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Abstract 

In recent years much attention has been paid to the 
Taguchi methods whose applications -have successfully improved 
the quality of industrial processes in Japan. The basic concept 
of the methods is to economically achieve high quality, low 
variability and consistency of functional performance of a 
product or a process. 

To analyze data from Taguchi's experiments, one of the 
useful approaches is to use the generalized linear models with 
varying dispersions. This class of models is usually based on 
distributions of the exponential families, namely, the normal, 
the inverse Gaussian and the gamma distributions. In this 
thesis, we devise a GLIM macro to find the maximum likelihood 
estimates of such models under the inverse Gaussian 
distribution assumptions. A simulation study on the analysis of 
data from these models is conducted. As a preliminary study, 
properties of the inverse Gaussian distributions are also 
given. 
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1• Introduction 

The improvement in the quality of industrial processes in 
japan aroused many Western engineers to realize the importance 
of statistical tools, and in particular, much attention has 
been paid to the so-called Taguchi methods. Dr. Genechi Taguchi 
advocated the use of statistically designed experiments to find 
a best product or process design that is insensitive to any 
condition. � 

A powerful class of models for analyzing data from 
Taguchi's experiments is that of the generalized linear models 
with varying dispersions (Smyth, 1989). Aitkin (1987) pointed 
out that such a model can be fitted by maximuni likelihood in 
GLIM using a simple macro. Based on Aitkin's macro, Chan, Li & 
Sharpe (1992) devised a GLIM macro to analyze Taguchi's 
experiments based on the class of such models in which the 
response variables are assumed to have normal distributions. 

Analytically, a generalized linear model with varying 
dispersions has to be founded on distributions in an 
exponential family. Blaesild & Jensen (1985) showed that the 
only univariate distributions are those based on the normal, 
inverse Gaussian and gamma distributions. Therefore, we would 
mainly consider generalized linear models with varying 
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dispersions under the assumption of these distributions. The 
GLIM macro devised by Chan, Li & Sharpe (1992) is based on 
models under 七he normality assumptioru 

In this paper, we make use of the newly available GLIM 4 
to devise a macro to analyze data arising from generalized 
linear models in which the response variables are assumed to 
have the inverse Gaussian distributions. Section 2 describes 
Taguchi's philosophy and his approach to the design of 
experiments. In section 3, we consider properties of the 
inverse Gaussian distribution. In section 4, we devise a GLIM 4 
macro for analyzing data from a generalized linear model with 
varying dispersions under the inverse Gaussian distribution. We 
then carry out a simulation study in section 5 to see how well 
the GLIM 4 macro can help analyzing data from such a model. 
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2. Taguchi' s methodology in design of experiments 

Taguchi's fundamental concept rests on the importance of 
economically achieving high quality, low variability and 
consistency of functional performance. The objective is to 
identify the settings of the product or process parameters that 
maintain the performance characteristic about its target value 
and reduce the performance variation. In other words, we want 
to make products that will perform well under the conditions of 
normal use. 

The performance characteristic of a product or a process 

y is a response variable for measuring the quality of that 
product or process. It is affected by many factors. These 
factors can be classified into three classes: 

1. Signal factors. They specify the intended value of the 
product's response, for example, the speed setting on a 
table fan. They are selected by the design engineers based 
on their engineering knowledge. 

2. Noise factors. They are uncontrollable. They may be the 
external sources of variation like temperature, humidity, 
dust, supply voltage and human error, etc. They may also be 
due to manufacturing imperfections or product 
deterioration� 
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3. Control factors. They are to be set to minimize the 
sensitivity of the product's response to all possible noise 
factors. The power of the motor of a table fan may be an 
example of control factors. 

Some of these factors affect the mean value of the performance 
characteristic and these are identified as having location 
effects. Others might cause variations in the characteristic 
and they are known as having dispersion effects. Taguchi's 
approach is to determine levels of control factors at which the 
effect of the noise factors on the performance characteristic 
is the least. 

Taguchi's methodology is heavily based on statistical 
methods, especially statistically designed experiments, and 
concentrates on minimizing the deviation from the target caused 
by noise factors. He recommends the use of the orthogonal 
arrays and the �signal-to-noise' ratio (SN) when conducting 
experiments. The SN ratio is derived from the quadratic loss 
function; it is used for measuring sensitivity to noise factors 
and will take a different form depending on the type of 
performance characteristic. Three common forms are: 

广一2) y 
1. SNT = 10 log ̂  which is suitable when we want to reduce 

J 

variability around a specific target. 
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,1 ” 1 ) 
2 i SNL =-10 log which is suitable when we want the 

response as large as possible. 

fl » 
3 SNV =-10 log —/]v2 which is suitable when we want the 

•  S ^ N ^ I ' J 

response as small as possible. 

In Taguchi's approach, we would want to consider as many 
factors as "possible in an initial experiment. However, a 
complete factorial design may involve thousands of treatment 
combinations. This is obviously expensive, inefficient, time-
consuming and may be impossible to carry out. Therefore, 
Taguchi advocated the use of fractional factorial designs that 

/ 

require far fewer experimental runs. 

In designing the experimental trials, Taguchi suggested 
the use of orthogonal arrays, which allows all combinations of 
levels to occur an equal number of times in every two columns. 
As a result of using orthogonal arrays, most of the higher 
order interaction terms are confounded with the lower order 
interactions or the main effects, and hence they are ignored as 
suggested by Taguchi. 
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There are three stages in a product's (or process's) 
development; they are (1) system design, (2) parameter design 
and (3) tolerance design. These stages are described below. 

