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Abstract 

In this thesis we study the periodicity, boundedness, stability and oscillations 

of solutions to neutral functional differential equations with infinite delay or 

finite delay. The thesis is organized as follows. 

In Chapter 1, we introduce the basic theory of neutral functional differen-

tial equations with infinite delay for convenience of reference and applications. 

In Chapter 2, we discuss the existence of periodic solutions and bounded-

ness of solutions for a class of neutral functional differential equations with in-

finite delay. The problem is classical. Cartwright and Massera independently 

proved that if the solutions of two-dimensional periodic ordinary differen-

tial systems are uniformly bounded (U.B) and uniformly ultimately bounded 

(U.U.B), then there is an a;-periodic solution (1950). Yoshizawa advanced 

this result to systems of order n (1966). Hale and Lopes obtained the same 

result for systems of functional differential equations with finite delay (1973). 

Arino, Burton and Haddock extended it to retarded functional differential 

equations with infinite delay in 1985. We present a direct extension of the 

above result to the neutral equations with infinite delay which includes the 

retarded functional differential equatiions with infinite delay as a special case. 

In the meanwhile we also present two criterion theorems of U.B and U.U.B of 

solutions. 

iii 



Abstract iv 

In Chapter 3, we develop a theory on uniformly asymptotic stability in neu-

tral functional differential equations of nonlinear D-operator type with infinite 

delay. We first introduce new applicable definitions of weak-uniformly stable 

D-operator and weak-uniformly asymptotically stable D-operator which gen-

eralize corresponding definitions of Hale and Cruz in a nontrivial way. Some 

examples will be given to demonstrate that our new definitions are reasonable 

and that our results are applicable to a broad class of neutral equations which 

contains some "real" nonlinear D-operators with infinite delay such as 

roo 

D(t, i))=糊—/ B{uyilfi—u)du, 
Jo 

Using Liapunov functional or function and Razumikhin techniques, we estab-

lish three uniformly asymptotic stability (U.A.S) theorems, and apply these 

results to discuss U.A.S for some neutral Volterra integro-differential equations 

with infinite delay. 

In the last two chapters, we discuss oscillations and nonoscillations of first 

order linear neutral differential equations with variable coefficients and first 

order nonlinear neutral differential equations. We prove several existence the-

orems of nonoscillatory solutions to a class of linear and nonlinear neutral 

equations. We also obtain some -criterion theorems of oscillations of solutions 

to these equations. Our conditions for the linear neutral equations are "sharp" 

in the sense that when all the coefficients and delay arguments of the equations 

are constants, the conditions become both necessary and sufficient. 



Introduction 

In this thesis the qualitative behavior of solutions of a class of functional 

differential equations of neutral type will be discussed. Functional differen-

tial equations contain ordinary differential equations, differential difference 

equations and integro-differential equations as special cases and have many 

applications in physics, biological mathematics, automatic control, economics 

and so on [1, 2, 3]. The history of functional differential equations can be 

traced back to the time of Volterra who formulated some rather general dif-

ferential equations incorporating the past states of the system in his research 

on predator-prey models and viscoelasticity [4, 5, 1]. "In many applications 

，one assumes the system under consideration is governed by a principle of 

causality; that is, the future state of the system is independent of the past 

states and is determined solely by the present. If it is also assumed that the 

system is governed by an equation involving the state and rate of change of the 

state ,then generally, one is considering either ordinary or partial differential 

equations. However,under closer scrutiny, the principle of causality is often 

only a first approximation to the true situation and a more realistic model 

would include some of the past states of the system. Also, in some problems 

it is meaningless not to have dependence on the past" [2, pp. 1 . 

The theory of functional differential equations has been extensively devel-

V 
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oped for the last thirty years. Many excellent monographs have appeared, 

including the famous book "Theory of Functional Differential Equations" by 

Hale in 1977, which summed up the most important results obtained by then 

in the study of functional differential equations with finite delay. In the late 

seventies and eighties , fundamental theories of retarded functional differential 

equations and neutral functional differential equations with unbounded delay 

and infinite delay were also established [6, 7, 8, 11. 

In this thesis we will study the periodicity, boundedness, stability and os-

cillations of solutions to neutral functional differential equations with infinite 

delay or finite delay. The thesis will be organized as follows. In Chapter 1, we 

will introduce the basic theory of neutral functional differential equations with 

infinite delay for convenience of reference and applications. In Chapter 2, we 

will discuss the existence of periodic solutions and boundedness of solutions 

for a class of neutral functional differential equations with infinite delay. The 

problem is classical. Cartwright and Massera independently proved that if so-

lutions of two-dimensional periodic ordinary differential systems are uniformly 

bounded (U.B) and uniformly ultimately bounded (U.U.B), then there is an 

(j-periodic solution (1950) [12, 13]. Yoshizawa advanced this result to systems 

of order n (1966) [19]. Hale and-Lopes obtained the same result for systems 

of functional differential equations with finite delay (1973) [14]. Arino, Bur-

ton and Haddock extended it to the retarded functional differential equations 

with infinite delay in 1985 [15]. We will present a direct extension of the above 

result to the neutral equations with infinite delay which includes the retarded 

functional differential equations with infinite delay as a special case. In the 

meanwhile we will also present two criterion theorems of U.B and U.U.B of 
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solutions. In Chapter 3, we will develop a theory on uniformly asymptotic 

stability in neutral functional differential equations of nonlinear D-operator 

type with infinite delay. We will first introduce new applicable definitions of 

weak-uniformly stable D-operator and weak-uniformly asymptotically stable 

D-operator which generalize corresponding definitions of [1, 16] in a nontrival 

way. Some examples will be given to demonstrate that our new definitions are 

available and that our results are applicable to a broad class of neutral equa-

tions which contains some "real" nonlinear D-operators with infinite delay 

such as 

D{t, VO 二 糊 - r B{uyil/\—u)du. 
J 0 

Using Liapunov functional or function and Razumikhin techniques, we estab-

lish three uniformly asymptotic stability (U.A.S) theorems, and apply these 

results to discuss U.A.S for some neutral Volterra integro-differential equa-

tions with infinite delay. In the last two chapters, we discuss oscillations and 

nonoscillations of first order linear neutral differential equations with variable 

coefficients and first order nonlinear neutral differential equations. The os-

cillation theory of solutions of differential equations is one of the traditional 

trends in the qualitative theory of differential equations. “Its essence is to 

establish conditions for existence of oscillatory and nonoscillatory solutions, 

to study the laws of distribution of the zeros, to describe the relationship 

between the oscillatory and other basic properties of the solutions of various 

classes of differential equations,etc" [21, pp. 1]. In recent years, there are a 

number of investigations devoted to the oscillation theory of functional differ-

ential equations including retarded and neutral equations. A few monographs 

、 
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on this theory appeared [20, 21]. The study of oscillations for neutral differen-

tial equations started in 1980s. However, there are much less results on both 

oscillations and nonoscillations for neutral differential equations than for re-

tarded differential equations. In these two chapters, we prove several existence 

theorems of nonoscillatory solutions to a class of linear and nonlinear neutral 

equations. We also obtain some criterion theorems of oscillations of solutions 

to these equations. Our conditions for the linear neutral equations are "sharp" 

in the sense that when all the coefficients and delay arguments of the equations 

are constants, the conditions become both necessary and sufficient [17, 18. 



Chapter 1 

The Fundamental Theory of 
NFDEs with Infinite Delay 

1.1 Introduction 

In this chapter we will introduce the local theory of neutral functional differ-

ential equations {NFDEs) with infinite delay. This class of equations is of 

the form 

j D { t , X t ) = f{t,Xt) (1.1.1) 

where D and f are functional. (1.1.1) contains the retarded functional differ-

ential equations [FDEs) with infinite delay 

x{t) = f{t,xt) (1.1.2) 

as a special case which was discussed in many literatures [6, 7 . 

In order to deal with (1.1.2) on a large variety of phase spaces, Hale and 

Kato [6] and Schumacher [7] independently developed a general theory which 

has the feature of axiomatic approach一to list certain axioms for the phase 

space and the right-hand side functional of (1.1.2), such that any particular 

space and / ( t , ip) verify their axioms, automatically generate existence and 

1 



chapter 1 Fundamental Theory 2 

uniqueness of solutions. 

Following their clues, authors of [8, 9, 10，11] established the fundamental 

theory for (1.1.1) in recent years. 

For simplicity and convenience of applications, we will state the local the-

ory for a little simple case of (1.1.1) in the spirit of [11]. For details about the 

general case of (1.1.1), we refer to [8, 11. 

1.2 Phase spaces and NFDEs with infinite de-
lay 

Let I . I denote an IR几-norm, 5 be a real vector space either 

1. of continuous functions that map ( - o o , 0 ] to W with 0 = ^ if ^ ( s ) = 

妙(s) on (—oo, 0], or 

2. of measurable functions that map (—oo,0] to W with 0 = i ) (or 0 is 

equivalent to ip) in B if =功 (s ) almost everywhere on ( - o o , 0], and 

树0)=偷 

Let B be endowed with a norm | • \b such that B is complete with respect 

to I . Is. Thus B equipped with norm | • is a Banach space. We denote this 

space by {B, \ • \B) or simply by B, whenever no confusion can result. 

If X : (-00, A) b—^ < ^ < oo, then for any t e [0, A) define Xt by 

Xt{s) = x { t ^ s ) for s < 0. Throughout this chapter, suppose that phase space 

B satisfies the following conditions. 

Let 0 < a < A. If X : (—oo,A) i > W is given such that XA ^ B and 

X : [a, A) H ^ R"- is continuous, then Xt ^ B for all t G [a, A). 
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Definition 1.2.1 A space B defined above is said to be an admissible phase 

space if there exist a constant J > 0 and continuous functions K, M : [0, oo) i—^ 

0, oo) such that the following conditions hold. 

LetO <a < A. If x : ( - c o , A) \> W is defined on ( - o o , A) with Xa e B 

and X : [a, A) \——R几 being continuous, then for all t G [a, A), 

(Bi) xt G B, 

(B2) t e [a, A) I——oct e B is continuous with respect to | . \b, 

(B3) < K(t a)maLXa<s<t |3：(5)| M{t - a)\xa\B, 

(B4) 10(0)1 < JI(/>\b for all(t)^B. 

It is easy to verify that space B^ and space BU mentioned later are ad-

missible spaces. 

Throughout this chapter, we always assume that B is an admissible space; 

D, / ： [0, 00) X B I > R^ are continuous. 

Definition 1.2.2 A function x : (-00, to + 約 > ^ (力0 G [0, 00)，6 > 0) is 

said to be a solution 0/(1.1.1) through ^ [0, 00) x B on [to,to-\-6), if 

(i) 工 to = 

(Ji) X is continuous on [to, to + 6), 

(m) D(t, Xt) is continuous on [to, to + 6), 

{iv) (1.1.1) holds everywhere on [to, to + 6). 
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We denote a solution x of (1.1.1) through (to, 0) by x{to, <j)){t). 

According to this definition, to solve (1.1.1) with Xt̂  = 0 is equivalent to 

solve the following equation 

D(t, xt) 二 xt,) +「X s ) d s . (1.2.1) 

J to 

1.3 Local theory 

Define 

‘ Zto = (/>, z(t) is continuous � 

A (to, (/), 6 7) = : (-00, to + 到 H IT" : in t G [to, to + S] and > 
[ sup^o<t<to+<5k(^)—树0)1 ̂  7 - . 

We always assume that D(t, (j)) satisfies the following conditions: 

D(t, (j)) — D{t, ij) 二 [(KO)-树0)] + L(t, VO 

where (t, ^.ip) e [0,oo) x B x B, L : [0,oo) x B x B \> R is continuous and 

satisfies that for any (to, 0) G [0, oc) x B, there exist constants 6,7 > 0 and 

ki G [ 0 , 1 ) such that for any G A{to, (j), 6,7), 

(Ai) \L{t,xuyt)\ < ki - y(s ) . 

T h e o r e m 1.3.1 {Existence) For any (to,^) G [0, 00) x B, (1.1.1) has a so-

lution x[tQ, (f))(t). 

Proof. Define 

‘ z{t) is continuous,� 

E{6,j) = Iz: {-00,6]^ W: zls) = 0 for s < 0 > 
and \\z\\ < 7. , 

where > 0 are constants and \\z\\ = supo<5<5|2:(5)|. E{6,7) with the norm 

I . II is a Banach space. For any given e B, 0 is defined as 添to 二 办 and 
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0 � = 0 ( 0 ) for t > to. Let R = l + |/(力o, 0)1. Since phase space B is admissible 

and D and f are continuous, we can choose 6 and 7 sufficiently small so that 

( A I ) HOLDS, 1/0，xt)\ < R, AND FOR ALL t G [to, to + 6] AND ALL X G A(to, 6,7), 

1 — 
|D(TO + T, - 0 ) 1 < — 7 ^ 1 FOR T G [0,到 

and 

6R < —^7. 
— 2 ‘ 

Define two operators S and U on E{6,7) as follows 

J 0 for t < 0, 
= + + + + for t e [0, 

and 

( 丁 丁 � “ � — J 0 for t < 0 , 
( 八 ） 二 i /o'/(亡o + +么s)心 for t e [0, 

where z G E{8,7). Obviously, {Sz){t) and {Uz){t) are continuous in t G [0,6], 

and for t e [0, 6] we have 

rS - 1 - ki 
\{Uz){t)\ < y � | / ( t o + s, (l)to+s + Zs)\ds <6R< 

and 

\{Sz){t)\ = I - D(to +1, ^to+t + ^t) + ^(to +1, K+t) 

—D{to + t, ^to+t) + D(to, (p) + z{t)\ 

=—z{t) — L{to + t, ^to+t + Zu ^to+t) — D(to + t, ^to+t) 

+ D{to, 0) + z{t) 

< h\\z\\[o^t] + \D{to + t, ^to+t) - D{to,(l))\ 
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7 1 -A；! 

< ^17 + — y - 7 
l + A；! 

= 7. 
2 7 

Then \{Sz){t) + {Uz){t)\ < 7 for t G [0, 6]. This means that S+U is a mapping 

from E{6,7) into itself. For any z,w e E{6,7), we have 

< ki sup 12̂ (5) — w{s) 
0<s<t 

< h\\z -

Then 

\Sz — < ki\\z - t/； 11 [0,6] 

which implies that 5 is a contraction mapping on E{6,7). 

For any ti,t2 e [0, 6], we have 

\{Uz){ti) - {Uz){t2)\ = r f{to + S,^to+s + Zs)ds 
Jt2 

< R\ti -12 

which means that [7 is a completely continuous operator on E(S, 7) by Ascoli-

Arzela Theorem. Therefore S + U is an a-contraction mapping on 7). By 

Darbo's fixed point theorem [1, pp. 98], S + U has a fixed point z in 7) 

and x{t) = + z(t — to) is a solution of (1.1.1) on [亡0, to + 6] with Xt^ = (j). 

The proof is complete. 

T h e o r e m 1.3.2 (Uniqueness) Assume that for any {to, 4>) G [0, 00) x B, 

there exist > 0 and a function g : [to, to + 6] \> [0, oo) continuous at 

t = to with g{to) = 0 such that for any x,y G A{to, 0, <5,7)，we have 

[\f{s,Xs)- f{s,ys)]ds <g{t) sup � te[to,to + 6] 
J to to<S<t 
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Then (1.1.1) has a unique solution through (to, 4>)-

Proof. According to the argument of Theorem 1.3.1, it suffices to prove that 

5 + [/ has a unique fixed point on 丑 ( � 7 ) . Choose ^ > 0 sufficiently small so 

that 
( � z 1 - 知 sup g[s) < . 

to<s<to-\-6 ^ 

If y and z are both fixed points of S -\-U on E{6,7), then 

|(6'z)(t) - � I < ki sup — y(s)|, t G [0,到 
0<s<t 

and 

\{Uz){t) — {Uy){t)\ 二�[/(to + 5, ̂ to+s + Zs) — /(to + S,杏to+s + Vs)] ds 
JO 

1 — fcl 
< - " " “ sup \z{s) -y{s)l t G [0,5 . 

Z 0<s<t 

Then 

\z{t)~y{t)\ = \{Szm-{Sy){t)^{Uz){t)-{Uym\ 

< sup - y(s) 
Z 0<s<t 

1 + fci 
< sup \z{s) — 2/(5)1, t G [0,6 . 
— 2 0<s<6 

Then 
1 + All 

sup \z{s) - y{s)\ < — sup \z{s) y{s) 
0<s<S 乙 0<s<8 

which is a contradiction. The proof is complete. 

T h e o r e m 1.3.3 {Continuation) Assume that 

(i) /(t, (/)) is completely continuous, 
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(n) D(t, (/)) is uniformly continuous on any hounded set of [0, CXD) X B, 

(m) if z : (—oo, to + 5) I""""> W^ is continuous on [to, t � + 6), Zt^ = (f) ^ B and 

z{t)\ < 7 for all t e [to, to + )̂； then 

lim = 0 
k—oo 

where S, 7 > Q,tk,Sk G [TO,力0+外力fc 一 and Sk to + S as k — 00. 

Then each hounded solution x(to,0)(t) of (1.1.1) exists on [to, 0 0 ) . 

Proof. Let x{t) = x(to, with \x{t)\ < 7 for t > to be a bounded solution 

of (1.1.1). If x(t) exists on [to, to-h6) {0 < 6 < 00) and is noncontinuable, then 

x{t) does not exist. Otherwise, define x{to + 6) = limt^to+s and 

thus Xto+6 G B. By Theorem 1.3.1, x{t) can be continued beyond to + 6. By 

xAb < K{t - to) max |x(s)| + M(t - t G [力0,亡0 + 外 
t o < s < t 

Xt\B is bounded for all t e [to6) and then f{t,Xt) is bounded for all t G 

to, to + 6). Let \f{t,xt)\ < N for all t G [to, to + 6). Since limt^to+5 x{t) does 

not exist, we can find an £ > 0 and two sequences { 4 } and {sk} such that 

to < Sk < tk < to 6, Sk ̂  to + 6 k ^ 00, tk ^ to + S a,s k 00 and 

x{tk) - x(s/e)| > e. We have 

广 f(s,0Cs)ds = D{tk,xt,)- D{sk,Xs,) 
Jsk 

=D(tk, XtJ - D{tk, + D{tk, - D{sk, 

二 — x{sk)] + L{tk, xt,,xs,) + D(tk, - D(Sk， 

Then 

x(tk) - x(5fc)| < N\tk — + \L(tk,xt„x,,)\ + \D(tk,XsJ -
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Prom the above inequality, we have 

lim \x{tk) - x{sk)\ = 0 k^oo 
which is a contradiction. Hence each bounded solution of (1.1.1) exists on 

to, oo). The proof is complete. 

Definition 1.3.1 Solutions of {1.1.1) are B-uniformly hounded (B-U.B) if for 

each Bi > 0 there exists an N{Bi) > 0 such that [to > 0, \(p\b < > to 

imply that |:r(to, V^)(力)| < N[Bi). 

Define 
‘ z is continuous on [to,力o + 到 ,� 

Buito, 7) = I z : ( - 00 , to + I~^股""：zto e B, l̂ t̂o —小\b < M and > 

� \\z\\[to,to+6] < 7. . 
where (to, 0) e B,M,6 and 7 are any positive constants. 

