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Abstract 

In this dissertation, novel adaptive filtering techniques are proposed for the problem 

of time delay estimation (TDE) which has various applications such as source lo-

calization and speed measurement. A new TDE algorithm, called the explicit time 

delay estimator (ETDE), is first developed to find the differential delay of a signal 

received at two spatially separated sensors with the assumption that the signal ar-

rives at each receiver through only one propagation path. Basically, the ETDE is an 

adaptive FIR filter whose coefficients are expressed as a function of the delay esti-

mate which is adjusted using an LMS-type algorithm and thus it can provide direct 

delay measurements on a sample-by-sample basis. The ETDE performance surface 

is multimodal and an initialization method is suggested to ensure global conver-

gence. Convergence dynamics and delay variance for both static and nonstationary 

delays are also given. Although the ETDE and the constrained adaptive time delay 

estimator (CATDE) impose the same constraint on the filter coefficients, the ETDE 

gives more accurate delay estimates under noisy environment. The ETDE has an 

advantage over another direct TDE method, the adaptive digital delay lock discrim-

inator (ADDLD), which restricts the estimated delay to be an integral multiple of 

the sampling period, because it cain model any real-valued delay. Furthermore, the 

ETDE is more computational efficient than the least mean square time delay estima-

tor (LMSTDE) whose delay estimate is obtained by interpolating its filter weights 

and it is more reliable because wrong estimates due to false peak coefficients will not 

occur. The mean square delay error of the ETDE is shown to be comparable to the 

Cramer-Rao lower bound (CRLB) for a wide range of signal-to-noise ratio (SNR). 

Based on Wiener solution, a variable gain control is added to the ETDE to decouple 
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the effect of time-varying signal and/or noise power. As a result, this improved 

ETDE, namely, the explicit time delay and gain estimator (ETDGE), provides a 

smaller delay variance at low SNR and an unbiased delay estimate for any finite 

filter order. Experimental results are included to validate the theoretical analysis 

and evaluate the performance of these two algorithms. 

With the use of the ETDE and the ETDGE, two adaptive systems, called the 

multipath cancellation time delay estimator (MCTDE) and the multipath equal-

ization time delay estimator (METDE) respectively, are developed to generalize 

the TDE problem when multipath propagation is taken into account. Prior to us-

ing the ETDE to model the time difference between the two sensor outputs, the 

MCTDE employs two adaptive IIR filters to eliminate the multipath component at 

each transmission channeL When the multipath delays are integral multiples of the 

sampling interval, the MCTDE achieves the optimum performance. Otherwise, due 

to inherent truncation error in tHe multipath cancellers, the accuracy of the system 

parameter estimates decreases as the multipath gain increases or the interpath de-

lay decreases. On the other hand, the METDE, which comprises the ETDE and 

the ETDGE only, allows exact modeling of the time delay as well as the multipath 

parameters. The idea of the METDE is to equalize the two received signals through 

minimization of a cost function whose global minimum contains the actual value of 

the time delay and multipath parameters, and it can be applied when each, sensor 

sees more than one multipath signal. Computer simulations are presented which 

show that these two methods can accurately estimate and track nonstationary delay 

parameters under higli SNR conditions. 
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Chapter 1 

Introduction 

1.1 Time Delay Estimation (TDE) and its Ap-

plications 

The problem of estimating and tracking the time delay between two noisy versions 

of the same signal received at two spatially separated sensors has attracted much 

attention in many literatures [1], [2]. Time delay estimation (TDE) has been widely 

used in sonar and radar to locate the position and to detect the speed of a signal 

source [3], [4]. A typical passive sonar example is shown in Figure 1.1. The subma-

rine radiates a noise-like signal due to machinery on board or propeller action. This 

signal propagates through the water and is received by an array of two omnidirec-

tional sensors. Because of the extra propagation distance, the wavefront at sensor 

A lags that at sensor B by a delay, say, D. When the array is located far from the 

target, the bearing of the submarine, denoted by 6, can be approximated by [5] 

e«cos-1 (l.i) 

where L is the distance between the sensors and c is the speed of sound in water. 

Therefore, if we can estimate the time difference of the two received signals, then a 

bearing estimate will also be acquired. Notice that in practice, the received wave-

forms are embedded in corrupting noise and multipath propagation often arises from 

the sea surface reflection or bottom bounce [5] • These make accurate determination 

of D a very difficult task to achieve, particularly when the number of multipath 

signals is large. 
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Chapter 1 Introduction 

_ ^ ^ ^ ^ 乂 

Sea surface 

\ Submarine 

Sensor A SensorB 

Figure 1.1: Source localization by passive sonar 

If there are three sensors instead of two, two bearing estimates can be provided. 

The point at which these two bearings intersect will yield a position estimate of 

the radiated source [2]. Furthermore, if the source is moving, its velocity can be 

obtained from the time-varying delay measurements [4]. 

A similar but more recent application of TDE is in global positioning system 

(GPS) [6],[7]. In contrast .with other geolocation approaches [8]，[9]’ this method 

does not require disruption of the normal satellite operation since delay estimation 

is accomplished passively. Another important advantage of the method is that 

additional spaceborne hardware is not needed which makes the TDE approach more 

cost-effective. By using the differential delay measurements of an uplink signal 

received by three or four geostationary satellites, the location of the corresponding 

target transmitter can be determined [7], Three satellites are needed when the 

emitter is on the earth surface and four if its altitude is not known a priori. In 

actual circumstances, the transmitter may be an interfering source to a domestic 

geosynchronous satellite communication system. 

2 



Chapter 1 Introduction 

TDE has also found many useful applications in biomedical engineering [10]-

[14]. As an example, Figure 1.2 illustrates a monopolar electrode configuration 

for sensory nerve conduction velocity measurement which is of importance to the 

diagnosis of neuromuscular disorders [10], Excited by the stimulating electrodes at 

the finger, two evoked response signals, which differ by a delay, are obtained from the 

monopolar electrodes. The time displacement of one electrode signal with respect 

to the second gives the conduction delay over the distance d and hence the nerve 

conduction velocity at the wrist. 

--<̂ Ampnfier 

Monopolar 
electrode 
signals ^ /1 Indifferent Stimulating 

\ / / -———electrode electrodes 
—<̂ Amplifier / + “ 

electrodes ̂ ^ _ � ^ 
Ground electrode 

Figure 1.2: Sensory nerve conduction velocity measurement 

Other areas that make use of TDE techniques include seismology [15], noncontact 

speed measurement [16]-[18]，digital .communication [19]-[22], image coding [23] and 

tomography [24]-[25]. 

Let the waveforms received at two spatially separated sensors be x{t) and y(t). 

A widely used mathematical model for time delay estimation can be expressed as 

follows [5], 
x(t) = 5(t) + ni(t) (1.2a) 

V 
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Chapter 1 Introduction 

‘* ,：丨丨"；'''"'-i. ‘. • ‘. ..:.¾ 
and 

y(t) = s(t - D) + n2{t) (1.2b) 

where the unknown source signal s(t) and the corrupting noises 所 � and n2(t) are 

assumed to be Gaussian, jointly stationary and mutually uncorrelated with each 

other while the parameter D is the time difference of arrival (TDOA) between the 

two received signals. Although the TDE model described here is for two sensors, it 

can be easily extended to cases when there are more than two sensors. 

Adjust the time-shift element T 
to maximize J(x) • 

1 l 7 
x(t) ‘ H,(f) — T ^ 

^ / 1 ^ r _ ^ 

y(t) 聊 卜 1 

Figure 1.3: A generalized cross correlator configuration 

One of the conventional approaches to estimate the delay D is based on the 

generalized cross correlation (GCC) methods [26]-[28]. The system block diagram 

of a generalized cross correlator is shown in Figure 1,3. It can be realized as a pair 

of receiver prefilters，Hi(f) and H2(f), followed by a cross correlator. In general, 

the role of the prefilters is to enhance the frequency bands where the signal is strong 

and to attenuate the bands where the noise is strong [2], When the observation 

time T is much longer than the correlation length of x(t) and y{f), the output of 

the correlator，J(r), is given by [26] 

J{r)= T H^H^G^e^df (1.3) 
J—oo 

4 



Chapter 1 Introduction 

where 
poo 

Gxy{f) = / E{x{t)y{t — r)}e-^fTdr (1.4) 
J — oo 

is the cross-power spectrum between x(t) and y(t). The symbol * stands for the 

complex conjugate while E denotes the expectation operator. The delay estimate 

Dg is equal to the time argument at which J(r) achieves its maximum value, that 

is， 

力3 = arg max J"(T) (1.5) 

With proper choice of the weighting functions iJi(/) and H2(f), minimum delay-

variance can be achieved [26]. However, the weights of the prefilters are dependent 

on the signal and noise spectra which are generally unknown and hence have to be 

estimated in practice. 

x(kTs) … " i r 1 h 

(¾ (¾ (¾ … m^) 

y(kTs) — ^(XyT—Algorithm to 
adjust {wn} 

Figure 1.4: An adaptive filter system for time delay estimation 

On the other hand, adaptive filtering techniques [29]-[43] have also been applied 

to the TDE problem with great success. Basically, an adaptive filter is a time-

variant filter whose coefficients are adjusted in a way to satisfy some predetermined 

optimization criterion such, as to achieve the minimum mean square error. These 

methods can operate in circumstances which are not known a priori and some of 

5 



Chapter 1 Introduction 

them may even work under nonstationary environment. The performance of most 

adaptive TDE techniques is mainly governed by the filter structure as well as the 

updating algorithm. A typical adaptive filter system for time delay estimation is 

shown in Figure 1.4 where the received signals of (1.2) are sampled with a period of 

T, and are of the form, 
x(kTs) = s{kTa) -V n^kTs) (1.6a) 

and 

y[kTa) = s{kTs + n2(kTa) (1.6b) 

The transversal filter is used to provide a proper time shift to the input x(kTa) and 

its filter coefficients, {tyn}, for 0 < n < iV - 1, are adjusted to minimize the mean 

square value of the output error e(k). One can employ Widrow's LMS algorithm 

[44] ,[45] to adjust the filter weights and the resultant system is known as the least 

mean square time delay estimator (LMSTDE) [29]-[30]. Upon convergence, the delay-

estimate, denoted by Da, is determined by interpolating the filter coefficients and is 

given by [29] 
Da = argmaxiy(t) (1-7) 

where 
sin(2 (̂t ̂  nTs)) 

- ⑷ 二 2 务 n T a )
 ( L 8 ) 

and P is the source signal bandwidth. Apparently, w(t) is a truncated expansion of 

the continuous-time filter weights and the accuracy of Da increases with the filter 

length [35]. Since only the peak of the filter coefficients is of interest, numerical 

methods such as bisection can be used to obtain the delay estimate. 

1.2 Goal of the Work 

Although many GCC based methods as well as adaptive filtering approaches have 

been proposed for time delay estimation in the past decades, the issue of multipath 

propagation is seldom taken into account in most of these studies. When the signal 

source arrives at each receiver through more than one path, which is very common 

6 
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in many applications such as sonar [5] and radar [46], the propagation structure 

will become more complicated than the simple model of (1.2) or (1.6). In this case, 

many well known methods such as the LMSTDE will fail to provide accurate delay-

estimates unless the multipath effect is properly compensated. 

In the presence of multipath transmissions, the received waveforms of two spa-

tially separated sensors can be generalized as 

Mi 
x{kTs) = s(kTs) + Ys aiXkTs - Alp) + m(kTs) (1.9a) 

P=I 

M2 
y(kTs) 二 s(kTs - D) + CL2AkTs - A2g) + n2{kT3) (1.9b) 

9=1 

The gain factors alp and a2q as well as the interpath delays Alp and A2g, for Mi > 

p>l and M2> q> 1，characterize the multipath. propagation. While Mi and M2 

are the numbers of multipaths contained in x(kTs) and y(kTs) respectively. 

Some of the previous work on multipath time delay estimation only aims at 

finding the multipath parameters within a single sensor. Examples include cepstral 

filtering [47]，autocorrelation, maximum likelihood estimation (MLE) [48]-[49] and 

adaptive inverse filtering [50]. The estimates of the multipath parameters can be 

used to improve the source localization performance [51]. Furthermore’ the source 

position can be acquired with a single sensor in the presence of multipath transmis-

sions [51],[52]. In order to determine the differential delay between the two sensors, 

they may combine with other standard TDE methods. Ching et al [53] appear to 

be the only authors that have suggested techniques for estimating the delay D as 

well as the multipath parameters in the multipath TDE problem when the source 

s(kTs) is an unknown signal. However, the algorithms proposed are designed for use 

when there is exactly one multipath in either one of the two receivers and thus their 

application is limited. 

The main objective of this dissertation is to develop novel adaptive algorithms 

for accurate estimation and tracking of the differential delay between the two sensor 

outputs, D, and also the multipath parameters, aip, a2qj Aip and A2q, if each sensor 

sees at least one multipath signal. Our study is focused on adaptive TDE techniques 

7 



Chapter 1 Introduction 

because it has three advantages over the conventional GCC methods. Firstly, they 

do not require spectral estimation of the transmitted source nor the corrupting 

noises. Secondly, they are in general simple to implement and involve less compu-

tation. Last but not least, this method is capable of tracking nonstationary delays 

due to either relative source/receiver motion or time-varying characteristics of the 

transmission medium. We limit our investigation to the use of LMS-type stochas-

tic gradient techniques although there exist more powerful methods for adaptive 

filtering [45],[54]-[56] such as the recursive least squares and the quasi-Newton al-

gorithms. It is mainly because LMS-type algorithms do not require measurements 

of the pertinent correlation functions, nor do they need matrix inversion, and hence 

real-time implementation is allowed. Moreover, they have good tracking ability in 

time-varying systems and are often useful in nonstationary environment. 

In the absence of multipath transmission, two new adaptive algorithms have been 

derived to estimate the differential delay between signals received at two spatially 

separated sensors. It is assumed that there is no multipath signal at each sensor and 

the received signals are given by (1.6). The aim of these two algorithms is to achieve 

better performance, both in computational complexity and estimation accuracy, over 

other adaptive TDE methods. By imposing constraints on the filter coefficients, the 

proposed methods provide explicit delay measurements and no interpolation using 

(1.7) as in [29]-[35] is necessary. As a result, less computations are involved and the 

delay estimates are also free from interpolation error. 

For time delay estimation in the presence of multipath propagation, we attempt 

to remove any restriction on the number of multipaths. Using the idea of multipath 

cancellation and multipath equalizaton respectively, two adaptive systems are devel-

oped to determine the TDOA as well as the multipath parameters when the sensor 

outputs are given by (1.9), It has been demonstrated that the first method can give 

accurate delay and multipath parameter estimates when there is a multipath in each 

sensor while the second met Hod provides exact delay modeling irrespective of the 

number of existing multipaths. 

8 



Chapter 1 Introduction 

f" 
1.3 Thesis Outline 
In Chapter 2, two different classic adaptive TDE approaches, namely, the LMSTDE 

and the adaptive digital delay-lock discriminator (ADDLD) [40], are first discussed 

briefly. Motivated by these two methods and using the property that a delayed 

version of a bandlimited signal can be represented by convolving a sine function with 

the signal itself [35]，the explicit time delay estimator (ETDE) is derived in Chapter 

3. Generally speaking, the ETDE is an adaptive FIR filter which provides a direct 

measure of time delay between signals received at two spatially separated sensors 

on a sample-by-sample basis. Performance analysis of the ETDE for static and 

nonstationary delays, as well as comparison with other conventional TDE methods 

and the Cramer-Rao lower bound (CRLB), are included. It is shown that the delay 

error of the ETDE will increase when either the signal-to-noise ratio or the number 

of filter taps is decreased. An improvement is then made to the delay estimator 

to alleviate the problem and this is described in Chapter 4. This new time delay-

estimator is analyzed in detail and it is proved that smaller delay variances and 

unbiased delay estimates for any finite filter length can be attained if a variable gain 

control is added to the ETDE. 

In the presence of multipath propagation, accurate delay estimation can still be 

achieved using the ETDE or the ETDGE if the multipath effect in the received 

signals is removed. Based oil the concept of multipath cancellation and multipath 

equalization, and applying the explicit algorithms developed in Chapter 3 and Chap-

ter 4, two adaptive systems are proposed in Chapter 5 to extract the TDOA as well 

as the multipath parameters when each,sensor receives the source signal plus its at-

tenuated and delayed replicas. Theoretical analysis of these two methods, namely, 

the multipath cancellation time delay estimator (MCTDE) and the multipath equal-

ization time delay estimator (METDE) are given. Finally, concluding remarks and 

further research topics are presented in Chapter 6. 
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Chapter 2 

Adaptive Methods for TDE 

Many adaptive time delay estimation (TDE) methods [29]-[43] have been proposed 

in the past two decades, we shall briefly review the basic principle of operation of 

the least mean square time delay estimator (LMSTDE) [29]-[30] and the adaptive 

digital delay-lock discriminator (ADDLD) [40] in this chapter. These two different 

approaches have provided the groundworks and motivation for part of this research 

and as a result a novel TDE scheme has been designed. The so-called explicit time 

delay estimator (ETDE) is developed in the early stage of this work and then an 

improved version, namely, the explicit time delay and gain estimator (ETDGE), in 

the second phase of the project. In Section 2.1，the problem of TDE in the absence 

of multipath transmission is first formulated. Based on Widrow's least mean square 

(LMS) algorithm [44],[45], the LMSTDE uses an adaptive FIR filter to model the 

time difference of arrival (TDOA) between signals received at two spatially separated 

sensors and the delay estimate is obtained by interpolating the filter coefficients. 

This method together with some of the modifications for enhancement [31]-[32] ,[36] 

are discussed in Section 2.2. Section 2.3, on the other hand, describes another LMS-

type TDE algorithm, the ADDLD, which provides direct measurement of time delay 

and no interpolation is necessary. 

10 
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2.1 Problem Description 

Typically, the problem of time delay estimation can be formulated as follows. Given 

the discrete-time outputs of two sensors, 

x(k) = 5(̂ ) + 7̂ (̂ ) (2.1a) 

and 

y{k) = s{k - D) + n2{k) (2.1b) 

where the source signal s(k) and the corrupting noises n^k) and n2(k) are assumed 

to be mutually uncorrelated, stationary and white Gaussian processes. Without loss 

of generality, the sampling period Ts is taken to be unity, Thus the spectra of the 

signal and additive noises are supposed to be flat and band-limited between —ir and 

7r. For ease of analysis, the signal arrives at each sensor is assumed to go through 

only one propagation path in the same plane with the receivers and source. The 

objective is to estimate the time difference，D, from the received signals x(k) and 

2.2 The Least Mean Square Time Delay Estima-

tor (LMSTDE) 

Figure 2.1 shows the schematic diagram of the conventional least mean square time 

delay estimator (LMSTDE) [29]-[30]. The two channel inputs, x(k) and y(k), are 

sensor outputs as described by (2.1). Basically, it is an adaptive FIR filter which is 

used to provide a time shift to the input signal x(k). The transfer function of the 

LMSTDE is given by 
p 

W{z) = w^ (2.2) 
i=-p 

The filter in this case is noncausal and has an order of 2P, but, of course, it can be 

easily realized in causal form. The output of the filter is subtracted from the other 

received signal y(k) to give an error function e(k). In noise-free condition, if e(k) 

11 
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x(k)Q • W(Z)^ tw^4 — 

/ , : (̂) 
e(k) VV 

+ 

y(k)0 ^ 

Figure 2.1: System block diagram of the LMSTDE 

goes to zero, then the time shift introduced by the adaptive filter will be equal to 

the actual delay between the two signals. The error signal, e{k), is given by 
p 

e{k) = y{k) — Y, ^i{k)x{k — i) (2.3) 
i=-p 

Each filter coefficient of W(z), viz., w^k), is adjusted by minimizing the mean square 

error, E{e2(k)}, according to Widrow's LMS algorithm [44],[45], 

=Wi{k)^2fiwe{k)x(k~i) (2.4) 

The parameter fiw is a positive scalar that controls the convergence rate and stability 

of the algorithm. 

From the convolution theorem, it has been shown that a delayed version of 5(̂ ), 

say，s(k ̂  D), can be expressed as [35] 
00 

s{k — D丫二 X)―办 一 D)s(k - i) (2.5) 
00 

where 

sinc(v) = “
1
^ (2.6) 

irv 

12 
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From (2.3) and (2.5), if P tends to infinity and if the filter coefficients oi W(z) are 

samples of a sine function, then the LMSTDE will introduce a proper delay to the 

input signal. 

Assume that the channel inputs and the filter weights at time A; are uncorrelated 

[57] and denote cr] and ¢7̂  as the signal power and the variance of ni{k) and n2{k) 

respectively. Substituting (2.1)，(2.3) and (2.5) into (2,4) and taking expectation 

yields 
p 

E{wi(k + 1)} 二 E{wi(k)} + 2^^((3(^ — D) + n2{k) - ^ — n) 
n=-P 

P 
一 wn{k)ni{k - n)) • {s{k-i) + n^k - i))} 

n=-P 
P 

=E{Wi{k)} + 2fiwE{{s{k - D) ̂  Y^ wn{k)s{k - n))s{k - i)} 
n=-P 

P 
-2fiwE{ Y^ W^n^k - 71)71^ - i)} 

n=-P 
00 

二 丑 + 2/̂ 丑{( Yl sinc{n-D)s{k - n) 
n——00 

P 
—Y, wn(k)s(k -n)) • s(k — i)} — 2tiwE{wi{k)n2

1(k - i)} 
n=-P 

� E{wi{k)} + 2fjLwa2
sE{sinc(i - D) 一 Wi{k)} - 2tiwalE{wi{k)} 

二 E{wi(k)}{l - 2fiw(a2
s + 4)) + l^sincii - D) (2.7) 

Solving (2.7) gives 
2 

E{wi{k + 1)} = —^sinc(i — D){1 - (1- 2fiw{a2
3 + a2

n))k) 

+ ^ ( 0 ) ( 1 + P>i>-P (2.8) 

provided that the following is being satisfied, 

(2-9) 

The initial values of the filter weights, {̂ (0)}, can be selected arbitrarily since the 

performance surface to be minimized is unimodal [45]. The filter coefficients will 

eventually converge to the Wiener solution, which is equal to the steady state 

13 
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value of (2.8) and has the form 

S^sinc(i-D), P>i>~P (2.10) 1 1 + SNR � 

where SNR = â /â  is the signal-to-noise ratio. Upon convergence, the delay esti-

mate of the LMSTDE, Dw(k), is obtained indirectly from {wi(k)} by interpolation 

and it is given by [34],[35] 

Dw(k) = argmax t̂)} (2.11) 

where 
p 

功⑷：Wi{k)sinc(t - i) (2.12) 
i=-p 

Notice that ip(t) represents the continuous-time version of {wi(k)} since it is the 

convolution of {wi{k)} and sinc(t) where sinc(t) is the impulse response of an ideal 

low-pass filter with a bandwidth of 0.5. 