2.1 System design 

This stage is usually done by the engineers. They have to 
use scientific and engineering knowledge to determine the basic 
configuration, that is, to select �the materials, the 
manufacturing steps and the values or levels of the factors, 
etc. 

System design can play an important role in reducing the 

sensitivity to noise factors as well as in reducing the 

manufacturing cost. 

2.2 Parameter design 

In parameter design, we determine the best settings for 
the control factors that itiininiize quality loss, or equivalently 
the sensitivity of the function of the product or process to 
all noise factors. During parameter design, we fix the 
manufacturing cost at a low value, that is, we use low-grade 
components and materials and consider noise factors with wide 
tolerance. If at the end of this stage, the quality loss is 
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within specifications, we have a design with the lowest cost 

and we need not go to the third stage. However, in practice, 

the quality loss must be further reduced. 

2.3 Tolerance design 

Tolerance design is used to determine the best tolerances 
for the parameters. We have to determine whether to reduce the 
quality loss due to performance variation or to increase the 
manufacturing cost for using better materials. Tolerance design 
should be done only after sensitivity to noise has been 
minimized through parameter design; otherwise we would have to 
specify unnecessarily higher-grade materials and components 
leading to higher manufacturing cost. 
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3. Inverse Gaussian distribution 

3.1 Genesis 

Schrodinger (1915) considered the linear Brownian motion 

of a particle with a positive drift {v) and obtained the first 

passage time distribution. He showed that the time (X) required 

for the particle to cover a fixed distance (d) is a random 

variable with probability density function 

=—£=exp{-(tif-vr)2/(2|3x)} (3.1) 
V 2 傘 

where P is a diffusion constant. 

Alternatively, he found that the distance (D) over which 

the particle travels in a fixed period of time (x) is a random 

variable with the normal distribution 

pD (d) = exp{-(d - vx)2 /(2Px)} (3.2) 

While attempting to extend Schrodinger's results, Tweedie 
(1941) noticed the inverse relationship between the cumulant-
generating functions of (3.1) and (3.2), and suggested the name 
、、工nverse Gaussian" for the distribution (3.1) . He published a 
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detailed study of the distribution in 1957 which established 

many of its important statistical properties. 

In 1947, Wald derived this kind of distributions as a 
limiting form of the sample size in certain sequential 
probability ratio tests. It is a special case of the inverse 

Gaussian distribution in which the parameter \i is equal to 1. 

This distribution is sometimes known as Waldf s distribution. 
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3.2 Probability density function 

r 

On substituting v = — and P = into (3.1) we obtain the 

standard form of the inverse Gaussian distribution as follows: 

The parameter \x is the mean of the distribution, X is a 

reciprocal measure of dispersion, and the variance of the 

distribution is given by 

There are three equivalent forms obtained by using the 

relationship [i=X/^ = (2a)~y2\ They are: 

fx ( ^ a) = J ^ r expj-aXx + -

Figures 1 and 2 show the graphs of inverse Gaussian 

distributions with different values of [i and X. 

10 



Figure 1 Inverse Gaussian densities with |i=l for six values of X. 

3 -I 
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X 

Figure 2 Inverse Gaussian densities with 入=1 for four values of ji. 
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In figure 1, we see that for a fixed if X varies from 

0.2 to 30, the distribu七ion will change from a highly skewed 

one to a symmetrical one. This suggests that the shape of the 

distribution depends on (J) only, so 小 is said to be the shape 

parameter. 

One of the properties of inverse Gaussian distribution is 

that this family is closed under a change of scale, that is, if 

X has an inverse Gaussian distribution IG{[i,X) , then for any 

number c>0, cX is inverse Gaussian distributed with parameters 

c\i and cX. 

However, the property of reproducibility does not hold 
with respect to a change of location. This makes it desirable 
to introduce an additional threshold parameter for the family 
of inverse Gaussian distributions. If there is a threshold 

value 0, a three-parameter inverse Gaussian distribution can be 

defined by assuming that ( X - Q ) , and the density function 

of X is then given by 

r v f 2 「 x f ( x - e ) - u l 2 _ 

急 “ H ^ ^ J - — ， 卞 > o ) > 。 ， " e 

where the mean is now equal to 0+fi, while <|) is still the shape 

parameter. 
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Another useful property of inverse Gaussian distribution 

is its additive property. For a linear combination , ct>0 

X. 
where X �/GOt,•入），It follows that if = ̂  is a constant for m ci 

all i, then ！^不〜犯^^从，汉！^从) 2). In particular, we can 
i i i 

obtain the sampling distribution of X from this, namely 

3.3 Estimation of parameters 

For a random sample Xx, X2,-", Xn from an inverse Gaussian 

population IG{\i,X) , we have the likelihood function 

thus 

n n 3 亡 
logZ 二7log入—7log(27i) --ZJogX, - XZj 0m2v • (3.4) 

L JL L l=1 j=i X'j 

Differentiate (3.4) with respect to [i and Xf and set it to 

zero, we have 

幽 二 一 （ ％ + 4 、 = 0 (3 .5) 
d\i \ [i ； 
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d\ogL =n__y[x{-^)2 二0 (3.6) 
dl 2X ^ 2//2jc,. 

