^Start—OrgB香’，C^+i二‘港’，（7^+2=‘工’，(：7<<7评1=‘香港’, 

= '港工, 

O r g B ^ O r g , ~ Ci-1=‘香，，‘港’，‘工’，（7仔2=‘程，, 

产‘香港’，二‘港工”，‘工程’ 
i=3 Org,—Org, ‘香’，‘港’，‘工’，‘程’, 

‘師’，cucu 二‘香港’，Ci-iĈ î： ‘港工”， 

‘工程’，CWi<^H2=‘程師’ 

““^ Org,-^Org, CU=‘港，，Q-i=‘工\ Ci=‘程’，<̂ i+i=‘師’, 

C W 2 = ‘ 學 ’ ， ‘ 港 工 ’ ， 产 ‘ 工 程 ’ ， 

C ^ i C W i =‘程師’，‘師學’ 

Org.^Org, CU=‘工’，‘程’，‘師’，^^！二‘學’, 

6^2=‘會’，Ci—2Ci]=‘工程‘程師’， 

Ĉ iĈ Hî ‘師學’，Ci+l<̂ H2=‘學會’ 

Org,->Org, CU二‘程’，Ci-i二‘師’，‘學’，‘會’, 

‘即’，C7i_2Ci_i=‘程師’，‘師學’， 

‘ 學 會 ’ ， ‘ 會 即 ’ 

CW2=‘將’，‘師學’，Ci-iCi=‘學會’, 

‘ 會 即 ’ ， ‘ 即 將 ’ 

Figure 3.4: Features activated for recognizing the first entity name in the 

example sentence 

Although it has been shown that these simple features help to achieve 

consistently good performance across different datasets, it is also obvious 

that such features are difficult to comprehend for human, as we do not rec-

ognize the names in a sentence like this. This brings difficulties in further 

analysis about the learnt model. And more importantly, human knowledge 

can hardly be incorporated. For example, name structures often help us to 

recognize entity names. “[city_name] [profession—title]學會,’ is one of the gen-

eral structures that help us to recognize “香港工程師學會” in the example 
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sentence, as well as other similar names such as “北京律師學會”. 
i 

These kinds of knowledge are very helpful, but they cannot be naturally 

expressed as features in CRFs. One may argue that we can have some fea-

ture that activates at the end of the name when the current and previous 

characters match the structure. However, such strategy would add scores to 

all labelings whichever has an Org/5 tag for position 7. This would adversely 

affects the fairness among the labelings, since the labelings which deserve 

this score should be only those having the positions 1 to 7 labeled as a whole 

organization name. 

Another limitation of C R F is the inability to capture long-range depen-
I 

dencies between states. Using the example sentence again, it helps if the 

dependency between the organization and the location with the phrase “即 

將假” in-between can be captured. Another example is reported by Chen 

and Shan et al. in [8]. They found that their C R F models fail to recognize 

many person names in a name list that appeared in a sentence. The situation 

can be illustrated using the sequence shown in Figure 3.5. 

Consider the second person name “談世中” and its context, as well as 

their true outputs. The name itself does not provide strong evidence to show 

it is a person name. In such situation, the context plays an important role. 

Unfortunately, under the formulation of the CRF, the help from the context 

is also very limited in such situation. The punctuations “、“ on each side of 
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position 1 2 3 4 5 6 7 8 9 10 

token 學 者 專 家 谷 源 洋 、 談 世 

output 0 0 0 0 PeiB Per A Per；̂  O Per^ Per, 

(cont.) 11 12 13 14 15 16 17 18 19 20 

中 、 陳 滴 高 、 孰 柄 禧 等 … 

PEIR 0 PEIB PER, PER^ O PERE PER^ PERR 0 … 

Figure 3.5: Another example sentence with the correct labeling 

the name may be able to indicate that it is in a list, but cannot show this is a 

list of person names. The first character of the third name, i.e.陳，possibly 

provides some hints as it is one of the most common Chinese surname, but 

itself would be too weak as it also frequently appears in the words that are 

not person names. 

Apart from the limitation of CRFs, let us consider other person names 

in the sentence. The first name should be recognized with a much higher 

probability, as the preceding phrase “專家” provides strong evidence and 

the surname “谷,，also gives a little help. The fourth name should also be 

recognized with a high probability, as the surname gives strong evidence and 

the remaining characters also appear quite frequently in given names. The 

third name should not be too difficult, as its first character is a common 

Chinese surname. Therefore, the whole scenario would be different if the 

other names are known to have high probabilities of being labeled as person 

names when the outputs of the tokens in the second name are being deter-
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mined. This can be done if the dependencies between the names across the 

punctuation “、“ can be captured. In this way, the high probabilistic scores 

of some names in the list can be shared to the names with low scores. 

Using the original formulation of the CRF, the only possible way to cap-

ture these long-range dependencies between states is by the general-graph 

version of the CRF. The disadvantages of this approach are already dis-

cussed before. One more limitation is that, correct dependency edges have 

to be added to the graph in prior, which is obviously not always feasible [30 . 

Therefore, we will not discuss the general-graph C R F in depth here, but just 

show the diagram of a general-graph C R F model in Figure 3.6. 

Figure 3.6: Graphical illustration of a general-graph CRF. 

3.1.3 Semi-Markov Conditional Random Fields 

As mentioned in Chapter 1, another framework called the semi-Markov C R F 

(semi-CRF) shares some similarities with our proposed framework. However, 

semi-CRF suffers from a number of limitations as explained below. 

A semi-CRF is a model that is trained based on the principle of CRFs. 

In contrast to CRFs, a semi-CRF models the data using semi-Markov chains 
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rather than Markov chains. In effect, a semi-CRF takes a sequence of tokens 

as input, just like CRFs, but it outputs a sequence of labeled segments, where 

a segment may contain more than one token. Because of this formulation, 

there is no need to add any "B", "I", "E" or "S" to the entity labels in order 

to indicate entity boundaries for N E R tasks, as an entity can be represented 

by a segment. The formulation has a variable L which defines the maximum 

number of tokens allowed in a segment. The formulation and the algorithm 

do not impose any hard restriction on L, but as the time complexity grows 

linearly with it, L should be small enough in practice, usually not bigger than 

10. For Chinese N E R tasks, such restriction is not practical. Using People's 

daily (January 1998) corpus, one of the corpora we used for our experiments, 

as an example, even setting L to be 23 cannot cover all the entities in the 

corpus. In such kind of situations, the sentences with any entity longer than 

L tokens cannot be used in training, and any entity longer than L tokens 

definitely cannot be recognized in testing. 

In a later version of the semi-CRF [26], the restriction on segment length 

is removed. However, this in turn introduces another problem on the search 

space. Consider a sequence of n tokens and count only the labelings with 

all tokens labeled as “0”，i.e. the "out-of-entity" label. For an original 

CRF, there is always only one such labeling. For a semi-CRF, in contrast, 

there are always at least two different labelings as long as n is bigger than 
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1. Note that a semi-CRF also distinguishes different segmentations, e.g. it 

regards "[0] [0]" and “[00]” as two different labelings. And it should also 

be noted that the number of these different labelings grows rapidly with the 

number of consecutive 〇 labels in an original labeling. This not only wastes 

resources for searching among the labelings that are not of any interest, 

it also interferes the parameter estimation in training, as parameters are 

unnecessarily estimated for different segmentation of consecutive O labels. 

Theoretically, it is proved that the semi-CRF is strictly more expressive 

than the C R F [1], i.e. the feature functions defined in a C R F can be somehow 

defined in a semi-CRF, but not vice versa. Nevertheless, semi-CRFs cannot 

always out-perform CRFs in practice. On the other hand, CRFs often has 

better performance when enough data is given [1, 18 . 

3.2 The Formulation of Our Proposed Model 

3.2.1 The Main Principle 

Our proposed framework is formulated to effectively inherit the strength 

of the inference of linear-chain CRFs, and efficiently capture some useful 

long-range state dependencies. In this section, the modeling and the main 

principle of the algorithms in our proposed framework will be presented. The 
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detailed derivation of the formulation will be given in the next section. 

The modeling of our proposed framework can be illustrated by the graph 

shown in Figure 3.7. The main characteristic that makes this graphical rep-

resentation different from that of linear-chain C R F (i.e. Figure 3.2) is the 

edge connecting two states with some other states in-between. This repre-

sentation shares some resemblances to the general-graph CRF, as shown in 

Figure 3.6. However, the potential on the long-range dependency edge in 

this diagram is represented by a triangle. This triangle indicates that this 

potential is different from the usual one. W e call such kind of potentials as 

dynamic potentials. And from now on, we will refer our proposed framework 

as "CRFDP", i.e. conditional random fields with dynamic potentials. 

Figure 3.7: Graphical illustration of our proposed framework (i.e. CRFDP). 

The term "dynamic" is used to denote the fact that such potentials are 

not static, as their existence depends on some conditions. In other words, 

a dynamic potential exists for some labelings for a sequence of tokens, but 

not for some other labelings for the same sequence. In order to achieve effi-

cient inference, we have to impose some restrictions on these conditions. At 

the same time, we should also capture the useful long-range dependencies 
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as many as possible. To achieve good balance, our proposed framework is 

formulated to capture two most important kinds of long-range dependencies: 

(1) the dependencies linking the ending state of an entity and the preced-

ing state of the entity, and (2) the dependencies linking two entities with a 

number of 0-states in-between. The first kind of dependencies helps more 

advanced and more accurate modeling within the entity, while the second 

kind helps to model the relationship between two entities, even when they 

are separated by some non-entity tokens.. 

