
Oriental Fonts Auto Boldness

By
Lo I Fan

V
l

 ̂
/
f

 I

 广
一

、
f

-

、
�

/

』
 了
.
'
/
/

〜
 .
5
C
7

已

 A
^
s
l

%
a
\

”
/
/
J
'
,

 ,
_

补
众
I

“

/
V

/

,
/
i

、

』

-

 ，

〜
f
i
L
 .

 .

u

By
Lo I Fan

A DISSERTATION
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY
DIVISION OF COMPUTER SCIENCE

THE CHINESE UNIVERSITY OF HONG KONG
SEPT., 1994

ABSTRACT

Bitmap fonts are notorious for inflexibility and memory consumption. In the recent years,
outline fonts have gradually replaced bitmap fonts in many word processing environment
because the scalability of outline fonts fulfills the principle of "What You See Is What You
Get"�and it is contact in storage. In addition, e^qpanded version and italic version can be
generated in an ad hoc manner from a master outline by geometrical transformations.
However, to generate a bold version from a stored unbold version in an ad hoc manner,
which is termed as "Auto Boldness", is a deep problem because the outline of a character
must be modified intelligently to attain bold effect. Bolding Chinese characters is
especially challenging. It is due to the fact that outlines of Chinese characters are very
delicate and con^lex. The existing methods of auto boldness for Chinese outline fonts are
�desirable, owning to poor quality of bold version and memory consuming.
Consequently, we invented an efficient and fast algorithm to bold Chinese outline fonts
automatically with a great flexibility of multi-level boldness. That is thousands of bold
versions with different blackness can be generated in an ad hoc manner. Moreover, the
quality of bold is good, and memory requirement is reasonable. In Chapter one, the
concepts of outline fonts, and the existing methods of outline fonts auto boldness will be
introduced. Then, tke main ideas of our solution to Chinese outline fonts auto boldness
will be presented step by step in Chapter two. The detailed algorithms of auto boldness
will be presented in Chapter three and four. Chapter three talks about the fimctions and
the algorithms of a set of auto boldness primitives from which the auto boldness programs
for outline fonts can be built. Chapter four talks about a rule based system to analyze the
Chinese character outline in order to generate the auto boldness program on character
basis, which executes the auto boldness primitives. Finally, Chapter five will contain with a
performance assessment and a discussion of the pros and cons of our solution.

ACKNOWLEDGMENTS

This project would not have been possible without the expertise and cooperation of many
people. Our biggest debt of gratitude goes to our project supervisor Dr.Y.S.Moon, whose
ideas and support for the project are ever so appreciated.

Notations Convention

[N] denotes N th temporary equation during a derivation process, where N is an integer.
The equations of a derivation process are numbered consecutively. The derived formula is
denoted by (C.N), that means the N th formula of chapter C, where C and N are integers.

Table of Contents

Chapter 1: Introduction
1.1 The Evolution of Fonts \
1.2 Bitmap Fonts 2
1.3 Outline Fonts

1.3.1 Arc and Vector Form 4
1.3.2 Spline Form 4
1.3.3 Pros and Cons of Outline Fonts 8

1.4 Exan^)les of Outline Fonts
1.4.1 Adobe's PostScript 9
1.4.2 Apple's and Microsoft TrueType

1.4.2.1 Outline Representation 10
1.4.2.2 Rasterisation 12
1.4.2.3 Hinting 13

1.5 Bold Fonts
1.5.1 Definition of Bold 15
1.5.2 Definition of Auto B oldness 16
1.5.3 Auto Boldness by Double Printing 17
1.5.4 Auto Boldness by Multi-Master Technique 18

1.6 Chinese Fonts
1.6.1 Chinese Character Sets 19
1.6.2 The Subtleties of Chinese Fonts Auto Boldness 21

1.7 Project Objective 23
1.8 Goals 23

Chapter 2: Main Ideas of Chinese Font Auto Boldness
2.1 Prototype of Auto Boldness Driver 24
2.2 Design Features of the Prototype Auto Boldness Driver 25
2.3 Data Structure and Algorithm of Auto Boldness

2.3.1 Data Structure of TrueType Character Outline 27
2.3.2 Algorithm of Auto Boldness 28
2.3.3 Algorithm Description 29

2.4 Comqponent Font Auto Boldness 35

Chapter 3: Language of Auto Boldness
3.1 Enhancements of TrueType Engine to support Auto Boldness 36
3.2 Symmetric Bold Instruction 38
3.3 Rotate B old Instruction 47
3.4 Asymmetric Bold Instruction 50
3.5 Con^parison of Bold Instructions 54
3.6 Serif Accommodation Instruction 55

Chapter 4: Shape Parsing and Auto Bold Code Generation
4.1 Compilation Process and Auto Boldness 62
4.2 Shape Lexical Analyzer 64
4.3 Shape Token Attributes Evaluation

4.3.1 line Token 66
4.3.2 bezier2 Token 67
4.3.3 sharp Token 70
4.3.4 concave Token 75
4.3.5 convex Token 75

4.4 Scope of Shape Parsing 76
4.5 Shape Parsing Mechanism 77
4.6 Model Grammar Rules

4.6.1 Grammar Rule Format 81
4.6.2 Grammar Rule Item 82
4.6.3 Grammar Rule Assignment 83
4.6.4 Grammar Rule Condition 83

4.7 Auto Boldness Code Generation 84
4.8 Program Methodology of Prototype Auto Boldness Driver 86

Chapter 5: Conclusions
5.1 Work Achieved 87
5.2 The Pros and Cons of Auto Boldness Algorithm 88
5.3 Bold Quality Assessments 91
5.3 Future Directions 93

References

Appendix One

Appendix Two ,

Chapter One: Introduction

1.1 The Evolution of Fonts

The invention of printing technology marked a new era in human history. Ever since, ideas
and knowledge could be printed as documents, and accumulated for generation after
generation. The most essential element of printing is letterform. Many technologies for the
production of letterforms have preceded our modem methods, including stone carving,
pen and ink, wood-block printing, movable type. Both the speed and cost of printing were
not desired at that time. Moreover, only a very experienced artist was capable of
producing legible letterforms. The difficulties in designing letterforms is that printed
characters must appear visually related to one another and stylistically consistent.

Then, the typewriter emerged, and the process of printing was mechanized by setting
pieces of lead into a press. Hence, the speed of printing was inqjroved, and people could
leam how to use this machine very well in a short time period. The pieces of lead were
called metal type which lasted for over 500 years. Metal type of different sizes and styles
were available for typesetting. Metal type has shortcomings such as being unable to print
large size letters, and limited styles.

In the twentieth century, the printing technology was beginning to change quite rapidly.
Photo corrq)osition had been in general use for less than 20 years. Thus, a great deal of
efforts was spent on converting the typefaces designed for metal into something
appropriate for photo composition. At the same time, computer printing technology
emerged, and digital technology adopted in output devices. Hence, the same type of
reworking would again be necessary to generate the fonts conforming to digital
technology, that is bitmap fonts.

Bitmap fonts can be immediately output to a printing device, but it requires a large amount
of storage space. Thus, outline fonts emerged, and replaced bitmap fonts. Outline font has
many excellent advantages. The storage requirement of a outline font is much less than
that of a bitmap font, and different sizes and styles can be generated "on the fly". But, it
must go through a rasterisation process to generate raster image, before outputting to a

printing device. Moreover, in order to guarantee the quality of the raster image, hinting
must be applied before rasterisation, resulting in relatively slow speed.

1.2 Bitmap Fonts

Until the recent years, computer printing looooooooooooooiioooooooooooooooo

has become the most popular printing 00000000000001111000000000000000
_ J it i ,�,,00000000000011101110000000000000

method，and gradually replaced the old OOOOOOOOOOOI11000111000000000000
ones. There are several methods of 00000000001110000011looooooooooo

00000000011100000001110000000000 storing, representing, and reproducing _ _ _ i m m m i _ _
fonts inside a computer. They differ in 00000000011111111111110000000000

h . 00000000011100000001110000000000
tneir economy, emciency, and 00000000011100000001110000000000
typographic utility. 00000000011100000001110000000000

Figure 1.1: Letter A in Bitmap

The sirr^lest method is to store the ° r m

glyphs as arrays of bits - that is , as bitmaps, as shown in fig 1.1. The printing speed of
bitmap font is the fastest, compared with other computer fonts, because bitmap is the
identical way that fonts are used in most output devices. However, bitmap font requires a
large amount of computer storage.

For exarr^le, a 12-point font, stored as a bitmap at 75 dpi, might occupy about 1.5K
bytes. The storage required is proportional to the area of the bitmap, and proportional to
the square of the change in size, and also as the square of the resolution.

Suppose, storage required = S (in bytes), point size ~ P and resolution � R (in dpi)

2 2
p2 R2 PR

S = m (1.1)
122 752

540000

Therefore, twenty-four-point type consumes four times the space at the same resolution,
that is 6K bytes in this exanq)le. 1200-dpi 12-point type would require

2

12002 _
1 '5 752 = 3 8 4 K bytes - 256 times the storage of the original font.

The storage required will be tremendous, if fonts of many different styles and sizes must
be available.

Bitmap font can be gained by converting the metal type or phototypesetting master to
raster image. But, if the dimensions of the original design are not multiples of the pixel
spacing at the required resolution, some features in the original design, such as symmetry,
serif and slender join, will not be retained in the raster image. Thus, as a matter of fact, all
digitized outlines must be edited and adjusted, even though the scanning process is
perfect.

In order to generate a high quality bitmap font at a particular resolution, there are three
methods of bitmap font design: top town, bottom up and collateral. If an idealized design
of high resolution is used as the basis for a type family, with lower-resolution fonts derived
from it, it is called a top-down design. The lower the resolution is，the worse of the quality
of the derived fonts. Conversely, if an individual font or two of low resolution is used as
the basis of the family, with high-resolution fonts derived from it, it is called a bottom-up
design. The higher the resolution is, the worse of the quality of the derived fonts. Finally,
collateral design seeks to optimize the overall quality throughout all resolutions, but
sacrifices the quality at the extremes, lowest resolution and highest resolution.

1.3 Outline Fonts
I 7T

The storage needed for a bitmap font / "N
increases rapidly as the point size or / / \.Xk

resolution increases. Moreover, the quality of
an algorithmically generated bitmap font at a ——

� # y^Z I f
particular resolution from the basis of the ^
family is also not desired. So, can a font be V : ::�t—--—-------广、、

represented in a way that is resolution ��
I / / j

independent, and contact in storage ？ The \ � ！ /

idea of outline font is to store only points on | ^ 产

the periphery of letterforms. Figure 1.2 shows v >
how an outline font might be described. Figure 1.2% Character Shape Stored

as Outline
3

1.3.1 Arc and Vector Form

If the character shapes are encoded as polygons, I ~ ^ I
a great many data points is necessary to ., j
approximate curves accurately. A method that \
embodies curves intrinsically gives better \ \ |
results. One of the encoding methods is circular \ \ |
arcs and straight lines. As shown in figure 1.3, a c1 "i \ _ \ |
dot stroke of Chinese font is represented by [/ !
three joined circular arcs. The center of arc J ��

P1,P2? arc P2?P3,P4, and arc P4,P1 are C1,C3, ^ T
and C2 respectively. Circular arcs and straight � �

lines representation is compact in storage, | g3
because it is only needed to store the centers of Figure 1.3: Represent a Stroke of

A , r TT Chinese Font by Circular Arcs arcs, and end points of arcs. However, a
circular arc can only represent a smooth curve segment, and fails to represent a delicate
outline; otherwise enough segments must be used to represent a delicate outline, but it
defeats the purpose of compact storage. For this reason, various alternatives to represent
outline are needed.

1.3.2 Splines Form

Splines are curves that are controlled by a small set of given points, tangents, or other
data. To approximate a particular curve, the curve must first be broken into segments that
meet at their endpoints. The meeting points are called joints. Then, each segment can be
specified by a parametric formula. The parametric formula supplies points of the segment,
generated by varying a parameter over a specified range. For instance, any point (x,y)
along the curve segment can be described parametrically as two equations:

1. x = x(t)
2. y = y(t) such that 1 e [0 ' 1]

4

where t is a parameter. The value t = 0 corresponds to the starting point of the segment.
While t = 1.0 gives the end point of the segment.

The parametric equations of a spline segment have a general form:
x(t) = a0+ axt + a2t2 +.... ̂ anJn~l + antn

y(0 = b0 + V + ……+V/1-1 +bjn (1.2)

where a. and are coefficients and n is the order of the polynomials. When n is 2, the
polynomials are called conic. When n is 3, they are cubic. The constants are carefully
chosen in order to attain smoothness at the joints. Generally speaking, splines of order n
have continuity in the (n-1) derivative at eack joint Thus, a conic spline has a continuous
first derivative, and a cubic spline has continuous first and second derivatives at the joints.
However, in order to simulate the sharp points of a character outline, a discontinuity in the
slope at the joints must be created.

The many kinds of parametric curves that can be used to simulate a character outline fall
into two categories: those for which the curve is constrained to pass through the control
points, called interpolating curves, and those without this constraint. Non interpolating
curves have control points botli on and off the curves. The on-curve points at the joints
specify the curve's location, while the off-curve points determine tlie slope and shape of
the curve as it passes through and between these points. Thus, during the character outline
design process, the designer can control the curve's location and slope delicately by
moving the on-curve and off-curve control points with a graphic mouse.

Bezier splines are one in^portant class of cubic splines, because only a few number of
segments is required to describe a con^lex shape of a curve. Moreover, it is relatively fast
computationally, and offer both kinds of user interaction � on-curve and off-curve control
points.

5

A X D

⑶

A (b) D

C

A D

(5)
Figure 1.4: Recursive Construction of Bezier Spline Curve

6

A Bezier curve has four control points, two on-curve, and two off-curve. The behavior of
the curve can be described recursively[Knuth 86]. As shown in fig 1.4(a)�the four points
(A,B,C?D) are the four control points of a Bezier curve. A,B are on-curve point, and C,D
are off-curve points. At the first iteration, the four control points are connected by straight
lines, and a polygon is formed. At the second iteration (fig 1.4(b)), the midpoints of the
lines are connected in sequence. This process continues, connecting adjacent midpoints,
until the polygon converges to a curve. This curve is the spline curve defined by the four
control points (A,B,C,D).

Bezier spline has the following properties:
1. It goes through the end points (A,D)
2. The tangent at A is in the direction of the line joining A and B.
3. The tangent at D is in the direction of the line joining C and D.
4. The curve is staying within the convex hull of the four points.

Knuth gives a simple formula, in complex-variable notation, to describe a Bezier
spline[Knuth 86].

Z(t) 二 (1 - W 3(1 - tf tZ2 + 3(1 - t)t2Z3 + t3Z4 (1.3)

where Zi are the control points (X^Y^ and t is the parameter ranging between 0 and 1.

Four control points give rise to a cubic Bezier curve, whilst three control points give rise
to a quadratic Bezier curve. A quadratic Bezier curve has two on-curve control points,
and one ofF-curve control point. The same recursive algorithm can be applied to the three
control points until at the limit a curve is formed. Thus, a quadratic Bezier has the same
properties of cubic Bezier. If the quadratic bezier is defined by control points A (on-
curve), B (off-curve) and C (on-curve), the curve will go through A and C，and off-curve
control point B will control the tangents at A and C. Moreover, the curve is staying within
the convex hull of the three points.

A simple formula, in complex-variable notation，to describe a quadratic bezier is:
Z(0 = (l-t)2Zl+ 2t(l 一 t)Z2 + t2Z3 (1.4)

where (Z1?Z2,Z3) are the three control points. (Z1?Z3) are on-curve control points. Z2 is

the off-curve control point, t is in [0.0,1.0],

7

1-3.3 Pros and Cons of Outline Fonts

The pros and cons of outline representation can be summarized as follows:

Pros:
1: Compact Storage: only store the control points of outline, instead of storing pixel by
pixel in bitmap representation.

2. Easily Scaled: Letters of varying size with the same design can be created from the
same data. Mathematically, the outline version of varying size can be generated by
multiplying the control point coordinates of the original outline by a 2x2 scaling matrix.

(� �) = (� �) (�) -
where (x，y) is a control point in original outline, and (x',y) is a control point of the scaled
outline, s is the scale. If s > 1, the outline will be scaled up. If s < 1，the outline will be
scaled down.

3. Expanded Version: expanded versions can be calculated by compression or expansion
in the x-dimension. Mathematically, the outline version of varying width can be generated
by multiplying the control point coordinate of original outline with a 2x2 matrix

M X) -
where Sx is the scale in the x-dimension.

4. Italic Version: italic versions can also be generated on the fly.

where S > 0, the greater the value of S is, the more slant the character outline has.
Normally, take S � 0.2

Cons:
1. Expensive Rasterisation Process: the outline form can not directly be sent to an
output device. It must go through a rasterisation process to generate a character bitmap,
before being sent to output device. The rasterisation process is time-consuming, especially
in the case of oriental fonts. Thus, it is worthy of developing an efficient algorithm to do
rasterisation.

8

2. Undesired Output Quality: If the dimensions of the character outline, such as serif
height, stroke width, etc., are not a multiple of the intended resolution, the bitmap
generated in rasterisation process will lose the features of the original outline. Thus, a
process called hinting must be applied to the character outline, before rasterisation. In a
hinting process, the character outline control points are migrated slightly so that
dimensions of the character outline can be adjusted to be multiple of the intent resolution.
Then, the generated bitmap can retain the features of the original outline.

