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Abstract

The solving of Weighted CSP (WCSP) with global cost functions relies on powerful

consistency techniques, but enforcing these consistencies on global cost functions

is not a trivial task. Lee and Leung suggest that a global costfunction can be used

practically if we can find its minimum cost and perform projections/extensions on

it in polynomial time, and at the same time projections and extensions should not

destroy those conditions. However, there are many useful cost functions with no

known polynomial time algorithms to compute the minimum costs yet.

We propose a special class of global cost functions which canbe modeled as in-

teger linear programs, called polynomially linear projection-safe (PLPS) cost func-

tions. We show that their minimum cost can be computed by integer programming

and this property is unaffected by projections/extensions. By linear relaxation we

can avoid the possible NP-hard time taken to solve the integer programs, as the ap-

proximation of their actual minimum costs can be obtained toserve as a good lower

bound in enforcing the relaxed forms of common consistencies.

We show the benefits of using the conjunctions of PLPS cost functions empir-

ically in terms of runtime. We introduce integral polynomially linear projection-

safe (IPLPS) cost functions as a subclass of PLPS cost functions whose allow us

to characterize the benefits of using the conjunctions of them. Given a standard

WCSP consistencyα, we give theorems showing that maintaining relaxedα on a

conjunction of IPLPS cost functions is stronger than maintaining α on the individ-

ual cost functions. A useful application of our method is on some IPLPS global cost

functions, whose minimum cost computations are tractable and yet those for their
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conjunctions are not. We show that an important subclass of flow-based projection-

safe and polynomially decomposable cost functions falls into this category.

Experiments are conducted to demonstrate the feasibility and efficiency of our

framework. We observe orders of magnitude in runtime and search space improve-

ments by using the conjunctions of PLPS and IPLPS cost functions with relaxed

consistencies when compared with the existing approaches.

ii



摘摘摘要要要

在加權約束滿足問題中使用多元價值函數需要強大的一致相容性技術，而在

多元價值函數中維護一致相容性並不是一項簡單的工作。能在多項式時間內

找出多元價值函數的最少價值，而且不被投影及擴展操作所破壞，是讓該多

元價值函數實用的主要條件。但是，有很多有用的多元價值函數尚未有多項

式時間的算法找出其最少價值，因而未能在加權約束滿足問題中實用地使用

它們。

我們定義了一類可被建構為整數線性規劃的多元價值函數，並稱它們為

多項式線性投影安全(PLPS)價值函數。該類價值函數的最少價值能由解

答整數線性規劃中找出，而這個特性並不會被投影及擴展操作所影響。線

性鬆馳能讓我們找出一個最少價值的接近值，並避免了解答整數線性規劃

的NP-難困難性。該最少價值的接近值能作為最少價值的下限以供維護鬆馳

一致相容性概念。

在實踐中我們示範了使用PLPS價值函數的組合的好處。我們定義了整

數多項式線性投影安全(IPLPS)價值函數作為PLPS價值函數的一個子類，

並讓我們表示組合該類價值函數的好處。在一個加權約束滿足問題的一

致相容性α中，我們表示了在IPLPS價值函數的組合中維護鬆馳α比在單獨

的IPLPS價值函數中維護α強大。這結果可用在能在多項式時間中找出最少

價值，但不能在多項式時間中找出它們的組合的最少價值的IPLPS價值函數

中。基於流量投影安全(flow-based projection-safe)及可多項式分

解(polynomially decomposable)價值函數的一個重要的子類屬於這

一類的IPLPS價值函數。

在實驗中我們展示了我們的方法的可行性和效率。無論在時間或搜索空
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間的改進上，與現有的方法相比，在使用PLPS價值函數的組合和IPLPS價

值函數的組合時我們觀察到一個數量級的改進。
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Chapter 1

Introduction

This thesis reports work on how approximated consistency enforcement on global

cost functions in weighted constraint satisfaction can be performed efficiently and

effectively using linear programming techniques. We first introduce the notions of

polynomially linear projection-safe (PLPS) cost functions, which can be modeled as

integer linear programswith polynomial sizes. While standard consistencies can be

enforced on PLPS cost functions using integer programming,computing the linear

relaxation of PLPS cost functions provides a good approximation to the standard

consistencies. We show further that enforcing approximated consistencies on con-

junctions ofintegral polynomially linear projection-safe (IPLPS)cost functions, a

special subclass of PLPS functions, is stronger than enforcing standard consisten-

cies on the individual cost functions alone. Empirical results confirm the theoretical

characterization and exhibit orders of magnitude improvements on both runtime and

search space reduction. In this chapter, we first describe the Weighted Constraint

Satisfaction framework before giving the motivation and goals of this thesis. We

end the chapter with an overview of the structure of the rest of the thesis.
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Chapter 1 Introduction 2

1.1 Weighted Constraint Satisfaction Problems

Weighted Constraint Satisfaction Problems (WCSPs) [45] is a soft constraint frame-

work for modeling over-constrained problems and those withpreferences. It pro-

vides a general model for different applications, such asresource allocation[10],

combinatorial auctions, electronic markets[44], bioinformatics[43], probabilistic

reasoning[37], scheduling, and etc.

A WCSP consists of a finite set of variables, a finite domain of possible values

for each variable and a conjunction of cost functions. Each variable assignment is

associated with a cost. A cost function returns a cost for each tuple. The costs could

be used to represent preferences to the variable assignments.

Solving a WCSP is to find an assignment to the variables with the minimum

cost. Such an assignment often represents the most preferred or the least violated

situation. The basic solution technique for WCSPs is branch-and-bound search aug-

mented with various forms of consistencies, such as NC* [24],AC* [24], FDAC* [25],

and EDAC* [17]. These consistency techniques retrieve hidden information from

cost functions by transporting costs and remove infeasiblevalues from variable do-

mains to prune the search space.