To capture these dependencies, it is obviously required to infer across a 

number of states at a time, which is computationally infeasible in the original 

linear-chain CRF. By introducing dynamic potentials, it is however possible 

to develop efficient inference algorithms based on the ones for the original 

CRF. 

Note that calculating marginal distributions is required in model train-

ing, while searching for the optimal labeling is required in model application. 

Both tasks require to effectively enumerate all the possible labelings for a 

token sequence. With the first or second Markov order assumption in the 

original CRF, dynamic programming can be applied to obtain computation 

results efficiently as if all labelings are enumerated. Using the same principle, 

the forward-backward algorithm is developed to accomplish the former task, 

while the Viterbi algorithm is developed to accomplish the latter task. For 
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the modeling in our proposed framework, however, the Markov assumption 

does not necessarily exist. Therefore, the Viterbi and forward-backward al-

gorithms have to be modified to serve the same objectives efficiently. Since 

both algorithms use the same principle to achieve efficient computation, we 

will here explain only the principle. The derivation of both algorithms will 

be presented in the next section. 

To explain the principle more clearly, we will make use of the following 

graphical notations. (Note: The X in the following notations has the meaning 

of "all possible labelings".) 

1. X|j ̂  i\ represents the set of all possible labelings up to position i, with 

an entity of type f which ends at i and begins at j. 

2. X j d represents the set of all possible labelings up to position i, with 

an entity of type ̂  which ends at i and begins before j but not at j. 

I I 

3. X!7 g i\ represents the set of all possible labelings up to position i, with 

an entity of type ( which ends at i and begins before or at j. Therefore, 

this set is the union of the above two sets. 

Suppose we want to know some calculation result about all possible la-

belings up to position i which have an entity of type $ ending at position i, 
I I 

i.e. X\i ̂  i\ . In order to solve this problem efficiently, repeated calculation 

should be avoided. This can be achieved by decomposing the problem to 
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some sub-problems, which can be solved efficiently by reusing some results 

calculated from previous positions. 

I I 
Note that the labeling set XjjJj] can be decomposed into two disjoint 

1 I 1 I 

labeling sets: X\i ̂  i\ and X j ^ ^ . Therefore, the problem of Xj^Jj] can 

be solved by combining the solutions for the problems of these two labeling 
I 

sets. The problem of X丨““ ,in turn, can be similarly decomposed to the 

problems for X“ G and X'g.î i . This decomposition process can be done 

recursively. However, in order to avoid such recursive process always looping 

all the way back to the beginning of the token sequence, which is time-wasting 

for long sentences and usually not necessary, we choose to set some upper 

limit for the number of steps going backwards. Note that such limit needs 

not to be the same for all entity types, and it is also beneficial to set different 

limits for different entity types, as some types of entity tend to be long (e.g. 

organization names) while some tend to be short (e.g. person names). This 

measure effectively restricts the entity candidates that are longer than their 

corresponding limit from using dynamic potentials, and therefore no need to 

pay for it. In practice, these limits can be set to quite long to cover most 

entities (more than 99%) while the inference can still be kept efficient. 

Let m《be the maximum length of the entities of type f which are allowed 
I 

to use dynamic potentials. Then, the original problem of X-^fJ can eventu-

ally be decomposed to the problems of Xjj ̂  for j = i, (2 —1),(i-m^ + l) 32 



and the problem of . 

Each of these sub-problems, except the last one, can efficiently be solved 

by reusing the solutions of each kind of labels for some previous position and 

at the same time accounting for the last appended ( entity. (Note that for 

the case that the previous label is 0，the dependencies between the newly 

appended entity and its previous entity have to be considered. This issue 

will be dealt shortly later. At this moment, let us assume that this problem 

is solved.) 

I 

For the last sub-problem, i.e. the one for XJi-m^ , we should observe 

that the length of the last ̂  entity exceeds the limit m《，and so dynamic 

potentials would not be applied to the entity. Then, this sub-problem can 

be solved efficiently if we additionally keep the result calculated for the set 

of all possible labelings up to {i — m�), which the tokens from {i — m《）to i 

would be labeled as one f entity, i.e. the $ entity begins at or before (i — m《) 

and ends at or after i. Then, by reusing this result and together accounting 

for the f entity that ends at i, the sub-problem for X'i-m^ can be solved 

easily. The additionally kept result can be reused to compute the one of 

the same kind for position {i H- 1). This is achieved by taking into account 

the result calculated up to position {i - m《）for the set of labelings that a 

f entity has begun at position (i — m^) and will be longer than m《tokens 
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(so that dynamic potentials need not to be considered for this entity). This 

calculation is simple and will be shown later in the detailed formulation. 

The above description explains the idea about how the long-range de-

pendencies linking across an entity candidate can be inferred efficiently. A 

similar idea can be applied to efficiently account for the long-range depen-

dencies linking two entity candidates with a number of 0-labeled tokens 

in-between. To illustrate the idea, the following notations will be used this 

time: 

1. X作 r e p r e s e n t s the set of all possible labelings up to position i, 

with a sequence of 0-labeled tokens starting at (but not before) j and 

ending at i, which follows an entity of type and to be followed by an 

entity of type . 

2. Xl.7 Oilf" represents the set of all possible labelings up to position 

2，with a sequence of 0-labeled tokens starting strictly before j and 

ending at i, which is to be followed by an entity of type 

3. represents the set of all possible labelings up to position i, 

with a sequence of 0-labeled tokens starting at or before j and ending 

at i, which is to be followed by an entity of type 

Suppose we want to know some calculation results about the labeling set 

I I 
Xjj (Note: this problem is the one we assumed to be solved previously). 
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This labeling set can be decomposed into a few disjoint labeling sets, i.e. 

I I I 

for each entity type and X-jj^^" . The last labeling set can 

be in turn decomposed into a few labeling sets similarly. This decomposition 

process can be done recursively, but we also set a limit for this such that the 

inference can be kept efficient. 

Let m o be the maximum length of the 0-labeled token sequence between 

two entities where dynamic potential is allowed to be applied to model the 

relationship between the entities. Then, the original problem of Xji O把'can 

be eventually decomposed to the problems of X 作 f o r each entity type 
I I 

where j = i,{i — 1),..., {i — m�+1), and then the problem of 

Except the last sub-problem, each of these sub-problems, say the prob-

lem of X 外 O拟',can be solved efficiently by reusing the solutions for the 

corresponding previous position with an g entity appended (i.e. the solution 

of X;7-if'7-1 ), and accounting for the last appended 0-labeled tokens, as well 

as the dependency between entity types and with the 0-labeled tokens 

in-between. 
» 

For the last sub-problem, since the length of the 0-labeled token sequence 

exceeds the limit mo, no dynamic potential would be applied to this 0-

labeled sequence. This last sub-problem can also be tackled efficiently if we 

additionally keep the result calculated for the set of all possible labelings up 

to position (i — m。)’ which each token from position {i — mo) to i will be 
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labeled as 0, i.e. the 0-labeled token sequence begins at or before position 

[i — mo) and ends at or after position i. Then, by using this calculation 

result and accounting for the newly appended 0-labeled tokens and the last 

transition from O to f", the last sub-problem can be solved easily. The 

additionally kept result can be reused to calculate the one of the same kind 

for the position (i + 1). This is achieved by taking into account the result 

calculated up to position {i — mo) for the set of labelings that an 0-labeled 

sequence has begun at position (i — mo) and will be longer than mo tokens 

(so that dynamic potentials need not to be considered for this 0-labeled 

sequence). This calculation is simple and will be shown later in the detailed 

formulation. 

The main principle of our proposed framework has now been explained. 

The detailed and precise formulations will be derived below. 

3.2.2 The Detailed Formulation 

The Labeling Scheme 

The labeling scheme of our proposed framework is slightly different from that 

of the original C R F for N E R tasks. In our formulation, all tokens within an 

^ entity are tagged with the I-tags (i.e.⑴，while the beginning token and 

the ending token of the entity are additionally tagged with the B-tag (i.e. 
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^b) and the E-tag (i.e. ^e) respectively. So, ̂ b is like an open bracket while 

(e is like a close bracket, and they together are able to define the boundaries 

of any entity clearly. In this way, a single-token entity is no longer needed 

to be tagged by a special S-tag (i.e. ̂ 5), but can be tagged by and 

together. This labeling scheme is obviously more natural and reasonable for 

N E R tasks, because it labels all entities in a unified manner, regardless of 

their length. Recall that the original C R F allows only one tag per state, 

so features for a state tagged with ^b or are not activated for a state 

tagged with even though they share many similarities. By using the new 

labeling, the formulation of our proposed model can also be simplified. 

The Modeling 

In the formulation of our proposed framework, the notations previously used 

for the original C R F will be reused here. Also, the following notations are 

additionally defined: 

• C denotes the set of all labels, including the 0 label and all entity 

labels, i.e. {Per, Loc, Org, 0}. 

• and denote the B-, I- and E-tags for the entity type $ respec-

tively. 

• m《denotes the maximum length of an entity of type ( which is allowed 

to use dynamic potentials (m《> 1). 
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• m o denotes the maximum length of a sequence of O tokens which is 

allowed to use dynamic potentials (m。> 1). 