L4 Examples of Outline Fonts

1.4.1 Adobe's PostScript

The Adobe's PostScript language is a single interpretive programming language with
powerfiil graphics capabilities. Its primary application is to describe the appearance of
text, graphical shapes, and sampled images oil printed pages. PostScript treats any output
as graphical shapes. It provides many commands for drawing graphics, such as straight
lines, arcs and cubic Bezier curves. In addition, it provides some control commands, such
as for-loop and if-then-else. ’

There are three groups of operators in PostScript language: Level 1, Level 2, and Display
PostScript operators. Level 1 operators are basic operators for single graphics, text and
font. Level 2 operators include all basic operators. The functions of Level 2 operators
include dictionaries operations, memory management (virtual memory), resource
management, device setup, and the operations for composite fonts.

The PostScript interpreter uses a character's code to select the definition fiom the
dictionary to generate a characters shape. As a matter of fact, a character's definition is a
procedure that executes graphics operations, such as straight line and cubic Bezier to
produce the character's shape, instead of storing the character outline's control points.
There are several kinds of fonts, each distinguished by the FontType entry in the font
dictionary. Each type of fonts has its own conventions for organizing and representing the
information within it The font types defined are:

(a) Type 0 is a composite font composed of other fonts called base fonts (Type 1 or Type
3 font), organized hierarchically. Composite fonts are a Level 2 feature.

9

(b) Type 1 is a base font that defines character shapes by using a specially encoded
procedure. It is faster and mote powerful than Type 3 font.

(c) Type 3 is a user-defined base font that defines character shapes as ordinary PostScript
language procedure.

Both Type 1 and Type 3 are base fonts which are restricted to a maximum of 256
characters per font. The major differences is that Type 1 font support hinting. Type 0 font
is a composite font to support a very large character sets. It is suitable for Oriental fonts,
such as Japanese and Chinese characters,

1.4.2 Apple's and Microsoft TrueType

1.4.2.1 Outline Representation
Both PostScript and TrueType can be regarded as outline fonts. PostScript generates a
character shape by executing a corresponding procedure. In contrast, TrueType generate a
character shape by scan converting the character outline which is stored in a font file.
Moreover, PostScript can handle computer graphics and image, but TrueType has no such
a capacity.

In a TrueType font, glyph shapes are described by their outlines. A glyph outline consists
of a series of contours. A simple glyph may have only one contour. More corc^lex glyphs
can have two or more contours. Composite glyphs can be constructed by combining two
or more simpler glyphs. Certain control characters that have no visible manifestation will
map to the glyph with no contours.

Contours are composed of straight lines and quadratic Bezier curves. In the font file, the
control points information can be found in "glyf' table of font file. Each contour is stored
as an order list of numbered control points. Tliere are two types of control points: on-
curve control points and off-curve control points. Three scenarios will happen in the list.

Case 1: Two consecutive on-curve control points represents a straight line primitive.

Case 2: Three consecutive control points (A,B,C) such that A is on-curve, B is off-curve
and C is on-curve represent a quadratic Bezier.

10

Case 3: Four consecutive control points (A,B?C?D) such that A is on-curve，B is off-
curve, C is off-curve and D is on-curve represents two joined quadratic Beziers. This
method can save the storage space of one on-curve control point, because there is a
hidden on-curve control point between B and C, and can be calculated by finding the mid-
point (M) of B and C. Then, (A,B?M) and (M，C,D) represent two joined quadratic
Beziers.

As shown in fig 1.5, the on-curve points are shown as black circles, and off-curve points
are shown as open circles. The points are numbered consecutively along the contours. The
contour A of points [0，1,2”".,48] is in anti-clockwise direction, and the contour B of
points [49,50,51,52] is in clockwise direction, and the contour C of points
[53,54,55,...,60] is in clockwise direction. It is obvious that contour B and contour C is
enclosed by contour A. It is generally true that the direction of the enclosed contour is the
reverse of the direction of the enclosing contour.

4 v • V t
• f f ^ i Q

42 43 / / \ \ 18
/ / 53 5 4 \ \ 19

/ 55 \ \ / / 60

\ 17

3 8
1 2 9

Figure 1.5: A Glyph Outline

11

1.4.2.2 Rasterisation

Once the master outline has been scaled and grid-fitted, it is ready to be rasterized by the
scan converter [True 91]. The scan converter takes the grid-fitted outline and applies a set
of rules to determine which pixels will be part of the glyph image when printed or
displayed on the screen.

The first of these rules is as follows:

Rule 1: If a pixel's center falls within or on the glyph outline, that pixel is turned on and
becomes part of the bitmap image of the glyph.

The TrueType scan converter uses the non-zero winding number rule to distinguish the
interior from the exterior of a glyph. This rule is as follows:

Points that have a non-zero winding number are inside the glyph. All other points are
outside the glyph.

The winding number of a point can be found by following the steps:

1. Draw a ray from the point in question toward infinity.
2. Starting with a count of zero.
3. Add one to the count each time a glyph contour crosses the ray from right to left or
bottom to top. (Such a crossing is termed as on-transition because the TrueType scan
converter scans from left to right and bottom to top.)
4. Subtract one from the count each time a contour of the glyph crosses the ray from left
to right or top to bottom. (Such a crossing is termed an off-transition.)
5. If the final count is non-zero, the point is an interior point. Otherwise, it is ail exterior
point.

An on-transition is shown in fig 1.6. Here the contour crosses the ray from bottom to top.
An off-transition is shown in fig 1.7. Here the contour crosses the ray from left to right.

• ? I l1 2

^ • ^

0 3 I |_o 3
Figure 1.6: An On-Transition Fifnire 1,7: An Off-Transition ^

1.4.2.3 Hinting

Outlines can be rasterized to generate bitmap on the fly, but imfortunately such bitmaps
show quantizing errors (quantum errors) leading to unacceptable representation at low
resolution. The quantum errors are escalated in Chinese font, because Chinese characters
are mainly composed of horizontal and vertical strokes. If the stroke width of the original
outline is not a multiple of the device resolution, the bitmap generated will have unequal
stroke width, resulting in uneven distribution of black and white in the bitmap. Moreover,
owning to discrete effect, the serif in the original outline might not be kept in the raster
image. It is quite unacceptable.

In order to render fonts with high typographic quality on middle and high resolution
devices, outline grid adaptation techniques have been developed whicli generate raster
characters of improved quality. Hints are applied to the character outline to migrate
control points, before rasterization takes place. Hints provide a precise phase control in
order to generate raster characters while keeping essential typographical and geometrical
features.

Li English font, the features modifications include [Final 92]:

a. Grid fitting adjustment:
-Adjustments to character's height, width, or inter-character spacing
-Migration of stroke positions to prevent dropouts
-Fattening of strokes caused by other dropout condensations
-changes to maintain stroke or curve symmetry and smoothing

b. Regularization:
-Equalization of stem weights
-Loss of contrast between stems and hairlines caused by minimum pixel size
-Additional shape distortions to maintain similar weights of curved
and diagonal strokes, when con^ared to vertical and horizontal strokes

c. Readability corrections:
-Increasing the x-height relative to the cap-height
-Increasing the bowl sizes
_ Squaring of the character shapes to preserve readability

13

TrueType hinting is quite different from PostScript Type 1 Font Hinting. In PostScript
Type 1, the hinting system depends on an intelligent rasterization algorithm to render
character outline correctly. The algorithm is built into the PostScript interpreter and
hidden from the users. To hint a font, only constraints on the size and positioning of
character features, such as width of a stem or x-height, need to be stated [Adobe 90].

Li contrast to PostScript, TrueType hinting-progranmiing language provides a large
instructions set for hinting, including treatment of freedom vector and projection vector,
nine explicit rounding options, cut-in services and delta hints, [True91]. Instructions can
be associated with particular glyphs or can be associated with a font as a whole.
Instructions associated with a particular glyph are termed a glyph program. Instructions
associated with a font as a whole are termed a font program.

The font program (found in the "^gm' table in tlie font file) is a set of instructions
executed once, the first time a font is accessed by an application. The font program is used
to create ftinction definitions and instruction definitions. Functions and instructions
defined in the font program can be accessed in the individual glyph programs.

The control value program (found in the 'prep' table in the font file) is a sequence of
instructions executed every time the point size or transformation changes, The control
value program is used to make font wide changes rather than to manage individual glyphs.

The 'glyf table in the font file stores both the outline control points and the individual
glyph programs. Instructions associated with a glyph are executed every time that glyph is
requested.

14

1.5 Bold Fonts

1.5.1 Definition of Bold

BBBB
I stroke width z1 serif height

(a) regulai(b) bold (c) regular (d) bold
Figure 1.8: Regular and Bold
The purpose of bold is to darken a selected area of text. The raster image of a character
looks darker, because the dark area is expanded while the white area is diminished. At the
same time, the original features, including symmetry, serif height, outline continuity, etc.,
are kept in the bold version. There is two approaches of bold. The first approach is to
increase all strokes width of a character evenly, As shown in fig 1.8b, the bold character's
strokes width are increased evenly. This approach is suitable for sans serif fonts. The
second approach is to increase the contrast of a character by only increasing the vertical
stroke width, as shown in fig 1.8d. This approach is suitable for serif fonts.

The boldness of a character can be expressed quantitatively by its weight

W = - (1.8)
JC

where T is the stem width and x is the x-height.

15

The larger the value o fW, the darker each letter will appear. However, this formula can
only be applied for a regular typeface, because even though the weights of two typefaces,
narrow face and wide face, are equal, narrow face will appear darker than wide face.
Moreover, it is very hard to define the stroke width of a typeface exactly, because the
stem width of some typefaces varies from letter to letter. The waist measurement of a
letter T can be used as an approximation, or an average value can be used.

Typographic contrast can be defined as the ratio of the weights of vertical stems to
horizontal stems.

C T = ^ (1-9)

where Tv is the vertical stem width and Th is the horizontal stem width.

Many traditional typefaces have high contrast, in Qxcess of 3.0，giving them a look that
typographers term brilliant or glittery. Extremely high contrast results in striking, but less
legible typefaces. Low contrast ratios, those close to unity, describe faces that appear
monotonous and flat overall. A contrast of less than unity would result in a typeface
distinctly unnatural.

1.5.2 Definition of Auto Boldness

There are two methods to bold a selected area of text in a word processing environment.
The first one is to select a corresponding bold font. Nevertheless, font makers do not
always produce a font, and a corresponding bold version, because the production of bold
version is very difficult and labor intensive. Moreover, the installation of a bold font does
consume much memory space. Thus, it is better to generate a bold version firom a stored
� b o l d font on the fly, and this technique is termed as 'Auto Boldness�.The current
techniques of auto boldness include Double Printing and Multi-Master Technique.

16

1.5.3 Auto Boldness by Double Printing

^ s ^ s n
(a) unbold character (b) superimpose two (c) Character shape deformed

character images when the two superimposed images

to attain slight boldness a r e too far away
Figure 1.9: Auto Boldness by Double Printing

It is single and general enough to work on all fonts. The idea is to double print a character
with a slight horizontal displacement between the two printing positions，as in fig 1.9b.
The effect is to increase the contrast space (the ratio of thick to thin stem width). Chinese
font and English font have a common property that horizontal stems are thin, while
vertical and inclined stems are thick. Double Printmg can increase the thick stem width,
but retains the thin stem width, leading to an increase of contrast. Many word processor
using this technique have a dialog box called font style with a set of buttons. One of the
button is called "Bold". If you press it, the box, which is called sample, will display a bold
character. Thus, the option is only Bold/Non-Bold without intermediate bold level.
Moreover, only a slight increase of contrast ratio can be attained, because the integrity of
character shape will be affected if the distance between the two printing positions is too
large, as shown in fig 1.9c. As a result, the use&kess of Double Printing is very limited.

17

1.5.4 Auto Boldness by Multi-Master Technique

^ Z (0,0,1) Axjs Feature ‘
y f ^ (0,1,1) X regular/bold

/ / Y regular/italic
r 1 r n 1 1 �

O.0.1) | Z width

^ Y Corner Master Designs
/ (0,1,0) m

a/ y / (0,0,0) regular

X (0,0,1) unbold, non-italic and highest width

(1,0’0) '1’0) (0,1,0) unbold, highest italic and lowest width

(0,1,1) unbold, highest italic and highest width

(1,0,0) highest bold, non italic and lowest width

(1,0,1) highest bold, non italic and highest width

(1,1,0) Highest bold, highest italic and lowest width

(1,1,1) highest bold, highest italic and highest width

Figure 1.10: Design Axis

This technique is developed by Adobe [Adobe 92]�supporting multi-level of auto
boldness. Having the master design of the regular font and the master design of the
corresponding highest level bold font, the intermediate level of bold font can be obtained
by interpolating the two given master designs. The interpolation is actually the weighted
sum of the two designs control point coordinate. Each master design has a corresponding
weight which is user specified, and the weights of master designs constitute a Weight
Vector, of which the dimension is equal to the number of master designs to do
interpolation (2 or more) � a n d the sum of the elements of Weight Vector equals to 1.0.
As shown in fig 1.10, the case of more than two master designs is possible. Because, a
font can be characterized by a number of design features, sucli as regular/bold,
regular/italic, width, etc. Each design feature can be described quantitatively by a design
axis. For example, if the design feature is regular/bold, the two extremities of the design
axis are the regular master design and the highest bold level master design. In fig 1.10, the
eight corners of the cube represent the eight master designs needed, and the point within
the cube represents a font instance with a particular weight vector. The closer the point is
to the comer, the more similar of the font instance to the master design.
Suppose the number of design axis 二 N. Then, number of master designs needed = 2N •

Nevertheless, Multi-Master Technique is not applicable to Chinese Fonts. Chinese
character has a very large character set. Thus, each master design, which is actually a font
file stored in conqmter memory, will consume much memory space, about one to two

18

mega bytes. The memory required to store master designs is 2 mega bytes x2A r . I t is very
tremendous, and unrealistic for personal computing environment. The advantages of
Multi-Master Technique are that the speed to generate the font instance is very fast, and
the quality of font instance can be guaranteed by making the production quality master
designs.

1.6 Chinese Fonts

1.6.1 Chinese Character Sets

a. Large Character Set

In English, words can be formed by alphabets concatenation. But, this is not the case of
Chinese words, because, a Chinese character is ideaographical. In other words, the shape
of a Chinese character is similar to the thing denoted by the character, and a word is an
indivisible unit, instead of a concatenation of alphabets. Therefore, a tremendous amount
of Chinese characters have been invented to meet the daily needs of Chinese peoples over
the past 5000 years history of China.

There are two main coding schemes to encode Chinese characters as double bytes coding
schemes. Firstly, Big-5 Chinese Coding Scheme used in Taiwan encodes 13,053
characters including 5,401 commonly used and 7,652 less commonly used ones. Secondly,
GB Coding Scheme used in Mainland China encodes 7,000 commonly used SiaaqpMed
Chinese characters. The set of Chinese characters is simplified due to combining some
similar characters (similar in shape or meaning) into a new simplified one.

b. Low Repetition Rate

For English, font caching can effectively reduce the time spent on rasterisation in
typesetting and laser printing. However, in Chinese, the font caching strategy is not very
straightforward because of the low character repetition rate. In contrast, English has a
small set of commonly used words. Caching the commonly used words can reduce the
need to perform the time-consuming rasterisation process.

19

But, it is still possible to make use of cache strategy for Chinese font, because many
Chinese characters can be decomposed into a left component and a right component. The
repetition rate of the con^onents is very high. Thus, caching the components is an
intelligent approach. However, it involves the automatic extraction of components.

c. Condensed Strokes

Chinese character can be disassembled as strokes. High stroke count is another feature of
Chinese characters. Characters with as many as 15 strokes are not imcommon. In order to
squeeze out the last drop of memory, stroke based TrueType font has come out in the
recent years. The idea of stroke based TrueType font is to store a number of strokes in the
font file, then character can be assembled by geometrically transforming the strokes
fetched from the font file. Thus, the storage requirement of character is only the index of
strokes, and the parameters to do transformations. In TrueType terminology, it is called
corr^ponent fonts.

20

1 6 2 The SubtletiPx of Chinese Fonts Auto Boldness

a. hard to extract strokes
In order to achieve a high quality of �

bold font, a Chinese character must � � � 入

firstly be disassembled as strokes. -I— locationofDots,roke T " "FT / ' j ^ 7 ,
I j \ ̂ uA^ //

Then, the extracted strokes are /> V ^ , >
Z I 丨乂 / \ j

identified and bolded individually. / onertaiion of Dot stroke \
Nevertheless, strokes extraction is a | U
subtle problem for Chinese fonts. �

Firstly, a same class of strokes can
manifest in a Chinese character with U l j — ^ ~\J
different orientations, sizes, and Figure 1.11: Dot Strokes of a Chinese Character
locations. As shown in fig 1.11, Dot
strokes in different orientations and locations can appear in a Chinese character. Thus，the
algorithm to extract strokes must be independent of size, orientation and location.
However, such an algorithm is very hard to develop.

b. hard to determine the new position of strokes interception after bold
Strokes of a character can b e � “ ^ - — “
intercepted with one anotker. In
outline font, if two strokes outline V2
are intercepted, the two strokes V1 X / y ^ ^ ^
outline are clipped to form a single � \

outline. This makes it more j ^ z � ^
Right Incline Stroke

difficult for Stroke extraction. Left Incl.ne Stroke

Moreover, even though the F i g u r e � . 1 2 ; T he Interception of Left Incline
intercepted strokes are all stroke and Right Incline Stroke
extracted success&Jly, it is hard to

determine the new position of the interceptions after bold. As shown in fig 1.12, p is the
interception of left incline stroke and right incline stroke. Viewing from left incline stroke,
point p must be migrated in the direction of vector V2, but viewing from right incline
stroke, point p must be migrated in the direction of vector VI. The direction of VI and
V2 contradicts to each other. Thus, the interception p must be carefully placed. If not, the
curve segment near point p will become discontinuous after auto boldness.