1.2 Motivation and Goal

A good library of global cost functions is essential for us tomodel complex real-

life problems in WCSPs. A global cost function often has high arities but a spe-

cial semantics. The structure of the special semantics allows special and efficient

algorithms to be designed to enforce consistencies. The keyconcern with imple-

menting global cost functions is tractability. Lee and Leung [30, 28] suggest three

requirements for a global cost functions to be practical. First, computation of the

minimum cost must be efficient. Second, projections and extensions on the cost

functions can be performed efficiently. Third, projectionsand extensions on the
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cost functions will not destroy the last two efficiency requirements. This is called

projection safety[30, 28]. Lee and Leung further demonstrate that flow-based [48]

global cost functions satisfy the first two requirements andgive instances that are

flow-based projection-safe. In addition, Leeet al. [31] show another class of cost

functions, calledpolynomially decomposablecost functions, can satisfy these three

requirements and give instances of cost functions which arepolynomially decom-

posable.

Our goal is to introduce more practical global cost functions into the existing

catalog. Many global cost functions are useful, yet either their minimum cost com-

putations are NP-hard or no polynomial time algorithms are discovered yet. An

example is the soft variants of the DISJUNCTIVE constraint, which schedule jobs

without overlapping in a non-preemptive scheduling problem. Known algorithms

for computing their minimum cost are exponential.

We first discover that the efficient minimum cost computations of global cost

functions depend on the efficient enforcement ofgeneralized arc consistency (GAC)

of their related hard constraints. There are previous results on the NP-hardness of

enforcing GAC on several global constraints, which immediately lead to the same

results for the minimum cost computation of their soft variants. It is natural to ask

whether there are methods to use such cost functions efficiently in different ways

in WCSPs. We address this problem for the cost functions which can be mod-

eled as integer linear programs with relaxed consistencies. By solving the integer

linear programs with linear relaxation, approximations oftheir minimum costs are

obtained and used in the enforcement of the relaxed consistencies. Such consisten-

cies can be enforced efficiently since linear programming algorithms exhibit excel-

lent average case behavior. We call this class of cost functionspolynomially linear

projection-safe (PLPS) cost functions.

We also consider the conjunctions of PLPS cost functions since the integer lin-

ear programming formulations of PLPS cost functions allow them to be conjoined

easily. We present empirical results to demonstrate the benefits of propagating on
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conjunctions in terms of both runtime and pruning in general.

We introduce and give sufficient conditions for a special subclass of PLPS cost

functions, namelyintegral polynomially linear projection-safe (IPLPS)cost func-

tions. Our results show that propagating on individual IPLPS cost functions using

the standard (or relaxed since they are the same) consistencies is weaker than prop-

agating on the conjunction of all these IPLPS cost functionsusing the relaxed ver-

sions of the consistencies. These results give exact characterization on the strength

of the relaxed and standard consistencies on conjunctions of IPLPS cost functions

as compared against the corresponding standard consistencies on individual IPLPS

cost functions.

This thesis is an extension of the work by Lee and Shum [32].

1.3 Outline of the Thesis

The outline of the thesis is as the follows. Chapter 2 describes the previous work

on soft constraint framework, especially the WCSP framework.We also include

information about the integer linear programs, as well as the global cost functions

in weighted constraint satisfaction.

Chapter 3 provides backgrounds of WCSPs with the local consistencies and

global cost functions, as well as the integer linear programs. We also define the

notations that we use throughout the thesis.

Chapter 4 definespolynomially linear projection-safe (PLPS) cost functionsand

relaxed consistencies for some non-tractable cost functions to be used efficiently in

WCSPs. We propose a special class of global cost functions which can be modeled

as integer linear programs, and call themlinear cost functions. We give sufficient

conditions to assure that a linear cost function is a PLPS cost function. We propose

relaxed consistencies, which allow a less pruning but much more efficient (approx-

imated) consistency enforcement. We also demonstrate the benefits of propagating

on conjunctions of PLPS cost functions in terms of runtime. We give examples of
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several useful PLPS cost functions and conduct experimentson them to show the

efficiency of our proposed framework.

Chapter 5 definesintegral polynomially linear projection-safe (IPLPS) cost func-

tionsas a special subclass of PLPS cost functions. We introduce and give sufficient

conditions for (IPLPS) cost functions. Our results show that propagating on individ-

ual IPLPS cost functions using the standard consistencies is weaker than propagat-

ing on the conjunction of all these IPLPS cost functions using the relaxed versions

of the consistencies. The results are useful when we have cost functions whose

minimum cost computation is polynomial time but that for conjunctions of such

cost functions is NP-hard. We show that an important class offlow-based projec-

tion safe[28, 30] andpolynomially decomposable[31] cost functions belong such

IPLPS cost functions. We conduct experiments to demonstrate the improvements in

terms of runtime and search space of using the conjunction ofIPLPS cost functions

against the flow-based and polynomially decomposable approaches, as well as pure

integer programming. In addition, The empirical results agree with our theoretical

results.

We conclude the thesis in Chapter 6. We summarize our work on the thesis, and

give future possible directions for further work.



Chapter 2

Related Work

In this chapter, we present the research areas that are related to our work. We de-

scribe various ways of handling optimization problems, including the soft constraint

frameworks and integer linear programming. Next, we present an overview of some

related techniques used in the WCSP framework, including the global cost functions

and the local consistencies.

2.1 Soft Constraint Frameworks

In classicalconstraint satisfaction problems(CSPs) [33], all the constraints are

hard constraints which can either be satisfied or violated. In many real life prob-

lems, the requirements involve preferences which is sometimes difficult to be mod-

eled as a classic CSP. Different soft constraint frameworks are therefore proposed

to solve over-constrained and optimization problems, including the probabilistic

CSPs [18], fuzzy CSPs [46], and partial CSPs [19]. Here we give two examples

which are closely related to our work, including theconstraint optimization prob-

lems(COPs) [39] andweighted constraint satisfaction problems(WCSPs) [45].