2.2.1 Bias and Variance 

Due to the finite number of filter taps being used, the expected value of ip(t) may 

not necessarily have a peak at exactly t 二 D. Using (2.10) and (2.11), the delay-

estimate can in fact be found by solving the following equation, 

^ p 

p 
� E sinc(i — D)f{t-i) = 0 (2.13) 

i=-p 

where 

, ^ cos(̂ ) - (2.14) 
v 

This delay modeling error has been examined in [35] for different values of D and P. 

It is shown that the deviation from D is negligible if a sufficiently long filter length 

is employed. For example, given D G (0,0.5), the largest possible error is about 

14 
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. . . . . . 

8.2% when P = 5 but this error will drop to 4% if the filter length is increased to 

21. 

When steady state is reached, the variance of the delay estimate, denoted by 

var{Dw), can be expressed as [39] 

var(Dw) = ]im E{{Dw(k) - D)2} x fc—>00 

(1 + SNR2) E var(wi)sinc'2{i - t) 
� =——p

 i=—P ry (2.15) 
SNR2 ( E sinc{i - D)sinc"(i - i)] 

\i=-P J t二D 

where the symbol ' and “ represent the first and second derivative respectively and 

var{wi) is the variance of the filter weight Wi(k). Define 
oo 

7) = sinc(i - D)sinc"{i - t)\t=D (2.16) 
i=—cx> 

By using L'Hospital's rule, rj can be evaluated as 

f ,. ^�( 2sinc{i -D)-2 cos(7r(i 一 D)) - ir(i - D)sm(ir(i - D))\ 
V = 2L,机肌“—刀)( 一 Dy I 

‘=—oo \ 、乂 
2sinc(A) - 2COS(TTA) - TTA sin(7rA) 

=lim XI 
厶—o A2 

— r (2sin(7rA) 一 2COS(TTA) + 7rAsin(7rA)\ 
—a™� 7rA3 A2 ) 

二 、 ： ( 2 . 1 7 ) 
3 

Moreover, from [58] and [45], we have 

oo oo 兀 2 

E —c'2(i -吼』^ E 作—仍 二 y (2-18) 

for integral values of D and 

var{wi)̂  iiwa2
n + 1 + gNR) (2.19) 

Hence, (2.15) can be simplified to 
rf> . ,, 3^^(1 + 2SNR)(1 + SNR) 2 oV 

15 
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For high and low SNR conditions, we can write 

，^^ , SNR�1 
7T2 

var(Dw) = ( (2.21) 

，SNR�1 
TT2SNR2 ' 

It can be seen that the value of var(Dw) is proportional to fiw and cr̂ . Furthermore, 

the delay variance is inversely proportional to SNR2 under very noisy environments. 

2.2.2 Probability of Occurrence of False Peak Weight 

From (2.11)，it is observed that the value of Dw{k) is mainly determined by the 

location of the filter weight that has the largest magnitude. Let wL(k), L G [—P, P], 

be the largest filter tap, then L essentially gives the round-off integral value of the 

delay estimate. However, due to the noisy gradients in (2.4), the desired peak weight 

might not be located accurately [32] ,[59] at each iteration. When D is ail integer, 

the probability of occurrence of a false peak, P(e), is given by [59] 

1 t t ^.Eiwnik)} - EiwAk)} + x. 
P(e) = 1 - , / II / 

? (2.22) 

where 

Using (2.8) and setting all { (̂0)} to zero, it has been found [59] that P(e) decreases 

with increasing I where I is defined as 

SNR 1-(1- 2^^(1 + SNR))fe (2 24) 

ÎTSNR 

It is noticed that when the SNR is small, the value of I increases with k and the 

SNR and decreases with fiw. 
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I 她：:.. 、 , ： • 

I f(:.. 
2.2.3 Some Modifications of the LMSTDE 

Youn et a[ [31]-[32] have modified (2.4) by replacing fiw by fiw(k), which Is a time-

varying convergence parameter of the form 

( 2"2 5 ) 

where 7 is a smoothing factor and has a value between 0 and 1. The quantity crl{k) 

is an estimate of the variance of x{k) and is updated via the relation 

= ̂ {k-1) + {l-l)x\k) (2.26) 

As x{k) is stationary, a2
x{k) will approach its desired value of {cr2

s + a^) in steady 

state. Using the optimal value for a2
x{k) and substituting (2.25) into (2.8), the 

learning trajectory of the filter coefficients becomes 
2 

E{wi(k)} = -^f—sinc(i - D)(l - 7
fc) + \i\ < P (2.27) 

o"； + K 

The advantage of this method is that the convergence rate of {̂ (A;)} is now con-

trolled by the predefined parameter 7 only and is not affected by the power of x{k) 

which is often an unknown value. 

From (2.5), we see that a delayed version of a bandlimited signal can be rep-

resented by convolving a sine function with the signal itself. Using this property, 

Ching and Chan [36] have proposed a new constrained adaptive time delay esti-

mation (CATDE) algorithm, which makes use of the constraint that the FIR filter 

coefficients must be samples of a sine function, to model the estimated delay. It sim-

plifies the LMSTDE algorithm considerably because in this case only wL{k) needs to 

be adapted according to (2.4) in each iteration. The delay estimate of this method, 

denoted by Dc(k), is related io wL{k) by the following unique mapping 

I wL(k) = sinc(L -Dc{k)) (2.28) 

The values of the remaining filter weights are determined by Wi(k) = sincG — 

Dc{k)) and they can be easily found by a table lookup operation. As a result, 

the computation is reduced substantially and also no interpolation of filter weights 
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is required. Furthermore, it has been demonstrated [36] that the TDE process can 

converge much faster even under a high SNR environment by imposing this condition 

on the coefficients. 

2.3 The Adaptive Digital Delay-Lock Discrimi-

nator (ADDLD) 

x(k)o ] 

e(k) VjV 
+ 

y(k) O ； 

Figure 2.2: System block diagram of the ADDLD 

The system block diagram of the ADDLD [40] for TDE is depicted in Figure 2.2. 

The delay element, where [Dd{k)\ is an integer that represents the estimate 

of D time instant k, is used to provide a time shift of \pd{k)\ to x{k). The error 

function of this system, e(k), is given by 

( e(k) ^ y(k)-x(k-\pd(k)\) (2.29) 

The basis idea is to minimize the mean square value E{e2(k)} through the adjust-

ment of the variable delay estimate. 

The optimization algorithm of the ADDLD is of the form 

1:.:::: ^£0 + 1)=^^(^)-/^7^ (2.30) 
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where D^k), whose round-off value equals [Dd{k)\ i is a continuous variable and fid 

is the corresponding convergence factor. Similar to the adaptive algorithm developed 

by Widrow [44],[45], is defined as the stochastic gradient of E{e2(k)} with respect 
A 

to the delay estimate Dd{k), that is, 

趣 . . . 
dDd{k) 

I ^ (2.31) 
�)dDd{k) 

In [40], the symmetric difference is used as an approximation to the derivative of 

x(k ^ Dd{k)) with respect to the delay estimate. Hence，(2.30) can be simplified to 

Dd{k + 1) = Dd{k) - fide(k)(x{k — [Ddm- 1) - <k
 — LAf�J 11)) (2.32) 

When the sampling interval goes to zero, it has been shown [40] that the gradient 

estimate of the algorithm is unbiased. In other words, its expected value will be 

equal to E{Vk}- A stability bound for fid is given by [40] 

0 < < (2.33) 

Although the computational complexity of the ADDLD is much simpler than 

that of the LMSTDE, it has two restrictions. Firstly, this algorithm is unable to 

give an accurate estimate of D i£ it is not an integral multiple of the sampling period. 

Secondly, the performance surface E{e2(k)} is multimodal. Using (2.1) and (2.29)， 

the continuous form of E{e2{k)\ can be shown to be [60] 

E{e\k)} = 2a2
3(l - sinc(Dd - D)) + 2a2

n (2.34) 

The time index A; is dropped from the delay estimate for convenience. A sketch of 

(2.34) is illustrated in Figure 2.3. It can be seen that the global minimum occurs 
A 

when t>d — D and the two local maxima that are closest to it appear at Dd = 

D + 1.45 and Dd = D - 1.45. Therefore, in order to guarantee global convergence 
A 

of the ADDLD algorithm, Dd should satisfy 

D + 1.45 > Dd >D-L45 (2.35) 
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? � I I , 

‘丨閨 
苫 r 1.45 -̂ 1.45 -1 丨 

::: ^ l ； 丨 义 总 “ _ I 
Dd 

Figure 2.3: Performance surface of the ADDLD 

This means that Dd{k) should be close enough to D for accurate delay estimation. 

To achieve this, we may need to initialize the value of the delay estimate by methods 

such as cross-correlation [61]，[62]. 

2.4 Summary 

To summarize, two adaptive approaches for estimating the time delay between two 

sensor outputs have been reviewed. The LMSTDE uses an FIR filter, whose coeffi-

cients are adjusted according to Widrow's LMS algorithm, to model the differential 

delay. The delay estimate of this method is obtained indirectly from interpolation 

of the filter weights. However, false peak weight might occur which will degrade the 

delay estimation accuracy. Time-varying convergence factor and constrained adap-

tation have been proposed to improve the performance of the LMSTDE. While, 

on the other hand, the ADDLD provides direct delay measurements and employs 

the stochastic gradient of the error function with respect to the estimated delay. 

The ADDLD algorithm is very efficient computationally but its delay estimates are 
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restricted to be integral multiples of the sampling period. In addition, it has a non-

quadratic performance surface and may limit the operation range of the estimated 

delay. 

21 



Chapter 3 
I : : , , . 
j The Explicit Time Delay 

I Estimator (ETDE) 

In this chapter, a novel adaptive delay estimation algorithm for extracting the time 

difference of arrival (TDOA) between signals received at two spatially separated 

sensors, called the explicit time delay estimator (ETDE) [63],[64], is introduced. In 

order to illustrate the potential of the ETDE, we compare and contrast its perfor-

mance with other adaptive TDE methods [29], [30]，[36] and with the Cramer-Rao 

: lower bound (CRLB) [65]. Similar to the LMSTDE [29],[30], the ETDE models the 

time delay by using an FIR transversal filter. But it has the merit of providing 

a direct measure of the TDOA on a sample-by-sample basis and does not involve 

any interpolation. Although the ADDLD [40] also updates the estimated delay 

directly, it cannot deal with delays that are non-integral multiples of the sampling 

period, while the ETDE has no such restriction. The ETDE can be considered as an 

alternative realization of the constrained adaptive time delay estimator (CATDE) 

proposed in [36] which constrains all coefficients of the FIR filter to be samples of 

a sine function. However, we shall show that the ETDE algorithm provides a more 

accurate and robust delay measurement than the CATDE under noisy environment. 

In Section 3.1, the ETDE is developed and analyzed. The performance surface 

of the ETDE algorithm is found to be multimodal and thus the operation range of 

the estimated delay is limited. To release this restriction, an initialization method is 

suggested to ensure global convergence. Both static and dynamic behaviours of the 

ETDE are 
also given. Section 3.2 compares the ETDE with the LMSTDE and the 
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CATDE in terms of estimation accuracy and computational complexity. A simple 

relationship between the mean square delay error of the ETDE and the CRLB 

is established. Computer simulations are presented in Section 3.3 to corroborate 

the theoretical analysis and to evaluate the performance of the ETDE. Finally, 

conclusion is drawn in Section 3.4. 

3.1 Derivation and Analysis of the ETDE 

3.1.1 The ETDE system 

For ease of reference, the problem of time delay estimation is reiterated here. As 

given by (2.1), the received signals at two spatially separated sensors are expressed 

as 

x{k) = s(k) + rii(k) 

and 

鋼‘-4&“莉+錄》 

where the source signal s(k) and the corrupting noises nt(k) and n2[k) are mutually 

uncorrelated, stationary and white Gaussian processes. Our task is to estimate the 

differential delay D from x(k) and y(k). \ 

It has been observed from (2.5) that a delay can be modeled by an FIR filter 

whose coefficients are samples of a sine function. Using this idea, the explicit time 

delay estimator (ETDE) is derived and its system block diagram is depicted in 

Figure 3.1. The transfer function of the ETDE, D{z), is given by 
p 

力(岣 二 D s i n c
^ ^ (3.1) 

i=-p 

The ETDE has the same filter structure with the LMSTDE but the filter coefficients 
A A 

{wi(k)} are now replaced by {sinc(i - D(k))} for P > i > -P, where D(k) is 

the instantaneous estimated delay. Since the value of sinc(i — D) decreases with 
A 

increasing i, the finite-order ETDE can still provide an accurate time shift of D(k) 
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D(z)= 

秦 0 tsinc(iS)z' "1 
�^-p ” 

L <x) 
e(k) Y 

+ 

y(k) O : 

Figure 3.1: System block diagram of the ETDE 

to x(k) when P is chosen large enough to minimize the truncation error [35]. The 

output error e(k) can be computed from 
p 

e(k) = y(k)~ E sinc{i - D{k))x(k - i) 
i==-p 

==y(k)—叭k — D(k)) (3.2) 

where x(k — v) denotes an approximate version of x(k) with time lag v and the 

approximation becomes exact when P goes to infinity. Similar to Widrow's LMS 

algorithm [45], the ETDE uses a stochastic gradient estimate which is obtained by 
A ^ ^ r 

differentiating the instantaneous error square, e2(k), with respect to D{k). The 

parameter updating equation is thus giveji by 
. � - , � de2(k) 
D(k + 1) = m ^ n ^ 

= m 一 帅.2e(.).补 

二 邮 ⑷ 严 二 
i=:-p 9D(k) 
p 

二 D(k) — 2fiDe{k) J2 <k - -力P)) (3.3) 
i=-p 
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where 帅 is the convergence parameter that controls the convergence rate and sta-

bility of the ETDE algorithm. The function f here has the same definition as (2.14)， 

i.e., 

cos(7r7；) — sinc{v) 
； 

Since 

cos(?n;) = (—l)Vicos(7ri;d) (3.4) 

where Vi and vd represent the integral and decimal part of v respectively, only one 

cosine operation is needed in (3.3). In order to reduce the computational complexity 

further, lookup tables of the cosine and sine function are constructed. The former 

is a vector M of length L and has the following elements 

^=(1 cos(̂ 3T)) cos(^I))…cos(0'57r) J (3'5) 

While the sine table is a matrix J\f of dimension K X (2P -{• 1) with entry 

riij .= sine ( � . 二 - j) (3.6) 

for K - 1 > i > 0 and P >j > -P. Thus, M is of the form 

sinc(-P) sinc(-P +1) … sinc{P) 

s i n c ^ - P ) - c ^ t p + l ) … W ( 晶 + P) 

• ‘ “ ’ (3.7) 
% . ' , . • 

• -/ 9 ' 

sine (0.5 - P) 5mc(0.5 - P + l) … 5inc(0.5 + P) j 

It is clear that the resolution of the delay estimate increases with the dimensions of 

M and AT. Note that Af only accounts for delay ranging from 0 to 0.5 and thus the 

resolution of D(k) is 1/(2(JC — 1)). Similarly, the cosine function has a resolution of 

1/(2(L —1)) where L is chosen to be comparable with K so that the accuracies of the 

f and sine function are similar. Implementation details concerning the sine table 
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have been discussed by Ching and Chan [36], Denote X)r(A;) and Dd(k) as the round-

off integer and decimal part of D(k) respectively then Dd{k) = |力(A;) — DT{h% 

which has a value between 0 and 0.5. The variable Dd(k) is used to locate the 

closest element in M and the central column of M. Whereas Dr(k) gives the sign of 

the cosine functions as well as the required vector in the sine table. This information 

is then used to calculate {sinc{i - D{k))} as well as {f(i — D{k))}. As a result, 

the computation involved in the ETDE algorithm is minimal. At each sampling 

interval, a total of (8P + 4) additions and (6P + 6) multiplications are needed to 
A 

calculate D(k}* 

3.1.2 Performance Surface 

For ease of analysis，we assume that the sensor outputs and the delay estimate are 

uncorrelated [57]. Using (3.2), the performance surface of the ETDE, E{e2(k)}, can 

be found to be 

E{e\k)} - E{{s{k + n2{k) - s(k - D) - h^k - D))2} 

==-D)- s(k — D))2} + E{{n2(k) - n^k 一 力))
2
} 

=a] [1+ sinc\i -D)-2Y1 — D)sinc(i — D)\ 

E ^ (3.8) 

Since 
oo A A 
ŷ  sinc(i — D)sinc(i — D) = sinc(D — D) (3.9) 

i=—oo �� 

Equation (3.8) can be approximated by 

E{e2(k)} w 2a2
s{l - sinc{D ^ D)) + 2^ (3.10) 

if P is chosen sufficiently large. It is obvious that E{e2{k)} is a multimodal function 

of D which is in fact identical to that of the ADDLD as shown in Figure 2.3. Thus 

the ETDE algorithm is capable of searching for the global minimum if the time-

varying delay estimate D is close enough to the actual delay and lies within the 
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bound, 

D + 1.45>P>i^-1.45 (3.11) 

To satisfy (3.11)，it is necessary that the initial delay estimate,力(0)，lies within the 

above admissible range. 

An efficient initialization scheme for D{k) has been considered for high SNR con-

dition. In our studies, the initial delay estimate is obtained by using the LMSTDE 

algorithm at the very beginning of the adaptation and is given by 

I>(0) == arg ma,x{wi{k)} (3.12) 
Z 

Note that the ETDE and the LMSTDE have a similar filter structure so only the 

adaptive algorithm is changed during initialization. Although other methods such 

as cross correlation techniques [61]，[62] can also provide a reasonable initial estimate 

of JD(0), the LMSTDE is capable of achieving proper initialization within a small 

number of iterations if the filter weights are all assigned to have zero values at the 

early stage of the adaptation. Putting Wi(k) = 0 ioi P > i > -P into (2.8), the 

learning behaviour of the filter weights becomes 

E{wi{k)} = - D)(l - (1 - 2fjLw(a2
3 + a2

n))% (3.13) 

P > i > —P 

In this case, we can obtain an accurate delay estimate by interpolating the expected 

filter weights of (3.13) at any time instant k since the vector {E{wi(k)}} is actually 

a scaled version of the Wiener solution, {w°}j which, is given by (2.10), 

2 

w°{ == - D\ P>i > -p 
az 4- cri 
3 1 n 

This implies that accurate delay estimation can be attained after a few iterations 

even when the filter coefficients have not yet converged. In practice, the round-off 

integral value of D can be found by adapting the LMSTDE just for a few hundred 

samples. 
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3.1.3 Static Behaviour 

In this section, the convergence dynamics of the ETDE for a static delay is investi-
A 

gated. For analysis purpose, it is assumed that the delay estimate D(k) is reasonably 

close to the actual time difference D. Taking the expected value of (3.3) yields 

E{D{k + 1)} 

二 E{D(k)} 一 2fiDE l^{y{k) — x{k - D{k))) • f： — i)f(i — 

=E{D{k)} ̂  2fiDE{{s(k ^ D) - s{k - D(k)) + n2{k) - nx{k - D{k))) 

• f： (s(k+ nx{k —響—B(m 
i=-p 

OO « 
=E{D{k)} - 2fiDE Y1 s{k-j)sinc{j - D) ̂  s{k - i)f{i ̂  D{k)) > . 

^ j=—cx> i=—P j 

J f： s(k ̂  j)sinc(j - D(k)) f： s(k-i)f{i^D{k))\ 
[J=-P i=-P ) 

+补dE j f： m(k - j)sinc(j — i)(k)) —柳—^))' 

=E{D{k)} ~ 2fiDa2
sE\ sinc{i-D)f{i-D{k)) > 
1‘=_P > 
p 1 

^d^I-V a2
n)E \ E sinc{i-D(k))f{i^D{k))\ (3.14) 

Si=-P > 

Since 
oo A 
£ sinc{i - D)f{i - D{k)) = f(D~D(k)) (3.15) 

i=—oo 

and from L'HospitaFs rule, /(0) 二 0，thus (3.14) can be approximated by, for 

sufficiently large P, 

E{D(k^ 1)} « E{D(k)} — 2fiDa2
sE{f�D - D(k))} (3.16) 

Expanding f(D — D{k)) about £>(k) — D using Taylor's series up to the first order 

term, (3.16) becomes 

+ _ E{D(k)} - 2fiDa2
s(E{m + f'(0)(D - D{k))}) 

=E{D(k)} + ^dct^D - E{D(k)}) (3.17) 
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Solving (3.17) gives 

E{D{k)} = D + (麵-D)(l-臺仲〜V) (3.18) 

provided that [Id lies within the range, 

0< fiD (3.19) 
7T2对 

A 

Therefore, the ETDE algorithm is asymptotically unbiased since E{D(k)} — D as 

k —> oo. 