Solve (3.5) , we get \x=:=L-L=x. Substitute this result into 

(3 .6) , we then obtain 

j, 2^yt2-2Ajc.+jl2 l^xf -2XX.+X2 
~ = / A _ 9 一 Z J 一 2 

\ n^t 2|a2xf n l=1 x xf. 

1 xf 2 0 3c 2 1 亡 1 _ 一〉 ~~— — _ + _— = — 一 一 _j_——> — 
—n~^\x2 x xi J x2 x n f=1 xi 
= — 一 

W ,=i xi X 

Therefore, the maximuni likelihood estimators of ja and 1/X are 

\x=X 

O 1 1 ( 3 , 7 ) 

X, n i=l X) XH X 

i .e . $= 一1 = y % LV« ,=i Kn l=i XJ 」 A 一 A/r 

_ i 令 — � i 亡 i T1 
where X = — 2^,Xi and XH = • 

n i=\ \_n i=i _ 

It is easily seen that {x ,XH ) is the minimal sufficient 

statistic for (|i，X) , and because the inverse Gaussian family is 

an exponential family, {x,XH) is complete. As the statistic 

(Z^-.Zl1 /^ “1/^)) i s a one-to-one function of {x,XH) f it is also 
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a complete sufficient statistic for (\i9X) • Also, it can be shown 

that 

v 7 \n l=1 ) n ,=1 n i=1 

From Johnson & Kotz (1970), we have the first negative moment 

of the inverse Gaussian distribution IG{\i,X) equal to 

Moreover, from section 3.2, we know that X�/G(|i，《X), hence we 

have 

丄 

VXy [i nX 

and 

替七|(*-勒
=
织* - i 

l^fl 1 1 l] 
= — y I — + — — — — — zz — 7_\ 
一 n X nk) n i=1 \ nk J 

fn-Al 
\ n JX 

Therefore, the uniform minimum variance unbiased estimators 

- 1 "( 1 1) 
(UMVUEs) of [i and l A are X and jJ r e sP e c t i v e l y' 
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To find the moment estimators, we consider 

n 

n ,=i 人 

and solve this system of equations, we will get 

[i=X 

i n^-^y (3-8) 

nX3 

i e $ = — —rr = (sample coefficient of variation)"2 
• • Z U - ^ ) 

To compare the maximum likelihood estimators with the 

moment estimators, we must consider their variances; some of 

the results are shown below. 

Because p, is the same as p, 

( i i ) = p ) = 又 ) 二 \ • 

For n large, 

n «2(()2 +(j) 

and 

« 彻($) « 辦
2
 + 19小• 
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The variance of $ is smaller than that of showing that 

the maximum likelihood estimator of ([) is more efficient than 

the moment estimator. This is of no surprise because 七 he 

maximum likelihood estimator (A，$) is a complete sufficient 

statistic for (屮小)• 

When \x is known, if we change the scale, we may take [i as 

one, and we only have to estimate a single parameter <t> of a 

standard Wald distribution. The maximum likelihood estimator of 

(|) is 

- „ ( \ T1 
- Z -2 (3.9) 
in i=A XJ _ 

and the moment estimator is 

^ = ^ . (3.10) 
tix-x) 2 
i=\ 

For n large, 

n Var{^') « 2小2 

and 

We note that the efficiency of the moment estimator is 
also less than that of the maximum likelihood estimator. 

17 



However, both estimators have smaller variances than those when 

[X is unknown. 

Since 小 is exactly equal to X when |i is equal to one, and 

we are also interested in the variance of l/X, it is of interest 

to look at the variances of the estimators of ([T1 • In fact, 
r n 2 

Var y, = IT". 

and 

f H if 2 15) 
ŷ nx： = ~ TT+TT • 

In case \x is known but not equal to one, the results are 

different merely by a scale multiple. 

Estimators of [i and X and their asymptotic variances were 

given in Patel (1965) for both the one-sided and two-sided 

truncated inverse Gaussian distributions. Johnson and Kotz 

(1970) well summarized his results. 
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3.4 Applications 

Inverse Gaussian distribution is usually used in studying 

reliability and life testing problems in lifetime models. Being 

the first passage time distribution for the Wiener process, it 

is particularly appropriate for failure or reaction time data 

analysis• 

Besides, the inverse Gaussian distribution has been used 
in a wide range of applications. Most of these applications are 
based on the idea of first passage time for an underlying 
process. In chapter 10 of Chhikara & Folks (1989), there are 
examples from many diverse fields such as cardiology, 
hydrology, demography, linguistics, employment service, labour 
disputes, and finance. Though it seems farfetched to postulate 
the existence of an underlying Brownian motion in studying 
human behavior, this is not at all unreasonable. The use of the 
inverse Gaussian distribution upon an underlying Wiener process 
is not critical; we may use inverse Gaussian distributions when 
it is justified by the goodness-of-fit test. This situation is 
similar to that of the normal distribution. Normal 
distributions were primarily.used to describe a law of errors, 
but gradually it became acceptable to use them to describe all 

sorts of data. 
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When dealing with skewed distributions, we usually resort 
to a transformation, such as Box-Cox transformation, to 
normalize the data, but it is sometimes difficult to interpret 
the result based on the transformed variable. Therefore, if 
possible, it is desirable to analyze data using statistical 
methods based on skewed distributions. An inverse Gaussian 
distribution can represent a highly skewed to an almost normal 
distribution; so it is one of the choices. Moreover, a 
statistical model involving inverse Gaussian distributions 
allows for quite a wide range of statistical methods such as 

the t-test for ja, the chi-square test for X and analysis of 

residuals. This is also similar to the case of the normal 

distribution. 
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4• Iterative procedures and Derivation of the GLIM 4 macros 

4.1 Generalized linear models with varying dispersions 

In a classical linear model, we usually assume that the 
response variables Yl,Y2,...,Yn are independently and normally 

distributed with means [i = (m，]̂ ，."，}!”）and constant variance o2, 

and that the systematic part of the model is given by 

卩 = x p 

where X is the design matrix and P is the vector of unknown 

parameters. This model relies on strong assumptions of 

independence and constant variance of the errors, but, in many 

cases, they are not easily fulfilled. 