21

c. hard to bold the delicate outline of Chinese fonts
The shape of a Chinese character is far more
con^lex than English character. The latter (j ^)
is only composed of simple curves and Serif / �

straight line segments, but the former one is ou � / / r r
Sharp Edge / /

cor^posed of serifs and curves with inflexion ,
points and sharp edges, as shown in fig • inflexion Point I \

1.13. If the serifs of a character are not / j
carefully treated, the serifs will be deformed J
after auto boldness. Thus, a Chinese
, . , Figure 1.13: The Delicate Outline of Chinese

character can be considered as a very Character
delicate object, and it is extremely
challenging to modify a delicate outline to
attain bold effect.

d. hard to keep the balancing nature of Chinese character
The design of a Chinese character is very balanced to such an extent that the center of
gravity (CG) is near the center of the bounding box of the character outline. Thus, during
auto boldness, the increment of weight must be equally applied throughout the whole
character outline so that the CG can be kept at the center of bounding box.

e. hard to keep the white spaces of Chinese character
The white spaces of a Chinese character
must be maintained, and if two white | •

m m ^ White Space

spaces, which are equal in their ^ ^ m l ^ ^ m ^ ^ m
dimensions, must remain equal after ^ ^ B ^ j ^ ^ ^ ^
auto boldness. However, some Chinese I • W : ^ Group 2 �

characters have so many strokes that I I I I i ^ h h , x3,x4,x5
their white spaces are very slim, and it P ^ f l ^ B j
can hardly be retained in auto boldness. I • t x5

个只
Fieure 1.14: White Spaces of a Chinese Character

22

1.7 Project Objectivp

we aim at developing a new algorithm for Chinese outline fonts auto boldness which can
control the stroke width of characters automatically and the stroke width can be fine tuned
by the user at will. The bold version is generated "on the fly" from the stored unbold
fonts，and the average time to bold a character must be short enough for real time
purposes. Furthermore, good quality of bold must be ensured. Continuity, symmetries,
white spaces and serifs must be kept in the bold version. There is no need to install an
additional bold version to do interpolation as in Multi-Masters Technique. Thousands of
bold versions with different level of boldness can be generated from a single unbold font
automatically by the algorithm.

1.8 Goals

1. The input to the algorithm is only the unbold font.
2. The algorithm must be fast enough for real time environment.
3. A significant bold effect must be attained.
4. Intermediate level of boldness can be attained.
5. The integrity and continuity of the character outline must be kept.
6. The original characteristics must be preserved.
7. Serifs must be careftilly handled.
8. White spaces must be kept.
9. The algorithm must be general enough to work on all fonts.
10. It is totally a software solution, and no additional hardware is required.

23

Chapter Two: Main Ideas of Chinese Font Auto Boldness

� J Prototype of Auto RnMnPxx Brivpr

The generation of a good quality bold font involves much effort. As a result, it is
more economical to develop a driver which is intelligent enough to generate bold
version from an unbold master on the fly. In our project，a prototype driver has been
built.

The outline of a Chinese character varies considerably among different fonts. Thus,
we have tried our best to devise an auto bold algorithm for as many Chinese fonts as
possible. It can be shown that our algorithm can be worked on Sung, Ming fonts,
which have common characteristics of regularity in shape and distinct sharp points
(will be described later). However, the prototype driver is domain specific to
Microsoft Chinese Windows 3.0 CFSUNG font. CFSUNG is a TrueType font. Each
character is described by a set of contours, and the contour is in fact a set of joined
primitives, which are either straight line (two control points) or a quadratic Bezier
(Three control points). Moreover, this font is non-component based* Thus, if the two
stroke contours are intercepted, the two contours will be clipped to form a single
contour. So, our auto boldness algorithm involves the following steps:

1. Locate the strokes
2. Classify and fit a model to the strokes.

The model of a stroke has two components. The first one is the pure stroke part,
and the second one is the serif part.

3. Apply some suitable autobold methods to modify the pure stroke part outline.
4. Adjust the serif part to accommodate the modified pure stroke part.
5. Smooth the whole character outline.

2.2 Design Features ofthp Prototype Auto Boldness Driver

Storage Requirement:
There is no need to store additional bold information in the font data file. All the bold
information can be generated in an ad hoc manner. The input of the Prototype
Autoboldness Driver is only the raw data of CFSUNG.FON font data file.

Speed:
In a 486 PC, the average speed to bold a Chinese Character is less than a half of
second, suitable for real time environment. The high speed process is due to an
efficient heuristic search technique (Sharp Point Classification) to extract and
classify the strokes.

Flexibility:
The bold level of the generated bold font can be tuned by user. The tuning involves
adjusting the parameter (BoldLevel). BoldLevel is a rational number ranging from 0.0
to 1.0, and the definition of it is: .
BoldLevel = Increase in Stroke Width / Original Stroke Width (2.1)

Quality:
The outline of the resulting auto bold character is smooth and perfect, retaining its
original characteristics, such as serif width and height. Furthermore, the balancing
nature of the original outline is preserved.

25

吹—吹吹
y ^ ^ BoldLevel � 0.4 BoldLevel^0.8

BoldLevel=0.0

BoldLevel = 1.0

目 見見
I BoldLevel=0.4 B o l d — . 6

BoldLevel = 0.0 • •

見
BoldLevel = 1.0

26

2'3 Data Structure and Algorithm of Auto Boldnpxx

2.3.1 Data Structure of TrueType Character Outline
C o d i n 8 Description
Char.ContourNum number of contours
Char.Contourf] array of contours, size of ContourNum
Char.Contour[i].PrimitiveNum number of primitive ofith contour
Char.Contour[i] .Primitive[] array of primitives for ith contour, size of PrimitiveNum
Char.Contour[i].Primitive[j].Typ Type of the j th primitive ofi th contour

Line : Straight Line
QBezier: Quadratic Bezier

Char.Contour[i] .Primitive[j] .Cx[k] x coordinate of k th control point of j th Primitive of
i th Contour
if Typ==Line then k = 0,1 On-Curve control points
if Typ = = QBezier then k = 0 On-Curve control point

k = 1 Off-Curve control
point

k = 2 On-Curve control
point

Char.Contour[i]. Primitive [j].Cy[k] y coordinate of k th control point of j th Primitive of
i th Contour .

The outline of a character is described by a set of contours, and the contour is in fact a

list of joined primitives. The primitive is either Straight Line or Quadratic Bezier.

Because the primitives in the contour list are joined, the following conditions must hold:
[1. if (Char. Contour [i]. Primitive[j]. Typ = = Line) then

Char. Contour [i]. Primitive[j]. Cx[l] = = Char. Contour [i]. Primitive[k], Cx[0]
2. if(Char.Contour[i].Primitive[j].Typ = QBezier) then

Char. Contour [i]. Primitive[j]. Cx[2] = = Char.Contour[i].Primitive[kJ,Cx[0|
where k � � j + 1) mod Char. Contour[i]. PrimitiveNum (2.2)]

The character outline extracted from Windows 3.0 CFSUNG.Fon font data file is in
TrueType format. Thus, the outermost contour of a character is in an anti-clockwise
direction, and the inner contour direction is the reverse of the outer contour direction[
True 91]

27

2.3.2 Algorithm of Auto Boldness

Autoboldness(In Out Char, In BoldLevel)
Char - the input unbold character outline in TrueType format, and the output bold character outline
BoldLevel - a rational number to specify the bold level ranges from 0.0 to 1.0

Preprocessor(Char);
for(i=0; i < Char. ContourNum; i++)

for(j=0; j < Char.Contour[i].PrimitiveNum; j + +) .
if(Char. Contour[i] .Primitive[j] .Typ=QBezier)&&

IsSharpPoint(Char.Contour[i].Primitive[j]))
if(FitModel(LeftInclineStroke,Char,ij)=^rrue)

Model = LeftlnclineStroke;
elseif(FitModel(RightInclineStroke，Char，i,j)=True)

Model = RightlnclineStroke;
for model fitting of other type ofstrokes

if(any stroke model fits)
PureStroke = ExtractPureStrokeOutline(Model,Char,ij);
Serif = ExtractSerifOutline(Model,Char,ij);
BoldPureStroke = BoldExtractedPureStrokeOutIine(Model,PureStroke,BoldLevel);
BoldStroke = SerifAccomondation(BoldPureStroke,SeriJO；

BoldVerticaIStrokes(Char,BoldLevel);
Smoothing(Char);

}

28

2.3.3 Algorithm Description

Step 1： The first step of the autoboldness algorithm is to preprocess the character
outline to find the attributes of the primitives. The attributes include concavity (either
concave or convex) for quadratic Bezier, the inclined angle C (values from 0°/o360°
) ,and the curve length L. If the primitive is straight line, C is the inclined angle of the
line joining the first on-curve control point to the second on-curve control point. If the
primitive is Quadratic Bezier, C is the inclined angle of the line joining the first on-
curve control point to the third on-curve control point.

S t e p 2 : Then, the for loop with l,j integer counters is to locate, classify, extract and
bold the strokes of a character. To locate a stroke, a simple heuristic called "Sharp
Point Searching" is used.

Def 2.3: Sharp point is defined as a point on the contour with a steep change in
first derivative, or a point on the contour with high curvature.

f i f �
J J • Oil-Curve Control Point

/ J f ' j v- 1 O Off-Curve Control Point
/ ./ • f f S 7

" Y � ——�—

j Data from Windows 3.0
/ y CFSUNG.FonfiIe

i i ^ — ^ C
B

Figure 2.1: Sharp Points of a Chinese Character

29

It is found that each curve stroke must contain one or more (mostly one) sharp
point(s). Thus, a stroke can be located by searching the locations of sharp points. In
figure 2.1, Sharp points A’B belong to a left incline stroke. Sharp point C belongs to a
right incline stroke. Sharp point D does not belong to any curve stroke, but a point on
the serif of a horizontal stroke. In figure 2.1, a sharp point can be found easily
without using the complicated calculus formula, because a sharp point is always on a
quadratic Bezier which has a small curve length(attribute L) and three control points
can form an acute triangle.

Step 3. The existence of a sharp point implies a high probability of the existence of
a curve stroke. Thus, the sharp point is further tried to be fitted to some curve stroke
models, the nested if(FitModel(...)) else ... statement. The function
FitModel(LeftInclineStroke,Char,i,j) will return true, only if the sharp point on
primitive j of the i th contour fits the model of Left Incline Stroke. In figure 2.1，

Sharp points A,B fit the model of Left Incline Stroke，and sharp point C fits the
model of Rightlncline Stroke.

X ^ 0 Off-Curve Control Point

^ / & • On-Curve Control Point

Figure 2.2: Model of a Rightlncline Stroke

The example of Right Incline Stroke Model Is shown in figure 2.2. S1,S2,S3 form the
continuous curve segment on the contour of a right incline stroke. S is a quadratic
Bezier of which a sharp point exists. So, the model of Right Incline Stroke can be
defined as a set of heuristic rules.

30

1. S is quadratic bezier AND a sharp point exists.
2. SI |s the next continuous curve segment of S in anti-clockwise direction.
3. S2 is the next continuous curve segment of S in clockwise direction.
4. S3 is the next continuous curve segment of S2 in clockwise direction.
5. SI is concave AND S2 is concave AND S3 is convex
6. (Length(Sl) > Length(S2)) AND (Length(S3) > Length(S2))
7. SI is decreasing in y-coordinate in anti-clockwise direction AND

52 is decreasing in y-coordinate in anti-clockwise direction AND
53 is increasing in y-coordinate in anti-clockwise direction

The details of Stroke Model Matching is presented in chapter 4，and stroke
classification is presented in Appendix One.

S t e p 4 . A stroke outline is composed of two parts: One is pure stroke outline and
other is the serif outline. Therefore, after a stroke has been classified, the stroke will
be segmented as pure stroke outline (function ExtractPureStrokeOutline) and serif
outline (function ExtractSerifOutline). Then, the pure stroke outline will be bolded
automatically (function BoldExtractedPureStrokeOutline) •

j 1 -
7 / < >

Curve Segment
/ Y \ c2 Recovered Curve Segment

L r r ^
�� ——7�

, Symmetric Curve Pairs:
/ V K � 1. Cland C2

c3/ / i - X.
7 / T \ . � 2. C3 andC4

, / / C 4 \ � 3. C5 and C6

L J ^ 》、、、“
Figure 2.3; Strokes Outline Bold without Serif Handling

31

C ^ ^ ^ ^ . : : ; �
||

\ s2 �

Figure 2.4: Symmetric Curves Pair Modification

Refers to figure 2.3，the pure stroke outlines have been modified, but the serif
outlines have yet to be modified, resulting in the discrepancy between serif outline
and pure stroke outline. The pure stroke is modified by applying the method of
Symmetric Bold, to be discussed later. But, before applying this method, the missing
curve segment of pure stroke outline, due to stroke interception, must be recovered,
the dotted line in figure 2.3. The algorithm to recover the missing curve segment
will be presented in chapter 3. The idea of Symmetric Bold is that the pure stroke
outline is always composed of a pair of symmetric curves [Percept 92], and there is
a simple formula to modify a symmetric curves pair to make bold effect. Refers to
fig 2.4，curve AB and curve CD are symmetric. P is a on-curve control point at curve
AB. In order to attain bold effect, the on-curve control point at P must be migrated. A
mapping from points on the curve AB to points on the curve CD can be established. P
is mapped to P’ on the curve CD.

Thus � � ^ where SI and S2 are the length of curves AP and CP’ respectively.
'CI C2

CI, C2 are the length of curves AB and CD respectively.

The migration of point P can be characterised by a displacement vector.

32

The displacement vector of P is y =
 B o l d L e ^ K ! x ~ h \ (2 4)

2 \y -杈丨
where P = (x,y) and P' = (h,k)

Formula 2.4 can only handle on-curve control points. Thus, it can not be applied
directly to quadratic Bezier primitives because of the off-curve control point of
quadratic bezier. However, in chapter 3，we show that formula 2.4 can be modified to
deal with Quadratic Bezier nicely.

Step 5. Serif outline must be
�

modified to accommodate the modified j p) \
pure stroke outline, the function / / rJ

SerifAccomondation.The idea is to / j
/ o

find the model of serif firstly, and \ r
/ / I 1]

then some suitable geometrical / , / U � ’
transformations are used to modify � — ^ � � / \

j 广 J

the serif outline. Three objectives j (
must be attained: 1. The serif outline } X x

/ \ H
must be joined to the pure stroke / / � � � ^ ^

outline. 2. The shape of serif must be /
unchanged. 3. The serif height, width �

t_ A rru t . � , 1 Figure 2.5: Bold Qntline with Serif
must be preserved. The detailed ”

Handling
algorithm will be shown in chapter 3.
Step 6. Until now, only the curve strokes have been bolded. In order to increase
the contrast ratio (thick stem width/thin stem width), only vertical strokes are needed
to bold. The procedure BoldVerticalStrokes is used to bold vertical strokes, and the
idea is similar to curve strokes autoboldness. Vertical strokes can also be divided into
pure stroke outline and serif outline.

33

Step 7. Because strokes are bolded i ,

individually, the curve segment at the
interception of strokes will have a gap. ^ m
Thus, a procedure Smoothing is used to ^ / j j j j ！

eliminate the gaps. Now, the outline of ^^m j
character can be input to rasterizer. ^
However, the strokes, which are not ^ ^ I
intercepted originally, will be intercepted 1 (1 |
after autoboldness. The rasterizer, using ^ H i
alternate counting algorithm, will fail to ！

rasterise the strokes interception part, but M ^ S ^
the rasteriser, using wind counting Figure 2.6: Character Bold with
algorithm can rasterise the bolded BoldLevel=1.0
character successfully as shown in figure 2.6.

Definition 2.5: Alternate counting algorithm
The system fills the area between odd-numbered and even-numbered curve segments
on each scan line. That is, the system fills the area between the first and second side,
between the third and fourth side, and so on.

Definition 2.6: Wind counting algorithm
The system uses the direction in which a figure was drawn to determine whether to fill
an area. Each contour is drawn in either a clockwise or anti-clockwise direction.
Whenever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise contour, a count is incremented; when the line passes
through an anti-clockwise contour, the count is decremented. The area is filled if the
count is non zero when the line reaches the outside of the figure.

34

2 .4 Compnnpnt F o n t AiitoholHiifi«^

The algorithm will fail, if the sharp point of a curve stroke is intercepted by other
strokes，resulting in sharp point missing. The algorithm can't locate a stroke with a
missing sharp point, and such a stroke will be left unbold.

Autoboldness to full set of Chinese characters is still feasible in stroke based font of
Windows 3.1, refers to fig 2.7. The contours of a stroke based character will be
intercepted, because each stroke is represented as a closed contour, and the
interception area of strokes is left undipped. The wind counting algorithm is used to
rasterize a stroke base character [True 91]• A non-stroke based character(CFSUNG
Chinese font) is totally different, the contours of a character do not intercept each
other, because the contour of strokes are clipped against each other. The alternate
counting algorithm is used to rasterize a non-stroke based Character. As a result,
some sharp points of curve strokes will be missed in the case of non-stroke based
character, but this will not be the case for a stroke based character.

Thus, it is certainly possible to locate all strokes of a character in the case of stroke
based font. Furthermore, there is no need to identify stroke, and the speed of
autoboldness can be improved.

1 ? � f ? 4 . i -b .

^ — f i — 一 — " f > •

// 7i
- r "

Sharp Point Located.

Figure 2.7: Sample of a Stroke Based
Character

35

Chapter Three: Language of Auto Boldness
31 Enhancements of TrueType Emine to support Auto
boldness ^
It is totally inq)ossible to generalize the auto bold algorithm for all Chinese fonts.
To tailor the auto bold algorithm for each font is very labor intensive. Moreover,
this approach contradicts principles in Software Engineering, such as
maintainability, reusability and flexibility. Pragmatically speaking, we must make a
trade off between generalization and tailoring for each fonts. The idea is to extract
the commonalities to build a common module (a library) so that this module is
reusable in the development of the auto bold driver for any font. Thus, the later
effort is only spent on the development of the font domain dependent module (a
program to call the library).