The mean square delay error at time ky denoted by e(k), has been shown to be 

(See Appendix A) 
e(k) ̂  E{(D(k) - Df} 

« ak(D(0) -Df^-P (3.20) 

where 

a = l - (l — 阳 � — ( 3 . 2 1 ) 

and 

/ 5 二 扣
2
1 ^ ^

2
 + 0 (3.22) 

The validity of (3.20) is subject to the following being satisfied, 

/ !a|<l 

< 2r 2 I 2/ON ‘ (3.23) 
7T2(d + 0-2/3) 

Notice that (3.23) is a more stringent bound for since the mean square delay 

error is confined to have a finite value [66], 

For slow adaptation, that is, when \lb is selected much smaller than l/(7r (<js + 

cr̂ /3)), it is noted that e(k) consists of three components as follows, 

善 m - 评 - + ^ (t -

+ (3.24) 
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The first and second term are transient errors due to gradient noises in the absence 

and presence of corrupting noise respectively，while the last term is the steady state 
A 

error due to noisy gradients. Using (3.24), the delay variance, var(D), which is 

equal to the steady state mean square delay error, can be expressed as 

var(D) = lira e(k) 

二
 + ( 3

.
2 5 ) 

The delay variance of the ETDE increases with the step size fJbD and the noise 

power 0-2. Moreover, it is inversely proportional to SNR when under very noisy 

environment. In the absence of noise, var(D) has zero value. It is intriguing to note 

that (3.25) is indeed identical to the variance of the closed-loop least mean square 

time delay estimator reported by H.Messer and Y.Bar-Ness [42]. 
A 

In the extreme cases for high SNR and low SNR, var(D) can be simplified to 

,2fiDa^，SNR�1 

var(D) = i (3.26) 

. w ’ SNR«1 

3.1.4 Dynamic Behaviour 

In this section, the tracking performance of the ETDE Is examined for a linearly 

moving delay [30],[67]. In general, the trajectory of a nonstationary delay may be 

considered as a combination of many piecewise linear functions if it changes very 

slowly. The actual time-varying delay is denoted by D(k) and has the form 

D(k) 二 + (3.27) 

where D0 is the delay at A; = 0 and A is the Doppler time compression. By modifying 
A 

(3.17) and assuming that the actual delay is changing slowly such that D{k) more 

or less follows D(k) at each iteration, the expected value of the delay estimate in 

tracking a linearly varying delay can then be approximated by 

E{D{k + 1)} « ̂ 0(^)} + lfiDa2y{D0 + M — E{D{k)}) (3.28) 
o 
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Solving (3.28) yields (See Appendix B) 

； E{bm « Do Xk + ̂ (0) - Do + (1 -

— 3 A (3.29) 
f 

Equation (3.29) is similar to (3.18) since the time constant in both cases has the same 

value of 3/(2fjLDa2
sir2) which is independent of the noise power. In fact, substituting 

A = 0 and D0 D in (3.29) gives (3.18). Furthermore, the third term of (3.29) is 
I 

a transient term which converges to zero as k goes to infinity while the last term, 

3X/{2FIDA^IR2), contributes to the time lag in steady state. It can be seen that this 

time lag is directly proportional to A and is inversely proportional to \ld and It 
[I 

is worthy to note that the lower bound oi \ld in (3.23) should be increased to cope 

witK nonstationary delays. This means that the value of fiD cannot be chosen too 

small such that the assumption in deriving (3.28) becomes void. Let the maximum 

allowable time lag be tmax whose value is less than 0.5 in practice. Using (3.29), a 

time lag of tmaa; will correspond to a convergence step size of 3A/(27r2crJtmaa;). As a 

result, a modified bound for 仲 is given by 
TTTT^"""� < 仲 < 2f 2 ！ ( 3 . 3 0 ) 

In this case, the steady state mean square delay error, ‘(力)，is equal to the delay 

variance plus the square of the time lag [68], that is, 

六 2/xDqa
2(l + SNR) 9A2

 ( , 
= -SNR^+ ( ) 

We observe that the first term of (3.31). increases with (jld whereas the second term 

decreases with fi2D. Thus, fiD must be selected appropriately in order to achieve the 

optimal performance. As a rule of thumb, when noise dominates, a small value of 

fjiD should be used. While, on the other hand, a larger value of should be chosen 

if the delay is changing rapidly with time. 

!:.“:.: . . 31：.,；)：；;'；；--,̂  •"“；彳、：..,:.： ：…'• ... 
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3.2 Performance Comparisons 

3.2.1 With the LMSTDE 

We shall contrast the convergence speed of the LMSTDE and the ETDE when a 

step change of time difference from D0 to D is introduced between the two received 

signals. Without loss of generality, it is assumed that all filter weights have attained 

their desired values initially, that is, {sinc(i - D0)ct2J{(t2
S + cr2

n)} for the LMSTDE 

and {sinc(i — D0)} for the ETDE. 

In order to make a fair comparison, the relationship between and fiw such 

that identical delay variance is kept in both systems is established by equating (2.21) 

and (3.26), and it is given by 

？^ ， S N R � 1 
7T2 

ÎD = \ (3 J2) 
3fw , SNR�1 

L 2?r2SNR， 

It has been shown from Section 3.1.2 that the LMSTDE provides a very fast response 

to a static delay when the initial filter weights are all set to zero. However, when 

the delay is time-varying, this is no longer applicable. From (2.8), the learning 

characteristics of Wi(k) becomes 
2 

E{wi(k)} 二 - -（1 — 2�(�2 +�))fc) crj + < 

-^^-^sincii — D0)(l — 2fiw(cr2
3 + a2

n))k (3.33) 
^S + < 

Due to different initial conditions, (3.33) contains an additional term as compared 

with (3.13). In this case, accurate delay estimates can be obtained only if all the 

filter coefficients have reached their steady state values. Substituting (3.33) into 

(2.11), the mean value of Dw(k), E{Dw(k)}, is given by 

A P ) 
E{Dw(k)} = argnxax< ^ E{wi(k)}sinc{t -1) > 

'U=-P J 
w arg max{(l - (1 一 2FIW(A2

S + al))k)sinc(t — D) 

+(1 - 2fiw{a2
s + a2

n))ksinc{t - D0)} (3.34) 
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Since the first term of (3.34) peaks at t = D with a value of (1-(1- 2fj,w(a2
a + crl))k) 

and the second term has a maximum value of (1 — 2/½；(¢̂  + ̂ ))*3 when t - D0l we 

may approximate E{Dw(k)} by the following weighted sum 

E{Dw(k)} « (1-(1- 2 � + crl))k)D + (1 — 2fiw(a2
s + a2

n))kD0 

= D + (A) — D){1 - 2^(^ + a2
n))k (3.35) 

Note that the second term represents the mean delay error of the LMSTDE at the 

jbth iteration. The mean delay error of the ETDE, E{D(k) - D}, can be easily 

obtained from (3.18) 

E{D(k)} 一 D = (A) — D) (1 _ 臺/^2tt2) (3.36) 

The ratio of the mean delay errors at the kih iteration is thus equal to 

E{i)(k)} - D 二 ( 1 - 2仲办2/3 \k (3 37) 

E{Dw(k)}-D — VI - 2fiw{a2
s + al)) . 

If the ETDE converges faster than the LMSTDE, then the numerator of (3.37) will 

be smaller than the denominator which implies 

‘ ^ , SNR�1 
7T2 

fiD > \ (3.38) 

‘ 為 ，
S N R < < 1 

Comparing (3.32) with (3.38), we see that the performance of both methods are 

identical when the SNR is high. When SNR�1，（3.38) is not satisfied which 

means that the convergence speed of the ETDE is slower than that of the LMSTDE 

when the delay variance of both, systems.are kept identical. However, (2.15) has 

assumed that the delay estimate Dw(k) is at the neighborhood ofD and this is not 

true when false peaks of Wi(k) are located [59]. As discussed in Section 2.2.2，the 

probability of occurrence of false peak weight increases with fiw and decreases with 

the SNR under noisy environments. When a wrong peak is located, the value of 

Dw(k) may deviate significantly from the original delay. On the other hand, the 

ETDE has no such problem and therefore it is a more reliable delay estimation 

scheme. 

.33 
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The computational load of updating Wi(k) requires (4P + 2) additions and (4P + 

4) multiplications. It seems that the LMSTDE algorithm involves less operation 

counts than that of the ETDE. But if interpolation of Wi(k) is also considered, 

a further 20P additions and (20尸 + 10) multiplications will be needed assuming 

that the delay estimate has a resolution of 0.001. Whilst the ETDE requires no 

interpolation but a larger memory size is required to store the elements of the lookup 

tables. 
I 

3.2.2 With the CATDE 

From Section 2.2.3，we mention that the CATDE simplifies the LMSTDE algorithm 

by restricting the filter parameters to be samples of a sine function and the delay 

estimate Dc(k) is related to the peak weight wL(k) by (2.28), 

A 

WL{k) 二 sinc�L — Dc(k)) 

I In this constrained algorithm, only the largest filter coefficient is being adapted, and 

the values of other filter weights are simply retrieved from the sine lookup table as 

given by (3.7). As a result, this algorithm is computationally more efficient since 

only (2P + 2) additions and (2P + 4) multiplications are required to update wL(k). 

However, we shall show the drawbacks of the CATDE shortly. By using (2.4) 

and (2.28), the adaptation rule of wL{k) can be written as 

sinc(L - I)c{k + 1)) 二 sinc(L - Dc{k)) + 2fjLwx{k — L) 

� iy{k) - x{h - Dc{k)) (3.39) 

Taking expectation of (3.39) gives 

E{sinc{L - Dc(k + 1))} = E{sinc(L - Dc{k))}{l - 2^2
3 + a2

n)) 

^-2fjLwa2
3sinc{L - D) (3.40) 

Examining the steady state condition of (3.40), we get 
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lim E{sinc(L — Bc(k))} = lim E{wL(k)} 

=-^sinc(L-D) (3.41) 

From (3.41), it is noted that at very high SNR environment or noise-free condition, 

accurate delay estimation will be acquired since cr2
sl{(J2

s + is close to 1 and this 

has been demonstrated in [36]. However, large delay errors are introduced through 

inaccurate mapping of (2.28) at lower SNRs. Furthermore, unlike the ETDE, this 

I algorithm is not capable of tracking a nonstationary delay. It is because in this 

situation the position of the peak weight may need to change from time to time 

and hence it has to be relocated by freely adapting all filter coefficients again and 

again. This in turn degrades the convergence speed of the algorithm and thus its 

performance is inferior to that of the ETDE, 

3.2.3 With the CRLB 

It is useful to compare (3.24) with the Cramer-Rao lower bound (CRLB) [65] which 

provides a lower bound on the variance attainable by any unbiased estimator using 

the same input data. In order to establish a simple relationship between the mean 

square delay error of the ETDE and the CRLB, we assume that D lies between 

—1 and 1 with an uniform distribution. With this a priori information about the 

parameter D, the CRLB for time delay estimation [3] is given by 

where T is the observation time. Suppose that the initial estimated delay of the 

ETDE is not close to D, say, 1)(0) 二 0 while D = 1. In this case, the second term 

of (3.24) can be neglected and the continuous-time version of e(k), e(T), can be 

approximated by 

冲、 ( 4 2 2 t\ 丨 2啊2(1 + SNR) e(T) w exp -̂-/AD̂ TT TJ + g ^ (丄4句 

The term fiD l̂ can be removed from (3.43) if an optimum step size is used. The 

optimal value, denoted by ii°D\ is obtained by differentiating e(T) with respect to 帅 
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and equating the result to zero, and is given by 

0 3 A2TT2TSNR2 \ f3 

时 仲 i n V 3 ( l + SNR)j 1 ' J 

When T is too small such that ln(27r2TSNR2/(3(l + SNR))) < 0，the step size 

will be set to zero. In this case, the smallest mean square delay error is unity. 

Substituting fi°D into (3.43), we obtain a minimum value for e(T) which is represented 

by e°(T)} 

3(1 + SNR) “ /2TT2TSNR2\\ ( 2TT2TSNR2�Q 

eo(T) ̂  2tt2TSNR2 [ + U(1 + SNR)J J 7 n�3(l + SNR)J (3.45) 
1 ， otherwise 

� “ 

Defining the performance index R as 

R ^ ^ S - (3.46) 
CRLB � 

then the closer the value of R to unity, the better the delay estimation performance 

of the ETDE. Using (3.42) and (3.45), the variations of R against T for SNR�1 

and SNR < 1 are shown in Figure 3.2 and Figure 3.3 respectively. From Figure 3.2, 

it is found that R will increase by 0.5 if T is increased by 10 times or the SNR is 

increased by 10 dB. Although R is relatively small for a short T, the delay estimate 

does not converge to the optimal value and it introduces a large delay error. Hence 

there is a compromise between having a smaller R and a less biased delay estimate. 

It is seen that all three curves in Figure 3.3 remain constant at 丑 二 3 at the 

beginning, they then start to drop and eventually rise again linearly. The dropping 

rate is approximately 1.5 per decade of T while the rising rate is 2 per decade of T. 

The minimum value of R has a value of 1.3 which occurs at approximately T = 102, 

T = 104 and T = 106 for SNR = —10 dB, -20 dB and -30 dB respectively. In 

general，similar to the high SNR conditions, longer observation time gives a more 

accurate delay estimate but a larger R and vice versa. Since R changes slowly with 

T for both high SNR and low SNR, the variance of the ETDE is larger than the 

CRLB by only a few times for a wide range of observation times and is thus regarded 

as comparable to the CRLB. 
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Figure 3.2: Performance comparison with the CRLB at high SNR 
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Figure 3.3: Performance comparison with the CRLB at low SNR 

| . • 37 . 



Chapter 3 The Explicit Time Delay Estimator (ETDE) 

3.3 Simulation Results 

Extensive computer simulations liad been conducted to validate the theoretical 

derivations and to compare the performance of the ETDE with the LMSTDE and 

CATDE for time delay estimation between two sensor outputs. The signal s(k) and 

the noises ni(ifc) and n2(/s) were white Gaussian random variables and they were 

produced by a pseudorandom number generator. The delayed signal s(k — D) was 

produced by passing s(k) through a 61-tap FIR filter whose transfer function was 

given by J^^sincfj,- D)z~\ We made D G (-10,10), and unless stated oth-

erwise, P was chosen to be 15 to allow for acceptable truncation error. Different 

values of SNR were obtained by proper scaling of either the source signal or the 

random noise sequences. The delay estimate of each method had a resolution of 

approximately 0.001. To fulfill this requirement, the cosine vector M had a length 

of 513 and the size of the sine table M was 513 x 31 in the ETDE and the CATDE 

while 10 bisections were used in the LMSTDE. The results provided were averages 

of 200 independent runs. 

3.3.1 Corroboration of the ETDE Performance 

Figure 3.4 and Figure 3.5 show the learning characteristics of the delay estimate and 

the mean square delay error respectively，for D 二 1,7 at high SNR environment. 

During the first 200 iterations, the LMSTDE was used to determine the round-off 

integral value of D. The step size parameters FIW and FID were set to 0.0001 and 0.005 

respectively while the signal power a] had unity value. These values corresponded 

to a time constant of about 30 and thus .tHe ETDE algorithm was expected to reach 

steady state in only a few hundred iterations. It can be seen from Figure 3.4 that 

the convergence behaviours of D[k) were independent of the noise power and all 

experimental results agreed well with the theoretical expectation as given by (3.18). 

The delay estimates converged to the desired value at approximately the 400th 

iteration in all cases. From Figure 3.5，it is observed that the transient behaviours of 

the measured delay errors were very close to e{k) derived from (3.20). However, there 
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Measured Theoretical 
variance variance 

oo 4.39 x 10-5 0 
SNR 20 dB "L50 x 10—4 1.01 x 10— 

10 dB I 1.17 x 10-3 1.10 x 10丁 

Table 3.1: Measured and theoretical delay variances of the ETDE 

was slight difference between the experimental results and the theoretical values in 

steady state. The measured variances of D(k), together with their theoretical values 

as given by (3.25), were tabulated in Table 3.1 which shows that the experimental 

results conformed with the predicted values especially for a larger noise power. 

The trajectories of the delay estimate at SNR = 10 dB for different values of 

阳 were illustrated in Figure 3.6. Other settings were kept equal as in the previous 

experiment. Again, it can be seen that the learning curves of D(k) were fairly close 

to their expected values. Although the measured values of the delay variances were 

not shown, it had been found that they also agreed well with the theoretical delay 

variances. It is worthy to note that trials for \iD = 0.005, cr] 二 0.2 and a] 二 0.04 

had also been carried out and almost the same results were obtained. 

Figure 3.7 shows the convergence behaviours of D{k) for D 二 0.3 at a SNR of 

—10 dB. In this test, 1)(0) was assigned to have zero value and no initialization was 

performed at the beginning. The step size /iD was assigned with values 0.0002 and 

0.00004 while a] = 1. In Figure 3.7, it can be observed that the convergence rates of 

the delay estimates were similar to those of the expected trajectories. Nevertheless, 

J){k) could not converge to the desired yalue of 0.3 in both cases. In fact, for 
A 

== 0.0002，D(k) 0.24 at approximately the 4000th .iteration and D(k) 0.34 

in about 20000 iterations when fiD 二 0.0002. A possible reason for the bias is due to 

the last term of (3.14) which cannot be regarded to have zero value when a] < 

and when P was not chosen sufficiently large. To verify this, the experiment was 

repeated for P = 150 and the results are shown in Figure 3.8. It is seen that the 

delay error was reduced significantly for fiD = 0.00004 but the estimate of D was 
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not satisfactory for \hD = 0.0002. This means that accurate delay estimation can 

still be provided by the ETDE under very noisy environment if P is selected large 

enough and if \Ld is chosen sufficiently small. The learning trajectories of the mean 

square delay error are plotted in Figure 3.9. It can be seen that the learning rate of 

the experimental results for P = 15 and e(A;) were similar but those of P = 150 had 

slower speeds. Moreover, there were some differences in their steady states. When 

P = 15，the measured variances were found to be 3.44 x 10一2 and 4.93 x 10—3 for 

(JLd 二 0.0002 and FID 二 0.00004 respectively. While they had values of 4 . 6 7 x 10一
2 

and 4.49 x 10一3 for FID = 0.0002 and FID = 0.00004 respectively when P = 150. 

Although the bias was decreased by using a large P for = 0.00004, there was 

almost no reduction in the delay variance. Evaluating the delay variance using (3.25) 

for /iD 二 0.0002 gives a value of 4.4 x 10"2 and it agreed with the corresponding 

measurements. Whereas the theoretical value for fiD 二 0.00004 is 8.8 x 10—3 which 

is larger than the experimental results. The discrepancies are mainly due to the 

approximations made in deriving (3.20). 

The tracking performance of the ETDE for a linearly moving delay, which is given 

by D(k) 二 0.3 + 0.0001ib5 is illustrated in Figure 3.10. The SNR was initially set 

at 10 dB and then step-changed to -10 dB at the 7000th iteration. The corrupting 

noises had unity power and the required SNRs were obtained by proper scaling of the 

source signal. The convergence parameter was assigned with, values of 0.00002 

and 0.002 at SNR 二 10 dB and SNR 二 —10 dB respectively so that the time 

constant of D{k) could be kept identical under both SNR conditions. The initial 

delay estimate £)(0) was selected to be zero. It is noted that after 3000 iterations, 

the delay estimate converged and lagged D(k) by 0.077 at SNR = 10 dB and by 0.14 

at SNR 二 -10 dB. Using (3.29)，the predicted value of the time lag is calculated as 

0.076, which is close to the measured value at SNR = 10 dB but is smaller than that 

of the low SNR condition. The deviation from the desired value for SNR = —10 

dB is mainly due to the approximations in deriving (3.29). Furthermore, the steady-

state mean square delay errors had been measured and it had values of 6.77 x 10~ 

at SNR - 10 dB and 5.85 x 10"2 at SNR = -10 dB. These values are slightly larger 
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Figure 3.4: Delay estimates of the ETDE for a static delay at high SNR environments 
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Figure 3.6: Delay estimates of the ETDE for different values of [iD at SNR = 10 dB 

0.5 

—~~— experimental result for = 0.0002 
———experimental result for |xD= 0.00004 

04 _ theoretical calculation for \jld = 0.0002 
丄+ — — - theoretical calculation for |X0= 0.00004 

① ；c-"——— _______ 
OS 0.3 - , 一̂::.-.二二.二•二•二.二 

I 1 • ( 

0.1 I / SNR = -10dB 
I/ D =0.3 
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Figure 3.10: Delay estimate of the ETDE for a linearly time-varying delay 

3.3.2 Comparative Studies 

Figure 3.11 compares the trajectories of the delay estimate of the ETDE, the LM-

STDE and the CATDE when SNR = 10 dB and D having a constant value of 0.3. 

The signal power a] was fixed to unity. Two cases were considered for the LM-

STDE: (i) all initial filter weights were set to zero and (ii) the initial value of the 

delay estimate was put to zero by assigning -̂(0) = (t2J{(t2
s + al)sinc(i). The delay 

estimates of the ETDE and the CATDE were also assumed to be zero at the be-

ginning. The step sizes fiD and fiw had values of 0.0003 and 0.00987 respectively so 

that the ETDE and the LMSTDE could attain the same delay variance. As given by 

(3.13), the LMSTDE achieved the fastest convergence in the first experiment and an 

accurate delay estimate, which was close to 0.3, was obtained after approximately 

100 iterations. This supports the rationale of using the LMSTDE to initialize the 

filter parameters of the ETDE. When the initial estimates of D were set equal, the 

learning behaviours of the LMSTDE and the ETDE became almost identical. This 

is confirmed in Figure 3.11 that both methods provided accurate estimates in about 

3000 iterations. In addition, at the 3000th iteration, the delay variance of the ETDE 
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was found to be 7.08 X 10一5 and it was comparable to the CRLB, which has a value 

of 2.13 X 10—5 • On the other hand, the delay estimate of tHe CATDE converged 

to 0.38 in about 2500 iterations. The discrepancy was resulted from the inaccurate 

mapping using (2.28). The theoretical analysis of this method is verified by noting 

that + al)sinc(0.3) « 5mc(0.38). At low SNR, the delay estimation error 

will be much larger. Consequently, the CATDE is only suitable to operate at a 

noise-free or very high SNR environment. 

Performance of the ETDE and the LMSTDE for a step change in the actual delay 

at SNR = -10 dB are illustrated in Figure 3.12. The results of the CATDE are not 

included since its performance is comparatively poor. The actual delay had a value of 

0.3 at the first 40000 iterations and then changed instantaneously to 0.7 afterwards. 

In order to keep the same delay variance, fiw was chosen to be 1.32 X 10一5 while 

fiD = 2 x 10一5 in the ETDE. From (2.21) and (3.32), these step sizes corresponded 

to a delay variance of approximately 0.004, In addition, the filter length of the 

ETDE was set to 301 in order to reduce the delay bias. It can be seen that the 

delay estimate of the LMSTDE converged to the desired values at the 15000th and 

the 55000th iteration while the ETDE gave accurate estimates at the 35000th and 

the 75000th iteration. Their convergence speeds differed by approximately one half 

because the time constant of the ETDE was set twice of 七hat of the LMSTDE. 

Although the delay estimate of the ETDE had a slower convergence rate, it had 

been found that the measured mean square delay error was approximately equal to 

0.002 which was about half of the LMSTDE delay variance. This implies that the 

performance of these two methods are actually quite similar in this test. 

Another test for a fast moving delay, at�SNR 二 —10 dB was performed and the 

results are shown in Figure 3.13. In this experiment, the delay D had a value of 0.3 

from the first iteration to the 5000th iteration, 0.7 from the 5001th iteration to the 

10000th iteration, 0.9 from the 10001th iteration to the 15000th iteration, and 1.2 

onwards. In order to track the delay properly, larger values of step sizes were used. 

In the ETDE, fiD = 2 x 10"4 while fiw had a value of 1.32 x 10—4 in the LMSTDE. 

In this case, we did not increase P in the ETDE since it has been shown in Section 
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3.3.1 that the delay bias could not be removed when a large value of fiD was used. 