Generalized linear models (Nelder & Wedderburn, 1972) are 
an extension of the classical linear models. The generalization 
allows analysis on non-normal data such as probit analysis and 
contingency tables. A generalized linear model has three 
components: 

1. The random component: The response variables Yl,Y2,,..,Yn are 

assumed to share the same distribution from the exponential 

family with means ji. 
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2 b The systematic component: the covariates t
l9
t

2
,...,t

p
 (the 

column vectors in the design matrix X) and the unknown 

parameters 卩丄，…礼(in (3) produce a linear predictor ri 

given by 

Tl = Xp = Zt;Py • 
；=1 

3. The link function between the random and systematic 

components: it is a monotonic dif ferentiable function g(-) 

that relates the ith component T)f of the linear predictor r\ 

to the expected value of a datum, namely, 

When we consider the ordinary linear models with normal 

errors, the random component specifies K �圳 卩 乂 ） a n d the link 

function will be an identity function. Thus the means are 

equivalent to the linear predictors, so t h a t��A^ x / P， 2 ) where 

(x”x2，…，x„) = JT. 

In general, for a generalized linear model with varying 

dispersions, we assume that each component of Y has a 

distribution in the exponential family, taking the form 

fr{y\ e，4>) = +c{y^)}, 
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for some specific functions b, c and d (McCullagh and Nelder, 

1989) • In this specification, 0 is called the canonical 

parameter, (|) is called the dispersion parameter, and b[Q) is 

called the cumulant function. The function is generally of 

the form 4小)=小/狄'where ^ is a known prior weight that varies 

from observation to observation. If c|) is unknown, c will have 

the form 

c{y^)=-—〜(妁 一 ̂ -H" 1)+iy) 

for some functions a, s and t. Thus, the overall log-likelihood 

function becomes 

It follows from differentiating (4.1) that the means and 

variances are given by E{y) = \ii = % ) and Var(y.) = w"^^©,.) (Smyth, 

1989)• Barndorff-Nielsen and Blaesild (1983) showed that a must 

be the inverse of b , and hence 0丨• = =如 , )• 

Equation (4.1) may be considered as the log-likelihood for 

a generalized linear model with weights and dispersion 

parameter 1 if we hold all fixed. We call this the mean 

submodel. 

23 



On the other hand, if we assume all are fixed and let 

the deviance components be 式 ( 少 , ， 队 ) = 一 — , the log-

likelihood becomes 

This has the form of a generalized linear model with 

observations dt and canonical parameters ‘= 一化1
' and we call it 

the dispersion submodel. This dispersion submodel itself has a 

dispersion parameter 2 and weight 1. Differentiating (4.2), we 

may get E{d)=bi and Var[d) = Iw^'^w^). 

The fact that the mean and dispersion of a generalized 

linear model are orthogonal allows us to estimate the unknown 

parameters (3 and y one at a time. The Fisher scoring algorithm 

for the simultaneous maximum likelihood estimation of P and Y 

then reduces to two separate algorithms for (3 and y. 

The scoring iteration in the mean submodel can be written 

as a weighted least squares calculation 

= ,y)={rwxyx rwv 

where X is the matrix of covariates affecting the mean, W is 

the weight (diagonal) matrix 

妒二 diag(Mm)2 厂傲(幻)
_1 (4.3) 
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and r is the working vector with components 

For the dispersion submodel, we assume the link function 

/(.) to be 

Then the scoring iteration would be given by 

m ' H z ' F z r 1 ” ” 

where Z is the matrix of covariates affecting the dispersion, 

V is the weight matrix 

厂：diag(/(5,)2Far(式))_1 (4.4) 

and s is the working vector with components 

Smyth (1989) suggested several iteration schemes and 

studied their convergence rates. 
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4.2 Mean and dispersion models for inverse Gaussian 
distribution 

The log-likelihood function of a random sample from 

/(̂ (…’入,-)is given by 

+ + + -|log(279；,3) • (4.5) 
i L 卩,2yJ 2 2 _ 

We consider this as the likelihood of "the mean submodel and 
compare this to (4.1) . Then we have wt=\, 

e, = — K f 

4-) = -loĝ . = -logf̂ -̂ )：1)] = -log(-̂ .) 

and 
I 

If we consider (4.5) as the likelihood of the dispersion 
submodel, we have the deviance components 

26 



, / a . 丄 + 丄 ] a, — 2 一 + ^ — 2 '\2\if [i, 2yJ [i.y, 

which are distributed as 小乂/ according to a property of the 

inverse Gaussian distributions. (Smyth, 1989)• 

Suppose ^�/C^Xi'^Zi'Y), so that ^ =Xi'P and X^z.^y. 