COPs are CSPs with objective of measuring the preferences or violations. The

optimality of the solutions is modeled by different objective functions based on dif-

ferent cost valuation structures. A way to handle COPs is thesoft-as-hard(SasH) [39]

approach. SasH models soft constraints as hard constraints, where the cost returned

6
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by each constraint are modeled as a variable. In this model, the COPs can be solved

in the same ways as classical CSPs.

Another way to model optimization problems is to model them as WCSPs,

which generalizes the classical CSP framework. In a WCSP, each constraint is rep-

resented as a cost function. Instead of either be satisfied orviolated, a cost function

returns a cost representing the preference or violation degree. Solutions of a WCSP

are the tuples with the minimum cost as the most preferred or the least violated

situation.

To solve WCSPs efficiently, many consistency techniques have been proposed.

Star node consistency (NC*) and star arc consistency (AC*) were developed by

Larrosa and Schiex [24]. Consistency notions with stronger pruning power are de-

veloped later, including the full star directional arc consistency (FDAC*) [25] and

star existential directional arc consistency (EDAC*) [17].There are other forms

of consistency notions with different pruning power appeared later, including∅-

IC [50], strong∅-IC [28, 30], bound arc consistency (BAC) [50], virtual arc con-

sistency (VAC) [12, 13], andk-consistency [11]. The use of AC*, FDAC* and

EDAC* are limited to binary cost functions. They are generalized to handle high

arity cost functions like global cost functions. Sanchezet al. [43] extended AC*,

FDAC* and EDAC* for ternary cost functions. On the other hand, Cooper and

Schiex [43] defined the generalized version of AC* as GAC*. The generalized ver-

sion of FDAC*, called FDGAC*, is defined by Lee and Leung [28, 30], and they

also show that naively generalizing the EDAC* enforcement algorithm will lead to

oscillation problem when it is enforced on cost functions sharing more than one

variable. They proposed a weaker form of EDGAC* with cost providing partitions

called weak EDGAC* [29, 30].

There is another local consistency in WCSPs which also utilizes linear program-

ming techniques called optimal soft arc consistency (OSAC) [14, 13]. They model

the projection opportunities of table cost functions into an integer linear program.

By minimizing the lower bound with linear relaxation, the maximum lower bound
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can be inferred by projections is approximated.

2.2 Integer Linear Programming

Apart from soft constraint frameworks, many optimization problems can also be

modeled byinteger linear programmingas integer linear programs. Integer lin-

ear programs are special cases oflinear programsto represent discrete choices as

integrality requirements on the variables [49], which requires the variables to take

integral values. Linear programs model optimization problems with linear inequali-

ties on continuous variables. Each linear program has linear objective function [16]

which should be minimized (or maximized) such that the most preferred or the least

violated situation can be obtained.

Integer linear programs can be solved bybranch-and-boundsearch with a search

tree, where a variable is partially fixed in each search node.At each node, the sub-

problem is solved bylinear relaxationwhich is solved as a linear program, and

the descending nodes are branched by the fractional solution of the variable to be

fixed in that node until a suboptimal solution is found. The search can be speed

up by different techniques like using differentbranching strategies[4], the cutting

planes[35], and theprimal heuristics[5].

2.3 Global Cost Functions in WCSP

A global constraintis a hard constraint which could be understood asan expressive

and concise condition involving a non-fixed number of variables [2]. Since global

constraints usually have have special semantics and high-arities, having efficient

consistency enforcement algorithms are important for themto be used in CSPs.

Global constraints are one of the keys for the success of constraint programming.

Many global constraints have been proposed and studied, anda famous example is

the ALL DIFF constraint [27] which is satisfied if all the variables are taking different
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values. Many real life problems can be modeled by different global constraints.

Global cost functionsare soft variants of global constraints withviolation mea-

sures. Instead of either be satisfied or violated, a global cost function returns 0

if it is not violated; otherwise its violation measure is used to reflect how much

the related global constraint is violated. For example, theglobal cost function

SOFT ALL DIFFdec with the decomposition-basedviolation measure is a soft vari-

ant of the ALL DIFF constraint and returns the number of variable pairs not taking

different values as its violation cost.

Different techniques are developed for some global cost functions such that they

can be used in WCSP efficiently. Following the idea of Petitet al. [40] who use

flow theories to compute the minimum cost returned by soft SOFT ALL DIFFdec ,

Van Hoeveet al. [48] develop a similar idea for the soft variants of the ALL DIFF,

GCC, SAME, and REGULAR constraints.

In addition to the minimum cost computation, Lee and Leung [30, 28] further

defineT projection-safetyfor efficient use of global cost functions in WCSP.T

projection-safetyensures that the propertyT is not affected by projections and

extensions. If the propertyT allows the minimum cost to be computed effi-

ciently, T projection-safetyensures that the efficient minimum cost computation

is also not affected by projections and extensions. So,T projection-safecost

functions can be used in WCSPs efficiently as the consistency techniques can al-

ways be enforced efficiently. He show that some flow-based cost functions, in-

cluding the SOFT ALL DIFFvar, SOFT ALL DIFFdec, SOFT GCCvar, SOFT GCCval,

SOFT SAMEvar SOFT REGULARvar, and SOFT REGULARedit, belong to flow-

based projection-safe cost functions.

OtherT projection-safecost functions with different property are also discov-

ered. Leeet al. [31] show that a group of cost functions calledpolynomially de-

composable cost functions, including the SOFT AMONGvar, SOFT REGULARvar,

SOFT REGULARedit, SOFT GRAMMAR var, MAX WEIGHT, and MIN WEIGHT, can
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be represented as dynamic programs, which allow the minimumcosts to be com-

puted efficiently using divide-and-conquer and memorization.



Chapter 3

Background

In this chapter, we give the basic background for the rest of this thesis, including

the concept of the weighted constraint satisfaction problems (WCSPs), the global

cost functions, local consistencies used in WCSPs, and integer linear programming.