It is observed that the ETDE tracked the step changes after transients. Although it 

provided biased estimates of D, the measured delay variance of the ETDE was still 

close to the theoretical value. On the other hand, the performance of the LMSTDE 

was unsatisfactory and the trajectory of Dw(k) fluctuated severely indicating that 

the delay variance was much larger than the desired value. These fluctuations were 

due to the occurrence of false peak filter parameters that led to discrepancies in • 一 

interpolation. A much smaller value of fiw may be used to locate correct peak 

weight at each iteration. However, the dynamic behaviour of the LMSTDE will 

then be greatly degraded. 
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Figure 3.11: Delay estimate of the ETDE and other adaptive TDE methods for a 
static delay when SNR == 10 dB 
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3.4 Summary 

An adaptive system, which, is called the explicit time delay estimator (ETDE), is pro-

posed to estimate the differential delay of a signal received at two spatially separated 

sensors. Unlike the LMSTDE whose estimated delay is obtained by interpolation of 

its filter weights, the ETDE updates the time delay estimate explicitly. In addition, 

the ETDE provides a more reliable approach for delay estimation because wrong 

estimates due to false peak weight location will not occur. Under very noisy envi-

ronment, the ETDE gives a satisfactory delay variance although the estimated delay 

is found to be biased. With the use of lookup tables, the ETDE algorithm is efficient 

in terms of computational complexity. As an alternative realization of the CATDE, 

the method provides more accurate and robust delay estimates, particularly under 

noisy environment. The mean square delay error of the ETDE has been shown to 

be larger than the CRLB by a few times. The convergence dynamics of the delay 

estimate and the mean square delay error as well as the delay variance are derived 

and confirmed by simulations. It is also demonstrated that the ETDE has superior 

performance than other adaptive TDE methods for both, static and nonstationary 

delays. 
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Chapter 4 

I An Improvement to the ETDE 

Although the ETDE provides an efficient way to estimate the differential time dif-

ference between signals received at two separated sensors, it has been found that 

its delay estimate is not accurate enough for many practical applications when the 

signal-to-noise ratio (SNR) is small In this chapter, an improvement that is based 

on Wiener solution is made by adding an adaptive gain in series with the ETDE 

and it is called the explicit time delay and gain estimator (ETDGE) [69],[TO]. In 

Section 4.1，the delay bias of the ETDE is examined and it will be shown that the 

delay error is a function of the SNR as well as the number of filter taps. Section 

4.2 formulates the adaptive algorithm of the ETDGE. It will be proved that this 

new adaptive system provides unbiased delay estimates for any finite filter length 

and has smaller delay variances at low SNR. In Section 4.3, performance analysis 

of the proposed algorithm for both static and linearly moving delays will be given. 

Whilst experimental results and conclusions are included in Section 4.4 and Section 

4.5 respectively. 

4.1 Delay Modeling Error of the ETDE 

In this section, the delay error of the ETDE for finite filter length is investigated by 

determining the global minimum of its performance surface which is the mean delay-

estimate. Equation (3.8) gives the exact value of the ETDE performance surface as 
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follows, 

( 五{e2�} ^ a] (l + f； svri(?{i- D) - 2 sinc(i - D)sinc(i - J 

I； +4(1+ 氡―昨-力)) 

•.. 

Now, differentiating the equation with respect to D and then equating the result to 
I 署 . _ 

zero, the following expression is obtained, 
r j ‘ \ • ：."•；•；.:,:::” 

： f>‘nc(i—巧/(i —5)= + E —氺―
5
)州—

S
) (

4
.
1
) 

i=-P V bJNK/ i=_p 

where D denotes the global minimum of the error surface. In the absence of noise or 
I 

if the filter length (2P+1) is infinitely large, then D 二 D. As a result, the ETDE is 

capable to provide unbiased delay measurements. However, for other circumstances, 
I 

the unbiased property of the ETDE might not necessarily exist. Although a closed 

form solution for D is not available, numerical values of D have been found by using 

Newton-Raphson method to reveal the effect of different SNRs and P on D. The 

delay bias, which is defined as \D - D|, is plotted versus D for SNR = —10 dB and 

p = 15 as shown in Figure 4.1. It can be seen that the bias becomes largest at 

D 二 0.2, and it has a value of 0.066. Note that the shape of the graph may change 

as the parameters vary. Figure 4.2 and Figure 4.3 illustrate the delay bias against 

SNR and P for D = 0.25 respectively. It is seen that the delay error decreases 

when SNR or P increases and becomes almost negligible for high SNR. Moreover， 

the delay bias can be reduced by one-tenth approximately by either increasing the 

SNR by 10 dB or by a ten-fold increase of In practice, there is a trade-off to use 

a very large value of P to reduce delay error because the computational complexity 

of the algorithm, on the other hand, will increase considerably which makes real-

time application not feasible. On the contrary, accurate delay estimation may not 

be achieved by the ETDE if P is not chosen sufficiently large enough or when the 

estimator is operated at low SNR. 
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4.2 The Explicit Time Delay and Gain Estima-

I 
1 tor (ETDGE) 

From (2.10)，the optimal filter weights of a time delay FIR filter are given by 

w\ 二 SI!?tt, sinc{i -D\ P>i> _P 1 1 + SNR � } 
I � 

In the ETDE, the effect of additive noise is not considered in the adaptation which, 

however, plays a significant role in the delay estimation process, particularly the 

steady state delay error. In this section? an improved version of the ETDE is pro-

posed by adding a variable gain,乡(知)，in series with, the delay estimator, to adapt 

the scaling factor SNR/(1 + SNR) separately such that the Wiener solution can be 

attained. The new system is called the explicit time delay and gain estimator (ET-

DGE) and its block diagram is depicted in Figure 4.4. The system inputs, a;(A;) and 

y(k), are the received signals and the error signal, e(k), in this case can be computed 

from 
. p 

e{k) 二 偶—g{k) % sinc{i — DG{k))x(k 一 i) (4.2) 
i=-p 
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. A 

To avoid any confusion, the delay estimate of the ETDGE is denoted by DG(k). 

While t)G{k) is adjusted using (3.3), the gain parameter of the ETDGE is adapted 

simultaneously and independently according to Widrow's LMS algorithm [45], 

贴+ 1) 二 妙 〜 纖 

p 
=g(k) + 2fige{k) sinc(i - DG{k))x{k — i) (4.3) 

where \l9 is the convergence step size for g{k). It is noted that for the same value of 

P, in terms of computational complexity, the ETDGE requires an extra 1 addition 

and 4 multiplications. 

/ ^ 
A Dg(z)= 

难)° iV ±sinc(i-bG)t n 
7 /=-尸 

/ / ^ i ) 
e(k) Y 

+ 

y(k) O 

Figure 4.4: System block diagram of the ETDGE 

For ease of analysis, we assume that the gain estimate and delay estimate are 

uncorrelated with the received signals. Squaring both sides of (4.2) and taking 

expectation, the performance surface of the ETDGE can be found as 

E{e2{k)} = E{{s{k - D) + ™ gs(k -DG) — —力G))2} 

二 E{(s(k - D) - gs(k - A?))2} + E{{n2{k) - gn^k — DG))2} 
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. 

=(d + Op+f 昨一力G)) 
P 

-2ga2
s Y^ sinc�i - D)sinc{i -Do) (4.4) 

i=-p 

It is obvious that the ETDGE also has a multimodal performance surface. In order 

to achieve global convergence, proper initialization of DG{h) is necessary. It is 

intriguing to note that the initial gain value,乡(0), can be chosen arbitrarily since 

E{e2(k)} comprises only the first and second order term of g. Partial differentiating 
A 

E{e2(k)} with respect to g and Dg, we get 

二
2
补x) £ -作-〜） dg i=-p 

p A , � 

-2a] Yu sinc(i — D)sinc(i — DG) (4.5) 
i=-p 

and 

dDG h 十 d 夕 � ) dDG 

2 ̂  ‘ (• ^dsinc{i - Dg) 
K 2^ s m c ( l - D ) ^ 

一 p oVG 

二 —(�2 + a2
n) f： 5mc(i - DG)f(i — Do) 
i=-p 

+2々 〜
2 J2 一 D)f(i — £>g) (4.6) 
i=-p 

Setting the above two equations to zero and consider the second derivatives [71] 

respectively, it can be shown that the global minimum occurs when 

� � 2 : SNR 
^ ~ ^2 + n̂ ~ 1 + SNR � . � 

and 

DG = D (4.7b) 

Equations (4.7a) and (4.7b) relate the system variables to the Wiener solution and 

thus the delay estimate of the ETDGE is unbiased for any finite P. Hence, unlike 

other parametric methods for time delay estimation [29]-[35],[39],[63] that require a 
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long filter length in order to reduce truncation error and to avoid biasedness, low 

order filter may be used for the ETDGE which eventually reduces the computational 

complexity. 

4.3 Performance Analysis 

Using (4.2) and (3.3), the expected value of DG{k) of the ETDGE becomes 

E{bG{k +1)} 

=E{i)G{k)} - 2fLDE J {y{k) — g{k)x{k — t)G_ - <k ~ 柳—^(k)) > 
{ i=-P J 

二 丑{̂？⑷} — -D)- g{k)s{k - DG{k)) + n2{k) 
p A 

式k — DG(k))). E -0 + - - DG(k))} 
i=-p 
CO P A ] 

=E{DG{k)} ̂  2\IDE Y, - j)sincU - D) E s(k - ^ - f 

+2fide Ig{k) j)sincu -dgw) E 哪—力I 
{ j=_p 仏-P J 

+2/XdE 1 J 2 — 3)sinc{j 一 力G⑷）E 一 柳—〜⑷）| 

[ j 二 - p J 
p ) 

=E{DG{k)} - 2\lbct\E Y, - D)f(i — DG(k)) > 

+2仲(AS
2 + a2

n)E\g(k) F： sinc(i — DG(k))f(i - DG(k)) 1 (4.8) 
Z=-P J 

When P is chosen large enough., we have 

[sinc(i 一 DG(h))f{i — I)G{k)) « 0 (4.9) 
i=p 

and the last term of (4.8) can then be neglected. Using (3.16) to (3.18), the learning 

characteristics of the delay estimate of the ETDGE is given by 

E{DG{k)} ^D^- {bG{0) ~D)(l- ^fiDO-W) (4.10) 

A 

which is identical to that of the ETDE and the parameter DG(0) represents the 

initial delay estimate. Notice that for small P, t>G(Jc) will still converge to D but 
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its learning behaviour may be somewhat different from the predicted value. 

When Do(k) approaches D, (4.3) is used to derive the learning trajectory of 

m, 

E{g{k + 1)} = E{g{k)} + 2iigE{{s{k - D) n2{k) - g{k)s{k - D) 
p 

__糊4—!>))• YUsinc
^ 一 D M K 一 0 + 冗1(左—‘册 

i=-p 

二 丑{乡⑷} + 2/v7s
2 - 2〜丑0(左)}(�2 + (4.11) 

Solving (4.11) yields 
E{g(k)}=夕+ (利0)—夕)(1 —2〜(〜

2
 + < ) )

f c
 (4.12) 

where 

二 SNR 13) 
夕—1 + SNR • 

A 

Assume g{k) -> ̂  in steady state, the delay variance of the ETDGE, var[DG), 

is found to be (See Appendix C) 

var(DG) = \im {{DG{k) - D)2} 
k—yoo 

_ ^1(1 + 2SNR) ( � 

" SNR̂  � ‘ ) 

Comparing (4.14) with the variance of the ETDE as derived in (3.25), it can be seen 

that they have the same value of 2fJLDal when SNR�1. However，when SNR� 

1，the delay variance of the ETDGE equals /̂ ô /SNR，which is only half of that 

of the ETDE. 

On the other hand, the variance of var(g), can be shown to be (See Ap-

pendix D) 

2figal，SNR�1 

var(g) 二� （4,15) 

lig(j2n , SNR< 1 
� 

For both SNR�1 and SNR�1，the value of var(g) is directly proportional to 

the convergence parameter fJLg and the noise power an. 
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The tracking behaviour of the delay estimate for a linearly varying delay, D(k) 二 

D0 + Xk, where D0 is the TDOA at A; 二 0 and is the Doppler stretch compression, 

is the same as that of the ETDE, that is, 

E{DG(k)} « A) + AA; + (力G(0) — A) + 2 二 > 2 ) (l —臺啊V) 

3 A _ (4.16) 
2fiDâ ir2 

A 

Similar to (3.31), the mean square delay error of the ETDGE, denoted by《刀g)，is 

given by 
‘ ,,a . ,, D̂a2

s(l + 2SNR) 9A2^ , 

From (4.17) and (3.31), it can be seen that the ETDGE in fact has a smaller mean 

square delay error since its estimated delay variance is smaller. 

4.4 Simulation Results 

The performance of the ETDGE for both static and nonstationary delays had been 

studied thoroughly by computer simulations, In our experiments, the signal source 

s(k) and the additive noises n^k) and n2{k) were generated by a random number 

generator of Gaussian distribution with a white spectrum. The corrupting noises 

had unity power and different SNRs were obtained by proper scaling of the source 

signal. Without loss of generality, the initial values of the variable gain and the 

estimated delay were set to 1 and 0 respectively. To demonstrate that the ETDGE 

is unbiased for all filter lengths, P was chosen to be 3. The results provided were 

averages of 200 independent runs. �� 

The convergence characteristics of t>G(k) and g(k) for a constant delay D = 0.3 

were depicted in Figure 4.5 and Figure 4.6 respectively. The SNR was initially set 

at 10 dB and then step-changed to -10 dB at the 7000th iteration. The step sizes 

were chosen such that the time constants of DG(k) and g(k) were fixed under both 

SNR conditions. At SNR 二 10 dB，\ld and fig were assigned with values of 0.00002 

and 0.0001 respectively while \ld = 0.002 and /½ 二 0.001 for SNR = -10 dB. In 

Figure 4.5, it can be seen that the delay estimate converged to its optimal value 
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at approximately the 4000th iteration. As expected, the learning curve started to 

fluctuate after about 7000 iterations due to a large reduction in the SNR. Since 

(4.10) is derived by using the first order approximation of the f function, there were 

small discrepancies between the theoretical and experimental transient behaviours 

of DG{k), but this is not significant. Figure 4.6 shows that g{k) converged to 0.91 

and 0.09，which were their desired values, at the 4000th and the 10000th iteration 

respectively. It is observed that at SNR = -10 dB, the convergence behaviour of 

the experimental gain agreed very well with the theoretical value as given by (4.12). 

However, at the beginning of the adaptation, the learning trajectory of g{k) damped 

and converged at a slower rate than the predicted curve because of the inaccurate 

estimate of D during transients. 

Figure 4.7 illustrates the tracking performance of the ETDGE when the actual 

delay was a linearly time-varying function given by D(k) = 0.3 + 0.0001A;. The 

values of the SNR, \ld and \Lg were set according to the previous tests. The learning 

curve of g(k) is not shown here since it is very similar to Figure 4.6. It is observed 

in Figure 4.7 that after 3000 iterations, the delay estimate converged and lagged 

D(k) by 0.089 at SNR 二 10 dB and by 0.11 at SNR = —10 dB. Evaluating the 

steady state time lag using (4.17) gives a value of 0.076，which is smaller than both 

measurements. The difference is mainly due to the approximations made in deriving 

(4.17). 

The mean square errors of f)G[k) and g(k) for the above two cases are tabulated 

along with the theoretical values as shown in Table 4.1. It can be seen that for 

both stationary and nonstationary delays, the experimental results for var(g) were 

fairly close to those derived from (4.15). Furthermore, the measured variance of the 

TDOA also conformed to the expected value when the original delay was a constant. 

However, the result for ¢(力G) was less satisfactory when the the delay was time-

varying. This is mainly due to the difference between the actual and theoretical 

time lags as illustrated in Figure 4.7. At SNR 二 10 dB, it is obvious that the value 

of ({Dg) was dominated by the time lag. In this case, a larger value of \lb can be 

used to attain a smaller mean square delay error. We had also performed the above 
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experiments for P = 15 and all the results were very similar to those of using i5 = 3. 
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SNR二 10 dB SNR二了 10 dB “ 
Measured Theoretical Measured Theoretical 

value value value value 
Uot^Pg) 4.43 X 1Q-5 T20 X 1(T5 2.87 X 10—2 "^40 X 10一2 

= var(g) 2.00 x 10^ 2.00 x 1Q~4 1.07 x 10^ 1.00 x 10^ 
D(k) 二 0.3 j{DG) 7.53 x lCp~ 5.82 x 10—

3
 3.63 x lO1

^" 2.98 x 10一
2 

+0.0001fc ” 2 . 2 6 x 10~4 2.00 x 10~4 1.05 x 1(T3 1.00 x 10"3 

Table 4.1: Mean square errors of and g(k) of the ETDGE 
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4.5 Summary 
. 

In conclusion, the ETDE has been proved to be a biased estimator and the corre-

sponding delay error decreases as the number of filter taps or the SNR increases. 

Based on the Wiener solution, an improved version of the ETDE called the explicit 

time delay and gain estimator (ETDGE) is proposed by adding an adaptive gain 

control to the delay estimator. It is shown that the modified algorithm provides 

smaller delay variances and unbiased delay estimates for all practical filter lengths. 

The performance of the ETDGE is analyzed for both static and linearly time-varying 

delays and the theoretical results were confirmed by computer simulations for dif-

ferent SNR conditions. ！ 
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Chapter 5 

TDE in the Presence of 

Multipath Propagation | 

So far in our study of the time delay estimation (TDE) problem, it has been assumed 

that the signal source arrives at each sensor through a single propagation path only. 

However, multipath transmissions frequently occur in sonar, radar and many other 

applications [46] ,[72] ,[73]. For example, multipaths may come from bottom bounces 

or reflections of ocean surface in sonar, and reflections of buildings or mountains in 

radar. When the presence of multipath transmissions is ignored, the delay estima-

tion accuracy based on direct-path-only propagation will be deteriorated. Whereas 

performance gain can always be achieved if we know the multipath. structure since 

this information contributes additional independent arrays [51]. With the use of 

the explicit time delay estimator (ETDE) and/or the explicit time delay and gain 

estimator (ETDGE), two adaptive systems are proposed to extract the time dif-

ference of arrival (TDOA) as well as the multipath parameters when each of the 

two spatially separated sensors receives the radiated source plus its attenuated and 

delayed replicas under high signal-to-noise (SNR) environment. The first method, 

namely, the multipath cancellation time delay estimator (MCTDE) [74],[75], con-

sists of two adaptive IIR filters for eliminating the multipath component at each 

transmission channel and one ETDE to estimate the time difference between the 

two sensor outputs. Although the multipath canceller of the MCTDE is originally 

designed to cancel out a replica whose interpath delay is an integral multiple of 

the sampling interval, it can also be used for any real-valued multipath delay. On 
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the other hand, the second system, which is called the multipath equalization time 

delay estimator (METDE) [74],[76], employs only the ETDE and the ETDGE as 

its building blocks. Based on the concept of multipath equalization, the system 

parameters of the METDE are adapted through minimization of a multimodal cost 

function whose global minimum is uniquely related to the actual values of the time 

delay and the multipath parameters. 

In Section 5.1, the problem of TDE in the presence of multipath propagation 

is formulated and some necessary assumptions are made. Section 5.2 derives the 

structure and algorithm of the MCTDE. Convergence dynamics of the system pa-

rameters are given and effects of additive noises are discussed. In addition, numerical 

examples are provided for theoretical validation and performance evaluation. The r 

multipath equalization approach, that uses the MCTDE to initialize the estimated 

parameters, is presented in Section 5.3. Performance analysis of the METDE, to- j 

gether with simulation results, will also be given. The MCTDE and the METDE | 

are summarized and compared in Section 5.4. | 

5.1 The Multipath TDE problem 

The mathematical model of time delay estimation in the presence of multipath 

transmissions can be stated as follows. Given the received outputs of two spatially 

separated sensors, 
Mi 

x{k) = s(k) + aiPsik - Alp) + rn(k) (5.1a) 
P=I 

M2 

y{k) = - A29) + n2{k) (5.1b) 

where the source signal s(k) and the additive noises 7̂ (fc) and n2(k) are assumed to 

be zero-mean, stationary, uncorrelated and white Gaussian processes. As usual, the 

sampling period is assumed to be unity and the parameter D represents the time 

delay between the two sensor outputs. The multipath transmissions are charac-

terized by the gain factors alp and a2q as well as the interpath delays Alp and 
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A29, for Mx > p > 1 and M2 > q > 1. Without loss of generality, we let 

an > ai2 > • • > «lMu «21 > OL22 > ‘ ‘ > OL2M2^ All < A12 < • • < ̂ lMi 

and A21 < A22 < .. • < A2M2- Notice that the multipath gains must lie between 0 

and 1 while Alp and A2q should be larger than zero and D respectively. The integers 

Mi and M2 are the numbers of multipaths contained in x(k) and y{k) respectively 

and they are supposed to be known a priori. It is also assumed that the multipath 

delays are resolvable [49], that is, their differences are all larger than one. The task 

here is to estimate D, alpi a2qt Alp and A2g from the received signals, x(k) and 

yW-

5.2 TDE with Multipath Cancellation (MCTDE) 

In this section, an adaptive system is proposed to tackle the multipath TDE problem 

of (5.1) for Mi 二 M2 二 1. The sensor outputs are now expressed as 

x(k) = s{k) + a\\s[k — An 
) + ̂ (^) (5.2a) 

• and 
双巧）二 — + —乃 一 A'21) + n2(A;) (5.2b) 

where A'21 二 A21 — 乃.Under this circumstance, we need to estimate the parameters 

D, all0 a2i, An, and A'21 instead of A2i. It.is noted that an estimate of A2i can be 

obtained by summing the estimates of A'21 and D. 

5.2.1 Structure and Algorithm 

To simplify the analysis, let us first assume that noise is absent in both sensors 

and the multipath delays, An and A'2lJ are integral multiples of the sampling period. 

Let the Z-domain representations of s(k), x(k) and y{k) be S(z), X(z) and Y(z) 

respectively. Taking Z transform of (5.2) gives 

X{z) = h{z)S{z) (5.3a) 
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1： System block diagram of the MCTDE 

and 

Y{z) = Z~dI2{Z)S{Z) (5.3b) • 

where 

: iiOO 二 1 + 仅 (
5

.
4 a

) 

I2(z) = 1 + a2iZ~A^ (5.4b) 

and 
oo 

z'D 二 X； sinc(n 一 D)z~n (5.4c) 
n=—cx> 

The second terms of h{z) and I2(z) essentially represent the multipath effect in x(k) 

and y(k). 