It is not a new idea because it is already a practice in TrueType font hinting
[True91]. The common module of hinting is a set of TrueType hinting instructions
and the TrueType engine to interpret the instructions. The hinting instruction is an
assembly like programming language to hint characters by control points
migration. During the interpretation of the font program, the TrueType engine
will interact with a byte stack by pushing and popping the bytes from the stack.
The byte stack acts as a temporary storage for the TrueType engine to store the
subroutines calling parameters and the local variables.

Hinted Bitmap

I — — ^ I
Rasterisation

71̂ “ B y t e Stack

c ^ 「

Optital Point —_ 丁 rueType Engine (——）=
Size " " “ J —

j char 1 char 2 charn Font Program

Character Data and Character Program Subroutines

— — — — — T r u e T y p e Font File -

Figure 3.1: T r u e T y p e Hinting

Moreover, each time the optical point size is changed by user, the TrueType
engine will be invoked to hint the character outline again, and the updated
character outline will be subsequently re-rasterised. The TrueType font file can be
segmented as a number of tables. The font program table (� g m) defines the
interfaces and iu^)lementations of the hinting subroutines. The glypli table (glyf)
stores the outline control points of the characters, and the hinting programs for
each character. The hinting program for a character is a segment of codes to call
the subroutines in font program table. Executing it, the character outline will be
hinted. It is a common practice to define the subroutines to hint tke horizontal
strokes, vertical strokes and curve strokes in the Q)gm table, and the mission of
the character programs in glyf table is to call the appropriate stroke hinting
subroutines in � g m table. The flpgm table is generated manually, but the character
programs in glyf table can be generated manually or automatically. The auto-
generation of hints can be in^lemented by general purpose programming
language, such as C, Pascal, and it includes the phases: 1. read the character
outline (control points coordinates) from the font file. 2. do shape analysis to
extract the strokes. 3. generate a segment of codes to call the appropriate
subroutines in � g m table to hint the strokes. 4. merge the segment of codes with
the font file.

Li order to realize auto boldness for TrueType font, tke TrueType engine must be
enhanced. Firstly, the TrueType instructions set must be expanded to allow auto
boldness. Secondly, the TrueType Engine must be invoked when the optical point
size or the parameter BoldLevel is changed by user, as shown in fig 3.2.

The additional TrueType instructions include the auto bold instructions and the

serif handling instructions.
Bold and Hinted B i tmap"

�

[Rasterisation
7K Byte Stack

• — f Enhanced . 、 _

Optical Point Size ^ . (
K ~ ^ TrueType Engine —

or BoldLevel t - …_ J

「 — 工 . ^ ^ - X — ^ , ；

chaTll cha「2| charn Font Program

I Character Data and Character Program Subroutines

L - - - — T r u e T y p e Font File � 37 TZZ, rwn dnnr^f Allf A finlrlllPfiS

3.2 Symmetric Bold Instruction

Purpose: 1 • � 4 1
To bold a symmetric curves pair
according to the parameter BoldLevel. 9 • • AC]
When BoldLevel=0.0, the outline is
皿bold; When BoldLevel=1.0 the outline 9 • .36
has the highest level of boldness; When
BoldLevel is between 0.0 to 1.0, the
outline has an intermediate level of ., J # _ 3 2 _ o 31
boldness. 10 \ ^

» • 30
Input Parameters: 11 12 20 ^ ^

1. Symmetric Curves Pair 22
a. an ordered list of point number for the
first curve segment. Figure 3.3: the extracted Pure Stroke
In fig 3.3, curvel = OntUne
[3 0 , 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 4 0 , 4 1]

b. an ordered list of point numbers for the second curve segment.
In fig 3.3, curve2 =
[22,21，20,12,11，10，9,2，1]

c. the order of point numbers for curvel is the reverse ofthe order of point
numbers for curve2

2. BoldLevel: level of boldness, a rational number from 0.0 to 1.0

Algorithm Description: � x , /
1. Missing Part Recovery — > � � 广 primitiveB
Before applying symmetric bold, the primitively^ ^ ^ ^ p ^ 1 ^ 1

missing curve parts, resulted from Poi^Kti
strokes interception, must be

1 X ，， … … / a. Quadratic Bezier Literpolation 油抓(tl>l)&&(t2<0)
recovered. In ng j」，tne curve
segment from point 2 to 9, point 12 J l ^ ^ p o i n t j + i
to 20, point 32 to 33, and point 36 to b 3

40 are missed. The idea is to use a P — t i ^ f pom J

quadratic bezier to fill the gap ‘1

between the existing curve segments.
The on-curve control points of the b. Straight Line Merpolation Â ien the conditiQn:(tl>l)&&(t2<0) fails.

quadratic bezier can be set to the end Fi^re 3.4: Recovery of Missing Curve Segment

. 38

point of the existing curve segment, and the off curve control point can be set to
the interception point of the two tangent lines of the end points.

Ref： to fig 3.4a，the curve segment between primitive A and B is missed. Point i is
the on-curve point of primitive A. If primitive A is a straight line primitive, point
i-1 is also on-curve. If primitive A is a quadratic bezier, point i-1 is off-curve.
Line A is the line joining the point i-1 and point i, the equation of it can be

expressed parametrically a s � � � =[^厂、 + t l � $: : [1]

Line B is the line joining the point j and point j+1, the equation of it can be

expressed parametrically as / x \ = / ^)+t2() [2]
* \ y / \ y j / \ y j + l ~ y j /

point I is the interception point of Line A and B, and can be calculated by solving
t l and t2 in the simultaneous equation

〈妙冗与
[3]

lx\ .

obtaining by eliminating tke couple (J from equations 1 and 2

Suppose the solution is t l 二 tl’ and t2 = t2'
Then, the algorithm to recover the missing part between the primitive A and the
primitive B in fig 3.4 is:
1, Solve for tl and t2 from the simultaneous equation 3 such that tl = tl, and
t2 = t2’
2. if(tl>l)&&(t2<0) then

calculate the interception point I of Line A and Line B by substituting tl ’
into equation 1;
use a quadratic bezier to fill the gap between primitive A and B
such that first on-curve point is point i, second off-curve point is I，and •
third on-curve point is point j (as shown in fig 3.4a)

else
use a quadratic bezier to fill the gap between primitive AandB
such that first on-curve point is point i, second off-curve point is the
mid-point of point i and point j，and third on-curve point is point j.
(as shown in fig 3.4b).

. 39

2. Apply Symmetric Bold Method

The stroke of a Chinese character can be y s ^
decomposed as two entities - pure stroke] r serif
outline and serif； and the pure stroke outline / / — Symmetric curves Pair

/ :

can be further decomposed as sharp point, / ' / — s h a i p Point
symmetric curves pair and remaining ^ J j — RemainingPart
segments. Viewing the appearance of a I
stroke, symmetric curves pair is more F i g u r e 3 . 5 : Segmentation of a Left

Hoke
in^ortant than the serif and remaining part.
Thus, in auto boldness, the symmetric curves pair is processed firstly. Then，the
serif and remaining part must be modified to accommodate the modified
symmetric curves pair. Iftke symmetric characteristic of a stroke can be preserved
in auto boldness, many distinct advantages will follow. Firstly, the CG. of a stroke
can be preserved. Secondly, a uniform bold effect can be achieved in the resulting
character outline. Thirdly and most importantly, if the original character outline is
hinted, the resulting character outline will also be hinted. The Symmetric Bold
Method is the most satisfactory method to bold a symmetric curves pair.

As shown in fig 3.6，the curve AB and curve I g I
CD are symmetric to each other. Intuitively, to / D J
bold the curves pair, curve AB control points V / /
must be migrated upward, and curve CD control / \
points must be migrated downwards. ^ ^ ^ ^ 丨 / \

Mathematically, the migration of control points p
can be characterized by displacement vectors. Q ^ P
Displacement vector for a control point defines F i g u r e 3 . 6 : Symmetric Bold Method
the direction and the distance of migration.

p is any on-curve control point of curve AB. A one-one mapping (Fab) from the
points of curve AB to the points of curve CD can be constructed.
Thus, P' = Fab(P) where P is a point of curve CD.

1 <yO
幻ich that ———= where sl,s2 are the length of curves AP,CP.
犯 'CurveAB CurveCD

CurveAB,CurveCD are the length of curves AB,CD.

Then, the displacement vector of point p is
40

BoldLevel�x-h\

where p = (x,y) and p丨=(h，k).

Formula 3.1 can only be applied to an on-curve point. Therefore, formula 3,1 can
be applied directly to a straight line primitives. For a quadratic Bezier, some trick
must be used. The idea is that suppose a quadratic bezier primitive has control
points
(xO，yO) : first on-curve point
(xl，yl) : second off-curve point
(x2,y2) : third on-curve point

Quadratic bezier can be expressed parametrically as:
x(t) = (l - t f x 0 + 2t(l-t)xl + t2xl [1]

y(t) = (l-t)2y0+2t(l-t)yl + t2yl [2]

where t e [0, ll
(h,k) is the point on the primitive such that t = 0.5
so that:
/z = 0.52x0 + 2*0.52xl+0.52x2 [3]
k = 0.52y0 + 2*0.52yl + 0.52y2 [4]

By formula 3.1, calculate the displacement vectors vl,v2,v3 for the on-curve
point (x0，y0), (h,k) and (x2,y2) respectively. Then, update tke points (x0，y0)，
(h,k) and (x2,y2) by vl,v2,v3 respectively.

(r。:H>〈::;〉，cnm
Thus, the new quadratic bezier primitive satisfy the following conditions:
1] first on-curve point (xO^yO')
2] third on-curve point (x2l,y2')
3] on-curve point (h',k') with t 二 0.5
Then, the new quadratic bezier off-curve point (xl^yl') can be found by using
equation 1 & equation 2.

H 二 0.52 x 0 ' +2 * 0.52 xV +0.5 2 xT

= 0.52 +2 * 0.52yV +0.52 yT
Sinq)lifying, we get

2 ‘ 2

41

By using formula 3.2, the off-curve point of a quadratic bezier can be handled.
However, there is still a limitation. If the parameter BoldLevel is large, the above
method cannot be applied. Thus, we can say mathematically that the above
method is valid when BoldLevel > 0

3. Retaining the Geometrical Properties of Primitives

As straight line primitive can be classified as horizontal, vertical or slant. If a
straight line primitive in the original character outline is horizontal(or vertical), it
must remain horizontal (or vertical) in the bold character outline. Thus, if a
straight line primitive has control points (xO，yO) and (xl，yl)，the pseudo code to
modify a straight line primitive to attain a bold effect is:

1] By formula 3.1, calculate the displacement vectors vlfv2 for (xO，yO) and
(xlfyl) respectively.
2] update (xO，yO) and (xl,yl) by vl and v2 respectively

/x0'\ _ Ix0\ /vl \ lxV\ _ lxl\ Iv2\

VO'/ = \yol + \vly/f \yV/ = Vl/+\v2,/
3] if ((xO,yO) and (xl9yl) is horizontal) {

, ^Q'+^r
set y =

2

4] if((xO，yO) and (xl,yl) is vertical) {

xO'+xl'
set x 芸

2

Co) = Co) & Cr) = Cr)

42

4. Pseudo Code of Symmetric Bold with small BoldLevel
SymmetricSmallBold(Listl,List2,BoldLevel)
input: Listl is an ordered list of point numbers for the first curve segment.

List2 is an ordered list of point numbers for the second curve segment,
curve segments Listl and List2 are symmetric, and
order of Listl is the reverse of the order of List2.
BoldLevel is a small level of boldness, such that it is a rational number between 0 to 0 2

{
/* Recover the missing curve segments of Listl */
p = null point;
for(i=0; i < |Listl|; i++) { /* |Listl| means the cardinality of the order list Listl */

q = point i of Listl ;
if((both p and q are on-curve points) {

if(||p,q|| ！= 0) { /* ||p，q|| is the distance between p and q */
pi = the previous point of p in Listl;
ql = the next point of q in Listl;
Solve the simultaneous equations

/ / p.x-pl.x\ lg.x\ lq\.x - q.x\

\p”l \p.y-pi.yj \q-yj \qi.y-q.yj

so that tl = tl' and t2 = t2'
if((tl>l)&&(t2<0)) {

I = Interception of Line pl,p and Line q，ql;
add I as a virtual off-curve point between p and q;

} else {
M = mid-point of p and q;
add M as a virtual off-curve point between p and q;

}；

}；

}；

p = q;

/* idea to recover missing curve segments for List2 is the same for Listl */

43

Lengthl = curve length of Listl; Length2 = curve length of List2;
/* apply symmetric bold method to the curve segment of List 1 */

for(i=0; i < |Listl|; i++) {
p = i th point ofListl;
if(p is on-curve) {

si = curve length from 0 th point to i th point ofListl；
ratio 1 = sl/Lengthl;
s2 = ratio l*Length2;
q is a point on the curve of List2，such that curve length from 0 th point of List2 to q =-s2;

find the displacement vector for p, v 终 BoldLevel ^ p . x - q.x\ .

update p by v, p = p + v;
} else if(p is off-curve) {

pO = (i-1) th on-curve point ofListl; pi = (i+l) th on-curve point ofListl;
z is a point on the quadratic bezier with control points (pO,p,pl) such that

z.x = 0.52{p0.x + 2p.x-¥ pl.x)\

si = curve length from 0 th point to z ofListl;
s2 = curve length from 0 th point to pi ofListl;
ratio 1 — sl/Lengthl; ratio2 - s2/Lengthl;
tl = ratiol*Length2; t2 = ratio2*Length2;
m is a point on the curve of List2,

such that curve length from 0 th point of List2 to m = tl;
n is a point on the curve of List2,

such that curve length from 0 th point of List2 to n = t2;

i BoldLevel lz.x-m.x\
find the displacement vector for z，VI ~ - ” — ~ {)；

2 \z.y-m.y/

i BoldLevel lpl.x-n.x\
find the displacement vector for pi, v2 = (^ —打)；

update z by vl so that z = z + v; update pi by v2 so that pl=pl+v2;

4z.x-pO.x-plx 4z,y-p0.y-pl.y
p ^ — ' p y= 2 '’
i++；

}；

}；
}；

/* symmetric bold method for curve segment of List2 is the same as Listl */

44

/* keep the geometrical properties of primitives in Listl*/
for(i=0; i < |Listl|; i++) {

pO = ((i-2)>=0)?(i-2) th point of Listl: Null point;
pi = ((i-l)>=0)?(i-l) th point of Listl: Null point;
p2= ith point of List 1;
if(both pi and p2 are on-curve point) {

if(Line pi and p2 is a horizontal line originally) {
if((pO is on-curve)&&(Line pO and pi is a horizontal line originally) {

y = p0.y;
piy=y;p2.y=y；

} else {
y = (pl.y + p2.y)/2;
pl.y = y;p2.y = y;

}；

} else if(Line pi and p2 is a vertical line originally) {
if((pO is on-curve)&&(Line pO and pi is a vertical line originally) {

x = pO.x;
pl.x = x; p2.x = x;

} else {
x = (pl.x + p2.x)/2;
pl.x = x; p2.x = x;

}；

}；

}；

}；

/* algorithm to keep the geometrical properties of primitives in List2 is the same as Listl */
}

5. Pseudo Code of Symmetric Bold with High Bold Level
The algorithm SymmetricSmallBold can only be applied when the level of
boldness is small {BoldLevel e[0,0.2]). For BoldLevel e [0,1.0]，

SymmetricSmallBold with BoldLevel二0.1 must be used iteratively to the
symmetric curves pair until a high level of boldness is attained. Let the number of
iterations be m Then, (1.0 + 0. l) x =(1.0 + BoldLevel),

一 log(l 0 + BoldLevel) . .
� � > log(U) � .

==> m 二 trunc(x) (3.4)
Owning to the truncation error, one more step of SymmetricSmallBold with
BoldLevel=b is necessary after the iteration steps.
Thus, (1.0 + 0.1广（1.0 +办）=1.0 +BoldLevel

1.0+BoldLevel ^
= > 办 二—— 丄.u

i . r

45

SymmetricBold(List 1 ,List2,BoldLevel)
input: Listl is an ordered list of point numbers for the first curve segment.

List2 is an ordered list of point numbers for the second curve segment,
curve segments Listl and List2 are symmetric, and
order of Listl is the reverse of the order of List2.
BoldLevel is a level of boldness, such that it is a rational number between 0 to 1.0

{
x = log(BoldLevel+1.0)/log(l. 1);
m = trunc(x);
b = (BoldLevel+1.0)/(l.l**m) - 1.0;
for(i=0; i < m; i++)

SymmetricSmallBold(Listl,List2,0.1);
SymmetricSmallBold(List 1 ,List2，b);

}

46

3.3 Rotate Bold Instruction

Purpose:
The Symmetric bold method is quite senfPart
expensive to inclement. However, in symmetric curves pair

some cases, some other methods, 一 口 ° q—Bezier 碰
, . , , • , , J/ a sharp point

which are less expensive, can be used S l " /
1 i i .1 O Off-curve point

to bold the outline. \ \ �. • On-curve point � - � /

The Rotate Bold method is a special Figure 3.7: Segmentation of an Upper
. , , , I n c l i n e Stroke

case of the Symmetric Bold method
where the symmetric curves pair approache to a pair of straight lines. As shown in
fig 3.7, the pair of symmetric curves is very similar to a pair of straight lines. The
algorithm of rotate bold method is much less complex than that of symmetric bold
method because it is not necessary to do missing part recovery, and it is a non-
iterative algorithm.