WCSP is a framework extending CSPs to solve combinatorial problems which in-

volve cost functions. Global cost functions are complex cost functions used to de-

scribe special structures commonly seen in most problems. Local consistencies are

incorporated for efficient solving of WCSPs. Integer linear programming is a sub-

area in the operational research for modeling combinatorial optimization problems.

3.1 Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problem(WCSP) [45] is a tuple (X ,D, C, k). X

is a set ofvariables{x1,x2,. . . ,xn}. Each variable has its finitedomainD(xi) ∈ D

of values that can be assigned to it. Each variable can only beassigned with one

value in its corresponding domain. An assignment on a set of variables can be

represented by a tupleℓ. We denoteℓ[xi] the value assigned toxi, ℓ[S] the tuple

formed from the assignment on variables in the setS ⊆ X , andL(S) is a set

of tuples corresponding to all possible assignments on the set of variablesS. C

is a set ofcost functionsWS, each with scopesS. WS maps tuplesL(S) to a

cost valuation structureV (k) = ([0 . . . k],⊕,≤). The structureV (k) contains a set

11
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of integers[0, . . . , k] with standard integer ordering≤. Addition ⊕ is defined by

a⊕ b = min(k, a+ b). The subtractiona⊖ b for a, b ∈ [0 . . . k] anda ≥ b is defined

as

a⊖ b =







a− b if a 6= k

k otherwise

Without loss of generality, we assumeC = {W∅} ∪ {Wi | xi ∈ X} ∪ C
+. W∅ is

the constant nullary cost function, representing the lowerbound of the WCSP.Wi

is a unary cost function associated with variablexi ∈ X . We may also call the

costs of the unary cost functions associated with each valueof the variables as the

unary costof that value.C+ is a set of cost functions with scopes of two or more

variables. If a cost function has a scope of only two variables {xi, xj}, we call it a

binary cost functionand we useWij to denote it.

Example 3.1.Figure 3.1 shows a WCSP with two variablesX = {x1, x2} with do-

mainsD(x1) = {a, b, c} andD(x2) = {a, b} respectively, and three cost functions

W1,W2 and C+ = {W12} given as tables.W1 andW2 are unary cost functions,

andW12 is a binary cost function. The lower boundW∅ equals to 0 and the upper

boundk is set to be 5.

x1 W1

a 1
b 0
c 5

(a) W1

x2 W2

a 1
b 2

(b) W2

x1 x2 W12

a a 2
a b 1
b a 0
b b 0
c a 0
c b 0

(c) W12

Figure 3.1:A WCSP with two variables and three cost functions

The graphical representation of this WCSP is shown in figure 3.2. A rectangle

represents a variable domain, where each value is represented by a circle inside

the rectangle of that variable. The numbers in the circles stand for the unary costs
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given by the unary cost functions, which is omitted if the corresponding value has

zero unary cost. An edge between two circles represents the binary cost associated

to the tuple formed by the two values represented by the two circles. A labelω is

associated on each edge representing the binary cost of the associated tuple. The

labelω is omitted ifω = 1. The edge is omitted ifω = 0.

x1 x2

W∅ = 0, k = 5

11
2

2

5

aa

bb

c

Figure 3.2:Graphical representation of a WCSP

The cost of a tupleℓ for a WCSP corresponding to an assignment onX is defined

as

cost(ℓ) = W∅ ⊕
⊕

xi∈X

Wi(ℓ[xi])⊕
⊕

WS∈C+

WS(ℓ[S])

A tuple ℓ is feasibleif cost(ℓ) < k. Our goal is to find a tupleℓ which has the

minimum cost among all the feasible tuples, and such a tuple is asolutionof the

WCSP. For convenience, we writemin{WS} to denotemin{WS(ℓ) | ℓ ∈ L(S)}.

Example 3.2. Given the WCSP shown in Example 3.1. The cost of each tuple is

shown as follows.

cost(a, a) = 4 cost(b, a) = 1 cost(c, a) = 6

cost(a, b) = 4 cost(b, b) = 2 cost(c, b) = 7

The tuples(c, a) and (c, b) are not feasible since their costs are equal to or

greater than the upper boundk = 5. Besides, among all tuples,(b, a) has the

minimum cost and thus it is the solution of this WCSP.
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3.1.1 Branch and Bound Search

Solutions of a WCSP can be found by systematic search. A systematic search

method guarantees to find a solution of a WCSP if there exists one, or prove no

solution. A type of systematic search techniques commonly used for WCSPs is the

branch and bound(BnB) search algorithm. It traverses the search tree of all possi-

ble assignments in a depth-first left-to-right manner. Given a WCSP (X ,D, C, k),

the procedureBranchandBound(X ,D, C, 0, k,∅) in Algorithm 1 returns one

of its solutions if there exists at least one, or proves no solution by returningk [26].

1 ProcedureBranchAndBound(X ,D, C,W∅, k, l)begin
2 if X = ∅ then
3 store(l);
4 return W∅;

5 xi ← chooseVar(X);
6 foreachv ∈ D(xi) do
7 l′ ← l ∪ {xi 7→ v};
8 W ′

∅ ← W∅ ⊕Wi(v);
9 C ′ ← lookAhead(C, {xi 7→ v});

10 enforceLocalConsistency∗();
11 if W∅ ≥ k then return k;
12 k ← BranchAndBound(X\{xi},D, C,W ′

∅, k, l
′);

13 return k;

14 ProcedurelookAhead(C, {xi 7→ v})begin
15 C ′ ← C\{Wi};
16 foreachWij ∈ C do
17 foreach b ∈ D(xj) do
18 W ′

j(b)← W ′
j(b)⊕Wij(v, b);

19 C ′ ← C ′\{Wij};

20 return C ′

Algorithm 1: Branch and Bound Search Algorithm for a WCSP

During the search, acurrently best feasible tupleis kept as the upper bound.

