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Abstract 

In this thesis we present a systematic analysis for optimization of a general nonlinear 

function, subject to some fairly general constraints. A typical example includes the op-

timization of a multilinear tensor function over spherical constraints. Such models have 

found wide applications in numerical linear algebra, material sciences, quantum physics, 

signal processing, speech recognition, biomedical engineering, and control theory. This 

thesis is mainly concerned with a specific approach to solve such generic models: the 

block variable improvement method. Specifically, we establish a block coordinate de-

scent type search method for nonlinear optimization, which accepts only a block update 

that achieves the maximum improvement (hence the name of our new search method: 

maximum block improvement (MBI)). Then, we focus on the potential capability of 

this method for solving problems in various research area. First, we demonstrate that 

this method can be directly used in designing a new framework for co-clustering gene 

expression data in the area of bioinformatics. Second, we turn our attention to the 

spherically constrained homogeneous polynomial optimization problem, which is relat-

ed to best rank-one approximation of tensors. The MBI method usually finds the global 

optimal solution at a low computational cost. Third, we continue to consider polyno-

mial optimization problems. A general result between homogeneous polynomials and 

multi-linear forms under the concept of co-quadratic positive semidefinite is established. 

Finally, we consider the problem of finding the best multi-linear rank approximation of 
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a higher-order tensor under the framework of Tucker decomposition, and also propose a 

new model and algorithms for computing Tucker decomposition with unknown number 

of components. Some real application examples are discussed and tested, and numeri-

cal experiments are reported to reveal the good practical performance and efficiency of 

the proposed algorithms for solving those problems. 



中文摘要 

本博士论文对于有结构但又有相当一般性的约束条件下的非线性优化问题给出了系统 

性研究。比较经典的例子包括球面约束下的多重线性函数优化问题。这些模型已被广 

泛应用于数值线性代数、材料科学、量子物理学、信号处理、语音识别、生物医学工 

程以及控制论等。本论文着重探讨一类特定的方法来解这些广义模型，即块变量改进 

方法。具体地说，我们构造了一类块坐标下降型搜索算法来解带块变量结构的非线性 

优化问题。这类算法通过每次迭代中只更新一块变量以达到最大限度的目标函数值的 

改进（因而，这一新搜索算法命名为最优块改进算法（简称为MBI ) )。之后，我们 

重点研究了该算法在求解众多领域中实际问题的潜在能力。首先，这一算法可以直接 

应用于生物信息学中聚类基因表达数据的一种新模型的设计及求解。接着，我们把注 

意力转移到球面约束下的齐次多项式优化问题，此问题与张量的最优秩-1逼近问题相 

关。对于这一优化问题，MBI算法通常可以在较少的计算时间内找到全局最优解。第 

三，我们继续深入研究多项式优化问题，在双协半正定的新概念下建立了齐次多项式 

优化问题与其多重线性优化问题关系的一般性结果。最后，我们在Tucfer分解的框 

架下给出了求解高阶张量的最优多重线性秩的逼近问题的方法，并提出一种新的模型 

和算法来解未知变量数的:Tucfcer分解问题。本论文讨论并试验了一些应用实例，数 

值实验表明所提出的算法分别对于求解以上这些问题是可行并有效的。 
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Chapter 1

Introduction

1.1 Overview

The optimization models whose objective and constraints are polynomial functions have

recently attracted much research attention. This is in part due to an increased demand

on the application side (cf. the sample applications in numerical linear algebra [91, 48,

51], material sciences [98], quantum physics [24, 33], and signal processing [29, 10, 94])

and in part due to its own strong theoretical appeal. Indeed, polynomial optimization

is a challenging task; at the same time it is rich enough to be fruitful. For instance,

even the simplest instances of polynomial optimization, such as maximizing a cubic

polynomial over a sphere, is NP-hard (Nesterov [82]). However, the problem is so

elementary that it can even be attempted in an undergraduate calculus class. For

readers interested in polynomial optimization with simple constraints, see De Klerk [57]

for a survey on the computational complexity of optimizing various classes of polynomial

functions over a simplex, hypercube, or sphere. In particular, De Klerk et al. [58]

designed a polynomial-time approximation scheme (PTAS) for minimizing polynomials

of fixed degree over the simplex.

1



2 1 Introduction

So far, a few results have been obtained for approximation algorithms with guaran-

teed worst-case performance ratios for higher degree polynomial optimization problems.

Luo and Zhang [78] derived a polynomial-time approximation algorithm to optimize a

multivariate quartic polynomial over a region defined by quadratic inequalities. Ling et

al. [75] considered the problem of minimizing a biquadratic function over two spheres

and proposed polynomial-time approximation algorithms. He et al. [40] discussed the

optimization of homogeneous polynomial functions of any fixed degree over quadratic

constraints and proposed approximation algorithms, with performance ratios improv-

ing that of [78, 75]. Recently, So [97] improved the approximation ratio in the case

of spherically constrained homogeneous polynomial optimizations. For a general inho-

mogeneous polynomial optimization over convex compact sets, He et al. [41] proposed

polynomial-time approximation algorithms with relative approximation ratios, which

is the only result so far with regard to approximation algorithms for an inhomogeneous

polynomial. Later, the authors extended their results in [42] by considering polyno-

mials in discrete (typically binary) variables and designed randomized approximation

algorithms. For a recent treatise on the topic, one may refer to the Ph.D. thesis of

Li [73].

On the computational side, polynomial optimization problems can be treated as

nonlinear programming, and many existing software packages are available, including

KNITRO, BARON, MINOS, SNOPT, and the Matlab optimization toolbox. (We refer

the interested reader to NEOS server [84] for further information.) However, these

solvers are not tailor-made for polynomial optimization problems, and so the perfor-

mance may vary greatly from one problem instance to another. Therefore, it is natural

to wonder whether one can design efficient algorithms for specific types of polynomial

optimization problems. Prajna et al. [90] presented the package SOSTOOLS for solv-

ing sum of squares (SOS) polynomial programs, based on the SOS decomposition for
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multivariate polynomials, which can be computed using (possibly large-size) semidef-

inite programs. More recently, Henrion et al. [46] developed a specialized tool known

as GloptiPoly 3 (a later version of GloptiPoly; see Henrion and Lasserre [45]) in find-

ing global optimal solutions for polynomial optimizations based on the SOS approach

(see [63, 64, 66, 87, 88] for details). GloptiPoly 3 calls the semidefinite programming

(SDP) solver SeDuMi [99]. Therefore, due to the limitation to solve large SDP prob-

lems, GloptiPoly 3 may not be the right tool to deal with large-size polynomials (say,

a sixth-degree polynomial in 20 variables). However, if the polynomial optimization

model in question is sparse in some way, then it is possible to exploit the sparsity in

GloptiPoly 3; see [65]. As a matter of fact, SparsePOP [110] makes use of the sparsi-

ty explicitly and is a more appropriate alternative for sparse polynomial optimization

based on the SOS approach. For more information on polynomial optimization, we

refer to the recent book of Anjos and Lasserre [5] and the references therein.

Polynomial optimization can be related to the problem of higher-order tensor de-

composition. For instance, an important application of spherically constrained ho-

mogeneous polynomial optimizations is the best (in the least-squares sense) rank-one

approximation of tensors (sometimes also known as the rank-one factorization): find

vectors x1, x2, · · · , xd for the following minimization problem

min
∑

i1,i2,··· ,id

(
x1i1x

2
i2 · · ·x

d
id
−Fi1i2···id

)2
,

where F = (Fi1i2···id) is a dth-order tensor. In particular, if the tensor F is super-

symmetric (every element Fi1i2···id is invariant under all permutations of (i1, i2, · · · , id)),

then the optimal vectors x1, x2, · · · , xd should coincide (namely, they should be equal to

each other). The main workhorse for solving the above tensor problem is known as the

alternating least square (ALS) method proposed originally by Carroll and Chang [18]

and Harshman [34]. However, the ALS method is not guaranteed to converge to a
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global minimum or a stationary point, only to a solution where the objective function

ceases to decrease. Anyway, this relationship suggests an alternative method to handle

some polynomial optimizations. Hence, the higher-order tensor decomposition attracts

our interest in this thesis.

In fact, the problem of high order tensor decomposition first developed in psycho-

metrics (see, e.g., [107, 108, 109]) and chemometrics (see, e.g., [6]), since they need

to analyze multiway data. Later it has been studied by mathematicians who are in-

terested in algebraic properties of tensors, as well as by engineers and statisticians

who are interested in high order (tensor) statistics and independent component anal-

ysis (ICA). There are two particular tensor decompositions that can be considered to

be higher-order extensions of the matrix singular value decomposition (SVD): one is

CANDECOMP/PARAFAC (CP), which decomposes a tensor as a sum of rank-one

tensors, the other one is the Tucker decomposition, which is a higher-order form of

principal component analysis (PCA). Tucker decomposition is often considered as best

rank-(r1, r2, · · · , rd) approximation of tensors; see, e.g., [69]. They are both NP-hard

problems in general. However, a direct generalization of the SVD is nontrivial, since

the definition of a rank that preserves all of the good properties of the SVD does not

exist; see, e.g., [61, 68]. Due to the lack of a good tensor rank definition, there is no

“best” way to define low-rank approximation for tensors of order higher than two, as

pointed out in [71]. In [61], Kolda and Bader described many kinds of definitions of

tensor rank, and to determine the value of which are usually NP-hard [37]. There are

a number of attempts trying to find CP decomposition and Tucker decomposition; see,

e.g., [69, 68, 59, 62, 71, 93]. Computationally, the existing popular algorithms for CP

decomposition and Tucker decomposition are based on the ALS method and its exten-

sions. However, as mentioned earlier, the ALS method has no convergence guarantee.

Although it is hard to find the best CP decomposition given the rank of the tensor
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in general, there are some algorithms designed to estimate an appropriate rank in the

CP decomposition; see, e.g., a consistency diagnostic named CORCONDIA [16]. The

same happened for the Tucker decomposition where one needs to select suitable ranks

r1, r2, . . . , rd; see, e.g., [105, 56]. For an overview on the recent developments on tensor

decomposition, we refer to the excellent survey by Kolda and Bader [61].

In this thesis we propose a new method, called Maximum Block Improvement (M-

BI) method. This method actually has a general appeal: it can be applied to solve

any optimization model with separate block constraints. The general scheme of Max-

imum Block Improvement method is introduced and also its convergence analysis is

given in Chapter 2. In the next following chapters, we will see that our new method,

MBI, is capable of co-clustering of gene expression data with genes expressed at dif-

ferent multiway forms (see Chapter 3), solving spherically constrained homogeneous

polynomial optimization problems (see Chapter 4), dealing with a particular polyno-

mial optimization problem over any constraint set (see Chapter 5), and finding the

best approximation for Tucker decomposition with unknown number of components

(see Chapter 6). Numerical results show that MBI method is promising. And it has

potential to solve other problems.

1.2 Notations and Preliminaries

Throughout this thesis, we use non-bold letters, boldface lowercase letters, capital

letters, and calligraphic letters to denote scalars, vectors, matrices, and tensors in

general, respectively. For example, scalar i, vector x, matrix A, and tensor F . And we

use subscripts to denote the component of a vector, a matrix or a tensor, e.g., xi being

the i-th entry of the vector x, Aij being the (i, j)-th element of the matrix A, and Fijk

being the (i, j, k)-th component of the tensor F . For vector x = (x1, x2, · · · , xd)T ∈ Rd,
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Diag (x) denotes diagonal matrix



x1

x2

. . .

xd


.

1.2.1 The Tensor Operations

We introduce some tensor operations needed in this thesis, which is largely in line with

that in [61, 68]. For an overview of tensor operations and properties, we refer to the

survey paper [61].

A tensor is a multidimensional array, and the order of a tensor is its dimension,

also known as the ways or the modes of a tensor. In particular, a vector is a tensor of

order one, and a matrix is a tensor of order two. Let A = (Ai1i2···id) ∈ Rn1×n2×···×nd

be a tensor of order d, where d ≥ 3. We stick to A as a standard tensor, for the pur-

pose of introducing the tensor operations. Analogous to the definition of a symmetric

matrix, we call tensor A super-symmetric if every element Ai1i2···id is invariant under

all permutations of (i1, i2, · · · , id) when n1 = n2 = · · · = nd.

The usual way to handle a tensor is to reorder its elements into a matrix; the

process is called matricization, also known as unfolding or flattening. Tensor A ∈

Rn1×n2×···×nd has totally d modes, namely, mode-1, mode-2, · · · , mode-d. Denote the

mode-k matricization of tensor A to be A(k), then the element (i1, i2, . . . , id) of tensor

A is mapped to the element (ik, j) of matrix A(k), where

j = 1 +

d∑
l=1,l 6=k

(il − 1)Jl with Jl =

l−1∏
m=1,m 6=k

nm,

Therefore, A(k) ∈ Rnk×Ik , where Ik =
∏d
l=1,l 6=k nl. For example, consider third-order
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tensor G ∈ R2×3×2 with entries

G111 = 1, G211 = 2, G121 = 3, G221 = 4, G131 = 5, G231 = 6,

G112 = 7, G212 = 8, G122 = 9, G222 = 10, G132 = 11, G232 = 12.

Then the three mode-k unfoldings are

G(1) =

 1 3 5 7 9 11

2 4 6 8 10 12

 ,

G(2) =


1 2 7 8

3 4 9 10

5 6 11 12

 ,

G(3) =

 1 2 3 4 5 6

7 8 9 10 11 12

 .

Analogous to the Frobenius norm of a matrix, the Frobenius norm of tensor A is

defined by

‖A‖ :=

√ ∑
1≤i1≤n1,1≤i2≤n2,··· ,1≤id≤nd

Ai1i2···id2.

We shall use the 2-norm for vectors, and the Frobenius norm for matrices and tensors,

all by using notation ‖ · ‖. The inner product of two same-sized tensors A,B is given as

〈A,B〉 =

n1∑
i1=1

n2∑
i2=1

· · ·
nd∑
id=1

Ai1i2···id Bi1i2···id .

Hence, it is clear that 〈A,A〉 = ‖A‖2.

One important tensor operation in this thesis is the multiplication of a tensor by a

matrix. The k-mode product of tensor A by a matrix U ∈ Rm×nk , denoted by A×k U ,

is a tensor in Rn1×n2×···×nk−1×m×nk+1×···×nd , whose (i1, i2, · · · , ik−1, l, ik+1, · · · , id)-th

component is defined by

(A×k U)i1 i2 ··· ik−1 l ik+1 ··· id =

nk∑
ik=1

Ai1 i2 ··· ik−1 ik ik+1 ··· idUl ik .
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The equation can be rewritten in terms of tensor unfolding as well; i.e.,

Y = A×k U ⇐⇒ Y(k) = UA(k).

We see that this multiplication changes the dimension of tensor A in mode-k. In

particular, if U is a vector in space Rnk , order of tensor A ×k U is reduced to d − 1,

whose size is n1 × n2 × · · · × nk−1 × nk+1 × · · · × nd.

We use the ◦ symbol to represent the vector outer product. For example, for vectors

x ∈ Rn1 ,y ∈ Rn2 , z ∈ Rn3 , the notion x ◦ y ◦ z defines a third-order tensor F ∈

Rn1×n2×n3 , whose (i, j, k)-th element is given by

Fijk = xi yj zk.

The ⊗ symbol denotes matrix Kronecker product. Let A ∈ Rn1×n2 , B ∈ Rn3×n4 , then

A⊗B is a matrix of size (n1n2)× (n3n4) and defined by

A⊗B =



A11B A12B · · · A1n2B

A21B A22B · · · A2n2B

...
...

. . .
...

An1 1B An1 2B · · · An1 n2B


.

For example, A =

 1 2

3 4

, B =

 5 6

7 8

, then

A⊗B =



1 · 5 1 · 6 2 · 5 2 · 6

1 · 7 1 · 8 2 · 7 2 · 8

3 · 5 3 · 6 4 · 5 4 · 6

3 · 7 3 · 8 4 · 7 4 · 8


=



5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32


.

Moreover, the matrix Kronecker product can be used in the following useful expression

Y = A×1 U
(1) ×2 U

(2) · · · ×d U (d)

⇐⇒ Y(k) = U (k)A(k)

(
U (d) ⊗ · · · ⊗ U (k+1) ⊗ U (k−1) ⊗ · · · ⊗ U (1)

)
,
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for any k ∈ {1, 2, · · · , d}, where U (k) ∈ Rmk×nk , k = 1, 2, · · · , d. The proof of this

property can be found in [60].

In this special circumstance, throughout this thesis we shall use a subscript in paren-

theses to denote the matricization of a tensor (e.g., A(1) being mode-1 matricization of

tensor A), and use a superscript in parentheses to denote the matrix in the operation

of mode product of a tensor (e.g., U (1) in appropriate dimensions showed in mode-1

product of a tensor).

1.2.2 The Tensor Ranks

There are two most common ways to define the rank of a tensor; see, e.g., [61, 68].

First, analogous to the notion of column and row rank of a matrix, one then have one

way to define the rank of a tensor by using all the mode unfoldings. Formally, the

k-rank of tensor A, denoted by rankk(A), is the column rank of mode-k unfolding A(k),

and

rankk (A) = rank
(
A(k)

)
.