Obviously, the link function for the mean submodel is the 

identity link; It can also be easily shown that 

and so the link function for the dispersion submodel is the 
reciprocal link. As we show here, the choice of the link 
function depends on the model we use. These two link functions 
are used because they suit our simulation study in the next 
section. McCullagh and Nelder (1989) listed some canonical link 
functions and other characteristics of some common univariate 
distributions in the exponential family. 

Rewriting (4.5), we have 

^ 2L J 
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The first and the second derivatives with respect to P and y 

are given below: 

U —d�(_ yj t 1 O 

令(l 一办令‘!?̂^ 

- H ( p % ) 3 r 

-U--^) + I 

” if O 
M 八 ’ Y h ) 

d2i 亡 fj_J -m ^ 

z=i v M-, y 

1 (P'x,r r 
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n 一 J 

1=1丄〜 

—夕一 z»zi 
一 ― 2 ( 丫 、 ) 2 

W =執 ( P� ) 3 / " . 

Then we have the estimated expected information matrix 

“d2l d2l “ 
I = ~ B d2i a2/ 

.dydp dydf. 
'X'WX 0 _ 

=_ 0 TVZ_ 

where 

W 二 diag(V/W) = diag(M^))"1 

and 

厂 二 diag(l/2g) • 

This is equivalent to equation (4.3) and (4.4) since 

and 
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To obtain the maximum likelihood estimates for the mean 

and dispersion, we should first fit an unweighted regression to 

give an initial estimate p0, and use P° (or equivalently the 

predicted values � ） t o obtain the estimate y°, and we then use 

the scoring iterations F, and F2 alternatively until the 

sequence converges. 

4.3 Devising the GLIM 4 macros 

Based on the mean and dispersion submodels described in 

the last section, we modify Aitkin's (1987) macro to fit our 

model of a generalized linear model with varying dispersions 

under the inverse Gaussian distribution in GLIM 4. 

First, we must change the macro mean. The error should be 

the inverse Gaussian (denoted by i in GLIM 4), the link is 

still the identity (denoted by i in GLIM 4), and the initial 

value of the linear predictors is 1. We also have to calculate 

the deviances and the values of t(.) which are used in the next 

macro var. 
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The macro var uses the deviances as the responses 

(specified by yvariate command in GLIM 4) . The link is now 

reciprocal (denoted by r) instead of log, the maximum number of 

iteration cycles has been increased to 25, and the overall log-

likelihood value is calculated by equation (4.1). 

The rest of the changes control the stopping criteria of 

the iterations, so that iterations stop when successive log-

likelihood values differ • by less than�0.00001 or when 20 

iterations have been performed. 

A listing of the macros can be found in Appendix A. 

4.4 Model fitting 

Before everything begins, we must first input the macros 
and the data through a series of GLIM commands. It seems rather 
awkward, especially when specifying the design matrix, to type 
the whole series of commands every time, so we suggest to put 
these commands into a separate file, and import it into GLIM 
using the $input command. Our input file is given in Appendix 
B. 
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Moreover, whenever we start fitting, we also have to 
specify the response variables and the factors in the mean and 
dispersion model. This can be done by the following commands: 

$Macro MODM A+B+C+D+E+F+G+H $Endmacro 

$Macro MODV A+B+C+D+E+F+G+H $Endmacro 

$USE VMOD Y$ 

Knowing how to use the macros, we are then interested in 
the fitting procedure. It can be summarized into the following 

three steps: 
1. fit a saturated model for the mean; 
2. fit an adequate model for the dispersion using backward 

elimination; 
3. with the dispersion model found in step 2, fit an adequate 

model for the mean. 
We can use either the Wald's test or the likelihood ratio test 
as the selection criteria for the backward elimination. 

For the adequate fitted model, all the dispersion factors 

will be called the control factors and those significant mean 

factors that are not control factors will be called the signal 

factors. 
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To minimize the dispersion while holding the mean at a 
preassigned value, we may set each control factor at the level 
that gives the minimum dispersion and adjust the levels of the 
highly significant signals so that the mean characteristic is 
on target. All other factors are set at levels determined by 
cost and/or convenience. 
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5. Simulation Study 

Unfortunately, there are not enough practical examples to 
verify our macros. The only possible way out is to carry out a 
simulation study to examine the effectiveness of the macros. 
First, we see how random variates from the inverse Gaussian 
distribution are generated. 

5,1 Generating random variates from the inverse Gaussian 

distribution 

Michael, Schucany & Haas (1976) gave a method of 
generating random variates using a transformation with multiple 
roots. Their approach is to find a transformation of the random 
variable of interest that follows a nice distribution, and then 
to use the probabilities associated with the multiple roots of 
the transformation to choose one root for the random 
observation. Their method was successfully applied to the 
inverse Gaussian distribution. 

For JT �/G(|a’X), the transformed variable 

34 



is distributed as the chi-square with one degree of freedom 
(Shuster, 1968) . There are two roots for the equation (5.1), 
which are 

^ u2 
^ = -^(IK +\XY-YJAXIXY + [I 2Y 2) a n d 、：又. 

The conditional probability with which the smaller root XX 

should be selected is ""“^r, and therefore X2 should be 

、 X 

selected with probability l—- The overall procedure for 

generating inverse Gaussian variates is as follows: 

1. Generate random numbers from the chi-square distribution 

with one degree of freedom. 
2. For each random value in step 1, compute the smaller root Xx 

given above• 

3. Generate uniform(0/1) random variates U. 

4. if U , the root is chosen for the random 

observation from the inverse Gaussian distribution; 

otherwise the larger root X2 is chosen. 