T h e o r e m 1.3.4 (Continuous dependence) Assume that 

(z) conditions of Theorem 1.3.2 and Theorem 1.3.3 hold, 

[ii) solutions 0/(1.1.1) are B-U.B, 

(m) for each BmOo,小 ,A 7)，there exists a function O : [0, 6] \~> [0, 00) with 

lim̂ ^—0 0{u) = 0 such that for all z G Bm(力0, 7) we have 

\L{t,ZuZs)\ <0{t- 5), to < s < to + 

Then for any given e > 0 andb > 0，we can find a a > 0 so thatif\(l)-ip\B < cr, 

then 

x{t) — y(t)l < s for all t G [to, to + b 

where x{t) = x(to,(/))(t) and y{t) = y{to,推、are solutions 0/(1.1.1). 
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Proof. For any given {to, (j)) G [0, oo) x B and positive number M, let Bi = 

M + By (ii), all solutions of (1.1.1) with \i； - < M 

belong to BM{to,^,b,N{Bi)). If oc{tQ,推、G BMito,小,b, I ^ B i ) � , then for 

to <t<to + b, 

Xt B < Kit — to) m a x |x(s)| + M{t —力o)I工to Is 
t o < S < t 

< max K(u)N(Bi) + max M{u)Bi. 
—0<u<b 乂乂 K 丄7 0<w<6 \ ‘ 

By (i), for all x (to ,稱、G Bm(力 o, b, N{Bi)) and to<t< to + b, there exists 

a positive R such that 

\f{t,xt)\<R 

where Xt = 稱 + ^^ ^ < 0. Then for to < s < t < to + h and 

{to A, b,N{Bi)), we have 

rt 

J F{U,XU)DU = B(t,xt) - B(s,Xs) 

=D(t, Xt) - D{t, Xs) + D(t, Xs) - D{s, Xs) 

=a:⑴-:r(<s) + xu Xs) + D{t, x,) - B(s, Xs). 

Then 

ft 

x{t) - x(5)| < J \f{u, Xu)\du + |L(t, Xt, Xs)\ + \D{t, Xs) - D(S, Xs) 

< R\t — s| + 0{t - s) + |D(t, Xs) - D(S, Xs). 

By (i), (ii) and the above inequality, all solutions of (1.1.1) belonging to 

•̂ M(力0, b,N{Bi)) are uniformly bounded and equicontinuous on [to, to + b . 

By Ascoli-Arzela Theorem, the set of all solutions of (1.1.1) belonging to 

4>, b, N{Bi)) is a precompact set with respect to supremum norm 
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I • II [to,知+6]. If the conclusion of Theorem 1.3.4 is not true, there exist an £ � 0 , 

sequences {tk} C [to,力o + b] and {cpk} C B such that 

4>k —小\3 < i 

and 

where 

y � ( t ) = y { t o A k m and x(t) = x{to,(^){t) are solutions of (1.1.1). 

When k is sufficiently large, y � G Bm(亡o,么 b, N{Bi)). Without loss of gener-

ality, let y�k) (t) converge to a continuous function y�(t) uniformly on [to, to+b . 

Since 二 (k, y�(力o) 二 侧 . W e have 
2/⑷(力0) — <K0)| 二 I诊—树 0 ) 1 < — (P\b < p 

Then 

y⑶(to) — m 二 lim y⑷(to) — m = 0. 
k—oo 

Define y : (—oo,力o + h] i > R^ as follows ：从。=0 and y{t) 二 “ � ) � for 

to <t <to + b. Then y : ( - o o , to + h] i ^ W is continuous on [to, to + b] with 

yto 二（j) G B. On the other hand, we have 

D (t, y产)—D (to, = £ f ( 5 , ) ) ds, to<t<t, + b. 

which means that y is a solution of (1.1.1) through on [to, to + b]. By 

the uniqueness of solution with respect to initial data, y{t) 二 � for all 

to<t<to + b. Then 

" ⑷ ⑷ 1 ( 4 ) 丨 卡 ) ⑷ - 到 2 £ 

which is a contradiction. The proof is complete. 



Chapter 2 

Periodicity and B^-Boundedness 
in Neutral Systems of Nonlinear 
D'operator with Infinite Delay 

2.1 Introduction 

In this chapter we consider a neutral system of nonlinear D-operator with 

infinite delay 

= (2.1.1) 

where Xt 二 :r(t + (9), - o o < (9 < 0, and / : [0, oo) x 5 i ^ 股几 are continuous. 

We will discuss the existence of periodic solutions to (2.1.1), uniform 

boundedness {U.B) and uniform ultimate boundedness (U.U.B) of solutions 

to (2.1.1). � 

The problem is classical. Cartwright and Massera independently proved 

that if solutions of two-dimensional periodic ordinary differential systems are 

U.B and U.U.B, then there is an a;-periodic solution [12, 13]. Yoshizawa 

advanced that result to systems of order n [19]. Horn's theorem [23] enabled 

Hale and Lopes to obtain the same result for systems of functional differential 

12 
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equations with finite delay [14]. In 1985, Arino, Burton and Haddock extended 

that result to the retarded functional differential equations with infinite delay 

x{t) = f(t,xt) (2.1.2) 

where Xt = x{t + 0), - o o < 0 <0J :Rx X \> is a specific space of 

functions [15]. Recently fundamental theory for neutral functional differential 

equations with infinite delay has been established [8, 11]. It is natural to ask 

how we extend the result mentioned above for the retarded equations with 

infinite delay to the neutral equations with infinite delay. (2.1.1) is a more 

comprehensive class of equations than (2.1.2). When D{t,奶=ip{0), (2.1.1) 

becomes (2.1.2). When ] % 奶=g{t), (2.1.1) becomes 

D{t,xt) = h{t) (2.1.3) 

which contains some Volterra integral equations as its special cases. A pro-

totype of (2.1.1) is the equation [22 

- k � — 广 C{t, 5, x{s))ds\ = H(t, x{t)) + � G { t , 5, x{s))ds. (2.1.4) 
dt I J-OO � J-oo 

The investigators of [22] studied the existence of periodic solutions to (2.1.4) 

by going through the limiting equations with finite delay of (2.1.4) to avoid 

the following two technical difficulties : 

(i) an appropriate phase space should be chosen, 

(ii) the uniform boundedness and uniform ultimate boundedness need to be 

verified, 

because even for retarded equations with infinite delay, the choice of an appro-

priate phase space is not a trivial task, and moreover little has been done for 
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the boundedness of solutions of neutral equations with infinite delay, especially 

for neutral equations of nonlinear D-operator with infinite delay. 

In this chapter we will choose space B^ as the phase space and present a 

direct extension of the main result of [15] from retarded equation (2.1.2) to 

neutral equation (2.1.1), while we will provide two criterion theorems to verify 

5^-uniform boundedness and 5^-uniform ultimate boundedness of solutions 

to (2.1.1). 

As compared with (2.1.2), not only solutions of (2.1.1) are no longer dif-

ferentiable, but also the qualitative behavior of solutions of (2.1.1) depend 

heavily upon that of the solutions of the associated functional difference equa-

tion (2.1.3). Therefore we need to place some restrictions on operator D�t, 

before we can study the boundedness and periodicity of solutions to (2.1.1). 

We will introduce two classes of nonlinear D-operators called “B[ uniformly 

stable D-operator” and "^^-uniformly asymptotically stable D-operator". 

In section 2, besides the two classes of nonlinear D-operators mentioned 

above we introduce the definitions of 5^-uiiiform boundedness and 哗uniform 

ultimate boundedness for solutions and of (2.1.1) and present Lemma 

2.2.1 which relates the boundedness of solutions of (2.1.1) with that of ip) 

of (2.1.1). In section 3, we first construct a class of compact sets in space B^ 

and then, using Horn's fixed point theorem, prove the existence theorem of 

periodic solutions of (2.1.1). 

We deal with B^-U.B and B^-U.U.B of solutions to (2.1.1) in section 4 and 

give two criterion theorems. 

Finally in section 5 we apply the results in section 3 and 4 to a class of 

neutral Volterra integro-differential equations of nonlinear D-operator with 
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infinite delay. 

2.2 Preliminaries 

Let 

I 刮 I[a’&] = s u p { | x ( 5 ) | : a < 5 < 6, - o o < a < b < o o } 

and 

r : ( -00 , 0] I ^ [O.oo) be a continuous, nondecreasing function with 

(Pi) f L r{s)ds 二 oo and 

(P2) r(5i + 52) < r{si)r{s2) for Si, S2 < 0. 

Define 

Bl 二 {if .. ( — 0 0 , 0] I~~�IR几,measurable, |(/：?|口’厂 < oo}， 

「 /•〇 1 i/P 
Mp，r= |^(0)r+ / r{sMs)fds , P>1 I J —00 -

where W denotes the n-dimensional Euclidean space, | . | denotes a suitable 

norm in B^ is a Banach space and is also an admissible space mentioned 

in [ 1 1 ； . 

The fundamental theory concerning existence, uniqueness, continuation of 

solutions and continuous dependence of solutions with respect to initial data 

for neutral functional differential equations {NFDEs) with infinite delay in 

the abstract phase spaces given in [8] and [11], including space B^, has been 

established. We refer to [8] and [11:. 

By a solution of (2.1.1) through (to, V̂ ) ^ [0, 00) x B^ we mean an x : 

( -00 , to + S) I ^ W for some 5 > 0 such that 
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(i) 工to = 釣 

(ii) X is continuous on [t�,亡o + 外 

(iii) D(t, Xt) is continuously differentiable and satisfies (2.1.1) on [to, to + 6). 

We denote a solution of (2.1.1) through (to, by x(to, or simply by 

x{t). 

In the following sections, we always assume that D and f satisfy certain 

conditions to ensure the existence,uniqueness and continuation of solutions of 

(2.1.1). 

A strictly increasing and continuous function W : [0, oo) i ^ [O.oo) is 

called a wedge if 1^(0) 二 0 and W{s) > 0 as s > 0. 

Let ip) be a continuous nonnegative functional defined on [0，oo) x B^ 

and locally Lipschitz in The derivative of V along a solution of (2.1.1) is 

defined to be 

T,," � 1 . V{t + h, xt+h) - Xt) V [t, Xt) = lim sup . h^O- ^ 

We always assume that Xf) exists. 

Definition 2.2.1 Solutions o/(2.1.1) are B^-uniformly hounded {B^-U.B) if 

for each Bi > 0 there exists N{Bi) > 0 such that [ t � > 0, < > to. 

imply \x{to,(p){t)\ < N{Bi). Solutions o/(2.1.1) are B^-uniformly ultimately 

bounded (BP-U.U.B) for hound B >0 if for each Bs > 0 there exists T^B^) > 0 

such that [to > 0, M p , <B^,t> to + T{Bs)] imply < B. 

Definition 2.2.2 Let D : [O.oo) x B^ \^ W be continuous. D is said to 

be BP-uniformly stable if there exist constants k > 0 and a > 0 such that 
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for any IP E B^, T E [0, oo) and h G C{[T,OO),W), the continuous solution 

x{t) = x(r, if, h){t) of the equation 

D{t,xt) = h(t), t>T and 二 ( 2 . 2 . 1 ) 

satisfies 

x{t)\ < k\xr\p,r + [̂IÎ IIm + t > (2.2.2) 

D is said to be B^-uniformly asymptotically stable if there exist constants h > 

0 and (Ji > 0 and for each 7 > 0 there exists a nonincreasing function g^{u): 

0 , 0 0 ) I ^ [0,1] with lim -̂̂ 00 = 0 such that for any r G [O.oo)，(̂  e 

BP and h G (7([T, 0 0 ) , R”，the continuous solution x{t) = x(r, if, h){t) with 

\x\\[T,t] < 7 of {2.2.1) satisfies 

x{t)\ < kig^{t T)\xr\p,r + h{\\h\\[r,t] + di), t > T. (2.2.3) 

Let x{t) 二 :r(to,(pXt) be a solution of (2.1.1). Then D(t,Xt) is a continuous 

function of t (t > to). Denote D(t, Xt) by H(t). Then D(t, xt) = H{t). 

Definition 2.2.3 D(t,奶 o/(2.1.1) is said to be B^-uniformly hounded (B?— 

U.B) if for each Ai > 0 there exists A2 > 0 such that [to > 0, < Ai,t > 

to] imply \H{t)\ < A2. 0/(2.1.1) is said to be B?-uniformly ultimately 

hounded {B^-U.U.B) for bound A> 0 if for each A3 > 0 there exists T* > 0 

such that [to > O.Mp, <A3,t> to + T*] imply \H{t)\ < A. 

L e m m a 2.2.1 Suppose that VO of (2.1.1) is B^uniformly stable and B^-

uniformly asymptotically stable. If D(t,il)) is BP-U.B, then solutions 0/(2.1.1) 

are Bl^-U.B. If D{t, ip) is both B^-U.B and B^-U.U.B, then solutions 0/(2.1.1) 

are also B^^-U.B and B^-U.U.B. 
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Proof. For given Al > 0 and x(t) = x(to, cp)(t)(t > to) with /cplp,r < Ab there 

exists A2 > 0 so that /H(t)1 < A2 for t > to. Since D(t, 'ljJ) is B~-uniformly 

stable, we have 

Ix(t)1 < k/xtolp,r + k[/lHII[to,t] + 0-] < k(Al + A2 + 0-), t > to· 

This proves that solutions of (2.1.1) are B~-U.B. Assume that D(t, 'ljJ) is B~

U.U.B for bound A > 0 and set B = 1 + k1(A + 0-1). For given B3 > 0, there 

exists B4 > 0 so that x(t) = x(to,cp)(t) with Icplp,r < B3 satisfies 

Ix(t)1 < B4 , t > to· 

Set 'Y = max{ B3, B4}. Then IXto Ip,r < 'Y and Ix( t) I < 'Y for t > to· We have 

IXtl~,r = Ix(t)IP + loo r(u - t)lx(u)IPdu 

rt lto 

< 'YP + lto r(u - t) Ix( u) IPdu + -00 r( u - t) Ix( u) IPdu 

< 'YP + f'YP + 'YP 

(2 + f)'YP, t > to. 

Then 

. IXtlp,r < {2 '+ f)I/P'Y, t > to. 

There is Tl > 0 so that k1g,(u)(2+f)l/p'Y < 1 for u > T1 . Since D(t, 'ljJ) is B~

U.U.B for A, there exists T2 > 0 for B3 so that [to > 0, Icplp,r < B3, t > to + T2] 

imply IH(t)1 < A. Set r* = Tl +T2 and TO = to+T2. For t > To+Tl = to+T*, 

we have 

Ix(t) I < klg,(t - TO) IXTo Ip,r + kl (/lHII[To,t] + 0-1) 
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Hence solutions of (2.1.1) are B^-U.U.B. The proof is complete. 

E x a m p l e 2.2.1 Consider D-operator with infinite delay 

roo 

D{t,利=糊—/ B{u)q{t - u, ij{-u))du, t > 0, (2.2.4) 
J 0 

where B e oo)) and q G C(M x IR,M) which satisfy the following condi-

tions 

(z) |g(5,x)| < b\x\ {h > 0)，\q{s,x) - q{s,y)\ < bi\x y\ {h > 0) for 

x.yeR, 

(u) b\B{u)\ < r{-u) almost everywhere for n > 0, 

where r G C((-cx),0], [O.oo)) is nondecreasing, r{u) = 0, 

/^oo r{u)du = i<l and r{ui + U2) < r{ui)r{u2) for Ui,U2 < 0. 

We will prove that D(t, is B^-uniformly stable and 5厂uniformly asymp-

totically stable. Obviously, condition (i) guarantees that D{t, ip) is continuous 

in [0, 00) X BP. 

Proof. We just discuss the case where p > 1 (a similar argument holds for 

the case where p = 1). For r € [0,oo),(^ e B^ and h e C([r, 00), R), let 

x[t) = x(r, h){t) satisfy 

D{t,xt)=x{t)- f B(t-6)q{e,x{e))de = h{t), t>T. (2.2.5) 
J—00 

Then for r < 5 < t, we have, using Holder inequality, 

\x{s)\ < r r{e-s)\x{e)\dO + \h{s)\ 
J—00 



Chapter 2 Periodicity and Boundedness 20 

= r r{0 - s)\x{e)\dO + r r{0-s)\x{0)\d0+\h{s)\ J — oo . Jt 
< r r{9 - T)\x{0)\d0 + i\\x\\ir,t] + \\h\\[r,t] 

J—oo 
rO 

= / r{u)\Xr{u)\du + i\\x\\[r^t] + \\h\ [r,t] 
J — OO 
- , 0 - iP- l /P�,0 iVP 

< / r{u)du r {u) | Xr {u) \^du 
.J—oo � LJ—oo _ 

+ + l|h||[T，t] 

< + 外圳 M + I H I M . 

Then 

MI[T,t] < I工rkr +4MI[T,t] + IÎ IIm, t>T, 

and 

II^IIm < Y ^ k r U r + Y ^ I W I m , t > T. (2.2.6) 

We have 

x{t)\ < k\Xr\p,r + k\\h\\[r,t], t > (2.2.7) 

where A: : This proves that 功）is ^^-uniformly stable. Let a be a 

constant with 0 < a < £. For any given 7 > 0, let \\x\\[r,t] < 7- Fix T > 0 

with 7 f : : r(u)du < 1 and r ( - T ) <a<L For r + T < s < t,we have, using 

(2.2.6), 

\x{s)\ < r 'r{0-s)\x{9)\de + \h{s)\ 
J—oo 

= 厂 r(<9 - s)\x{0)\de + r^r{0 - s)\x{0)\d0 
J-00 Jr 
+ r r{9-s)\x{9)\de + \h{s) 

Js-T 

< r{T-s) r r{e-r)\xr{0-T)\d0-\--f [ r{u)du 
— J-00 J-00 

+ 卯工 ||[r，t] + IÎ IIm 
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rO 
< r(-T) / r{u)\Xr{u)\du-{-l+i\\x\\[r,t] + \\h\\[r,t] 

J — oo 

( I ^ ^ \ u 
< Ci\Xr p’r + 1 + [TZTI I t p,r + ^ ^ “ [r,t]J + " [T,t] 

< {M + a)\Xr\p,r + ^-^(II^IIm + 1). 

M[T+T,t] < {ki + a)\Xr\p,r + + 1) 

< + + + t > T + T. (2.2.8) 

Assume that for nonnegative integer n > 0, we have, for t > r + nT, 

\\x\\ir+nT,t] < + ia +…+ a几 

+ + (2.2.9) 

Then for r + (n + 1)T < 5 < t, we have 

|x(5)| < r r(e - s)\x(e)\d6 + r r{e-s)\x{e)\dO 
J-oo Jt 

+ J^' ^r{0-s)\x{e)\d0 + \h{s) 

< r(-(n + l)T)\Xr\p,r + 1 + ^\\x\\[r+nT,t] + � 

< + A;Cr+i + f V + ... + ia'')\xr\p,r 

< A ; (r+i + r a + ... + + a 奸 

Then for t > r + (n + 1)T, 

||:r||[T+(n+l)T，t] < M 严+1+严。+ ••• +汉"+l)bMp，r 
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By induction, (2.2.9) holds for all n > 0. Then 

=kii''\Xr\p,r + ki{\\h\\[r,t] + I ) , t > T + u T , 

where h = ^ and n = 0，1, 2, Define 

g从u) 二 r for nT < n < (n + 1)T, n = 0 ,1 ,2 , . . . , 

Then 

x{t)\ < kig^{t - r)\Xr\p,r + hi\\h\\[r,t] + 1), t > T. 

Hence, Dit.ijj) is B厂uniformly asymptotically stable. 