For example, consider (2× 2× 2)-tensor X with entries

X111 = X221 = X112 = X222 = 1,

X211 = X121 = X212 = X122 = 0,

then the three mode-k unfoldings are

X(1) =

 1 0 1 0

0 1 0 1

 , X(2) =

 1 0 1 0

0 1 0 1

 , X(3) =

 1 0 0 1

1 0 0 1

 .

Hence, we have rank1(X ) = rank2(X ) =2, while rank3(X )=1. We see that the k-

ranks of a higher-order tensor are not necessarily the same, which is a major difference

compared to the matrix case, where the column rank is equal to the row rank. As we

shall see later, this definition corresponds to rank-(r1, r2, · · · , rd) approximation of a

tensor given that rk = rankk(A) for k = 1, 2, · · · , d.
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Next, since a rank-k matrix can be decomposed as a sum of k rank-one terms,

we can define the rank of tensor A, denoted by rank(A), as the smallest number of

rank-one tensors that generate A as their sum. This definition corresponds to the CP

decomposition as follows:

A =

rank(A)∑
k=1

λk x1
k ◦ x2

k ◦ · · · ◦ xdk.

In particular, it is related to the best rank-one decomposition of a tensor if rank(A) = 1.

However, it turns out that determining the rank of a specific given tensor is NP-hard

[37]. Besides, the rank of a tensor is not necessarily equal to a k-rank, even when all

the k-ranks are the same. Let us consider a simple example. Let (2× 2× 2)-tensor F

with entries

F111 = F221 = F122 = F212 = F222 = 0,

F211 = F121 = F112 = 1.

Clearly, in this case 1-rank, 2-rank, and 3-rank are all equal to 2. However, rank(F) =

3, since

F = x2 ◦ y1 ◦ z1 + x1 ◦ y2 ◦ z1 + x1 ◦ y1 ◦ z2,

in which

x1 = y1 = z1 =

(
1

0

)
, x2 = y2 = z2 =

(
0

1

)
,

is a decomposition in smallest number of rank-one tensors. The proof can be found in

the Ph.D. thesis of Lathauwer [67].

For other rank definitions and properties concerning tensors (e.g., maximum rank,

typical rank), we refer to the survey [61].
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1.2.3 Polynomial Functions

In this part, we introduce three important polynomial functions. Let us first consider

the following multilinear tensor function

F (x1,x2, · · · ,xd) =
∑

1≤i1≤n1,1≤i2≤n2,··· ,1≤id≤nd

Fi1i2···idx
1
i1x

2
i2 · · ·x

d
id
, (1.1)

where xk ∈ Rnk for k = 1, 2, . . . , d, and F = (Fi1i2···id) ∈ Rn1×n2×···×nd is a dth-

order tensor with F being its associated multilinear function. Closely related to the

tensor form F is a general dth-degree homogeneous polynomial function f(x), where

x ∈ Rn, with its associated tensor F being super-symmetric. In fact, super-symmetric

tensors are bijectively related to homogeneous polynomials; see [61]. Denote F to be

the multilinear function defined by the super-symmetric tensor form F , we then have

f(x) = F (x,x, · · · ,x︸ ︷︷ ︸
d

). (1.2)

A generic multi-variate (inhomogeneous) polynomial function of degree d, denoted by

p(x), can be explicitly written as a summation of homogeneous polynomial functions

in decreasing degrees, namely,

p(x) :=
d∑
i=1

fi(x) + f0 =
d∑
i=1

Fi(x,x, · · · ,x︸ ︷︷ ︸
i

) + f0, (1.3)

where x ∈ Rn, f0 ∈ R, and fi(x) = Fi(x,x, · · · ,x︸ ︷︷ ︸
i

) is a homogeneous polynomial

function of degree i for i = 1, 2, ..., d.

To avoid triviality, we assume that at least one component of any tensor form

throughout this thesis (e.g., F in functions F and f , and Fd in function p) is nonzero.

Finally, as a matter of notation, for any given maximization problem (P ) with

objective function p(x) and constraint set S we shall denote its optimal value by v(P ),

and use v(P ) to denote the optimal value of its minimization counterpart, i.e.,

v(P ) := max
x∈S

p(x) and v(P ) := min
x∈S

p(x).



Chapter 2

The Maximum Block

Improvement Method

2.1 Introduction

The focus of this chapter is to design an algorithm for an important generic optimiza-

tion problem, which plays an important role in this thesis. Specifically, the model we

consider is in the form of

(G) max f(x1,x2, · · · ,xd)

s.t. xi ∈ Si ⊆ Rni , i = 1, 2, ..., d,

where f : Rn1+···+nd → R is a general continuous function, and Si is a general set,

i = 1, 2, ..., d. Remark that we do not make any convexity (or concavity) assumption

on the objective function f , nor on the constraint sets Si.

This model has attracted much research attention for years. For the popular special

case where Si = Rni , i = 1, 2, ..., d, a method known as the block coordinate descent

(BCD) is well studied; see Tseng [106] and the references therein. In fact, the so-called

12



2.1 Introduction 13

ALS method for tensor decomposition problems (see Chapter 1) is a special form of

the BCD method. The BCD method calls for maximizing one block, say, xi ∈ Rni ,

at one time, while all other variables in other blocks are temporarily fixed. One then

moves on to alter the choice of the blocks. Very recently, Wright [112] introduced an

extension based on BCD. Typically, under various convexity assumptions on the ob-

jective function, one is able to show some convergence property of the BCD method

(cf. [106]). In fact, the BCD method can be applied regardless of any convexity as-

sumptions, as long as one is able to optimize over one block of variable while fixing

all others. A summary of the BCD or other block search methods can be found in

Bertsekas [12]. The approach has a relatively long history (it is also known as the block

nonlinear Gauss–Seidel method). Without taking any precaution, the BCD method

may not be convergent; see the examples in Powell [89]. In the literature, this issue

of convergence has been thoroughly studied. However, the results were not entirely

satisfactory. To ensure convergence, either one would require some type of convexity

(cf. the discussion in [12]) or the search routine is modified (cf. a proximal-point mod-

ification in Grippo and Sciandrone [32]). As we will show later, our new block search

method does not modify the objective function in the block-search subroutine and at

the same time ensures the convergence to a stationary solution within the structure of

the BCD framework.

Also, the model is reminiscent of a noncooperative game, where Si can be regarded

as the strategy set of player i, i = 1, 2, ..., d. Certainly, in the case of noncooperative

game, the objective of each player may be different in general. In a channel spectrum

allocation game in communication, the corresponding BCD approach is also known as

the iterative waterfilling algorithm (IWA); Luo and Pang [76] show that the IWA is

convergent to the Nash equilibrium under some fairly loose conditions. It is possible

that the IWA may cycle in the absence of these conditions; see an example in [39].
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Motivated by the BCD method for nondifferentiable minimization proposed by T-

seng [106] and the IWA for multiuser power control in digital subscriber lines by Luo

and Pang [76], in this chapter we shall propose a different method, to be called the max-

imum block improvement (MBI), which guarantees convergence to a stationary point of

the optimization problem (G). We shall remark that this method is suitable for solving

any optimization model with separate block constraints.

2.2 MBI Method and Convergence Analysis

In this section, the general scheme of the MBI method is introduced, and its convergence

property is discussed.

To simplify the analysis, we assume here that Si is compact, i = 1, 2, ..., d. But that

alone is insufficient to guarantee the convergence, as we know that even for the special

case of the ALS, the iterates may not converge to a stationary point; see e.g., [30, 69,

70, 96]. A sufficient condition for convergence is to take a step that corresponds to the

maximum improvement. The enhanced procedure is as follows.

Algorithm MBI. The MBI method for solving (G).

0 (Initialization). Choose a feasible solution (x1
0,x

2
0, · · · ,xd0) with xi0 ∈ Si for

i = 1, 2, . . . , d and compute initial objective value v0 := f(x1
0,x

2
0, · · · ,xd0). Set

k := 0.

1 (Block Improvement). For each i = 1, 2, . . . , d, solve

(Gi) max f(x1
k, · · · ,x

i−1
k ,xi,xi+1

k , · · · ,xdk)

s.t. xi ∈ Si,
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and let

yik+1 := arg max
xi∈Si

f(x1
k, · · · ,xi−1k ,xi,xi+1

k , · · · ,xdk),

wik+1 := f(x1
k, · · · ,xi−1k ,yik+1,x

i+1
k , · · · ,xdk).

2 (Maximum Improvement). Let wk+1 := max1≤i≤dw
i
k+1 and i∗ = arg max1≤i≤d w

i
k+1.

Let

xik+1 := xik, ∀ i ∈ {1, 2, · · · , d}\{i∗},

xi
∗
k+1 := yi

∗
k+1,

vk+1 := wk+1.

3 (Stopping Criterion). If |vk+1 − vk| < ε, stop. Otherwise, set k := k + 1, and go

to Step 1.

The key assumption in the above process is that problem (Gi) can be easily solved,

which is the case for many applications. For instance, when f(x1,x2, · · · ,xd) = −‖F−

x1 ◦ x2 ◦ · · · ◦ xd‖2, and Si = Rni , then (Gi) is simply a least squares problem; when

f(x1,x2, · · · ,xd) is a multilinear tensor form and Si is convex, then (Gi) is a convex

optimization problem. A major difference between MBI and IWA (or, for that matter,

ALS, BCD, or block nonlinear Gauss–Seidel) lies in Step 2: rather than improving

among block decision variables alternatively or cyclically, MBI chooses to update the

block variables that achieve the maximum improvement. If in Step 2, solving (Gi) is a

least squares problem, then MBI becomes a variant of the ALS method, which is widely

used in tensor decompositions (cf. [61]). Unlike the ALS method, as we show next, the

MBI method guarantees converging to a stationary point.
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Theorem 2.2.1. If Si is compact, i = 1, 2, ..., d, then any cluster point of the iterates

(x1
k,x

2
k, · · · ,xdk), say, (x1

∗,x
2
∗, · · · ,xd∗), will be a stationary point for (G); i.e.,

xi∗ = arg max
xi∈Si

f(x1
∗, · · · ,xi−1∗ ,xi,xi+1

∗ , · · · ,xd∗) ∀ i = 1, 2, ..., d.

Proof. For each fixed (x1, · · · ,xi−1,xi+1, · · · ,xd), denoteRi(x
1, · · · ,xi−1,xi+1, · · · ,xd)

to be a best response function to xi, namely,

Ri(x
1, · · · ,xi−1,xi+1, · · · ,xd) ∈ arg max

xi∈Si
f(x1, · · · ,xi−1,xi,xi+1, · · · ,xd).

Suppose that (x1
kt
,x2

kt
, · · · ,xdkt)→ (x1

∗,x
2
∗, · · · ,xd∗) as t→∞. Then, for any 1 ≤ i ≤ d,

we have

f(x1
kt , · · · ,x

i−1
kt
, Ri(x

1
∗, · · · ,xi−1∗ ,xi+1

∗ , · · · ,xd∗),xi+1
kt
, · · · ,xdkt)

≤ f(x1
kt , · · · ,x

i−1
kt
, Ri(x

1
kt , · · · ,x

i−1
kt
,xi+1

kt
, · · · ,xdkt),x

i+1
kt
, · · · ,xdkt)

≤ f(x1
kt+1,x

2
kt+1, · · · ,xdkt+1)

≤ f(x1
kt+1

,x2
kt+1

, · · · ,xdkt+1
).

By continuity, when t→∞, it follows that

f(x1
∗, · · · ,xi−1∗ , Ri(x

1
∗, · · · ,xi−1∗ ,xi+1

∗ , · · · ,xd∗),xi+1
∗ , · · · ,xd∗) ≤ f(x1

∗,x
2
∗, · · · ,xd∗),

which implies that the above should hold as an equality, since the other inequality is

true by the definition of the best response function Ri. Thus, xi∗ is the best response to

(x1
∗, · · · ,xi−1∗ ,xi+1

∗ , · · · , xd∗), or equivalently, xi∗ is the optimal solution for the problem

max
xi∈Si

f(x1
∗, · · · ,xi−1∗ ,xi,xi+1

∗ , · · · ,xd∗),

for all i = 1, 2, ..., d.

In many applications, Si is described by inequalities and equalities; e.g.,

Si = {xi ∈ Rni | gij(xi) ≤ 0, j = 1, 2, . . . ,mi; h
i
j(x

i) = 0, j = 1, 2, . . . , `i},
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where i = 1, 2, ..., d. It is then more convenient to use the so-called KKT conditions,

instead of an abstract form of the stationarity, under some constraint qualifications

(CQ).1

Corollary 2.2.2. If Si = {xi ∈ Rni | gij(xi) ≤ 0, j = 1, 2, . . . ,mi; h
i
j(x

i) = 0, j =

1, 2, . . . , `i} is compact for all i = 1, 2, ..., d, and it satisfies a suitable constraint qual-

ification (cf. footnote 1), then any cluster point of the iterates (x1
k,x

2
k, · · · ,xdk), say

(x1
∗,x

2
∗, · · · ,xd∗), will be a KKT point for (G).

Proof. As asserted by Theorem 2.2.1, (x1
∗,x

2
∗, · · · ,xd∗) is a stationary point. Moreover,

since a constraint qualification is satisfied for Si, we know that xi∗ is a KKT point as

well. Namely, there exist uij and vij such that xi = xi∗ satisfies the equations

∇xif(x1
∗, · · · ,xi−1∗ ,xi,xi+1

∗ , · · · ,xd∗) =

mi∑
j=1

uij∇gij(xi) +

`i∑
j=1

vij∇hij(xi),

uijg
i
j(x

i) = 0, uij ≥ 0, j = 1, 2, . . . ,mi,

xi ∈ Si,

where uij is the Lagrangian multiplier corresponding to the inequality constraint gij(x
i) ≤

0 for j = 1, 2, ...,mi, and vij is the Lagrangian multiplier corresponding to the equality

constraint hij(x
i) = 0 for j = 1, 2, ..., `i. Therefore, (x1,x2, · · · ,xd) = (x1

∗,x
2
∗, · · · ,xd∗)

is a solution for

∇xif(x1, · · · ,xi−1,xi,xi+1, · · · ,xd) =

mi∑
j=1

uij∇gij(xi) +

`i∑
j=1

vij∇hij(xi), i = 1, 2, . . . , d,

uijg
i
j(x

i) = 0, uij ≥ 0, j = 1, 2, . . . ,mi, i = 1, 2, . . . , d,

xi ∈ Si, i = 1, 2, . . . , d,

1The most widely used CQs include the Slater condition, the linear independence constraint qualifi-

cation, the Mangasarian–Fromowitz constraint qualification, the constant rank constraint qualification,

the constant positive linear dependence constraint qualification, and the quasi-normality constraint

qualification. For details see a textbook on nonlinear programming, e.g., Bertsekas [12].
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which is exactly the KKT system for (G). Therefore, (x1
∗,x

2
∗, · · · ,xd∗) must be a KKT

point of (G) as well.

Remark that since not all KKT points are stationary, Theorem 2.2.1 is in fact a

stronger statement; however, Corollary 2.2.2 is convenient to use in many applications.

Due to the generality of model (G) and the nice convergence property of MBI

method, this method should be encouraged. In the following chapters, we will consider

some particular constraint sets Si, and see how MBI method can be used to tackle

problems in practice. Besides, the efficiency of MBI method will be tested.



Chapter 3

Co-Clustering of Gene

Expression Data

3.1 Introduction

This chapter presents one direct application of the MBI method in a bioinformatics ap-

plication. We will actually use the MBI method to tackle large-scale high-dimensional

genome-wide gene expression data. Before we present a mathematical model for ana-

lyzing gene expression data, let us first briefly review the background on clustering and

co-clustering.

With the development of high-throughput gene expression technology, it is possible

to measure expressions of thousands of genes simultaneously. In order to exploit the

inherent structure of genes, there is a strong need to develop analytical methodology

to analyze the information embedded in gene expression data. Due to the large num-

ber of genes and the complexity of biological networks, clustering technique has been

developed as a useful exploratory tool for analysis of gene expression data. The goal

of clustering is to subdivide a set of items (in our context, genes) in such a way that

19
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similar items fall into the same cluster, whereas dissimilar items belong to different

clusters.

Clustering has been investigated by various areas of researchers, ranging from com-

puter science (e.g., web mining, image segmentation), engineering (e.g., machine learn-

ing, pattern recognition, mechanical engineering), life and medical science (e.g., biology,

genetics, pathology) to social science (e.g., psychology, archeology), and even economics

(e.g., business and marketing); see books [28, 36]. For classical clustering technique in

gene expression analysis, D′haeseleer [25] discussed two classes of clustering, i.e., hier-

archical clustering and partitioning, and three popular clustering methods, i.e., Eisen

hierarchical clustering [26], k-means [104] and self organizing map (SOM) method [103].

For more information about clustering, one is referred to [28, 36] and the references

therein.

Cheng and Church [22] first introduced the concept of co-clustering for two dimen-

sional (2D) gene expression data and developed an effective measure of the co-clusters

based on the mean square residue and a greedy node-deletion algorithm. Their algo-

rithm could cluster genes and conditions simultaneously and thus could discover the

similar expression of a certain group of genes on a certain group of conditions and vice

versa. Later many different co-clustering algorithms were developed. For example, the

authors in [23] formulated the objective functions based on minimizing two measures of

squared residue that are similar to those used by Cheng and Church [22] and Hartigan

[35]. Their iterative algorithm could directly minimize the squared residues and find

k × l co-clusters simultaneously as opposed to finding a single co-cluster at a time like

Cheng and Church. For the ideas of other co-clustering algorithms, we refer to the

references [79, 50, 23].