From (5.3), it is trivial that s(k) and 5(¾ - D) can be recovered by passing x(k) 

and y{k) through l/h{z) and 1//2(2) respectively and these two inverse filters are 

stable because the zeros of both h(z) and I2{z) are inside the unit circle. When s{k) 

and 5(jb _ D) are available, the ETDE can be used to model the TDOA between 

the two filtered signals. The multipath cancellation time delay estimator (MCTDE) 

[74],[75] adopts this concept and its system block diagram is depicted in Figure 5.1. 

It comprises two adaptive IIR filters to eliminate the multipath in each channel, 

65 



|| Chapter 5 TDE in the Presence of Multipath Propagation 

and an ETDE to estimate the time difference D. Of course, the ETDGE can also 

be used instead of the ETDE. However, it is noticed that the ETDGE provides 

no significant improvement over the ETDE for the multipath TDE problem in the 

presence of noise and this will be discussed in Section 5.2.4. 
I • 

The transfer functions of the two multipath cancellers, A{z) and B(z), are given 

by 

I - —— （
5
.
5a
) 

1 + E a ‘厂‘ 
i=i 

and 

B(z) = J (5�b) 

i=i 

where M > max{Au’ A'21}. Apparently, A{z) and B{z) have the same filter struc-

ture. Upon convergence, we expect ai = 0 for 1 < i < M except aAll - an and 
bj = 0 for 1 < j < M except b厶,饥 二 a21. 

Recall from Chapter 3，the transfer function of the delay estimator in the MCTDE, 

Dmc{z), is given by 

p a 

Dmc{z) == sinc(n — (5.6) 
n=-p 

where DMc is the estimate of D and the time index is dropped for convenience. As 

a result, the overall output error, e(k)r is of the form 

p A 

e(k) 二 y'[k) 一 J2 sinc{n — DMc{k))x'{k - n) (5.7) 
n = - P 

where , m 
x\k) = x{k) 一 Yu <k)x'(k - i) (5.8a) 

and B/r m 
y'(k) = y(k) — ̂  ^(k)yf(k - j) (5.8b) 

3=1 

If A(z), B(z) and Dmc{z) are adjusted by minimizing the mean square output error, 

E{e2(k)}, the desired solutions may not necessarily be obtained. It is because the 
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steady state values of the filter coefficients will settle in any real values that satisfy 
-. • the following relation, 

Dmc{z)A(Z) 二 Z~dI2{Z) (5 g) 

~ W ) — h(z) ‘ 

To overcome this problem, the filter weights of A(z) and B(z) are adapted by 

minimizing their respective mean square outputs, A;)} and E{y12(k)}. The 

updating rules are based on Widrow's LMS algorithm [45] with the use of their 

approximate stochastic gradients. The MCTDE algorithm is, therefore, given by 

a{{k + 1) « M>i^1 

=ai(k) + - i) (5.10) 

bj(k + 1) - M>j>l 

二 + ( 5 . 1 1 ) 

； f)Mc{k + i) 二 t>MC�k) - 2_[k) Yu /(n — DMc(k))x'(k — n) (5.12) 
n = - P 

where fia is the adaptation parameter for the multipath cancellers. 

It is noteworthy that after some iterations，An and A'21 can be determined from 

the peaks of {ai{k)} and {bj(k)} respectively. That is, 

An = argmax{ai(A;)} (5.13a) i 

A'21 二 arg moxlbj^k)} (5.13b) 
j 

Once An and A'21 are found, we only need to adjust the peak weights in order to re-

duce the variances of the system parameters as well as the computational complexity 

of the algorithm. 

5.2.2 Convergence Dynamics 

We shall next investigate the performance of the multipath cancellers A(z) and B{z). 

Since the filter structures of A(z) and B(z) are identical, only A(z) is examined here. 
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The analysis for B{z) will follow suit. The performance surface of A{z) is obtained 
I 

by taking the mean square value of 

I: E{x'\k)} 二 ^ / ^ W y 

I ^ (5.14) 
2irj J ^ 

where j 二 V̂ T and ^x»x>{z) denotes the auto-power spectrum of x'(k). Considering 

the inequality 
(5.15) 

where X'(z) stands for the Z transform of cc'(A;)，and using [77] yields 

E{x'\k)} > a] (5.16) 

From (5.14), the equality of (5.16) holds only if \A{z){l + 二 1 which 

implies that the global minimum of E{x'2{k)} occurs when A(z) = l/I^. lt has 

[" also been investigated [77] that E{x,2(k)} is unimodal. Consequently, x'(k) will 

converge to s(k) in steady state. 

Since A{z) will approach 1//1(2), its peak weight can be used to estimate the 

multipath gain au. As soon as An has been determined, constrained adaptation is 

applied, that is, only the largest coefficient aAll(A;) is updated whilst all other filter 

coefficients are set to zero. The adaptive algorithm for A{z) is now simplified to 

aAii(jb + 1) = aAll{k) + 2iiotx'{k)x\k - An) (5.17) 

where 

â AO-â AO-â JAOaJ'p —An) (5.18) 

When x'(k) is close to s(k), the learning characteristics of the gain estimate can be 

obtained by taking the expected value of (5.17) with the assumption that x'(k) is 

uncorrelated with â .. (h) [57], 

E{aAll{k + l)} = E{aAll(k)}2fiaE{{x{k) - aAn{k)x\k - A11))x\k - An)} 
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« E{aAll{k)} + 2fiaE{{s{k) + aus(k — An) 

—aAll (k)s(k 一 An)) • s(k - An)} . 

二 丑{aAu(fc)} + 2/xa�
2(au-丑{aAu(AO}) (5.19) 

When is chosen between 0 and l/o ’̂ (5.19) can be found as 

I 丑{aAll(A0} 二 an+ 0 ^ ( 0 ) - 0 ^ ) ( 1 - ( 5 . 2 0 ) 

where aAu(0) is the initial value of aAlX{k). As k — oo, aAll{k) is an unbiased 

estimate of a.\\. 

The mean square error of the gain estimate, denoted by ea{k), can be written as 

(See Appendix E) 

； ea{k) = E{{aAll{k) - a11)2} 

« ^a] + ((aAll(0) - an)2 一 — (5.21) 

provided that fia lies within the bound, 

0 < < TT (5.22) 

Notice that (5.22) is a stringent bound for /ia since the mean square weight error is 

confined to be finite [66], The variance of the gain estimate, var(a), which equals 

the steady state value of ea(k), is thus given by 

var{a) = ^ba(r2
s (123) 

When A(z) has reached its optimal value, .(5.18) can be approximated by 

x'(k) « s[k) + (an - aAll(k))s{k - An) (5-24) 

Although the multipath effect cannot be eliminated completely after passing x(k) 

through A{z), the magnitude of the multipath is reduced significantly since aAll [k)— 

an. Similarly, the steady state value of y'(k) is given by 

y\k) « s(k - D) + (a21 - b^{k))s{k - D - A'21) (5.25) 
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Since the values of x'(k) and y'{k) are dominated by the first terms of (5.24) and 

(5.25), we may neglect their second terms. As a result, the learning trajectory o± 

the delay estimate becomes identical to (3,18)，that is, 

I E{DMc{k)} + (I)mc(O) — D)(1 —臺/̂tt2) (5.26) 
where Dmc{0) is the initial delay estimate and it can be found from (3.12). Con-

sidering the second terms of (5.24) and (5,25) as uncorrelated noise sources, the 

variance 
of t)MC[k), var{DMc\ can be computed from (3.26) which has a value 

var(DMc) « (5.27) 

Therefore, the delay variance in this case increases with fiD, and as. 

5.2.3 The Generalized Multipath Cancellator 

When An is not restricted to be an integer, x(k) can be expressed as 
OO 

x{k) 二 5(^) + an E sinc^ — AuMk — 0 (5.28) 
i== 一 oo 

It is expected that the transfer function of the optimal multipath canceller, A°(z), 

is of the form 

二 一 ^ — — — ( 5. 2 9) 

1 + an E sinc(z - An)rl 

i=—M 

In this case, M should be chosen much larger than An to reduce modeling error. 

However, it has been shown (See Appendix F) thai due to the noncausality of 

the filter structure, A°(z) is an unstable system and thus its practical realization 

is prohibited. It is trivial that a suboptimal solution for the multipath canceller, 

denoted by As(z), can be represented by 

止⑷二 _ _ _ (5.30) 

1 + «11 E sinc(i — Aii)z~l 

i=i 

As a result, we can still use A(z) to cancel out the replica. In our studies, we 

replace â k) by ai^sincii -么乂灰))，for l < i< M, where a^k) and Aa
n(k) 
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I v a , 

are the estimates of an and An respectively. Upon convergence, a^k) -> an and 

Â (ib) — An are desired. Based on the ETDE algorithm, the updating rules for 
A 需 

al^k) and are derived as 

m 丄•！、 m fus dx,2(k) 
I 4 + 1 ) = 〜 � ， ^ ^ 

M A 
=a^ik) + - i)sinc{i 一 Aa

n(Ai)) (5.31) 
2=1 

and 

a ^ t � lla dx,2(k) 
A�办+ 1 ) « 

M 
二 A^k) ^ 2fiAx\k) E f{i — A^Ak 一 i) (5.32) 

i=i 

where 
M 

x'{k) = - a3
n(k) X； sinc(i - A3

n(k))xXk - i) (5.33) 
i=i 

The parameter fiA is the convergence step size for Au(A;). Notice that (5.31) and 

(5.32) represent the generalized algorithm for the multipath canceller and they can 

be used for both integral and non-integral multipath delays. It can be seen that 

(5.17) is only a special case of (5.31) when An is an integer. 

When An > 0，the learning characteristics of a3
u(k) and A^k) are given by 

(See Appendix G) 

Eia^k)} « an + (as
u(0) — an)(l — 2fiaa2

s)k (5.34) 

and 

EiA^k)} « An + (虹(0) - An)(l - 臺 � V ) (5-35) 

The initial value of the multipath gain estimate, 6̂ (0)，is arbitrarily chosen between 

0 and 1. The system starts at the beginning with a few hundred iterations using 

(5.10) to determine the value of A ^ ( 0 ) which is given by (5.13a)，and the joint delay 

and gain estimation then follows accordingly. 
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I ‘ I 幕::., 
A A 

The variance of â (ib) is given by (5.23) whereas the variance of A^k), A[)， 
I 

can be shown to be (See Appendix H) 

\ var(A3
n) = ^ (5.36) 

an 
A 

We shall investigate the performance of the delay estimate Dmc{^) when the 

multipath delays are of real values. Assume that An > 0 and A'21 > 0，then the 

modeling errors in A{z) and B(z) are so small that they can be ignored. In this 

case, the rate of convergence and the variance of DMc{k) can be approximated by 

(5.26) and (5.27). 

However, if An and A'21 are not large enough, the estimation performance will 

be degraded. Subsequently, the steady state values of X'{z) and Y'(z) become 

：；； X\z) = ̂ Siz) (5.37a) 

and 
f Y\z) = Z~dT2{Z)S{Z) (5.37b) 

where … _. 
1 + . E sinc(i — Au)厂1 

T l { z )
 二 1 + 如 E £ sinc{i 一 ( 5

' 

and oo �一 . 
1 + a21 E sinc(j - A'^jz'3 

Tjz\ ZzẐf (5.38b) 

As a result, the ETDE cannot model the actual delay accurately and the delay 

estimate is now determined by the following relation, 

0 
x； {a2isinc(i - A'21) — ansinc(i 一 An)>一1 

« (i + -M rV" 
(1 + an E sinc(i 一 An)2Tl)(l + a21 ̂  sinc(j - A'21>_” 

(5.39) 

It is obvious that if 2\(z) = T2(z), we can still obtain an accurate delay estimate. 

Inspection of (5.39) indicates that T2{z)/T1(z) will tend to unity when an and a21 
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I 

decrease or Au and A'21 increase at the same time. For any other circumstances, 

the steady state value of DMc{k) will deviate from the actual delay. Furthermore, 
I , 

the mean square error of DMc{k) will be much larger than the value given by (5.27). 

5.2.4 Effects of Additive Noises 

The performance of the MCTDE is also studied when corrupting noise sources are 

present in x{k) and y{k). Again, we shall first examine the effect o£ the noise to the 

multipath canceller A{z). Only integral multipath delays are considered and A{z) 

is adapted according to (5.17). It is assumed that the SNR is high enough such that 

An can be determined using (5,13a). Therefore, the performance surface of A(z), 

E{x'2(k)}0 can be expressed as (See Appendix I) 

E = (1 +必-，，>，+4 (5.40) 
1 — aAu 

Differentiating (5.40) with respect to aAll yields 

‘ dE{x,2{k)} 二 -2{ana2
sa2

An 一 ((1 + aM + + ̂ 1) (5 41) 
daAll (1 - aAu)2 

We set (5.41) to zero to evaluate the global minimum point of E{x,2(k)} which can 

be found to be 

_(1 + + al — ̂ /(1 - afOM + < + 2(1 + (5 

� u = — 2a11a^s ^ . 

When al = 0, â  t equals au and this result has also been obtained in Section 5.2.2. 

However, under a noisy environment, it can be seen from (5.42) that a°Aii < In 

addition, the difference between a°All and- au increases with the noise power. 

Using (5.2a) and (5.18)，the value of x'{k) in the presence of noise can be ap-

proximated by 
： x\k) « s(k) + (an - aAll{k))s(k - An) + n^k) (5.43) 

It is similar to (5.24) except the existence of ni(A;). It is noteworthy that the replica 

will not be eliminated or reduced through the multipath canceller when SNR < 1. 

It is because from (5.42), a°All — 0 as < — oo. Moreover, it has been shown (See 
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Appendix J) that the time constant of aAll(k) has a value of l/(2/xa((jf + a^)) and 

it is smaller than that of (5.20). However, is no longer an unbiased estimate 

of an upon convergence. If we use (左)as an estimate of an, the steady state 

mean square gain error, namely,�(a)，is equal to the sum of var(a) and the bias 

square, 

I e(a)«/xaafl
2 + (an-a°Aii)2 (5.44) 

On the other hand, y'{k) has a value of 

y\k) « s{k-D) + (a21 - bA>2i{k))s{k -D- A'21) + n2{k) (5.45) 

As a result, the steady state value of the delay estimate is related to the multipath 

gains and the additive noises by 

D m c [ z ) � 1 + r � ( a i l —略J + ^(zysiz) � ) 

where N^z) and N2{z) are the Z transforms of n^k) and n2{k) respectively. The 

quantity b0^ represents the mean estimate of a21 and its value is obtained by (5.42) 

with the substitution of an 二 a21. Due to incomplete cancellation of multipatlis 

as well as presence of noise components, the delay modeling accuracy of the ETDE 
A 

will decrease and the mean square error of DMc{k) is much larger than var(DMc)-

Notice that even if we replace the ETDE by the ETDGE, whose delay estimates 

are proved to be unbiased under noisy environments, no performance gain can be 

achieved. It is because the ETDGE will not provide the optimal filter weights when 

and y'(k) consist of noise terms as well as multipath signals. 

5.2.5 Simulation Results 

Simulation tests had been performed to corroborate the theoretical derivations and 

to evaluate the performance of the MCTDE for time delay estimation in the pres-

ence of multipath transmissions. The signal s(k) and the noises n^k) and n2{k) 

were white Gaussian random variables and they were produced by a pseudorandom 

noise generator. The power of s(k) was fixed to unity and different SNRs, where the 
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•.: 
SNR was defined as a2Jcrl, were obtained by proper scaling of the random noise se-

quences. The delayed signal s(k -D) was produced by passing s(k) through an FIR 

filter of transfer function ES-30 sinc(i-D)z-i. Similarly, s(k — An) and s(k- A21) 

were obtained. We fixed D G (-10,10) and the values of the multipath. delays were 

less than 10. In order to allow for acceptable truncation errors, M was chosen to be 

15 in both A(z) and B(z) while the filter length of the ETDE was 31 (P 二 15). The 

initial values of {ai{k)} and {bj(k)} were all set to be zero. In our studies, A(z) and 

B(z) were updated according to (5.10) and (5.11) respectively at the beginning of 

the adaptation. At the 600th. iteration, we used (5.13) to determine the estimates of 

An and A'21，and A(z) was then adjusted using (5.17) for an integral interpath delay 

or (5.31) and (5.32) for any real-valued multipath delay. When applying (5.31), the 

initial value of the multipath gain was arbitrarily selected to 0.5. On the other hand, 

i)MC{0) was found by using the LMSTDE for the first 600 iterations and its value 

was given by (3.12). The step size fia had a value of 0.001 and /z厶二 二 0.0005. 

All simulation results provided were average of 200 independent runs. 

Experiment 1 

The learning trajectories of the estimates of the multipath gains and time delay for 

integral interpath delays under a noise-free condition are shown in Figure 5.2 and 

Figure 5.3 respectively. In this test, D 二 1.4，au 二 0.8，a21 = 0.4, An = 4 and 

A' 二 5. After Au and A'21 had been found at the 600th iteration, only aA(k) and 

b5{k) were adapted whilst all other filter weights were set to zero. In Figure 5.2, it 

can be seen that aA(k) 0.8 and h{k) 0.4 at the 3000th and the 2000th itera-

tion respectively. Figure 5.3，on the other hand, illustrates that the delay estimate 

converged to the desired value of 1.4 in about 2500 iterations. The learning curves 

of 65(AJ) and DMc{k) agreed well with, the predicted trajectories but the convergence 

time for a4(k) was slightly longer than its theoretical value. It is mainly because at 

the beginning of the adaptation, the assumption of x'(k) ^ s(k) that facilitates the 

derivation of (5.20) was invalid. Upon convergence, the measured variances of aA(k) 

and b5{k) were very close to the theoretical value of 0.001. However, the variance of 
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I ' 

. . \ 

DMc{k) was found to be 1.16 x 10"5 which was much larger than the value given by 

(5.27), that is, 1 x lO"6. The discrepancy existed because the derivation of (5.27) has 
I 

assumed that the second terms of (5.24) and (5.25) are uncorrelated with the signal 
I 

source but this is not actually true. We had also attempted to adjust {ai{k)} and 

{卜(左)} according to (5.10) and (5.11) respectively，and in this case, the convergence 

behaviours of the gain estimates and the delay estimate were observed to be very 

similar to the results of Figure 5.2 and Figure 5.3. The variance of 65(AJ) had been 

found to be fairly close to the predicted value, whereas the mean square error of 

aA{k) and DMc{k) had a value of 1,83 x 10"3 and 1.48 x 10—4 respectively and they 

were larger than those of the constrained adaptation. 

Experiment 2 

Another experiment for real-valued multipath delays has been performed and the 

W results are shown in Figure 5.4, Figure 5.5 and Figure 5.6. The setting of the param-

eters was identical to the previous test except that An 二 4.5 and /S!2l 二 5.7. In this 

case when the multipath delays are not integral multiples of the sampling interval, 

A(z) and B(z) were adjusted according to (5.31) and (5.32). Upon convergence, it 
A 

can be observed in Figure 5.4 and Figure 5.5 that as
n{k) -> 0.76 and As

n{k) -> 4.43 

while the estimates of a21 and A'21，namely, as
21{k) and A'^k), approached 0.40 and 

5.69，respectively. The estimates in Figure 5.5 were more accurate since the mul-

tipath canceller has a better performance for larger multipath delays. In addition, 

I the convergence rates of AĴ fc) and were similar to their predicted values 

whereas those of the gain estimates were different from the analytical results. It is 

because we have assumed that the multipath delay estimate has already approached 

its optimal value when deriving (5.34). As indicated from (5.35) that the time con-

stant of the multipath delay estimate is inversely proportional to the multipath gain, 

A^k) converged at the 2000th iteration whereas A'21(A;) required a longer period of 

4000 iterations, to reach its desired value. On the other hand, Figure 5.6 shows that 
A 

f)MC(k) converged to 1.35 at the 3000th iteration. The estimate DMC(k) was un-

able to reach the optimal value of 1.4 since the multipath effect was not completely 
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eliminated, particularly in x'(k). Notice that the rate of convergence of DMc{k) 

was slowed down by the learning processes of the multipath parameter estimates. ‘ 
1¾ • 

Consequently, it required a longer time to converge when comparing with Figure 

5.3. 

The second order statistics of these parameters, together with the theoretical 

values, are tabulated in Table 5.1. It can be seen that the experimental values of 

var(as
21) and ̂ ^(A^), which denote the variances of as

21{k) and A^ respectively, 

conformed fairly to the analytical calculations. However, the results for other pa-

rameters were not so satisfactory. The measured variances of OL̂ k) and A^k) 

were larger than the theoretical values because biases were existed in these esti-

mates. Limited by the inherent modeling errors in the inverse filters of A(z) and 

B{z), the measured variance of DMc{k) was much larger than the desired value. 

Experiment 3 

Figure 5.7 and Figure 5.8 illustrate the effects of additive noises on the system pa-

！ rameters by repeating Experiment 1 for SNR 二 20 dB and SNR 二 10 dB. In this test, 

we did not assume integral multipath delays so that the multipath cancellers were 

j adapted using (5.31) and (5.32). As discussed in Section 5.2.4, it can be roughly 

seen from Figure 5.7 that the learning speeds of as
u(k) and a3

21(k) increased with 

the noise power. However, the gain estimates were not so precise in the presence 

of noises. We observe that a^k) -> 0.77 and a3
21{k) — 0.40 when SNR = 20 dB 

while the steady state values of a3
u{k) and as

21{k) for SNR = 10 dB were 0.65 and 

0.36 respectively. These values agreed well with (5.42). At lower SNRs, we expect 

that the accuracy of the gain estimates will be worse since a^k) and ̂ 21(̂ ) shift 

away from the desired values as the noise power increases. Although we had not 
A 

shown the results of the multipath delay estimates, we found that Â (AJ) -> 4.00 

and A'̂ k) — 5.00 for both cases of SNR. From Figure 5.8，it can be seen that 

bMC{k) — 1.40 when SNR 二 20 dB and it converged to 1.41 for SNR = 10 dB. The 

delay error for the second case is due to the additive noises as well as the noticeable 

multipath components in x'(k) and y'{k) when a^k) and as
21(k) did not converge 

} : 77 



|| Chapter 5 TDE in the Presence of Multipath Propagation 
11'‘ 

to the desired values. Due to the inferior performance of the multipath canceller 

under a noisy environment, it appears that accurate estimates of the TDOA and 

the multipath parameters can only be attained when SNR�1. 

Experiment 4 
• 

Figure 5.9 to Figure 5.13 demonstrate the ability of the MCTDE to estimate the 

system parameters under a nonstationary environment in which all five parameters 

were given step offsets after every 5000 iterations. The noise-free condition and 

a noisy environment of SNR = 10 dB were investigated. It can be seen that the 

MCTDE tracked all these step changes in both. SNR conditions. In Figure 5.10， 

Figure 5.12 and Figure 5.13’ we observe that the trajectories of A3
n{k), and 

DMC{k) were almost unaffected by the corrupting noises and slightly biased or un-

biased estimates of these parameters were found after transients. These biasedness 

is mainly due to incomplete cancellation of the multipath signals in A(z) and B(z). 