2.3 Existence of periodic solutions 

In this section, we assume that f and D of (2.1.1) satisfy certain conditions 

to ensure existence, uniqueness, continuation of solutions and continuous de-

pendence of solutions with respect to initial function ^ G B^, 

L e m m a 2.3.1 {Horn[23]) Let 

1) So C Si C S2 he convex subsets of a Banach space X , 

2) Sq and S2 be compact , 

3) Si be open relative to S2 , 

4) F : S2 I""""> X be a continuous mapping such that for some integer m > 

0, C 5̂ 2,1 < i < m - 1 and F^{Si) C So,m<j <2m- 1’ where 

F^ is the j-th iterate of F. 
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Then F has a fixed point in So. 

L e m m a 2.3.2 The following set is a compact set in B^. 

q — L � p . Mp,r < …ll̂ ll(-oo,0] and 1 
1” 厂 Hsi) - < - S2\ for 51, 52 < 0 / ‘ 

where a > 0 , / ? > 0 , K > 0 and ||( |̂|(_cx),o] = sup^^o . 

Proof. Let {^Pn}, n = 1, 2 , . . . , be any sequence in S. Since 

||̂n||(-oo,0]</5 (2.3.1) 

and 

(Pn(Si) — ipn{s2)\ < K\Si — S2I, Si, S2 < 0, (2.3.2) 

is uniformly bounded and equicontinuous on each interval [-k,0],k = 

1,2, . . . . According to Arzela-Ascoli Theorem, there exists a subsequence of 

still denoted by {ipn}, which converges uniformly to some continuous 

function (po on each interval [-/c, 0], that is, linin^oo — Wo||[-fc’o] = 0, A:= 

1,2, . . . . Letting n — oo in (2.3.2), we have 

V^oOl)—仰(>2)1 < K\si — 52I, 5i, 52 < 0. 

Prom (2.3.1), we have |(̂ n(<s)| < ^ for 5 < 0. Letting n — oc, we get |(A)0)| < 

/3 for 5 < 0. Hence 

|(A)||(—oo,0] < P. 

We shall prove limn-.oo — ô\p,r = First, easily see that 

lim |(/Pn(0)-(^o(0)r = 0. (2.3.3) 
n—^oo 
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Next 

rO rO 
/ r{s)\(pn{s) - ipo{s)\Pds = / r{s)\ipn{s) - (po{s)\Pds 
J—oo J—k 

f-k 
+ / r{s)\(pn{s) — (po{s)\Pds 

J—oo 

< 圳 外 - M U o ] + 晴 j:八S�d8 

where k = 1,2, . . . . For any given £ > 0, there exists a sufficiently large /c > 0 

such that 

mr rr{s)ds<'-
J —oo 乙 

and there exists some N > Q such that when n > N, 

( 
中n — [-k,0] < J . 

Then we have, when n > N, 

rO s £ 
J r ( s )| (^n�—(^oO) l�S < 3 + 3 二 

Hence 

lim / • r � � - 仰 ⑷ r 办 = 0 . (2.3.4) 

By (2.3.3) and (2.3.4), we have 

lim \(pn — ̂ o\p,r = 0. n—oo 

Letting n —> oo in |(/?n|p，r < we have 

Hence ipo e S and 5 is a compact set in B^. The proof is complete. 

T h e o r e m 2.3.1 Assume that 
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1) D(t + w, 'ljJ) == D(t, 'ljJ) and f(t + w, 'ljJ) == f(t, 'ljJ) for some w > 0, any 

t > to and any 'ljJ E Bf, 

2) Let x(t) == X(T, cp, h)(t) (t > T) be a continuous solution of (2.2.1). For 

each ~ > 0 there exists a k* (~) > 0 such that for any £* > k* (~), 

[IIXtll(-oo,o] < ~ for all t > T, Icp(81)-cp(82 )1 < £*181-82 1 for el, e2 < 0] 

imply 

IX(t1) - x(t2)1 < £*lt1 - t21 + Ih(t1) - h(t2)1, 

where t 1, t2 > T and Ilxtll(-oo,o] == sUP-oo <8:S0 Ix(t + 8)1, 

3) For each a > 0) t.here exists an L(t, a) such that 1'ljJlp,r < a implies 

If(t,'ljJ)1 < L(t,a), 

where L(t, a) is continuous with respect to t) 

4) Solutions of (2.1.1) are Bf-U.B and Bf-U.U.B for b > o. 

Then (2.1.1) has an w-periodic solution. 

Proof. Without loss of generality, let N((£ + 3)b) > (£ + 3)b where £ == 

J~oo r(s)ds and N is the function defined for Bf-U.B in Definition 2.2.1. Define 

So . {cp E B~: Icplp,r < -(£ + 2)b, Ilcpll(-oo,o] < N((£ + 3)b) } 
, and Icp(81) - cp(82 )1 < L*181 - 821 - , 

SI == {cp E BP: Icplp,r < (£ + 3)b, Ilcpll(-oo,o] < N((£ + 3)b) } 
r . and Icp(81 ) - cp(82) 1 < L*181 - 82 1 ' 

S2 == {rp E B~: Irplp,r < (.e + 3)N((.e + 3)b), IIrpllc-oo,o) < N((.e + 3)b) } 
and Icp(81) - cp(82) 1 < L*181 - 82 1 

. ' 
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where L* = max{A:*(A^((£ + 3)6)), maxt� <t<to+U} 

L(t,(£ + 3)Ar((£ +3)6) ) } . Ob-

viously, So, Si and S2 are convex subsets of B? and ^ o C C S2. Because 

= 狗 n {(^ e B厂 < (£ + 3)6}, therefore is open relative to S2. By 

Lemma 2.3.2, Sq and S2 are compact. 

For if G S2, by the uniform boundedness of solutions, we have, for t > to, 
r 广0 1 i/p 

= |x(t)r+ / T{s)\xt{s)rds L J ~oo -

< {{i + l)[N{{i + 3)N{{i + 3)b))r + r(0)[(£ + 3)N{{i + 

< 00 (2.3.5) 

where x{t) = x(to,(p)(t) is a solution of (2.1.1) . Define the mapping F : 

S2 I ^ B^ as follows 

By the continuous dependence of solutions with respect to initial function (p, 

F is continuous. When (p G S^ by |M|(—oo’o] < N{{£ + 3)6) and 5厂uniform 

boundedness of solutions, we have 

||xt||(_oo,o] <^((^ + 3)6), t>to, (2.3.6) 

and 

= 丨 看 + 广 r ( • “ 释 
J —OO 

< [N{{£ + 3)b)Y-\-i[N{{i-i-3)b)Y 

= ( £ + l)[iV((£ + 3)6)f, t>to. 

Then 
+ + (2.3.7) 
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By (2.3.7), 1) and 3), we have 

= | / ( t , x , ) | < L * , t>to. (2.3.8) 

Let 

D{t,xt) = H{t), t>to. (2.3.9) 

By 2) and (2.3.8), we have, for 力i,力2 > 力o, 

(力 1 ) — S L*\ti-t2\ + \H{h)-H{t2)\ 

< V\ti-t2 . 

Then, for t > to, 

\xt{0 )̂ — Xt{02)\ < L*\Oi — O2I Ou O2 < 0. (2.3.10) 

By (2.3.6), (2.3.7) and (2.3.10), we have, for each positive integer j , F^{Si) C 

S2. Furthermore, by 5^-uniform ultimate boundedness of solutions, there 

exists a T* 二 + 3)6) > 0 such that for ip e Si e.nd t > to + T\ 

咖,( / ? )� I S b. 

Let Ti > max{T*,a;}. For if G Si, we have 

尸’ J—oo 

< �r{s)\x{to + Ti + s)\Pds 
J—00 

rto+Ti 
+ / r{s-to-Ti)\x{s)\Pds 

Jto+T* 
rto+T* 

+ / r{s-to-Ti)\x{s)\Pds 
J—00 

< {i + i)bP + [N{{i + 3)b)Y / r{s)ds. (2.3.11) 
J—oo 
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Letting sufficiently large such that 

/•-(TI-T*) 

[N{{i-\-3)h)f / r{s)ds < If, 
J —oo 

we have, by (2.3.11), 

+ (2.3.12) 

For ju > Ti, we have 

+ (2.3.13) 

By (2.3.6)，(2.3.10) and (2.3.13), we have C ^ o for all integers j > Ti/u. 

By Lemma 2.3.1, F has a fixed point (P* in Sq, that is 

Xto+uj{to,cp*) = (p*. 

We have 

+ a;, xt+u；) = fit + xt+cv), t > to. 
CLL 

Then 

xt+oo) = fit, xt+uj), t > to-

Let yt = Xt+uj{to^ (P*). Then 

Note that 队。=Xto+u;(to, (p*) = W*. By uniqueness of solutions with respect 

to initial data, we have 

yt 二 Xt for t > to, 

that is 

xt+uj = Xt for t > to. 

Hence x{t) is an a;-periodic solution of (2.1.1). The proof is complete. 



Chapter 2 Periodicity and Boundedness 29 

2.4 BP-̂ U.B and of solutions 

T h e o r e m 2.4.1 Let r e C^((-oo,0], [0, oo)) be nondecreasing and satisfy 

(Pi) and (P2)； and let D{t,奶 of (2.1.1) he Bp-uniformly stable and BP-

uniformly asymptotically stable. Suppose that there are wedges Wi (i 二 1, 2, 3) 

and positive constants M and c such that 

Wi(\D{t,^)\) < V{t,ilj) < W2(hK0)|) + W3 ( 7 ' r{s)\ilj{s)\Pds) , (2.4.1) 
\J — OQ J 

V\t,Xt)<-c\x{t)\P + M. (2.4.2) 

Then solutions 0/(2.1.1) are B^-U.B and BP-U.U.B. 

Proof. Let x{t) 二 (力。⑴，V⑴ 二 V ^ ( 力 a n d 丑 ⑷ 二 D(t,:rt). According 

to Lemma 2.2.1, suffice it to prove that D{t,ilj) is B^-U.B and BP-U,U.B. 

Given Ai > 0, we must find A2 > 0 such that [to > 0, < > to 

imply \H{t)\ < A2. Let t e [to,t] and V{t) 二 m a x 切 B y (2.4.2) we 

have 

c f\{s-t)\x{s)\Pds < m - [\{s-t)V'{s)ds 
J to J to 

< m - r{0)V{t) + r(to - t)V{to) 

� + [W{sy{s-t)ds 
J to 

< m + [V{t)-V{t)]r{0). (2.4.3) 

For \ip\p̂ r < we have, by (2.4.1), 
V{to) < W2{\x{to)\) + Ws 

< + (2.4.4) 
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If there exists t > to .such that V{t) > V{s) for to < s < t, then V\t) > 

0, \x{t)\ < ( 譬 a n d by (2.4.3) we have 

fr{s-t)\x{s)\Pds<—. (2.4.5) 
J to C 

Then by (2.4.1) we have 

⑴ S W2(\x{t)\) + - + f\{s -

< W2{U) + W s ( A { + — ] , (2.4.6) 

where U = {^^/p > ( f ) ^ / ^ Then for any t > to with V{t) > V{s) for 

to < 5 < t, we have, by (2.4.4) and (2.4.6), 
( R ( imW 1 

\H{t)\ < + Ws^/) + W3 (A? + 了 川 

= 义 2 . 

Hence 

H{t)\ < A2 for all t > to. 

By Lemma 2.2.1, solutions of (2.1.1) are BP-U.B. We now prove the BP-U.U.B. 

For given A3 > 0, there exists A4 > 0 such that [to > 0, \(p\p^r < > to. 

imply I a : � I < A4. Then we have 

V{t) < W2{A^) + � + iAl), t > to. (2.4.7) 

For any T > 0, we have, by (2.4.2), 

� r { s - t)\x{s)\Pds < — + - V{t)]r{0), t>to + T, (2.4.8) 
Jt-T C C 

where t' G [t-T,t] a n d ) = m^Xt-T<s<tV{s). Fix T > 0 with r ( — + 

iAl) < 1 and 

W2{A,) + W3(雄 + 偶 ) < T. (2.4.9) 
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For t > to we have 

r{s-t)\x{s)\Pds = r r{s-t)\x{s)\Pds-^ f ^ r{s - t)\x{s)Yds 
J — oo J — oo J to 

+ 广 r{s-t)\x{s)\Pds 
Jt-T 

< r{-T){Al + iAl)+ f r{s-t)\x{s)\Pds 
J t—T 

< 1 + r r(s-t)lx(s)l''ds 
Jt-T 

< 1 + 〜 巡 剛 — 观 （2.4.10) 
c c 

where f e [t - T, t] and V(f) = maxt-T<s<t V(s). Define 

Ii = [to + (i-l)T,to + iT], i = l,2,…. (2.4.11) 

From (2.4.2), (2.4.7) and (2.4.9), there must be a t G so that \x{t)\ <U = 

Choose an integer N � 1 with 

W2(A4) + Ws{Al + M � ) - { N - l ) < 0. (2.4.12) 

If there is a t G {to + {i- 1)T, t � + iT] such that � � V { s ) for all s G 4 then 

take Ii = ii. If no such t exists, then find the first U e U such that \x{ii)\ < U 
and then take h = to + iT]. Find U G Ii with V{U) = max托 /�V{s ) . This 

construction will then satisfy 

\x{U)\ < U, 

V{s) < V{to + l)T) < for s e Ii - Ii 

and 
V{U) = m^^V{s). (2.4.13) 
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We claim that 

V{u) < W2{U) + W3 (1 + : "^(0))三 Po, i>2N. (2.4.14) 

Indeed, for j > 3, either 

1) V{tj) + 1 > V{s) for all s G [tj - or 

2) there is some Sj G [tj — T, tj] so that V{tj) + 1 < V{sj). 

If 1) holds, then m&Xt,-T<s<tj Vis) — V{tj) < 1. Prom (2.4.1) and (2.4.10) 

we have 

V{tj) < W2{U) + r{s - tj)\x{s)fds^ 

< + + (2.4.15) 

If 2) holds, by (2.4.13) it must be that Sj 车 I j . Then we have 

< yfe-i) or V{sj) < 

Then 

V{tj) < V{tj^i)-1 {or < V{tj_2) - 1). (2.4.16) 

By (2.4.7) we have 

V{tj) < W2(A4)�+ Ws{Al + iAl) - 1. (2.4.17) 

According to the above argument, for j > 3 either (2.4.15) or (2.4.16) holds. 

Furthermore (2.4.16) must hold if (2.4.15) doesn't hold. Thus for j > 2N we 

have that if < Pq (or y f e - 2 ) < Po), then V{tj) < Pq and the proof is 

complete. Otherwise 

< yfe-2) - 1 (or < - 1) 
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or 

V{tj.2) < - 1 (or < - 1). 

Then 

V{tj) < V{tj.2) - 2 {or < - 2) (2.4.18) 

or 

V{tj) < - 2 {or < - 2). (2.4.19) 

By (2.4.7) we have 

V{tj) < W2(A4) + Ws{A^s + M《）—2. (2.4.20) 

If we can repeat this argument for n consecutive times, then we have 

V{tj) < W2(A4) + Ws{A^s + M � ) — n . (2.4.21) 

But n < N - 1 since (2.4.12). Therefore this argument can be repeated 

consecutively for no more than (TV — 2) times. Hence V{tj) < Pq for j > 2N 

and our claim is true . Now let 5 > to + 2A^T. Then s e h with i>2N ^ I 
A 

and then either s e li oi s e li - U. Thus 

V{s) < V{U) < Po 

or 

V{s) < V{to + {i — 1)T) < Po-

Then 

Wi{\H{s)\) < V{s) <Po, s>to + 2NT. 

Hence 

\H{s)\ < W^\Po) for all 5 > to + 2NT. 

By Lemma 2.2.1, solutions of (2.1.1) are B^-U.U.B. The proof is complete. 
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T h e o r e m 2.4.2 Let r e C((-oo, 0], [0, oo)) be nondecreasing and satisfy (Pi) 

and {P2), and let D{t,i；) 0 / ( 2 . 1 . 1 ) be B^-uniformly stable and B^-uniformly 

asymptotically stable. Suppose that there are wedges Wi (i = 1,2,3,4) and 

positive constants M and U such that 

Wi{\D{t,i;)\) < V續 < 1^2(1^(0)1)+ , (2.4.22) 

V ' { t , x t ) < - W , { \ x m + M, (2.4.23) 

W4([/) > M and Wi{u) — 00 as u 一 00, (2.4.24) 

for any given A > 0 there exists J\ > 0 such that when u> 3\ , 

Wi{u) > W2{U) + 1 + W3[Ap + 哪 + uY] (2.4.25) 

where fe = max{A;, h}, k and h satisfy (2.2.2) and (2.2.3) respectively. Then 

solutions 0/(2.1.1) are B[U.B and BP-U.U.B. 

Proof. According to Lemma 2.2.1，suffice it to prove that is B^-U.B 

and BP-U.U.B. Given Ai > 0 with Ai > U, we must find A2 > 0 such that 

to > 0, M p , <Ai,t> to] imply \D{t,Xt)\ < A2. Denote D{t,Xt) and V{t,Xt) 

by 丑⑴ and V " � respectively. Fix to > 0 and M p , < Ai. Because D is 

5^-uniformly stable, we have, for any t>to and to < s <i, 

\\x\\[to,t\<kA^ + k{\\H\\^to,̂ +a) , f > t o . (2.4.26) 

If there is t > to with V{t) > V{s) for all s G [to,幻，then 

\x{t)\<U 
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since V'(t) > O. Choose t* E [to,t] so that IH(t*)1 == IIHII[to,t]. Then 

WI (IH(t*) I) < V(t*) 

< Vet) 

35 

< W 2(tT) + W3 (l: r(u - t)lx(u)IPdu + 1: r(u - t)lx(u)IPdu) 

< W2(U) + W3 (Af + £llxllfto,t]) 

< W2(U) + 1 + W3 [(AI + a)P + £k~(AI + a + IH(t*)I)P] . 

From (2.4.25) we have 

IIHII[to,t] == IH(t*)1 < JA1+a . (2.4.27) 

If there is a sequence tn ---+ 00 as n ---+ 00 such that V(tn) > V(s) for s E [to, tn], 

then easily see that 

I H ( s ) I < J A +a f or all s E [to, 00 ) 

since J A+a is independent of tn. Otherwise, there exists some t' > to such that 

Vet') > V(s) for all s E [to, 00). Then 

IIHII[to.t/] < JA1+a . 

For s > t' with IH(s)1 > IIHII[to,tl], we have 

WI(IH(s)l) < V(s) " 

< Vet') 

< W2(U,) + W3[(Af + £kP(AI + a + IIHII[to,t/])P] 

(2.4.28) 

< W2(U) + 1 + W3[(AI + a)P + £k~(AI + a + IH(s)I)P]. 

(2.4.29) 
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By (2.4.25 ) and (2.4.28) we have 

\H{s)\ < JA^+a for all s > to. (2.4.30) 

If V{to) > for all s > to, then 

Wr{\H{s)\) < V{s) 

< V{to) 

< W2{\x{to)\-\-W3 r r{u-to)\x{u)fdu 
iJ—oo -

Then 

\H{s)\ < W^'[W2{Ai) + for all s > to. 

Set 

= max 评 1—i[W2(Ai) + 恥 ( A ? ) ] } . 

\H{t)\ < A2 for all t>to. (2.4.31) 

This proves BP-U.B. We now prove the Bf-U.U.B. We must show that for 

each A3 > 0 there is K > 0 so that [to > 0, < > + imply that 

\H{t)\ <A = W71 {W2{U) + Ws [1 + 伙?(1 + + Jl+a,Y]}. 