In this chapter, we are going to propose a new framework to study the co-clustering

of gene expression data. This new framework is based on a generic tensor optimization
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model and the MBI method presented in Chapter 2. This framework not only can be

used for co-clustering of gene expression data with genes expressed at different condi-

tions (genes × conditions) represented in 2D matrices, but also it can be readily applied

for co-clustering of gene expression data in 3D, 4D, 5D with genes expressed at different

tissues, different development stages, different time points, different stimulations, and

so on and so forth (e.g., genes×tissues×development stages×time points×stimulations)

and even more complex high-dimensional matrices. Moreover, this framework is flex-

ible enough to incorporate different objective functions. We demonstrate this new

framework by providing the details of the algorithm for one model with one specific

objective function under the framework, the implementation of the algorithm and the

experimental testing on microarray gene expression datasets. Our algorithm turns out

to be very efficient (which runs for only a few minutes on a regular PC for large gene

expression datasets) and performs well for identifying patterns in microarray data sets

compared with other approaches. It is worth to mention a recent paper by Zhang et

al. [114] here, they introduce a new notion of “co-identification”, and build a compu-

tational framework of co-identification that enables clustering to be multi-dimensional

and adaptive based on the MBI method.

We organize the following sections as follows. In Section 3.2, we present a new

generic co-clustering framework based on the MBI method for analyzing gene expression

data. In order to express our idea more explicitly, we describe one specific 2D gene

expression co-clustering model and the detailed implementation method in Section 3.3.

Finally, numerical performance of the proposed method on gene expression datasets

will be reported in Section 3.4.



22 3 Co-Clustering of Gene Expression Data

3.2 A New Generic Framework for Co-Clustering Gene

Expression Data

In this section we first present our model for the co-clustering problem based on tensor

optimization and then give a generic algorithm for high-dimensional gene expression

data co-clustering.

3.2.1 Tensor Optimization Model of The Co-Clustering Problem

We begin with the modeling of gene expression co-clustering problem. Here, we use ten-

sors to describe gene expression data in high dimensions. Suppose that d-dimensional

tensor A ∈ Rn1×n2×···×nd is a set of given gene expression data. Let Ij = {1, 2, · · · , nj}

be the set of indices on the j-th dimension, j = 1, 2, . . . , d. We wish to find a pj-

partition of the index set Ij , say Ij = Ij1
⋃
Ij2
⋃
· · ·
⋃
Ijpj , where j = 1, 2, . . . , d, in such

a way that each of the sub-tensor AI1i−1×I2i2×···×I
d
id

is as tightly packed up as possible,

where 1 ≤ ij ≤ nj and j = 1, 2, . . . , d.

Suppose that X ∈ Rp1×p2×···×pd is the tensor for the co-cluster values, then the com-

ponent Xj1,j2,··· ,ji−1,ji,ji+1,··· ,jd is the value of the co-cluster (j1, j2, · · · , ji−1, ji, ji+1, · · · ,

jd) with 1 ≤ ji ≤ pi, i = 1, 2, . . . , d. Next, we define a row-to-column assignment matrix

Y j ∈ Rnj×pj for the indices for the j-th array of tensor A, with

Y j
ik =

 1, if i is assigned to the k-th partition Ijk;

0, otherwise.

Then, we introduce a proximity measure f(s) : R → R+, with the property that

f(s) ≥ 0 for all s ∈ R and f(s) = 0 if and only if s = 0. The co-clustering problem can
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be formulated as

(CC) min
∑

j1,j2,··· ,jd
f(Aj1j2···jd − (X ×1 Y

1 ×2 Y
2 ×3 · · · ×d Y d)j1j2···jd)

s.t. X ∈ Rp1×p2×···×pd ,

Y j ∈ Rnj×pj is an assignment matrix, j = 1, 2, . . . , d.

A variety of proximity measures could be considered. For instance, if f(s) = s2,

then (CC) can be written as

(P1) min ‖A − X ×1 Y
(1) ×2 Y

(2) ×3 · · · ×d Y (d)‖

s.t. X ∈ Rp1×p2×···×pd ,

Y (j) ∈ Rnj×pj is an assignment matrix, j = 1, 2, . . . , d.

If f(s) = |s|, then (CC) can be written as

(P2) min
n1∑
j1=1

n2∑
j2=1
· · ·

nd∑
jd=1
|Aj1j2···jd − (X ×1 Y

(1) ×2 Y
(2) ×3 · · · ×d Y (d))j1j2···jd |

s.t. X ∈ Rp1×p2×···×pd ,

Y (j) ∈ Rnj×pj is an assignment matrix, j = 1, 2, . . . , d.

A third possible formulation can be

(P3) min max
1≤ji≤ni;i=1,2,...,d

|Aj1j2···jd − (X ×1 Y
(1) ×2 Y

(2) ×3 · · · ×d Y (d))j1j2···jd |

s.t. X ∈ Rp1×p2×···×pd ,

Y (j) ∈ Rnj×pj is an assignment matrix, j = 1, 2, . . . , d.

3.2.2 The MBI Method for Co-Clustering Problem

Notice that model (CC) is in the format of (G), and all the block variables in the

constraints of model (CC) are separable, which enables the application of the MBI

method. Clearly, we can transform the minimization problem (CC) into a maximization

problem simply by letting the objective function f := −f . Without loss of generality,

we still use notation f . Our generic algorithm for the co-clustering maximization form

based on the MBI method can be formulated as follows.
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Algorithm CC. Generic co-clustering algorithm.

• Input: A set of data A ∈ Rn1×n2×···×nd , which is a d-dimensional tensor; pa-

rameters k1, k2, · · · , kd, which are all positive integers and 0 < ki ≤ ni, for

i = 1, 2, . . . , d.

• Output: k1 × k2 × · · · × kd co-clusters of A.

• Main variables:

A non-negative integer k as the loop counter;

A k1× k2 · · · × kd-tensor X with each entry a real number as the artificial central

point of one of the co-clusters;

A ni × ki-matrix Y i as the assignment matrix with {0, 1} as the value of each

entry, for i = 1, 2, . . . , d.

0 Let Y 0 := X . Choose a feasible solution (Y 0
0 , Y

1
0 , Y

2
0 , · · · , Y d

0 ) and compute the

initial objective value v0 := f(Y 0
0 , Y

1
0 , Y

2
0 , · · · , Y d

0 ). Set the loop counter k := 0.

1 Solve the following d+ 1 subproblems

(G0) max
Z0

f(Z0, Y 1
k , Y

2
k , · · · , Y d

k )

and

(Gi) max f(Y 0
k , Y

1
k , · · · , Y

i−1
k , Zi, Y i+1

k , · · · , Y d
k )

s.t. Zi ∈ Rnj×pj is an assignment matrix,

for each i = 1, 2, . . . , d. And let

Zik+1 := arg max f(Y 0
k , Y

1
k , · · · , Y i−1

k , Zi, Y i+1
k , · · · , Y d

k ),

wik+1 := f(Y 0
k , Y

1
k , · · · , Y i−1

k , Zik+1, Y
i+1
k , · · · , Y d

k ).
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2 Let wk+1 := max1≤i≤dw
i
k+1 and i∗ = arg max1≤i≤d w

i
k+1. Update

Y i
k+1 := Y i

k , ∀ i ∈ {0, 1, 2, . . . , d}\{i∗}

Y i∗
k+1 := Zi

∗
k+1

vk+1 := wk+1.

3 If |vk+1 − vk| < ε, go to Step 4. Otherwise, set k := k + 1, and go to Step 1.

4 Print the k1× k2× · · ·× kd co-clusters of A according to the assignment matrices

Y 1
k+1, Y

2
k+1, · · · , Y d

k+1.

As shown in Chapter 2, our MBI method guarantees converging to a stationary

point of model (CC). For the special problems (P1), (P2) and (P3), Algorithm CC

will automatically apply. Regarding the issue on solving subproblems in these three

particular cases, they are all polynomial-time solvable. For instance, for the fixed

variables Y j , j = 1, 2, . . . , d, the search of X becomes:

• In the case of (P1), the problem is a least square problem;

• In the case of (P2) or (P3), the problems are linear programming.

To appreciate the computational complexity of the models under consideration, we

remark that even if the block variable X is fixed, to search for the two joint optimal

assignments of, say, Y 1 and Y 2, while all other Y i(i = 3, 4, . . . , d) are fixed, is already

NP -hard.

3.3 Algorithm for Co-Clustering 2D Matrix Data

We have implemented the algorithm for co-clustering gene expression data in 2D-

matrices when the (P1) formulation is used. Given a 2D-matrix A with m rows and n
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columns, which represents the gene expressions of m different genes under n different

conditions. We apply our co-clustering algorithm to partition the genes and conditions

at the same time to get k1 × k2 submatrices, where k1 is the number of partitions of

the m genes and k2 is the number of partitions of the n conditions; see the following

procedure.

Algorithm for 2D-matrix co-clustering based on the (P1) model.

• Input: A 2D-matrix A with m rows and n columns. Two parameters k1 and k2,

where k1 and k2 are both positive integers.

• Output: (k1×k2) co-clusters of the matrix A, where k1 is the number of partitions

of the m rows and k2 is the number of partitions of the n columns.

• Main Variables:

A non-negative integer k as the loop counter;

A k1 × k2 matrix X with each entry a real number as the artificial central point

of one of the k1 × k2 co-clusters of the matrix A;

A m × k1 matrix Y 1 as the row assignment matrix with {0, 1} as the value of

each entry; and

A n× k2 matrix Y 2 as the column assignment matrix with {0, 1} as the value of

each entry.

0 Set the loop counter k := 0.

Randomly set the initial values of the three matrices Xk, Y
1
k and Y 2

k , and

compute the initial objective value v0 := max−
∥∥A−Xk ×1 Y

1
k ×2 Y

2
k

∥∥.

1 Fixed matrices Xk and Y 1
k , get the optimal column assignment matrix Y 2 and

compute the objective value vY 2 := max−
∥∥A−Xk ×1 Y

1
k ×2 Y

2
∥∥;
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Fixed matrices Xk and Y 2
k , get the optimal row assignment matrix Y 1 and com-

pute the objective value vY 1 := max−
∥∥A−Xk ×1 Y

1 ×2 Y
2
k

∥∥;

Fixed matrices Y 1
k and Y 2

k , get the optimal matrix X and compute the objective

value vX := max−
∥∥A−X ×1 Y

1
k ×2 Y

2
k

∥∥.

2 Compute vk+1 := max{vY 2 , vY 1 , vX};

If vk+1 = vY 2 then update: Xk+1 = Xk, Y
1
k+1 = Y 1

k , and Y 2
k+1 = Y 2;

If vk+1 = vY 1 then update: Xk+1 = Xk, Y
1
k+1 = Y 1, and Y 2

k+1 = Y 2
k ;

If vk+1 = vX then update: Xk+1 = X, Y 1
k+1 = Y 1

k , and Y 2
k+1 = Y 2

k ;

3 If |vk+1 − vk| < ε, go to Step 4. Otherwise, set k := k + 1, and go to Step 1.

4 Print the k1×k2 co-clusters of A according to the assignment matrices Y 1
k+1, Y

2
k+1.

3.4 Numerical Experiments

We use two microarray datasets to test our algorithm and make comparisons with other

clustering and co-clustering methods. The first dataset is the gene expression of a yeast

cell cycle dataset with 2884 genes and 17 conditions, where the expression values are

in the range 0 to 595. The second dataset is the gene expression of a human B-cell

lymphoma dataset with 4026 genes and 96 conditions, where the values are in the range

−749 and 642. The detailed information about the datasets could be found in Cheng

and Church [22], Tavazoie et al. [104] and Alizadeh et al. [3].

3.4.1 Implementation Details and Some Discussions

Our algorithm is implemented using C++. The experimental testing is performed on a

regular PC (processor: Pentium dual-core CPU, T4200 @ 2.00GHz 2.00GHz; memory:
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Figure 3.1: The final objective function values (the right axis) and the running time

(the left axis, in seconds) of 50 runs of our algorithm with random initial values of the

three matrices X, Y 1 and Y 2 on the yeast dataset to generate 30× 3 co-clusters.

3GB; operating system: 64-bit windows 7; compiler: Microsoft visual C++ 2010). The

figures are generated using MATLAB R2010a.

We tested our algorithm using different initial values of the three matrices X, Y 1

and Y 2. The setup of the initial values of the three matrices includes using random

values for the three matrices, using subsets of values in A to initialize X, limiting the

number of 1s to be one in each row of matrices Y 1 and Y 2, and using the values of the

matrices Y 1 and Y 2 to calculate the values of the matrix X. We found out that the

initial values of the three matrices will not significantly affect the convergence of our

algorithm; see Figure 3.1 for the final objective function values and the running times

over 50 runs for the yeast dataset to generate 30× 3 co-clusters.

We also tested our algorithm for different numbers of partitions of the rows and

the columns, that is, different values of k1 and k2. For example, when k1 = 30 and
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k2 = 3, our program generates the co-clusters of the yeast cell dataset in 40.252 seconds

with the final objective function value -7386.75, and when k1 = 100 and k2 = 5, our

program generates the co-clusters of the yeast cell dataset in 90.138 seconds with the

final objective function value -6737.86. The running time of our algorithm is comparable

to the running time of the algorithms developed in [23].

Refer to Figure 3.2 for the objective function value versus iteration of our algorithm

on the yeast cell dataset and the human lymphoma dataset. The average initial and

final objective function values over 20 runs for the yeast dataset to generate 30 × 3

co-clusters are -25818.1 and -7323.42. The average initial and final objective function

values over 20 runs for the human lymphoma dataset to generate 150 × 7 co-clusters

are −143958 and −119766. There are 100 iterations of our implemented algorithm. We

can see that our algorithm converges rapidly.

Figure 3.2: The figure on the left shows the objective function value vs. iteration of

our algorithm on the yeast dataset to generate 30 × 3 co-clusters. The figure on the

right shows the objective function value vs. iteration of our algorithm on the human

dataset to generate 150× 7 co-clusters.
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3.4.2 Testing Results using Microarray Datasets

In the following we present some exemplary co-clusters identified by our algorithm. We

compare the co-clusters with those identified by other approaches. For all the figures

presented here, the x-axis represents the different number of conditions and the y-axis

represents the values of the gene expression level.

Figure 3.3 shows four co-clusters of the yeast cell dataset generated when the two

parameters k1 = 20 and k2 = 3. In Figure 3.3, the two co-clusters in the same row

contain the same sets of genes but in two different sets of conditions, and the two

co-clusters in the same column show two different groups of genes on the same set of

conditions. Each of the four co-clusters from top-left to bottom-right has the following

(number of genes, [list of conditions]) respectively (148, [condition 0, 1, 5, 8, 11, 12]),

(148, [condition 2, 3, 4, 6, 7]), (292, [condition 0, 1, 5, 8, 11, 12]), and (292, [condition

2, 3, 4, 6, 7]).

We can see from the co-clusters shown in Figures 3.3, 3.4 and other generated

co-clusters that our algorithm can effectively identify groups of genes and groups of

conditions that exhibit similar expression patterns. It can discover the same subset of

genes that have different expression levels over different subsets of conditions, and can

also discover different subsets of genes that have different expression levels over the

same subset of conditions.

The four co-clusters in Figure 3.3 are closely related to the clusters of Tavazoie et

al. [104], where the classical k-means clustering algorithm was applied and the yeast

cell cycle gene expression dataset was clustered into 30 clusters. The bottom two co-

clusters are mainly related to their clusters 2, 3, 4, 6 and 18. The top two co-clusters

are mainly related to their cluster 1. This shows that the same group of genes have

different expression patterns over different subsets of conditions. This also shows that
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Figure 3.3: Four co-clusters of the yeast cell dataset generated when the two parameters

k1 = 20 and k2 = 3.

one or more than one co-clusters could correspond to one cluster of Tavazoie et al. [104].

We use the mean square residue score developed in [22] to evaluate the co-clusters

generated by our algorithm. We identify 12 co-clusters with the best mean square

residue scores of the yeast cell dataset when k1 = 30 and k2 = 3. The list of the

scores are 168.05, 182.04, 215.69, 335.72, 365.01, 378.37, 408.98, 410.03, 413.08, 416.63,

420.37, and 421.49. All the 12 co-clusters have the mean square residue scores less than

450. They are meaningful co-clusters.

We conduct similar experimental testing on the human lymphoma dataset. Fig-

ure 3.4 shows four exemplary co-clusters of the dataset generated when the two param-

eters k1 = 150 and k2 = 7. In Figure 3.4, the two co-clusters in the same row contain
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the same sets of genes but in different sets of conditions, and the two co-clusters in the

same column show two different groups of genes on the same set of conditions. Each

of the four co-clusters has the following (number of genes, number of conditions): (57,

9), (57,45), (27,9), and (27,45).

Figure 3.4: Four co-clusters of human cell dataset generated when the two parameters

k1 = 150 and k2 = 7.