All the notations of potentials for original C R F will be directly adopted 

here. To recall: 

• 少 y ) denotes the potential occurring at position i which depends only 

on y. This kind of potential represents the weighted score of the state 

features activated at position i for y. (See Eq. 3.1) 

•少y' — y) denotes the potential occurring at position i which depends 

on both y' and y. This kind of potential represents the weighted score 

of the transition features activated at position i for the transition from 

y' to y. (See Eq. 3.2) 

• ^(i, y'y) is the composite potential that represents the product of the 

above two potentials. (See Eq. 3.3) 

In addition, some more notations are defined for the dynamic potentials: 

• ̂ (^[j, i]) denotes the dynamic potential that applies to the entity can-

didate of type ( which begins at position j and ends at position i, 

without any restriction on the preceding label. This accounts for the 

long range dependencies over the whole entity candidate. 

•少(Z i]) denotes the dynamic potential that applies to the entity 

candidate of type f which begins at position j and ends at position 

38 



i, with I being the preceding label. This accounts for the long range 

dependencies between the preceding label I and the whole ^ entity 

candidate. 

• i]) denotes the composite dynamic potential that represents the 

product of the above two potentials. 

• 少 d e n o t e s the dynamic potential linking two entity candi-

dates with a sequence of 0-labeled tokens in-between, which begins at 

position j and ends at position i, and the preceding entity is of type f 

while the succeeding one is of type 

The notation d『denotes the k̂ ^ feature for the dynamic potentials 

applied to a whole entity candidate, and i], x) gives its value for the 

potential 屯幻 ) w h i l e -)• ？[j, i],x) gives its value for the potential 

屯(/ 幻)• Therefore, we have the following formulae: 

^mi]) = exp , where i>j>l, (3.13) 

and 

免(I — = exp l ^ g A 趕 』 , 4 , where i>j>l. 

(3.14) 

The notation d^ denotes the k̂ ^ feature for the dynamic potentials linking 

two entity candidates with a sequence of 0-labeled tokens in-between, and 
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x) gives its value for the potential 少 幻 f " ) . Therefore, 

we have the following formula: 

= exp 1；^ A 趁 幻 , where l < j < i < W . 

(3.15) 

To make the notations of the feature functions for dynamic potentials 

more uniform, we also use the notation j, y, a;) to represent the orig-

inal i],x) or and use y^x) to represent 

the original Then, we use the feature function vector 

d(i, j, y, x) to group all these dynamic potential feature functions. 

Recall that a global feature vector x) is defined in the formulation of 

the original C R F to account for all the feature function vectors in the whole 

sequence, i.e. 

i 

where /(i, y, x) is the vector of feature functions for the usual potentials 

(i.e. the non-dynamic ones) at position i. 

For the formulation of our proposed framework, we should also account 

for the feature functions for dynamic potentials. Therefore, the global feature 

vector F(y, x) in our framework is defined as: 

( \ 
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i.e. the upper part of the global feature vector F is the sum of the original 

f while the lower part is the sum of d. 

By redefining F{y, x), the derivations of the conditional probability dis-

tribution p^{y\x), the log-likelihood Q ^ and the gradient of Q^ for our 

proposed framework become the same as those for the original C R F (see 

Eq. 3.5, 3.8 and their explanation in Section 3.1.2). 

The Viterbi Algorithm 

For the Viterbi algorithm, the following notations are defined: 

• ^e), or simply denotes the maximum score among all possi-

ble labelings up to position i where an entity of type ( ended. In other 
I 

words, the labeling set under consideration is X\i ̂  , 

• I — d e n o t e s the maximum score among all possible labelings 

up to the transition from position i to (i+1), which an I label ended at 

position i and a $ entity will start at position (i+1). When I equals to 
I I 

the 0 label, the labeling set under consideration is X\i O把〃. 

• or simply f), denotes the maximum score among 

all possible labelings up to position {i — m^) which the tokens from 

{i — m�)to i are to be labeled as one f entity, i.e. the f entity begins at 

or before (i — m�) and ends at or after i. This variable refers to the addi-

tionally kept result for efficiently resolving the long-range dependencies 
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linking across an entity, which is explained in Section 3.2.1. 

• 6c{i — mo, O) denotes the maximum score among all possible labelings 

up to position (i — mo) which the tokens from (i — mo) to i are all to 

be labeled as 0, i.e. the 0-labeled token sequence begins at or before 

[i — mo) and ends at or after i. This variable refers to the additionally 

kept result for efficiently resolving the long-range dependencies linking 

two entities with a number of 0-labeled tokens in-between, which is 

also explained in Section 3.2.1. 

By computing these variables from the beginning to the end of a sen-

tence, the labeling with the maximum score can be obtained. The precise 

formulae for the computation of the variables are given in the following. (For 

convenience, we will use ̂ (j, ̂ bt) as shorthand for ""̂ (j, fe) •少C?’ ？,)，'•） 

undefined , for « < 0 

max {(5(2 - A; + 1,«])} 、 
max i , 

max "=i..(“i) + D .耶 
V j=i—k~\-2 ) 

巧印，幻mi乂e)例 1 乂,）• fl 对j乂,« 

^ih^R) = , for 1 < i < m^ 

Sc{i-m^,Cr) f l 

max J m a x - A;,/ -> + 1,«])} 1 '^{h^E) 

max i 
j=i-k+2 ‘ 

,for i > m《 
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undefined , for i - m̂  < 0 

少 , for i — =1 

max < > , for i - m̂  > 1 
[max - m̂  - 1, / ̂  - m̂, ̂ bt)} J 

f 

, ,,、 undefined , for i < 0 
似 " -

, for i > 1 
V 
f 
undefined • , for i < 0 

[ [ - ‘ k + 1 � 
max i , 

maxi •('•-” 0 I . + i, o-> 
I 一 fc+2 、BJ 

^(1,0). fl 
i=2 

O — i") = , for 1 < i < mo 

Scii-mo,0) n � 
m o + 1 

max< ^̂  - -k + . • ̂ (i + 1,0 
max i 

j=i-k+2 

,for i > mo 

undefined , for i — mo < 0 

屯(1,0) , fori-mo = 1 
mo, 0)= I 从 i - m o - 1 , - mo, 00), 

max … ， 、 ， . ,for i - ran > 1 
max -mo- mo.̂ 'O)} 

Finally, the maximum score among all labelings is max{̂(|£c|, I — EoS)} 

{ + !,/-> EoS) = 1 ,V/ G C 

i]EoS) = 1 ,ViGN and V̂' G £ - {0} 
Note that "EoS" denotes End-of-Sentence and serves as a dummy variable here. 

43 



The Forward-Backward Algorithm 

The main purpose of the forward-backward algorithm is to calculate the 

marginal distributions at each position in order to estimate the model pa-

rameters. This algorithm is composed of two procedures, i.e. the forward 

procedure and the backward procedure. In practice, the forward procedure 

is done first and the values of all the forward variables are cached. Then, 

in the backward procedure, when the values of the backward variables are 

being computed at each position, the marginal distributions are computed 

on the way by utilizing together the cached forward variables and the newly 

computed backward variables. The following shows the formulations for both 

procedures. 

In principle, the only difference between the forward algorithm (i.e. the 

algorithm of the forward procedure) and the Viterbi algorithm is that, the 

forward algorithm computes the accumulative score while the Viterbi al-

gorithm computes the maximum score. Therefore, the formulation of the 

forward algorithm can be obtained after the following simple modifications 

are done to the new Viterbi algorithm: 

1. Replacing the phrase "the maximum score among all possible labelings 

up to position ..." by “the accumulative score of all possible labelings 

up to position ..." in the notation definitions. 
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2. Replacing by o； in all notations. 

3. Replacing the "max" operation by summation (i.e. J]) in all formulae. 

After the above modifications, the last computation result we obtain is no 

longer that maximum score among all labelings, but the accumulative score 

of all labelings, i.e. the normalization factor which is needed to 

calculate marginal probabilities in the backward procedure. 

The backward algorithm (i.e. the algorithm for the backward procedure) 

is similar to the forward algorithm, but the job is being done in the reverse 

order, i.e. the accumulative scores are computed from the end of the sentence 

rather than from the beginning. For the backward algorithm, the following 

notations are defined: 

• (3(i, ^e)) or simply /3(《,f), denotes the accumulative score of all possible 

labelings down to (but not include) position i where an entity of type 

f ends. In other words, the labeling set under consideration is the 

"reverse" of the one considered for a", Using the graphical notation, 

I 

the labeling set is 'n ̂  z|X. 

• j3c(i - m《,（r), or simply 从i — m《,f), denotes the accumulative score 

among all possible labelings down to (but not include) position —m^), 

in which the tokens from position {i — m《）to position i are labeled as 

one $ entity, i.e. the ̂  entity begins at or before {i — m^) and ends at or 
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after i. Similarly, the labeling set under consideration is the "reverse" 

of the one considered for a^i — m^, 0)-

• I3c{i — mo,0) denotes the accumulative score of all possible labelings 

down to position (i-mo)^ in which the tokens from position {i-mo) to 

position i are all labeled as O, i.e. the 0-labeled token sequence begins 

at or before {i - mo) and ends at or after i. The labeling set under 

consideration is the "reverse" of the one considered for ac{i — mo, O). 