Given A3 > 0, there is A4 > 0 so that [t > to > 0 and < A3] imply that 

H{t)\ < and |x(t)| < A4. Set 7 二 max{A3, A4}. Then < 7, k � < 

7 (t > to) and \H{t)\ < 7 > to), ^om (2.4.22) we have 

V{t) < W2O�D + WsIY' r{u-t)\x{u)\Pdu 
iJ—00 . 



Chapter 2 Periodicity and Boundedness 37 

< + r r{u-t)\x{u)\Pdu-\- [\{u - t)\x{u)\Pdu 
\_J — oo J to • 

< W2 (7 ) + W3[M&r + €7 ” 

< W2(7) + W3[(l + < 0 7 l ， ( 2 . 4 . 3 2 ) 

We have, for t > to, 

\xt\lr = f r{s)\xt{s)\^ds 
J-oo 

< � + ft r{u-t)\x{u)\Pdu 
J — OO 

二 广 r{u-t)\x{u)\^du-{- f\{u - t)\x{u)\Pdu 
J — OO J to 

< + + iY 

= ( 2 + 杯 

Then 

+ for t>to. (2.4.33) 

Fix T > 0 with 

外cn (2+斤〜<1， 

r ( -T ) (2 + £)7^ < 1 

and 

叫7 ) + Wsiil + 制 - [ W ^ { U ) M]T < 0. (2.4.34) 

For t > t o+ T, 

V{t) < W20(t)|) + W3 jt T riu_t)\:4u)\Pdu + jt_Tr{u-t�\oc[u)\Pdu 
“ t—T 

< W2(|T(t)|) + W3 r ( - T ) [ ‘ riu - {t - T))\x(u)Ydu + 
J—oo • 
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< W2{\xm + Ws [r(-r)(2 + + 

< + + (2-4.35) 

For s > to + T, 

x(5)| < kig^{T)\Xs-T\p,r + ki{\\H\\[s-T,s] + CTl) 

< h g ^ { T ) { 2 + + h{\\H\\^s-T,s] + ^i) 

< h { l + ai) + h\\H\\is-T,s]- (2.4.36) 

F o r t > t o + 2T and t > 5 > t - T > t o + T, we have, by (2.4.36), 

x{s)\ < ki{l + (Ji) + ki\\H\\[t-2T,t]' 

Then 

\\x\\it-T,t] < k i { l + (7i) + ki\\H\\it-2T,th t > t o + 2T. (2.4.37) 

By (2.4.35) and (2.4.37), we have 

⑷ I) + Ws { l + i k l [(1 + (71) + \\H\\it-2T,t]Y].t> to + 2T. 

(2.4.38) 

Prom (2.4.23), (2.4.32) and (2.4.34), we easily see that ifb-a > T, there must 

he Sit e [a, b] C [to, oo) so that \x{t)\ < U. Choose an integer N � 1 with 

崎 ) + W3[(l + - (AT - 1) < 0. (2.4.39) 

Define 

h = [to + 2(i - 1)T, to + 2zT], i = l,2,…. (2.4.40) 

If there is at G {to+2{i-l)T, to+2iT] such that V{t) > V{s) for all s G ii, then 

take Ii = i i . If no such t exists, then find the first U e Ii such that \x{ii)\ < U 
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and then take U == to + 2iT]. Find U e h with V{ti) 二 max V{s) for s G h. 

This construction will then satisfy 

V{s) < V{to + 2{i - 1)T) < Viti.i) for s^h-h 

and 

⑷ 二 maxl^Os). (2.4.41) 
seh 

We claim that 

V{u) < W2{U) + W3[l + 伙?(1 + Q + J1+.JI, i > 2iV. (2.4.42) 

Indeed, for j > 3, either 

1) V{tj) + 1 > V{s) for all s G [tj - 2T,tjl or 

2) there is some sj G [tj - 2T, tj] so that V{tj) + 1 < V{sj). 

If 1) holds, by (2.4.38) we have, for s G [tj — 2T, tj], 

Wi{ms)\) < v{s) 

< V{tj) + 1 

< W2{U) + 1 + W 3 { 1 + ikl[{l + ai) + \\H\\it,-2T,tj]Y}. 

(2.4.43) 

Then 

Wii\\H\\^t,-2T,t,]) < W2{U) + 1 

+ PFs { 1 + ikl[{l + ai) + \\H\\^tj-2T,t,]Y} . (2.4.44) 
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By (2.4.25) we have 

\H\\[tj-2T,tj] < Jl-\-ai-

By (2.4.43) we have 

V{tj) < W2{U) + Ws {1 + ikl[{l + ai) + - Po. (2.4.45) 

If 2) holds, by (2.4.41) it must be that Sj • Ij. Then for Ij - fj—i. By (2.4.41) 

we have 

< or V{sj) < yfe-2). 
/S 

By an analogous argument we have the same result for Ij 寺 Ij. Thus we 

always have 

V{t,) < V{t^-i) - 1 (or < y f e - 2 ) — 1). (2.4.46) 

By (2.4.32) we have 

V{tj) < W2(7) + Ws[{l + — 1. (2.4.47) 

According to the above argument, for j > 3, either (2.4.45) or (2.4.46) holds. 

Furthermore (2.4.46) must hold if (2.4.45) doesn't hold. Thus for j > 2N we 

have that if V{TJ.I) < PQ (or V{TJ^2) < Po), then V{TJ) < PQ and the proof is 

complete. Otherwise � 

y f e - i ) < l/fe—2) - 1 (or < y f e - 3 ) - 1) 

or 

Vitj.2) < V{tj^s) - 1 (or < 4) - 1). 

Then 
V{tj) < y f e - 2 ) — 2 (or < y f e - 3 ) — 2) (2.4.48) 
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or 

Vitj) < V{tj - i ) - 2 (or < - 2). (2.4.49) 

By (2.4.32) we have 

Vitj) < W2(7 ) + W3[( l + — 2. (2.4.50) 

If we can repeat this argument for n consecutive times, then we have 

V{tj) < VF2(7) + W3[(l + •Ofl -几. (2.4.51) 

But n < N - I since (2.4.39). Therefore this argument can be repeated 

consecutively for no more than {N — 2) times. Hence V{tj) < Pq for j > 2N 

and our claim is true. Now let s > to + ANT. Thus s e ii with i > 2N + 1 

A 

and then either s e U oi s e Ii - Thus 

V{s) < V{U) < Po 

or 

V{s) < V{to + 2{i - 1)T) < Po-

Then 

Wi{\H{s)\) <V{s) < Po. 

Hence 

\H{s)\ < W{\Po)三 A for all s > to + 4NT. 

The proof is complete. 
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2.5 Applications 

Consider the scalar equation 

^ Ut)-广 B{t-s)q{x{s))ds = 

dt L J—oo -

-aoTit). ft Cit-s)x''{s)ds + E{t), t > to > 0, (2.5.1) 
J—oo 

where B,C e oo)); g, E G C(R, M); m, n are positive integers, m is odd 

and a > 0 is a constant. We assume 

(Ci) there exist positive constants b and bi such that \q{x)\ < b\x\ and 

q{x) — q{y)\ < bi\x - y\ for all G M. 

(C2) b\B{u)\ < r{-u) and \C{u)\ < r{-u) almost everywhere for w > 0, 

where r G CH(-oo ,0] , [0,oo)) is nondecreasing, i = f二⑷ r(u)du < 1, 

rOi+1^2) < r{ui)r{u2) for ui,u2 < 0 and J^^r{s)ds < Jor{u)(Jo > 0). 

( C 3 ) \E{t)\ < N where i V � 0 is a constant. 

( C 4 ) E{t + uj) = E{t) for all t G R, where cj > 0 is a constant. 

( C 5 ) there exists A{u) > 0 with � A{u)du 二 A) < 00 such that 

B{X + u) - B{;u)\ < A{u)X for X,u>0. 

Using Holder inequality and Lebesgue dominated convergence theorem, 

it is easy to prove that condition (Ci)—(C3) guarantee that (2.5.1) has a 

unique solution through any {to,(p)e [0, 00) x 5 广 1 and bounded solutions 

of (2.5.1) exist on [to, 00). Furthermore, if solutions of (2.5.1) are B^^^-U.B, 

then x(to, (p)(t) is continuous dependent on cp. 
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Proposition 2.5.1 Assume that {Ci)-{Cs) hold and 

a > 丄 k + £3m+2-n/m+l + 叫 + £2m+l/mH-l)l (2.5.2) 
1 — £ L 

Then solutions of (2.5.1) are B^+^-U.B and B^^^+i-U.U.B. 

Proof. By Example 2.2.1 , 

D賴=侧-广 B{-u)q{i^{u))du 
J —OO 

is 召；^+1-imiformly stable and B厂+i-uniformly asymptotically stable. Define 

. 2 J—oo J—oo 

where K 二 ^ ^ + + ^sm+i-n/m+i + Using Holder inequality, we 

have 

X,) = + K f r\{u)du\x{s)r^Hs 
Z J—oo J—oo 

「厂t 12 
< |:r(t)|2+ / r{s - t)\x{s)\ds 

i J — OO -

+ KJo r r(5 - t)\x{s)r+'ds 
J — OO 

� r t 1 2/m+l 

LJ ~oo -

+ JoK f r{s - t)\x{s)r+'ds 
J — OO 

� r t 1 2/m+l 
< / r{s-t)\x{s)r+'ds 

lJ — OO -
+ JoK r r{s-t)\x{s)r+^ds. 

J—oo 

Then 

(力,0：卯 S V ( 力 W 2 ( | r r � + ⑷小-力)W s ) � + i办 ] 
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where WI{z) = ^z^, W 2 � = z ^ and Ws{z) = HZ一、+ JqKZ. 

二 D(t,a:t)iD(t,工t) + - K � r { s - tMsT'-'ds 
at J-00 

r rt -
= x { t ) - B(t- s)q{x{s))ds 

. J—00 . 
X -•爪⑴ + 广 C{t-s)x''{s)ds + E{t) 

• J — 0 0 -

+ -K F r{s — t)\x(s)R+'ds 
J — 00 

+ a|x(t)r r r{s-t)\x{s)\ds + \x{t)\ f r{s - t)\x{s)\''ds 
J-00 J-00 

+ r{s - t)\x{s)\ds f r{s-t)\x{s)\''ds + N\x{t)\ 
J-00 J-00 

J —00 

- K F T{S-T)\X{S)\^^HS, 
J—00 

Using Holder inequality below 

Vi^yT < am + o^2y2 

where > 0, â  > 0 [i = 1, 2) and ai + 二 1, we have 

a|x(t)r r ris-t)\x{s)\ds 
J — 00 

= a f r(s - t)|x(t)p|x(s)|ds 
J—00 . 

< a f r{s — t) + ds 
J-00 ' V m + 1 m + 1 ) 

二 � + ft r{s 一 t)\x{s)r'-'ds, 
m + 1 m + 1 J-00 
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\x{t)\ f r{s-t)\x{s)\''ds 

J—oo 

s / — > ( “ ) 刚 : + l + A 丨咖 r+1+ 1 ) 

一 n + 1 n + 1 J-oo 

f r{s - t)\x{s)\ds f r{s-t)\x{s)\''ds 
J — OO J —OO 

/ rt 1 
< 饥+1 ( r{s-t)\x{s)r^^ds] 

/ rt 1 \ n/m+1 
X广+l-n/m+l (y r(5-t)|x(5)r+M5j 

. N n+l/m+1 
< frn+l-n/m+1 ( / _ ds) 

一 \J-oo J 
< £2m+l-n/m+l 广 r(5 - ds + fra+l-n/m+1^ 

J—oo 

N\x{t)\ < + 1) 二 ⑴广+1 + N 

and 

N f T{s-t)\x{s)\ds < Nr丨饥叫t r{s-t)\x{s)r+'ds J-oo 
+ 肥 / m + 1 . 

Then 

V\t, X,) < - [ a - + + ^ + 力 + + 1 ) . 
、，乂 — \ m + l n + 1 J \ 
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By (2.5.2), 
/ ami i 九丁 A ^ 

a - + ——r + iV + > 0 . 
\m + 1 n + 1 / 

By Theorem 2.4.1, solutions of (2.5.1) are B;^+�U.B and B'^+^-U.U.B. The 

proof is complete. 

Prom Theorem 2.3.1, we have 

Proposition 2.5.2 Assume that (Ci)-(C5) and (2.5.2) hold. Then (2.5.1) 

has an uj-periodic solution. 

Proof. We just verify 2) of Theorem 2.3.1. Let x{t) = X(T, (p, h)(t)(t > r) be 

a continuous solution of (2.2.1). For each A > 0, let A;*(A) = (r(0) + hAo)A. 

For any £* > k*(A), if ||:ct||(-oo，o] < A, then, for ti > ta > r, 

|:r(ti)-:r(t2)| < r \B{ti-s)\\q{x{s))\ds 
Jt2 
+ 广 \B{ti - s) - B{t2 - 5)||g(x(s))|c^s 

J —oo 

+ 剛 — / l � I 

< A 广 r(5 — ti)ds + bA 广 \B{ti - s) - B(h — 
Jt2 J-OO 

作⑷―M力2)1 

roo 

< r (0 )A| t i - t 2 | + J^ \B{ti - t2 + u) - B{u)\du 

+ 剛 - / 1 ( 力 2 ) | 

< (r(0) + bAo)A\ti - tsl + I"(力i) — h似 

< t\ti-t2\ + \h{ti) - h{t2). 

We can easily verify the other conditions of Theorem 2.3.1. By Theorem 2.3.1, 

(2.5.1) has an cj-periodic solution. The proof is complete. 



Chapter 3 

Stability in Neutral Differential 
Equations of Nonlinear 
D-operator with Infinite Delay 

3.1 Introduction 

M.A.Cmz and J.K.Hale introduced uniformly stable D-operator with finite 

delay in 1970 [16] (or stable D-operator [1]) and studied the stability of neutral 

differential equations with linear uniformly stable D-operator. A linear and 

continuous D-operator (atomic at zero) is uniformly stable (or stable [1]) if and 

only if there are constants a > 0 and 6 > 0 such that for any h G C([0, oo), M”， 

any solution y of the nonhomogeneous equation 

Dyt 二 t > 0 

satisfies 

yt I < l y o l l + b sup t > 0 (3.1.1) 
0 < u < t 

where \\yt\\ = sup_^<^<c \yt{u)\ for some r > 0 [1]. (For details, cf. [1]) 

In this chapter, we will develop a theory on uniformly asymptotic stability 

in neutral functional differential equations [NFDE) of nonlinear D-operator 

47 
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type with infinite delay. In section 2 , we introduce new applicable defini-

tions of weak-uniformly stable and weak-uniformly asymptotically stable D-

operators which generalize corresponding definitions of [16, 1] in a nontrivial 

way. Some examples will be given to demonstrate that our new definitions 

are available and that our results are applicable to a broad class of neutral 

equations which contain some "real" nonlinear D-operators with infinite delay 

such as 
POO 

D(t, iP)=糊—/ B{uyilfi—u)du. 
J 0 

We observe that when operator 妙)is weak-uniformly stable and weak-

uniformly asymptotically stable, the stability of zero solution of NFDE can 

be determined by asymptotic behavior of D(t, Xt). We establish Lemma 3.2.1 

to formulate this important fact and use it to prove the main theorems of 

section 3. Lemma 3.2.2 is built exclusively for Theorem 3.3.1 (in section 3). 

Using Liapunov functional or function and Razumikhin techniques, we 

establish three uniformly asymptotic stability theorems in section 3. Theo-

rem 3.3.1 is an extension of Burton's theorem for retarded equation with un-

bounded delay {{d) of Theorem 8 of [25]) to NFDE of nonlinear D-operator 

type with infinite delay . Theorem 3.3.2 and Theorem 3.3.3 are also extensions 

of corresponding results for neutral equations with finite delay respectively due 

to Cruz and Hale [16, 1] and Lopes [26] to NFDE of nonlinear D-operator 

type with infinite delay. 

We apply our theorems to discuss U.A.S for some neutral Volterra integro-

differential equations in the last section. 
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3.2 Preliminaries 

Let 

BC = : (-00,0] i—^ R"^ : is continuous and hounded on ( - o o , 0]}, 

BU = e BC : xjj is uniformly continuous on (—oo, 0]}, 

IIV̂ II = sup{|V (̂(9)| :-oo<0<0fori;e BC} 

\x\\[a,b] = sup{|x(6')| :a<0 <b, - o o <a<b< oo}, 

||"||[T’oo) = sup{|/i(t)| :T<t<ooforhe 

and 

= : IIV̂ II < 7 , 7 � 0 } . 

Space BC and BU with the above supremum norm are Banach space. BU sat-

isfies all axioms for the phase space mentioned in [8] and is also an admissible 

phase space [11, 6, 7 . 

Consider the NFDE with infinite delay of the form 

j D ( t , x t ) = f{t,Xt), t > to > 0 (3.2.1) 

where XT 二 x(t+(9), - o o < 6' < 0, and / : [0，OO)XCH ‘~^ are continuous 

{H〉0). 

By a solution of (3.2.1) we mean an x G C(( -oo,to + A % W ) for some 

A* > 0 and to > 0 such that (i) {t, Xt) G [0, oo) x Ch for t G [to, to + ； � 

D(t,xt) is continuously differential and satisfies (3.2.1) on [to, to + A*]. If, in 

addition, Xto 二 . & Ch, then we say x is a solution of (3.2.1) through (to, ̂  ) 

and we denote it by x(to, W)(力). 
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The general fundamental theory concerning existence, uniqueness, contin-

uation of solutions in the abstract phase space for NFDE with infinite delay 

has been established. We refer to [8，11. 

We always assume that D and f satisfy certain conditions to ensure the 

existence, uniqueness and continuation of solutions of (3.2.1), and that 

卯,0) 二/M) = o. 

Then (3.2.1) has the zero solution x{t) 二 0. 

Definition 3.2.1 The zero solution x{t) = 0 of (3.2.1) is said to be uni-

formly stable (U.S) if for each e > 0 there is a 6 = 5{e) > 0 such that 

to e [0,oo), IMI < <5,t > to] imply \x{to,(p){t)\ < s. 

Definition 3.2.2 The zero solution x{t) = 0 o/(3.2.1) is said to be uniformly 

asymptotically stable {U.A.S) if it is U.S and if there is a 6o > 0 and for any 

r j � 0 there exists aT 二 T{r]) > 0 such that [to e [0, oo), \\(p\\ < 〜，t 2 to + T 

imply < ri. 

Definition 3.2.3 Let operator D : [0, oo) x Ch {H > 0) \> M^ be continu-

ous. D IS said to he weak-uniformly stable if there exist constants k > 0 and 

B >0 {B < H) such that for any ^ e CB^T e [0, oo) and h G C([0, oo),W), 

the continuous solution x{t) = x(r, h){t) of the functional difference equa-

tion 
D{t,xt) = h{t), 丁 = (3.2.2) 

satisfies the estimate 

x{t)\ < k\\xr\\ + k\\h\\[T,t] whenever ||/i||[r,t] < B for t>T. (3.2.3) 
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D is said to be weak-uniformly asymptotically stable if there exists constant 

ki> 0 and 7 > 0 (7 < i j ) and for any given a > 0 there exists a nonincreasing 

function g’{u�: [0, 00) 1 ^ [0,1] with g^A^) 二 • sudi that for any 

T e [O.oo) and h g c([0, 00)，r") with ||"||[t’oo) < 7, the solution x(t) 0/(3.2.2) 

with Xt G Cry for all t > T satisfies 

\x{t)\ < h g ’ � t — r)||x,|| + h{\\h\\ir,t] + or),t> T. (3.2.4) 

Example 3.2.1 Consider the scalar nonlinear D-operator with infinite delay 

POO 

D{t, =侧—/ B(t, u)Q{t — u, ilj{-u))du, t > 0. 