With this algorithm, we may generate the observations for our 

simulation model that is described in details in the next 

section. 
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5.2 Simulation model 

In our simulation, a 28̂ 4 fractional factorial design is 

employed. There are eight factors Ar B, Cf Dr Ef Ff Gr H. Each 

of the factors has two levels. The design matrix is shown in 
Table 5.1. 

Table 5.1 The model matrix with the proposed -means and dispersions 

A B C D E F G H \x X 
0 0 0 0 0 0 0 0 35 400 
! 0 0 0 1 1 1 0 55 400 
0 1 0 0 1 1 0 1 65 400 
-I -i 0 0 0 0 1 1 85 400 
0 0 1 0 1 0 1 1 55 400 
1 o 1 0 0 1 0 1 35 400 
0 1 1 0 0 1 1 0 85 400 
1
 1 0 1 0 0 0 65 400 
0 0 0 1 0 1 1 1 35 200 
1 o 0 1 1 0 0 1 15 200 
0 1 0 1 1 0 1 0 65 200 
1 1 0 1 0 1 0 0 45 200 
0 0 1 1 1 1 0 0 15 200 
1
 0 1 1 0 0 1 0 35 200 
0 -J 1 1 0 0 0 1 45 200 
1 1 1 1 1 1 1 1 65 200 
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For each combination, observations are generated from 

• We arbitrarily choose 
[x=35 + 305-20Z) + 20G and \=400-200D, 

where B, D and G are equal to 0 at low level and 1 at high 

level. The values of the factor, levels can take any value other 

than 0 and but in GLIM, these have to be greater than 0. 

This is why the values of the factors are set to 1 and 2 in the 

input file given in Appendix B. The means … a n d dispersion 

parameters \ for the sixteen combinations can be easily 

calculated and are given in Table 5.1. 

Using the procedure mentioned in section 5.1, we generate 
sixty-four replicates for each combination, and repeat using 
different random seeds to generate one hundred different sets 
of data. For each set of data, we fit adequate models with the 
first four replicates as the responses for our macros. Then we 
use the first eight replicates, first sixteen replicates, first 
thirty-two replicates, and finally use all the sixty-four 
replicates as our responses. The purpose of using different 
numbers of replicates is to investigate the effectiveness of 
the macros under different conditions. 

As our aim is to see how well our macros work, we will 

look at the number of times that the designated models are 

found as the adequate models by using the macros. 
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5.3 Results 

In the simulation study, we observed that all the fitted 

mean models contain factors B, D and G no matter how many 

replicates we use, while some of the dispersion models do not 

involve the factor D at all. The latter cases occur more often 

when fewer replicates are used. Moreover, most of these cases 

contain only the constant term, showing that the dispersion 

model is not necessary and only a single dispersion parameter 

is to be estimated. 

The simulation results are summarized in Table 5.2. We see 
that if more observations are used in each combination, more 
designated models can be found. However, when the number of 
observations becomes large, doubling the sample size does not 
effectively increase the proportion that the designated models 

are found. 
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Table 5.2 

Number of Relative frequency Relative frequency of 
replicates of finding the having dispersion 
in each designated models models which do not 

combination involve factor D 
4 0.21 0.45 
8 0.49 0.24 

16 0.56 0.02 

32 0.64 0-00 
64 0.68 ’ 0.00 

In fact, using only four replicates in each treatment 
combination may cause errors sometimes (21 cases reported)• As 
reported in the GLIM output, these errors are probably due to 
inappropriate models.工f we increase the number of replicates, 
no error is reported then. This indicates that the macros do 
not work very well if too few observations are given. 

When sixty-four replicates were used, we have sixty-eight 
cases in which designated models are obtained. Using these 
sixty-eight cases, we calculate the sample mean square errors 

( M S E S) for the estimates FI and The estimates for the eight 

different combinations are calculated from the following 

formulae: 
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$二 又/fi, 

1
 68

 2 

and the sample MSEs are then calculated using MSS(fi) = — 

1 68 

and = • T h e results are shown in table 5.3. 
68 i 

Table 5.3 The estimated MSEs of the estimates 

B I D 4 G ! M ！ X ！ (H ! M S E ( F L ) J M S E ( $ ) 
I 1 I 1 ! j j ： 

0 I 0 1 0 I 35 j 400 j 11.43 j 0.617022 j 0.547316 
I “I 一."•••4•".••�• i. i.•••••" 1•••".•••••••—“— 

0 I � j 1 i 55 i 400 丨 7.27 丨 1.010249 丨 0.210950 
.............！„...1.....1"…“.....’ ••I-..4 I 1 
1 i 0 I 0 ! 65 i 400 j 6.15 j 1.162774 | 0.157883 

••…“i....,•…”. " "I * !*• I-"" ••• 
1 I 0 I 1 I 85 j 400 ! 4.71 j 1.368432 | 0.088838 
i 1 i ！ i , — I 

o 丨 1 丨 0 ！ 15 丨 200 I 13,33 f 0.113159 j 0.713469 
j I....."...J »l I ！ •••••••••• .."•;;••••—."• 

0 ！ i [ i j 35 I 200 I 5.71 ！ 0.930615 | 0.167385 
...i L 柳丨i i••• --4 •••―…!• — • - h " 
1 j 1 丨 0 丨 45 丨 200 丨 4.44 | 1.150622 丨 0.076750 
••……| I U. ”. "i I ……十 
1 ！ 1 r 1 | 65 1 200 ！ 3.08 | 1.780510 丨 0.040124 