3.4.3 Testing Results using 3D Synthesis Dataset

We test our algorithm using the 3D synthetic dataset from [101] which has six files

with each file containing 1,000 genes measured over 10 conditions with 6 time-points

for each condition. The co-clusters in Figure 3.5 show clear coherent patterns of the

3D dataset. In Figure 3.5, each curve corresponds to the expression of one gene. The
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x-axis represents the different number of time points with every 6 time-points in one

condition, while the y-axis represents the values of the gene expression level.
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Figure 3.5: Co-clusters of the 3D dataset generated when the three parameters k1 = 10,

k2 = 1 and k3 = 3.



Chapter 4

Polynomial Optimization with

Spherical Constraint

4.1 Introduction

In this chapter, we shall study some particular and practical polynomial optimiza-

tion problems. The objective functions include multilinear tensor functions, homo-

geneous polynomials (or forms) and general inhomogeneous polynomials; see func-

tions (1.1), (1.2), and (1.3) defined in Section 1.2.3. Following the notations there,

throughout this chapter we use F to denote a multilinear function defined by a ten-

sor form F , f for a homogeneous polynomial function, and p for an inhomogeneous

polynomial function. For the constraint sets of polynomial optimization are typically

homogeneous quadratic polynomial equalities or inequalities. In particular, we shall

pay special attention to the models, which include maximizing a homogeneous form

over the Euclidean ball constraint

(H) max f(x)

s.t. ‖x‖ = 1, x ∈ Rn,

34
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and maximizing a multilinear tensor form under spherical constraint

(T ) max F (x1,x2, · · · ,xd)

s.t. ‖xi‖ = 1, xi ∈ Rn, i = 1, 2, ..., d.

Also, we consider a general model where an inhomogeneous polynomial function is

maximized over the intersection of co-centered ellipsoids

(Q) max p(x)

s.t. xTQjx ≤ 1, j = 1, 2, ...,m,

x ∈ Rn,

where matrices Qj � 0 for j = 1, 2, ...,m, and
∑m

j=1Qj � 0.

Actually, the above three polynomial optimization models have been investigated

by He et al. [40, 41], and they designed approximation algorithms for the three models

(cf. [40, 41]). It is worth mentioning that problem (T ) can be viewed as a relaxation

of (H), which played a crucial role in the approximation algorithms for solving (H) in

He et al. [40]. One of the main contributions of this chapter is to reveal an intrinsic

relationship between the optimal solutions of (T ) and (H). As we shall see later, (H) has

applications in magnetic resonance imaging (MRI), the best rank-one approximation of

the super-symmetric tensor F , and the problem of finding the largest eigenvalue of the

tensor F ; see, e.g., [29, 59, 91, 92]. The work on designing an efficient algorithm for (H)

becomes much more important. Before proceeding, let us review the existing popular

algorithms for solving spherically constrained homogeneous polynomial optimization

problems.

As we know, spherically constrained homogeneous polynomial optimization models

have received some recent research attention, theoretically as well as numerically. One

direct approach is to apply the method of Lagrange multipliers to reach a set of multi-

variate polynomial equations, namely, the Karush-Kuhn-Tucker (KKT) system, which

provides the necessary conditions for optimality; see, e.g., [29, 51, 116]. In [29], one
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strives to enumerate all the solutions of a KKT system, not only the global optimum,

as all the KKT solutions will be meaningful in this application. Indeed, the authors

develop special algorithms for that purpose, e.g., the subdivision methods proposed

by Mourrain and Pavone [80] and the generalized normal forms algorithms designed

by Mourrain and Trébuchet [81]. However, the shortcomings of these methods are ap-

parent if the degree of the polynomial is high. An important application of spherically

constrained homogeneous polynomial optimizations is the best rank-one approximation

of supersymmetric tensors. As mentioned before, the main workhorse for solving it is

the ALS method. However, the ALS method is not guaranteed to converge to a global

minimum or a stationary point, only to a solution where the objective function ceases to

decrease. There are numerous extensions of the ALS method (e.g., incorporating a line-

search procedure in the ALS procedure [86, 96]). Along a related line, De Lathauwer et

al. [69] proposed the higher-order power method (HOPM) on rank-one approximation

of higher-order tensors, which can also be viewed as an extension of the ALS method.

Following up on that approach, Kofidis and Regalia [59] devised the symmetric higher-

order power method (S-HOPM) to rank-one approximation of super-symmetric tensors

and proved its convergence for super-symmetric tensors whenever their corresponding

polynomial forms have convexity or concavity. Furthermore, Wang and Qi [111] pro-

posed a greedy method, which iteratively computes the best super-symmetric rank-one

approximation of the residual tensors in order to obtain a successive super-symmetric

rank-one decomposition. Those methods have nice properties; however, they all fail

to guarantee convergence for the best rank-one approximation of a tensor, whether

the tensor is super-symmetric or not. Another entirely different but very interesting

approach, known as the Z-eigenvalue method, was proposed by Qi et al. [95]. This

heuristic cross-hill Z-eigenvalue method aims to solve homogeneous polynomial func-

tions with degree at most three.
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In this setting, we can use the MBI method to handle spherically constrained homo-

geneous polynomial optimization problem, and guarantee that the algorithm converges

to a stationary point, which is typically also global optimal in our numerical experi-

ences. The proposed MBI approach can naturally be regarded as a local improvement

scheme for polynomial optimization, to start from any good initial solutions. Therefore,

the new MBI method can be used in combination with any approximation algorithms

(such as Khot and Naor [55] and He et al. [40, 41, 42]) to achieve excellent performance

in practice while enjoying the theoretical worst case performance guarantees.

The remainder of this chapter is organized as follows. We establish a generic equiva-

lence result between the homogeneous polynomial optimization and its tensor relaxation

problem in Section 4.2. This will enable the application of the MBI method to solve

the polynomial optimization model. In Section 4.3, we present the implementation

details for solving spherically constrained homogeneous polynomial optimization. Our

numerical experiments by using randomly generated data is reported in Section 4.4.

Finally, in Section 4.5, two real applications of homogeneous polynomial optimization

are provided: one is magnetic resonance imaging (MRI), the other is the best rank-one

approximation of the super-symmetric tensor.

4.2 Generalized Equivalence Result

In He et al. [40], problem (T ) is regarded as a relaxation of (H), and an approximate

solution for (T ) is used to construct an approximate solution for (H). As we shall see

later, these two problems are actually equivalent. In fact, we can prove the following

general result.

Theorem 4.2.1. Suppose that F ∈ Rnd
is a dth-order super-symmetric tensor with

F being its corresponding multilinear function. Let Gi ∈ Rmt
be a tth-order super-
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symmetric tensor, with Gi being its corresponding multilinear function, i = 1, 2, ..., n.

Consider a mapping g : Rm 7→ Rn where the i-th component of g is given by gi(x) =

Gi(x,x, · · · ,x︸ ︷︷ ︸
t

), i = 1, 2, ..., n. If the image set g(Rm) ⊆ Rn is a linear subspace of Rn,

then

max
‖g(x)‖=1

|F (g(x), g(x), · · · , g(x)︸ ︷︷ ︸
d

)| = max
‖g(xi)‖=1, i=1,2,...,d

|F (g(x1), g(x2), · · · , g(xd))|.

Proof. Denote the linear subspace g(Rm) to be K ⊆ Rn. It is clear that the two

optimization problems in Theorem 4.2.1 are equivalent to

(Hd) max |F (y,y, · · · ,y︸ ︷︷ ︸
d

)|

s.t. ‖y‖ = 1, y ∈ K

and

(Td) max |F (y1,y2, · · · ,yd)|

s.t. ‖yi‖ = 1, yi ∈ K, i = 1, 2, . . . , d,

respectively. We shall aim to prove that v(Td) = v(Hd).

The proof is based on the induction on the order of the tensor d. It is trivially true

when d = 1. Suppose that v(Td) = v(Hd) for d with d ≥ 1. Then, for the case d + 1,

denote (ŷ1, ŷ2, · · · , ŷd, ŷd+1) to be an optimal solution of (Td+1). By induction, we

have

v(Td+1) = max
‖yi‖=1,yi∈K, i=1,2,...,d

|F (y1,y2, · · · ,yd, ŷd+1)|

(4.1)

= max
‖y‖=1,y∈K

|F (y,y, · · · ,y︸ ︷︷ ︸
d

, ŷd+1)|.

Denote S to be the set of all optimal solutions of (Td+1) with support 1 or 2, i.e.,

the number of distinctive vectors of {y1,y2, · · · ,yd,yd+1} is less than or equal to 2.

From (4.1), we know that S is nonempty. By the continuity of F and compactness of
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the feasible region of yi for i = 1, 2, . . . , d, it is not hard to verify that S is compact.

Now consider the following optimization problem:

(A) max
(y,y,··· ,y;z,z,··· ,z)∈S

yTz.

If the optimal value v(A) < 1, then let one of its optimal solution be (ŷ, ŷ, · · · , ŷ; ẑ,

ẑ, · · · , ẑ). Clearly, ŷ 6= ±ẑ, because otherwise (ŷ, ŷ, · · · , ŷ) ∈ S would have v(A) = 1,

a contradiction to v(A) < 1. Now denote ŵ = (ŷ+ẑ)/‖ŷ+ẑ‖. Since ŷ, ẑ ∈ K, ŷ 6= ±ẑ,

and K is a linear subspace of Rn, we shall have ‖ŵ‖ = 1 and ŵ ∈ span(ŷ, ẑ) ⊂ K.

Without loss of generality, we may let F (ŷ, ŷ, · · · , ŷ; ẑ, ẑ, · · · , ẑ) = v(Td+1). (Oth-

erwise use −F instead of F .) Since (ŷ, ŷ, · · · , ŷ; ẑ, ẑ, · · · , ẑ) is an optimal solution

for (Td+1) and span(ŷ, ẑ) ⊂ K, it is easy to show that (ŷ, ŷ, · · · , ŷ; ŵ, ŵ; ẑ, ẑ, · · · , ẑ)

(namely, replacing the middle (ŷ, ẑ) by (ŵ, ŵ)) is also optimal for (Td+1). Apply this

replacement procedures until either ŷ or ẑ exhausts, while keeping the optimality for

(Td+1). Without loss of generality, we may come to an optimal solution in a form of

(ŷ, ŷ, · · · , ŷ; ŵ, ŵ, · · · , ŵ) ∈ S.

Let cos θ = v(A) for some θ ∈ (0, π]. Now we shall have

ŵTŷ = cos(θ/2) > cos θ = ŷTẑ = v(A),

which contradicts the optimality of (ŷ, ŷ, · · · , ŷ; ẑ, ẑ, · · · , ẑ) for (A). Thus v(A) must

be 1, implying that (A) has a solution with support 1, which proves v(Hd+1) = v(Td+1).

One may be led to the question: are there interesting cases where g(Rm) is a

subspace? The answer is yes, and the most obvious case is to let t = 1 and g(x) = Gx

with G ∈ Rn×m, and then Theorem 4.2.1 leads us to the next corollary.

Corollary 4.2.2. If F ∈ Rmd
is a dth-order super-symmetric tensor with F being its
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corresponding multilinear function, then

max
‖Gx‖=1

|F (x,x, · · · ,x︸ ︷︷ ︸
d

)| = max
‖Gxi‖=1, i=1,2,...,d

|F (x1,x2, · · · ,xd)|.

In our particular context, our models (H) and (T ) correspond toG being the identity

matrix and m = n. The relationship between the two models was also pointed out by

Banach [9] in 1930’s. This corollary connects to the so-called “generalized multilinear

version of the Cauchy–Bouniakovski–Schwarz inequality” (Hiriart-Urruty [49]), which

states that

Let F be a super-symmetric multilinear tensor form of order d (≥ 3), and

A be a positive semidefinite matrix. If

|F (x,x, · · · ,x)| ≤ (xTAx)d/2 ∀x ∈ Rn,

then

|F (x1,x2, · · · ,xd)|2 ≤
d∏
i=1

(xi)TAxi ∀xi ∈ Rn, i = 1, 2, . . . , d.

The above inequality was shown by Lojasiewicz (see [15]), and an alternative proof can

be found in Nesterov and Nemirovski [83]. Yet, it also follows from Corollary 4.2.2 by

setting A = GTG.

On the other hand, Corollary 4.2.2 may not hold for other symmetric convex con-

straints, such as hypercube or simplex; see an example below for the case of a box.

Example 4.2.3. Denote F a diagonal matrix Diag (−1, 1), and the boxed constraints

are −e ≤ x,y ≤ e with e = (1, 1)T. Then max |F (x,y)| = max | − x1y1 + x2y2| = 2,

while max |F (x,x)| = max | − x21 + x22| = 1.

Another nontrivial special case when the condition holds is when t = 2, n = 4,

m ≥ 3, x ∈ Cm is in the complex-valued domain and Gi(x,x) is block square-free,
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i.e., the vector x can be partitioned into two parts, x̃ and x̂, and gi(x) = Gi(x,x) =

(x̃HGix̂ + x̂HGH
i x̃)/2, i = 1, 2, 3, 4. In that case, Ai, Huang, and Zhang [2] proved

that the joint numerical range g(Cm) is a convex cone. Due to the block square-free

property, it is also not pointed at any direction and hence is a subspace.

4.3 Spherically Constrained Homogeneous Polynomial Op-

timization

It is not hard to verify that (T ) is actually equivalent to the so-called best rank-one

tensor approximation problem given as

min ‖F − λ · x1 ◦ x2 ◦ · · · ◦ xd‖

s.t. λ ∈ R, ‖xi‖ = 1, xi ∈ Rni , i = 1, 2, . . . , d.

Indeed, the equivalence can be established by the following derivation.

‖F − λ · x1 ◦ x2 ◦ · · · ◦ xd‖

=
√
‖F‖2 − 2λF • (x1 ◦ x2 ◦ · · · ◦ xd) + λ2‖x1 ◦ x2 ◦ · · · ◦ xd‖2

=
√
‖F‖2 − 2λF (x1,x2, · · · ,xd) + λ2,

hence, the optimal λ should be equal to F (x1,x2, · · · ,xd). Substituting the optimal λ

into the above equation, then we need only to optimize

max F (x1,x2, · · · ,xd)

s.t. ‖xi‖ = 1, xi ∈ Rn, i = 1, 2, ..., d,

which is exactly the model (T ). The similar derivation can be found in [73, 69, 116,

59]. Traditionally, the ALS method is a popular solution method for such models

(see [59, 69]). However, the convergence of the ALS method is not guaranteed in

general, as we remarked before, and the new MBI method avoids the pitfalls regarding

the convergence.
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In the case when the given dth-order tensor F ∈ Rnd
is super-symmetric, then the

corresponding super-symmetric rank-one approximation should be

min

∥∥∥∥F − λ · x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
d

∥∥∥∥
s.t. λ ∈ R, x ∈ Rn.

Similar to the nonsymmetric case, by imposing the vector x on the unit sphere, we

can also verify that the rank-one approximation of super-symmetric tensor problem is

indeed equivalent to:

(H) max f(x) = F (x,x, · · · ,x︸ ︷︷ ︸
d

)

s.t. ‖x‖ = 1, x ∈ Rn,

where F is the multilinear tensor function defined by the super-symmetric tensor form

F . In fact, the above problem (H) is also directly related to computing the maximal

eigenvalue of the tensor F ; see Qi [91, 92].

The main contribution of this section is to present a new procedure, based on the

MBI method, to effectively compute a KKT point for (H) via (T ). The following

subsections describe the detailed procedure step by step.

4.3.1 Implementing MBI on Multilinear Tensor Form

Toward eventually solving (H), let us first consider the multilinear tensor optimization

(T ) as follows

(T ) max
∑

1≤i1≤n1,1≤i2≤n2,··· ,1≤id≤nd

Fi1i2···idx1i1x
2
i2
· · ·xdid

s.t. ‖xi‖ = 1, xi ∈ Rni , i = 1, 2, . . . , d,

which is clearly a special case of (G). Moreover, Algorithm MBI is simple to implement

in this case, as optimizing one block while fixing all other blocks is a trivial problem

to solve. In fact, simultaneously optimizing over two vectors of variables, while fixing
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other vectors, is also easy to implement; see [100, 113]. In particular, if d is even,

then we may partition the blocks as {x1,x2}, · · · , {xd−1,xd}, and then the subroutine

reduces to an eigenvalue problem, rather than least square. (Some numerical results

for the latter implementation will be presented in Section 4.4.) The flexibility in the

design of the blocks is an important factor to consider in order for the MBI method to

achieve its full efficiency.

4.3.2 Relationship between Homogeneous Polynomial Optimization

over Spherical Constraint and Tensor Relaxation Form

As mentioned in Section 4.2, we have the nice equivalence between (H) and (T ), which

is a special case of Corollary 4.2.2. That is,

Corollary 4.3.1. If F ∈ Rnd
is a dth-order super-symmetric tensor with F being its

corresponding multilinear function, then

max
‖x‖=1

|F (x,x, · · · ,x︸ ︷︷ ︸
d

)| = max
‖xi‖=1, i=1,2,...,d

|F (x1,x2, · · · ,xd)|.