• 如j, ̂1) denotes the accumulative score of all possible labelings down 

to position j, in which a ( entity starts at position j and ends at position 

i and follows an I label. Note that the score includes accounting for all 

the dynamic potentials over the ̂  entity. 

• i] >) has a very similar meaning as the previous notation. The 

only difference is that the ending position of the f entity is at or after 

position i. 

• i] >) denotes the accumulative score of all possible labelings 

down to position j, in which a sequence of 0-labeled tokens starts at 

position j and ends at or after position i. Note that the score includes 

accounting for all the dynamic potentials over the sequence of 0-labeled 

tokens. 

46 



• A d o has a similar meaning as the previous notation. The 

only difference is that the sequence of 0-labeled tokens ends definitely 

at position i and is followed by a $〃 entity. 

Note that, in practice, each backward variable marked with an asterisk need 

not to be stored for more than one position at a time. 

The precise formulae for the computation of the above variables are given 

in the following. 

undefined , for 〉|£c| 

/ 3 ( 仏 ) = 1 ,fori = |a;| 

+ — + 1,̂  + 11 >)} , for 1 < 2 < 
lec 

n 屯 ( • ? • ， J O T = - M《 

... 亡 、 _ J ( + - m̂  + 1,̂ ) \ 
= i . for 0 < i - m . < Ixl - m . 

+ n ‘ 《丨丨 《 

\ j=i-m^ + l J 

、undefined , for i - m之〉\x\ - m^ 
i 

= n 例於’ f 而 ) 屯 , for j > 1 
k=j+l 

‘M m i ] ) , for i = 

A W b ,幻 > ) = + 1] , for i > i - m^ + 1 & 1 < i < 

� 句 + 1 - m《乂,）+ 印 JoTj = i-m^ + lkl<i<\x\ 

Note that when j=l, all Vs in the above two formulae vanish. 
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丨35丨 
n 屯(j, 0 0 ) ’ for 4 - mo = |a!| _ mo 

j=\X\-mo + l 
. 八 、 (^{i'-mo+l,00)Pc{i-mo+h0)+ fl \ 
lU卜爪O, O) = j=i-mo+i JorO <i-mo<\x\-mo 

• E W + + + >)} 
\ / 

、undefined , fori - mo > M - mo 

(neo[jA]nmo) fi 例A;,oo) ) 
k=j+i , for j > 1 

= V 部 + 1 , 0 —f)/3*(on“M. + i]〉）y 

^{j, O) fl ^{k, 00)^{i + 1,0 + 1,« + 1] >) , for j = 1 
. k-H^ 

( I®丨 
n ^{k,00) , fori = I到 

k=j+l 
i] >) = +1] >)+ E JoTj>i-mo + l&^l<i<\x\ 

屯a 0)Pc{i + 1 - mo, O) + E Jor j = i - mo + I ^ I <i < \x\ 
� �''ez:-{0} 

Note that when j二 1, all in the above two formulae vanish. 

Computing Marginal Distributions 

The main purpose of the forward-backward algorithm is to facilitate the 

calculation of various kinds of marginal probabilities, such that the expected 

values of the feature functions under the model distribution can be obtained. 

In this way, the gradient of the log-likelihood can be known and the log-

likelihood of the training data can be maximized. 

There are several kinds of feature functions and they need different kinds 

of marginal probabilities. The following lists out each kind of the feature 

functions and the calculation required to obtain the corresponding marginal 
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probabilities. To keep the formulae simple, we just calculate the marginal 

likelihood scores and the actual marginal probability can be obtained by 

dividing the scores by the normalization factor Z^{xk). 

• Transition feature t{i, I —)•仏 x), for 2 < t < |a;|, requires: 

score(/ ends at i-\ and at i) = a{i - 1,/ —> ̂ b) • >) 

• (3.16) 

• Transition feature t{i, x), for 2 < i < |a;|, requires: 

score(tokens at i-1 and i are in one ̂  entity) 

P . m i ] > ) + E E W i - — O M m i ] >)} , for 2 < i < m^ 
j=2iec 

/ ac(i - m^, -'m^-, 6) 、 
i-1 , for m< < 4 < Ixl 

、\ lec / 
(3.17) 

• State feature 5(2, a;), for 1 < ? < |x|, requires: 

[ > ) ,fori = l 
score($B at i)= < 

2J score(/ ends at 2-1 and fp at i) , for i > 1 
, i ^ c 

(3.18) 

• State feature s(i,《r,x), for 1 < i < |a;|, requires: 

‘M^lhi] >) , for i = 1 

score at i) = < (score (tokens at i-1 and i are in one ( entity)、 
for i〉1 

+ >)} ‘ 
\ l^C / 

. (3.19) 
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• State feature s(i,仏 oc), for 1 < 2 < \x\, requires: 

score(6i； at i) = a(i, � (3.20) 

• Dynamic potential feature d耐(J for 

max(2,2 — m^ + 1) < j < i and 1 < i < |a;|, requires: 

scorefa ( entity appear from j to i following a I label) 
• (3.21) 

• Dynamic potential feature c ?胁乂 a ; ) , for 

max(l,i — < j <i and 1 < i < |aj|, requires: 

score(a ̂  entity appear from j to i) 

AK[M]) , for j = 1 
= < 

^ score (a ̂  entity appear from j to i following a I label) , for j > 1 
lec 

(3.22) 

• Transition feature t{i, fĵ  0,a;), for 2 < i < requires: 

score(̂ ';5 at i-1 and O ati) = a(i - 少(i 乂' >) 

(3.23) 
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• Transition feature t[i,0 — O, x), for 2 < i < requires: 

score(0 at i-1 and O at i) 
f ^ I 

/3*(o[Mi >) + E E w - 屯 — >)} 

,for 2 < 2 < m o 

=\ ( ac(i - mO', - mo-. O) � 

\ j=i-mo+l^'€C-{0} ) 

• for mo <i <\x\ 

(3.24) 

• State feature 5(2,0,a;), for 1 < i < requires: 

‘ > ) , for i = 1 

score(0 at i) = < ( score(0 at i-1 and O at i) \ 
for i〉1 

+ scoreat i-1 and O at i) ‘ 
V ‘ / 

(3.25) 

• Dynamic potential feature x), for 

max(2,i — mo + 1) < j < i and 1 < i < |a;|, requires: 

score (an 0-labeled sequence appears from j to i following and followed by 

(3.26) 

3.2.3 Adapting Features from Original CRF to CRFDP 

Because of the differences in the labeling schemes, we should adapt the fea-

tures from the original C R F to C R F D P in order to capture almost the same 
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information as in the original CRF. 

This arrangement is mainly due to the change of the role of the entity 

I-tag in our proposed framework, as well as the removal of the entity S-tag 

and a number of transition types within an entity. 

In our proposed framework, the entity I-tag is not only to tag the tokens 

between the beginning and ending tokens of an entity as in the original CRF, 

but it is also responsible to tag the beginning and ending tokens. Therefore, 

unlike the original CRF, the features activated for an entity I-tag, which may 

be under some conditions on the observations, must also be activated for the 

states tagged with the corresponding entity B-tag or E-tag under the same 

conditions in CRFDP. Consider the features for an entity I-tag which uses 

the information of or Ci+2, i.e. the characters at two positions before or 

after the current position. Regardless of which frameworks we are considering 

for, risk exists when using these features because the tags of these characters 

are not taken into account by these features. In other words, whether these 

characters are labeled as 0, or part of the current entity candidate, or even 

part of some other entities are not to be considered when they are being used. 

This can be a potential source of noise to the inference. Because of the change 

of the role of the entity I-tag, this problem becomes more serious in C R F D P 

than in the original CRF. In order to eliminate this adverse effect, we restrict 

the features for entity I-tags in C R F D P from using the information of the 
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furthest characters used by the features of the same kind in the original CRF. 

The removal of the entity S-tag from the formulation of C R F D P poten-

tially causes some information lost, since single-character entities may have 

some specific probability distributions in a number of aspects. In our original 

C R F models, mainly the context and the character representing the entity 

are captured for this kind of entities. Therefore, as a complement to CRFDP, 

some feature types that utilize short-range dynamic potentials should be ap-

plied to capture the similar information for single-character entities. 

Also, it should be noted that our proposed framework has fewer types 

of transitions. Firstly, the removal of the S-tag brings the loss of transi-

tions specifically to and from single-character entities. Secondly, there are 

no longer B—)-E, B—I and I—)-E transitions within an entity. The signifi-

cance of these transitions is that they implicitly help the original C R F to 

learn the probability distribution about the length of different kinds of enti-

ties. To complement for the information loss in this aspect, we again apply 

some feature types that utilize short-range dynamic potentials to capture the 

information about the entity length up to three characters. 