Input Parameters:
1. Symmetric Curves Pair

Similar to symmetric bold method
2. BoldLevel

Similar to symmetric bold method

Algorithm Description:
As shown in Fig 3.8，curvel and curve2 are LO
a pair of symmetric curves. The curve /I I ,身.L2

curvel has a list of points, Listl 二 / 十

[5,6,7,8,9]. The curve curve2 has a list of \
points, List2 二 [20,19,18,17,16,15]. ^ ^ 1 9

Moreover, curve curvel and curve2 9 18 �

approach to a straight line. Thus, rotate 玄 /^1 ?curve2 ^ ^ ^
bold method can be applied to bold the —L-

16
outline. , ^ V

1 5 ‘
LI is a line joining point 15 and point 20, . .. X
and L2 is a line joining point 9 and point 5. Figure 3.8: Rotate Bold Method
I is the interception of LI and L2. L0 is a bisector ofthe angle between LI and

L 2 . BC is a line perpendicular to line L0. Line BC meets line L0, LI, L2 at point

47

E, C and B respectively. The angle a is the angle BIE，and angle BEE is equals to
angle CIE.

The bold effect can singly be attained by rotating the points of curvel in a
positive direction about I，such that the length of BE is increased by
BoldLevel*BE, and the length EI is unchanged. Therefore, tan(a) is increased by
BoldLevel*tan(a). Furthermore, the points of curve2 are rotated about I in a
negative direction. If the angle of rotation for points in curvel is da, the angle of
rotation for points in curve2 is -da.

Thus, the angle of rotation = da = tm一1 ((BoldLevel +1.0)tan(a))-«
The points in curvel are rotated by da about I, sucli that

\y/ \sm(da) cos(da) / \yj \lyj \lyj •

lx\ llx\ . .
where () is a point on curvel, and () is tke point I.

W Vy/ 4

The points on curve2 are rotated by -da about I，sucli that

lx\=/co<da) M)+M (3.7)
\y/ \ -sin((ia) cos(da)/ \y/ \fy/ \fy/

where () is a point on curve2, and /) is tlie point I.
W yy/

To find tan(a), if
slopel 二 slope of LI, slope2 二 slope ofL2 then

,八 2tm(A)
Since, =

Urns, t a n ⑷ 二 一 恤 側 _

48

Pseudo Code of Rotate Bold
RotateBold(Listl,List2,BoldLevel) “
input: Listl is an ordered list of point numbers for the first curve segment.

List2 is an ordered list of point numbers for the second curve segment,
curve segments Listl and List2 are symmetric, and
order of Listl is the reverse of the order of List2.
BoldLevel is a level of boldness, such that it is a rational number between 0 and 1.0

{
nl = number of points in Listl ;
n2 = number of points in List2;
pi = 0 th point of Listl; p2 = (nl-1) th point of Listl;
ql 二 0 th point of List2; q2 = (n2-l) th point of List2;
slopel 二 (pl.y-p2.y)/(pl.x-p2.x+0.0000001); /* 0.0000001 copes with division by zero */
slope2 = (ql.y-q2.y)/(ql.x-q2.x+0.0000001);
c = (slopel-slope2)/(l+slopel*slope2+0.00000001);
b = (sqrt(l+c**2)-l)/c;
da = atan((BoldLevel+1.0)*b) - atan(b);
(Ix，Iy) = the interception point of Line pl，p2 and Line ql ,q2;
for(i=0; i < nl; i++) {

(x,y) is the i th point in Listl;
x = cos(da)*(x-Ix)-sin(da)*(y-Iy)+Ix;
y — sin(da)*(x-Ix)+cos(da)*(y-Iy)+Iy;

}；

for(i=0; i < n2; i++) {
(x,y) is the i th point in List2;
x = cos(da)*(x_Ix)+sin(da)*(y-Iy)+Ix;
y == -sin(da)*(x-Ix)+cos(da)*(y-Iy)+Iy;

}；

}

49

3.4 Asymmetric Bold Instruction

Purpose:
Both Symmetric Bold and Rotate Bold I ^ _ Quadratic Bezier

instructions can only deal with symmetric A \ \ 碰 sharPPoint

curves pair, but can not handle a stroke ConcTe \ ——Asymmetric Curves
• i / Convex p •

mainly con^josed of asymmetric curves J t \

pair. As shown in fig 3.9, a dot stroke is ConLx) Remaining Part
corqposed of a pair of asymmetric curves ��

pair，that is, curve AB and curve CD. J is a Figure 3.9: Asymmetrif rnrves
point on curve AB, at which the curve Pair of a Pot Stroke
concavity is changed. Curve AJ is concave,

and curve JB is convex. However, curve CD is convex without change of
concavity. Thus, curve AB and curve CD are not symmetric to each other. If
Symmetric Bold method is applied to curve AB and curve CD, the concavity
feature cannot be preserved. Thus, Asymmetric Bold method is designed to solve
this problem.

Input Parameters:
1. Asymmetric Curves Pair
a. an ordered list of point numbers for the first curve segment.
b. an ordered list of point numbers for the second curve segment.
c. The order of point number for curve 1 is the reverse of the order of point
number for curve2

2. Skeleton
Skeleton is a lines polygon to describe the shape represented by asymmetric
curves pair.
a. an order list of on-curve points for the skeleton

3. BoldLevel: level of boldness, a rational number from 0.0 to 1.0

50

Algorithm Description:

Curve AB and curve CD are asymmetric to I y ^ 1
each other. The polygon of lines A
(P0,P1?P2,P3) is the skeleton of curve pair AB x Z 3

and CD. A mapping (Fab) of points from V K \ I
curve AB to the skeleton which is suijective \
can only be defined. Z is a point on curve A B ， a Z ^ ^ p i Z' |
and Z丨(Fab(Z)) is a point on tke skeleton. I , 3

Then, the displacement vector for Z is: C |
Figure 3.10: Asymmetric Bold Method.

/ Z . x - Z' .x\ —— - “
Vz«BoldLevel[) (3.9)

\Z.y-Z\y/
and Z is updated by Vz, such that Z = Z + Vz

The mapping Fab is defined as
T7aTv P suijective_only � p
rdU. J^cuyyeyiB T rskeleton
where P^^ is the set of points of curve AB, and PskeJeton is the set of points of
the skeleton (polygon of lines P0,Pl，P2，Pm).

For any Z e P ^ ^ t h e n Z ' ePskeJeton such that (Fab(Z) - Z ')
The following rules must be satisfied:
1. If 彐 i e [0,l,2,...,m-l]，such that Z can be vertically projected to the line
segment Pi,Pi+l, Then, Z' = the image of Z on the line segment Pi,Pi+l is Z'
2. If rule 1 can not be satisfied and

3j e[0，l，2，...m] such that V/ e[0,l,2”".,m]，||巧,Z|| < ||Pi,Z||
||a,b|| is the Euclidean distance between point a and point b.
Illen，, 二巧

As shown in fig 3.10，rule 1 can be applied to the points on curve segments
AZ0,Z1Z2，Z3B，

1. points on curve AZO are vertically projected to the line segment P0P1.
2. points on curve Z1Z2 are vertically projected to the line segment P1P2.
3: points on curve Z3B are vertically projected to the line segment P2P3.

and rule 2 can be applied to the points in curve segments Z0Z1 and Z2Z3.
1. points in curve Z0Z1 is mapped to point PI.
2. points in curve Z2Z3 is mapped to point P2.

51

To determine if a point (h,k) can be [TlTTx 1
vertically projected to a line segment p ' ^
(xl,yl) and (x2,y2): •

� 产 7 x2 2
Parametric equation of line (xl,yl) and (x2,y2)
(x2?y2) is: /
x = xl + t(x2-xl) [1] Vf ！

y = y l+ t (y2- y l) [2] (m n)
where t e [0,1] y / ^
slope of line (xl,yl), (x2,y2) = m2 = (X 1
(y2-yl)/(x2-xl) [3] ^ ~ 1

r ^ w ^ ^ v f ^ � Figure 3.11: Vertical Projection of a
. \ � . . • m ! � Point (hjk) to a Line Segment (xl,yl), where (m,n) is the image of (h,k) ~ ， ；

Since, Line (h,k).(ni,ii) is perpendicular ~
to line (xl,yl), (x2,y2).
Thenml*m2 = -1 [5]

By equation 1, 2,
m = x l+f (x2-x l) [6]
n = yl + t'(y2-yl) [7]

By substituting equation 6,7 into equation 4, we get
ml = (yl+t'(y2-yl)-k)/(xl+t'(x2-xl)-h) ----—equation 8
substituting equation 8, 3 into equation 5, and simplify it, we get

(x2-xl)(h-xl)-h(y2-yl)(k-yl) 1Q)

(x2-xl)2+(y2-yl)2 .

if t ' < 0 o r t ' > 1 tken
the point (h,k) can not be vertically projected to the line (xl,yl),(x2,y2)

52

Pseudo Code of Asymmetric Bold Instruction:
AsymmetricBold(Listl,List2,Skeleton,BoldLevel)
input: Listl is an ordered list of point numbers for the first curve segment.

List2 is an ordered list of point numbers for the second curve segment.
curve segments Listl and List2 are asymmetric, and
order ofListl is the reverse of the order of List2.
Skeleton is an order list of points for the skeleton ofListl and List2.
BoldLevel is a level of boldness, such that it is a rational number between 0 to 1.0

{
/* modify the curve ofListl to attain bold effect */
i = 0;j = 0;
While(i < |Listl|) { /* |Listl| is the cardinality ofListl */

Z = i th point ofListl;
pi = j th point of Skeleton; p2 = (j+1) th point of Skeleton;
t' = ((p2.x-pl.x)*(Z.x-pl.x)+(p2.y-pl.y)*(Z.y-pl.y)) /

((p2.x-pl.x)**2+(p2.y-pl.y)**2);
if((f<0) || (f>l» {

j++;
pi = j th point of Skeleton, p2 = (j+1) th point of Skeleton;
do {

t' = ((p2.x-pl.x)*(Z.x-pl.x)+(p2.y-pl.y)*(Z.y-pl.y)) /
((p2.x-pl.x)**2+(p2.y-pl.y)**2);

/Z x - p l x\
Vz^displacement vector of Z= BoldLevel^ ' y _ g 1 y / ;

Z = Z + Vz;
i++;
Z = i th point ofListl;

} while((t'<0) || (f>l));
i++；
continue;

}；

Z' is a point, and it is the projected image of Z on the Skeleton, such that
Z'.x = pl.x + t'*(p2.x-pl.x);
Z,.y 二 pl.y + t丨 *(p2.y-pl.y);

IZ .x - Z\x\
Vz =displacement vector of Z=BoldLeveli 一名t Y,

Z 二 Z + Vz;
i++；

}；
/* modify the curve ofList2 to attain bold effect */

}

. 53

3.5 Comparison of Bold Instructions

The idea of the auto bold instructions is that Chinese character is mainly
con^josed of a number of curves pair which are highly correlated in their (x,y)
coordinate to each other, la addition, the curves pair can be classified as
symmetric curves pair or a asymmetric curves pair. SymmetricBold instruction
can be applied to symmetric curves pair to attain bold effect. However, the
complexity of SymmetricBold is not desired. The RotateBold instruction is only a
special case of SymmetricBold instruction, and it works on the curves pair which
is approaching to a pair of straight lines. The complexity of RotateBold
instruction is much less than the complexity of SymmetricBold instruction.
Because, RotateBold algorithm does not need missing part recovery, but
SymmetricBold algorithm needs it. Moreover, RotateBold algorithm is non-
iterative, but SymmetricBold algorithm is iterative.

AsymetricBold instruction can be applied to a asymmetric curves pair, but it is
necessary to input the skeleton (a polygon of lines) into the fimction call.
Because, it is very hard to compute the skeleton of a asymmetric curves pair, we
leave this work to the programmer. AsymmetricB old instruction is efficient，and it
can preserve the characteristics of the curves pair. If SymmetricBold instruction is
applied to a pair of asymmetric curves pair, the characteristics of the curves pair
will no longer be kept.

So, we can summarize the properties of the auto bold instructions in the following
table:
Instruction Curves Pair Iterative Complex Strokes can be applied
SymmetricBold symmetric yes yes leftlncline stroke

rightlncline stroke
RightHoke

RotateBold symmetric no no upperlncline stroke
AsymmetricBold asymmetric no no dot stroke

drop stroke

54

3.6 Serif Accommodation Instruction
Purpose:
A stroke can be divided as pure stroke part, and serif part. The existence of serif
is for decorative purpose. Moreover, it can enhance the readability of a document.
The metrics of a serif include serif width and serif height, as shown in fig 3.11a.
However, the existence of a serif does cause trouble to auto boldness, because a
serif will diminish when bold level is high. In addition, serif cannot be handled
simply by interpolation, suck as IUPx and IUPy TrueType instructions. Thus, we
devise a new method to handle the serif with tke purpose of keeping the serif
shape, width and height, even though the bold level is high.

serif • on-curve point o off-curve point

1 3 ， ； 1 2 / V l O

參 •
, f. serif width ^ 乙

° . o 6
5 5

i a) Unbold Outline b) Bold without Serif Handling
11 x 11 ！

13 12" X 1 13 12
• • / X i o • , X i o

O 6 o 6

5 5

c) Serif Width Justified d) Serif Height Justified.
Figure 3.11: Serif Accommodation

55

Input Parameters:

1. Serif Outline
A segmented serif outline after pure stroke outline is bolded. It is an order list of
point numbers for the serif outline, and it is in increasing order of point number.
In fig 3.11b, serif = [8,9,10,11,12]

2. Direction Vector Vertexes
It defines the migrating direction of serif points.
a. First Vertex (Va) s.t. Va &serif

point 10 in fig 3.11

b. Second Vertex (Vfi) s.t. Vp e serif

Algorithm Description:

As shown in fig 3.11b, pure stroke outline is already bolded, but the serif outline
is still not handled. Thus, there is a disparity at the joint between the serif outline
and pure stroke outline. Point 12 and point 8 are the joint points. Point 12 is split
into two points 12" and 12丨，because 12" is the modified point 12 and 12' is the
original copy of point 12. Similarly, 8' is the modified point 8, and 8" is the
original copy of point 8.

1. Direction Vector
It defines the migrating direction of serif control points, such that

0 , 1)

2. Justify Serif Width
To keep the serif width, point 8",9，10 (Va) must be moved in the direction of V so

that point 8" and point 8' can be re-emerged as a single point.

LI is a line joining point7 and point 8', s.t.

尸8
1
.少一尸7.少二少一尸7.少 ⑴

P8'.x-P7.x x-Pl.x

L2 is a line passing through p8" with a slope VyA^x, s.t.

• 56

V— 尸 8 " . v vy = 2 [2]
x-PSn.x Vx

I is the interception point of LI and L2, s.t
(I.x,I.y) is the solution of the simultaneous equations 1 and 2.

Thus, the displacement vector for points 8",9，10 = Vd =()
\I.y-PSn.y/

Then, points 8",9,10 is updated by Vd. e.g. P8" 二 P8" + Vd
Moreover, P8' = (I.x,I.y).

3. Justify Serif Height
To keep the serif height, point 12' (VX 11 must be moved in the direction of V so
that point 12' and 12" can be reemerged as a single point.

LI is a line joining point 13 and point 12"，s.t.

Pl3.y-PlT\y = y-PlT\y
尸 1 3 . x — 尸 1 2 " . j c — x-P12n.x

L2 is a line passing through point 12丨 with a slope Vy/Vx, s.t

y-P\2\y _Vy

x-Pl2\x Vx

I is the interception point of LI and L2, s.t,
(I.x,I.y) is the solution of the simultaneous equations 1 and 2.

jLy-PU\y\
Thus, the displacement vector for points 12\11 二

 v d
 二 、 p v r x J

Then, the points 12', 11 are updated by Vd. e.g. P12* 二 P12' + Vd
Moreover, P12" 二 I

“- 57

° off-curve point # on-curve point second vertex of direction vector

^ Direction Vector O first vertex of direction vector

Pure Stroke Outline n Serti Outline

》.梦、

Figure 3.12: Direction Vectors for other Serifs

4. Determination of Direction Vector
Once the direction vector of a serif is determined, it is very easy to process the

se rif Thus, the determination of a direction vector for a serif is a crucial matter.
As shown in fig 3.12, it is possible to generalize the heuristic rules to govern the
determination of a direction vector. However, there are still some cases that are
hard to generalize. So, the heuristic rules are listed just for reference.

58

Suppose, a serif with a list of point number, serif = [s(0),s(l)，s(2),…..，s(m)] in
increasing order of point number.
1] define an unit vector "

、，•-，
 1 /s(rnyy~s(0yy\

yl(s(m).y-s(0).yf +(s(m).x-s(0).x)2 \s(m).x-s(0).x/
2] any k e[0，l,2,..,m —1], an unit vector can be defined

”••(”-，
 1 ls(k-,l).y-s(kyy\

•s(k + l).y-s(k).yf + (s(k + l).x-s(k).x)2 + s(k).x/
(3.13)

3] any k e[0,1,2,...，/w — 1], a discriminant fiuiction A(k) can be defined
A(A:) = abs{V.V'(k) -1) where , is a dot product, and abs is the absolute value
(3.14)
4] i f3pe[0 , l ,2 ? . . ,m- l] s.t. V77e[0,l,2,..?m-l] A(p)幺 A(")
then The first vertex of Direction Vector = Va=p

The second vertex of Direction Vector ~ ^ = p+1

The serif of a character will diminish or degrade in shape, when the bold level is
high. Thus, we derive an instruction Serif^ccommodation to handle the problem
of serif during auto boldness. Character outline can be divided into pure stroke
parts and serif parts. The instruction Serif^ccommodation is applied to serif parts
after the pure stroke parts are bolded by using the instruction SymmetricBold,
RotateBold or AsymmetricBold. The instruction SerifAccommodation can
preserve the serif height, serif width, and the shape of serif nicely. Moreover, the
algorithm is general enough to be applied to all types ofseri^ but it needs an input
of the Direction Vector (V), characterized by the points Va and Vp. The points Va

and Vp are the control points of a serif. We have listed some heuristic rules to find

y m d V by giving a serif Nevertheless, in some cases these heuristic rules will

fail. Thus, we leave the work of finding Va and Vp to programmer.