Whereas Figure 5.9 and Figure 5.11 show that the estimates of the multipath gains 

were more accurate in the noise-free condition than those under the noisy environ-

ment. The discrepancies of as
u(k) and as

21[k) are mainly due to the corrupting 

noises as well as the modeling errors in A(z) and B{z). 

The mean square error of DMc{k) ]i3,d been measured for different multipath 

parameters in the absence of noise and the results are depicted in Figure 5.14. In 

this diagram, An was varied from 1.0 to 8.0 and two values of an，namely, 0.8 

and 0.2，were tried while other parameters, a21, A'21 and D were assigned to have 

constant values of 0.4, 5.7 and 0.3 respectively. These results agreed with Section 

5.2.3 because the mean square delay error decreased as An increased or if au 

diminished. On the other hand, it had a large value when an 二 0.8 and for small 

An. It is also noted that when the difference between the integral parts of An 

and A'21 is an even number, the mean square delay error is relatively small. This 

phenomenon can be explained using (5.39). When the integral parts of Au and A'21 

are both odd or even, the values of sinc(i — An) and sinc(i 一 A'21) are of same sign 

and their difference will be relatively small. In these cases, T1(z)/T2(z) is close to 
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unity which implies a smaller error in the delay estimate. 
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Figure 5.2: Estimates of multipath gains of the MCTDE for integral interpath delays 
in a noise-free condition. 
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Figure 5.3: Estimate of time delay of the MCTDE for integral interpath delays in a 
noise-free condition 
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Figure 5.6: Estimate of time delay of the MCTDE for non-integral interpath delays 
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Measured Theoretical 
value value 

varjaj^ "2.76 x 10—3 1.00 X 10_3 

âr(A )̂ 5.36 x 1Q-3 6.25 x 10一4 

var(as
21) "l.Q4 x 10~

3
 1.00 x 10一

3 

1.26 x 10-3 1.25 x 10—3 

var(DMc) j 2.30 x 10~3 1.00 x 10一6 

Table 5.1: Measured and theoretical variances of the system parameters of the 
MCTDE for a noise-free condition 
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Figure 5.8: Estimates of time delay of the MCTDE in noisy environments 

82 



|| Chapter 5 TDE in the Presence of Multipath Propagation 

1 — 

08
 -二 1 

I 們—T̂ JF11 

0 4 _ I /••" ——actual multipath gain 
\ J / — noise-free condition 

SNR = 10dB 
02 i i J—J 1 1 1 
"600 2000 4000 6000 8000 10000 12000 14000 

no. of iterations 
Figure 5.9: Tracking behaviour of as

u(k) of the MCTDE for different SNRs 

6 r~ “ 

鱼 5.5 -
<33 "O 

I . � 7 ^ " K 
二 5， • / — 

I\ !/ . 
45 - - - - - - y -. actual multipath delay 

� noise-free condition 
SNR = 10dB 

4 i i i > ‘ ^ 1 

600 2000 4000 6000 8000 10000 12000 14000 
no. of iterations 

Figure 5.10: Tracking behaviour of As
n{k) of the MCTDE for different SNRs 

83 



|| Chapter 5 TDE in the Presence of Multipath Propagation 

08 _ actual multipath gain 
noise-free condition 丨 

SNR = 10dB ' / 
C l/ /'"" 

F.6 - �— 
1 \ i f"‘— 

I I '•••" I I —J 1 1 

600 2000 4000 6000 8000 10000 12000 14000 

no. of iterations 

Figure 5.11: Tracking behaviour of as
21{k) of the MCTDE for different SNRs 

i\ actual multipath delay 
> 5.2 - Z I \ noise-free condition 
% - ] \ SNR = 10dB 

I - ! \ 
.？4.8: I \ 

r: 
~ 4.4 - ！ \ 

N̂  
4.2 - — 

4 L I I 1 ' -J -1 ‘―“‘ 
600 2000 4000 6000 8000 10000 12000 14000 

no. of iterations 
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5.3 TDE with Multipath Equalization (METDE) 

When the multipath delays are fairly small while the multipath gains are relatively 

large, the performance of the MCTDE will be notably degraded due to incomplete 

elimination of the multipath signals. In this section, we try to resolve this problem 

by using another adaptive model which is based on equalization of the multipath 

effect in each transmission channel. Moreover, the new method can also be applied 

when there is more than one multipath signal received at each sensor. 

5.3.1 The Two-Step Algorithm 

Taking Z transform of (5.1)，we have 
Mi 

X(z) = S(z) (1 + E alpz-^) + N式z) (5.47a) 
P=I 

M2 � � 

Y(z) = S{z) (z~D + J： + N2(Z) (5.47b) 
g=l 

where 
oo , � 

厂 s i n c { n - v)z~n
1 ”二 D，Alp,Â  (5.48) 

71 二 一 OO 

If We multiply the bracket term of (5.47b) to (5.47a) and the bracket term of (5.47a) 

to (5.47b), the two resultant transfer functions will be equal in the absence of noise. 

Using this idea and from (5.47), we define an error function, e[k), which is given by 
Ml

 “ 兴
 A

 、1 
e(k) m Z-1{y(^)(l + E ^pK^)) - X{z)[Dme{z) + J] a2qA2q{z))\ 

p mi a 
二 X) ^ alpsinc(n - Alp)y(k - n) 

n=-p P=1 
p m2 - \ � 

—{sinc{n — DMe) + X) ^2qsinc{n — A2g)) x{k 一 n) (5.49) 
n=-P 9=1 

A 

where Z-1^} represents the inverse Z transform of v. The system parameters, DMe, 

，Alp, a2q and A2g，for M1 >p>l and M2 > g > 1，denote the estimates of D, 
alp, AiPJ a2q and A2q respectively. The transfer function v(z) is defined as 

p a 

耐么）二 乞 sinc{n-v)z~n
1 v = Dme, (5.50) 

n=-P 
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where P�max{Alp, A2q} so that it can model the ideal time shift function 

fairly accurately. If we minimize E{e2{k)} with respect to these parameters, we 

expect that perfect estimates of the delay and multipath parameters can be obtained 

when ni(ifc) = n2{k) = 0. At high SNR condition, accurate estimation of D, alpy 

Aip, a2q and A2q is anticipated. However, this is difficult because E{e2(k)} has 

a multimodal surface. Notice that when 恥 二 M2 二 0，£7{e2(A;)} becomes the 

performance surface of the ETDE which has been shown to be multimodal. 

This multipath. equalization based method consists of two steps. The first step 

is to find initial guesses of the delay and multipath parameters such that they map 

to a point on E{e2(k)} which is fairly close to the global minimum. By so doing, 

the system parameters are avoided from being locked at any local minimum. A 

stochastic gradient descent algorithm is then used to "fine-tune” the estimates of 

the delay and multipath parameters through the minimization of E{e2(k)}. Instead 

of using the MCTDE, other methods such as correlation techniques [48] ,[78] can also 

be used to find good initial values of the multipath parameters. 

In our studies, we freely adapt the MCTDE system for a few hundred iterations 

to initialize the system parameters. Although the MCTDE is originally designed 

to tackle the multipath TDE problem when Mi 二 M2 二 1，it is possible to obtain 

rough estimates of the TDOA and multipatli delays at SNR�1. Since A{z) and 

B(z) aim to whiten the received signals, x(k) and y{k), it is expected that 
Mi 

ai(k) « — Aip) (5.51a) 
P=I 

\ 
and ,, 

M2 

bjik) « X) ̂ 2qsinc{j - A2q + D) (5.51b) 

in steady state if the filter length, of the multipath cancellers, M, is chosen much 

larger than the maximum of AiMl and A2M2- A good choice of A u ( 0 ) is given by 
A 

(5.13a). Moreover, the second peak of {ai(k)} corresponds to A12(0) and so on. In 

a similar manner, the values of A21(0) - DmeW, A22(0) 一 Dme{0)}…，A2M2(0)-

DME{0) can be determined by the peaks of {bj{k)}. It can be deduced from (5.49) 

that E{e2{k)} becomes unimodal if the time delay and multipath delay parameters 
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� 

are known a priori. This means that the initial estimates of the multipath gains 

can be arbitrarily selected without affecting the global convergence. 

/ 

: H 3M) h I“―̂  

WMM 
/ ejk) \ 

Figure 5.15' System block diagram of the METDE 

After initialization, a new adaptive algoritlim, namely, the multipath equaliza-

tion time delay estimator (METDE) [74]，[76]，is used to obtain accurate estimates of 

the TDOA and multipath parameters. The system block diagram of the METDE is 

depicted in Figure 5.15. Basically, it consists of one ETDE and {M1 + M2) ETDGE. 

The output error of the METDE, e(k), is equal to (5.49) except that the system pa-

rameters, f)ME(k), alp(kl Alp(k), a2q(k) and K2q{k\ are now time-varying. There-

fore, it is an adaptive realization for finding the minimum point of E{e2{k)}. The 

system parameters of the METDE again use stochastic gradient estimates which 

are obtained by differentiating e2{k) with respect to the instantaneous TDOA and 

multipath parameter estimates. The METDE adaptive algorithm is given by 

, , � de2(k) 
= D m 讽 卞 ^ ^ 

二 f>ME(k)-补De(k) <k - n)f(n - ^meW) (5.52) 
N=-P 
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I 
de2(k) 

+ 1 ) = 知 ⑷ — � M ^ ， ^<V<M1 

p A 
二 alp{k) - 2fiae(k) ^ sinc{n - Alp{k))y{k - n) (5.53) 

n=—P 

A l p ( f c + 1 ) = A l p � - ^ , , 

=Alp(jb) + 2 M e � fl fin - -
 n
) (

5
.
54
) 

N=-P 

a2q(k + 1) = a2q(k) - ^ ^ ^ y l<q<M2 

p A 
二 a2q(k) + 2fjLae(k) ^ 5mc(n - DME{k))x{k-n) (5.55) 

n=-P 

=A2q{k) - 2^e(k) f(n 一 2̂,(̂ ))̂ (̂  — n) (5.56) 
n=-P 

It is easy to show that ((1 + Mi +M2)(2P + 1) —1) additions and (3 + Mx +M2)(2P + 

1) multiplications are required to compute e(k) for each sampling interval. The 

adjustment for each of the DME{h\ Klv{k) and needs (6P + 3) additions 

and (4P+5) multiplications while (2P+1) additions and (2P+4) multiplications are 

involved in calculating alp{k) or a2q{k). Consequently, the amount of computation 

is roughly proportional to the number of multipaths and the filter length or P. 

5.3.2 Performance of the METDE 

To analyze the performance of the METDE, a simple case that Mi = M2 = 1 is 

first considered. In this situation, only Dt aUj Au，a21 and A21 are needed to be 

estimated. It is assumed that good initial estimates of these parameters have been 

determined such that global convergence is guaranteed, and P is also assumed to be 

sufficiently large such that v{z) can be replaced by in the following derivations. 
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I . . 
Assuming that the estimated parameters are uncorrelated with received outputs 

[57] and au{k) an, An(ib) — An, a2i{k) a2i and A 2 1 ( A J ) — A21，we evaluate 

the learning chax^^^^ by taking the expected value of (5.52), 

E{bME{k + 1)} 
p 

>丑{力肌⑷} —2/zDE{e⑷乞cn(A; -n)/(n -力M五⑷)} 
n=-P 

: « E{bME{h)} - 2fjLDE{(s{k - D) + ans{k -D - An) + n2(k) 
A A . 

+ann2{k - An) _ s(k — DMe(^)) — OLus(k — DmeW — ^LI) 

— 一 DMEW) - a2in1{k 一 A2I)) 

• J2 {s(k -^) + OLns(k - An - n) + n^k - n)) f(n - DME{k))} 
71=-00 

OO 
=E{DME(k)} — 2fjLDE{ ( Ŷ  s(k _ 0 . 一刀）+ 0Lnsinc{i — D — An) 

i= 一 oo 
oo 

-sinc(i — i)ME(k)) 一 ansinc(i — i)ME(k) - An}) — J2 _ _ — fl 
i= —CX5 

oo 
-{sinc{i — DmeW) + a21sinc(i — A21)) . X) _ n) 

n=—oo 

+an f^ s(k - j)sinc{j - An - n) + ̂ (k - n))/(n - DME(k))} (5.57) 
j=-oo 

Note that s(k), n^k) and n2{k) are white and mutually uncorrelated, and 
OO 
y^ sinc{i — a)sinc(i — b) = sinc(b — a) 
i=oo 

The expression for E{bME(k + 1)} can be written as 

E{bME{k + 1)} 
OO 

=E{bME{k)} — 2fiDa2
3E{ Y, /(n — DME{k)){sinc(n — D) 

n=—oo 

+aiismc(n + Au — D) + ansincfji « D - An) -]r a2
lxsinc{n 一 D) 

-sinc(n — £>ME(k)) — aiiMnc(n + An - DmeW) 一 - DME{k)))} 
OO A . A +2fiDal • E{ Yj f(n ~ DME{k))(sinc(n - DmeW) 

n=—oo 
+a2i5mc(n — A2I))J 

=丑{^m五(AO} - 2fjLDa2
sE{f{D- DME{k)) + anf{D — An — DmeW) 

90 



|| Chapter 5 TDE in the Presence of Multipath Propagation 

: + Au — t)M_ + alJ{D — DME{k)) - /(0) 一 a11f{A11) 

I：；；''�—c^/(一 An) - a2
uf{0)} + 2/zD^E{/(0) + au/(A21 — DME{k))} (5.58) 

. 

Since f is an odd function and /(0) = 0，(5.58) becomes 

E{DME{k + 1)} 
I 

I = E{DME{k)} 一 2/xD�2丑{(1 + ̂ )/(1) 一 bME{k)) + anf{D — DME{k) + An) 

t — DME{k) — An)} + 2fiDa2
nE{a11f{A2i - DmeW)} (5.59) 

When a] > a2
n and when DME{k) is close to D, (5.59) can be approximated by 

I E{bME{k + 1)} « E{DME{k)} ^ 2^(1 al,)a2
3E{f(D - DME(k))} 

j « E{DME(k)}-臺仲(1 + a2
uyyE{DME{k) - D} 

(5.60) 

Solving (5.60) yields 

E E{DME{k)} « 刀 + {Dme{0) — D){l —产(1 + (5.61) 

provided that, in this case，[iD satisfies the following condition, 

0<flD< n L 2 N 2 2 (5'62) 

A A 

Similarly, the learning trajectories of an(A;), AU(A;)，a21(k) and A2i{k) have been 

shown to be (See Appendix K) 

E{6tll{k)} « ^ + (au(0) - a n ^ ^ ) ( 1 - (5.63) 
ay � y 

« An + (Ah(0) - Au)(l - + OL2
21)a2y)k (5.64) 

) E[a21(k)} « "21(气一※ + (a21(0) - (5.65) 
^x x 

E{A21(k)} ^ A2i + (A21(0) - A21)(l — 臺 p A a 2 1 ( l + 0 ^ » 2 ” （ 5 . 6 6 ) 
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where g2
x and a^ denote the powers of x{k) and y{k) respectively and they are given 

by 

= a2
s{l + a2

n + 2an5mc(Aii)) + a2
n (5.67a) 

and 

a2
y = afl

2(l + a2
21 + 2a21sinc(A21 - D)) + ^ (5.67b) 

It is observed that the unbiasedness of An(A;) and K2i(k) can be main-

tained at high SNR environments, Whereas the gain estimates are biased in the 

presence of noise although they are unbiased in a noise-free condition. Moreover, 

the time constants of the TDOA and multipath parameter estimates depend on the 

actual values of the multipath delays and multipath gains. 

The steady state mean square errors of the estimates of the time delay and mul-

tipath parameters have been derived and they are approximated by (See Appendix 

L) 

C(DME) = lim E{{DME{k) - D)2} 

« fJLD^l' (5.68) 

= lim E{{an{k) - a11)2} 
« + 譬 （5.69) 

�A u ) i lim EHk^k) - An)2} 
� fc—•OO 

« ^ ^ (5.70) 
OLll 

C{a21) = . lim E{(a2i{k) — a21)2} 
fc—OO 

« “ + 年 (5.71) 
a x 

ak21) = lim E{{K21{k) - A21)2} 
� fc—OO 

« (5.72) 
«21 
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where | . -

<J2n, 二 <(2 + a2
xl + a2

21 + 2an5mc(An)) + 2a2isinc(A21 — D)) (5.73) 
m| ； • 

Basically, the mean square errors of these parameters increase with the step sizes 

and â ,. In addition, the values of (̂Au) and f(A21) decrease as an and a21 

increase. While the steady state error for each of the gain estimates comprises an 

additional term which equals the squared value of its bias. It is worthy to note that 

since the inter-dependence of the system parameters has not been considered in the 

above derivations, the convergence dynamics of these parameters may be different 

from the theoretical values in actual circumstances. Furthermore, their mean square 

errors will be greater than those as given by (5.68) to (5.72) and have finite values 

in the absence of noise. 

5.3.3 Simulation Results 

The performance of the METDE has been evaluated and contrasted with the MCTDE 

through computer simulations. The signal source and its delay versions, as well as 

the corrupting noises and the required SNRs were generated in a similar way as in 

Section 5.2.5, At the beginning of the adaptation, the MCTDE was freely adjusted 

for 600 iterations to deduce rough estimates of the TDOA and multipath delays. All 

initial values of the multipath gain estimates were arbitrarily selected, to 0.5. The 

filter length, 2P + 1, was chosen be 31 while the step size fia had a value of 0.001 

and 仏=Pd 二 0.0005. The experimental results are obtained by taking ensemble 

average of 200 independent trials. . 

Figure 5.16 to Figure 5.18 show the learning trajectories of the estimated delay 

and multipath parameter estimates for Mi 二 M2 二 1 at SNR 二 10 dB. The actual 

parameters were given as follows: D 二 1.4，au 二 0.8，a21 二 0.4，An = 4.5 and 

A2i = 7.1, which were identical to Experiment 2 o£ Section 5.2.5 except that additive 

noises were added. It can be seen from Figure 5.16 that DME{k) approaches the 

optimal value, viz., 1.4, at the 4000th iteration. The multipath variables au(k) and 

Aii(fc) converged to 0.73 and 4.50 at the 2500th and the 4500th. iteration respectively 
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in Figure 5.17 while a21(k) 0.38 and A 2 1 ( A J ) — 7.11 in about 4000 iterations as 
. 

observed from Figure 5.18. As discussed in Section 5.3.2, the estimates of the TDOA 

and multipath delays were close to the actual values whereas au(k) and. a2i(̂ ) were 

biased due to the corrupting noises. Moreover, we see that the convergence behaviour 

of an{k) agreed with the predicted trajectory but the other parameters had slower 

learning rates as compared with their theoretical values. The discrepancies are 

mainly caused by the inter-dependence of the system parameters which have not 

been taken into account in the analytical derivations. Because when deriving the 

learning trajectory of any of these parameters in the analysis, it is assumed that other 

parameters have already converged to the optimal values. But this assumption is 
not true necessarily in practice. 

The mean square errors of DmeW, au(̂ ), An(A;)，a2i{k) and A2i{k) are tab-

ulated in Table 5.2. Again, since the inter-dependence of the system parameters 

has not been considered in the theoretical study, the experimental results for all 

parameters were larger than the desired values. However, the mean square errors of 

these estimates had the same order with the theoretical expectations. This implies 

that (5.68) to (5.72) can still be used to evaluate the performance of the METDE. 

Experiment 4 of Section 5.2.5 was repeated for the METDE and the results 

are shown in Figure 5.19 to Figure 5.23. In this experiment, the time delay and 

multipath parameters were made time-varying and they were given step offsets after 

every 5000 iterations for both noise-free and SNR = 10 dB cases. In the absence of 

noise, it can be seen that the system was capable to track these step changes and 

provided accurate estimates of D, An and A21 after the transient. The tracking 

capability for au(ib) and a2i{k) was also satisfactory except that there were minor 

errors during the last 5000 iterations. These biases can be removed by using longer 

filter lengths in the METDE. This test had been carried out for P 二 30 and we had 

found that all estimates of the time delay and multipath parameters converged to 

the optimum values. At SNR 二 10 dB, the TDOA and multipath delay estimates 

were also close to the correct values. Small biases existed in these estimates because 

the actual values of the TDOA and multipath parameters do not map exactly to the 
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I ., 

global minimum of the METDE performance surface in the presence of noises. On 

the other hand, ai(k) and a2(k) did not converge to their desired values due to the 

additive noises and this has been conferred in (5.63) and (5.65). Comparing these 

results with Figure 5.9 to Figure 5.13，we see that the METDE is superior to the 
I 

MCTDE in the noise-free environment. However, they had comparable performance 

at SNR = 10 dB. 

The estimation performance of the METDE in the presence of four multipaths 

was also investigated. In this experiment, Mi = M2 = 2, D = 0.7, an = 0.8, 

a21 = 0.5，ai2 = 0.6, a22 = 0.4, Au = 3.3，A21 = 4.8 A12 二 6.4 and A22 “ 8.7. Two 

METDE systems were considered. The first METDE was an insufficient multipath 

equalization model which assumed that there was only one multipath at each sensor. 

Whereas the second one provided exact modeling and it consisted of one ETDE and 

four ETDGEs. The estimates of these two METDE configurations at a noise-free 

condition and SNR = 10 dB were tabulated in Table 5.3. It can be seen that for 

the insufficient model, accurate estimation of D was still achieved in both tests but 

the results for other parameters were not as satisfactory. On the other hand, we 

observe that precise estimates of the time delay and multipath parameters were 

obtained by using an exact equalization model when noise was absent. While in 

the presence of corrupting noises, the METDE gave good estimates of the TDOA 

and multipath delays but the gain estimates were relatively less precise. This is 

expected since (5.63) and (5.65) indicate that the gain estimates are biased under a 
noisy environment. 
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Figure 5.16: Estimate of D of the METDE for SNR 二 10 dB 
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Figure 5.17: Estimate of an and An of the METDE for SNR = 10 dB 
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Figure 5.18: Estimate of a21 and A21 of the METDE for SNR 二10 dB 

Measured Theoretical 
value value 

var(bME) 2.00 x 10一4
 1.44 x 10—4 

varjan) 5.96 x 1Q~3 4.56 x IP"3" 
varjAn) 2.11 x 10~4 “ 1.80 x 10一4 

var{a2i) 8.20 x 10~4 T.54 x 10"4" 
var(A2i) 1 5.00 x 10"4 3.60 x 10"4" 

Table 5.2: Measured and theoretical variances of the system parameters of the 
METDE for SNR 二 10 dB 
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Figure 5.20: Tracking behaviour of ̂ (k) of the METDE for different SNRs 
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Figure 5.21: Tracking behaviour of Au(A;) of the METDE for different SNRs 

1 r- ~~ — 

“ actual multipath gain 
0,9 " noise-free condition 

SNR = 10dB 
: ,。.