Initially, the upper bound is set to bek, and updated when a better feasible tuple

is found. On each search node, a value is assigned toxi and the WCSP is reduced
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to a new WCSP (X\{xi},D, C, k). C ′ is formed by the procedurelookAhead(),

which reduces the cost functions involvingxi by removingxi from that cost func-

tion.

The procedureenforceLocalConsistency∗() enforces the local consistency

on the current WCSP, which will be discussed in the next sectionand we omit the

details for the moment.

The lower bound at this nodeW∅ is then evaluated. If it is not less than the upper

bound, it proves that no feasible tuple with a cost lower thanthat of the currently

best feasible tuple can appear in the search tree beneath this search node. In this

case the algorithm immediately backtracks.

If X is reduced to an empty set, all variables are assigned, and the lower bound

W∅ equals to the cost of the corresponding tuple. If such a tupleis found, this tuple

is stored as a currently best feasible tuple and the upper bound k is updated to the

cost of this tuple, such that the algorithm has to find a new tuple having the cost

lower than that of the currently best feasible tuple. Finally the algorithm returns the

best feasible tuple found as a solution of the WCSP.

This algorithm can also be applied on non-binary cost functions by modify-

ing the procedurelookAhead(). Figure 3.3 shows a search tree for solving the

WCSP in Example 3.1 using the branch and bound search algorithm.

3.1.2 Local consistencies in WCSP

Different local consistency techniques can be incorporated with the basic branch

and bound search with the procedureenforceLocalConsistency∗(). They are

capable of removing infeasible values in the domains and deducing a lower bound of

the minimum cost, where the lower bound can be used to triggerthe backtrack from

the search nodes. The consistency notions for WCSPs are achieved by equivalence

preserving transformation.

Definition 3.3. Given two WCSPsP1 = (X ,D1, C1, k) andP2 = (X ,D2, C2, k), P1
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Figure 3.3: A branch and bound search to solve a WCSP
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is equivalent toP2 iff for all feasible tuplesℓ ∈ L(X ) in both problems,costP1
(ℓ) =

costP2
(ℓ).

In the following, we briefly discuss those consistency notions in WCSPs includ-

ing NC* [24], (G)AC* [24, 15], FD(G)AC* [25, 30], and (weak) ED(G)AC* [17,

30].

The enforcement of those consistencies involves finding theminimum costs of

the cost functions, and moving those costs between cost functions byprojections

andextensions[11]. Projections move costs fromn-nary cost functions to unary

cost functions and from unary cost functions to the nullary oneW∅. GivenS2 ⊂ S1,

a projection of costα fromWS1
toWS2

with respect toℓ ∈ L(S2) is a transformation

of (WS1
,WS2

) to (W ′
S1
,W ′

S2
), where

W ′
S1
(ℓ′) =







WS1
(ℓ′)⊖ α if ℓ′[S2] = ℓ

WS1
(ℓ′) otherwise

W ′
S2
(ℓ′) =







WS2
(ℓ′)⊕ α if ℓ′ = ℓ

WS2
(ℓ′) otherwise

If S2 = ∅, it is a projection toW∅. Extensions are the inverse of projections,

and are defined similarly. We assume that the minimum cost of the cost functions

min{W ′
S} cannot be smaller than 0 after a projection or extension operation.

Star Node Consistency

Definition 3.4. [24] Given a WCSPP = (X ,D, C, k).

• A valuev ∈ D(xi) wherexi ∈ X is star node consistent(NC*) if W∅ ⊕

Wi(v) < k.

• A variablexi ∈ X is NC* if all values inD(xi) is NC* and there exists a

valuev ∈ D(xi) such thatWi(v) = 0. Such a value is called aunary support

of xi.

• P is NC* if all its variables are NC*.



Chapter 3 Background 18

NC* increasesW∅ from unary cost functions and remove infeasible values. It

helps the branch and bound search to detect unsatisfiabilityby checking if empty

domain exists orW∅ reaches the upper boundk. We use the WCSP from Figure 3.2

as an example.

Example 3.5. The WCSP in Figure 3.4(a) is not NC*. The valuec ∈ D(x1) is not

NC* sinceW1(c) = 5 = k. Besides,x2 is not NC* since no value have zero unary

cost inD(x2). To transform the WCSP into an equivalent WCSP which is NC*, we

remove the valuec from the domain ofD(x1) as shown in Figure 3.4(b). After that

we project a cost of 1 fromW2 to W∅ as shown in Figure 3.4(c) and the resultant

WCSP is NC*.

x1 x2
W∅ = 0, k = 5

11 2

2

5

aa

bb

c

(a) The original WCSP

x1 x2
W∅ = 0, k = 5

11 2

2

aa

bb

(b) After c ∈ D(xi) is re-
moved

x1 x2
W∅ = 1, k = 5

1

1 2 aa

bb

(c) After projecting fromW2

toW∅

Figure 3.4:Enforcing NC* on a WCSP

The procedureenforceNC*() in Algorithm 2 enforce NC* for a WCSP

(X ,D, C, k) [26]. The algorithm first projects cost from each variable. Then it re-

moves infeasible values according to the lower boundW∅. The functionunaryProject()

projects a suitable cost fromWi toW∅ to produce a unary support, while the func-

tion pruneVal() removes the infeasible values which is not NC*.