： ： ； ： I - ： 

• ： ： ] • —I-

The variances of the itiaximuia likelihood estimators of M-

and (|) are given by equation (3.9) and (3.10) . Their values are 

given in Table 5.4. 
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Table 5.4 The variances of estimates of \i and 小 

—I ！ —！ 5 ： [ 
B i D i G i M I x I 小 I V a r ( A ) | V a r ) 

j j 丨 i j I I 
0 I 0 ] 0 j 3 5 j 4 0 0 丨 1 1 . 4 3 | 1 . 6 7 4 8 0 5 | 4 . 2 6 0 2 0 4 

..j 1.........J•—… j- !"• 
0 I 0 丨 1 丨 5 5 丨 4 0 0 丨 7 . 2 7 丨 6 . 4 9 9 0 2 3 丨 1 . 7 6 6 5 2 9 

j.......••…L•…•"“I- j i — -I- * I— 
1 I 0 i 0 丨 65 丨 400 丨 6.15 j 10.72754 丨 1.279586 

！ i i j "4 j I 
1 I 0 ! 1 i 85 j 400 I 4.71 i 23.98926 丨 0.765571 
丨丨丨••丨j I 1 !• i -I * ！ 

o ！ 1 j 0 I 15 I 200 i 13.33 I 0.263672 j 5.763889 
I. .4" 1- j h — — f — 

0 j 1 I 1 { 3 5 ] 2 0 0 丨 5 . 7 1 i 3 . 3 4 9 6 0 9 丨 1 . 1 0 9 6 9 4 

…… .1 1 i I--： j * 
1 丨 1 丨•丨 45 丨 200 丨.4.44 丨 7.119141 丨 0.686728 

L“..•..."L..,. 一.!.”•.•...…“i .......i....... 4 ” "•.““•"•! 
1 I 1 j 1 丨 65 丨 2 0 0 1 3 . 0 8 I 2 1 . 4 5 5 0 8 ！ 0 . 3 4 3 9 3 5 

• • ； J • 5 • ： [ ： j ；
 ; 

There are large differences between the sample MSEs and 
the variances of the same treatment combination. Probably, this 
is because we ignore many cases in which other models than 
those designated are found. In these cases/ the difference 
between the estimates and the true parameters must be very 
large, and so, if we include them in the calculations, the 
sample MSEs may then be close to the variances shown in Table 

5 . 4 . 

Table 5.5 shows the GLIM outputs of one case in which the 

designated models are obtained. We notice that the standard 

errors of the estimates decrease as the number of observations 
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increase. This is not surprising at all because the accuracy of 

the estimation always depends on the sample size. 

Table 5.5 GLIM output of final fit for one case 

4 replicates 

deviance = 64.000 at cycle 5 

residual df = 60 

Mean model 
estimate s.e. parameter 

1 36.35 3.367 1 

2 27.24 5.468 B(2) 

3 -21.00 3.608 D(2) 

4 20.06 4.634 G(2) 

scale parameter 1.067 

~ model changed 

scaled deviance = 72.238 at cycle 6 

residual df = 62 

Variance model 
estimate s.e. parameter 

1 436.4 109.1 1 

2 -280.0 115.9 D(2) 

scale parameter 2.000 

Iteration number 4.，deviance is 536.610 

8 replicates 

deviance = 128.00 at cycle 5 

residual df= 124 

Mean model 
estimate s.e. parameter 

1 34.12 2.271 1 

2 28.90 3.634 B(2) 

3 -19.54 2.387 D(2) 

4 19.86 2.915 G(2) 

scale parameter 1.032 

~ model changed 

scaled deviance = 156.00 at cycle 6 

residual df= 126 
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Variance model 
estimate s.e. parameter 

1 384.3 67.94 1 

2 -184.4 76.57 D(2) 

scale parameter 2.000 

Iteration number 4.，deviance is 1058.39 

16 replicates 

deviance = 256.00 at cycle 4 

residual df = 252 

Mean model 
estimate s.e. parameter 

1 33.90 1.660 1 、 

2 32.43 2.753 B(2)‘ 

3 -18.33 1.743 D(2) 

4 19.11 2.011 G(2) 

scale parameter 1.016 

—model changed 

scaled deviance = 299.19 at cycle 6 

residual df= 254 

Variance model 
estimate s.e. parameter 

1 349.5 43.69 1 

2 -121.9 52.13 D(2) 

scale parameter 2.000 

Iteration number 4.，deviance is 2144.79 

32 replicates 

deviance = 512.00 at cycle 4 

residual df = 508 

Mean model 
estimate s.e. parameter 

1 35.88 1.282 1 

2 29.05 1.859 B(2) 

3 -20.10 1.332 D(2) 

4 17.98 1.419 G(2) 

scale parameter 1.008 

—model changed 

scaled deviance = 652.81 at cycle 6 

residual df = 510 
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Variance model 
estimate s.e. parameter 

1 323.8 28.58 1 

2 -104.9 34.51 D(2) 

scale parameter 2.000 

Iteration number 4.，deviance is 4299.31 

64 replicates 

deviance = 1024.0 at cycle 4 

residual df = 1020 

Mean model 
estimate s.e. parameter 、 

1 35.08 0.8127 1 

2 30.22 1.347 B(2) 

3 -19.34 0.8622 D(2) 