In the next chapter, we will present some concrete examples to show how 

the above principles can be implemented in order to adapt the features. 
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Chapter 4 

Experiments 

In this chapter, we will evaluate our proposed model by conducting exten-

sive experiments on a few datasets. For each dataset, we try to compare 

the performance among the following 3 models: (1) the original C R F with 

basic features, (2) our proposed framework with basic features, and (3) our 

proposed framework with the full incorporation of dynamic potentials. W e 

use "OrigCRF", "CRFDP-basic", and "CRFDP-full" as the abbreviations 

for these three models respectively. W e compare OrigCRF and CRFDP-

basic to show that the proposed framework is able to preserve the powerful 

inference of the original CRF. On the other hand, comparing CRFDP-full 

against CRFDP-basic can show that dynamic potentials help improve the 

inference. In the experiments, we have not used any external resources so 

that the performance of the probabilistic frameworks can be compared fairly. 
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In addition, for the completeness of this research work, the compari-

son between CRFDP-full and OrigCRF is included. However, it should be 

noted that such comparison may not be suitable to show the effectiveness 

of dynamic potentials, because these two models differ not merely on the 

utilization of dynamic potentials, but in quite a number of aspects, espe-

cially the labeling scheme and software implementation. These differences 

can affect the performance quite significantly. In contrast, CRFDP-full and 

CRFDP-basic differ only on the utilization of long-range dynamic poten-

tials. Therefore, the experiments on CRFDP-basic can serve as the control 

experiments of those on CRFDP-full for this objective. 

4.1 Datasets 

The first dataset we used is People's Daily (January 1998) corpus, and we use 

"PDJ98" as its abbreviation in this thesis. This corpus contains the whole 

month of People's Daily newspapers of the January in 1998, and its content 

includes all types of articles appeared in the newspaper. The original corpus 

is designed for general natural language tasks. Therefore, we have done 

some adjustments on annotation to this corpus for our experiments. Firstly, 

as the corpus originally annotates all abbreviations using the same label, 

we distinguished the abbreviated named entities from other abbreviations 
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and labeled them using the appropriate entity labels. Secondly, since the 

last name and given name of a Chinese person are separately tagged, we 

have concatenated them together so as to be consistent with the definition of 

person names. Thirdly, we removed all information other than named entity 

labels, mainly word segmentation and part-of-speech tags, since the task is 

to recognize named entities from plain text sentences. 

As both C R F and our proposed framework are sentence-based models, 

the text documents in the corpus are converted from paragraph-based to 

sentence-based. The sentence boundaries in a paragraph are simply detected 

by the full stop punctuation in Chinese, i.e. “ o ”. 

The whole modified corpus has 44010 sentences in total. In order to 

support the statistical significance about the improvement of our proposed 

model above the original CRF, we have conducted a 5-fold cross-validation 

on this corpus. For each fold, one fifth of the corpus, i.e. 8802 sentences 

which are contiguous in the corpus, are used as the testing set. 

The second and the third datasets we used are the M S R A and CityU 

corpora from the N E R task of SIGHAN Bakeoff 2007. Both datasets contain 

the standard training and testing sets. The text documents in these corpora 

are already sentence-based. Since the training and testing sets are standard 

ones, we have kept them and have not further conducted cross-validation. 

The statistics summary of the corpora is given in Table 4.1. 
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Persons Locations Organizations 

#sent. #tok. #ent. #tok. #ent. #tok. #ent. #tok. 

PDJ98-1 train 35208 I 1480k 16803 48604 20803 49471 9492 52536 

te^ 8802 362k 3183 9073 4858 12093 2098 11714 

PDJ98-2 train 35208 1469k 16630 48136 20819 50070 9266 50692 

test 8802 373k 3356 9541 4842 11494 2324 13558 

PDJ98-3 train 35208 1475k 16215 46721 20666 49397 9342 51985 

test 8802 367k 3771 10956 4995 12167 2248 12265 

PDJ98-4 train 35208 1463k 13892 39771 19857 48144 9026 50395 

test 8802 378k 6094 17906 5804 13420 2564 13855 

PDJ98-5 train 35208 1480k 16404 47476 20499 49174 9234 51392 

test 8802 362k 3582 10201 5162 12390 2356 12858 

M S R A train 23182 1089k 9028 26623 18522 43634 10261 51895 

test 4636 219k 1864 5465 3658 8606 2185 10941 

CityU train 36334 1772k 16552 49294 36213 82208 13490 35315 

test 8092 382k 4940 14463 4847 11049 3227 8251 
(Note: “#sent.” is the number of sentences in the dataset, while “#ent.” and “#tok.，’ 

are the number of entities and the number of tokens which belong to the corresponding 
entity type in the dataset.) 

Table 4.1: Statistics summary of the datasets for the experiments 

4.2 Features 

The set of features used by the original C R F models follows the one described 

in [8], as it is one of the best models and has achieved stable performance 

across the datasets in the Third International Chinese Language Processing 

BakeofF [16]. The tagging scheme we used in this model is BIOES. The 

feature types used in the models are listed in Table 4.2. Note that we have 

not followed [8] to include the feature type (yi, Ci_i, Ci+i), since we found that 
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this feature type may slightly degrade the performance. 

Feature type Dependent variables Further conditions for a 

(and description) for each sub-type feature to activate 

State unigram joining — Ci一2 No extra conditions, 

with local characters — Yi, Ci一i (Remarks: It means that Yi 
-Yi, Ci can be any possible state) 

-Yi^ Ci+i 
- Yi, Ci+2 
-Y i ^ Ci-2, Ci-i 
- C i 

- C i , Ci+1 

- Yj, Cj+i, Ci+2 
State bigram - V̂—i, Yi For any possible transition 

y -̂i 
Note 1: Yi is the random variable (RV) of the state at position i, while Ci is the RV of 

the Chinese character at position i. 
Note 2: Each feature of the above feature types activates only for a particaular tag 

for each of its Y variables and a particular value for each of its other dependent 
variables. 

Note 3: A feature is not valid if any index of its dependent variables is not in the possible 
range, i.e. either less than 1 or larger than the length of the current sentence. 

Table 4.2: List of feature types employed in OrigCRF 

W e used C R F + + [14] to conduct experiments on OrigCRF. For each of 

the datasets, a number of feature cutoff values are investigated and the one 

that achieves the best F-measure is applied for comparison. This value is 2 

for MSRA, while it is 4 for CityU. This value is not the same for each fold 

of PDJ98. The detailed performance figures of applying different feature 

cutoff values on these datasets are given in Appendix A. For our proposed 
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framework, we have not obtained such optimal feature cutoff values. Rather, 

we only used one single value for each dataset. For M S R A and CityU, the 

above values are applied directly to our proposed framework, which are not 

guaranteed to be optimal for the framework. For all the folds of PDJ98, we 

used the middle value among those tested for the original C R F models, which 

is 3. As a result, the cutoff values for OrigCRF are favorably optimized for 

comparison, whereas the cutoff values for our proposed framework may not be 

optimized. This ensures that the improvement of our proposed framework 

over the original C R F does not come from the unfavorable setting of the 

cutoff values for the original C R F models. 

W e have built two models using our proposed framework, i.e. C R F D P -

basic and CRFDP-full as mentioned previously. CRFDP-basic only uses 

basic features, similar to OrigCRF. Because of the differences in the labeling 

schemes, we used a slightly different set of features to capture almost the 

same information as in OrigCRF, All these features are listed in Table 4.3. 

The reasons for such arrangement are already discussed in Section 3.2.3. 

Note that unsupported features are used for these feature types for fair 

comparison, as the software package we used to do experiments for OrigCRF 

(i.e. C R F + + ) uses unsupported features. To briefly explain, unsupported 

features are those activated for wrong labelings but not for the correct label-

ing, and they are shown to help improve the performance [28 . 
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Fea tu re t y p e Dependent variables Further conditions for a 
(and description) for each (sub-)type feature to activate 
Usual s t a t e u n i g r a m - Yi-, Ci-2 Yi must be tagged with an 0 
joining wi th local — Ci-\ label, an entity B-tag or 
characters - E - t a g . 
(Unlike OrigCRF, this - Yu 
type only applies to the _ "^，Ci+2 
states tagged with O. - Yi, Ci-2, Ci-\ 
B-tag or E-tag in this - Ci- \ . Ci 
model.) - Ci, Ci+\ 

- Q+i； Q+2 
s t a t e b ig r am - X - i , ^ For any possible transition 

, Yj-i — Yj. where ^ > 1 
En t i t y I - t ag Unigram: For unigram: 
un ig ram b i g r a m - Yi, Ci Yi must be tagged with 
joining wi th local - Ci- \ . Ci entity I-tag. 
characters - Ci, Q+i 
(This type is for Bigram: For bigram: 
adapting the change of - Yi-i, Ci-i Both Yi-i k. Yi must be 
the role of entity I-tag) — ^ - i , Ci tagged with entity I-tag and 

- l i - i , Yi. Ci-2, Ci-i no entity boundary 
— Y i - i , Yi, Ci-i, Ci in-between, where i> 1. 

- y^ Cj, Ci+i 

Single-character - Yi, C1—2 The state Yi itself must form 
entity joining with - Ci-\ a candidate of 
local charac te rs - Yi, Ci single-character entity. 
(This type is to - Yi, Ci^i 
complement for the — Yi-, Q+2 
removal of entity - Yi, Ci-2, Q - i 
S-tag.) - Yi, Ci- i , Ci 

- C i , Ci+i 
— Yj, Cj+i^ Ci+2 

Short en t i ty length, Yj to Yi and I, where I The states Yj to Yi must form 
not longer than S char, is the entity length (i.e. an entity candidate. 
(This is to complement I = j + 1), with 1 < 
for the loss of some I < 3 and j > 1 
transition types.) 

Note 1: Yi is the random variable (RV) of the state at position i, while Ci is the RV of 
the Chinese character at position i. 

Note 2: Each feature of the first three feature types activates only for a particular tag 
for each of its Y variables and a particular value for each of its other dependent 
variables. And each feature of the other feature types activates only for a particular 
set of values for all of its dependent variables. 