For our subsequent discussion, the main purpose is to solve (H) via (T ), and so

we shall focus on the application of Corollary 4.3.1. First we remark that the absolute

value sign in the objective function of (T ) can actually be removed, since its optimal

value is always nonnegative. Similarly, if d is odd, then the absolute value sign in (H)

can also be removed, due to the symmetry of the constraint set; however, for even d, this

absolute value sign in (H) is necessary. Ni and Wang [85] proved that Corollary 4.3.1

holds only for a special case d = 4 and n = 2. Very recently, Qi [93] verified that

Corollary 4.3.1 holds for general dimensions, but the order is strict to d = 3. We have

showed that this property can be extended to a super-symmetric tensor for general

dimensions and general order tensors, which automatically gives the positive answers

to both the first two conjectures in Qi [93]. Interestingly, this result also implies that
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the best super-symmetric rank-one decomposition of a super-symmetric tensor remains

optimal even among all nonsymmetric rank-one tensors.

Corollary 4.3.1 establishes the equivalence between (H) and (T ) for odd d, as we

discussed before. For an even degree d, one may consider H as the dth-order super-

symmetric tensor associated with the homogeneous polynomial h(x) := (xTx)d/2, and

let f(x) := f(x) + τh(x), where τ = ‖F‖. In that case, f becomes nonnegative on the

sphere, and so we can again drop the absolute value sign without affecting the optimal

solutions. In both cases, solving (H) can be equivalently transformed into solving (T ),

where the MBI method applies.

One can further generalize Corollary 4.3.1 to allow the following mixed homogeneous

polynomial function (see, e.g., [42, 73]):

f(x1,x2, · · · ,xs) := F (x1,x1, · · · ,x1︸ ︷︷ ︸
d1

,x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

),

where xk ∈ Rnk for k = 1, 2, . . . , s, and the tensor form F ∈ Rn1
d1×n2

d2×···×ns
ds

has partial symmetric property, namely, for any fixed (x2,x3, · · · ,xs), F (·, ·, · · · , ·︸ ︷︷ ︸
d1

,

x2,x2, · · · ,x2︸ ︷︷ ︸
d2

, · · · ,xs,xs, · · · ,xs︸ ︷︷ ︸
ds

) is a super-symmetric d1th-order tensor form, and

so on. Denote the order of the tensor F to be d :=
∑s

k=1 ds; then Corollary 4.3.1

immediately implies that

max |f(x1,x2, · · · ,xs)| = max |F (y1,y2, · · · ,yd)|

s.t. ‖xi‖ = 1, i = 1, 2, . . . , s s.t. ‖yi‖ = 1, i = 1, 2, . . . , d.

(4.2)

This equation resolves and extends a conjecture in Qi [93] (with s = 2 and d1 = d2 = 2).

Up to now, we give the positive answers to all the conjectures of Qi [93].

Let us call the left model in the above equation

(M) max
‖xi‖=1, i=1,2,...,s

f(x1,x2, · · · ,xs).
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Clearly, (M) is a generalization of the biquadratic model considered in Ling et al. [75]

(with s = 2 and d1 = d2 = 2) and the multiquadratic model considered by So [97]

(with d1 = d2 = · · · = ds = 2). Equation (4.2) also suggests a method to solve (M) by

resorting to its multilinear form relaxation (T ), where the MBI method applies. On the

other hand, model (M) can also be solved by directly adopting the MBI method, given

that for any fixed (x1, · · · ,xi−1,xi+1, · · · ,xs), the maximization over ‖xi‖ = 1 can be

efficiently solved, which in this case is the model (H) with degree di. In particular,

we can immediately apply the MBI method to solve the biquadratic model and the

multiquadratic model, since the corresponding subproblem is an eigenvalue problem.

We will also test our MBI method in a triquadratic case of the model (M) in Section

4.4.

4.3.3 Finding a KKT point for Homogeneous Polynomial Optimiza-

tion over Spherical Constraint

Corollary 4.3.1 suggests a way to solve the homogeneous polynomial optimization model

(H) by resorting to a seemingly more relaxed tensor optimization model (T ). However,

the equivalence is only established at optimality. Nevertheless, one may still search for

a KKT solution for (H) by means of searching for a KKT solution for (T ) with identical

block variables. (Corollary 4.3.1 guarantees that such a special KKT point exists, and

so the search is valid.) According to our computational experiences, this local search

process works very well. In most cases, the KKT solution so obtained is the true global

optimal solution of (H).

Let us formalize this search process as follows. We shall work with the version of

(T ) and (H) with an absolute sign in the objective function, like in Corollary 4.3.1.

This allows us to swap the direction from x to −x without affecting its objective. As

we discussed earlier, adding an absolute sign does not change the problem when d is
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odd, and it also solves (H) when d is even if we modify the objective by adding a

(constant) positive term, as we discussed in the previous subsection.

Algorithm KKT. Finding a KKT point for (H).

0 Input a KKT solution, say (x1
0,x

2
0, · · · ,xd0), of (T ) with objective value f0. Set

k := 0 and (r10, r
2
0, · · · , rd0) := (x1

0,x
2
0, · · · ,xd0).

1 If x1
k = ±x2

k = · · · = ±xdk, stop. Otherwise, find the closest but not identical pair

among these d vectors, i.e., solve

max
1≤i<j≤d, (xi

k)
Txj

k 6=1
(xik)

Txjk.

Denote its optimal solution to be (ik, jk), and compute zk := (xikk + xjkk )/‖xikk +

xjkk ‖.

2 Set xikk+1 := zk, x
jk
k+1 := zk and xik+1 := xik for i ∈ {1, 2, · · · , d}\{ik, jk}. Update

the objective value of (T ):

fk+1 := F (x1
k+1,x

2
k+1, · · · ,xdk+1).

3 If fk+1 > fk; or if fk+1 = fk and there is a vector xi (i ∈ {1, 2, · · · , d}\{ik, jk})

such that

xi 6=
F (x1

k+1, · · · ,x
i−1
k+1, ·,x

i+1
k+1, · · · ,x

d
k+1)

‖F (x1
k+1, · · · ,x

i−1
k+1, ·,x

i+1
k+1, · · · ,xdk+1)‖

;

in either case, starting from (x1
k+1,x

2
k+1, · · · ,xdk+1), apply Algorithm MBI to

yield a KKT point (r1k+1, r
2
k+1, · · · , rdk+1) with a larger objective value for (T ).

Otherwise, it is already a KKT point for (T ); set (r1k+1, r
2
k+1, · · · , rdk+1) :=

(x1
k+1,x

2
k+1, · · · ,xdk+1).
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4 Let k := k + 1, and go to Step 1.

The following property of Algorithm KKT is immediate.

Proposition 4.3.2. For Algorithm KKT, the following hold.

1. Each element in the sequence {(r1k, r2k, · · · , rdk)} is a KKT point for (T ). The

sequence of the objective values {fk} for (T ) is nondecreasing.

2. If (r1∗, r
2
∗, · · · , rd∗) is a cluster point of the sequence {(r1k, r2k, · · · , rdk)}, then r∗ :=

r1∗ = ±r2∗ = · · · = ±rd∗. Moreover, (r∗, r∗, · · · , r∗) or (−r∗,−r∗, · · · , −r∗) is a

KKT point for (T ), and r∗ or −r∗ is a KKT point for (H).

4.4 Numerical Experiments on Randomly Simulated Data

In this section, we shall present some preliminary test results for the algorithms pro-

posed in this chapter. All the computations are conducted in an Intel Core2 Quad

CPU 2.66 GHz computer with 4 GB RAM. The supporting software is MATLAB 7.8.0

(R2009a) as a platform. We use MATLAB Tensor Toolbox Version 2.4 [8] whenever

tensor operations are called, and we use GloptiPoly 3 [46] for general polynomial opti-

mization for the purpose of comparison and set the relaxation order of GloptiPoly 3 by

default. To simplify our implementation, we use cvx v1.2 (Grant and Boyd [31]) as a

modeling tool for our MBI subroutine. The (termination) precision for these algorithms

is set to be 10−6. For a given maximization problem dimension/structure, we run the

algorithms on a number of random instances. GloptiPoly 3 produces an upper bound

for the optimal value of that instance, which turns out to be equal to the optimal value

in many cases, since the MBI method typically would find a KKT solution equal to

the upper bound computed by GloptiPoly 3. We count the percentage of times when
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this happens in our tests. Moreover, the MBI method is essentially a local improve-

ment, and so it can be started from different initial solutions. Our tests are designed

to see the performance of the MBI method over various settings. The following list of

abbreviations refers to the results summarized in the tables to follow:

mean(P): average ratio between solution found by MBI and upper bound

by GLP;

mean(T): average cpu seconds to solve one instance;

mean(I): average number of iterations to solve one instance;

mean(T/I): average cpu seconds per iteration;

dim.: the (d, n) dimension of the test problem;

GLP: GloptiPoly 3;

# samples: total number of test instances;

# starts: number of times to run MBI from random initial solutions (keep

the best one);

Opt: percentage where the MBI solutions attain the upper bound of

GLP.

Throughout this section, all the data for testing problems are generated in the

following manner. First, a dth-order tensor F ′ is randomly generated with its nd

entries following i.i.d. normal distribution; we then symmetrize F ′ to form a super-

symmetric tensor F . For co-centered ellipsoidal constraints, we generate an n × n

matrix Q′j (j = 1, 2, . . . ,m), whose entries follow i.i.d. normal distribution, and then

let Qj = (Q′j)
TQ′j . For comparison, we call GloptiPoly 3 to get optimal value and

optimal solution if possible, or else we get an upper bound of the optimal value if

GloptiPoly 3 fails to solve the given problem instance.
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4.4.1 Multilinear Tensor Function over Spherical Constraints

Here, we present some numerical tests on (T ). In particular, we consider

(E1) max F (x,y, z,w) =
∑

1≤i,j,k,l≤nFijklxiyjzkwl

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = 1,

x,y, z,w ∈ Rn,

where tensor F is super-symmetric. The starting points (x0,y0, z0,w0) for Algorithm

MBI in our numerical experiments are all randomly generated. In our tests, we consider

all the variables in the same constraint set, and dimensions are set to be n = 2 or

n = 3. Here the total dimension of the test problems is chosen to be low since for our

comparison we need to use GloptiPoly 3, which works only for low dimensions.

The comparison is listed in Table 4.1 for (E1). Evidently, the results show that

Algorithm MBI finds good-quality solutions very quickly. The more starts we use to

run the MBI algorithm, the higher the chance we get an optimal solution. In some cases,

GloptiPoly 3 is only capable of providing an upper bound; however, our MBI solution

achieves these upper bounds, proving the optimality of both the GloptiPoly 3 bound

and the MBI solution. Besides, a majority of our simulation results show that the

KKT point (x∗,y∗, z∗,w∗) of (E1) is automatically a KKT point for the homogeneous

polynomial case, namely, their block variables are identical already.

4.4.2 Tests of Another Implementation of MBI

Algorithm MBI is optimizing one block while fixing all other blocks. As mentioned in

Section 4.3, simultaneously optimizing over two blocks of variables while fixing other

blocks works under the MBI framework as well. Indeed, the similar procedures of Algo-

rithm MBI still perform efficiently, and the convergence is guaranteed. For convenience,

we call this modified procedures MBI′. Here, we test the performance of our methods
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Table 4.1: Numerical results for (E1) when n = 2 and n = 3

dim. # samples # starts GLP MBI

mean(T) Opt mean(T) mean(P)

(4, 2) 10 1 1.5961 80% 0.1257 90.83%

2 idem 90% 0.1352 94.62%

3 idem 100% 0.1472 100%

(4, 3) 10 1 31.6348 20% 0.1735 84.03%

2 idem 50% 0.2595 92.67%

3 idem 60% 0.3113 93.52%

4 idem 90% 0.3466 98.97%

MBI and MBI′ for (T ) when d = 6:

(E2) max M(x,y, z,w,p, q) =
∑

1≤i,j,k,l,s,t≤nMijklstxiyjzkwlpsqt

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = ‖p‖ = ‖q‖ = 1,

x,y, z,w,p, q ∈ Rn,

where tensor M is super-symmetric. In our tests, we choose blocks x,y as a group,

blocks z,w as another group, and blocks p, q as the last group when implementing

MBI′. Algorithms MBI and MBI′ start from the same point (x0,y0, z0,w0,p0, q0),

which are all randomly generated as before.

Two test sets are reported for (E2). Table 4.2 reports the average computational

time, and Table 4.3 reports the average objective value, where (d, n) = (6, 10). In

Table 4.3, we test 10 random instances, and each entry is the average objective value

by running the corresponding algorithm 20 times. Tables 4.2 and 4.3 show that Algo-

rithm MBI′ is comparable to Algorithm MBI in terms of the solution quality produced;

however, Algorithm MBI′ requires much less computational effort on average. This

means that the MBI approach is quite flexible and various innovative implementations
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Table 4.2: Numerical results for (E2) when n = 5, 10, 15

dim. # samples MBI MBI′

mean(T) mean(I) mean(T/I) mean(T) mean(I) mean(T/I)

(6, 5) 10 0.3087 57.3 0.0055 0.1438 20.4 0.0077

(6, 10) 10 4.7894 86.7 0.0551 1.1106 38.0 0.0297

(6, 15) 10 75.1913 127.3 0.5901 22.9004 68.3 0.3346

Table 4.3: Numerical results for (E2) when (d, n) = (6, 10)

1 2 3 4 5 6 7 8 9 10

MBI 4.3856 4.6422 4.8539 4.6369 4.6196 4.2168 4.5176 4.6628 4.5077 4.3039

MBI′ 4.2235 4.8136 4.7079 4.5767 4.6906 4.4538 4.3806 4.7177 4.2873 4.3228

are possible, and it should in fact be encouraged.

4.4.3 General Polynomial Function over Quadratic Constraints

In this part, we report numerical tests on (Q) when d = 4:

(E3) max p(x) = F4(x,x,x,x) + F3(x,x,x) + F2(x,x) + F1(x)

s.t. xTQjx ≤ 1, j = 1, 2, ...,m,

x ∈ Rn,

where tensors F4 ∈ Rn4
, F3 ∈ Rn3

, F2 ∈ Rn2
, and F1 ∈ Rn are super-symmetric and

Qj � 0 for j = 1, 2, . . . ,m. One natural way to handle an inhomogeneous polynomial

function p(x) is through homogenization, e.g., the technique used in [41]. To be specific,

by introducing an auxiliary new variable xh, which is set to be 1, we can homogenize

function p(x) as

p(x) = F

((
x

xh

)
,

(
x

xh

)
,

(
x

xh

)
,

(
x

xh

))
:= F (x̄, x̄, x̄, x̄) = f(x̄),
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where f(x̄) is an (n+ 1)-dimensional homogeneous polynomial function of degree four,

and its associated fourth-order super-symmetric tensor form F ∈ R(n+1)4 . Therefore,

by denoting x̄ :=
(
x
1

)
, we may equivalently rewrite (E3) as

(Ē3) max f(x̄) = F
((

x
1

)
,
(
x
1

)
,
(
x
1

)
,
(
x
1

))
s.t. xTQjx ≤ 1, j = 1, 2, ...,m,

x ∈ Rn.

We shall first call Algorithm MBI to solve the multilinear relaxation problem for

(Ē3) and get a KKT point, to be denoted by (x1
∗,x

2
∗,x

3
∗,x

4
∗). Then, we select the best

one from those four vectors as a feasible point for the original model (E3), namely,

xMBI = arg max1≤i≤4{p(xi∗)}. Unlike the equivalence between (H) and (T ) followed

from Corollary 4.3.1 due to its special structure, (Ē3) may not be equivalent to its

tensor relaxation problem. Hence, in the last set of tests, starting from the point xMBI,

we further apply a projected gradient method [17] (denoted by PGM in Table 4.5) to

improve the solution of (E3). For an overview of gradient projection methods, one is

referred to [12]. This method is also used as a supplement in [111, 95] for handling

homogeneous polynomial optimization over ball constraint or spherical constraint. The

projected gradient method is applied because this method converges to a KKT point

of the problem concerned, and also the optimal projection from Rn onto the ellipsoidal

constraints set E = {x ∈ Rn | xTQjx ≤ 1, j = 1, 2, ...,m} can be formulated as a

second-order cone program (SOCP):

min ‖x− y‖

s.t. x ∈ E,

where y ∈ Rn is given, which we call cvx to solve under the same computational

platform. The starting points for the MBI are all randomly generated as before. Two

test sets are constructed for (E3). First, we fix m = 15 for varying n, and we test the
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Table 4.4: CPU seconds of GloptiPoly 3 and MBI for (E3) when m = 15

n 5 10 15 20 30 40

GLP 2.1830 14.6947 578.3944 ∞ ∞ ∞

MBI 24.8763 42.1047 42.9723 43.6567 44.8106 44.9569

performance of GloptiPoly 3 and MBI in terms of the computational time, regardless

of the quality of xMBI obtained by running MBI once. (Recall the relaxation order of

GloptiPoly 3 is set by default.) Numerical results are listed in Table 4.4. Each entry is

the average time of 10 randomly generated instances. From Table 4.4, we conclude that

the computational time of MBI is insensitive to the dimension n, while GloptiPoly 3 is

very sensitive to the dimension. In fact, the computational time of MBI is much less

than that of GloptiPoly 3 when the dimension n gets large.

Second, we fix m = 10 and pick some lower dimensions n, whose problems can be

efficiently solved by GloptiPoly 3. We then test the performance of MBI. Specifically,

we solve (E3) by three different approaches: (1) directly using GloptiPloy 3; (2) ap-

plying MBI with randomly generated starting points to get the point xMBI; and (3)

using projected gradient method with the starting point xMBI. Numerical results are

summarized in Table 4.5, which shows the excellent performance of the MBI method.