4 19.09 1.043 G(2) 

scale parameter 1.004 

—model changed 

scaled deviance = 1395.7 at cycle 6 

residual df = 1022 

Variance model 
estimate s.e. parameter 

1 394.4 24.60 1 

2 -197.2 27.50 D(2) 

scale parameter 2.000 

Iteration number 3.，deviance is 8591.38 
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5.4 Discussion 

It is impractical to have many observations in a Taguchi 
experiment. Generally, we may have not more than 10 replicates 
for each treatment combination. Therefore, based on our 
simulation results, our macros do not seem to perform very 
well. However, in the simulation above, only one design and a 

specific model /Glia,.,̂ ) are being considered. This is definitely 

not enough.- We should do more simulations and consider more 

general conditions; for example, use other fractional factorial 

designs, choose other specifications for parameters [i and Xf or 

consider other link functions. In the last situation, we should 

change our macros correspondingly. 

Although the macros do not perform satisfactorily, they do 
provide a way to analyze Taguchi's experiments with inverse 

Gaussian distribution. 
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Appendix A GLIM 4 macros for fitting models 

j 

！ This macro fits the mean regression model with weights lamba 

！ 
$macro mean 

$yvar %1 $error i Slink i $weight ww SofFset ofsm 

$ca%lp=l $ 

$fit #modm $ 
Sea di=(%yv-%fV)**2/%fv**2/%yv : t=2*%pi*%yv**3 $ 

Sendmac 
I 
！ This macro fits the dispersion model 、 
j 

$macro var 

Syvar di $error g $scale 2 $weight $link r $offset ofsv 

$ca%lp=l$ 

$cycle 25 $ 

$fit #modv$ 

$ca %d=%cu(di/%^+%log(%fv*t))$ 

$caww=l/%fV$ 

Sendmac 

I 
！ This is an initialising macro 

！ 
$macro setup 
$ca %k=20 : %n=%m=%k-l : %e=l 

$ca ofsm=0 : ofsv=0 : ww=l : %c=0$ 

Sendmac 

！ This macro drives the model fitting 

$macro driver 

Sarg mean %1$ 

$use mean$ 

$use var$ 〜，小 
$Ca%eKl-%le((%c-%d)/%d，.00001)*%ge((%c-%d)/%d，-.00001)):%n=%n-l..%c=%d$ 

$ca %e=%e*%gt(%n,0) $ 

$ca %u=%m-%n $output %poc $ 

$pr 'iteration number' *-l %u,，deviance is' *6 %d $ 

$output $ 

Sendmac 
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！ 

！ This is the macro you actually use, with argument the response variable 

！ 

Smacro vmod 

$arg driver %1$ 

$use setups 

Soutput 

$ca%e=%gt(%m,0)S 

$ca %u=%m-%n S 

$while %e driver S 

Soutput %poc $ 

$arg mean %1$ 

$use mean$ 

$pr 'Mean model'$d e$ 

$use var$ ， 
$ca%u=%u+l$ 

$pr 'Variance model' Sd e$ 

$print 'Iteration number' *-l %u ‘，deviance is 書 *6 %d$ 

Soutput %poc 

$endmac 

！ 
$return 
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Appendix B File for data input 

！ 

！ This file is for data input. The data are stored in 'OBS.DAT' 
i The replicates for a combination appear in a cycle of 16. 
！ If less data are to be used, ignore the commands after appropriate remark. 
！ 
$unit 16 
$data a b c d e f g h $ 
$read 
11111111 
2 1112221, 
12 1 1 2 2 1 2 、 

2 2 1 1 1 1 2 2 
1 1 2 12 1 2 2 
2 12 1 1 2 12 
1 2 2 1 1 2 2 1 
2 2 2 1 2 1 1 1 
1 1 1 2 1 2 2 2 
2 1 1 2 2 1 1 2 
12 1 2 2 1 2 1 
22121211 
112222 11 
2 1 2 2 1 1 2 1 
1 2 2 2 1 1 1 2 
22222222 

$factor a2b2c2d2e2f2g2h2$ 
$unit 64 

$data y 
$dinput 'obs.dat'$ 

$assa=a，a，a，a:b=b，b，b，b:c=c，c，c，c:d=d,d,d，d 

:�eAeAfKtt^g^&g^g'^h，11
，

11
，11 $ 

! use only 4 replicates up to here 
！ 
$data yl 
$din 'obs.dat'$ 
$assa=a,a:b=b,b:c=c,c:d=dJd:e=e,e:M/:g=g,g:h=hJh:yl===yl,yl$ 

$unit 128 
！ use only 8 replicates up to here 

！ 
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$data y2 
$din *obs.dat'$ 
$assa=a,a:b=b,b:c=c}c:d=d,d:e=e,e:f=f,f:g=g,g:h=h,h:yl=yl5y2$ 

$unit 256 
！ use only 16 replicates up to here 
I 
$data y3 

$din 'obs.dat'$ 
$assa=a,a:b=b,b:c=c,c:d=d,d:e=e,e:M,f:g=g5g:h=h,h:yl=yl,y3$ 

$unit 512 
！ use only 32 replicates up to here 

！ 
$data y4 

$din 'obs.dat'$ 、 
$assa=a,a:b=b5b:c=c}c:d=d3d:e=e,e:f=f?f:g=g,g:h=h,h:yl==yl,y4$ 

$unit 1024 
！ use all 64 replicates up to here 

！ 
$return 
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