J 0 

where B(t,u) g L\[0,oo)) for each t € [0, 00), q ( s , x) is continuous func-

tion, |q(5,x)| < IS a positive integer, b > 0 , � lB(t,u)\du converges 

uniformly for all t g [0, 00), /。沈 \B{t, u)\du < Pi for all t g [0, 00) and bPi < 1. 

We will prove that the above is weak-uniformly stable and weak-

uniformly asymptotically stable. Indeed, choose B 二 ( l - 6 P i ) / 2 < 1. For any 

ipeCB^r e [0, 00) and h e C([0, 00), R), we claim that when ||/i||[r,ti] < B for 

ti > T, \x{t)\ 二 |x(T，(̂ ,")(t) < 1 for all t e [r,ti]. Otherwise, let t* = inf{t G 

r,ti] : \x{t) > 1}. Obviously r < t* < and \x{t*)\ = 1. For r < 5 < t*, we 

have 

\x{s)\ < 厂 \B{s,s-e)\b\x{0)rd0 + \h{s)\ 
J —00 

< r \B{s,s - e)\b\x{e)\de + \h{s)\ 
J—00 

二 b � B ( s , s - 0)\\x{0)\d0 + b r 1^(5, s - e)\\x{0)\d0 + 1/1(5)1 
J-oo “ 

< bPi\\XR\\ + bPi\\x\\[r,t*] + ||"||[r’t*]. 
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Then 

|工||[7,力*] < + bPi\\x\\[r,t-] + \\h\\[r,t*], 

bPi 1 2B _ 
I工(力*)| < < + I ^ I H I [ T ， " < = 1. 

This contradiction implies that our claim is true. Then by an argument similar 

to the above, we easily have 

bPi 1 ^ 
^ r ： ： ^ " ; " . ! ^ 丨 斷 

< k\\xr\\ + k\\h\\[r^t],'whenever\\h\\[r^t] < B for t>T. (3.2.5) 

where k = 1/1 — bPi. This proves that D{t, ifj) is weak-uniformly stable . 

Choose ki = k = l l l - bPi and 7 = B = (1 - hPi)/2. Let ||/i||[r,oo) < 7 

and Xt e Oy for all t > 丁. Then for any given a > 0, fix T > 0 with 

bjf^ lB(t,u)ldu < cr for all t G [0, 00). For r + T < 5 < t, we have, using 

(3.2.5), 

|x(5)| < b r^\B{s,s-e)\\x{e)\do 
J—OO 

+ b�\B{s,s-0)\\x{e)\d0+\\h\\ir,t] 
Js-T 

< bPi\\x\\[r,t] + (il^IlM 

^奶(T "̂知丨丨+ ！̂丨丨‘丨“)+ (丨丨‘丨“ + “) 

Then 

丨丨‘…！^丨丨知丨丨+ ！ ^ _ 一 ) ， 力 … 了 . 
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By induction, we have 

for t > r + (m — 1)T. 

Define 

g’{u) = 爪—1 for (m —lyr 二 1,2,.... 

We have 

\x{t)\ < — T)\\xr\\ + h (||/i||m + …， 

This proves that D(t, V̂ ) is weak-uniformly asymptotically stable. 

We give below a nonlinear D-operator with infinite delay which is weak-

uniformly stable and weak-uniformly asymptotically stable, but is not "uni-

formly stable" (cf. (3.1.1)). 

Example 3.2.2 Consider the scalar nonlinear D-operator 
Q/2 /»oo 

卯 , 功 ) = # ) ) —^f^e-"�eHs)ds, t>0. 

For all t e [0, oo), we have 
厂 t e l s c f 厂 e - T > 0. 

JT l + t2 2e JT 2e 

By Example 3.2.1. D(t, is weak-uniformly stable and weak-uniformly asymp-

totically stable. But we claim that D{t, ip) does not satisfy the conditions of 

"uniformly stable" (cf. (3.1.1)). Indeed , for any given a�Qandb>Q, x{t) 二 

ê  is a continuous solution of 
D{t,xt) = h{t), t > 0 , x{s) = ^{s) for - oo < 5 < 0, 
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where h{t) = e^/l + = . It is easy to see that for sufficiently large 

t > 0, we have 

e玄 
sup \h{u)\ < b + b j ^ 

0<u<t 丄十力 

< e^ = \x{t). 

This proves our claim. Similarly it is easy to verify that the above D(t, ip) 

does not satisfy the conditions of "uniformly stable" introduced in [24] (cf. 

Definition 4 of [24]).. 

Let a ;�=x{ tQ, ip ) ( t ) be a solution of (3.2.1) with Xt̂  = 仏 Then D{t,Xt) 

is a continuous function of t. Denote D{t, Xt) by H{t). Then D{t, Xt)三 H{t). 

Lemma 3.2.1 Let o/(3.2.1) be weak-uniformly stable and weak-uni-

formly asymptotically stable. Assume 

[Ai) for each � 0 there is a 6' = d'{e') such that [to G [0, oo), \\(p\\ <6',t> 

to] imply 丨丑⑷ I < s'. 

Then the zero solution o/(3.2.1) is U.S . Furthermore assume 

( ]2) there is a 5'q > 0 and for any rf > 0 there exists aT' = T\rf) > 0 such 

that [to G [0,oo), IMI < 5 o , t > to + r] imply \H{t)\ < rf. 

Then the zero solution o/(3.2.1) is U.A.S . 

Proof. For any given £ > 0, let = mm{B,£/2k}. Choose 6' = 6\e') such 

that [to G [0, oo)，IMI <S',t> to] imply \H{t)\ < Let 6 = mm{B, 5丨,£/2k}. 

Then [to e [0, oo), |M| < S , t > to] imply 

x{t)\ < k\\xto\\ + k\\H\\[t^^t] < 
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Hence the zero solution of (3.2.1) is U.S. Next we will prove that the zero 

solution of (3.2.1) is U.A.S. For r j � 0 , choose a = rj/3ki. Let 0 < 70 < 

min{7, 6'q} and find (5 < 70 such that [to G [0,oo),|M| < S,t > to] imply 

x{t)\ < 7o and < 7o. We have 

\x{t)\ < k 咖 , — r)||x,|| + h{\\H\\ir,t] + t>T> to. 

On the other hand, by (A2), for rf = r]/3ki there exists a r 二 T'{rf) such 

that [to G [0,oo),|M| < 6, t> to + r] imply \H{t)\ < rf. Choose T" > 0 

such that hg，{uyf < rj/3 for u > T". Then [to ^ [0,oo)，IMI < k 

to + T where T = 十 T”] imply 

\x{t)\ < - t o - + + hcT 

< kig’(T”计 kW + 

71 71 T] 
3 3 3 ‘ 

Hence the zero solution of (3.2.1) is U.A.S. The proof is complete. 

Lemma 3.2.2 Let ^ G LH[0.OC)) with ^{s) [—M，M](M > 0) 

ami Ui : [0, 00) 1 > [0, oo)(i 二 1,2) be increasing and continuous functions 

with Ui{t) >0 as t> 0. If there exists a constant A � 0 such that 

r (t){t - s)ui{\x{s)\)ds > X, te [to + r,oo), r > 0, ( 3 .2 .6 ) 
Jt-r 

then there exists a constant /x > 0 which is dependent only on r,入 and M such 

that 

f U2{\x{s)\)ds > II. 
Jt-r 
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Proof. Let 

厂(l)(^s�ds = R>0, 
Jo 

_ = {s : \x{t - s)\ > u];^{X/2R),0< s < r } where t satisfies (3.2.6) 

and m{E{t)) be the Lebesgue measure of E(t). If 

L 释 < 

then 

rr 

X s (l){s)ui{\x{t -
—Jo 
二 树工(力-州)办 + —训办 

< i � + ui (u^WR))又。,腳)雜 

入 、 
< - + — 二 入. 

2 2R 

This is a contradiction. Hence f _ ^{s)ds > A/2wi(M) . Since 0 G Li([0, oo)), 

there exists ^ > 0 for X/Aui{M) such that Je (l>{s)ds < A/4ni(M) for each 

E c [0, oo) with m{E) < 6. We claim that there exists a constant > 0 such 

that m{E{t)) > / / for all t which satisfy (3.2.6). Otherwise, there exists some 

ti which satisfies (3.2.6) such that m{E{ti)) < 6. Then 

is a contradiction. Then for all t which satisfy (3.2.6), we have 

r U2{\x{s)\)ds > f U'zilxit - s)\)ds 
Jt-r J E{t) 

> U2 {u^\X/2R)) 

= M 

> 0. 
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The proof is complete. 

3.3 Uniformly Asymptotic Stability 

In this section, we assume that D(t, of (3.2.1) is weak-uniformly stable and 

weak-uniformly asymptotically stable. 

An increasing and continuous function W : [0, oo) i > [0, oo) is called a 

wedge if Vl̂ (O) = 0 and W{s) > 0 as s > 0. 

Let P,q : [0,oo) i ^ [0, oo) be continuous, P(s) > s,q{s) > 0 as 5 > 0, 

and q{s) be nonincreasing. 

Let be a continuous nonnegative functional defined inRxC^ where 

0 < A< H. The upper right-hand derivative of V along a solution of (3.2.1) 

is defined to be 

y (t, Xt) = limsup 7 . 
“ 0 + ^ 

We always assume that V'{t,Xt) exists. 

Theorem 3.3.1 Let (j) : [0, oo) i > [0, oo) and /��(Ks)ds = i < oo. Suppose 

that there are V{t, and wedges Wi, z = 1,2,3,4,5, which satisfy the following 

conditions 

(z) Wi{\D{t,xlj)\) < < 1̂ 2(1̂ (̂0)1) + [/O" ^{s)W4m-s)\)ds], 

(ii) V'{t,xt) < -W5{\x{t)\) whenever P{V{t,Xt)) > V{s,Xs) for 

t-q{y(t,xt))<s<t. 

Then the zero solution of (3.2.1) is U.A.S. 
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Proof. Let x{t) 二 ：r(to, (p){t) be a solution of (3.2.1) with Xt^ 二 於 According to 

Lemma 3.2.1, suffice it to prove that condition (Ai) and (As) in Lemma 3.2.1 

are satisfied. For any given s > 0 {e < min{A/4A;, A/2, B}), choose ^ > 0 such 

that 6 < £,W2{6) < Wi{e)/2 and < " ^ i � / 2 . Let |M| < 8 and 

denote � = V { t, X t ) , V ' { t ) = V'{t,Xt). We first prove that \x{t)\ < A/2 for 

all t > to and then Xt G CA for all t > to. Let t 二 inf{t > to : \x{t)\ > A/2}. 

Suffice it to consider the case where {t > U ： \x{t)\ > A/2} is not empty. 

Obviously i > to. If i < oo, then Xt G Ca for t G [to,t\ and = A/2. We 

have 

V � � W 2 { 6 ) + W3[W^{6)i] < Wi{£) for -oo<t< to. (3.3.2) 

We claim that 

V{t) < Wi{s) for all t e [toA- (3.3.3) 

Otherwise, there exists a G {to,t\ such that 

V{s) < V{t') for s < t丨 and V\t') > 0. (3.3.4) 

Then 

P{V{t')) > V{t') > V{s) for t' — q{V{t')) <s<t'. 

By (ii), we have V'{t') < 0. This contradiction proves our claim. Then 

Wi{\H{t)\) < V{t) < Wi{£) for all t e [to,t\ (3.3.5) 

and 

\H{t)\ < e for all t e [to,t\. (3.3.6) 

By (3.2.3), we have 

A/2 = \x{i)\ < k\\xt,\\ + < 2k£ < A/2. 
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This contradiction implies that t = oo. Hence 

x{t)\ <A/2<A for all t > to 

and then 

H{t)\<€ for all t > to. 

Condition (Ai) of Lemma 3.2.1 is satisfied and the zero solution of (3.2.1) is 

U.S. Next we will prove that condition (As) in Lemma 3.2.1 is satisfied. For 

£ 二 min{A, B} , choose ( 5 � � 0 (So < min{A, B j ) such that [to G [0, oo), < 

6o,t > to] imply \x{t)\ < mm{AB}. If |M| < (5o, then V{t) < 恢 2 ( � + 

W3[£W4(A)]三 a for t 2 to. For any given rf > Q < mm{A,B} and 

Wi{r]') < a), choose 0 < ry < r/ and r � 0 such that 

ft—r /"OO 
/ (l){t - s)W^{\x{s)\)ds < Wi{A) / (Ks)ds 

J-oo “ 

< b 

< [去棚] (3.3.7) 

where 6 > 0 is some constant. Let h 二 max{r, q{Wi{r]))}, 0<d< mi{P{u)— 

u : Wi{r]) <u<a} and iV be a positive integer satisfying 

Wi{r]) + {N-l)d<a< Wi{r]) + Nd. (3.3.8) 

If 

t 1 -1 -
j: (l){t - s)W4{\x{s)\)ds > [2^1 w j 力 M力o + r,oo), (3.3.9) 

then, by Lemma 3.2.2, there exists a constant > 0 which is dependent only 

on 7] (note that r is dependent on rj) such that 

W,{\x{s)\)ds > fi. (3.3.10) 
Jt-r 
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Let K be the positive integer satisfying {K -l)fi < a < Kfi, T = { K l ) h 

^ ^ where P = W2—i {lWi{rj)) and Ti = to + h + T. We claim that there 

must exist one point t G [to + h, Ti] such that 

V{t)<Wi{rj) + ( 7 V - l ) d (3.3.11) 

Otherwise, 

V{t) > Wi{r]) + {N — l)d > Wi{rj) for to + h<t< T i . ( 3 . 3 . 1 2 ) 

Then 

P{V{t)) > V{t) + d> Wi{rj) + Nd�V{s) for to<s<t. ( 3 . 3 . 1 3 ) 

From (ii) we have 

V ^ , � S � I) for to + h<t< 7\. ( 3 . 3 . 1 4 ) 

Then 

V(Ti) < Vito + ") — / 1 W^{\x{s)\)ds <a— Ws{\x{s)\)ds. ( 3 . 3 . 1 5 ) 

\ i — Jto+h Jto+h 

On the other hand, we have 
Wi{rj) < y{t) 

< W2{\x{t)\) + Ws [5+ r (f>{t - s)W^{\x{s)\)ds 
L Jt—r -

t o - ^ h < t < T i . ( 3 . 3 . 1 6 ) 

Then either 

华 （3.3.17) 
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or 

W3 \b + [‘ — s)W,{\x{s)\)ds\ > (3.3.18) 
L Jt-r 」 乙 

Let 

Ei = i^te[to + h,Ti\:Ws 6 + > Wi{r])/2^ 

and 

E2 = [to + h,Ti\\Ei. 

lite El, then 

j: (t>(t — s)W,{\x{s)\)ds > 丢W3-1 ( 臺 叫 " ) ) . (3.3.19) 

If t e 丑2, then 

网 ( I妳 ) l ) > (3.3.20) 

It follows that 

[‘W^{\x{s)\)ds >11 for te El (3.3.21) 
Jt-r 

and 

\x{t)\ > f3 for teE2. (3.3.22) 

We have either m{Ei) > {K + l)h or m^ > K m{Ei) > 

[K + l)/i, there must exist K points {ti,力2,...,亡i^} C Ei with U+i - U > 

(i 二 1, 2 , . . . , K — 1) and ti > to + 2h. Then 

V(Ti) < a- [ ' Ws{\x{s)\)ds 
_ Jto+h 

< r W,{\x{s)\)ds 
i二 1 Jti-r 

< a — Kfi 

< 0. (3.3.23) 
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lim{E2) > 2a/W5{P), then 

V{Ti) < a- W^{\x{s)\)ds 

< a —m(丑 2)W5(/3) 

< 0. (3.3.24) 

Hence there exists some t e [toh, Ti] such that 

V{t)<WI{r]) + {N-l)d. (3.3.25) 

We claim that 

V � S Wi{r]) + (TV — l)d for t > I (3.3.26) 

If not, there exists some t * � i such that 

+ and V\t*) > 0. (3.3.27) 

Then 

P{y{e)) > V{f) + d> Wi{rj) + Nd> V{s) for to < s < t\ 

By (ii), we have V'{t*) < 0, which is a contradiction. Hence 

l/(t) S WM + (iV — l)d for t>Ti = to + h + T. (3.3.28) 

By induction, we can prove that 

V(t) < Wi{rj) + n)d f or t > Tn,n = 1,2,…,N. (3.3.29) 

where 7； = Tn-i + (/i + T) = to + n{h + T) and To 二 to. Then 

Wi{\H{t)\) <V{t) <Wi{r]) for t >Tn = U + N{h-hT) (3.3.30) 
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and 

\H{t)\ <r]<rj' for t>to + N{h + T). (3.3.31) 

Hence condition (As) in Lemma 3.2.1 is satisfied. The proof is complete. 

Theorem 3.3.2 Suppose that there are V, P, q and wedges 二 1, 2 , . . . , 6) 

satisfying the following conditions 

(z) Wi{\D{t,m < < W2(|HI), 

(zz) V\t,xt) < -W^{\D{t,Xt)\) whenever P(y{t,xt)) > V{s,Xs) for 

max{0,t-q{V{t,Xt))} <s<t, 

[Hi) f ： [0, oo) X {hounded sets of CA) ' � h o u n d e d sets of 

O ) for any cJi > 0 and B' > 0 {B' < min{A, H]) there exists an ri > Q 

such that [ri G [0, oo), ||^||(-oo,n-t] <B',t>Ti + n] imply 

V{t, xjj) < W4(|D(t，釣 I) + W^{\\tlj\\[r,-t,0]) + 购 

Then the zero solution o/(3.2.1) is U.A.S. 

Proof. Let x{t) = be a solution of (3.2.1) with Xt^ = For any 

given £ > 0 (£： < mm{A/Ak,A/2,B}), choose 6 > 0 such that (5 < £ and 

W 2 � < Wi{£). Let IMI < S and denote V{t) 二 l/(t，rrO, = V'{t,Xt). 

Using an argument similar to Theorem 3.3.1’ we easily prove Xt G Ca for all 

t > to. We have 

\/� S W 2 � < Wi{£) for t < to. (3.3.32) 

We claim that 

V(t) < Wi(£) for all t > to. (3.3.33) 
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If not, there exists t丨 > to such that 

V{t') > V{s) for s < t丨 and V\t') > 0. (3.3.34) 

Then 

P{V{t')) > V{t') > V{s) for max{0, t' — q{y{t'))} <s<t'. 

By (ii) we have V'{t') < 0. This contradiction proves our claim. 

Then 

Wi{\H{t)\) < V{t) < Wi{£) for all t > to (3.3.35) 

and 

\H{t)\ <s for all t > to- (3.3.36) 

By Lemma 3.2.1 , the zero solution of (3.2.1) is U.S. 