GloptiPoly 3 is a powerful tool for solving (E3) with low dimensions. However, the

MBI method works very well for polynomial optimization over ellipsoidal constraints

even in large dimensions.

4.5 Applications

Finally, we shall test our proposed algorithms by using data from real applications,

including rank-one approximation of super-symmetric tensors, and magnetic resonance
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Table 4.5: Numerical results for (E3) when m = 10

dim. # samples GLP MBI MBI+PGM

mean(T) Opt mean(T) mean(P) Opt mean(T) mean(P)

(4, 5) 20 1.79 20% 22.81 85.57% 95% 29.68 98.21%

(4, 10) 20 13.01 0% 38.95 85.79% 95% 48.66 99.93%

(4, 12) 20 66.73 0% 41.36 89.61% 100% 50.13 100%

imaging (MRI).

4.5.1 Rank-One Approximation of Super-Symmetric Tensors

As discussed in Section 4.3, homogeneous polynomial optimization over spherical con-

straint is equivalent to the best rank-one approximation of super-symmetric tensors and

hence is solvable by our methods. We consider an example in this part from Kofidis

and Regalia (Example 1 of [59]). The authors of [59] used this example to show that

their proposed method S-HOPM did not converge for the particular super-symmetric

tensor G ∈ R3×3×3×3 with entries

G1111 = 0.2883, G1112 = −0.0031, G1113 = 0.1973, G1122 = −0.2485,

G1123 = −0.2939, G1133 = 0.3847, G1222 = 0.2972, G1223 = 0.1862,

G1233 = 0.0919, G1333 = −0.3619, G2222 = 0.1241, G2223 = −0.3420,

G2233 = 0.2127, G2333 = 0.2727, G3333 = −0.3054.

We will test this example using MBI. In our setting, the best rank-one approximation

of the tensor G is formulated as

(E4) max
∑

1≤i,j,k,l≤3
Gijklxixjxkxl

s.t. ‖x‖ = 1, x ∈ R3.
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Since the order of G is even, we choose η = 6 and construct a modified and equivalent

optimization problem of (E4)

(E5) max
∑

1≤i,j,k,l≤3
(G + ηH)ijklxixjxkxl

s.t. ‖x‖ = 1, x ∈ R3,

where H is a fourth-order super-symmetric tensor associated with the homogeneous

polynomial h(x) = (xTx)2. For the reformulated problem, we apply Algorithm MBI

to the multilinear tensor form relaxation of (E5):

(E6) max G(x,y, z,w) =
∑

1≤i,j,k,l≤3
(G + ηH)ijklxiyjzkwl

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = 1,

x,y, z,w ∈ R3.

By using MBI with randomly generated starting points, we get three local maximum

solutions for (E6). For each local maxima (x,y, z,w) we found, it shares the same

directions among these four vectors when the MBI stops, i.e., x = y = z = w. Hence,

it provides a local maxima for the original model (E5), which is also a local maxima for

(E4). In Figure 4.1, the total number of iterations in each round of MBI is presented

for each local maxima we have found. Indeed, MBI converges very quickly to a local

maxima. The optimal value for (E4) is 0.8893 (recall we should subtract 6 in the

function G(x,y, z,w)), and the optimal solutions are x∗ = ±(0.6671, 0.2487,−0.7022).

Hence, the best rank-one approximation for the super-symmetric tensor G is 0.8893x∗◦

x∗ ◦ x∗ ◦ x∗.

4.5.2 Magnetic Resonance Imaging

Next, we shall conclude this section by considering one real data set for polynomial

optimization in MRI. Ghosh et al. [29] formulated a fiber detection problem in diffusion

MRI by maximizing a homogeneous polynomial function over spherical constraint. In
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Figure 4.1: Convergence Results of MBI for (E6)

this particular case, the following polynomial optimization model is considered

max f(x)

s.t. ‖x‖ = 1, x ∈ R3,

where f(x) is a homogeneous polynomial of even degree d. The problem lives in three

dimensions as in the real world, and all its local maxima have physical meanings for

MRI.

We shall test our Algorithm MBI by using a set of data provided by Ghosh and

Deriche. The corresponding objective function f(x) is

0.74694x0
4 − 0.435103x0

3x1 + 0.454945x0
2x1

2 + 0.0657818x0x1
3

+ x1
4 + 0.37089x0

3x2 − 0.29883x0
2x1x2 − 0.795157x0x1

2x2

+ 0.139751x1
3x2 + 1.24733x0

2x2
2 + 0.714359x0x1x2

2 + 0.316264x1
2x2

2

− 0.397391x0x2
3 − 0.405544x1x2

3 + 0.794869x2
4,
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Table 4.6: Numerical results for MRI

Method KKT solution Objective value

MBI ±(0.0116, 0.9992, 0.0382) 1.0031

±(0.3166, 0.2130,−0.9243) 0.9213

±(0.9542,−0.1434, 0.2624) 0.8428

GLP ±(0.0116, 0.9992, 0.0382) 1.0031

where x = (x0, x1, x2)
T. By choosing η = 2, we adopt the same procedures for rank-

one approximation of super-symmetric tensors discussed in Section 4.5.1 to solve the

MRI problem. GloptiPoly 3 is also called for comparison. The numerical results are

reported in Table 4.6. The MBI method is able to find all three local maxima, while

GloptiPoly 3 finds only the global maximum.



Chapter 5

Logarithmically Quasiconvex

Optimization

5.1 Introduction

As seen from the previous chapter, polynomial optimization with spherical constraint

is theoretically interesting and practically solvable. In this chapter, we continue to

investigate polynomial optimization models, with general constraint. In Algorithm

KKT, we designed a polynomial-time algorithm to find a KKT solution for (H) via

its relaxation model (T ). The approach is quite straightforward but looks tedious.

One may then wonder if there is any simpler way to construct a KKT solution for

homogeneous function optimization. The answer is yes. Here in this chapter, we

propose an alternative method to search KKT solutions for homogeneous polynomial

optimization via multilinear function optimization. To begin with, let us start by

considering some special objective functions in optimization.

Convexity or concavity plays an important role in optimization. For example, mini-

mizing a convex function over a convex set can be solved in general in polynomial-time.

58
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It is not hard to check the convexity of a quadratic function, which only needs to test

the positive semidefiniteness of its Hessian matrix. How about checking the convexity

of quartic (fourth degree) polynomial function? It turns out to be a very challeng-

ing question. Recently Ahmadi et al. [1] proved that checking the convexity of a

quartic polynomial function is actually strongly NP-hard in general, which settles a

long-standing open question. Meanwhile, their results help to highlight a crucial dif-

ference between quadratic and quartic polynomials. An interesting work is conducted

by Jiang et al. [53], where they studied six fundamentally important convex cones of

homogeneous quartic functions, including the cone of nonnegative quartic forms, the

sum of squared quartic forms, the convex quartic forms, and the sum of fourth powered

polynomials. The complexity status of these cones are discussed as well. This work also

motivates us to study quartic or even higher degree polynomial optimization problems.

As studied in Chapter 4, Corollary 4.3.1 established an important linkage between

homogeneous polynomial optimization over spherical constraint and its multilinear form

relaxation problem. In order to drop the absolute value sign for the even degree case

in the corollary, the nonnegativity of the objective function is required. It is natural to

ask whether we can design a reasonable nonnegative function based on some particular

domain. In fact, there is an intrinsic connection between optimizing a polynomial

function and the description of all polynomial functions which are nonnegative over a

given domain. This connection was explored by Sturm and Zhang [100] for the case of

quadratic polynomials, and Luo et al. [77] for the bi-quadratic functions. We also refer

to [44, 47, 13, 1, 53] and a recent book [14] for investigating the relationship between

nonnegative polynomial functions and the sum of squares (SOS) of polynomials.

Motivated by all the discussions above, here we define a new function, to be called

logarithmically quasiconvex function, in Section 5.2. Inspired by the nice property of

the new function and Theorem 4.2.1, we establish an equivalence between homogeneous
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polynomial optimization and its tensor relaxation problem, based on a specific type of

non-negativity of the tensor form. This enables the application of the MBI method to

solve some polynomial optimization models. This also suggests a simple way to find

KKT solutions for homogeneous polynomial optimization.

5.2 Logarithmically Quasiconvex Optimization

Let us begin with the definition of logarithmically quasiconvex function.

Definition 5.2.1. Suppose F is a multilinear function induced by a 2m-th order super-

symmetric tensor F ∈ Rn2m
. Function F is called logarithmically quasiconvex (log-

quasiconvex), if

F (x1, · · · ,x1︸ ︷︷ ︸
λ1

,x2, · · · ,x2︸ ︷︷ ︸
λ2

, · · · ,xs, · · · ,xs︸ ︷︷ ︸
λs

) ≤ max
1≤i≤s

{F (xi,xi, · · · ,xi︸ ︷︷ ︸
2m

)}

∀x1,x2, · · · ,xs ∈ Rn

for any integers λi ≥ 0 (i = 1, 2, . . . , s) with
∑s

i=1 λi = 2m. In particular, if the above

inequality holds in a special case when s = m and λ1 = λ2 = · · · = λm = 2, F is called

co-quadratic quasiconvex.

To make the notation simpler, whenever appropriate in this chapter we shall use su-

perscripts to simplify F (x1, · · · ,x1︸ ︷︷ ︸
λ1

,x2, · · · ,x2︸ ︷︷ ︸
λ2

, · · · ,xs, · · · ,xs︸ ︷︷ ︸
λs

), i.e., F (xλ11 xλ22 · · ·xλss ).

For example, F (x2y2) denotes F (x,x,y,y). We shall establish an equivalence result

between homogeneous polynomial optimization and multilinear form optimization over

any constraint set, based on a special tensor form, to be called co-quadratic positive

semidefinite tensor.
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5.2.1 A Simple Motivating Example

Suppose that x,y ∈ Rn, and matrix Q ∈ Rn×n is positive semidefinite. We claim that

function F (x,y) = xTQy is log-quasiconvex. Indeed, for all x,y ∈ Rn, it is obvious

that (x− y)TQ(x− y) ≥ 0 as Q is positive semidefinite, implying that

xTQx + yTQy ≥ 2xTQy.

The above inequality further leads to

max{xTQx,yTQy} ≥ xTQy.

Therefore F is log-quasiconvex. Based on the definition of log-quasiconvex, the follow-

ing lemma is immediate.

Lemma 5.2.2. For any set S ⊆ Rn and positive semidefinite matrix Q ∈ Rn×n, it

follows that

(L2) max
x∈S

xTQx = max
x,y ∈S

xTQy. (R2)

Recall in Section 4.3.3, we designed a polynomial-time algorithm to find a KKT

solution for homogeneous polynomial optimization (H) from the solutions of multilinear

polynomial optimization (T ). However, it is much easier here to find an optimal solution

for (L2) if we know an optimal solution of multilinear optimization model (R2), since

the objective function F (x,y) = xTQy in Lemma 5.2.2 is log-quasiconvex. In the

following, we present an extension of Lemma 5.2.2.

5.2.2 Co-Quadratic Positive Semidefinite Tensor Form

Notice that the matrix Q in Lemma 5.2.2 is positive semidefinite implying the function

xTQy is log-quasiconvex. In order to generalize the result of Lemma 5.2.2, let us

introduce the following definition.
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Definition 5.2.3. A super-symmetric tensor form F ∈ Rn2m
is called co-quadratic

positive semidefinite, if its associated multilinear function

F (x2
1x

2
2 · · ·x2

m) = F (x1,x1,x2,x2, · · · ,xm,xm) ≥ 0 ∀x1,x2, · · · ,xm ∈ Rn.

Notice that by denoting f(x) = F (xm) to be the homogeneous polynomial function

induced by the tensor form F , the general positive semidefinite means that f(x) ≥ 0 for

all x ∈ Rn. In particular, when m = 1, co-quadratic positive semidefinite is equivalent

to usual positive semidefinite quadratic form, and when m = 2, co-quadratic positive

semidefinite is equivalent to f(x) being a convex function; see the following lemma.

Lemma 5.2.4. Homogeneous quartic function F (x4) is convex if and only if its asso-

ciated super-symmetric tensor form F is co-quadratic positive semidefinite.

Proof. It is straightforward to compute the Hessian matrix of F (x4), which is 12 ·

F (x,x, ·, ·). Therefore, the quartic function is convex if and only if

F (x,x, ·, ·) is positive semidefinite ∀ x ∈ Rn,

which is equivalent to

F (x,x,y,y) ≥ 0 ∀ x,y ∈ Rn.

The lemma is proved.

Therefore, when m = 2, the usual positive semidefinite quartic form F (x4) is not

necessarily convex, while convexity implies positive semidefinite. Hence, in general, co-

quadratic positive semidefiniteness is stronger than positive semidefiniteness. Interested

readers are referred to Jiang et al. [53] for a detailed discussion on different classes of

positive semidefinite quartic forms. Two examples for co-quadratic positive semidefinite

tensor forms of general order are presented below.
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Example 5.2.5. The super-symmetric tensor F =
∑k

i=1 ai ◦ ai ◦ · · · ◦ ai︸ ︷︷ ︸
2m

with ai ∈ Rn,

is co-quadratic positive semidefinite, since its associated multilinear function

F (x2
1x

2
2 · · ·x2

m) =
k∑
i=1

(aTi x1)
2(aTi x2)

2 · · · (aTi xm)2 ≥ 0 ∀x1,x2, · · · ,xm ∈ Rn.

Example 5.2.6. The super-symmetric tensor form F ∈ Rn2m
associated with homo-

geneous polynomial f(y) = ‖y‖2m = (yTy)m is co-quadratic positive semidefinite.

Explicitly, the multilinear function induced by the tensor F is as follows:

F (y1,y2, · · · ,y2m) =
1

|σ|
∑

(i1i2···i2m)∈σ

(yTi1yi2)(yTi3yi4) · · · (yTi2m−1
yi2m), (5.1)

where σ is the set of all permutations of {1, 2, . . . , 2m}, and |σ| is the total number of

the permutations.

For m = 1, tensor F is actually an n×n identity matrix, which is positive semidef-

inite, implying F is co-quadratic positive semidefinite. For m = 2, we have

F (x1,x1,x2,x2) =
1

24

(
8(xT1 x1)(x

T
2 x2) + 16(xT1 x2)

2
)
≥ 0 ∀x1,x2 ∈ Rn.

For general m ≥ 3, it is not an easy task to directly check the nonnegativity of F (x2
1x

2
2

· · ·x2
m) using (5.1). However, by using the so-called Hilbert’s identity (see, e.g., [11]),

which states that there exist vectors c1, c2, · · · , ck ∈ Rn such that

(yTy)m =

k∑
i=1

〈ci,y〉2m ∀y ∈ Rn,

the super-symmetric tensor F can then be expressed by

F =
k∑
i=1

ci ◦ ci ◦ · · · ◦ ci︸ ︷︷ ︸
2m

,

which is co-quadratic positive semidefinite as Example 5.2.5 claimed.

Remark that in the case m = 2, the number k is exponential in n in Hilbert’s

construction. In fact, it can be reduced by a polynomial function of n, see the recent

work of He et al. [38].
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5.2.3 Equivalence at Maxima

Motivated by the equivalence in Lemma 5.2.2, in this subsection we shall establish the

relationship between maximization of a homogeneous co-quadratic positive semidefinite

form and its multilinear function relaxation problem, which is actually equivalent. First,

we need the following result.

Theorem 5.2.7. If super-symmetric tensor F ∈ Rn2m
is co-quadratic positive semidef-

inite, then its associated multilinear function F is co-quadratic quasiconvex, i.e.,

F (x2
1x

2
2 · · ·x2

m) ≤ max
1≤i≤m

{F (x2m
i )} ∀x1,x2, · · · ,xm ∈ Rn.

Proof. It is sufficient to prove

m∑
i=1

F (x2m
i ) ≥ mF (x2

1x
2
2 · · ·x2

m) ∀x1,x2, · · · ,xm ∈ Rn.

In fact, the above inequality can be proved by induction on m. It is trivial when m = 1.

Suppose it holds for the case m, then for the case m+1, we need to prove the following

m+1∑
i=1

F (x2m+2
i ) ≥ (m+ 1)F (x2

1x
2
2 · · ·x2

mx
2
m+1). (5.2)

First, we claim that for any z,w ∈ Rn, it holds that

F (z2m+2) + F (w2m+2) ≥ F (z2w2m) + F (z2mw2). (5.3)

Indeed this is because

F (z2m+2) + F (w2m+2)− F (z2w2m)− F (z2mw2)

=
(
F (z2z2m)− F (z2w2m)

)
−
(
F (w2z2m)− F (w2w2m)

)
= F

(
(z + w)1(z −w)1z2m

)
− F

(
(z + w)1(z −w)1w2m

)
=

m−1∑
i=0

(
m− 1

i

)
F
(
(z + w)2(z −w)2(z2)i(w2)m−1−i

)
≥ 0,
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where the last inequality holds since F is co-quadratic positive semidefinite. Therefore

by (5.3), we have

F (x2m+2
j ) + F (x2m+2

i ) ≥ F (x2
jx

2m
i ) + F (x2m

j x2
i ) ∀ 1 ≤ i, j ≤ m+ 1.