(Generalized) Star Arc Consistency

Definition 3.6. [24] Given a WCSPP = (X ,D, C, k).
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1 ProcedureenforceNC*()begin
2 foreachxi ∈ X do
3 unaryProject(xi);

4 foreachxi ∈ X do
5 pruneVal(xi);

6 Function unaryProject(xi)begin
7 α := k;
8 foreachv ∈ D(xi) do
9 if α > Wi(v) then α := Wi(v);

10 W∅ := W∅ ⊕ α;
11 foreachv ∈ D(xi) do
12 Wi(v) := Wi(v)⊖ α;

13 Function pruneVal(xi):Booleanbegin
14 flag := false;
15 foreachv ∈ D(xi) s.t.Wi(v)⊕W∅ = k do
16 D(xi) := D(xi)\{v};
17 flag := true;

18 return flag;

Algorithm 2: Enforcing NC* for a WCSP

• A valuev ∈ D(xi) wherexi ∈ X is star arc consistent (AC*) with respect

to a binary constraintWij over variablesxi and xj if there exists a value

u ∈ D(xj) such thatWij(a, b) = 0. Such a value is called asimple support

of a ∈ D(xi).

• A variablexi ∈ X is AC* if it is NC* and each value inD(xi) is AC* with

respect to every binary cost function overxi

• P is AC* if all its variables are AC*.

AC* helps extract cost information hidden in binary cost functions and ex-

presses it as unary costs. We use the WCSP from Figure 3.4(c) as an example.

Example 3.7.The WCSP in Figure 3.5(a) is NC* but not AC*. The valuea ∈ D(x1)

is not AC*. If a is assigned tox1, the binary cost functionW12 returns a cost
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of at least one no matter what valuex2 takes. As shown in Figure 3.5, we can

transform the WCSP into an equivalent one which is AC* by projecting a cost of 1

fromW12(x1 = a) toW1(a).

x1 x2

W∅ = 1, k = 5

1

1
2

aa

bb

(a) The original WCSP

x1 x2

W∅ = 1, k = 5

1

2 aa

bb

(b) After projecting fromW12(x1 = a) to
W1(a)

Figure 3.5:Enforcing AC* on a WCSP

AC* can only be enforced on binary cost functions, but it can begeneralized to

generalized star arc consistency(GAC*) [15] in order to be enforced on n-ary cost

functions.

Definition 3.8. A variablexi ∈ S is GAC* [15] with respect to a cost functionWS

if:

• xi is NC*, and;

• for each valuevi ∈ D(xi), there exists valuesvj ∈ D(xj) for all j 6= i and

xj ∈ S so that they form a tupleℓ withWS(ℓ) = 0. ℓ is asimple supportof vi

with respect toWS.

A WCSP isGAC* iff all variables are GAC* with respect to all cost functions inC.

The second requirement can be reformulated as:

For each valuevi ∈ D(xi), min{WS(ℓ) | ℓ ∈ L(S) ∧ ℓ[xi] = vi} = 0.
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Lee and Leung [30, 28] gives the algorithm for enforcing GAC*.The procedure

enforceGAC*() in Algorithm 3 enforce GAC* for a WCSP(X ,D, C, k). The

propagation queueQ stores a set of variablesxj. If xj ∈ Q, all variables in the cost

functions involvingxj are potentially not GAC*. Initially all variables are inQ. A

variablexj is pushed intoQ after values are removed fromD(xj). At each iteration,

an arbitrary variablexj is removed from the queue by the functionpop() at line 4.

The existence of a simple support with respect to the non-unary cost functionCS for

the value inD(xi), wherexi ∈ S, is enforced by the functionfindSupport()

at line 8. Lastly, the infeasible values are removed by the functionpruneVal()

at lines 9 and 12. If a value fromD(xi) is removed, the simple supports of other

variables may be destroyed andxi is pushed intoQ. Lee and Leung [30, 28] also

proves that this algorithm must terminal by stating its complexity.

Full Star Directional (Generalized) Arc Consistency

Definition 3.9. [25] Given a WCSPP = (X ,D, C, k).

• The valueb ∈ D(xj) is a full supportof a valuea ∈ D(xi) if Wij(a, b) ⊕

Wj(b) = 0).

• The valuea ∈ D(xi) is directional arc consistentwith respect to a binary

constraintWij wherej > i if there exists a full support inD(xj).

• A variablexi is star directional arc consistent(DAC*) if it is NC* and each

value in its domain is directional arc consistent with repsect to all binary

constraintsWij wherej > i.

• P is fully star arc consistent(FDAC*) if all variables are AC* and DAC*.

FDAC* also helps extract hidden cost information and expresses it as unary

costs. We use the WCSP from Figure 3.5(c) as an example.

Example 3.10.The WCSP in Figure 3.6(a) is not AC* but not FDAC*. The value

a ∈ D(x1) is not FDAC* since it cannot find a full support with respect toC12. To
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1 ProcedureenforceGAC*()begin
2 Q := X ;
3 while Q 6= ∅ do
4 xj :=pop(Q);
5 flag := false;
6 foreachWS s.t.{xj} ⊂ S do
7 foreachxi ∈ S \ {xj} do
8 flag := flag ∨ findSupport(WS, xi);
9 if pruneVal(xi) thenQ := Q ∪ {xi};

10 if flag then
11 foreachxi ∈ X do
12 if pruneVal(xi) thenQ := Q ∪ {xi};

13 Function findSupport(WS, xi):Booleanbegin
14 flag := false;
15 foreachv ∈ D(xi) do
16 α := min{WS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v};
17 if Wi(v) = 0 ∧ α > 0 then flag := true;
18 Wi(v) := Wi(v)⊕ α;
19 foreach ℓ ∈ L(S) s.t. ℓ[xi] = v do
20 WS(ℓ) := WS(ℓ)⊖ α;

21 unaryProject(xi);
22 return flag;

Algorithm 3: Enforcing GAC* for a WCSP

transform the WCSP into an equivalent one which is FDAC*, we extend a cost of 1

fromW2(b) toW12 as shown in Figure 3.6(b). After that we can project a cost of 1

fromW12 toC1(a) and the resultant WCSP is FDAC* as shown in Figure 3.6(c).

Similar to AC*, FDAC* can only be enforced on binary cost functions and it

can be generalized tofull star generalized arc consistency(FDGAC*) [30, 28] in

order to be enforced on n-ary cost functions.