8
: 「 - 广 — -

CO | / 
芸。.

7
 - ! / — 

B - _______J// 
I 0.6 - � 7 ^ ^ ^ ^ / � w I / i (D i / 

05
 - / /-""：" ‘ l _ _ / / 

03 I I I 1 1 1 J 1^ 
600 2000 4000 6000 8000 10000 12000 14000 

no. of iterations 

Figure 5.22: Tracking behaviour of a2i(k) of the METDE for different SNRs 
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Figure 5.23: Tracking behaviour of A 2 1 (AJ ) of the METDE for different SNRs • 

SNR=oo SNR=10 dB 
OptimumInsufficient Sufficient Insufficient Sufficient 

value modeling modeling modeling modeling 
EWmk\ 0.7一 0.693 一 0.686 0.701 0.693 

0.8 0.608一 0.765 0.562 _ 0.643 
EIAII} 3.3 一 2.99 — 3.25 _ 3.01 3.16 
Ejg9A\ 0.5 0.524 0.462 “ 0.488 0.383 
E{k21\ ~ O 5.27 4.84 5.28 5.01 

0.6 - 0-584 - 0.455 
E{A,o\ - 一 6.40 - 6.36_ 

" ^ g g l ^ O g ~ - 0.374 - 0.275 
I E{K22\ 8.7 8.62 - 8.54 

Table 5.3: Estimates of the METDE for four multipaths using different models 
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5.4 Summary 

Two adaptive systems for multipath time delay estimation between two spatially 

separated sensors at high SNR environments are proposed. They are called the mul-

tipath cancellation time delay estimator (MCTDE) and the multipath equalization 

time delay estimator (METDE) respectively. The MCTDE comprises two adaptive 

IIR filters for canceling out the multipath signal at each channel and one ETDE 

to extract the time difference between the sensor outputs. Although the MCTDE 

is designed to provide complete multipath cancellation for interpath delays which 

are integral multiples of the sampling interval, it can also give accurate estimates 

of multipath parameters when the gains are small or if the delays are large. On the 

other hand, the METDE is a parallel-split filter whose subunit is either the ETDE or 

the ETDGE. It equalizes the effect of the two sensor outputs through minimization 

of a cost function whose global minimum maps to the actual values of the TDOA 

and multipath parameters. Experimental results are presented to corroborate and 

evaluate the performance of these two algorithms. Due to the inherent modeling 

errors in the IIR filters of the MCTDE, its performance is inferior to the METDE 

particularly in situation that the multipath delays are small and the multipath gains 

are large. However, it is found that the TDOA and multipath delay estimates of 

the MCTDE are more tolerant of additive noises. Whereas the METDE provides 

an exact model for multipath equalization in a noise-free condition and it can tackle 

the problem when there is more than one multipath at each sensor. 
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Chapter 6 

Conclusions and Suggestions for 

Future Research 

6.1 Conclusions 

Estimation of time delay between signals received at two spatially separated sen-

sors has found important applications in many areas such as sonar, radar and 

biomedicine. One promising approach for the time delay estimation (TDE) problem 

is offered by adaptive filtering techniques. Two adaptive TDE algorithms, namely, 

the least mean square time delay estimator (LMSTDE) and the the adaptive dig-

ital delay-lock discriminator (ADDLD), are first briefly reviewed. Despite their 

limitations, these methods have two major advantages over the conventional imple-

mentations of generalized cross correlators. Firstly，it can track time-varying delays 

functions. Secondly, no spectral estimation is required. 

A novel TDE adaptive algorithm, called the explicit time delay estimator (ETDE), 

is developed to circumvent the shortcomings of other adaptive TDE methods. The 

idea of the ETDE is to model the delay by an FIR filter whose coefficients are 

constrained to be samples of a sine function. The delay estimate is updated di-

rectly and iteratively using an LMS-type algorithm. As a result, the ETDE is more 

computational efficient than the LMSTDE whose estimated delay is obtained by 

interpolating its filter weights. Furthermore, the ETDE provides a more reliable 

approach for delay estimation because wrong estimates due to false peak weights 
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will not occur. Although both the ADDLD and the ETDE give explicit delay mea-

surements, the ETDE has the advantage over the ADDLD since it can estimate 

delays that are non-integral multiples of the sampling period. As an alternative 

realization of the constrained adaptive time delay estimation (CATDE) algorithm 

developed by Ching and Chan, the ETDE provides more accurate delay estimates, 

particularly under noisy environment. The mean square delay error of the ETDE 

has been shown to be larger than the Cramer-Rao lower bound (CRLB) by a few 

times. 

However, the ETDE is proved to be biased for finite filter lengths and the delay 

error increases when the signal-to-noise ratio (SNR) or the number of filter taps 

decreases. Under very noisy environment, the ETDE is unable to provide accurate 

delay estimates with, a reasonable filter length. Based on Wiener solution, an adap-

tive gain control is added to the ETDE so that optimal filter weights for time delay 

estimation can be achieved. It has been shown that this improved ETDE, namely, 

the explicit time delay and gain estimator (ETDGE), gives a smaller delay variance 

at low SNR and an unbiased delay estimate for short filter lengths. 

In the presence of multipath transmissions, it is very difficult to achieve accurate 

delay estimation though not totally impossible. Two adaptive systems based on the 

ETDE and the ETDGE are proposed to tackle the multipath TDE problem for high. 

SNR conditions. They are called the multipath cancellation time delay estimator 

(MCTDE) and the multipath equalization time delay estimator (METDE) respec-

tively. The MCTDE can be realized as a pair of multipath cancellers, which are 

adaptive IIR filters, followed by an ETDE. When the multipath delays are integral 

multiples of the sampling interval, the MCTDE attains the desired performance. 

Otherwise, the multipath cancellers will suffer inherent modeling errors and thus 

complete multipath cancellation is not possible. In these circumstances, the ac-

curacy 0f the delay and multipath parameter estimates increases when the SNR 

increases, the multipath gains decrease or the interpath delays increase. On the 

other hand, the METDE, which consists of the ETDE and the ETDGE only, allows 

exact modeling of the time difference of arrival (TDOA) and multipath parameters. 
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The concept of the METDE is to equalize the two sensor outputs through mini-

mization of a cost function whose global minimum maps to the actual values of the 

time delay and multipath parameters. In addition, the METDE provides accurate 

estimates even when there is more than one multipath at each sensor. 

6.2 Suggestions for Future Research 

1. Multipath time delay estimation under noisy environment 

In the presence of multipath propagation, both. MCTDE and METDE have the same 

limitation to operate at high SNR conditions. From (5.42), it can be observed that 

the multipath cancellers of the MCTDE will become ineffective when noise domi-

nates. While the global minimum of the cost function in the METDE shifts away 

from the desired value in the presence of noise. Based on the METDE, a possible 

solution for multipath TDE under noisy environment is suggested by minimizing 

the mean square value of (5.49) subject to some constraints such that the effect of 

noise is eliminated. For example, we may maintain the noise in the cost function 

to a constant value which does not affect the minimization process [79]. If this is 

feasible, unbiased TDOA and multipath parameter estimates can be obtained. 

2. Time delay estimation for monochromatic signals 

In radar and certain types of underwater acoustics signals, the radiated signal can 

be modeled as a pure sinusoid [80]. Using the techniques in deriving the ETDE, 

efficient algorithms may be designed for estimating and tracking the phase between 

sinusoids received at two spatially separated sensors. Apart from phase information, 

the amplitude as well as the frequency of the sinusoids may also be estimated. 

3. Joint time delay estimation and system identification 

When the transmitting media in time delay estimation are some unknown transfer 

functions, it is desired to estimate the TDOA as well as the impulse responses of 
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unknown channels [43]. The proposed ETDE or ETDGE may be applied in such 

situations. Notice that we have already applied the ETDE and the ETDGE to the 

multipath channels. 

4. New structures and algorithms for time delay estimation 

Other novel structures and algorithms may be developed for time delay estimation 

to obtain faster convergence rate, better tracking capability and smaller delay vari-

ance. All the adaptive algorithms developed in this thesis belong to LMS family. 

Based on the philosophy of the ETDE and/or the ETDGE, different types of LMS 

methods or even new recursive least square (RLS) algorithms [56] may be designed 

for time delay estimation. 
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Appendix A 

Derivation of (3.20) 

Equation (3.20) is derived mathematically as follows. Using (2.1) and (3.2)，(3.3) 

can be expressed as 

D(k + 1) = D{k) - 2^(7! + T2 + T3 + T4) (A.l) 

where 

tx == (4i - D ) - s{k 一 i)(k))). E 5
(左—柳—__ 

i=-p 
A p . 

T2 = (4k - D)- s{k - D{k))). Ya - 哪 _ 與_ 
i=-p 

T3 二（n2(A0 — n^k — D(k)) • J2 ~ ̂  —力(岣） 

i=-p 

A p . 
T4 _ (n2�—啡—D{k)) • X _ _ — i)f(i —綱》 

Subtracting both sides of (A.l) by D, squaring both sides and then taking the 

expected value yields 

e{k + 1)=办)-4仲(五{(力(岣-例：1\} + 五{(力(左)-1 2̂} 

+E{(D(K) 一 D)T3} + E{{D(k) - D)TA}) + + E{T^} 

+E{T3
2} + E{TL} + 2E{T1T2} + 2E{T1T3} + 2E{T1TA} + 2J57{T2T3} 

+2̂ {T2T4} + 2E{T3T4}) (A.2) 
A 

Since s(jfc), m(A;)} n2(k) and D{k) are assumed to be mutually uncorrelated, E{(D — 

D)T2}, E{(D{k) - D)T3}, E^Ts}, E{T2TA} and E{T3T4} are all equal 

to zero. The other terms of (A.2) are then evaluated one by one, 
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二 E {D{k) 一 D){n2(k) ^ n^k - D{k))) • ̂  ~ 0/(^ —力⑷）\ 
K i=-P J 

=-E {�,麵-D) t 一 j>inc{j — D{k)). Yu ni(k - ‘卵—雜,)f 
{ j 二-P i=-P ) 

二一 £ E E{n4k — i)m{k 一 j)} • E{{D{k) - D)sinc{j — D{k)) 
i=-p j=-p 

=-a2
nE ^ D) ̂  sinc{j ~ D(k))f(i ^ D(k))^ 

« -crlE{{f){k) — D) ’ /(0)} 

Since /(0) = 0，E{(D{k) — D)TA} becomes 

E{{D{k) - D)TA} = 0 (A.3) 

Similarly, E{TiT4} and E{T2T3} can also be shown to have zero values. For the 

term E{(D(k) — D)Ti}, it can be computed from 

E{{D(k) - D)^} p 

=E{{D(k) - D) • ( £ s{k - j)sinc{j - D) - ~ 3>incU " 
\j=-oo j=-P 1 

• E i)f(i _ D(m 

i=~p j=_p 

« a2
s • E{(D(k) - D) - f(D - D(k))} 

A 

Expanding f{D- D{k)) using Taylor's series up to the first order term, E{{D{k)— 

P)Ti} is approximated by 

E{{D(k) — D)^} « ^2cr2
3e{k) (A.4) 
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For sufficiently large P, E{T^} can be approximated by 
oo oo oo oo 

E{Tl} « £ £ E E Ei<k - Mk - Mk - m)s(k - n)} 
2=—oo j=—oo rn=—oo n=—oo 

•E{(sinc{i -D) - sinc(i - D{k))){sinc{j - D) - sinc{j _ D(k))) 

'f(m~D{k))f(n-D(k))} 

It has been shown that [81] if x2, x3 and x4 denote four different random variables 

of a stationary Gaussian process, we may write 

£7(̂ 1^2^4} 二 丑 • E{X3Xa} + E{x1x3} . E{x2x4} + EIX^} . E{x2x3} 

Thus 

oo oo oo oo 
= E E E E - - ^ • ^ 5 ^ “ " n)} 

i二 — oo j二 — OO 771=-00 71= — OO 

i-E{s(k 一 i)s{k 一 m)} . E{s(k - j)s(k 一 n)} + E{s(k 一 i)s(k - n)} 

•E{s(k 一 j)s{k - m)}) • E{{sinc(i - D) - sinc{i 一 D{k))) 

-(sinc(j — D) — sinc(j 一 
D(k))) • f— - D(k))f(n —卿I 

r ^ oo I 
= E {sinc{i -D)- sinc(i - D{k))f - ^ f\rn - D{k))\ 

• ^ rn=—oo J 
�i==—oo z 

OO OO A A 
+24 E E E{{sinc(m - D) - sinc{m - D(k)))f{m - D{k)) 

771=-00 n== — 00 
*(sinc(n — D)— 

sinc(n — D{k)))f{n - D{k))} 
From [58] 

00 2̂ 
E /2M = y 

m=—00 
therefore, we obtain 

( 00 7r2 

E{Tl} « a4
3E<{2-2 {sinc(i - D)sinc(i 一 D(k))) • y ^ 

I i= —OO j 

+2aA
sE It £ {sinc{m - D) — sinc(m - D{k)))f{m 一 D(k))) J 

I \m=—cxj / 

二 -tt2�4E{1 — sinc(D 一 D(k))} + 2aA
sE{f\D —亡�)} 

3 

3 
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•眾... 

I ' � ’ .. • 
In a similar 

manner, it can be shown that 
' ^ . 

E{T2
2} = ̂ oie(k) (A.6) 

E{Tl} = (A.7) 
and 

E{Tl} = (A.8) 

Putting (A.3) to (A.8) into (A.2) yields 

e(k + 1) = e(k) (1 — ̂ D7r2c7fl
2 (1 — fiDir2a2

a 一 + ̂ W^s + 

(A.9) 

Solving (A.9) gives 

where a and /3 are given by (3.21) and (3.22) respectively. 
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Appendix B 
I 

� 

Derivation of (3.29) 

The derivation of (3.29) is given as follows. Let 

I: r = ,1 - -Tr2fJLDa2
3 

Then the first k equations of (3.28) can be written as 

E{D{k)} 二 rE{f)(k - 1)} + (1 — r)(D0 + \(k — 1)) 

E{D{k - 1)} 二 ,灣雜—2)} + (1- r){D0 + 零 一 _ 

E{D(2)} 二 7̂ {力(1)} + (1- + A) 

E{D(1)} = r£)(0) + (1- r)D0 (B*1) 

Multiplying r to the second equation of (B.l), r2 to the third equation and so on， 

and then summing the results together gives 

E{D{k)} 二 ^^((^ + ！̂“一”乂丄+” + 一 + …+ —一1) 

+(1 — r)X{(k -1) + \{k-2) + --- + 

二 —力(0) + Do{i — rk) + (1 一 r)A ( £ 乂 + £ ^ + . •• + i) 
\i=o i=o / 
/1 -r-fc"1 1 —rfc-2 \ 

which is identical to (3.29). 
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1« 
Derivation of (4.14) 

The derivation of (4.14) follows a similar approach as in Appendix A, The updating 

rule for t>G{k) of the ETDGE algorithm can be written as 

DG{k + 1) = DG{k) 一 2/^(^ + T2 + T3 + T4) (C.l) 

where 
p A 

m = -D)- g{k)s{k — DG(k))) • E 柳,一 
^ p 

T2 = {s{k -D)- g(k)s(k - bG{k))) . [ n^k 一 i)f(i - DG(k)) 
i--p 

p . 
m ® if̂ P P̂JIs E s(k-i)f(i~DG{k)) 

i=-p 
p A 

T4 = (n2{k) 一 - t)G{k)) • Y1 ni(k 一 哪一 
i=-p 

Same as the ETDE, the iterative equation of the mean square delay error of the 

ETDGE is given by 

€G(k + 1) =记⑷—4仲 (五{(〜⑷ -D)^} + E{(DG(k) — D)T2} 

+E{{DG(k) - + E[(DG(k) - D)T,}) + 4^(^(^2} + E{T^} 

+E{Tl} + E{Tl} + 2^{TaT2} + 2E{T1T3} + 2E{T1T4} + 2E{T2T3} 

+2E{T2T4} + 2E{T3TA}) (C.2) 

where 

eG(k) = E{(DG(k) - D)2} 
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Examining the steady state value of (C.2) with the assumption g(k) g and noting 

that the terms E{(DG(k)-D)T2}, E{{t)G{k)-D)T3}, E{(DG{kyD)T4}, ^{TxT2}, 

E{TiT3}} £7{TiT4}} E{T2T3}, E{T2TA} and E{T3T4} all have zero values, we obtain 

lim E{(DG(k) — D)^} 二 FID lim (五{̂ } + E{T^} + E{T3
2} + E[T^}) (C.3) 

fc—>00 k-^oo \ “ 

Following the derivation of (A.4), the L.H.S. of (C.3) is found to be 

lim E{(DG{k) - D)^} « -Tr2a2
svar{bG) (CU) 

fe—+00 0 

Similarly, using (A.5) to (A.8), we get 

lim E{Tl} « |TT2 (̂1 一 g)2 + ^-(9 + 2)var(DG) (C.5) 
A：—00 0 y 

lim E{T^} « ^2a2
sa2

n(l - gf + \^ynvar{f)G) (C.6) 
k—*oo 0 • y 

lim (C.7) 
fc—>00 O 

lim E{Tl} « ^TTV^I + g2) (C.8) 
fc—^OO O 

Substituting (C.4) to (C.8) into (C.3) gives 

var{bG) —竿咖 + 2) + ^))== 

+ ^)(1 - gf + cr^a] + ̂ )(1 + g2) (C.9) 
O 

When the adaptation constant \ld is chosen sufficiently small, (C.9) can be approx-

imated by 

var(DG) « § + ̂ )(1 - gf + + ̂ )(1 + ̂ 2)) 

= 啊 2 ((1 + SM) (1
 - ⑴

2
 + ( ― )

( 1
 + ？)) 

2 ( 1 1 + 2SNR(1 + SNR)\ 

二 阳〜VSNR(1 + SNR) + SNR2(1 + SNR) J 
_ /xpa3

2(l + 2SNR) 
= “ SNR2 

which is (4.14). 
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Appendix D 

j Derivation of (4.15) 

The derivation of (4.15) is given as follows. Subtracting g from both sides of (4.3), 

squaring both sides and then taking the expected value gives 

E{{g{k + 1) — fff}隱 E{_ — i f} + ̂ gE{{g{k) 一 g)e{k)x{k - DG[k))} 

^2
gE{e2{k)x2(k - DG(k))} (D.l) 

Considering the steady state condition and assuming that DG{k) — D, (D.l) be-

comes 

lim E{{g(k) - g)e(k)x(k — D)} 二 —�lim E{e\k)x\k - D)} (D.2) 
k—*oo 

Using (4.11), the L.H.S. of (D.2) equals 

lim E{{g{k) — g)e{k)x{k — D)} 二 一抓r(�)(crs2 + a2
n) (D.3) 

k—*oo 

where 

var{g) = lim E{{g{k) - g)2} 

is the variance of the gain estimate. On the other hand, when P is chosen sufficiently 

large, the steady state value of E{e\k)x2{k - D)} can be computed from 

lim E{e\k)x\k - D)} 
k—*oo 

« lim E{{{1 — g{k))s(k-D) + n2{k) - g(k)Mk —刀))2 • W 而—D) 
k—^oo 
^(k-D))2} 

二 lim E{(1 — g{k))2s\k-D) + (1 — - D)n\{k — D) 
k—yoo 
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+52(ib - D)n2
2{k) + n\(k 一 D)n2

2{k) + g2{k)s2{k 一 D)nl{k - D) 

； +92(k)nt(k ~D)~ ̂ g{k){l - g(k))s2{k 一 D)n\{k - D)} 

二 lim - g(k))2 + 棚 ‘ 1 — mW +1 + 幽 
k—^oo 

-4^)(1-^))) + ^(1 + 3^2 )̂)} 

I 二 3(7fl
4(l 一 2夕 + p2 + var{g)) + a2

sa2
n{2 一 6双 + 6g2 + 6var{g)) 

+^(1 + 3g2 + Svar(g)) (D.4) 

Substituting (D.3) and (D.4) into (D.2) and considering (JL9 is chosen sufficiently 

small, the variance of g[k) has a value of 

var(g) « (3aa
4(l -2^ + g2) + a2

sa2
n{2 -6^ + 6̂ 2) + ^(1 + 3g2)) 

¢71 + (7¾ 
— 2 ,3SNR2 + SNR(2(1 + SNR)2 - 6SNR) + 1,+ 2SNR + 4SNR2\ 
= � � � (1 + SNR)3~— • J 
— 2 /1+ 4SNR + 5SNR2 + 2SNR3� （D 

二 (1 + SNR)3 J • 

As a result, for the cases of high SNR and low SNR, the values of var(g) are given 

by 
2Na2

n , SNR>1 

var(g)— < 

, SNR<1 
V 
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Appendix E 

Derivation of (5.21) 

The derivation of (5.21) is shown as follows. Recall the updating rule for the gain 

estimate as given by (5.17) 

aAll(k + 1) = aAll{k) + 2^^(^)^(^ — An) (E.l) 

Subtracting au from both sides of (E.l), squaring the results, and then taking 

expectation yields 

ea{k + 1) 二 “ � + ̂ ：/̂尉…̂⑷-以……⑷“̂知⑷怎‘&― An) 

- An)} + ̂ lE{x'\k)x'\k — An)} (E.2) 

where 

ea(k) = E{{aAll{k) - a11)2} 

As x'{k) -> s{k), (E.2) can be approximated by 

ea(k + 1) = ea(k) + 4/xaE{(aAu{h) - anMk) + aus{k - An) 

-aAll(k)s{k — A^Mk - An)} + ̂ 2
aE{s\k)s2{k 一 Au)} 

=ea(ib)+ 4/^4^-((1^(^-^)2) + 4^4 (E.3) 

Solving (E.3) gives 

ea{k) 二 fU2
s + ((aAll(0) - an)2 - — ^2

3)k 
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| Appendix F 

Proof of unstablity of A°{z) 

We attempt to show here that the optimal multipath canceller A°(z) as given by 

(5.29) is an unstable system by applying Rouche's theorem [82] which can be stated 

as follows. 

Let u and v be functions which are analytic inside and on a positively oriented 

simple closed contour C. If > at each point z on C, the functions u{z) 

and u(z)-\-v(z) have the same number of zeros, counting multiplicities, inside C. 