Note 3: A feature is not valid if any index of its dependent variables is not in the possible 
range, i.e. either less than 1 or larger than the length of the current sentence. 

Table 4.3: List of basic feature types employed in CRFDP-basic and CRFDP-
full . . 
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CRFDP-full, on the other hand, uses not only the basic features listed 

in Table 4.3, except the feature type "short entity length" as it would be 

replaced by another version, but also some advanced feature types that ex-

tensively utilize dynamic potentials. The length limits of the dynamic po-

tentials for concatenating O labels, persons, locations and organizations (i.e. 

mo, mper, mLoc, and mog) are set to be 4, 7, 7, and 15 respectively. These 

features are listed in Table 4.4. 

Note that we did not manually forge the structures for the last feature 

type "entity structure". Rather, we write a script that scans through the 

entities in the training data to automatically generate a lot of patterns, and 

then exhaustively match them with the entities again. Those structures with 

the number of appearances higher than some threshold values are accepted 

and used as features. Therefore, no external resource nor linguistic knowledge 

was used in this feature type so that fair comparisons among the models can 

be made. 

4.3 Evaluation Metrics 

In the experiments, we report the results by utilizing the evaluation script 

provided by SIGHAN Bakeoff 2006 (and also 2007) for the N E R task. The 

script mainly reports 3 types of metrics: precision, recall and Fl-score. Fl-
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Feature type Dependent variables Further conditions for a 
(and description) for each (sub-)type feature to activate 
O-labeled c h a r a c t e r Y — i to 1^+1, Cj to Q , T h e states from Yj to Yi 
sequence connecting and /, where must form an O-labeled 
entities I = i - j -\-l and character sequence, while 

1 < / < mo both Yj-i and "Ĵ +i must be 
entity states. 

Ent i ty ident i ty Yj to Yi, Cj to Ci, and The states from Yj to Yi 
I, where I = i — j + 1 must form an whole entity 
and 1 < I candidate of type 

Ent i ty length Yj to Yi, and where The states from Yj to Yi 
I = i — j + 1 and must form an whole entity 
1 < I candidate of type 

Ent i ty length Yj to Yi, /, and the The states from Yj to Yi 
joining with t h e following variables for must form an whole entity 
characters in the each sub-type, where candidate of type 
enti ty at some I = i - j + \ and 
specific positions 1 < / < m̂  : 

- C j — Cj, Cj+i 
-Cj+1 - Cj+1, 
—Cj+2 - Cj+3 
-Q+3 - Ci-i, Ci 

-Ci - Ci-2, Ci-i 
—Ci—i - Ci-2 to Ci 
-Ci-2 - Ci—z, Ci-2 
—Ci-s - Ci-3 to Ci-i 

-C i_3 to Ci 

Ent i ty s t ruc tu re Yj to Yi, I and 5, where The states from Yj to Yi 
I =i - j + \ < I < m^, must form an whole entity 
and S represents some candidate of type while the 
structure. character sequence Cj to Ci 

must match the structure S. 

Note 1: Yi is the random variable (RV) of the state at position i, while Ci is the RV of 
the Chinese character at position i. 

Note 2: Each feature activates only for a particular set of values for all of its dependent 
variables. 

Note 3: A feature is not valid if any index of its dependent variables is not in the possible 
range, i.e. either less than 1 or larger than the length of the current sentence. 

Table 4.4: List of advanced feature types employed in CRFDP-full 
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score is the weighted harmonic mean of precision and recall. These metrics 

are defined as follows: 

.. no. of correctly recognized NEs , 、 
precision = ： . . 4.1 

no. 01 recognized NEs 

—no. of correctly recognized NEs 
recall — (4.2) 

total no. 01 true NEs 

〜 2 X recall x precision , 、 
Fl-score = — ^ 4 . 3 

recall + precision 

These scores are reported specifically for each type of NEs. The overall 

scores are reported as well. 

4.4 Results and Discussion 

W e evaluated the performance of OrigCRF, CRFDP-basic and CRFDP-full 

on each corpus using the mentioned metrics. The detailed tabulation of the 

results on the corpora MSRA, CityU and PDJ98 are shown in Table 4.5, 

Table 4.6 and Table 4.7 respectively. Note that the results on PDJ98 are the 

average over its five folds. 

From the results, it can be seen that the OrigCRF and CRFDP-basic have 

similar performance. It means that, our proposed framework using only the 

basic features, which only captures the dependencies among local states, can 

perform as well as the original CRF. This shows that the proposed framework 

is able to preserve the powerful inference of the original CRF. 
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precision recall Fl-score 

"OrigCRF = : = 
-location 93.85% 88.41% 91.05 
-organization 87.95% 80.14% 83.86 
-person 96.65% 88.20% 92.23 
-overall 92.87% 86.01% 89.31 

CRFDP-basic 
-location 93.10% 88.96% 90.98 
-organization 88.24% 80.00% 83.92 
-person 96.63% 89.27% 92.81 
-overall 92.61% 86.49% 89.45 

CRFDP-full 
-location 93.37% 90.13% 91.72 
-organization 89.29% 80.50% 84.67 
-person 96.62% 90.61% 93.52 
-overall 93.05% 87.52% 90.20 

Table 4.5: Performance on M S R A corpus 

It is also obvious that CRFDP-full generally outperforms CRFDP-basic. 

CRFDP-full shows consistent improvement on the Fl-scores of all entity 

types (and therefore the overall Fl-score) across the corpora. This shows 

that with the help of dynamic potentials, our proposed framework is able to 

capture more dependencies and the inference can therefore be enhanced. 

W e also calculated the statistical significance of such improvement on the 

PDJ98 corpus. Since PDJ98 does not come with official training set and 

testing set, we have done a paired t-test on its five folds. W e found that, 

at the significance level of 0.5%, it can be concluded that CRFDP-full has 

improvement over CRFDP-basic for PDJ98 on the overall Fl-score and recall, 

as well as the Fl-scores and recall values of both location and person entity 
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precision recall Fl-score 
OrigCRF 

-location 88.45% 84.96% 86.67 
-organization 87.46% 54.48% 67.14 
-person 92.51% 73.04% 81.63 
-overall 89.76% 72.88% 80.44 

CRFDP-basic 
-location 88.32% 85.00% 86.63 
-organization 88.03% 54.45% 67.28 
-person 92.72% 74.25% 82.46 
-overall 89.90% 73.34% 80.78 

CRFDP-full — 
-location 87.72% 86.22% 86.96 
-organization 86.61% 55.31% 67.51 
-person 92.42% 76.26% 83.56 
-overall 89.27% 74.77% 81.38 

Table 4.6: Performance on CityU corpus 

types. The detailed calculation of the paired t-tests is shown in Appendix B. 

One may notice that the recall values of CRFDP-full are generally higher 

than those of CRFDP-basic while no similar boost has been given to the 

precision values. Such phenomenon is actually due to the types of dynamic 

potential features that CRFDP-full used, i.e. those listed in Table 4.4. Note 

that for most of these features, the activation conditions are not restrictive, 

and therefore tends to raise the recall but not the precision. Precision can 

be raised if a set of more restrictive features is used instead. 

For the completeness of this research work, we also compare the perfor-

mance of CRFDP-full and OrigCRF here. Note that such comparison may 

not be suitable to show the effectiveness of dynamic potentials, as explained 
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precision recall Fl-score 
OrigCRF 
-location 91.11% 83.85% 87.33 
-organization 89.90% 82.19% 85.86 
-person 95.32% 83.16% 88.82 
-overall 92.28% 83.32% 87.57 

CRFDP-basic 
-location 89.94% 84.15% 86.95 
-organization 89.20% 80.89% 84.84 
-person 94.70% 84.13% 89.09 
-overall 91.40% 83.52% 87.28 

CRFDP-full 
-location 90.59% 85.31% 87.87 
-organization 89.88% 81.66% 85.56 
-person 94.83% 85.76% 90.05 
-overall 91.88% 84.77% 88.18 

Table 4.7: Performance on PDJ98 corpus 

in the beginning of this chapter. However, as expected, the result of this 

comparison is very similar to that of CRFDP-full and CRFDP-basic. 

Generally, CRFDP-full outperforms OrigCRF. It consistently has higher 

overall Fl-scores across the corpora. For the nine Fl-scores of the entity types 

for the three corpora, CRFDP-full has eight of them higher than OrigCRF. 

W e have also done a paired t-test on PDJ98, and found that at the signifi-

cance level of 0.5%, it can be concluded that CRFDP-full has improvement 

over OrigCRF for PDJ98 on the overall Fl-score and recall, as well as the 

Fl-scores and recall values of both location and person entity types. The 

detailed calculation of this paired t-tests is shown in Appendix C. 
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Chapter 5 

Conclusions and Future Work 

In recent years, the performance of Chinese N E R has been improved sig-

nificantly by utilizing various probabilistic frameworks. However, the de-

velopment of Chinese N E R still has room for improvement especially when 

comparing with the performance of English NER. The reason is that most 

of the probabilistic frameworks fail to capture some specific characteristics 

of Chinese language effectively, as they are developed mostly for western 

languages. The linear-chain CRF, which has reported the best performance 

on Chinese NER, also suffer from this problem. W e address this issue by 

improving the modeling of the linear-chain CRF. 