Definition 3.11. A variablexi ∈ S isstar directional generalized arc consistent(DGAC*) [30,

28] with respect to a cost functionWS if:

• xi is NC*, and;
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x1 x2
W∅ = 1, k = 5

1

2 aa

bb

(a) The original WCSP

x1 x2
W∅ = 1, k = 5

2 aa

bb

(b) After extending
fromW2(b) toW12

3

x1 x2
W∅ = 1, k = 5

aa

bb

(c) After projecting fromW12

toC1(a)

Figure 3.6:Enforcing FDAC* on a WCSP

• for each valuev ∈ D(xi), there exists valuesvj ∈ D(xj) for all j 6= i and

xj ∈ S such that they form a tupleℓ withWS(ℓ)⊕
⊕

xj |j>iWj(ℓ[xj]) = 0. ℓ

is a full supportof vi with respect toWS.

The second requirement can be reformulated as:

For each valuevi ∈ D(xi), min{WS(ℓ) ⊕
⊕

xj |j>iWj(ℓ[xj]) | ℓ ∈

L(S) ∧ ℓ[xi] = vi} = 0.

A WCSP isfully star directional generalized arc consistent(FDGAC*) iff it is GAC*

and all variables are DGAC* with respect to all cost functions in C.

The procedureenforceFDGAC*() in Algorithm 4 enforces FDGAC* for a

WCSP [30, 28]. The propagation queuesQ andR store a set of variables. If

xj ∈ Q, all variables involving in the same cost functions asxj are potentially

not GAC*; if xj ∈ R, the variablesxi with j > i involving in the same cost

functions asxj are potentially not DGAC*. A variablexj is pushed intoQ only

after values are removed fromD(xj), or the unary support ofxj is modified. At

each iteration, GAC* is enforced first by the first inner while-loop from line 4

to 14. DGAC* is then enforced by the second inner while-loop from lines 15 to

20. Enforcing DGAC* follows the ordering from the largest index to the small-

est index such that the full supports of values in the do- mains of variables with

smaller indices are not destroyed by DGAC*-enforcement for those with larger in-

dices. The variable with the largest index inR is removed fromR by the function
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popMax() in constant time. DGAC* enforcement is performed by the procedure

findFullSupport(). Lastly, NC* is enforced by the for-loop from lines 21 to

23. Lee and Leung [30, 28] also proves that this algorithm must terminal by stating

its complexity.

(Weak) Star Existential Directional (Generalized) Arc Consistency

Definition 3.12. [17] Given a WCSPP = (X ,D, C, k).

• A variablexi is star existential arc consistent(EAC*) if there exists at least

one valuev ∈ D(xi) such thatWi(v) = 0 and it has a full support with

respect to every binary cost functionWij. Such a valuev is called thefully

supported valueof xi.

• P is existential arc consistent(EAC*) if all variables are NC* and EAC*.

• P is star existential directional arc consistent(EDAC*) if it is FDAC* and

EAC*.

By enforcing EDAC*,W∅ can be increased further. We use the following ex-

ample to demonstrate this idea.

Example 3.13.The WCSP shown in Figure 3.7(a) is FDAC* but not EAC*. Con-

sider the variablex3, both valuesa and b must take a cost of at least 1, since

W23(v, a)⊕W2(v) ≥ 1 for everyv ∈ D(x2) andW13(v, b)⊕W1(v) ≥ 1 for every

v ∈ D(x1). As a result, the solution should have a cost of at least 1. To further

increaseW∅, we first extend a cost of 1 fromW1(b) toW13 and also a cost of 1 from

W2(a) to W23 as shown in Figure 3.7(b). Then we project a cost of 1 fromW13 to

W3(b) and another cost of 1 fromW23 toW3(a) as shown in Figure 3.7(c). Finally

we enforce NC* onx3 and the lower boundW∅ is increased by 1, and the resultant

WCSP is EDAC* as shown in Figure 3.7(d).

Lee and Leung [30, 29] showed that a naive generalization of EDAC* to high

arity cost functions is not always enforceable, i.e. the algorithm may not terminate.
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1 ProcedureenforceFDGAC*()begin
2 R := Q := X ;
3 whileR 6= ∅ ∨ Q 6= ∅ do
4 while Q 6= ∅ do
5 xj :=pop(Q);
6 flag := false;
7 foreachWS s.t.{xj} ⊂ S do
8 foreachxi ∈ S \ {xj} do
9 R := R∪ {xi};

10 flag := true;

11 if flag then
12 foreachxi ∈ Xs.t.pruneVal(xi) do
13 Q := Q ∪ {xi};
14 R := R∪ {xi};

15 whileR 6= ∅ do
16 xj := popMax(R);
17 foreachWS s.t.{xj} ⊂ S do
18 for i = n downto 1 s.t.xi ∈ S\{xj} do
19 if findFullSupport(WS, xi, {xu|u > i} ∩ S)

then
20 R := R∪ {xi};

21 foreachxi ∈ X s.t.pruneVal(xi) do
22 Q := Q ∪ {xi};
23 R := R∪ {xi};

24 Function findFullSupport(WS, xi, U):Booleanbegin
25 foreachxj ∈ U do
26 foreachv ∈ D(xj) do
27 foreach ℓ ∈ L(S) s.t. ℓ[xj] = v do
28 WS(ℓ) := WS(ℓ)⊕Wj(vj);

29 Wj(vj) := 0;

30 flag := findSupport(WS, xi);
31 foreachxj ∈ U do findSupport(WS, xj);
32 unaryProject(xi);
33 return flag;

Algorithm 4: Enforcing FDGAC* for a WCSP
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Figure 3.7:Enforcing EDAC* on a WCSP
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They define a weaker form of EDGAC* with fully support sets called weak star

existential directional generalized arc consistency(weak EDGAC*).