We next show that the zero solution of (3.2.1) is U.A.S. For some 0 < 6 < 

min{A,B,7} , choose 0 < So < b such that [to > 0, ||(̂|| < So,t > to] imply 

x{t)\ < b and \H{t)\ < b. For any 0 < r/ < 6 with H^r/ ) < W2(A), choose 

0 < r/ < 7/ and let 0 < d < inf{P(^) u : Wiir]) <u< W2{A)} and iV be a 

positive integer satisfying 

Wi{r]) + {N- l)d < W2{A) < Wiiv) + Nd. (3.3.37) 

For (J = {l/4.ki)W^\Wi{r])/3) (W丄.O.G assume A;i > 1) , we have , using 

(3.2.4)， 

x{t)\ < kigj,a{t - T ) | | X ^ | | + ki\\H\\[r,t] + he 

< hg^At — r)A + h\\H\\^rA + W/3 ) , 

t>T>to. (3.3.38) 
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Choose r > 0 such that k咖,“r )A < 全W5—i(M^i(”)/3). Then 

\x{t)\ < h\\H\\^r,t] + \w,-\Wi{r])/3), t>T + r. (3.3.39) 

On the other hand, by (iv), for ai 二 Wg—iC恥0?)/3) and B' = mm{A,B}/2 

there exists an ri > 0 such that for any ti G [to, 00), 

� S ,4(1 丑⑷I) + ,5(IMI[ri’t]) + t>ri+ n. (3.3.40) 

When t > t o + r + ri ,hy (3.3.39), we have, for t - n < s < t, 

|x(5)| < h\\H\\[t-r-r,,s] + (3.3.41) 

< h\\H\\[t-r-ra] + t>to + r + n . (3.3.42) 

Let h = m8.x{r+n,q{Wi{r]))} andm = mm{W^\Wi{ri)/3), 

By (iii), there exists a constant L > 0 such that \H'{t)\ < L for all t>to. Let 

K be the smallest integer > LhW2(A)/mWs(m/2ki) and J\ = to + (2K-\-l)h. 

We claim that there exists a point t G [to + h, Ti] such that 

V � < + {N- l)d. (3.3.43) 

Otherwise, 

V̂  � 2 Wi{v) + l)d > Wiirj) for to^h<t< (3.3.44) 

Noting that V{t) < W2{A) < Wi{r]) + Nd for all t > to, we have 

P(y{t)) > � + d 2 + iVd 2 V{s) for to<s<t 

where to + h < t < T i . Then 

P{V{t)) > V{s) for t — q{V{t)) <s<t where to + h<t<Ti. 
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Prom (ii), we have 

V'{t) < -Ws{\D{t,XT)\) for to + h<t<Ti. 

Then 
了 1 

V{T,) < W2{A) - [ 1 Ws{\H{s)\)ds. (3.3.45) 
Jto+h 

Suppose that 明 > m/h for all t e [to + h,Ti]. Since each interval of 

length h contains an s with \H{s)\ > m/ki, there exist K points tj G [to+h, Ti 

satisfying 

to + 2jh < tj <to + {2j + l)h, j 二 1, 2,.. •, K. 

and 

\H{tj)\>m/ku j = (3.3.46) 

Therefore 

?T1 TTh 
V'{t) < -Ws{m/2h) for - ^ < ^ < + 硕 (3.3.47) 

By taking a large L, if necessary, we can assume that these intervals do not 

overlap and ti - ^ > to + Hence 

777 
V{Ti) < (A) - —Ws{m/2ki)K < 0. 

This contradiction leads to the conclusion that there exists a t e [to + h, Ti 

such that 丨丨丑||[£—M < f , < 爪.价om (3.3.42), we have 
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Prom (3.3.40), we have 

V{i) < W,{\H{i)\) + + < WM- (3.3.48) 

which contradicts (3.3.44). Hence there exists a t* G [to + h,Ti\ such that 

V{e) < Wi{r)) + {N- l)d. (3.3.49) 

We claim that 

� S Wi{ri) + l)d for all t > t\ (3.3.50) 

Otherwise, there exists a t > t* such that V(t) > Wi{rj) + {N - l)d and 

V'{t) > 0. Then 

P{V{^) > V{t) -\-d> Wi{rj) -\-Nd> W2 � > for to<s<l 

By (ii), we have V\t) < 0. This contradiction implies that 

V{t) < Wi{r]) +�N — l)d for all t > t* 

and then 

V(t) < Wi(rj) + (N- l)d for all t>Ti = to^{2K + l)h. 

By induction, using an argument similar to the above, we have 

V(t) < Wi(7j) + (N - n)d 

for all t 2 ：!； 二力0 + n(2K + l)h, n = l,2,…具 Then 

Wi{\H{t)\) < � S Wi{rj) for all t > T/v = to + + l)Nh. 

Hence 

H{t)\ <rj<v' for all t > to+ where T' 二 {2K + l)Nh. 

Prom Lemma 3.2.1, the zero solution of (3.2.1) is U.A.S. The proof is complete. 
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Corollary 3.3.1 Suppose that there are V, P, q and wedges Wi (i 二 1 ,2, . . . , 5) 

satisfying the following conditions 

� 

{ii) V'{t,xt) < — WsO�I) whenever P(y{t,Xt)) > V{s,Xs) for 

(in) f ： [0, oo) X {hounded sets of CA) ‘ ^ hounded sets of M几， 

(^iv) for any ai > 0 and any B' > 0 there exists an n > 0 such that 

n G [0, oo), ||V̂ ||[_oo,ri-t] + ri] imply 

Then the zero solution of the equation with infinite delay 

x\t) = f{t,xt) 

is U.A.S. 

Theorem 3.3.3 Suppose that there are F : R x {x G ： |x| < A} î >̂ 

0,oo), continuous nondecreasing function P, continuous nonincreasing func-

tion q and wedges Wi{i 二 0,1,2,3) und there exists a strictly increasing and 

continuous function a{s) with a(0) = 0 satisfying W 2 ( W o O ) ) < Wi{a{s)) and 

P(W2(Wo(s))) > W2{k2S + k2a{s)) for small s > 0 where k�二 max{A:, ki, 1} 

and k,ki are the constants in Definition 3.2.3. If 

{i) \D{t,ij)\<Wo{M\). 

(n) Wi{\x\) <V{t,x) <W2{\x\), 
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{in) V'{t,D{t,Xt)) < -Ws{\D{t,Xt)\) whenever P{V{t, D{t,Xt))) > 

V{s, x{s)) for max{0, t — q{V{t, D{t, Xt)))} < s < t, where 

… ， � � 1 . V{t + 8, D{t + — D{t, Xt)) 
V (t,D(t,Xt)) = lim sup 7 — , 

then the zero solution of (3.2.1) is U.A.S. 

Proof. Let x{t) = x{tQ,ip){t) be a solution of (3.2.1) with Xt^ = 中. F o r 

any given e > 0 (e < min{A/4A:2,5/4^}), choose small <5 > 0 such that 

3 < e,Wo{6) < s and a{6) < Let \\ip\\ < 石 and 二 {力 2 to : \x{t) > 

b or \H{t)\ > h} where b 二 min{A/2, B/2} and t = inf{t : t G S}. If S is not 

empty, obviously t > to. If i < oo, then either \x{i)\ > b ov \H{t)\ > b. We 

have 

V{t, Hit)) < W2{\H{t)\) < W2{Wo{S)), 0<t<to. 

We claim that 

V{t,H{t)) < W2{Wo{6)) for all t e [to,t]. (3.3.51) 

If not, there exists a f G (to, t\ such that W2(Wo ⑷）=V(力〜H{t')) > V{t, _ 

for all 0 < t < and H{f)) > 0. We have 

Wi{\H{t)\) < V ( t , _ ) < W2(Wo(S)) < (約） f o rO<t< t'. 

Then 

\H{t)\ < a{6) <£ for 0<t<t'. 

By (3.2.3), 

x{t)\ < k\\xto\\ + k\\H\\ito,t'] 

< k2S + k2a{6) 

< 2k2S for 0<t< t'. 
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Then 

p{y(t\H{t'))) = P{W2{Wom 

> W 2 ( M + M⑷） 

> W 2 ( 剛） 

> / o r OS t S 广 

By (iii), 

since 0 < W2(Wo⑷）二 V(t\H{f)) < W2(|丑(0|) and \H{t')\ > 0. This 

contradiction implies that (3.3.51) holds. Then we easily have 

\x{t)\ < /c2(5 + k2a{6) < 2k2£ <b for 0<t<i 

and 

H{t)\ < a(S) <£<b for 0<t<i 

Then 

b < \x{t)\ < b and b < \H{i)\ < b 

which imply that i 二 oo. Similarly, we can prove 

I丑< £ for t>to. (3.3.52) 

If S is empty, then i 二 oo. We can easily prove (3.3.52) holds also . From 

Lemma 3.2.1，the zero solution of (3.2.1) is U.S. 

We next prove the U.A.S. For choose small �，0 < Sq < 

min{A, 5 , 7 } , such that \\ip\\ < 60 implies \x{t)\ < min{A, 7} for t > to, 

\H{t)\ < min{A B, 7} for t > U and V{t, H{t)) < W2(Wo(如)）for t > to. For 
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any given rf > 0, choose 0 < r] < mm{r]', 6o, a{6o),Wi^{W2(Wo{6o)))} and 

choose a sufficiently small d > 0 satisfying d < Wi{ri), P(V^2(Wo(s)) - d) > 

W2{k2S + k2a{s)) for Q-\r])/2 < s < 6o and V^2(Wo(a—1(")/2)) < WM — d 

such that 6i defined below are greater than a—1(77)/2. Let N be the positive 

integer satisfying 

Wi{r]) + ( i V - l)d < W2{Wo{So)) < Wiiv) + Nd (3.3.53) 

and define 氏 � 0 (i = 1, 2，...，AQ as follows 

W2(Wo(幻）二 WMWoO^o)) —id, i 二 1,2’...，N. (3.3.54) 

Obviously � � � . . . � 知 . U s i n g (3.2.4), it is easy to prove that there 

exists a T{6i) > 0 for each 6i{i = 1 ,2 , . . . , AQ such that for any r > 0, when 

\H{t)\ < a{6i) for t > r, 

\x{t)\ < k26i + k2a{6i) for t > T + T � (3.3.55) 

Let N 

h = q(wM — d), r = J2m) 
i=l 

and 

T* 二 r + k + (W2(Wo(So)) + — d))-

We claim that there exists some t" G + + such that 

V{t\ H(t")) < W2{Wo{6o)) — d. (3.3.56) 

Otherwise, 

Wiirj) -d< W2(Wo(如)）—d< V{t, H{t)) < W2(| 丑⑷ |), 
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where to + h + V < t < to + T*. Then 

W^\Wi{r]) -d)< \H{t)\ for to + h + T' <t<to + T\ 

We have 

Wi{\H{t)\) < V{t, H{t)) < W2{Wo{6o)) < WM5o))^ t > to, 

and then 

\H{t)\ < a{6o) for t > to. 

By (3.2.3), we have 

\x{t)\ < k^bo + fea(知）for t > to. (3.3.57) 

Then for t e [to + h + to + T*], we have, noting that h = g(V^i(”）- d) > 

舊 ， 糊 ) ， 

P{V{t,H{t))) > P(W2{Wo{So)) - d) 

> 如 + k2a{6o)) 

> w • • � 1 ) 

> x{s)) for t — q{V{t, H{t))) <s<t 

By (iii), we have 

V{to + T*, H{to + T*)) < W2{Wo{So)) — [W2{Wo{So)) + 1] < 0. 

This contradiction implies that our claim is true. We claim that 

V{t, H{t)) < W2{Wo{6o)) — d for all t > t". 
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If not, there exists a ti > t" such that V\tuH{ti)) > 0 and V{ti,H{ti)) > 

W2{Wo{6o)) - d. We have 

P{V{tuH{t,))) > P{W2{Wo{So)) - d) 

> W2{k26o + k2a{6o)) 

> W2(|:r � I) 

> y(s, x{s)) for ti-h<s< h. 

By (iii), 

V'{tuH{h))<(}. 

This contradiction implies that 

S W2{Wo{5o))-d 

= W 2 ( W o ⑷） 

< Wi{a{Si)) for all t>to + T*. ( 3 . 3 . 5 8 ) 

By (ii), we easily have 

\H{t)\ < a{6i) for all t > to + T* 

and then by (3.3.55), 

\x{t)\ < h^i + haidi) for all t > to + T* + T ( � . 

Similarly, we can prove 

V{t,H{t)) < W2iWoiSo)) - id 

二 W2(Wo⑷） 

< Wi(a(幻)，t + 2 = 0 , 1 , 2 , . ( 3 . 3 . 5 9 ) 
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Then 

WI{\H{t)\) < V{t, Hit)) < W2(Wo((5o)) -Nd< t>to + NT*. 

hence 

\H{t)\ <ri<r]', t>to + NT*. 

By Lemma 3.2.1, the zero solution of (3.2.1) is U.A.S. The proof is complete. 

3.4 Applications 

We review the proofs of Theorem 3.3.1—Theorem 3.3.3. or V(t,x) is 

defined in M x CAOIRX{X EW ： |x| < A} where A is some positive number 

and it doesn't matter how much A is. In applications, we can choose a small 

A < ii necessary. It will be convenient for us to construct the Liapunov 

functionals or functions. 

Example 3.4.1 Consider the scalar equation 

�—广 B{t-s)x^{s)ds = 
at L J-oo 

-ax\t) + 广 C{t — s)x^{s)ds, t > to > 0, (3.4.2) 
J—oo 

where m and n are positive integers, k is a positive odd integer. If the following 

conditions are satisfied 

{t) a > 0, JT \B{s)\ds 二 Pi < 1, /(T \C{s)\ds 二 A < oo， 

and jnC{u)\ds e L\[0,oc)), 

(ii) m,n > /c + 2, 

then the zero solution of (3.4.2) is U.A.S. 
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Proof. By example 3.2.1, 

roo 
D{t, VO =糊—/ B{uyil/\—u)du 

J 0 

is weak-uniformly stable and weak-uniformly asymptotically stable. Let 

v[t,奶=ID]髓 + r 厂 ⑷ 丨 + \c{u)\]du\ij{-s)\^^^ds. 
2 Jo J s 

We can consider V[t,功）defined in [0, oo) x CU, where 0 < A < 1 satisfies 

the following conditions : a/2 > A{Pi + 尸2),1 > + 臺A爪尸2 and 1 > 

A + It is easy to verify 

/ /•oo \ 2 

< hKo)|2+( / \B{s)m-s)rds] 
\j 0 , 

Jo Js 
‘roo ‘ 

< W2(hK0)|)+W3 / c^{s)W4M-s)\)ds 
L^ 0 -

where Wi⑷二 I ? ， ⑷ 二 P，W 3⑷二？ + W 4⑷二？ + and 

0(s) 二 + + \C{u)\)]du. When ||xt|| < A < 1, we have 

Xt) = \x{t) — f B{t - sK�—\-ax\t) + J : C{t - s)x^{s)ds^ 
_ J—00 "I L ^^ 

+ (Pi + P 2 ) — f [\B{t — s)\ + \C{t — 
J—oo 

— J—oo 

+ A ft C(t-s)\\x{s)\'^'ds^lA^P2 f — 工⑷丨"+2办 
J-OO 2 厂⑷ 

+ -A^Pif \C{t — 训 T � 办 + A{Pi + 尸2) 

2 J—oo 

—ft [\B{t-s)\-^\C{t-s)\]\x{s)\'-''ds 
J—oo 

< -[a - A{Pi + 
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—[t f l - a , — 爪 P 2 I —s) .⑷广+2办 
J—oo \ 2 � 

—r [ l - A - ^A^Pi) \C{t — 

< -羞 

= - W 5 ( 刚 1 ) , 

where W5O) 二 {a/2)z^+\ By Theorem 3.3.1, the zero solution of (3.4.2) is 

U.A.S. 

We can also use Theorem 3.3.2 to prove that the zero solution of (3.4.2) 

is U.A.S. For the sake of simplicity, let A; 二 1. Here we consider V{t,ij) 

defined in [0, 00) x CA, where 0 < A < 1 satisfies the following conditions: 

a > 2A{Pi + P2), 2 > a{2A + Pi A几）and 1 > A + Pi A饥 It is easy to verify 

2 丄 

Where L = /• � + \C{u)\)duds. When \\xt\\ < A < 1, we have 

- - B ( t , x t ) 广 B{t — s)xn(s)ds 

2 J—oo 

+ D{t,Xt) f C{t-s)x^{s)ds + {Pi-^P2)\x(t)\^ 
J—oo 

- f {\B{t-s)\ + \C{t-s)\)\x{s)\^ds 
J—OO . , 

< - + + PiA-) f \B{t-s)\\x{s)\'ds 
— 2 2 L J-00 

+ (A + PlA^) r \c{t - + A{Pi + P2)\x{t)\^ 
J—oo 

— ft [\B{t-s)\^\C{t-s)\]\x{s)\^ds 
J — OO 

2 L̂  -

_ 2 J-00 
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- [ 1 - (A + PiA^)] r \C{t - s)\\x{s)\^ds 
J—oo 

We easily see that (iii) of Theorem 3.3.2 is also satisfied. Finally, we verify 

(iv) of Theorem 3.3.2. For any given ai > 0 and B' > 0, choose n > 0 such 

that 
foo roo 

{B'f / / {\B{u)\ + \C{u)\)duds < ai. 
Jri J s 

Then when n G [0, oo), ||7/;||(_oo,ri-t] < B' and t > n + n , we have 

1 ft—Ti roo o 
= / / [\B{u)\ + \C{u)\]du\^i-s)\ ds 

2 J Q J s 
+ r r[\B{u)\+\c{u)Wdu\^{-s)\^ds 

Jt—Tl J S 

roo roo 
+ / mu)\ + \C{u)\]duds 

J Tl J S 

By Theorem 3.3.2, the zero solution of (3.4.2) with A; 二 1 is U.A.S. 

Example 3.4.2 Consider the scalar equation 

�—广 Bit-s)x{s)ds = 
at L J-oo -

-x{t) + cx{t — r) + 广一'1 B{t - s)x{s)ds, t > to > 0, (3.4.3) 
J—oo 

where r > 0 and ri > 0. If 

(i) /(TI^^O)丨办二 Pi < 1 — 

[a) there is some 〉1 such that 

rr , 2 + Fi 

c\c' + j \B{u)\du < 1 and c > 工—尸2, 
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then the zero solution of (3.4.3) is U.A.S. 

Proof. By Example 3.2.1, D{t, VO is weak-uniformly stable and weak-uniformly 

asymptotically stable. We have 

< (i + Pi)IMI =肌(IIV̂ II) 

where WqO) 二（1 + Pi)s. Let V{t,x) 二 二 � = s , P { s ) = 

c's, q{s) = max{r, r i } and a(s) = (1+Pi)s. Then we can verify that 1^2(^0(5)) < 

Wi(a(s ) ) ,P(W2(Wo�)）> W2{hs + k2a{s)) for s > 0,Wi{\x\) < V{t,x) < 

1^2(1^1)- We have 

V'(t,D(t,Xt)) < -\D{t,Xt)\ + \c\\x{t-r)\+ f_ — � 
J t 

< —1- (^\c\c' + \B{u)\du^ 工t)| 

=-Ws{\D{t,Xt)\) 

where W3O) = 1 — (|c|c' + j � ‘ \B{u)\du^ s, 

whenever P{\D{t,Xt)\) > |工(5)| for t - m a x { r , r i } < 5 < t. By Theorem 3.3.3, 

the zero solution of (3.4.3) is U.A.S. 



Chapter 4 

Nonoscillation and Oscillation 

of First Order Linear Neutral 

Equations 

4.1 Introduction 

We study nonoscillations and oscillations of the equation 

- f e e ⑴ 一 Ci 講—⑷)1 + Q 嚇—…二 0, t> to, (4.1.1) 
dt L J 

where Q(t),Q(t) e C[to, oc), Q(t) > 0 ， q � > 0,0 < 7o < 7 i � < 7, and 

There are only a few results for the existence of nonoscillatory solutions of 

first order neutral equations with variable coefficients [28, 31, 33]. In Section 2, 

we obtain several new existence theorems of nonoscillatory solutions. Theorem 

4 2.2 is an extension of a well-known result for delay differential equations 

to neutral equations. Theorem 4.2.3 presents another sufficient condition for 

(4.1.1) to have nonoscillatory solutions which is "sharp" in the sense that when 

all the coefficients and delay arguments of (4.1.1) are constants, the condition 

79 
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is also necessary. Theorem 4.2.4 is a comparison theorem for neutral equation 

(4.1.1) to have nonoscillatory solutions. 