59

5. Pseudo Code of Serif Accommodation
s(3)+l s (y ' z 资 2) o off-curve point j

C/on^ \\ ° on-curve point s (3) • _ J b s(l) F

• • s(0)' . ^ • .
J J s(0)„ Direction Vector

/ / First Vertex of Direction Vector=s(l)
/ y / Second Vertex of Direction Vector=s(2)

7 ^ s(0)': original copy of point s(0)
* s(0)-l

s(0)":modified image of point s(0)
due to autobold of pure stroke
outline.

Figure 3.13: Labels of a Serif after Auto Bold of
Pure Stroke Outline

SerifAccommodation(Serif, Va，Vo)
input:
Serif - an order list of points number for the serif, and it is in increasing order of point number.

SeriHs(0)，s(l)，s(2)，...，s(m)]
Va - the first vertex of direction vector

Va _ the second vertex of direction vector, see fig 3.13.
{

IVa.x-Vfi.x\ .
find the direction vector, v =()

\ v a . y - � y I
/* Justifying Serif Width */
LI : a line passing through S(0), with slope =V.y/V,x

s t 少 - 稱 少 力 [1]

“x-^oy.x v.x

L2 : a line passing through S(0)丨丨 and i5—)—

v-s(or.y _ps(o)-vy-s(ory

x-s(oy\x ps(oyi.x-s(oy\x
Solve the simultaneous equation 1 and 2 with a solution x = I.x and y = I.y
s.t. I = (I.x, I.y)

/Ly-S(0)\y\
Find the displacement vector Vd = (j x _ 丨

for(i=l； i <= Va;i++) {
S(i).x 二 S(i).x + Vd.x;
S(i).y 二 S(i).y+Vd‘y;

}；
S(0) = I;

60

/* Justifying Serif Height */

Ll: a line passing through S(m)' with a slope = V.y/V.x

s . t ? — 彻) ' . 少 力 [3]

x-S(m)\x V.x
L2: a line passing through S(m)H and Ps(m)+1

y-S(my\y _Ps(m)+1.y-S(mr.y
S.t. ‘ 一 141

x-S(my\x Ps(m)+Vx-S(my\x
Solve the simultaneous equation 3 and 4 with a solution x = I.x and y = I.y
s.t. I = (I.x,I.y)

/Ly-S(my.y\
Find the displacement vector Vd 爲()

\l.x-S(m)l.x/

for(i=�;i<m;i++) {
S(i).x 二 S(i).x + Vd.x;
S(i).y=S(i).y+Vd.y;

}；

S(m) = I;
J _

61

Chapter Four: Character Shape Parsing and Auto
Bold Code Generation

4.1 Compilation Process and Auto Boldness
In the con^)ilation process, a program source code, which is a sequence of ASCII
codes, will be translated to a tokens sequence in Lexical Analysis Phase. Then the
tokens sequence will be parsed, and a parse tree will be generated in the Parsing
Phase. Finally the parse tree will be evaluated to generate the assembly codes in
the Code Generation Phase. The idea of auto boldness is very similar to a
con^)ilation process [Shape85], The glyph outline is compiled and finally an auto
bold program, which is built on top of the auto bold instructions in the previous
chapter, is generated. The similarities between the program compilation and
glyph outline corr^ilation is summarized in the following table:

Program Compilation Glyph Outline Compilation
Source program which is a sequence of Glyph outline, whicli is composed of
ASCII codes contours, and each contour is corcqposed

of a number of joined primitives, which
are either straight line or quadratic bezier

Lexical Analysis to identify tokens Shape Lexical Analysis to identify shape
tokens

Token (if； for, case...) composed of one Shape Token (continuous segment, sharp
or more consecutive ASCII characters in point,..…)composed of one or more
the source program joined primitives in the glyph outline
Parser (to parse the whole program) Shape Parser(to parse a stroke outline)
Parse Rules(input of parser) Shape Parse Rules
Parse Tree(output of parser) Mapping from stroke model key points

to input stroke control points
Evaluate parse tree to generate assembly Generate auto bold program for input
code program stroke by using the stroke model key

points mapping

Shape compilation is very similar to program compilation, except that the
con^iled object of shape con^ilation is a two dimensional object, which is a
glyph outline control points, but the compiled object of program compilation is a
one dimensional object, which is a sequence of ASCII codes. Moreover, it needs a
tremendous amount of parse rules to describe the whole outline of a Chinese
character because a Chinese character is very complicated in shape, resulted from
the combinations of strokes. Thus, it is awkward to design parsing rules for eacli
Chinese character. However, if the strokes of a Chinese character are segmented
first, the segmented strokes can be con^iled separately. It is due to the fact that
the shapes of stroke is much less complex than the character shape wMch is a

combinations of strokes in two dimensional space. Therefore, stroke
segmentation plays an important role in the auto boldness of Chinese character.

Furthermore, the general format of grammar rules in program compilation is A :-
B, where A is the head, and B is the body of the grammar rule. This format is
insufficient for describing a two dimensional object. As a result, we design a new
parsing rule format to describe a stroke of Chinese character. In the traditional
parsing rule, there is an implicit AND conjunction to join two items of the body.
Nevertheless, the stroke parsing rule needs two types of conjunction. They are *
and + conjunctions. The conjunction * deals with the complete curve segments of
a stroke which is not intercepted by other stroke, but the conjunction + deals with
the incomplete curve segments of a stroke which is intercepted by another stroke.
In addition, each shape grammar rule is attached by a set of condition statements
and assignment statements. The input stroke is matched to grammar rules of all
classes of stroke one by one, until one of stroke class grammar rules are all
matched. Then, the input stroke is classified. as that stroke class. If no match
occurs, the input stroke is unclassified, and left unprocessed.

So, in the shape parsing phase, the stroke class is ascertained, and a mapping
from the stroke model key points to the input stroke control points is established.
Each stroke model has his own auto bold program. Thus, the auto bold program
for the input stroke can be generated by replacing the key points in the model auto
bold program by the control points of the input stroke.

. 63

4.2 Shave Lexical Analyzer

The character outline is passed to the Shape Lexical Analyzer for identifying the
shape tokens, and finding the attributes value of shape tokens. There are two
levels of shape tokens. Level one shape token is constituted by a single primitive
which is either a straight line or a quadratic Bezier, and level two shape token is
constituted by many level one shape tokens which are joined together in the glyph
outline.

Each shape token has an identifier, which is a string of small bold letters. A dot
notation is used to denote the attribute of a token. identl.a7 means the attribute
al of a token identified by identl.

Thus, the input of Shape Lexical Analyzer is the control points coordinate of a
glyph outline, and the output of Shape Lexical Analyzer is the shape tokens with
attributes. Then, the shape tokens are input to the Shape Parser to segment and
classify the strokes.

There are several reasons for separating the analysis phase of Shape Conqjiling
into Shape Lexical Analysis and Shape Parser.

1. Simpler design is perhaps the most important consideration. The separation of
Shape Lexical Analysis from Shape Parser often allows us to simplify one or the
other of these phases. For exaruqple, font designer characteristics and minor error
due to the rounding of control point coordinates are filtered out by the Shape
Lexical Analyzer. Then, the algorithm of Shape Parser can be greatly simplified.

2. The Shape Con^iler efficiency is in^proved: The shape tokens and token
attributes are all found once by the Shape Lexical Analyzer. Thus, it is not
necessary to find the tokens and token attributes repeatedly in the Shape Parser.
Moreover, some efficient algorithm can be used to find the tokens and token
attributes in Shape Lexical Analysis Phase.

3 J^Q shape Conq)iler Portability is enhanced: The shape token identification
algorithm can be easily generalized so that the Shape Lexical Analyzer can be
reused in developing the auto bold driver for other Chinese fonts. It meets the
principle of reusabiHty and portability in Software Engineering.

64

The Shape Tokens and Attributes can be summarized by the following table:

Level Token Description Attributes
Ident

one line a straight line class: define the class of a line
primitive with two primitive, with values slant, horizontal,
on-curve control or vertical
points

r : tendency of primitive

direction', define the direction of the
vector from the first control point to
the second control point, with value 1
if direction is in [0°，45�），value 2 if

direction is in [45�,90°)，.……."‘..，

value 8 if direction is in [315° ,360°)

length: the length of line in pixel mait.
one bezier2 a quadratic bezier concavity: define the concavity of a

primitive with two quadratic bezier, with values concave,
on-curve control convex or flat
points and one off-
curve control point direction: define the direction of the

vector from the first control point to
the third control point

T{. slope of tangent at the first control
point
r2: slope of tangent at the third control
point
T: tendency of the primitive

length: the length of quadratic bezier in
pixel unit

one sharp a quadratic bezier class: the class of sharp point
with a sharp point

two concave a curve segment points []: a list of point number for the
which is a set of curve segment
joined, continuous, n: number of points
and concave length, the length of curve segment
primitives r: tendency of the curve segment

65

two convex a curve segment points []: a list of point number for the
with is a set of curve segment
joined, continuous, n: number of points
and convex length: the length of curve segment
primitives T: tendency of the curve segment

4.3 Shave Tokens Attributes Evaluation

4.3.1 line Token
line token is a straight line primitive with two on-curve control points (xO,yO) and
(xl,yl), and it has the attributes class, length, r , and direction.

Attribute length:
length is the length of the primitive, and it can be calculated by the formula:

length 念 ^J(xl-xO)2+(yl-yO)2 (4.1)

Attribute T：
T is the slope of the primitive, and it can be calculated by the formula:

T = _ _ _ y ^ _ _ - (4.2)

x1-JC0 + 0. 000001

it is noted that 0.000001 copes with the divide by zero error.
Attribute class:
The attribute class defines tke topological property of the primitive
\£ class = horizontal the primitive is a horizontal line segment.
汪 class = vertical the primitive is a vertical line segment.
i£ class = slant the primitive is a slant line segment.

So, if-0.364 < T< 0.364 (=tan(20°)), it is a horizontal line segment,
if .2.748 < T < 2.748 (=tan(70°))，it is a vertical line segment
otherwise, it is a slant line segment.

. 66

Attribute direction:
The attribute direction defines tke direction of the primitive. The Euclidean space
is divided into 8 quadrants to classify the direction, as shown in fig 4.1.

The algorithm to find the attribute direction is:
dx = x l - xO; dy = yl - yO;
if(abs(dx)<abs(dy)) {

if((dx�0)&&(dy>0))
direction = 7;

else if((dx>0)&&(dy<0))
direction = 2; 丨 丨 i

else if((dx<0)&&(dy>0)) 2

direction = 6; 3 !
e l s e

 / 1 |
direction = 3; 4 \ x

} else { - 4 - , ^
埤 (d x > 0) & & (d y > 0)) \ 8 ！

direction = 8; 5 i
else if((dx>0)&&(dy<0)) |

direction = 1; 6 7 \ |
else i f ((d x < 0) & & (d y > 0)) y J / 丨

direction = 5; I ^ ‘
e l s e Fi2ure 4.1; Direction Classification

direction 二 4;
}

4.3.2 bezier2 Token
bezier2 token is a quadratic Bezier primitive with control points (xO,yO), (xl，yl)
and (x2,y2). (xO,yO) and (x2,y2) are on-curve control points, and (xl,yl) is an
off-curve control point.

Attribute concavity'.
The attribute concavity defines the concavity of a quadratic Bezier primitive. If
concavity 二 convex^ the primitive is convex. If concavity 二 concave, the primitive
is concave.

The concavity of a quadratic Bezier can be defined mathematically as:
1. define a set U 二 {(x^y): x 二 round(xO + t(x2-x0))? y 二 ro皿d(yO + t(y2-y0)),
where t e(0, l) and x,y eZ}

s . t . � i s an interior point (� i s a point in black area of raster image),

then the primitive is convex
Otherwise, the primitive is concave.

To use the above rule to find the concavity of a primitive is not efficient, because
it needs to determine whether a point is interior or not, and it is computationally

67

expensive. Thus, we use a heuristic rule to determine the concavity. However, the
heuristic rule holds only if the following assun^tions are made:

L The origin of the coordinate system is at the upper left corner.
2. The outermost contour is always in an anti-clockwise direction.

The direction of the enclosed contour is the reverse of the direction of the
enclosing contour.

The heuristic rule to determine the concavity is:
1. Find the area of the triangle (xO,yO), (xl,yl) and (x2,y2) by using the matrix
formula:

I,x0，y0

Area = - l , X l , y l = (xly2+x2y0-xly0-x2yl)/2 (4.2)
2 l,x2，少2

2. if Area < 0, then concavity = convex; else concavity = concave.

，洚 ^ ^ V • . , f — convex

/ ^ i l S t - ^ S , o o f f - c u , e point

cr r ^ S ^ • on-curve point

4.2: CoFir îvitv of a Chinese Character

68

In fig 4.2, the concavity of primitives is found by using the above heuristic rules.
It is noted that a quadratic bezier can be flat, if the three control points are
approximately collinear.

Attribute length:
The attribute length is the length of the quadratic Bezier. There is no simple
analytical solution to find the curve length of a quadratic Bezier. Therefore, the
quadratic bezier is subdivided as a polygon of lines by using the de Casteljau
Algorithm. Then, the approximate curve length, can be found.

Attribute Ty and r2 :

Tx is the slope of the tangent at the first control point (xO，yO), and T2 is the slope
of the tangent at the third control point (x2,y2). Because the quadratic Bezier has
the property that the line joining (xO,yO) and (xl,yl) is the tangent at (xO,yO), and
the line joining (xl,yl) and (x2,y2) is the tangent at (x2,y2),

r 二 少
1
 一少0

 T =___y2~y l___ (4 3)
1 x l -xO + 0.00001' 2 x 2 - x l + 0.00001

(0.00001 deals with divide by zero error)

Attribute T：
The attribute T is the tendency of the quadratic bezier, that is the average tangent
slope of the quadratic bezier.

The quadratic bezier can be expressed parametrically as:
x(t) = (l - t f x 0 + 2t(l-t)xl + t2x2 tl]

3；(0二（1 一 + 少 1 + [2]

By equation 1, — = 2(x0 - 2x1 + x2)t 一 2x0 + 2x1 P]
dt

By equation 2, ^ = 2(y0 - 2yl + y2)t - 2y0 + 2yl M

dy

玺二 i 二 (Y0-2yl + y2) t -y0 + yl [5]

石 二 至 二 (x 0 - 2 x l + x2) t -x0 + xl
Take a = y0-2yl+y2? b 二 yl-y0, c 二 x0-2xl+x2，d 二 xl-xO

69

T f l d y + f ia t + b T = JnT~d t = In dt

Let u = ct+d du = cdt
= � t = (u-d)/c ==> dt = du/c
when t = 0 = = � u 二 d

t = 1 = > c + d

a ad , ,
c+d —u hb . c+d t j c+d j

j j d u + ^ - 4) j ^ -
J U C J U d c d c d

a ad.. c-\-d
—c +)log,——
c c c a

=-+~(bc-ad)logA^) (44)
c c a

4.3.3 sharp Token

A sharp token is a point on the contour at which the radius of curvature is less
than a threshold value, and the concavity is convex. The finding of sharp token is
essential to the stage of stroke classification and segmentation, because a Chinese
character has the very elegant property that every stroke contains a sharp point
Thus, if the sharp point can be located, a stroke can also be located, and the
located stroke can be fiirther classified, and segmented easily.

Attribute Class: —~-—
The attribute class is the class of a sharp point, and D i r e c t i o n

 s 鄉 p o m t

this attribute is very in^ortant for the classification Vec tof / ^ f ^ x t
of the stroke to which the sharp point belongs. /) r X of Curvature
There are seven classes of stroke : Left Incline / 1 丄 . �

Stroke, Right Incline Stroke, Left Hoke, Right / 十 \
Hoke, Upper Incline Stroke, Dot Stroke, and Drop / Center of Curva—e
Stroke. The seven classes of stroke are further F i g u r e 4 3 ; Direction Vector of a
grouped by the direction vector of the sharp point. sharp Point

For any given sharp point, a direction vector can be defined as a unit vector in the
direction of the radius of curvature at the sharp point Again, the direction of a
vector can be divided into 8 quadrants, as shown in fig4,l. Then, the stroke can
be grouped by the sharp point direction vector.,

70

sharp . c te Direction Vector Stroke Classes.
1 4,5 Left Incline Stroke,

Left Hoke,
Drop Stroke

2 1 Right Incline Stroke,
Upper Incline Stroke

3 2 Dot Stroke,
Right Hoke

For any given sharp point, a conditional probability can be defined:

P(Stroke=StrokeClass| Class= Sharp Class) 二 The probability that if the sharp point
belongs to a stroke with class identifier StrokeClass, after that the sharp point1

attribute class is verified to be equal to Sharp Class.

In order to sinqjlify the argument, the occurrence probabilities ofthe strokes (the
probability of a specific class of stroke appearing in a Chinese character outline)
are assumed to be equal, and the probability P(a sharp point does not belong to
any stroke) 二 e. Then, P(a sharp point belongs to Left Incline Stroke)=

P(a sharp point belongs to Right Incline Stroke) = = (l-e)/7
Thus, the conditional probability

P(the sharp point belongs to LeftlnclineStroke | the sharp point is class 1)=
(l-e)*l/3

P(the sharp point belongs to RightlnclineStrokel the sharp point is class 2)=
(l-e)*l/2

P(the sharp point belongs to DotStroke | the sharp point is class 3)=
(l-e)*l/2

p(the sharp point belongs to LeftInclineStroke| the sharp point is class 2) 二 0

Therefore, the possibility of strokes can be narrowed down by evaluating the class
attribute first. For example, if the attribute class of a sharp point is evaluated to be
2 it is only necessary to verify whether the sharp point belongs to
RightlnclineStroke or UpperlnclineStroke.