Summing over all i < j further leads to

∑
1≤i<j≤m+1

(
F (x2m+2

j ) + F (x2m+2
i )

)
≥

∑
1≤i<j≤m+1

(
F (x2

jx
2m
i ) + F (x2m

j x2
i )
)
,

which implies that

m
m+1∑
i=1

F (x2m+2
i ) ≥

m+1∑
i=1

∑
j 6=i

F (x2
ix

2m
j ) ≥

m+1∑
i=1

mF

x2
i

∏
j 6=i

x2
j

 = m(m+1)F

m+1∏
j=1

x2
j

 ,

where in the second inequality, the induction assumption on m is applied. This proves

(5.2). Hence, F is co-quadratic quasiconvex.

Now, we are ready to show the equivalence result below, similar to Lemma 5.2.2.

Theorem 5.2.8. If F ∈ Rn2m
is co-quadratic positive semidefinite, then for any S ⊆

Rn,

max
x∈S

F (x,x, · · · ,x︸ ︷︷ ︸
2m

) (L2m)

= max
y1,y2,··· ,ym ∈S

F (y1,y1,y2,y2, · · · ,ym,ym) (M2m)

= max
x1,x2,··· ,x2m ∈S

F (x1,x2, · · · ,x2m). (R2m)

Proof. We need to prove that v(L2m) = v(M2m) = v(R2m). Clearly we have v(L2m) ≤

v(M2m) ≤ v(R2m). Besides, from Theorem 5.2.7 we know that v(L2m) ≥ v(M2m) since

F ∈ Rn2m
is co-quadratic positive semidefinite. Therefore, v(L2m) = v(M2m).

Denote (x̂1, x̂2, · · · , x̂2m) to be an optimal solution of (R2m), and let ξ1, ξ2, · · · , ξm

be Benoulli random variables, each taking values 1 and −1 with equal probability,
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satisfying Πm
i=1ξi = −1. Observe that

0 ≤ E

[
F
(

(x̂1 + ξ1x̂2)
2(x̂3 + ξ2x̂4)

2 · · · (x̂2m−1 + ξmx̂2m)2
)]

=
2∑

i1=1

4∑
i2=3

· · ·
2m∑

im=2m−1
F (x̂2

i1x̂
2
i2 · · · x̂

2
im)− 2mF (x̂1, x̂2, · · · , x̂2m).

This is because the expectation of the coefficient of each remaining term is 0, e.g.,

E[ξ21ξ2ξ3 · · · ξm] = −E[ξ1] = 0. As F is co-quadratic positive semidefinite, we have

F (x̂2
i1x̂

2
i2 · · · x̂

2
im) ≥ 0 for any i1 ∈ {1, 2}, i2 ∈ {3, 4}, · · · , im ∈ {2m − 1, 2m}. Thus,

there exist indices i′1, i
′
2, · · · , i′m, such that

F (x̂2
i′1
x̂2
i′2
· · · x̂2

i′m
) ≥ F (x̂1, x̂2, · · · , x̂2m),

which implies that v(M2m) ≥ v(R2m) and (x̂i′1 , x̂i′2 , · · · , x̂i′m) is an optimal solution of

(M2m). This shows that v(M2m) = v(R2m), completing the whole proof.

As stated in Section 4.3 and Section 5.2.1, Theorem 5.2.8 suggests an alternative

way to deal with homogeneous polynomial optimization problem, say problem (L2m).

The procedure can be divided into two steps. The first step is to relax (L2m) to multi-

quadratic form optimization (M2m) or multilinear form optimization (R2m). One choice

for solving (M2m) or (R2m) is to implement the MBI method presented in Chapter 2.

The second step is to construct a KKT solution (or, an optimal solution) for the original

problem. In this circumstance, suppose that (x1,x2, · · · ,x2m) is a KKT solution (or,

an optimal solution) for (R2m), then we can directly find the KKT solution (or, the

optimal solution) xi∗ for (L2m), where

i∗ = arg max
i∈{1,2,··· ,2m}

F (xi,xi, · · · ,xi︸ ︷︷ ︸
2m

), (5.4)

as the proof of Theorem 5.2.8 suggested. The best solution for (L2m) is already among

the solutions x1,x2, · · · ,x2m. Therefore, it is much simpler than finding KKT solu-

tions for (H) as Algorithm KKT constructed in Section 4.3.3 of Chapter 4. This is
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because the objective function of (L2m) enjoys the nice property of being co-quadratic

quasiconvex.

An immediate consequence of Theorem 5.2.8 is the following:

Corollary 5.2.9. Suppose that F ∈ Rn2m
is co-quadratic positive semidefinite. If

integers λi ≥ 0 (i = 1, 2, . . . , s) with
∑s

i=1 λi = 2m, then for any S ⊆ Rn,

max
x1,x2,··· ,xs ∈S

F (x1, · · · ,x1︸ ︷︷ ︸
λ1

,x2, · · · ,x2︸ ︷︷ ︸
λ2

, · · · ,xs, · · · ,xs︸ ︷︷ ︸
λs

) = max
x∈S

F (x,x, · · · ,x︸ ︷︷ ︸
2m

).



Chapter 6

The Tucker Decomposition and

Generalization

6.1 Introduction

As discussed in Chapter 4, finding the best rank-one decomposition of tensors, which

is a special case of CP decomposition, is NP-hard in general. However, we may apply

the MBI method to find a KKT solution for the decomposition efficiently. In this

chapter, we shall investigate another form of higher-order PCA, namely, the Tucker

decomposition, and demonstrate how the MBI method applies to solve the Tucker

decomposition.

The Tucker decomposition can be viewed as a generalization of the CP decomposi-

tion which is the Tucker model with equal number of components in each mode. The

Tucker decomposition is first introduced in 1963 by Tucker [107], which was later rede-

fined in Levin [72] and Tucker [108, 109]. The goal of the Tucker decomposition is to

decompose a tensor F into a core tensor multiplied by a matrix along each mode. It is

related to finding the best rank-(r1, r2, · · · , rd) approximation of d-th order tensors; see,

68
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e.g., [69]. Therefore, we may treat Tucker decomposition as rank-(r1, r2, · · · , rd) Tucker

decomposition, or best multilinear rank-(r1, r2, · · · , rd) approximation of tensors. Re-

garding the decomposition methods, Tucker [109] proposed three methods for solving

Tucker decomposition for three-way tensors in 1966, among which the first method is

sometimes referred to the “Tucker1” method, and is now better known as the higher-

order singular value decomposition (HOSVD) from the work of De Lathauwer et al.

[68]. In [68], they not only showed that the HOSVD for the tensor is a convincing

generalization of SVD for the matrix case, but also proposed a truncated HOSVD that

gives a suboptimal rank-(r1, r2, · · · , rd) approximation of tensors, as well as suggesting

good starting point for other algorithms. Analogous to the ALS method developed for

computing the best rank-one approximation of tensors in Chapter 4, researchers also

derived similar methods for solving the Tucker decomposition comparable to the ALS

method. Kroonenberg and De Leeuw [62] developed TUCKALS3 for computing the

Tucker decomposition for the three-way arrays, and a variant version TUCKALS2 for

computing the Tucker2 decomposition for the three-way arrays by using two modes

of the data. Later Kapteyn et al. [54] extended the TUCKALS3 to decompose the

general d-way arrays for d > 3. Moreover, De Lathauwer et al. [69] derived a more

efficient technique called higher-order orthogonal iteration (HOOI) method for com-

puting the rank-(r1, r2, · · · , rd) Tucker decomposition. The methods on how to speed

up the HOOI algorithm are considered by Andersson and Bro [4]. However, as we

mentioned earlier, the ALS method is not guaranteed to converge to a global mini-

mum or a stationary point, only to a solution where the objective function ceases to

decrease. On the other hand, there are convergence methods for the Tucker decompo-

sition. Recently, Eldén and Savas [27], and Ishtev et al. [52] simultaneously proposed

Newton-based method for computing the best multilinear rank-(r1, r2, r3) approxima-

tion of tensors, the former one is called Newton-Grassmann method, and the latter
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one is called differential-geometric Newton method. Both methods have quadratic lo-

cal convergence property; however, the computational efforts to the Hessian are very

demanding. For more information on Tucker decomposition, we refer to the excellent

survey by Kolda and Bader [61].

In the Tucker decomposition, the rank-(r1, r2, · · · , rd) is predetermined parameters.

Therefore, the question of how to choose the rank of a Tucker model (cf. [105, 56, 43])

is quite challenging, as the problem is already NP-hard for a given (r1, r2, · · · , rd).

Timmerman and Kiers [105] proposed DIFFIT procedure based on optimal fit to choose

the numbers of components in Tucker decomposition of three-way data. The procedure,

however, is rather time-consuming. Kiers and Der Kinderen [56] revised the procedure,

and computed DIFFIT on approximate fit to save computational time. Similar issue on

selecting an appropriate rank has been considered in the CP decomposition; see, e.g., a

consistency diagnostic named CORCONDIA designed in [16]. Moreover, the problem

on how to choose a “good” number of clusters for co-clustering of gene expression data

also comes up in the area of bioinformatics. As shown in Chapter 3, the co-clusters

is given at the first beginning. Later Zhang et al. [114] derived a computational

framework of co-identification that enables choosing the number of clusters.

In this chapter, we shall apply the MBI method for solving rank-(r1, r2, · · · , rd)

Tucker decomposition in Section 6.2. In Section 6.3, a new model for the Tucker

decomposition with unspecified number of components is proposed and solved by using

the MBI method. A heuristic approach is also proposed for computing the new model

in this section. Some numerical results on testing the new model will be presented in

Section 6.4.
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6.2 Convergence of Traditional Tucker Decomposition

Traditionally, the Tucker decomposition tries to find the best approximation for a

large-sized tensor by a small-sized tensor with pre-specified dimension of each mode, or

equivalently, rank of each mode. Formally, the problem can be formulated as follows.

Given a real tensor F ∈ Rn1×n2×···×nd , find a core tensor C ∈ Rr1×r2×···×rd

with pre-specified integers ri with 1 ≤ ri ≤ ni for i = 1, 2, · · · , d, that

optimizes

(TDmin) min ‖F − C ×1 A
(1) ×2 A

(2) · · · ×d A(d)‖

s.t. C ∈ Rr1×r2×···×rd ,

A(i) ∈ Rni×ri and columnwise orthogonal, i = 1, 2, . . . , d.

Here, matrices A(i)’s are the factor matrices. Without loss of generality, these matri-

ces are assumed to be columnwise orthogonal. This problem can be considered as a

generalization of best rank-one approximation problem discussed in Chapter 4.

For any fixed matrices A(i)’s, if we optimize the objective function of (TDmin) over

C, then we have

C = F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T .

We may then remove the constraint for C in (TDmin), as the following derivation claims:

‖F − C ×1 A
(1) ×2 A

(2) · · · ×d A(d)‖

=
√
‖F‖2 − 2〈F , C ×1 A(1) ×2 A(2) · · · ×d A(d)〉+ ‖C ×1 A(1) ×2 A(2) · · · ×d A(d)‖2

=
√
‖F‖2 − 2〈F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T , C〉+ ‖C‖2

=
√
‖F‖2 − 2‖C‖2 + ‖C‖2

=
√
‖F‖2 − ‖C‖2

=
√
‖F‖2 − ‖F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T ‖2,
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where the second equality holds due to the orthogonality of matrices A(i) for i =

1, 2, . . . , d. Remark that similar deductions are also discussed in [61, 69, 4]. Therefore,

(TDmin) is indeed equivalent to the following maximization problem

(TDmax) max ‖F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T ‖

s.t. A(i) ∈ Rni×ri and columnwise orthogonal, i = 1, 2, . . . , d.

Notice that (TDmax) falls into the structure of the generic model (G), we may apply

the MBI method to solve it once again. For this particular problem, the subproblems

(Gi) in Algorithm MBI can be easily solved by the singular value decomposition (SVD).

To be specific, consider subproblem

(Gi) max
A(i)

‖F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T ‖

s.t. A(i) ∈ Rni×ri and columnwise orthogonal.

We can rewrite its objective function in the matrix form as follows

‖(A(i))TF(i)

(
A(d) ⊗ · · · ⊗A(i+1) ⊗A(i−1) ⊗ · · · ⊗A(1)

)
‖.

If we denote M (i) := F(i)

(
A(d) ⊗ · · · ⊗A(i+1) ⊗A(i−1) ⊗ · · · ⊗A(1)

)
, then the optimal

solution for (Gi) is the ri leading left singular vectors of the matrix M (i). We now

present the following procedure for solving (TDmax) using the MBI method.

Algorithm TD1. The MBI method for the Tucker decomposition.

• Input: Tensor F ∈ Rn1×n2×···×nd and parameters r1, r2, · · · , rd.

• Output: Core tensor C ∈ Rr1×r2×···×rd .

0 Choose a feasible solution (A
(1)
0 , A

(2)
0 , · · · , A(d)

0 ) and compute initial objective val-

ue v0 := ‖F ×1 (A
(1)
0 )T ×2 (A

(2)
0 )T · · · ×d (A

(d)
0 )T ‖. Set k := 0.
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1 For each i = 1, 2, . . . , d, set B
(i)
k+1 to be the ri leading left singular vectors of

matrix

F(i)

(
A

(d)
k ⊗ · · · ⊗A

(i+1)
k ⊗A(i−1)

k ⊗ · · · ⊗A(1)
k

)
,

and let

wik+1 := ‖F×1 (A
(1)
k )T · · ·×i−1 (A

(i−1)
k )T ×i (B(i)

k+1)
T ×i+1 (A

(i+1)
k )T · · ·×d (A

(d)
k )T ‖.

2 Let wk+1 := max1≤i≤dw
i
k+1 and i∗ = arg max1≤i≤d w

i
k+1. Let

A
(i)
k+1 := A

(i)
k , ∀ i ∈ {1, 2, · · · , d}\{i

∗},

A
(i∗)
k+1 := B

(i∗)
k+1,

vk+1 := wk+1.

3 If |vk+1 − vk| < ε, stop, output C := F ×1 (A
(1)
k+1)

T ×2 (A
(2)
k+1)

T · · · ×d (A
(d)
k+1)

T ;

Otherwise, set k := k + 1, and go to Step 1.

By the convergence property of the MBI method discussed in Chapter 2, Algorithm

TD1 guarantees to converge to a stationary point for the Tucker decomposition, which

is not the case for many other algorithms, e.g., HOSVD method and HOOI method.

6.3 Tucker Decomposition with Unknown Number of Com-

ponents

In this section, we propose a new model for the Tucker decomposition without pre-

specifying the size of the core. In fact, the size of each mode is no longer a constant

number, it is a variable that also needs to be determined, which is a key issue in this

model. Subsequently we propose algorithms for solving this new model as well.
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6.3.1 Problem Formulation

Given a tensor F ∈ Rn1×n2×···×nd , our goal is to find a small-sized (low rank) core

tensor C to express F . We are interested in determining the rank of each mode for the

core tensor C as well as the best approximation of F . The new Tucker decomposition

model is described as follows.

Suppose the i-rank of C is ri for i = 1, 2, . . . , d. Clearly, we have integers 1 ≤ ri ≤ ni

for i = 1, 2, . . . , d. Unlike the general Tucker decomposition, ri’s are now decision

variables which need to be determined. Let c be a given constant for the summation

of all i-rank variables, i.e.,
∑d

i=1 ri = c, which in general prevent ri being too large. In

order to determine the allocation for ri’s in the total number c, we may be interested

in solving the new Tucker decomposition problem as

(NTDmin) min ‖F − C ×1 A
(1) ×2 A

(2) · · · ×d A(d)‖

s.t. C ∈ Rr1×r2×···×rd ,

A(i) ∈ Rni×ri and columnwise orthogonal, i = 1, 2, . . . , d,

ri ∈ Z, 1 ≤ ri ≤ ni, i = 1, 2, . . . , d,∑d
i=1 ri = c.

It is not an easy task to solve (NTDmin), since the first two constraints of (NTDmin)

combine the block variables (e.g., A(i)) and i-rank variables ri together. A straight-

forward way is to separate these variables, and we introduce d more block variables

Y (i) ∈ Rmi×mi with mi = min{ni, c} for i = 1, 2, . . . , d, where

Y (i) = Diag (y(i)),y(i) ∈ {0, 1}mi , and

mi∑
j=1

y
(i)
j = ri.

Therefore, we may reformulate (NTDmin) by adapting the equivalence between the
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Tucker decomposition models (TDmin) and (TDmax), as follows:

(NTDmax) max ‖F ×1

(
A(1)Y (1)

)T ×2

(
A(2)Y (2)

)T · · · ×d (A(d)Y (d)
)T ‖

s.t. A(i) ∈ Rni×mi and columnwise orthogonal, i = 1, 2, . . . , d,

y(i) ∈ {0, 1}mi , i = 1, 2, . . . , d,∑mi
j=1 y

(i)
j ≥ 1, i = 1, 2, . . . , d,∑d

i=1

∑mi
j=1 y

(i)
j = c.

Remark that in (NTDmax) the variables r1, r2, · · · , rd are already replaced by y
(i)
j .