Based on this theorem, two functions, u(z) and v{z), which are analytic on the 

contour \z\ < 1, are defined as 

u{z) = zM 

and 
M 

v(z) 二 au sinc(i 一 An)z 

such that {u(z) + v(z))z~M equals the demoninator of A°(z). We then evaluate the 

magnitudes of u(z) and v(z) when 丨么丨 二 1, 

二 Mm = I 

and 
M \ 

卜⑷丨 二 Y^ sinc^ ~~ Au)zM-ll 
i=-M 

M 
=|au|.| E sinc(i - Au)^'! ' kM| 

i=—M 
M 

< an • I 一 厶11)丨 
i=—M 
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From [34], the discrete Fourier series representation of eJU/A is given by 

OO 
eJwA = E hnc(A + 恤 （F.l) 

i: 一 oo 

where oj represents the frequency and A is a real number. Setting o; 二 0 in (F.l)， 

we obtain 
oo 

sinc(A-{-i) = 1 
i=一 oo 

Thus for sufficiently large M, the value of v(z) on the contour =1¾ bounded by 

b � I < «11 

It can be seen that (么)| > for = 1. Using Rouche's theorem, since u{z) 

has M zeros interior to the unit circle, so does u(z)-\-v(z). This implies that there are 

also M zeros, which are outside or on the unit circle, in u{z) + v{z). Consequently, 

A°(z) only has M poles lying inside the unit circle and thus its unstability is proved. 

It is noteworthy that, in a similar manner, the causal IIR filter 

: 作 ) = M ^ — 
1 + E sinc(i — Au)广 

i=i 

can be shown to have M zeros which implies its stability. 
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Appendix G 

Derivation of (5.34)-(5.35) 

In this appendix we shall derive equations (5.34) and (5.35). Substituting (5.33) 

into (5.32), and then taking the expected value gives 

五{As
u(ib + 1 ) } = 五 — 丑 { ( 5 � 十 礼 ⑷ ^ ^ 一 -礼⑷ 

M M 
• sinc(j 一 - # » - - i)} 

(G.l) 

5 Assume that x\k) is reasonably close to s(k) and M > A^k) > 1. Then, (G.l) 

can be simplified as 

EiA^k + 1)} « EiA^k)} 一 2^E{{s{k) + allS{k - An) — ̂ {k) 
iVf M 

• Y sinc(j 一 As
n(k))s(k - j)) 鳥—堪 

j=l A 

OO 

=靂齒1 喊—2/m丑{On E sincU -島i冲—i)—缚1W 
J=—oo 

M M 
• X ： sinc(j — As

n(k))s(k -m 為-0 

M A 

»=i 
M A 

^^{a^k) . E — 一 As
n(k))f(i 一 As

n(k))} 

« E{A3
n{k)} - 2/XAauaa

2^{/(Aii - ^{k))} 
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Since /(0) = 0 and using the first order approximation of /(An — ^̂ (A;)), (G,2) 

becomes 

^{Aĵ fc + 1)} « A^k)} - 2^ana2
3E | /̂(0) - y(An - | 

=^{Ah(Aj)} (l - + ̂ AOLn(T2yA11 (G.3) 

Solving (G.3) gives the learning trajectory of the multipath delay estimate which is 

of the form 

EiA^k)} « A1X + (A f l
n (0) - Au) (1 —鲁/̂叱办2) (G.4) 

As Aĵ ib) -> An and using previous assumptions, the expected value of (5.31) 

can be approximated by 

Eial^k + 1)} « Eia^k)} + 2fiaE{{s{k) + (an - a^kMk ^ An)) 
M 

• sinc{i — An)s(k - i)} 
i=i ' 

M 
=Elal^k)} + 2fiaa2

sE{{an 一 a^k)) — AH)} 
i=i 

(G.5) 

Since 
oo 
Y^ sinc2(i - An) = sinc(0) = 1 

i=—oo 

(G.5) becomes 

Eici^ik + 1)} « Eia^ik)} + 2fJLola2
3E{a11 - aa

u{k)} (G.6) 

and solving (G.6) will give the following solution, 

E{as
n(k)} « an + (^(0) - an)(l - 2^aa2

s)k 

Hence the proofs of (5.34) and (5.35) are completed. 
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Appendix H 

Derivation of variance of 

I and Afx(fc) 

We attempt to find the variances of the multipath gain and multipath delay estimates 

for non-integral interpath delays analytically. Assuming that M � 厶 ； 乂 左 ) � 1 ， 

(5.31) can be approximated by 

a^k + 1) = a^k) + — As
n(k)) 

Denote 

i ea(k) 二 EUa^k) — an)2} 

Then we get 

ea{k + 1) 二 + 4知丑{⑷^⑷一仅…乂斤拉‘&一厶乂左))} 

^lE{x,2(k)x'\k - A^k))} (H.l) 

By considering the steady state condition when A3
n(k) An and x'{k) is suffi-

ciently close to s(k), (H.l) becomes 

^ ea(k + 1) « ea(k) + — a11)(s(k) allS{k - Ah) 

-a^sik - A11))s(k 一 An)} + ̂ lE[s2(k)s\k 一 An)} 

« e^k) - ^{{a^ik) - a11)2}E{s\k - An)} 

! ^fi2
aE{s2{k)}E{s2(k - Au)} 

二 ea(ib) - 4Ma(J�(A0 + (H.2) 
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As k goes to infinity, the variance of OL^k), denoted by va^a^^ can be obtained 
11而. 

from (H.2), 

var^a^) = lim ea(k) 
= 

which is identical to (5.23). 

From (5.32)，the updating equation for the multipath delay estimate A^k) is 

given by 
M 

A^ik + 1) = A^k) — 2^x\k) Y,诉-^3u(k))Ak — i) (
H
-

3
) 

i=i 

Subtracting An from both sides of (H.3), squaring the results and then taking the 

expected value, we have 
M 

eA(k + 1) 二 mm - ^{{HM - AmM^lE^ ^ ^aPM^.# 

M 

, +VA 丑{(�‘� E /(̂  — - 0)2} (H.4) 
i=i 

where 

mm=m^m - An)2} 

Again, we use the assumptions of x'{h) « s{k) and M � � � 1 ， t h e r e f o r e 

(H.4) can be approximated by 

- eA(k + 1) « eA{k) - ^E{(As
u{k) - A11){s{k) + allS{k — An) 

M 

-al̂ sik - Aum E 涛一一 ̂  
M 

+4/4 五{(KWE/G - 一 ̂ ))
2
} 

i=l oo 
« eA{k) - - AxOCan ^ sinc{j - Axl)s{k - j) 

i=一 oo 
oo A M 

-as
n(k) • E —U — - i)) - E / ^ " An(fc)) 

i=—oo 
M 

.sinc(i 一 k u m ) + K i — kiWHk — i)f} 
1=1 
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« e A � - ^ ^ E U A ^ k ) — An)(aii/(Aii — An(̂ )) 
M 

—吣�/(0)} + - Al^k))} 
i=i 

« eA(k) - VAan�
2丑{(AhP) — An)/(Aii — ^liW)} 

OO 
E - (H.5) 

l= —oo 

Since [58] 

oo 2 
E M = Y 

i=—oo w 

and using the first order approximation of the f function, (H.5) becomes 

eA{k + 1) « eA{k) - ^Aanaye^k) + (H-6) 

The variance of the multipath delay estimate, var̂ A )̂, is then given by the steady 

state value of (H.6), which is, 

二 eA(k) 
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Appendix I 

Derivation of (5.40) 

The performance surface of A(z) for integral multipath delays in the presence of 

noise is derived here. Assume that the multipath delay An has been correctly 

determined and A(z) is adapted according to (5.17). The output of A{z), x'(k), is 

now expressed as 

x'{k) = s{k) + allS(k 一 An) + n^k) - aAllx\k 一 Au) (1.1) 

I , where the time index for aAll is dropped for convenience. Squaring both sides of 

(1.1) and then taking the expected value, we obtain 

E{x'2(k)} 二（1 + 4)4 + 4 + ^^^0^(/0} 

-2aAllE{{s{k) + allS(k — An) + n^x'ik - An)} (1.2) 

Using (1.1), we find that x'{k - An) is uncorrelated with s(k) and n^k) while 

E{s{k - - An)} = a2
s. As a result, (1.2) becomes 

丑 二 + + 4 + a f ^ u p ) } — 2aAuana^ 

,2 (1+ ̂  — 
泠 � } 1 - a2

Au 

which is (5.40). 
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Appendix J 

Derivation of time constant of 

aAn(k) 

We shall prove that the time constant of the gain estimate in the presence of noise 

is given by 1 /(2知(�2 + a2
n)). Substituting (5.2a) into (5.17) and taking expectation 

on both, sides, we obtain 

E{aAll{k + l)} = E{aAll{k)} + + allS{k - An) + n^k) 
� -aAll{k)x\k - An))x'{k - An)} (J.l) 

Using the approximate value of x'{k) in (5.43), (J.l) becomes 

五{aAll(ib + l)} = E{aAll(k)} + 2fiaE{{s(k) + allS(k - An) + n^k) 

-aAll {k){s(k - An) + (an — aAu {k — ^i))s{k — 2AU) 

+m(ib — Au)))(5(A; - An) + («11 一 — Aii)) 

.5(ib-2A1i) + n1(A;-An))} 

« E{aAll(k)} + 一 aAll(k))s\k - An) 

-aAll{k)n2{k-Au)} 

二 丑{aAll (A;)}(i — 2fJLa{a2s + a2
n)) + 2/xaan̂

2 

二 叱 + (̂ u(O) - - + O 严 
crj + < 。十 

(J.2) 

Obviously, the time constant of aAn(k) is 1/(2^ + Notice that from (J.2), 

the gain estimate converges to + which is close to the exact value as 

given by (5.42). 
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Appendix K 

Derivation of (5.63)-(5.66) 

The convergence behaviours of the multipath parameter estimates are examined 

here. In the following derivations, it is assumed [57] that an(k), Alx(k), a2i{k), 

A2i(k) and DmeW are uncorrelated with the received signals x{k) and y(k). From 

(5.53), the updating rule for an(k) Is of the form 
p A 

an(Aj + 1) = d n � 一 2fjLae{k) sinc{n — An(k))y{k 一 n) (K.l) 
n=-P 

When 恥 二 M2 二 1 and if P is chosen sufficiently large, the error function e{k) is 

expressed as 
P A 

e{k) m ,0)+½¾¾¾ £ 5mc(n - Au(A;))2/(fc - n) 
n=-P 

p P A 
—^ sin<n - DME{k))x{k - n) - a21(k)乙 sin<n ' ^21(^))^(^ - n) 

r> n=-P 
n=—Jr A 

« y{k) + a^yik - K^ik)) — x{k - DME{k)) — 2̂1(̂ )̂ (̂  一 A21(fc)) 

where 
x(k) = s(k) + a^k - An) + �� 

and 
y(k) 二 s(Jc -D)-\- a2is(k 一 A2i) + n2{k) 

Assume that the other parameters have converged to their optimal values, that is, 

I An(ib) An, a21{k) — «21, A21(̂ ) -> A21 and DME{k) — D. In this case, e{k) 

can be simplified to 

e(k) = y{k) + OLnWyik - A n ) 一 <
k
 ~

D
)~ —

 A21
) 
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=C&x(JfeJ — an)y{k 一 Au) + n2(k) + ann2(k - An) 一 n^k 一 D) 

-a2in1(k - A2I) (K*2) 

Using (K.2) and 
oo 
y^ sinc(n ̂  An)y(k - n) = y(k — An) 

n=—oo 

the expected value of (K.l) is approximated by 

Ei^k + 1)} w Ei^k)} — 2^^(((^(^) - a11)y{k - An) + n2(k) 

+ann2(ifc — An) - nx(k - D) - a21n1{k — A21))y{k 一 An)} 

二 - — an)}-E{y2{k — An)} 
OO 

-2fjLaE{n2{k) - —厶…+乂斤―Au)} 
i=—oo 

=Eia^k)} — 丑 � - a n ) } 

+ an) (K.3) 

where 

a2
y = (t2

s{1 + a2
21 + 2a2l5mc(A21 — D)) + a2

n 

is the power of yik). For large Au and when a ] � w e may ignore the term 

2/xaa25mc(An). As a result, (K.3) becomes 

Eia^ik + 1)} 二 丑{知�K1 — + — (K.4) 

Solving (K.4) yields the learning trajectory of 0:11(̂ ), 

E{all(ib)} = + (au(0) - -

From (5.54), the iterative equation for Au(A;) is of the form 
� p 

Au(jfe + 1) == An(ib) + 2/xAe(k) [ f(n - A11(k))y(k 一 n) (K.5) 
n = - P 

If we assume dn(k) — «11,知⑷—吻，入訂⑷—A21 and DME(k) — D, then 

the value of e(k) can be approximated by 

« -D-In 細 + - A21 一 Au{k)) + ann2{k — 

-ails{k — D — An) — ana21s(k — A2I — An) + n2(k) - n^k - D) 

-a2mi(A; - A21) (K.6) 
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Substituting (K.6) into (K.5) and taking the expected value, we get 

r' E{Alt(k +1)} 

=E{An{k)} + 2fjLAE{{allS{k 样 D — An{k)) + alta21s{k — A21 — Aii(A；)) 

+ANN2(A; — An(A;)) — ans(k - D - An) - aua2is(k - A2I 一 An) 
p a 

+ n 2 � 一 n^k - D ) - 吻 一 - A21)) ‘ X) /(n - Au⑷） 
n = - P 

'(s(k - D -n)-\- a2is(k- A21 _ n) + n2{k 一 n))} 
OO A 

=_鋼} + 2/xa丑{( X) s(k — . {oLllSinc(i-D-An(A;)) 
2= —OO 

-\-aua2isinc(i 一 A21 — Au(A;)) — ausinc(i - D - An) 
OO A 

-OL11a2isinc{i - A2i - An)) + an X) ~ i)sinc(i - An(A;)) + n2{k)) 
i=—oo 

p oo 
. / ( n - Anp)). ( E s{k-j)'{sinc{j-D-n) 

-\-a2isinc{j 一 A21 — n)) + n2{k — n)) (K.7) 

Since the signal source and the corrupting noises are white and 
OO 

sinc(i - a)sinc{i — b) = sinc(b — a) 
i—oo 

(K.7) becomes 

+ 1)} 
p A 

二 丑 { “ � } + 2fiAa2
sE{ / 0 - Au⑷）• (ansinc{n - An⑷） 
n=—P 

+aiia2i5mc(n + A21 — D — An(Ai)) + ana21hnc(n + 刀 _ A21 — Au(AJ)) 

-^ana^sincin 一 An{k)) 一 allSinc[n 一 An) - ana21hnc(n + A21 —刀 

-An) - ana2i5mc(n + D — A21 - An) — â â sinĉ n - An))} p A 

+2/xA(7̂ {a11 E /(n - ^(k^sincin - + /(-Au(fc))} 
n=-P 

« E{Au(ib)} + 2liA^E{a11f{0) + a11a21f{D - A21) + OL11a21f{A21 — D) 

+aua2
21/(0) — au/(An _ ^ ) ) — ^ ^ i i P 一 A21 + An ^ 

一 a u c ^ / ^ n — + A u - An�）一 aua /̂̂ An - Au(AO)} 

+2/^ � 2 丑{au/(0) + /( - � ) } (K.8) 
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Noting that f is an odd function and considering when the SNR is high enough such 

that the term 2 / x 八 c a n be neglected, (K.8) can be simplified to 

I {̂AuCAj + 1)} 二 丑{Aup)} - 2tjLAa11(l + a^y^fiAn - An(fc))} (K.9) 

Expanding /(An — Au(ib)) up to the first order term and then solving (K.9) yields 

2 �A： 

w An + (An(0) — An)(l - -fiAOLu{l + 

which is identical to (5.64). 

In a similar manner, the learning trajectory of a2i{k) and A21(fc) can be shown 

to be 

丑 w 吻(气-O + (知(0) _ a 2 1 ( ^ l ) ( l — 
ax x 

and 
2 \ k 

E{A21{k)} « A21 + (A2i(0) - A21)(l — -Ma«2i(1 + 
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Appendix L 

Derivation of (5.68)-(5.72) 

The mean square errors of the TDOA and multipath parameter estimates are derived 

as follows. Prom (5.52), the updating equation for the delay estimate DmeW is 

given by 
P , 

力 + 二力MEp) —2/^e(岣 Yu - n)/(n - DME{k)) (L.l) 
n=-P 

Subtracting D from both sides of (L.l), squaring the results and taking the expected 

value yields 

E{(DME{K + 1 ) - D)2} P 

=E{(DME{k) - D)2} - ^DE{{DME{k) - D) ‘ e(k) ^ x{k - n) 
n=—P 

P A 

•f(n — DuEik))} + ̂ 2DHe2(k) •( E ~ 柳—^(^)))2} 
71= —P 

(L.2) 

We consider the steady state condition of (L.2) to obtain the following equation 

P A 

lim E{(Dme(k) - D) • e{k) ^ x(k-n)f(n-DmeW)} 
k—^oo n=—P 

P A 

二 m lim E{e2{k) • I £'�x(k 一 n)/(n 雜 Dme^)))2} 

(L.3) 

From (5.60), it has been shown that 

E{e{k) x(k - n � f � n - ^ME{k))} « -(1 + a^yyEiDMEik) 一 D} 
n=-P 
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p: ？ 
• 

Thus, the L.H.S. of (L.3) can be approximated by 
P A 

lim E{(DME{k) - D) ‘ e{k) Y； x{k - n)f(n - DME{k))} 
k—^oo „ 

« + OW Hm E{{bME{k)—刀)2} (L.4) 

On the other hand, since e(k) is dominated by the corrupting noises in steady state 

while ( j \ � i n x{k), the R.H.S. of (L.3) is evaluated as 
p 

_ lim E{e\k)-( Y； x{k- n)f{n — Dme^)))2} 
fc—•OO „ 

71=— 

= f i D lim E{(n2(k) + aun2{k 一 AU) — n^k - DmeW) 一 ̂ in^k 一 A2i))2 

k—^oo 
P 

•( E /C« - DME{k)){s{k 一 n) + alts{k — An 一 n))2} 
n--P 

= f i D lim E{(n2(k) + ann2{k - AN) - n^k 一 Dme^)) 一 oL21rn(k 一 A2i))2} 
fc—OO 

P P 
•E{ X； f{m- DME(k))f(n 一 DME{k)){s(k — m) + axls(k 一 m — An)) 

•{s(k _ n) + aus(k — n — An))} 

« + + ah + 2ansinc(Aii) + 2a2isinc(A2i — D)) 

: .lim E{ f： f\n 一 bME{k))« {s2{k - n) + a\lS
2(k — n — Au))} fc—>00 D n=—Jr 

二 仲(1 + a'Mal^ + + a2
21 + 2a115mc(A11) + 2a21sinc(A21 - D)) 

• f： f\n-bME{k)) (L.5) 
n = - P 

Define 

al, 二 <(2 + a2
n + a2

21 + 2an5mc(Au) + 2a21sinc(A2i 一 D)) 

and use [58] 0 

00 � 7T2 

n=—oo 
we can further simplify (L.5) to 

p i 
仲 lim E{e\k) • ( X： x{k 一 n)f(n - DME(k)))2} « 3/̂ (1 + 咗 (L . 6 ) 

k-*oo n=-P 

Equating (L.4) and (L.6), we get the variance of the TDOA estimate as given by 

(5.68), 

lim E{{DME(k)- D)2} « 阳cr2
n, 
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To derive the mean square error of aij(fc), we first rewrite (5.69) as 

e(an) = lim 5^(6^(^ - an)2} + — «ii)2 (L.7) 

fc—>00 

where 

_ «11(�— 
«11 = 2 ay 

which is the steady state mean value of the gain estimate an{k). Notice that 

f实 � 2 « 
(an - an) = — 

av 

Similar to (L.3)，a steady state equation can be obtained with the use of (K.l) and 

is of the form 
p a 

lim 域 - au)e(A；) X) sinc(n ~ 一丨mH 

= ^ lim E{e\k){ Yl s i n
<

n
 一 —

 n
))

2
> (

L
.
8
) 

fc—00 n 二 一P 

From (K.4), we have 
p 

E{e{k) ^2 sincin-^ik^yik-n)} 二 Eia^^k) - an) + cr^u 
n=—P 

‘ 二 五{gpii⑷一 

Thus the L.H.S, of (L.8) becomes 
p A 

lim E{(au(ib) — axl)e{k) ^ sinc(n ~ An{k))y(k — n)} 
k-*oo n=-P 

� 二 4 lim E i ^ k ) - au)2} (L.9) 

For sufficiently large P, the R.H.S. of (L.8) can be approximated by 

aa lim E{e\k){ f： smc{n 一 ^(kMk -n))2} 
00 n=-P 

« lim E{{n2(k) + aun2(A; - Au) — n^k - D) - a21n1(k — A21)2} 
k-*oo 

.E{{s(k — D — An) + a2is(k - A21 - An))2} 
二

 （L
.

10) 
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Equating (L.9) and (L.10), we get 

? lim ̂ {(anW-au)2} « 一 � 
OO cy 

« (L.H) 

Substituting (L.ll) into (L.T) yields 
a2 a4 

lim E{{alt{k) 一 an)2} « ̂  + ̂ V" 
k—*OQ (Jy 

which is identical to (5.69). 

From (K.5), we obtain a steady state equation which is given by 
P A 

lim 五{(Au�-An) • e{k) ^ vik ~ n)f(n — ^1(^))} 

P 

= m lim E{e\k). ( £ y{k -n)f{n — A11(k)))2} (L.12) 
k—^oo rt 

Using (K.9), we have 
P , 

lim — Au). e{k) [ vik ~ n)f(n — 
fc—00 n=-P 

二 lim E{(A11(k) - Aii)an(l + a2
2iyj{A11 — Au(̂ ))} 

k—oo 

« ian(l + a2
21)ay fclim 五{(‘⑷ 一 An)2} (L-13) 

Following (L.5), the R.H.S. of (L.13) can be approximated by 
2 

m lim E{e\k)-�E 嘗 — An �))2} , + diK2 

(L.14) 

The variance of An(ifc) is thus found by equating (L.13) and (L.14), which has a 

value of � 2 

lim — An)2} « ^ ^ 
fc—OO 以11 

In a similar manner, the mean square errors of a2i{k) and can be shown 

to be 9 4 
lim E{(a2i{k) 一 a21)2} « + 

and 2 
lim E{(A2l(k) - A21)2} « ^ ^ 
k-*oo OL2l 
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