71

So we can device an algorithm to find the class of stroke:
Algorithm A
input: a sharp point
outline : the class of stroke to which the sharp point belongs
1. evaluate the class attribute ofthe sharp point
2. switch(class) {

case 1:
if(the sharp point matches the heuristic rules ofLeftlncline Stroke)

the sharp point belongs to a Leftlncline Stroke;
else if(the sharp point matches the heuristic rules ofLeftHoke)

the sharp point belongs to a LeftHoke Stroke;
else if(the sharp point matches the heuristic rules of Drop Stroke)

the sharp point belongs to a Drop Stroke;
else

the sharp point is unclassified;
case 2:

if(the sharp point matches the heuristic rules ofRightlncline Stroke)
the sharp point belongs to a Rightlncline Stroke;

else ifl̂ the sharp point matches the heuristic rules ofUpperLicline
Stroke)

the sharp point belongs to a Upperlncline Stroke;
else

the sharp point is unclassified;
case 3:

ij^the sharp point matches the heuristic rules of Dot Stroke)
the sharp point belongs to a Dot Stroke;

ij^the sharp point matches the heuristic rules of Right Hoke)
the sharp point belongs to a Right Hoke;

else
the sharp point is unclassified;

J j

72

Then, let the computational time for the matching of heuristic rules of any stroke
= h and the corqmtational time for the evaluation of the attribute class = c
The expected corr^utational time for algorithm A
=(3/7)(3/2)*h + (2/7)*(2/2)*h + (2/7)*(2/2)*h + c
=(9/14+4/14+4/14)*h + c = (17/14)*h + c 二 1.21*k + c

The algorithm can be devised in another way:

Algorithm B
input: a sharp point
output: the class of stroke to which the sharp belongs
if(the sharp point matches the heuristic rules ofLeftlncline Stroke)

the sharp point belongs to LefHncline Stroke;
ifl^the sharp point matches the heuristic rules ofRightlncline Stroke)

the sharp point belongs to Rightlncline Stroke;

else
the sharp point is 皿classified;

The expected computational time for algorithm B
二（7/2)*h = 3 .5h

Thus, the algorithm A is much faster than algorithm B, if c is small enough. In
addition, Algorithm A can be ftirther accelerated by matching the heuristic rules of
the most frequent stroke firstly, because it can avoid many redundant matchings.

73

For the purpose of reducing the
con^utational time of the b Q (xl，yl) -— sharp point
attribute class, some heuristics
are used to identify the sharp b N ^
token, and to calculate the ；/' u p

attribute class of it, instead of | \ (x2,y2)
solving the complicated second _ \ • c • on-curve point
order differential equation of A • [p
curvature. Because our problem (x 0 内） \ ^ 一 Direction Vector
domain is Windows 3.0 ― 2 ~ ~ ~ ~ : r r
CFSUNG Chinese font, and this 4 . 4 : Q u a d r a t l C 俶 簾 m t h a 一
font has a distinct property that a
sharp point of a stroke always exists in a convex quadratic primitive, of which the
three control point can form an acute triangle.

As shown in fig 4.4, for any quadratic bezier, let point A 二 first control point
(x0,y0), point B = second control point (xl,yl), and point C = third control point
(x2?y2).

Moreover, two vectors can be defined, the firk vector vl from point A to point
B, and the second vector v2 from point B to point C.
Then the angle between the vectors vl and v2 can be found by tke formula:

Z A B C ^ c o s - H - ^ ^ - ^ x 2 - x l) , (y l - y O X y 2 - y l)) (4.5)

l|"(xl - xO)2 + (yl - yO)2 J|^(x2 - xl)2 + (y2 - yl)2

Thus, a quadratic bezier is considered as a primitive containing a sharp point, if
Q

1. The absolute value of ZABC < 30
2. The primitive is convex.
3. Curve length of the quadratic bezier is small.

The direction vector of the quadratic bezier can also be calculated by some
heuristic rules:
1 M is the mid point of point A and point C
2 J^Q direction vector is defined to be an unit vector from point M to point B,
Thus the formula to calculate the direction vector is:

74

Direction Vector = ^ +

•y/(xl-(x0 + x 2) / 2) 2 + (y l - (y 0 + y 2) / 2) 2 \ y l - (y 0 + y 2) / 2 /
(4.6)

Then, the attribute class can be calculated by classifying the direction vector by
the eight quadrants.

4.3.4 concave Token
concave token represents a continuous curve segment which is a list of joined
concave primitives. In this context, continuous curve refers to C continuous
mathematically. In other words, the continuous curve segment can be regarded as
a list of control points, indexed by point number, so that each on-curve point in it
is a continuous point.

An on-curve control point P is a continuous point if:
1. P 二 a point indexed as n-1 th point, P = a point indexed as n tk point,

P" 二 a point indexed as n+1 th point.
2. F , P,F' are roughly collinear that is:

” (p ,.x-p.x)*(p , ,.x-p.x)+(p ,.y-p.yy(p n.y-p.y) 、
/ /\ — cos (~ "/

~ .x-p.xf+ (p\y~p.y)2] * [(pl\x-p.x)2 Hp n-y-p-y) 2]

and ZA is roughly equal to 180°

Attribute length:
The attribute length is the length of the curve segment, which equals to the sum of
the attribute length of the primitives constituting the curve segment.

Attribute r：
This is the tendency of the curve segment, which equals to weighted sum of the
tendency of the primitives constituting the curve segment, and the weight is the
attribute length of the primitives.

4.3.5 convex Token
It is very similar to the token concave, except that the primitives constituting it is
convex.

- 75

4.4 Scope of Shave Parsing

The processing of Chinese characters outline is much more complicated than the
processing of English characters. Firstly, there is not much variation in shape
among different fonts for an English character, but the outline of a Chinese
character can vary much among different fonts. Because of that if the strokes of a
Chinese character are not intercepted for a specific font, it is possible to be
intercepted for other fonts. In contrast, this is not the case of an English character
outline. Therefore, it is possible to define the grammar rules for each English
character [Model 91]，but it is impossible for Chinese characters. Moreover, there
is only twenty four English characters, but there are several thousands of Chinese
characters. Consequently, it is extremely labor intensive to find the grammar rules
for each Chinese character. It is undoubtedly an infeasible approach.

After observing the Chinese character outline, we can conclude that a Chinese
character outline can be segmented as strokes, and only seven classes is sufficient
for classifying the strokes for the purpose of auto boldness (Appendix One). The
stroke outline of a class has little variations among different characters.
Consequently, defining the grammer rules for strokes is a feasible approach. The
input character is firstly segmented as strokes, and then tke strokes are pased
individually in the shape pasing phase.

Strokes segmentation plays an inqjortant role in Chinese fonts auto boldness. But,
segmentation is always expensive to be implemented in the conventional approach
of image analysis, and it defeats the purpose of real time auto boldness. Thus, fast
heuristic approach is adopted to segment strokes of Chinese character. The
strokes of Chinese characters have the exceedingly impatent property that each
stroke contains a sharp point Thus, if the sharp points of a Chinese character are
all found, the locations of the unknown strokes can be ascertained, and the
unknown strokes can be easily segmented for pasing.

‘. .. 76

4.5 Shave Parsins Mechanism
As shown in fig 4.5, in the phase of Shape Lexical Analysis, the sharp point
tokens are identified. | stroke Outline
Thus, the unknown
strokes in a glyph outline [Lexical Analysis j
can be located by the .

J Shape 7)kens •—~

sharp point tokens ^ ^ S t r o k e s Grammer Rules^)

because the existence of a I P a r s e r)
Sliaip poitlt itIU)li6S that a Mapping from Model Key Poin s to Input Stroke Control P o i n t s ^ - ^ * * ^

. ^ \ /ModelsAttachedAuto-BoW\
stroke is possibly present Auto-Bold Code Generation (A c。des)
at that position. The ^ ^ ^ ^
purpose of the shape Auto Bold Codes of Input Stroke

parser is to use the stroke Figure 4.5; Shape Parsing Data Flow
grammar rules to parse
the outline near the sharp point so that the class of stroke can be identified, and
the key points ofthe stroke can also be found. Key points identification is very
crucial to the phase of code generation.

Each class of stroke is associated with a set of shape grammar rules. An input
stroke is identified as class c stroke, if and only if it can be parsed by using the set
of shape grammar rules associated with class c. Therefore, the input stroke is
parsed by using the shape grammar rules of all classes, until a class of stroke parse
tree can be built successfully, then the stroke is classified to that class of stroke;
otherwise the stroke is unclassified. Furthermore, the search range of stroke
classes can be narrowed down by evaluating the attribute class of sharp token.

During the shape parsing, the key points in tke stroke outline are identified. The
outline of a stroke class can be varied slightly, but it can be modeled by a stroke
model. The stroke model can be viewed as an abstract stroke outline with key
points on it. Key points are points on the outline to divide the abstract stroke
outline into several curve segments, and they can be an inflexion points, at which
a concavity changes, or local maximum points in x, y coordinate, or global
maximum points in x,y coordinate etc.

The auto bold program is attached to the stroke model In the shape parsing
phase, a mapping from the stroke model key points to the input stroke control
points is built. Thus, the auto-bold codes for the input stroke can be generated by
replacing the key points in the auto-bold program ofthe stroke model with the

control points ofthe input stroke.

77

4.6 Model Grammar Rules
— —

Point Description
\ aO End Point

a 0 \ ° a 5 al Global Max in Y
x c o n c a v e /Convex a 2 Global Max in X

^ (\ 4 a3 Inflexion Point

\ \ j n c a v e \ “
X \ ^ ^ k c o n v e x \ a 5 Sharp Point Primitive!

convex \ ^ Off-Curve Point
T = - 2 . 4 1 4 J I a6 Sharp Point Primitive

\ ! / / On-Curve Point
\ / T - 0 . 4 1 4 a l convex / a 7 Local Max in Y

. / a8 End Point

/ V \ ^ T = 0 - 4 1 4 .
v Y \ t=1 T : The average tangent slope along a curve segment.

T=2.414

Figure 4.6: Model of Right Hoke

78

Model Grammar Rules for Right Hoke
R001: <RightHoke> :- <PrevCurve> *sharp* <NextCurve>

Assignment:
1. a4 = first control point of the quadratic bezier of sharp token.
2. a5 = second control point of the quadratic bezier of sharp token.
3. a6 = third control point of the quadratic bezier of sharp token.
Condition:
1. sharp.c/oss = 3
2. rl = (<PrevCurve>.length - <NextCurve>.length)/<PrevCurve>.length

s.t. 0 < rl < 0.3

R002: <PreCurve> <ConvexJointCurve 1 >*convexl *
convex2 *concave3

Assignment:
1. aO = first control point of <ConvexJointCurvel> joined curve segment.
2. al = first control point of convexl curve segment.
3. a2 = first control point of convex2 curve segment.
4. a3 = first control point of concave3 curve segment.
Condition:
1. Discontinuous at aO AND Continuous at al AND Continuous at a2

AND Continuous at a3
2. al is global maximum in y-coordinate.
3. a2 is global maximum in x-coordinate.
4. a3 is a turning point.
5. 1 < <ConvexJointCurvel>. T < 2.414
6. -1 < convexl. T < -0.414
7. 0 < convex2. T < 0.414
8. vcurve3. T > 2.414
9. (<ConvexJointCurvel>.length > convexl.length AND convex2.length AND

concave3 .length.

R003: <NextCurve>:- concavel*<ConcaveJointCurvel>
Assignment:
1. a7 = last control point of concavel curve segment.
2. a8 = last control point of�ConcaveJointCurve 1> joined curve segment.
Condition:
1. Continuous at a6 AND Continuous at a7 AND Discontinuous at a8
2. a7 is local maximum in y-coordinate.
3. concavel. T < -2.414
4. 1 < <ConcaveJointCurve 1 >. T < 2.414
5. <ConcaveJointCurvel>.length > concavel.length

R004: <ConvexJointCurvel>:- convex2+<ConvexJoirltCurve3>
Assignment:
1. <ConvexJointCurvel>.length 二 convex2.length + <ConvexJointCurve3>.length
2. <ConvexJointCurvel>. T 二 (convex2.1ength*convex2. T +
<ConvexJointCurve3>.length*<ConvexJointCurve3>. r)/(convex2.length +
<ConvexJointCurve3>.length)

R005: <ConvexJointCurve 1 > null
Assignment:
1. <ConvexJointCurvel>.length = 0
2. <ConvexJointCurvel>. r = 0

79

R006: <ConcaveJointCurve 1 > :- concave2+<ConcaveJointCurve3> |
Assignment:
1. <ConcaveJointCurve 1 >.length = concave2.length + <ConcaveJointCurve3>.length
2. <ConcaveJointCurve 1 >. T = (concave2.length*concave2. T +
<ConcaveJointCurve3>.length*<ConcaveJointCurve3>. T)/(concave2.1ength +
�Concave JointCurve3 >. length)

R007: <ConcaveJointCurve 1 > :- null
Assignment:
1. <ConcaveJointCurve 1 >.length = 0
2. <ConcaveJointCurve 1 >. r = 0

The first grammar rule for a stroke is always in this form:
R001:�St roke�<PrevCurve> * sharp * <NextCurve>
The terminal sharp represents the sharp point of the stroke. The non-terminal
<PrevCurve> and <NextCurve> represent the previous curve segment of sharp
point and next curve segment of sharp point, respectively. The notation * is a
relational operator to connect two joined curve segments in the rule body. The
outline of a stroke can be divided into two parts. Part one is the curve segment
near the sharp point, and it can be assumed to be conqjlete. Part two is the curve
segment far away from the sharp point, and it will be incomplete due to stroke
interception. Thus, a relational operator + is invented to deal with the incon^lete
curve segments. As a result, when the rule R004 and R006 is matched against
input stroke outline, edge tracking to join the unconnected primitives is actually
performed.

The shape grammar rule is attached by a set of assignment statements and
condition statements. The rule is fired only if the condition statements are all
statisfied. The assignments build up the mapping from the model key points to the
input stroke control points. Each stroke class has a predefined auto-boldness
program. The auto-boldness program is written by using the auto-boldness
language defined in the previous chapter. Moreover, the input parameters to call
the auto boldness instructions are the key points of that stroke class. Thus, in the
code generation phase, the effort required is only to replace the key points in tlie
model auto boldness program with the input stroke control points by using the
mapping established in the parsing phase.

80

4.6.3 Grammar Rule Assignment

The general format of a Model Grammar Rule is:

R***: H a(l) op a(2) op.....op a(n)

where R*** is the label of the grammar rule, and H is the head of grammar rule,
and H is always a non-terminal. a(l) op a(2)...op a(n) is the body of grammar rule.
a(i) is either a terminal (shape token) or non-terminal, op is a relational operator,
and it can be either * or +.

The relation a(i) * a(i+l) is established if the following rules are all satisfied.
1. aft) and a(i+l) are both the curve segments of the same contour of a glyph
outline.
2. pi is the last control point of a(i), andp2 is the first control point of a(i+l)’
Then, pi = p2, that is pl.x = p2.x AND pl.y =p2.y

The relation a(i) + a(i+l) is established if the following rules are all satisfied.
1. a(i) and a(i-\-l) are the curve segments of a glyph outline.
2. pi is the control point before the last control point of aft)

p2 is the last control point of a(i)
p3 is the first control point of a(i+l)
p4 is the control point after the first control point of
Then，pl’p2,p3 andp4 are roughly collinear.

3. p2 andp3 are not the same point that is (p2.x 卜 p3.x) or (p2.y ！==p3.y)
3. distance between pl，p2 < distance between pl’p3 < distance between pl’p4
4. The distance between p2 andp3 is less than a threshold value (Stroke Width).

Both the relational operator * and + are non-transitive, non-reflexive, non
symmetric. The relational operator * deals with the complete curve segments are
not intercepted by another stroke, but the relational operator + deals with the
incomplete curve segments owning to stroke interception. In the example of Right
Hoke, the curve segments from key point al to a7 are not supposed to be
intercepted by other stroke. Thus, these curve segment are connected by using *
operator in grammar rule body. However, the curve segments from key point aO
to al, and the curve segments from key point a7 to a8 are supposed to be
incomplete because of stroke interception. Thus, these curve segments are
connected by using + operator in grammar rule R004 and R006 body.

81

4.6.3 Grammar Rule Assignment

The basic item of a grammar rule is either terminal or non-terminal. Terminal is
always the shape token. There are two levels of shape tokens. Level one shape
token is a primitive, which is either a straight line or a quadratic bezier, in a glyph
outline. Level two shape token is more than one primitive, concave token is the
level two primitive to represent a concave continuous curve segment, and convex
token is also the level two primitive to represent a convex continuous curve
segment.

Non-terminal is denoted as�something〉，which is a curve segment, and can be
derived to a sequence of terminals by using the grammar rules. Moreover, a non-
terminal can have some attributes to describe its characteristics.

For exarr^le, <ConvexJointCurve>.length is the curve length.
<ConvexJointCurve>. r is the average slope ofthe tangents along the curve
segment.

In the example of Right Hoke, the grammar rule items are described by the
following table:
Grammar Item Description.
Rule
R001 <RightHoke> The outline of a Right Hoke
R001 <PrevCurve> Curve segment from aO to a4
R001 sharp a quadratic bezier with sharp point

control points (a4，a5，a6)
R001 <NextCurve> Curve segment from a6 to a8
R002 <ConvexJointCurve 1> a convex continuous curve segment

from aO to al. It may have some parts
missed owing to stroke interception

j ^ q q 2 convexl convex curve segment from al to a2
t ^ q q 2 convex2 convex curve segment from a2 to a3
R0Q2 concave3 concave curve segment from a3 to a4
x^qq3 concavel concave curve segment from a6 to a7
R 0 0 3 <ConcaveJointCurve 1> a concave continuous curve segment

from a7 to a8. It may have some parts
missed owing to stroke interception

82

4.6.3 Grammar Rule Assignment

The assignment statements are executed before the condition statements are
checked. The purpose of grammar rule assignment statements is to calculate the
attributes ofthe head non-terminal, and to build up the mapping from the model
key points to input stroke control points.