Denote X := F ×1

(
A(1)Y (1)

)T ×2

(
A(2)Y (2)

)T · · · ×d (A(d)Y (d)
)T ∈ Rm1×m2×···×md . If

the feasible solution for block variables Y (1), Y (2), · · · , Y (d) are all in the form of

Ŷ (i) = Diag (1, · · · , 1︸ ︷︷ ︸
ri

, 0, · · · , 0︸ ︷︷ ︸
mi−ri

), i = 1, 2, . . . , d, (6.1)

i.e., the first ri components of ŷ(i) are all ones, and the rest are all zeros, then the

size of the tensor X can be reduced to r1 × r2 × · · · × rd by deleting all the tails of

zero components in all modes, and the rank of the tensor X in each mode is equal

to r1, r2, · · · , rd, respectively. This observation, however establishes an equivalence

between (NTDmin) and (NTDmax). As we shall see in the next subsection, we may

force the feasible solution Y (i) to be in the form of equation (6.1), and then construct

a core tensor with rank r1 × r2 × · · · × rd, which is exactly the same size of the core

tensor C to be optimized in (NTDmin).

6.3.2 Implementing the MBI Method on Tucker Decomposition with

Unknown Number of Components

Let us now focus on the model for the Tucker decomposition with unknown number

of components in the maximization form, i.e., (NTDmax). Recall that the separable

structure of (G) in Chapter 2 is required to implement the MBI method. Therefore,
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we move the equality constraint of (NTDmax) to its objective function. To be specific,

let λ ≥ 0 be a penalty parameter, and define the following penalty function model

(PTD) max ‖F ×1

(
A(1)Y (1)

)T ×2

(
A(2)Y (2)

)T · · · ×d (A(d)Y (d)
)T ‖2

−λ
(∑d

i=1

∑mi
j=1 y

(i)
j − c

)2
s.t. A(i) ∈ Rni×mi and columnwise orthogonal, i = 1, 2, . . . , d,

y(i) ∈ {0, 1}mi , i = 1, 2, . . . , d,∑mi
j=1 y

(i)
j ≥ 1, i = 1, 2, . . . , d.

Let us denote the penalty function (i.e., the objective function of (PTD)) to be

p(λ,A(1), A(2), · · · , A(d), Y (1), Y (2), · · · , Y (d)). We are now ready to apply the MBI

method for (PTD) since the block constraints are separable.

Before presenting formal algorithms for (PTD), let us first consider the subproblems

which may come up in the procedure of the MBI method. Without loss of generality,

we wish to optimize A(1) and Y (1) while all other block variables are fixed, i.e.,

(PTD1) max ‖
(
A(1)Y (1)

)T
W (1)‖2 − λ

(∑m1
j=1 y

(1)
j + c̄1

)2
s.t. A(1) ∈ Rn1×m1 and columnwise orthogonal,

y(1) ∈ {0, 1}m1 ,∑m1
j=1 y

(1)
j ≥ 1,

whereW (1) := F(1)

(
A(d)Y (d) ⊗A(d−1)Y (d−1) ⊗ · · · ⊗A(2)Y (2)

)
and c̄1 :=

∑
i 6=1

∑mi
j=1 y

(i)
j −

c.

The above model can be handled in the following way. First, as optimizing A(1) is

irrelevant to the penalty term, we may get the optimal solution Ā(1) as the m1 leading

left singular vectors of matrix W (1) using SVD. Let V1 = (Ā(1))
T
W (1), and denote

wj (j = 1, 2, . . . ,ml) to be the square of 2-norm of the j-th row vector for matrix V1.

Next, we search for the optimal Y (1) for given optimal A(1). Observe that
(
y
(1)
j

)2
= y

(1)
j
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for j = 1, 2, . . . ,m1, this issue can be casted in solving the following problem

(PTDy(1)) max −λ
(∑m1

j=1 y
(1)
j

)2
+ ĉTy(1)

s.t. y(1) ∈ {0, 1}m1 ,∑m1
j=1 y

(1)
j ≥ 1,

where ĉ = w − 2λ c̄1 e with e = (1, 1, · · · , 1)T and w = (w1, w2, · · · , wm1)T . Although

(PTDy(1)) looks like combinatorial, it is solvable in polynomial-time. This is because

the possible values for
∑m1

j=1 y
(1)
j are in the set of {1, 2, · · · ,m1}, and for any fixed∑m1

j=1 y
(1)
j , deciding optimal y(1) can be done by the greedy algorithm. Thus we only

need to do m1 trials and pick the best solution.

From the above discussions, we know that the optimal solution Y (1) will automati-

cally satisfy the formation (6.1), due to the method of selecting optimal A(1) of (PTD1),

and we can update A(1) and Y (1) simultaneously in the Maximum Improvement step

of the MBI method for a given penalty parameter λ. To summarize, the whole proce-

dure for solving (NTDmax) using the MBI method and penalty function method (cf.

[12, 102]) is as follows.

Algorithm TD2.

The MBI method for the Tucker decomposition with unknown number of

components.

• Input: Tensor F ∈ Rn1×n2×···×nd and parameters c > 0, σ > 0.

• Output: Core tensor C ∈ Rm1×m2×···×md .

0 Choose a penalty parameter λ0 > 0 and a feasible solution (A
(1)
0 , A

(2)
0 , · · · , A(d)

0 ,

Y
(1)
0 , Y

(2)
0 , · · · , Y (d)

0 ) with A
(i)
0 ∈ Rni×mi and y

(i)
0 ∈ {0, 1}mi for i = 1, 2, . . . , d.
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Compute initial objective value v0 := p(λ,A
(1)
0 , A

(2)
0 , · · ·A(d)

0 , Y
(1)
0 , Y

(2)
0 , · · · , Y (d)

0 ).

Set k := 0, l := 0.

1 For each i = 1, 2, . . . , d, solve

(PTDi) max p(λl, A
(1)
k , · · · , A(i−1)

k , A(i), A
(i+1)
k , · · · , A(d)

k ,

Y
(1)
k , · · · , Y (i−1)

k , Y (i), Y
(i+1)
k , · · · , Y (d)

k )

s.t. A(i) ∈ Rni×mi and columnwise orthogonal,

y(i) ∈ {0, 1}mi ,∑mi
j=1 y

(i)
j ≥ 1.

Denote its optimal solution to be
(
A

(i)
k+1, Y

(i)
k+1

)
, and compute

wik+1 := p(λk, A
(1)
k , · · · , A(i−1)

k , A
(i)
k+1, A

(i+1)
k , · · · , A(d)

k ,

Y
(1)
k , · · · , Y (i−1)

k , Y
(i)
k+1, Y

(i+1)
k , · · · , Y (d)

k ).

2 Let wk+1 := max1≤i≤dw
i
k+1 and i∗ = arg max1≤i≤d w

i
k+1, and let

A
(i)
k+1 := A

(i)
k , Y

(i)
k+1 := Y

(i)
k , ∀ i ∈ {1, 2, · · · , d}\{i∗},

A
(i∗)
k+1 := A

(i∗)
k+1, Y

(i∗)
k+1 := Y

(i∗)
k+1 ,

vk+1 := wk+1.

3 If |vk+1 − vk| < ε1, go to Step 4; Otherwise, set k := k + 1, and go to Step 1.

4 If λl q(Y
(1)
k+1, Y

(2)
k+1, · · · , Y

(d)
k+1) < ε2, stop and output core tensor C; otherwise, set

λl+1 := σλl and l := l + 1, and go to Step 1.

We remark that when the algorithm stops, we can shrink the size of core tensor to

(r1, r2, · · · , rd), where ri is the number of non-zero elements in Y
(i)
k+1.
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6.3.3 A Heuristic Approach

In order to save computational efforts, in this subsection we present a heuristic approach

to the Tucker decomposition with unknown number of components. We know that if

each i-rank (i = 1, 2, . . . , d) of core tensor C is given, then the problem becomes the

traditional Tucker decomposition discussed in Section 6.2, which can be solved by the

MBI method. Besides, as we discussed in Section 6.3, the key issue is about how to

allocate the constant number c to each i-rank of the core tensor. Thus, the optimal

value of (TDmax) can be considered as a function of (r1, r2, · · · , rd). Here, the heuristic

approach on distributing the constant number c is again based on the MBI method.

Basically, to allocate the i-rank ri (i = 1, 2, . . . , d), there are two alternative routines:

one is decreasing rank strategy (i.e., we start from large number ri’s and decrease

them until
∑d

i=1 ri = c); the other is increasing rank strategy (i.e., we start from small

number ri’s and increase them until
∑d

i=1 ri = c). The following heuristic approach is

based on the decreasing rank strategy.

Algorithm TD3. A heuristic approach.

• Input: Tensor F ∈ Rn1×n2×···×nd .

• Output: ranks r1, r2, · · · , rd and core tensor.

0 Choose initial ranks r1, r2, · · · , rd with
∑d

i=1 ri > c.

1 Use the MBI method to solve (TDmax), and let

g(r1, r2, · · · , rd) := ‖F ×1 (Â(1))T ×2 (Â(2))T · · · ×d (Â(d))T ‖

when the MBI method converges to the solution (Â(1), Â(2), · · · , Â(d)).
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2 For each i = 1, 2, . . . , d, delete the ri-th column of matrix Â(i), and compute

g(r1, · · · , ri−1, si, ri+1, · · · , rd)

with si = ri − 1. Let i∗ := arg max1≤i≤d g(r1, · · · , ri−1, si, ri+1, · · · , rd).

Update ri∗ := ri∗ − 1.

Repeat this procedure until
∑d

i=1 ri = c.

3 Use the MBI method to solve (TDmax) with (r1, r2, · · · , rd) satisfying
∑d

i=1 ri = c.

6.4 Numerical Experiments

In this section, we shall present some preliminary test results for the algorithms pro-

posed for solving the Tucker decomposition with unknown number of components. All

the computations are conducted using the same computer as the one conducting the

numerical experiments in Section 4.4 of Chapter 4. The supporting software is MAT-

LAB 7.8.0 (R2009a) as a platform. We use MATLAB Tensor Toolbox Version 2.4 [8]

whenever tensor operations are called, and also use it to solve the Tucker decomposition

with given rank-(r1, r2, · · · , rd), where the embedded method is the ALS method and

the (termination) precision is set to be 10−4 by default.

The parameter σ of Algorithm TD2 is set to be 2. The starting points (A
(1)
0 , A

(2)
0 ,

· · · , A(d)
0 ) are randomly generated, and the starting points Y

(i)
0 for i = 1, 2, . . . , d, are

all set to be Diag (1, 0, 0, · · · , 0︸ ︷︷ ︸
mi−1

). The (termination) precisions are all set to be 10−4 in

this algorithm.

The initial ranks of Algorithm TD3 are set to be ri = min(ni, c), for i = 1, 2, . . . , d.

The starting points (A
(1)
0 , A

(2)
0 , · · · , A(d)

0 ) for solving (TDmax) in Step 1 of Algorith-

m TD3 are randomly generated when using the MBI method and the (termination)



6.4 Numerical Experiments 81

precision is set to be 10−2 , while in Step 3 of this algorithm the starting points

(A
(1)
0 , A

(2)
0 , · · · , A(d)

0 ) for solving (TDmax) is obtained from Step 2 of this algorithm and

the (termination) precision is set to be 10−4 for the MBI method.

For the given tensor F and the computed rank-(r1, r2, · · · , rd) approximation F̂ ,

the relative square error (RSE) of the approximation is defined as ‖F −F̂‖/‖F‖. Here,

we use another term fit to measure the closeness of the approximation, which is equal to

1−‖F − F̂‖/‖F‖. The following list of abbreviations refers to the results summarized

in the tables to follow:

Time: cpu seconds to solve the instance;

ALS: the command tucker als in MATLAB Tensor Toolbox Version 2.4;

TD2-fit: compute the fit by using the ALS method with the ranks obtained

from Algorithm TD2;

TD3-fit: compute the fit by using the ALS method with the ranks obtained

from Algorithm TD3;

mean(fit): average fit by running the ALS method 10 times with randomly

generated feasible ranks.

We shall test two real three-way array datasets, one is from the Enron e-mail corpus

(the dataset was provided to us by Professor Nikos Sidiropoulos), to be called Dataset

1, whose size is 184 × 184 × 44; the other one is 3D Arabidopsis gene expression data

(this dataset was provided to us by Professor Xiuzhen Huang), whose size is 2369×6×9,

to be called Dataset 2.

The initial penalty parameter for testing Dataset 1 for Algorithm TD2 is set to

be λ0 = 20, while it is set to be λ0 = 100 for testing Dataset 2. The results of

our experiments are summarized in Tables 6.1 and 6.2 for Dataset 1 and Dataset 2,
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Table 6.1: Numerical results for Dataset 1

c Algorithm TD2 Algorithm TD3 ALS

(r1, r2, r3) Time fit (r1, r2, r3) Time fit TD2-fit TD3-fit mean(fit)

3 (1, 1, 1) 0.9963 17.78% (1, 1, 1) 1.8489 18.58% 17.77% 17.77% 17.77%

5 (2, 2, 1) 5.7216 19.93% (2, 2, 1) 3.2380 22.74% 19.94% 19.94% 18.81%

10 (3, 4, 3) 9.7469 29.68% (4, 4, 2) 2.0878 33.14% 29.68% 27.16% 20.81%

20 (8, 8, 4) 20.0316 38.13% (8, 9, 3) 4.6761 43.89% 37.90% 36.47% 25.89%

30 (12, 12, 6) 34.5752 42.87% (12, 14, 4) 17.3214 49.74% 42.57% 41.58% 33.09%

Table 6.2: Numerical results for Dataset 2

c Algorithm TD2 Algorithm TD3 ALS

(r1, r2, r3) Time fit (r1, r2, r3) Time fit TD2-fit TD3-fit mean(fit)

3 (1, 1, 1) 0.6079 85.85% (1, 1, 1) 4.0984 85.96% 85.85% 85.85% 85.85%

5 (2, 1, 2) 13.9852 86.66% (2, 1, 2) 7.6941 87.73% 86.74% 86.74% 86.01%

10 (4, 2, 4) 14.9092 89.81% (3, 5, 2) 8.2450 94.03% 89.82% 88.26% 86.61%

15 (7, 3, 5) 15.793 91.94% (6, 5, 4) 8.4225 95.60% 91.97% 91.47% 89.15%

20 (10, 4, 6) 11.8375 93.60% (8, 3, 9) 4.0474 93.25% 93.60% 92.61% 92.71%

respectively. As we observe, the numerical results show the excellent performance of

Algorithms TD2 and TD3. Based on these two tables, we observe that the information

of ranks r1, r2, r3 provided by Algorithms TD2 and TD3 are more suitable than the

randomly generated feasible three-tuple ranks for the ALS method in terms of the fit.

Moreover, we observe that Algorithm TD2 appears to work better in combination with

the ALS method than Algorithms TD3 does.



Chapter 7

Conclusion and Recent

Developments

This thesis is based on an analysis of a specific block-variable improvement method,

called the Maximum Block Improvement (MBI) method, for solving generic models.

Our MBI method guarantees to converge to a stationary solution, while all other exist-

ing algorithms do not have that property (e.g., the BCD method and the ALS method

mentioned in Chapter 2, the HOSVD method and the HOOI method mentioned in

Chapter 6). Another advantage is that our proposed MBI method can be applied to

solve any optimization model with separate block constraints. Due to this flexibility,

we are able to apply the method to various applications. One direct application is

found in bioinformatics, where we propose a new framework for co-clustering of high-

dimensional gene expression data based on tensor optimization model and then apply

the MBI method to solve the problem. Then, we focus on some particular polynomi-

al optimization problems. Some equivalence results between the multilinear function

optimization models and their homogeneous polynomial optimization counterparts are

established, which makes it possible to apply the MBI method to solve the homoge-
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neous polynomial optimization models. Hence, the MBI method is capable of finding

the best rank-one approximation of a given tensor, whether it is super-symmetric or

not. Moreover, the MBI method can be used to find the best multilinear rank approx-

imation of a higher-order tensor under the framework of Tucker decomposition. In the

case that the rank information of Tucker decomposition is not given, we devise a model

of Tucker decomposition with unknown number of components, where the ranks will

be determined when the MBI method stops. Our numerical experiments show that

the MBI method is actually very effective for solving those practical problems, and it

typically produces high quality solutions.

The results presented in this thesis are mostly based on our research papers [19,

115, 20, 21]. To be specific, Chapter 2 and Chapter 4 are mainly based on [19], Chapter

3 is mainly based on [115], Chapter 5 is mainly based on [20], and Chapter 6 is mainly

based on [21]. Since the MBI method can handle generic models if the block variables

are separable in the constraints, it creates the opportunities for solving many other

practical problems. In fact, there are some follow-up studies to explore the potential

capabilities of the MBI method. Very recently, A. Aubry et al. [7] present a cognitive

approach to design phase-only modulated waveforms sharing a desired ambiguity func-

tion in the research area of radar systems, and propose algorithms based on our MBI

method to solve a quartic polynomial complex-valued optimization problem. Besides,

in the research work of gene expression data, Zhang et al. [114] set up a computation-

al framework of co-identification that enables clustering to be multi-dimensional and

adaptive (as former approaches restrict single elements, e.g., a gene or a time point, to

participate in one cluster or co-cluster), which will facilitate further functional analysis

of complex biological systems. And the embedded solving technique for their model

is still based on the MBI method. Furthermore, the MBI method can also be applied

to solve other related problems, e.g., nonnegative matrix factorization, nonnegative
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rank-one tensor decomposition, nonnegative tucker decomposition. In the future, we

will study possible extensions of the MBI method and the applications, and understand

better why the MBI method and its variants work so well in practice. The potential of

the approach is very promising indeed.
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