In this research work, we have extended the linear-chain C R F by in-

troducing dynamic potentials, which enable the framework to capture the 

dependencies across a number of states. To keep the inference efficient, we 
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have also adapted the common Viterbi and forward-backward algorithms 

from the original CRF. Our experimental result shows that the newly for-

mulated framework, i.e. CRFDP, has improvement over the original CRF. 

Experimental result shows that such improvement is of high statistical sig-

nificance and consistent over several datasets. In our detailed investigation, 

we have found that without using long-range dynamic potentials, C R F D P 

performs similarly with the original CRF. This shows that C R F D P is able to 

preserve the powerful inference of the linear-chain CRF. Using a set of con-

trol experiments, we have also verified that dynamic potentials are effective 

in improving the inference. 

This research work demonstrates how to apply dynamic potentials in 

CRFs for Chinese N E R tasks. In fact, many natural language processing 

tasks can benefit from the concept of dynamic potential, especially the Chi-

nese language tasks. A possible direction of future research is to apply dy-

namic potentials for the general labeling problem. This requires generalizing 

the principle of dynamic potentials in linear-chain CRFs, as well as formu-

lating the general algorithms that do not subject to any specific kind of 

long-range state dependencies. 
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Appendix A 

This appendix depicts the tables showing the performance of the original 
C R F models when applying different feature cutoff values c on each dataset. 
Note that for each dataset the trained model with cutoff value in bold is the 
one chosen for comparison in Chapter 4. 

M S R A corpus: 

cutoff prec. recall F l Loc. Fl Org. F l Per. Fl 

c = l 93.00% 85.45% 89.07 90.95 83.73 91.57 

c = 2 92.87% 86.01% 8 9 . 3 1 91.05 83.86 92.23 

c = 3 92.56% 86.00% 89.16 90.89 83.63 92.17 

CityU corpus: 

cutoff prec. recall F l Loc. Fl Org. F l Per. Fl 

c = 3 90.08% 72.51% 80.34 86.69 66.96 81.44 
c = 4 89.76% 72.88% 80.44 86.67 67.14 81.63 
c = 5 89.61% 72.93% 80.41 86.58 66.93 81.77 
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PDJ98 corpus: 

cutoff prec. recall Fl Loc. Fl Org. F l Per. Fl 
fold 1 c = 2 91.63% 82.56% 86.86 86.55 s l ^ 88.87 

c = 3 91.44% 82.63% 86.81 86.28 84.39 89.26 
c = 4 91.24% 82.73% 86.78 86.27 84.19 89.29 

fold 2 c = 2 91.63% 81.41% 86.22 86.96 83.79 86.83 
c = 3 91.49% 81.68% 86.31 87.09 83.66 87.00 
c = 4 91.38% 81.70% 86.27 87.00 83.69 87.00 

fold 3 c = 2 93.24% 84.98% 88.92 88.64 87.57- 90.13 
c = 3 92.97% 84.97% 88.79 88.46 87.16 90.24 

c = 4 92.74% 84.92% 88.66 88.26 87.15 90.12 
fold 4 c = 2 93.89% 85.74% 89.63 88.92 86.31 91.73 

c = 3 93.63% 85.90% 89.60 88.87 86.05 91.81 
c = 4 93.37% 85.65% 89.34 88.44 85.92 91.68 

fold 5 c = 2 91.45% 81.31% 86.08 85.71 87.04 85.98 

c = 3 91.22% 81.41% 86.04 85.60 86.99 86.05 

I c = 4 II 91.13% 81.62% 86.11 85.45 87.20 86.36 

Note that we have not tried the case that c = 1, i.e. no feature cutoff 

effectively, for all the 5 folds of PKJ98, as this is well-known to induce 

over-training. 
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Appendix B 

This appendix shows the details of the paired t-tests about comparing the 
various performance metrics of CRFDP-basic and CRFDP-full on the PDJ98 
corpus. 

Paired t-test on comparing the overall Fl-scores of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on the overall Fl-score. 

Fl-score difference 
fold CRFDP-basic {x) CRFDP-full {y) (d = y-x) 

2 86.26 86.95 0.69 
3 88.83 89.47 0.64 
4 89.06 90.37 1.31 
5 85.71 86.68 0.97 

no. of folds n = 5 

degrees of freedom 二 n - 1 = 4 

mean difference d = 0.90 

std. dev. of difference Sd = 0.267 

So, we have 

Sd 
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On 4 degrees of freedom, the p-value corresponding to t is 8.28 x lO—̂ . 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on the 
overall Fl-score. 

Paired t-test on comparing the overall recall of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on the overall recall. 

Recall difference 
fold CRFDP-basic {x) CRFDP-full jy) {d = y-x) 

82.78 84.07 T ^ 
2 82.13 83.30 1.17 
3 85.44 86.22 0.78 
4 85.74 87.44 1.70 
5 81.51 82.84 1.33 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 1.25 

std. dev. of difference Sd = 0.15 

So, we have 

Sd 

On 4 degrees of freedom, the p-value corresponding to t is 5.31 x 10_4. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on the 
overall recall. 
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Paired t-test on comparing the overall precision of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on the overall precision. 

Precision difference 
fold CRFDP-basic {x) CRFDP-full (y) {d = y - x) 

90.68 91.10 0I2 
2 90.82 90.94 0.12 
3 92.50 92.97 0.47 
4 92.65 93.49 0.84 
5 90.35 90.90 0.55 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.48 

std. dev. of difference sj, = 0.116 

So, we have 

力二 = 
Sd 

On 4 degrees of freedom, the value corresponding to t is 7.14 x 10"^. 
Therefore, at a significance level of 1%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on the 
overall precision. 

Paired t-test on comparing the location Fl-scores of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on location Fl-score. 
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Fl-score difference 
fold ‘ CRFDP-basic jx) CRFDP-full (y) {d = y - x) 
~ 8 6 ^ 87.19 H o 

2 86.36 87.24 0.88 
3 88.44 89.21 0.77 
4 88.40 89.40 1.00 
5 85.47 86.31 0.84 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.92 

std. dev. of difference Sd = 0.13 

So, we have 

dx v ^ — ^ M 

t =———=15.60 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 4.93 x 10"^. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
location Fl-score. 

Paired t-test on comparing the organization Fl-scores 
of CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on organization Fl-score. 

Fl-score difference 
fold CRFDP-basic (re) CRFDP-full {y) {d == y - x) 
~ 83.43 83.90 O ? 

2 83.31 84.07 0.76 
3 87.32 87.53 0.21 
4 84.41 85.98 1.57 
5 85.71 86.34 0.63 
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no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.73 

std. dev. of difference Sd = 0.51 

So, we have 

, = £ 2 1 ^ = 3.17 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 1.69 x 10"^. 
Therefore, at a significance level of 2%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
organization Fl-score. 

Paired t-test on comparing the person Fl-scores of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on person Fl-score. 

Fl-score difference 
fold CRFDP-basic jx) CRFDP-full (y) {d = y - x) 

8 9 ^ 90l4 
2 88.16 88.56 0.40 
3 90.27 90.98 0.71 
4 91.66 93.12 1.46 
5 86.06 87.46 1.40 

no. of folds n 二 5 

degrees of freedom = n — 1 = 4 

mean difference d == 0.96 

std. dev. of difference ŝ  = 0.46 
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So, we have 

Sd 

On 4 degrees of freedom, the p-value corresponding to t is 4.68 x 10一3. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
person Fl-score. 

Paired t-test on comparing the location recall of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on location recall. 

Recall difference 
fold • CRFDP-basic {x) I CRFDP-full (y) (d y - x) 

82.87 84.58 1?71 
2 83.91 85.11 1.20 
3 85.75 86.53 0.78 
4 85.87 86.75 0.88 
5 82.37 83.57 1.20 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 1.15 

std. dev. of difference ŝ  = 0.36 

So, we have 

力 = ¥ = 7.10 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 1.04 x 10"^. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
location recall. 
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Paired t-test on comparing the organization recall of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on organization recall. 

Recall difference 

fold CRFDP-basic (x) I CRFDP-full (y) (d = y - 工) 
~ 79.50 O 

2 78.61 79.95 1.34 
3 84.21 84.48 0.27 
4 80.85 82.53 1.68 
5 81.45 81.83 0.38 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.77 

std. dev. of difference Sd = 0.69 

So, we have 

Sd 

On 4 degrees of freedom, the value corresponding to t is 3.30 x 10"^. 
Therefore, at a significance level of 5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
organization recall. 

Paired t-test on comparing the person recall of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on person recall. 
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Recall difference 
fold CRFDP-basic (x) CRFDP-full (y) {d = y - x) 

TM 
2 82.00 83.02 1.02 
3 85.76 86.85 1.09 
4 87.66 90.17 2.51 
5 80.32 82.44 2.12 

no. of folds n = 5 

degrees of freedom = n - 1 = 4 • 

mean difference d = 1.62 

std. dev. of difference Sd = 0.66 

So, we have 

, = ¥ = 5.51 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 2.66 x 10"^. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
person recall. 

Paired t-test on comparing the location precision of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on location precision. 

Precision difference 
fold CRFDP-basic (rr) CRFDP-full (y) {d = y - x) 

~ 1 89.57 89.97 O L O 

2 88.96 89.47 0.51 
3 91.30 92.06 0.76 
4 91.08 92.22 1.14 
5 88.81 89.22 0.41 
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no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.64 

std. dev. of difference Sd = 0.31 

So, we have 

dx Jn , M 
t =———=4.60 

Sd 
On 4 degrees of freedom, the p-value corresponding to t is 5.01 x 10"^. 
Therefore, at a significance level of 1%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
location precision. 