4.6.4 Grammar Rule Condition

The condition statements are checked after the assignment statements are
executed. The grammar rule is fired, only if the condition statements are all
satisfied.

83

4.7 Auto Boldness Code Generation
—

°a5 a8

\ \ v / \ a4 \ A . Hoke Part

^ ^ a7' B ^ P u r e Stroke>ai!t 沙

Step 1: segment right hoke into hoke part(a3 to a7). Step 2: apply symmetric bold method to pure stroke part
and pure stroke part (aO to a3 and a7 to a8). 一— 一 ~

a8
a8

\ ^ aO \ °35

aa ° / \ a 4 Hoke Part

a 6 / \ a 4 H°kePart B^Pure V ^
B^Pure S t r o t e ^ a i ^ ^J V^a3 a7) a2

Step 3: displace hoke part so that a3' and a3" Step 4: calculate the new position of a7 to make a7
become a sinde point continuous.

Figure 4.7: Steps to Generate Auto-Bold Code for Right Hoke

The key points of a stroke model divide the stroke outline into many curve
segments. Then, the auto-bold codes for the stroke model can be defined by using
the key points. In the phase of shape parsing, the stroke model and the mapping
from the stroke model key points to the input stroke control points are found.
Thus, the actual auto-bold codes for the input stroke can be generated by
replacing the key points in the model auto bold codes by tke control points of the
input stroke.

The model auto bold codes for right hoke stroke are listed as follows:

84

Stepl: Segment the Stroke into Pure Stroke Part and Hoke Part
Pure stroke is the curve segment from aO to a3', and a7丨 to a8. The hoke part is
from a3" to a7". It is noted that the key point a3 is split into a3" and a3", and the
key point a7 is split into a7' and a7". a3" and a7" belong to the hoke part, and a3'
and a7' belong to the pure stroke part.

Step 2: Apply Symmetric Bold Method to the Pure Stroke Part
The pure stroke part is corrqjosed by a pair of symmetric curves.

Generate Code:
Curve 1 = [a0,al,a2];
Curve2 = &8声7>3>2];
SymmetricBold(CiiTvel,Curve2,BoldLevel);

Step 3: Translate the Hoke Part so that a3, and a3" become a single point

Generate Code:
dx = a3'.x - a3".x;
dy = a3'.y _ a3".y;
For(point=a3"; point <= a7"; point++) {

point, x += dx;
point.y += dy;

}；

Step 4: Calculate the new position for point a7

Generate Code:
slopel 二 slope of tangent at a7 丨 along the pure stroke outline;
slope2 = slope of tangent at a7" along the hoke part outline;
Line 1 is the line passing through a7' with slope = slopel;
Line 2 is the line passing through a7" with slope 二 slope2;
p 二 interception point of Line 1 and Line 2;
a7•二 a7"=p;

85

4.8 Prosram Methodolosv of Prototype Auto Boldness Driver

The auto-boldness driver developed by us is only a prototype. In order to fulfill
the purpose of demonstrating the feasibility of Chinese font auto-boldness, we
have abandoned the approach to develop the auto-boldness expert system shell to
interpret the shape grammar rules Instead, the shape grammar rules are hard-
coded as procedural knowledge. To enhance the efficiency，only the con^plete
curve segments near to the sharp point ofthe input stroke are matched against the
grammar rules. After the class of the input stroke is found, the edge tracking
algorithm is invoked to join the incomplete curve segments ofthe input stroke.

86

Chapter 5: Conclusions

5.1 Work Achieved

The auto boldness of TrueType Chinese fonts was hardly ever found in the font
market at the start of our project in July, 1992. Some font vendors were doing
research on this topic secretly, and it was very hard to get any idea in Chinese
fonts auto boldness from past publishing papers. The most valuable resource for
us was only the TrueType font book of Microsoft Company.

Moreover, the existing methods of auto boldness is not desirable at all. Double
Printing can only attain a slight increase of blackness, and Adobe's Multi-Master
requires too much memory, unsuitable for Chinese fonts with large characters set.
Thus, we aims at catering the deficits of existing methods to invent a new
algorithm for TrueType Chinese fonts auto boldness. The ideas come out in Dec,
1992, and a prototype auto boldness driver has been developed. The algorithm is
fast and efficient, supporting multi-level of boldness.

Our ideas of Chinese fonts auto boldness are originated from the paper
[Percept92], The main idea of this paper is to segment tke objects from a scenery
by firstly locating the symmetries because the boundary of objects are always
con^osed of symmetric curves pair. Human visual system can locate and segment
the objects from a scenery fastly because human eyes are very sensitive to
symmetries. Similarly, the strokes of Chinese characters are also highly symmetric
of their boundaries. Furthermore, we found a general method, which is symmetric
bold, to bold a pair of symmetric curves with multi-level of boldness. Thus, if the
symmetries of Chinese character outline can be located and segmented
automatically, the problem of auto boldness will be solved. Chinese character has
a distinct property that each stroke must contain at least one sharp point.
Therefore, strokes can be located by finding the sharp points from the character
outline, then the symmetries can be easily found.

Finally, it is encouraging that our paper entitled "TrueType Chinese Fonts" was
published in Proceedings of the 1994 International Conference on Computer
Processing of Oriental Languages on May 10-13 Taejon, Korea (ICCPOL'94).

87

5.2 The Pros and Cons of Auto Boldness Algorithm
Pros
a. Parametric Approach:
A parameter BoldLevel, which is a rational number between 0.0 to 1.0, directly
controls the level of boldness. The larger the value of BoldLevel is, the higher of
the bold level is. Thus, a thousands of bold versions with different bold levels can
be generated from an unbold master automatically.

b. Efficient Stroke Extraction and Classification:
It is found that Chinese characters have an exceedingly impertant property that
each stroke contains at least one sharp point. Therefore, the existence of a sharp
point in a character outline implies the existence of a stroke. Searching of stroke
locations by sharp points finding is very fast and efficient. After the strokes
location of a character are found, strokes extraction and classification can easily
be performed.

c. Auto boldness Language:
Standardized auto boldness primitives including SymmetricBold, RotateBold,
and AsymmetricBold, are defined, and the auto boldness programs for each
character can be built by using these primitives. Chinese character outlines are
mainly con^osed of symmetric curves pairs and asymmetric curves pairs. The
primitives SymmetricBold and RotateRold can bold symmetric curves pairs, and
the primitive AsymmetricBold can bold asymmetric curves pairs. The algorithms
to implement these primitives are general enough to deal with any Chinese outline
fonts, in line with the principle of reusability in Software Engineering.

d. Serif Handling:
In order to handle the serifs during auto boldness, serifs must be segmented and
classified, but the serif models for Chinese fonts are very complicated, and
difficult to define. Thus, we invented a method to handle the serif nicely without
knowing what the model ofthe serif is. The idea is that a direction vector can be
defined for each seri^ and the direction vector of a serif is the key to do serif
handling. The direction vector of a serif can be easily found by using heuristics
without knowing the exact model of a serif.

88

e. Shape Parsing Rule Format:
After the strokes of a Chinese character are located, the strokes will be fiirther
classified and segmented. The process of stroke classification and extraction is
similar to a co卿ilation process so that the parsing rules for each stroke model
must be defined. The interception of strokes make it difficult for representing the
parsing rules, because strokes interception will lead to incomplete outline of
strokes. Generally speaking, the parsing rule format is H B where H is the head
of rule, and B is the body of rule. H is a non-terminal. B is a conjunction of
terminals and non-terminals. The terminals can be regarded as the basic elements
of Chinese character outline, such as bezier primitives, straight line primitives,
concave curve segments, convex curve segments, etc. The non-terminals can be
regarded as higher level objects such as symmetric curves pairs, asymmetric
curves pairs, hoke, serifs, etc. Two operators * and + are invented to relate two
items in the rule body. The operator * can relate two joined curve segments of a
stroke, and the operator + can relate two unjoint curve segments of a stroke,
resulted from stroke interception. During the process of parsing, wlien a rule with
the operator + is encountered, tke parser will try to join the 皿connected curve
segments of the intercepted stroke by using edge tracking algorithnL

f. Auto Bold Code Generation:
After a stroke is parsed, a mapping from the key points of the stroke model to the
input stroke control points will be found. Each stroke model is associated with an
auto boldness program executing the auto boldness primitives with the key points
as passing parameters of the primitives. The auto boldness program for the input
stroke can be generated simply by replacing the key points with the input stroke
control points in the stroke model's auto boldness program. This process is very
fast and efficient.

89

Cons

a. Stroke Extraction:
Stroke interception leads to incomplete curve segments of a stroke. In order to
find out the curve segments of a stroke from the whole character outline, the
algorithm of edge tracking is used to join the unconnected curve segments. It is
unavoidable to track erroneously in some cases. In our experiment, about five
character out of one has stroke outline erroneously tracked.

b. Complexity of Character Outline:
In some cases, a Chinese character outline can be consisted of more than 300
control points. The bitmap of such character has a very small white space. If tke
character is bolded, the white space will disappear, resulting in a very ugly bitmap.
Moreover, the continuity of the contour can hardly be preserved owning to the
large number of control points.

c. Regardless of Subjective Factors:
After we tried to run our auto boldness driver on many Chinese characters, we
found that the bold character outline would still lose some features. After all, the
design of a character outline involves much human subjective point of view, and
judgment ofthe quality of a character design is based on the character percepted
by human. Nevertheless, our tools can only treat the objective factors, such as
stroke width, serif dimensions, etc., but it does not count on the human subjective
factors, and human perception.

. 90

5.3 Bold Quality Assessments

圏 圓 國
BoldLevd=0 BoldLevd=0.2 BoldLevd=0.4

國 諭
BoldLevd=0.6 BoldLevd=0.8 BoldLevd=l,0

BoldLevel Width Hei^it MinX MaxX MinY MaxY Black CG(x,y)

0 2 7 8 291 175 4 5 3 39 3 3 0 2 0 0 3 4 (319,182)

0 .2 2 7 8 291 175 4 5 3 39 3 3 0 22731 (318,183)

0 .4 2 7 8 2 9 2 175 4 5 3 38 3 3 0 2 5 4 7 6 (319,184)

0 .6 2 7 8 2 9 3 175 4 5 3 37 3 3 0 2 8 2 6 5 (318,184)

0 .8 279 2 9 5 174 4 5 3 '36 331 3 0 8 0 5 (318,185)

1.0 2 7 9 2 9 8 174 4 5 3 35 333 3 3 3 3 2 (318,185)

The character is bolded by the prototype auto boldness driver with different bold
levels. Then, the metrics of the raster image are measured in pixel units. The
dimensions of the raster image is 1000x1000, and the origin is at the upper left
comer. The columns Width and Height are the dimensions of the bounding box.
MinX and MaxX are the minimum and maximum x-coordinate of black area.
MinY and MaxY are the minimum and maximum y-coordinate of black area. The
column Black measures the number of pixels of black area. The column CG
measures the center of gravity of the black area.

- 91

Thus, the following conclusions can be drawn:

a. Unchange in Bounding Box
The width and the height of bounding box were increased slightly with the
increase of the parameter BoldLevel. Therefore, the bounding box was stable in
dimensions during auto boldness.

b. Linear relationship of Black and BoldLevel
Let, B be the black area of bold image, BO be the black area of unbold image (-
20034) and a is a constant
Then, B = a.BoldLevel + 5 0 (5.1)

n . ^ B-BO
Rearranging (5.1), we get a =

” BoldLevel

BoldLevel 0.2 0.4 0.6 0.8 1.0

Black(B) 22731 25476 28265 30805 33332

a 13485 13605 13718.33 13463.75 13298

The value of a is stable, and the average value is 13514. Therefore, the parameter
BoldLevel reflects the blackness of raster image very well.

c. Stable in CG
The CG of the raster image can be found from the formula:

Yjmi-Xi Hmi.yi
i =

 ？ y=
 ^ ^ ，

L,mi
i i

where mi is a small area of the character image so that ^ m . is the total image

area. (x{,yf) is the coordinate ofthe small area!
Now, we take each pixel as a basic element, and mi = 1

N N

Thus, x 二 ~ mdy = —~ where N is number of pixels in black area (5.2)
B B

From the column CG, it can be seen that the center of gravity is very stable during
auto boldness. Therefore, weight is added evenly throughout the whole character,
resulting in unchange in center of gravity.

92

5.4 Future Directions

a.Enhancements the TrueType Engine

Ideally speaking, TrueType Engine must be enhanced to support auto boldness
instructions. So, auto boldness developers can develop the auto boldness program
for a TrueType font based on a standardized set of auto boldness instructions, and
the effort required can be reduced.

b. Additonal Bold Information in TrueType Font File

Some auto boldness information must be stored in the TrueType font file so as to
realize a full set auto boldness. This is because a Chinese character outline is so
complicated that some strokes can never be extracted, no matter how perfect the
heuristic rules are. Strokes, which can not be extracted automatically, can be
extracted manually, then the information of the extracted strokes can be stored in
the TrueType font file. Hence, the auto boldness driver can make use of the auto
boldness information in TrueType font file to bold the characters.

c. Expert System Shell of Auto Boldness

It is feasible to develop the expert system shell of auto boldness. The auto
boldness instructions, parsing mechanism and code generation process can be
implemented by the shell. Auto boldness developers only need to define the
parsing rules of strokes. It can accelerate the progress tremendously, and the
system will be more maintainable, because only the parsing rules needs to be
modified.

93

References

1. [True 91] Book: The TrueType Book
(Draft Preliminary, Confidential, 1991 Apple Computer, Inc)
Addison-Wesley Publishing Company, Inc,.

2. [True 94] Paper: TrueType Chinese Font, Mr. Lo I Fan and Mr. Y.S.Moon,
Computer Science Dept. of Chinese University of Hong Kong
Published in Proceedings of the 1994 Lntemational Conference on Corcpiter Processing of
Oriental Languages (ICCPOL'94) on May 10-13 Taejon, Korea.

3. [Adobe 90] Document: Adobe System Inc., Adobe Type 1 Font Format, 1990.

4. [Adobe 92] Document: Adobe Type 1 Font Format - Multiple Master Extensions,
14 Feb 92.

5. [Final 92] Final Year Project Report: Research in Chinese Outline Font
Chan Chi Lok and Chiu Chong Kan, supervised by Dr. Y.S.Moon
Computer Science Dept. of Chinese University of Hong Kong, 1991-1992

6. [Knuth 86] The METAFONTBook. Reading, Mass.: Addison Wesley. A readable
introduction to and manual for the METAFONT typeface description language.

7. [Percept 92] Paper: Perceptual Organization for Scene Segmentation and Description
Rakesh Mohan, Member, IEEE, and Ramakant Nevatia，Fellow, IEEE

published in IEEE Transactions on Pattern Analysis and Machine Intelligence Vol 14，

1992.

8. [Model 91] Paper: Model-based Matching and Hinting of Fonts
Roger D. Hersch, Claude Betrisey, Swiss Federal Institute of Technology(EPFL)
CH-1015 Lausanne, Switzerland
published in Con^mter Graphics, Vol 25, 1991.

9. [Wife 91] Book: Windows Intelligent Font Environment(WIFE) Volume 1
Outline Specification Rev. 1.00a, Microsoft Corporation, Far East Product Development
Group, 1991

10. [Shape 85] Paper: Shape Grammar Con^ilers
Thomas C. Henderson and Ashok Samal, Dept. of Con^uter Science, The University of
Utah,Salt Lake City, Utah, U.S.A, published in Pattern Recognition Vol 19, 1985.

Appendix One: Stroke Classification for Auto
Boldness

_ 國 _
a. Left Incline Stroke b> Right Incline Stroke c. Dot Stroke

d. Left Hoke e. RightHoke f. Upper Incline Stroke

k ^ p t ?
k
只.Prop Stroke

Appendix Two: Experiment Results

圓 H
BoldLevel = 0.0 BoldLevel=1.0

圍圓
BoldLevel = 0.0 BoldLevel = 1.0

m m
BoldLevel == 0.0 BoldLevel = 1.0

1 > • I > - I

M M
BoldLevel = 0.0 BoldLevel - 1 0

m m
BoldLevel = 0.0 BoldLevel = 1.0

國 國
BoldLevel = 0.0 BoldLevel = 1.0

s = liqplo® 0-0 H nplo-m

I _ _ I

圖圓

0.1 = lilpog 0.0 mm p>9TPopq

BE

0.1 = ！Tpog 0.0 H lo>><DTPoPQ

國H

國 國
BoldLevel = 0.0 BoldLevel = 1.0

_ 圖
BoldLevel = 0.0 BoldLevel • 1.0

ES國
BoldLevel=0.0 BoldLevel=l. 0

國國
BoldLevel=0.0 BoldLeveM.O

_ 圍
BoldLevel=0.0 BoldLevei=l. 0

1 >' • I

_ 國
BoldLevel=0.0 BoldLeveM.O

I國圓
BoldLevel=0.0 BoldLevel=l. 0

mm
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 丨 I I

BoldLevel=0.0 BoldLevel==LO

图 _
BoldLevel=0.0 BoldLevel=1.0

國國
BoldLevel = 0.0 BoldLevel=1.0

圓國
BoldLevel=0.0 BoldLevel=l. 0

圓圓
BoldLevel=0.0 BoldLevel^!. 0

CUHK L i b r a r i e s

圓圓 lll_lll
•00E4TEA4