In Section 3, we study oscillations of (4.1.1) (Theorem 4.3.1). There have 

been a lot of activities [27, 28, 29, 31, 32] in the study of oscillations of first 

order neutral equations with variable coefficients. Our Theorem 4.3.1 gen-

eralizes and improves a main result of [31] under weaker conditions. When 

the coefficients and delay arguments of (4.1.1) are constants, the conditions 

of Theorem 4.3.1 are both necessary and sufficient. 

In Remark 1, we point out some shortcomings appearing in the proofs of 

some theorems in [31, 36 . 

A solution of (4.1.1) is called oscillatory if it has arbitrary large zeros and 

nonoscillatory if it is eventually positive or eventually negative. 

4 2 Existence of Nonoscillatory Solutions 

Set 
� 5 (4.2.1) 

Lemma 4.2.1 Assume that (4.2.1) holds and r r � is an eventually positive 

solution of (4.1.1). Then y{t) > 0 for all sufficiently large t, where 

fc 

y(t) 二 x(t) - [ Q � : - 7 i � ) . (4-2.2) 
i=l 

Proof. Prom (4.1.1), we have y'{t) < 0 for all large t. Then y { t ) � 0 or 

y(^t) < 0 for all large t. We claim that y{t) < 0 is impossible. Otherwise, if 

x{t) is unbounded, there is a sequence {tn} such that limn->oo tn =十⑷ and 
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x{tn) = maxt<t^ x(t). Then 

0 > y{tn) 

k 

二 水）—Ci( tn)00{ tn — 7i{tn)) 
i=l 

• k -

> X(tn) 1 - E c i � 
-

> 0. (4-2.3) 

If x(t) is bounded, there is a sequence [tj] such that limj_oo tj 二 +oo and 

\imj^oox{tj) = lim sup“�工⑴.Without loss of generality, we assume that 

{Ci{tj)} and {x{tj — ^ 4 ) are convergent . Then 

0 > lim y{tj) 
j — oo 

- k ‘ 
> limsupx(t) lim 1 - ^Ci{t j ) 
— t—oo 3-00 L � _ 

> 0. (4.2.4) 

By (4.2.3) and (4.2.4), we conclude that y{t) < 0 is impossible. The proof is 

complete. 

Lemma 4.2.2 Assume that (4.2.1) holds. Then (4.1.1) has a nonoscillatory 

solution if and only if the integral equation 

—Y . Cijt -咖⑴入(t —(力—…)exp {广 X{s)ds] 

+ Q(t)expf r X{s)ds) , t>T. (12.5) 
\Jt-a / 

has a positive continuous solution X{t) G C[T — r, oo) for some sufficiently 

large T, where r 二 max{7, cr}. 
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Proof. Necessity. Without loss of generality, we assume that x{t) > 0 {t > 

T — 2T) is a nonoscillatory solution of (4.1.1). Set 

X{t) = ^^^ where y(t) = x{t) — ； | > 耐 — 7 i � ) . 

By Lemma4.2.1, we have X{t) > 0 (t > T - r) and 

= ( 广 释 V (4.2.6) 
yyh) V/ti ) 

Prom (4.1.1), we have 

y\t) = -Q(t)x(t-a). (4.2.7) 

Then 

Q(t)x(t - a) 
A � = m k 

二 L(t — a) + — a)x{t-a-喊—a)) 

y[t) L � 
/ rt \ 

二 Q(t) exp / \{s)ds 
\Jt—a J 

A Ciit-a)Q{t) Q{t-ji{t-a))x{t-a-^i{t-a)) 
+ & ( 卜 务 … ) ^ 

/ ft \ 
二 Q(t) exp / X(s)ds 

\Jt-a / 

+ h 1 办 - … ) — — " ⑷ 

二 Q⑷exp(义二腳s) 

冬 Ci{t - a)Q{t) 

+ h - 7i(t - � ) ) 

务 C7))exp( ft X{s)ds) , t>T. (4.2.8) 

Sufficiency. Assume that (4.2.5) has a positive continuous solution \{t) 6 

C\T — r, oo). Let y(t) 二 exp(— 

S^T-r Ks)ds). Multiplying both sides of (4.2.5) 
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by exp(— 丁 X{s)ds) and rearranging it, we have 

m_E"2_��y\t-7“t-…)+Qmt-…=t>T. 
(4.2.9) 

Then 

� — 1 ( … ) — f (力-飞⑷+ t � T — a. (4.2.10) 

Setting x(t) 二 —y'[t + a)/Q{t + a) and noting y'if) < 0 (t 2 T - t ) , we have 

x{t) > 0, t>T-T-a 

and 

y'(t) = -Q{t)x{t -a), t>T-T. (4.2.11) 

Prom (4.2.10) and (4.2.11), we have 

- [ 0 ； � 一j z Ci 稱 — 7 i � ) 1 + Q{t)x{t — a) 二 0， t > T - T . 

dt L i=i -

The proof is complete. 

Define a mapping for nonnegative 入⑷ G C[T — t , oo) : 

( s r k Ci(t-a)Q{t) 十 (f _ \ \ 

务cr))入、艺 7八；。” 
f p u f t ) = X exp 
( 八 卜 +Q(t)exp(fl^X(s)ds), t>T, 

‘ (PA)( r ) , T-T<t<T, T = max{7,cr}. 

Define a sequence of functions: 

入0(力）二0， T-r<t<oo 

, “ � [ ( P 入 n ) ⑴ ， t k T (4.2.12) 
入 n + i � 二 i T-T<t<T, n = 0 , 1 , 2，.... 

It is easy to prove that An+i (亡) > 入n (亡)for t > T - r. 
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Lemma 4.2.3 Assume that (4.2.1) holds and (4.2.12) converges to a finite 

limit function everywhere on [T - r , oo). Then (4.2.5) has a positive continuous 

solution 入⑴ G C[T — r, oo). 

Proof. Assume that (4.2.12) converges to a finite function A(t) everywhere on 

T - r , oo). Then 

An � “ t)，t>T-r. 

Letting n 一 oo in (4.2.12), we have by Lebesgue Theorem 

= j xexp {lU^t-a) Ks)ds) (4.2.13) 

V) +Q(t)exp {llA{s)ds)^ t>T. 

�X(T), T-T<t<T. 

Because 入⑴ is continuous on [T — r,T], therefore 入(力—7i(力 ^ h) is 

continuous at every 

point in [T,T + 7O]. From (4.2.13), A � is continuous at 

every point in [ T - r , T + 70]. By induction, it is easy to prove that A(t) is 

continuous at every point in [ T - r , T + n7o](n = 0,2,. . . ) . Hence 入⑷ is a 

positive continuous solution of (4.2.5) . The proof is complete. 

Remark 1. We would like to point out that from (4.2.13) and induction 

we can merely conclude that Kit) < \{t) for t > T + (n - l )r , but not 

for t > T - r. So we cannot prove that (4.2.12) converges to a finite limit 

function everywhere on [ T - r , 00) if (4.2.5) has a positive continuous solution 

入⑴ G C[T — T, 00). Hence Lemma 2 of [31] is not true, and then the proofs 

of Theorem 1 and 2 of [31] are incomplete. Similar mistakes also appeared in 
36；. 

Prom Lemma 4.2.2 and Lemma 4.2.3, we have 
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Theorem 4.2.1 Assume that (4.2.1) holds and (4.2.12) converges to finite 

limit function everywhere on [T — r, oo) for some sufficiently large T. Then 

(4.1.1) has a nonoscillatory solution. 

Theorem 4.2.2 Assume that (4.2.1) holds and there exist 0 < £ < 1 and 

T > to-\-T such that 

f Q{s)ds < ^ ^ when t>T-T (4.2.14) 
Jt-T e 

and 
- k ‘ 

e- ' e ^ C i { t - a ) + l < 1. (4.2.15) 
_ i=l -

Then (4.1.1) has a nonoscillatory solution. 

Proof. Set Vo{t) 二 - e Q ⑷， t > T - T . 

(EU^E^.Vnit-^dt-a)) 

X exp ( - / “ ( “ ) V；�ds) 

K + i W 二 -Q{t) exp ( - / “ Vn{s)ds)，t 2 T, (4.2.16) 

0奸1 ⑷二 m a x { K + i ( n _ } , 

� T — T s t S T，n 二 0, 1, 2 , . . . . 

From (4.2.14), we have 

广 eQ{s)ds <l-£. 
Jt-T ‘ 

When t > T , 

_ = 普 刺 ) ） 

X exp ( / eQ{s)ds 
\Jt--fi{t-(r) 乂 

-Q{t) exp ( f eQ{s)ds 
\Jt—a J 
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- -

> e - ' + l ( -eQ⑴） 
-i=l -

> -eQ{t) 

=Vo{t). 

Then Vi{T) > Vo{T) and it is easy to prove that Vi{t) is continuous on [T — 

r, oo) and Vi{t) > Vo{t) for t > T - r. By induction we can easily prove that 

Vn+i{t){n = 0,1,2, . . . ) is continuous on [T r, oo) and K+iW > K W for 

t>T -T. Then 

Vo � S Viit) <...< Vnit)... < 0. t > T - r . (4.2.17) 

Set lim.^oo Vnit) = V{t),t > T—T. By (4.2.16) and the Lebesgue Theorem, 

we have 

—Q(t) exp (— j: ^ V{s)ds^ , t>T. (4.2.18) 

From (4.2.16) and (4.2.17), we have 

sup I K + m � - K ( t ) | < |K+m(T) — K(T)|. 
T-T<t<T 

Then V；� converges to V{t) uniformly on [T - r , T]. Hence V{t) is continuous 

on \T — r, Tl. From (4.2.18) and using a method similar to that of Lemma 

4.2.3, we easily prove that V{t) is continuous on [T 一 r, oo) and V{t) < 0. 

Set u{t) 二 一乂0). Then u{t) is a positive continuous solution of (4.2.5). By 

Lemma 4.2.2, (4.1.1) bas a nonoscillatory solution. The proof is complete. 

The following well-known result can be derived immediately from 

Theorem 4.2.2. 
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Corollary 4.2.1 Consider the equation 

x'{t) + Q{t)x{t- (7) = 0 (4.2.19) 

where Q{t) G C[to, oo), Q{t) > Q and a�Q. If 

ft 1 
lim sup / Q{s)ds < —, 

t—OO Jt — (7 6 

then (4.2.19) has a nonoscillatory solution. 

Theorem 4.2.3 Assume that (4.2.1) holds and there exist a /i > 0 and a 

sufficiently large T so that 

sup [ e — y � � � e x p ( / x 7 . ( t - … ) + 去 Q � exp—)1 < 1. (4.2.20) 
t>T Qit — - cO) � 

Then (4.1.1) has a nonoscillatory solution. 

Proof. Set /io 二 supt^TQlX), 

Mn.i 二 sup [ e � e x p ( � 7 “ t - a)) + Q � exp(Mn…， 

=1(3,1，2,.... (4.2.21) 

Comparing (4.2.12) with (4.2.21), we easily have 

Xi{t) < Mo for t>T-T. 

When t > T, 

— f cS - a)Q{t) 办 — … ) ( 广 入 
2 � — 务 a)) 1� “ � ” J 

+ Q � exp ( / 二 入 1 � — 

< y “力二测、、"0 exp(/xo7i(t — ^)) + Q � 

一 幼 ( t 一 7i(t-…) 
< 时. (4.2.22) 
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Hence 入2 � < for t > T — r. By induction, we have 

入几+1(亡)< fj^n for t>T -T, n = 0 ,1 ,2 , . . . . 

On the other hand, we have from (4.2.20) 

sup If： 二 f — y � � � / i exp(/i7“t - … ) + Qit) exp(—1 < /i. (4.2.23) 

We easily have 

Mo < M. (4.2.24) 

By (4.2.23), (4.2.24) and induction, we have 

IĴn < n = 0,1,2，.... 

Then 

Xn^lit) < M for t>T-T. 

Hence (4.2.12) converges to a finite limit function everywhere. By Theorem 

4.2.1, (4.1.1) has a nonoscillatory solution. The proof is complete. 

Corollary 4.2.2 Consider the equation 

-\x{t) — jz CixQt - tOI + 収(力 - d = 0, t> to, (4-2.25) 
dt [ -

where Q 2 0,7i�• (z G 4), J > • — q > 0. If there exists a fi > 0 such 

that 
. k I 

y Ci exp(/x7i) + -gexp(/icr) < 1, (4.2.26) 

then (4.2.25) has a nonoscillatory solution. 

Proof. (4.2.26) implies that E L i Q < 1. By Theorem 4.2.3，Corollary 4.2.2 is 

true. The proof is complete. 
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Corollary 4.2.3 Assume that E t i Ci{t) < 1 - 6 {0 < 6 < 1) and Q{t) 

monotonically tends to zero. Then (4.1.1) has a nonoscillatory solution. 

Proof. Choose a positive number such that 1 — (1 — <5) exp(/i7) > 0. Then 

choose a sufficiently large T so that 
1 

sup -Q{t) exp(/x(7) < exp(/x7). 
t>T M 

Then we have 

sup [ e n f — f 力)��exP(/n“力-…)+ > e x p — ) 

< (1 - exp07) + sup -Q{t) exp (/id) 
t>T M 

< 1. 

By Theorem 4.2.3, (4.1.1) has a nonoscillatory solution. The proof is complete. 

Theorem 4.2.4 {i) Assume that Q{t) is nonincreasing, Q{t) < < 

{i e Ik), Q � � Q (Z e Ik), and E t i C i⑴ < 1. If (4.2.25) has a nonoscilla-

tory solution, then (4.1.1) has a nonoscillatory solution. 

(ii) Assume that Q � is nonincreasing, Q{t) < g,7iOO < 7 ^ h). and 

Ef二 1 Ci{t) <c<l. If the equation 

� — a L [ t — 7)] + (Mt - A) = 0, t> TO, (4.2.27) 
dt 

has a nonoscillatory solution, then (4.1.1) has a nonoscillatory solution. 

Proof, (i) Assume that (4.2.25) has a nonoscillatory solution. According to 

Corollary 4.3.2 in Section 3 (or refer to [30, 34, 35]), there exists a / x � 0 such 

that 
fc 1 

^ Ci exp07i) + -q exp(/xcr) < 1. (4.2.28) 

i=i ^ 
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Then 

sup [ e — y � � � e x p ( M 7 i ( t - … ) + ^Q(t) e x p — ) 
t>T Lfci - - cr)) M J 

k 1 
exp(M7i) + -Q exp(/iC7) 

i=i ^ 
< 1 

By Theorem 4.2.3，(4.1.1) has a nonoscillatory solution. Analogously, we can 

prove that the conclusion of (ii) is true . The proof is complete. 

4.3 Oscillation 

The following result generalizes and improves Theorem 2 of Grove et a/. [31.. 

Theorem 4.3.1 Assume that (4.2.1) holds and there is a sufficiently large T 

such that 

inf [ f -二““，、、exp(/.7.(t - -)) + 去 Q � exp(—1 > 1. (4.3.1) 

Then all solutions o/(4.1.1) oscillate. 

If (4.1.1) has a nonoscillatory solution x(t), we assume that x{t) > 0 

for t > T - 2r. By Lemma 4.2.2, there exists a positive continuous function 

入(t) G C[T — r, oo) such that 

A(t) 二 i：即)A(力 1 “力 - … ) e x p ( /二 (t——A� ds) 

+ Q W E X P ( r X(s)ds) , t>T, (4.3.2) 
\Jt—a J 

where 
Ci{t-a)Q{t) 
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Set 

Mo = 0, 

• k ‘ 

fin = inf ^ Ei{t)fin-1 exp{i^n-Mt - cr)) + Q{t) exp(/in-l^)， 

“ 1 n = l , 2 , . . . . (4.3.3) 

By induction, it is easy to prove that 

Mo < /ii < M2 < • • • < Mn < • • •. (4.3.4) 

When t > r - T a n d /xq < 入⑷,using (4.3.2), (4.3.3), and induction, we easily 

prove that 

< \{t) for t > T + (n - 1)t, n 二 1 ,2 , . . . . 

Set lim,—oo /in = M*. If M* = +⑷，then lim“oo 入⑷=十⑷.Integrate (4.1.1) 

from t — ajl to t and then divide it by y(t — a/2). Noting that y{t) < x{t) 

and y{t) is decreasing, we have 

於—一 t Qis)ds < 0, t>T. 
y{t — a/2) y(t — c r / 2 ) Jt-<r/2 

Using (4.2.6), we have . 

exp [ 广 X{s)ds) - 1 + exp [j:二' A ⑷ 一 / 二 2 卿 ‘ < 0 , t > T . 

(4.3.5) 

We claim that there exists some a > 0 such that Q{t) > a (t > T - r). 

Otherwise, there exists a sequence {U} such that Q(tn) = G � and 

lim—(3(力n) = 0. Wehave 

lim -Q{tn) exp(/xa) = 0, M > 0, (4.3.6) 
n—oo jji 
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and 

fc 
E Eiitn) exp{fiji{tn — (j)) < exp(/i7), � 0 . (4.3.7) 

i=l 

For any given e > 0, in view of (4.3.6) and (4.3.7) we can select a sufficiently 

small /i > 0 and a sufficiently large n so that 

/e -| 
E Ei{tn) exp(M7i(tn - + -Q{tn) exp(/i^) < 1 + (4.3.8) 
i=l ^ 

Hence 

_ fc 1 _ 
inf V Ei(t) expOn(力 -a)) + -Q{t) exp(/ia) < 1 + ( 4 . 3 . 9 ) 

t>T,fi>0 M 」 

Letting £ 0 in (4.3.9), we have 

- 1 
inf y Ei{t) exp( /x7 i(力—+ " Q W exp(/ia) < 1 

which contradicts (4.3.1). Let t — +oo in (4.3.5). Then the first term of 

(4.3.5) tends to zero and the third term tends to +oc. This is a contradiction. 

Hence /x* < oo. Set 

P n � 二 ；^ 丑 i�/ in -1 exp(/in-(力—^)) + Q � exp(/in—1…， （4.3.10) 

i二 1 

and 

P � 二 E聯 exp(/i*7i(t — (j)) + Q � exp(MV). (4.3.11) 

For any given e: > 0, there exists a t^ > ^ for each (pn(t) such that 

(^n(tn) S / i n + (4.3.12) 

In view of (4.3.12), { E S n ) } and {Q(tn)} are bounded. Without loss of gener-

ality, we assume that l i m , — �咖 ^ 4),limn-.oo Q(tn), and l i m , — �他 -

a) (i € h) exist. Set 

f = jim I j^ exp(/i*7i(tn — + 咖 e x p ( / i V ) . 
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Then lim几—⑷ ^n{tn) 二 W*. Hence inft>T ^{t) < < /i* + Letting £ 0, 

we have that mft>T ̂ {t) < fi*. Then 

-fc 1 _ 
inf ^ E i � e x p ( / / 7 i ( 力 - … � exp(/iV) < 1 
以U = i “ � 

which contradicts (4.3.1). The proof is complete. 

Remark 2. The condition 0< h < Q{t) < k2 has been assumed in Theorem 

2 of [31]. Here we do not require such an assumption in Theorem 4.3.1. 