Paired t-test on comparing the organization precision 
of CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on organization precision. 

Precision difference 
fold CRFDP-basic ⑷ CRFDP-full {y) {d = y - x) 

88.00 8 8 ^ ^82 
2 88.60 88.65 0.05 
3 90.66 90.82 0.16 
4 88.29 89.74 1.45 
5 90.43 91.37 0.94 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.684 

std. dev. of difference Sd = 0.58 
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So, we have 

t = i ^ = 2M 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 2.89 x 10"^. 
Therefore, at a significance level of 5%, it can be concluded that 
CRFDP-full on average does have improvement over CRFDP-basic on 
organization precision. 

Paired t-test on comparing the person precision of 
CRFDP-basic and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over 
CRFDP-basic on person precision. 

Precision difference 
fold - CRFDP-basic {x) CRFDP-full (y) {d = y-x) 

9418 
2 95.32 94.89 -0.43 
3 95.29 95.54 0.25 
4 96.04 96.27 0.23 
5 92.69 93.13 0.44 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.13 

std. dev. of difference Sd = 0.33 

So, we have 

Sd 

On 4 degrees of freedom, the p-value corresponding to t is 0.22. Therefore, 
at a significance level of 5%, it cannot be concluded that CRFDP-full on 
average has improvement over CRFDP-basic on person precision. 
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Appendix C 

This appendix shows the details of the paired t-tests about comparing the 
various performance metrics of OrigCRF and CRFDP-full on the PDJ98 
corpus. 

Paired t-test on comparing the overall Fl-scores of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on the overall Fl-score. 

Fl-score difference 
fold orig.CRF (rr) CRFDP-full (y) {d = y - x) 
~ 86.86 87.44 

2 86.31 86.95 0.64 
3 88.92 89.47 0.55 
4 89.63 90.37 0.74 
5 86.11 86.68 0.57 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 0.62 

std. dev. of difference Sd = 0.077 

So, we have 

d Xv^ — _ 
t = ~~L 二 17.89 

Sd 
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On 4 degrees of freedom, the p-value corresponding to t is 2.87 x 10"^. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on the 
overall Fl-score. 

Paired t-test on comparing the overall recall of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on the overall recall. 

Recall difference 
fold orig.CRF jx) I CRFDP-full {y) {d = y - x) 

82.56 84.07 L51 
2 81.68 83.30 1.62 
3 84.98 86.22 1.24 
4 85.74 87.44 1.70 
5 81.62 82.84 1.22 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 1.46 

std. dev. of difference Sd = 0.22 

So, we have 

t = ̂  = 14.89 

On 4 degrees of freedom, the p-value corresponding to t is 5.92 x 10一5. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on the 
overall recall. 
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Paired t-test on comparing the overall precision of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on the overall precision. 

Precision difference 
fold orig.CRF (x) CRFDP-full {y) {d = y - x) 

9 1 ^ 91.10 
2 91.49 90.94 -0.55 
3 93.24 92.97 -0.27 
4 93.89 93.49 -0.40 
5 91.13 90.90 -0.23 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = —0.40 

std. dev. of difference Sd = 0.065 

So, we have 

dx v ^ ^ _ 
t =———=-6.07 

Sd 

For t being negative, it is not possible to have a p-value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 

CRFDP-full on average has improvement over OrigCRF on the overall 

precision. 

Paired t-test on comparing the location Fl-scores of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on location Fl-score. 
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Fl-score difference 
fold orig.CRF (x) CRFDP-full (y) {d = y - x) 

86.55 87.19 
2 87.09 87.24 0.15 
3 88.64 89.21 0.57 
4 88.92 89.40 0.48 
5 85.45 86.31 0.86 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 
mean difference d = 0.54 

std. dev. of difference Sd = 0.26 

So, we have 

Sd 

On 4 degrees of freedom, the p-value corresponding to t is 4.81 x 10一3. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on location 
Fl-score. 

Paired t-test on comparing the organization Fl-scores 
of OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on organization Fl-score. 

Fl-score difference 
fold orig.CRF ⑷ CRFDP-full jy) {d = y-x) 

84.58 83.90 
2 83.66 84.07 0.41 
3 87.57 87.53 -0.04 
4 86.31 85.98 -0.33 
5 87.20 86.34 -0.86 
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no. of folds n = 5 

degrees of freedom = n - 1 = 4 

mean difference d = 一0.30 

std. dev. of difference Sd = 0.51 

So, we have 

力 = ¥ = -1.32 

Sd 

For t being negative, it is not possible to have a p-value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 

CRFDP-full on average has improvement over OrigCRF on organization 

Fl-score. 

Paired t-test on comparing the person Fl-scores of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on person Fl-score. 

Fl-score difference 
fold orig.CRF (x) CRFDP-full {y) {d = y-x) 

90l4 O ? 
2 87.00 88.56 1.56 
3 90.13 90.98 0.85 
4 91.73 93.12 1.39 
5 86.36 87.46 1.10 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = 1.23 

std. dev. of difference Sd = 0.12 
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So, we have 

t = ¥ = 10.12 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 2.68 x 10_4. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on person 
Fl-score. 

Paired t-test on comparing the location recall of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on location recall. 

Recall difference 
fold orig.CRF jx) I CRFDP-full {y) {d = y-x) 

82.56 84.58 ^ 
2 84.18 85.11 0.93 
3 85.13 86.53 1.40 
4 85.73 86.75 1.02 
5 81.65 83.57 1.92 

no. of folds n = 5 

degrees of freedom = n - 1 = 4 

mean difference d = 1.46 

std. dev. of difference Sd = 0.50 

So, we have 

, = ¥ = 6.51 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 1.44 x 10"^. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on location 
recall. 
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Paired t-test on comparing the organization recall of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on organization recall. 

Recall difference 
fold orig.CRF (x) CRFDP-full jy) {d = y - x) 

8089 T 3 9 
2 78.96 79.95 0.99 
3 84.92 84.48 -0.44 
4 82.64 82.53 -0.11 
5 83.53 81.83 -1.70 

no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = —0.53 

std. dev. of difference Sd = 1.07 

So, we have 

Sd 

For t being negative, it is not possible to have a value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 
CRFDP-full on average has improvement over OrigCRF on organization 
recall. 

Paired t-test on comparing the person recall of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on person recall. 
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Recall difference 
fold orig.CRF (rr) CRFDP-full (y) {d = y - x) 

2 79.95 83.02 3.07 
3 84.83 86.85 2.02 
4 87.05 90.17 3.12 
5 80.32 82.44 2.12 

no. of folds n = 5 

degrees of freedom = n - 1 = 4 

mean difference d = 2.59 

std. dev. of difference Sd = 0.51 

So, we have 

t = ^ = 11.27 
Sd 

On 4 degrees of freedom, the p-value corresponding to t is 1.77 x 10-4. 
Therefore, at a significance level of 0.5%, it can be concluded that 
CRFDP-full on average does have improvement over OrigCRF on person 
recall. 

Paired t-test on comparing the location precision of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on location precision. 

Precision difference 
fold orig.CRF {x) CRFDP-full jy) {d = y - x) 

90.93 89.97 ^ ^ 
2 90.22 89.47 -0.75 
3 92.45 92.06 -0.39 
4 92.35 92.22 -0.13 
5 89.62 89.22 -0.40 
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no. of folds n = 5 

degrees of freedom = n — 1 = 4 

mean difference d = —0.53 

std. dev. of difference ŝ  = 0.33 

So, we have 

t = ̂  = -3.59 
Sd 

For t being negative, it is not possible to have a p-value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 
CRFDP-full on average has improvement over OrigCRF on location 
precision. 

Paired t-test on comparing the organization precision 
of OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on organization precision. 

Precision difference 
fold orig.CRF ⑷ CRFDP-full {y) [d = y — x) 
~ 88.62 88.82 

2 88.95 88.65 -0.30 
3 90.39 90.82 0.43 
4 90.32 89.74 -0.58 
5 91.20 91.37 0.17 

no. of folds n = 5 

degrees of freedom = n - 1 = 4 

mean difference d = —0.016 

std. dev. of difference Sd = 0.41 
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So, we have 

Jxv^ ^M t =——L = -0.09 
Sd 

For t being negative, it is not possible to have a p-value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 
CRFDP-full on average has improvement over OrigCRF on organization 
precision. 

Paired t-test on comparing the person precision of 
OrigCRF and CRFDP-full 

Null hypothesis: CRFDP-full does not have improvement over OrigCRF 
on person precision. 

Precision difference 
fold orig.CRF jx) I CRFDP-full {y) {d = y - x) 

9477 ^ O i 
2 95.41 94.89 -0.52 . 
3 96.12 95.54 -0.58 
4 96.93 96.27 -0.66 
5 93.38 93.13 -0.25 

no. of folds n = 5 

degrees of freedom = n - 1 = 4 

mean difference d = -0.49 

std. dev. of difference Sj, = 0.16 

So, we have 

t = ^ = —7.00 
Sd 

For t being negative, it is not possible to have a p-value lower than 0.5%. 
Therefore, at a significance level of 0.5%, it cannot be concluded that 
CRFDP-full on average has improvement over OrigCRF on person 
precision. 
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