Corollary 4.3.1 Assume that E?=i Q < 1. If 

k I 
Y, Ci exp(M7i) + -qexp{fia) > 1 (4.3.13) 

i二 1 ^ 

holds for all /x�0，then all solutions of (4.2.25) oscillate. 

Combining Corollary 4.2.2 and Corollary 4.3.1, we have 

Corollary 4.3.2 All solutions o/(4.2.25) oscillate if and only i/(4.3.13) holds 

for all fi > 0. 



Chapter 5 

Nonoscillation and Oscillation 
of First Order Nonlinear 
Neutral Equations 

5.1 Introduction 

Recently oscillations of first order linear neutral equations have been discussed 

in many papers [27],[28]-[41],[34, 35]. However, there are few results for os-

cillations of first order nonlinear neutral equations and there are only three 

papers [28, 31, 33] dealing with the existence of nonoscillatory solutions of 

first order neutral equations with variable coefficients. [28] and [31] deal with 

linear neutral equations and [33] discusses nonlinear neutral equations which 

have nonoscillatory solutions t � with liminft—oo k � I > 

We first discuss the existence of nonoscillatory solutions for the first order 

nonlinear neutral equation 

！ U t ) 一 E Ci(亡)r ( 力 - 7 i ) + / ( 亡 ， x { t — an)) = 0, (5.1.1) 

dt L i=i . 

and obtain a new sufficient criterion. Next, we discuss oscillations of the 

94 
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nonlinear neutral equation 

W � K “] � m "I 
^ x { t ) - ^ C i { t ) x { t - j i ) + P � — 二 0. (5.1.2) 
批 L i=i J -

and obtain a new condition for all solutions of (5.1.2) to oscillate. 

Our conditions are "sharp" in the sense that when (5.1.1) and (5.1.2) are 

linear neutral equations with constant coefficients, the conditions become both 

necessary and sufficient. 

We refer to [37, 42, 44, 45, 46] for oscillations of higher order neutral 

equations. 

A solution of (5.1.1) or (5.1.2) is called oscillatory if it has arbitrarily large 

zeros and nonoscillatory if it is eventually positive or eventually negative. 

5.2 Existence of Nonoscillatory Solutions 

Consider the equation 

「 K ‘ 

- ： ^ ⑷ 一 ⑷ 工 ( t — 7i) —ai)，...，T(t —a,)) 二 0, t > t o > 0 , 

L “ (5.2.1) 

w l i e r e 7 i � 0 , z e / K = { l , 2 , . . . , i a � 2 0，jG/n = { l , 2 , . . . , n } ;Q ( t ) (z G 

and f are continuous functions and satisfy the following conditions: 

(i) Ci{t) > 0, Y:tiCi{t) < C (0 < C < 1) for all sufficiently large t and 

there is a > cq > 0. 

(ii) f(t, yi,...，yn) 2 0 when yj > 0 for all j e In； 

fit, Kt, 2/1,..., when Zj >yj>0 for all j e In. 
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Definition 5.2.1 A family of functions is equicontinuous on [to, +oo) if for 

any given £ > 0, the interval [to, +oo) can be decomposed into a finite number 

of subintervals in such a way that on each subinterval all functions of the 

family have oscillations less than s. 

A set of functions in C[to, +oo) with ||x|| = s u p � � � I is relatively com-

pact if it is uniformly bounded and equicontinuous on [to, + � ) [ 2 0 , 43 . 

Theorem 5.2.1 Assume that (i) and (ii) hold, 

iQfe) —c 办 —力i| (5.2.2) 

where ko > 0 is a constant, and there exists a h > 0 such that 

sup fit, exp{-hit — a i ) ) , . . . , exp{-h{t — an))) = M < oo (5.2.3) 
t>to 

and 

Ci{t) exp(A;i7i) + exp{kit) j / O , exp(—/ci(«s — di ) ) , . . . , 

exp(-/ci(5 — an)))ds < 1 (5.24) 

for all sufficiently large t. 

Then (5.2.1) has a nonoscillatory solution which tends to zero. 

Proof. Set 

f , � … � e x p ( - M ) < x{t) < exp(-M)， 1 
S 二 j 工⑷ G C[力 0, +⑷）：I 工(力2) — x{h)\ < L\h — hi h>h> to J 

where k � i s sufficiently large such that k̂  > h and E £ i Q � exp(A;27i) > 1; 

L > max{A:o, Ajs} and C + ^ < 1-
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We denote CB all bounded continuous functions in C[to, +00) and define 

a norm ||x|| = s u p � � I工⑷ I in CB. Then CB is a Banach space and is a 

bounded convex closed set M CB-

Define a mapping as follows: 

、，、 ( E £ i - 7.) + r - a i ) , . . . , - t > T, 

= i expO^^f), to<t<T. 

L V 乂 （5.2.5) 

where T is sufficiently large such that T > to + m a x { 7 I , . . . , a i , . . . , cr^}, 

(5.2.4) holds and 

+ f > x p ( — — 卞 ) ) + f S 1 for t2>h> T. (5.2.6) 

i=l i=l 

We need to prove 

a) PS C S. When t>T,we have for x G 5 

K 

( P工)� S I > # ) e x p ( — (力 - 7 i ) ) 
i=l 

+ 厂/(s, exp(-A;i(s — ai ) ) , . . . , exp(-A;i(s — an)))ds 

-K 

二 exp(—M) X ^ Q � expOiTi) 
Li=i 

+ exp(A;it) j : f[s, exp(-/ci(5 — (Ji)),..., exp(-A:i(s 一 (7n)))ds_ 

< exp(—/cit) 

and 

K 

K 

二 exp (-/est) Ci � exp(A;27i) 
i=i 

> exp(—A;2 力). 
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Hence exp(-A:2T) < (Px)(T) < exp(-A;iT). Then 

_ - h < I n ( 尸 � ) < - k i . (5.2.7) 

Prom (5.2.5) and (5.2.7), we have (Px)(t) G C[to,oo) and 

exp(-/c2t) < (Fx)(t) < exp(-A;it) for t > to. 

When t 2 > t i > T, we have 

\{Px){h) - {Px){h)\ 
K 

< \ci{t2Mt2 - 7i) - Ci i t i )x{t i — 7i)| 

i=l 
pt2 

+ / f{s,x{s-ai),...,x{s-an))ds 
Jti 

K 
< h{t2)\x{t2 — 7i) — - 7 i ) l + Hh) — Ci{ti)\x{ti — 7i)j 

i=l 

+ 广 / ( s , e x p ( — — o-i)),. . . , exp(-A:i(s - crn)))ds 
Jti 

< | £ [ Q ( t 2 ) + exp(-/ci ( t i — 7 i ) ) ]| — ti\ 

+ sup / O , exp(-A;i(s — o-i)),. . . , exp(—A;i(s — (7n)))l 亡2 — H 
s>T 

r K K Ml 
< fy办2) + - 7i)) + Y 体2 — ti\ 

.i=l � 

< L\t2 — ti . 

When to<ti<t2< T, using the Mean Value Theorem we have 
�M (ln{Px){T)^ \ (ln{Px){T) \ 

\{Px){t2) - {Px){h)\ = exp(^�T 中 e x p ( T 

< k2\t2 — tl 

< L\t2 — tl . 

Then 

(尸工)(力2) — (P力(力 1)1 < - ti\ for t2>ti> to. 
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Hence Px G S. 

b) P is a continuous mapping. Set Xk 6 S and limfc_̂ oo \\xk - 1̂1 = 0- Then 

xe S, When t > T, 

\{Pxkm-{Px){t)\ 
K 

< X^Q�I工fcO — 7i)— 亡一 oO 
i=i 

/ o o 
/ ( S , X K { S - ( 7 1 ) ， . . . , X K { S - A N ) ) 

—/(s, x ( s - ( 7 i ) , . . . , x{s — an))\ds 
K poo 

< / Gk{s)ds 
• 1 J T 1=1 

roo 

< 11工fc— 刮1 + / Gk{s)ds 
— JT 

where Gk{s) 二 |/0, Xfc(s-ai) , . . . ,Xk{s-(7n)) - f {s, x { s - a i ) , . . . , x { s - a n ) ) l 

Obviously, Gk{s) 二 0 and 

Gk{s) < 2/(5, exp(—fciO — o-i)),. . . , exp(—A;i(s — a”))). 

From the Lebesgue Theorem, we have 
roo 

lim / Gk{s)ds = 0. 
k—oo JT 

Hence 

lim - { P x m i ] = 0. (5.2.8) 
fc—oo \t>T ) 

Then 

lim |0P:i:fc)(T)-(P:c)Cr)| = O. (5.2.9) fc—OO 

When to<t<T, 
、 ， 、 � " � HPx,){T) HPx){T) 

< HPxk){T) — ln(Px)(T)|. (5.2.10) 
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Combining (5.2.9) and (5.2.10), we have 

lim [ sup \{Pxk){t) - {Px){t)\ = 0 . (5.2.11) 
“⑴[to<t<T . 

From (5.2.8) and (5.2.11), it follows that 

lim \\Pxk — Px\\ = 0. 
k-^oo 

c) PS is relatively compact. Obviously, PS is uniformly bounded. For any 

X 6 we have 

( P r e ) � I S e x p ( - M ) 

and 

\{Px){t2) — (Px)(ti)| < L|t2 — h\ for t2>ti> to. 

Then for any given £ � 0 , there exists a sufficiently large T' > to such that 

exp(—fcit) < f for t > r and then 

\{Px){t2) - {Px){h)\ < s for h>h> r. (5.2.12) 

Let 6 = e/L. When to < ti < < T' and — S 石’ 

I (Pa;)(力2)-(P^ (亡 1)1 (5.2.13) 

Prom (5.2.12) and (5.2.13), PS is equicontinuous on [力o,oo). Hence PS is a 

relatively compact set. According to Schauder's fixed point theorem, P has a 

fixed point x*(t) in S. Obviously, x*(t) is a nonoscillatory solution of (5.2.1) 

which tends to zero. The proof is complete. 

Prom Theorem 5.2.1, we have 
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Corollary 5.2.1 Assume that Ci(t) andpj{t) are nonnegative continuous func-

tions and Ci{t) satisfies (i) and (3). If c人t) < Ĉ , P J � G Pj and there exists a 

positive fi such that 

K in 
Ci exp07 i ) + e x p O j j ) < 1, (5.2.14) 

i=i “ j 二1 

then the equation 

^ [x(t) — f y ^ M t — 7̂ )1 + j2pj{t)x{t - aj) 二 0, t > to > 0, (5.2.15) 
壯 L i=l J 

has a nonoscillatory solution which tends to zero. 

Remark 1. When q �三 Q and Pj[t)三 Pj, (5.2.14) is equivalent to that 

the characteristic equation of (5.2.15) has no real roots. Hence (5.2.14) is 

a necessary and sufficient condition for (5.2.15) with constant coefficients to 

have a nonoscillatory solution [27, 30, 34, 35 . 

Remark 2. All nonoscillation theorems of [28] can be derived from Corollary 

5.2.1 or Theorem 5.2.1. 

Corollary 5.2.2 Consider 
厂 yy^ . “ 

！ k ) — ⑴ 工 ( t i ) ⑴ riW, —〜—rr⑴=0, 
dt . 7=1 lk=l - � 

L '-1 (5.2.16) 

where t > to > O^i > 0, > ^h 2 • (z G IKJ ^ In,k G Im, 二 

{1 2, . . .,mj})]Ci{t) and pj{t) are nonnegative continuous functions; Ci{t) sat-

isfies (i) and (3). 

// there exists a positive number fi such that for some sufficiently large T, 

r / 爪 、 1 
sup p j { t ) e x p i - f ^ ^ a j , t ] < o o for all j G 4 (5.2.17) 
t>T L \ )-
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and 
{ K n / rrij \ 

Ci(̂ ) exp(/i7i) + ^ exp /i ^ oijk�jk 
i=i j=i \ k=i / 

,rrij \ 1 
X rpj{s)exp < 1. (5.2.18) 

Jt L \k=i J\ ) 

then (5.2.16) has a nonosdilatory solution which tends to zero. 

5.3 Oscillation 

Consider the equation 

d � K "1 rn 

dt i=i � 
(5.3.1) 

where 0 < 71 < 72 < • • • < Ik, 0 < ai <• - • < dm, Q^fc�0 and E ^ i < 

1； CI{T) > 0 { I E IK) and p � � 0 are continuous. 

Lemma 5.3.1 Assume that E ^ i ^ W < C < 1 and r p{s)ds = 00. If x{t) 

IS an eventually positive solution 0/(5.3.1)，then y{t) > 0 eventually mono-

tonically tends to zero, where y{t) 二 x�一Ci{t)x{t - 7i)-

Proof. From (5.3.1), we have y'{t) < 0 eventually. Then 

lim y(t) 二 —oo (5.3.2) 
t—po 

or 

lim y(t) 二 a > - c o . (5.3.3) 

If (5.3.2) holds, then x{t) is unbounded and there exists a sequence {tk} such 

that lim,^00 h 二 +00 and x{h) = max^s,, We have 

K 

yitk) 二 工(tk) 一 
i=l 
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f K � 

>工⑷1 — E c i � 
\ i=i / 

> 0 (5.3.4) 

which contradicts (5.3.2). Hence (5.3.3) holds. Prom (5.3.4), x{t) must be 

bounded. Set Ymik ôo x[t'k) 二 l i m s u p “ � � . W i t h o u t loss of generality, we 

assume that limfc—oo Ci(t'k) and lim -̂̂ oo x{t'k — 7i) exist. Then 

a = lim y{t'k) 
k—oo 

- K -

> lim supx(t) 1 - lim Eci(t'fc) 
— “ o o L “⑴ i二 1 」 

> 0. 

If a > 0，then from (5.3.1) and x{t) > y{t) we have 

广+00 饥 
a — y(T) = — / p(s) n - (^kT'ds 二 - o o . 

片 k=i 

This contradiction implies that a = 0. The proof is complete. 

Theorem 5.3.1 IfEf=i C i � < C < 1 and there exists some sufficiently large 

T such that 

inf i D{t) l^p(t) exp (fi £ a/cfTfc) + ^ Ei{t) exp(/i7i) | > 1 (5.3.5) 
t>T,/x>0 [ [/X V J 」 

where D{t) = [l + ^(t - and 糊 = ^ ^ E K L i Q ( 力 — 

G IK), then all solutions o/(5.3.1) oscillate. 

p_f. By (5.3.5) we can prove that there exists some d>0 such that p{t) > 

^ > T). Otherwise, mU>TP(t) = 0 and there exists a sequence {tn} such 

that p(tn) = minKt, p{t) and limn-.ooP(^n) = Then 
1 / m \ 

l im -p{tn) exp U X ] ak(Jk = 0 , / i 〉 0 . (5.3.6) 
几—⑴.iLt V k=i / 
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and 

K K 

Ei[tn) exp(/i7i) < Ciitn - cTi) exp(/i7i) 
i—l i=l 

K 

i=l 
< C exp(/i7K). (5.3.7) 

Prom (5.3.6) and (5.3.7), noting that � 爪 < D{t) < 1, when " � 0 is 

sufficiently small and n is sufficiently large we have 

1 ( m \ K 1 
Ditn) -p{tn) exp /i E akdk + E exp(/i7i) < 1 

.M V k=l / i=l � 

which contradicts (5.3.5). If (5.3.1) has a nonoscillatory solution x � � 0 ， 

then set 
K 

y{t) = x{t) -Y.c,(t)x(t - 7i). (5.3.8) 
i二 1 

According to Lemma 5.3.1，there exists a T such that when t > T --fK-

dm, x(t)�0,0 < y{t) < 1 and y'{t) < 0. Set 

會 - 徵 t > r . (5.3.9) 

Then 

^ = exp f r for ^ [T,oo). (5.3.10) 
yipz) VAi ) 

Prom (5.3.9) and (5.3.1), using Jensen's inequality, when t > T we have 

m � K 1""知 
u(t) 二 ft 

y{t) fc二 1L i二 1 � 
K 广-1 

> ^ f l 1 + Ec“卜⑷ 
yW L i=i 

^ K ‘ 

X n 一 ⑷ + !>(力 _ ⑷工、t 一 ％ —、、 
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m「 K 广-1 

‘m K m m 

X n — � n — 外 — 7 i ) 

1 K m 

e Eimt - n 工 1 - a , - 7 i ) 
y�t) i=i k=i 

‘ rn / rt � & —y'{t - 7i) yit — 7i) 
二 卯）妳)n exp 卜 ̂  春)+ g 

. fc—丄 

=D{t) p(t)exp ( f^o^kf 以(s)cLs) 

+ Y^ Ei{t)u{t 7i) exp (J:_ u{s)ds^ . (5.3.11) 
i=l 卞 -

Set Ao = 0, 

f � f m \ K 1 I 
X̂  二 inf D(t) p(t)ex:p A n - l E 购 Q 丑 � � 入 几 — l e x P ( 入 卜 

i L V fc二 1 / � J 

n = l , 2 , . . . . (5.3.12) 

By induction, it is easy to prove 

入0 < s S … S A Z … 

When t > r ,Ao< u{t). Using (5.3.11), (5.3.12) and induction, we easily prove 

that An < u{t) for t > T + nmax{7K,cTm}- Set 

lim 入几二 A*. 
n—oo 

If A* 二 oo, then l i m “ o o U � = + o o . Integrating (5.3.1) from t - f t o t, then 

dividing it by y{t- f ) and noting that y{t) < 1 is decreasing, we easily have 

1 广t � 

y � — 1 + , 1 \ / — (Jk)ds < 0 , t>T, 
y ( t - f ) y [t - 争 w 
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Then 

and 

exp ( j : ] <s)ds) - 1 + 警 exp ( j 二 u{s)ds^ < 0, t>T. (5.3.13) 

Letting t — oo, then the first term of (5.3.13) tends to zero and the third term 

of (5.3.13) tends to +oo. This leads to a contradiction. Hence, 0 < A* < +oo. 

Set 

- / m \ ^ 

iPnifij = D{t) p{t) exp An—1 Y^ akdk + 二 丑 i � A n - i exp(An_i7i)， 
L V /c=l / i二 1 � � 

(5.3.14) 

and 

- f m \ K 1 
ifit) = D{t) p � exp 入 丑i ⑷入 *exp(A*7i) . (5.3.15) 

L V fc=l / 'i=l � 

For any given £ � 0 , there exists d . t n > T for each Lpn{t) such that 

(5.3.16) 

By (5.3.16), it is easy to prove that {p{tn)} and (i e Ik) are 

bounded. Without loss of generality, assume that limn—oo D(tn), linin-^ooP(^n) 

and limn—oo 丑i(力n) (i ^ ^k) exist. Set 

- / m \ K ‘ 

m* = lim D t^) VDexp A > ak^k 

n—oo 丄 \ } 」 

Then l i m n - . o o M 二 广 Hence mU>T^{t) < if* < 入* + 已 Letting e -> 0’ 

we have 

inf ^it) < A*. 
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Then 

f � 1 f rn \ K 
inf D(t) < 1 
炒 I L^ V k=i / 」 

which contradicts (5.3.5). The proof is complete. 

Remark 3. When m 二 1’ = 1, q �三 q and p{t)三 p, (5.3.5) becomes 

1 K 
- p exp(/xcri) + Q exp(/z7i) > 1 for all M > 0. (5.3.17) 

By Corollary 5.2.2 or Corollary 5.2.1, it is easy to prove that (5.3.17) is a 

necessary and sufficient condition for all solutions of (5.3.1) to oscillate. 
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