Definition 3.14. The fully supported setU(WS, xi) for a variablexi and a cost

functionWS with xi ∈ S is a set of variables such that:

• U(WS, xi) ⊆ S;

• U(WS, xi) ∩ U(WT , xi) = ∅ for two different cost functionsWS,WT ∈ C,

and;

•
⋃

WS∈C∧xi∈S
U(WS, xi) = (

⋃

WS∈C∧xi∈S
S)\{xi}.

They give a simple way to compute the fully supported set for avariablexi in 5.

1 ProcedurefindFullySupportedSet()begin
2 Y = (

⋃

WSj
∈ C ∧ xi ∈ SjSj)\{xi};

3 foreachWSj
∈ C s.t.xi ∈ Sj do

4 U(CSj
, xi) = Y ∩ Sj;

5 Y = Y \Sj;

Algorithm 5: Finding the fully supported set for a variablexi

Definition 3.15. Given a WCSPP = (X ,D, C, k) and any fully supported set

U(WS, xi) for each variablexi ∈ X and each cost functionWS ∈ C. A variable

xi ∈ S is weak star existential generalized arc consistent(weak EGAC*) [30, 29]

if:

• xi is NC*, and;

• there exists a valuev ∈ D(xi) such that for each cost functionWS ∈ C with

xi ∈ S andU(WS, xi), there exists valuesvj ∈ D(xj) for all j 6= i andxj ∈

S such that they form a tupleℓ withWS(ℓ) ⊕
⊕

xj |j∈U(WS ,xi)
Wj(ℓ[xj]) = 0.

v is aweak fully supported valueof xi.

The second requirement can be reformulated as:
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there exists a valuev ∈ D(xi) such that for each cost functionWS ∈ C

withxi ∈ S andU(WS, xi),min{
⊕

xi∈S
WS(ℓ)⊕

⊕

xj |j∈U(WS ,xi)
Wj(ℓ[xj]) | ℓ ∈

L(S) ∧ ℓ[xi] = vi} = 0.

A WCSP isweak star existential directional generalized arc consistent(weak EDGAC*)

iff it is FDGAC* and all variables are weak EDGAC*.

The procedureenforceWeakEDGAC*() in Algorithm 6 enforces weak EDGAC*

of a WCSP [30, 29]. The fully supported set is first computed at line 2. The proce-

dure makes use of four propagation queuesP ,Q,R andS. If xi ∈ P, the variable

xi is potentially not weak EGAC* due to a change in unary costs or aremoval of val-

ues in some variables. Ifxj ∈ R, the variablesxi with j > i involving in the same

cost function asxj are potentially not DGAC*. IFxj ∈ Q, all variables in the same

cost function asxj are potentially not GAC*. The propagation queueS helps build

cost functions asxj are potentially not GAC*. The propagation queueS helps build

P efficiently. The procedure consists of three inner-while loops and one for-loop.

The first inner-while loop from from lines 5 to 9 enforces weakEGAC* on each

variable by the procedurefindExistentialSupport() at line 7. If the pro-

cedure returns true, a projection from some constraints toCi has been performed.

The weak fully-supported values of other variables may be destroyed. Thus, the

related variables are pushed back toP for revision at line 9. The second inner-

while loop from lines 11 to 17 enforces DGAC*, while the third inner-while loop

from lines 18 to 25 enforces GAC*. A change in unary cost requires re-examining

DGAC* and weak EGAC*, which is done from lines 8 to 9 and from lines 16 and

17. Lastly, NC* is enforced by the for-loop from lines 26 to 29.Again, if a value in

D(xi) is removed, GAC*, DGAC* or weak EGAC* may be destroyed, andxi are

pushed into the corresponding queues for re-examination. Lee and Leung [30, 29]

also proves that this algorithm must terminal by stating itscomplexity.
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1 ProcedureenforceWeakEDGAC*()begin
2 foreachxi ∈ X do findFullySupportedSet(xi)

S := R := Q := X ;
3 while S 6= ∅ ∨R 6= ∅ ∨ Q 6= ∅ do
4 P := S ∪

⋃

xi∈S,WS∈C
(S\{xi});

5 while P 6= ∅ do
6 xi :=pop(P);
7 if findExistentialSupport(xi) then
8 R := R∪ {xi};
9 P := P ∪ ({xj|xi, xj ∈ WS,WS ∈ C}\{xi});

10 S := ∅;
11 whileR 6= ∅ do
12 xu := popMax(R);
13 foreachWS s.t.{xu} ⊂ S do
14 for i = n downto 1 s.t.xi ∈ S\{xu} do
15 if

findFullSupport(WS, xi, {xj|j > i ∧ xj ∈ S})
then

16 S := S ∪ {xi};
17 R := R∪ {xi};

18 while Q 6= ∅ do
19 xu := pop(Q);
20 flag := false;
21 foreachCS s.t.{xu} ⊂ S do
22 foreachxi ∈ S\{xu} do
23 if findSupport(CS, xi) then
24 S := S ∪ {xi};
25 R := R∪ {xi};

26 foreachxi ∈ X s.t.pruneVal(xi) do
27 S := S ∪ {xi};
28 Q := Q ∪ {xi};
29 R := R∪ {xi};

30 Function findExistentialSupport(xi):Booleanbegin
31 flag := false;
32 α := mina∈D(xi){Wi(a)⊕

⊕

xi∈S,WS∈C
minℓ[xi]=a{WS(ℓ)⊕

⊕

xj∈U(WS ,xi)
Wj(ℓ[xj])}};

33 if α > 0 then
34 flag := true;
35 foreachWS ∈ C s.t.xi ∈ S do
36 findFullSupport(WS, xi, U(WS, xi));

37 return flag;

Algorithm 6: Enforcing weak EDGAC* for a WCSP
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3.1.3 Global Cost Functions

The cost functions used in WCSPs can be represented as tables, where each entry

specifies the cost of a tuple in each cost function. However the size of the cor-

responding table is exponential to the number of the variables in a cost function.

Thus with such table representation, only binary and ternary cost functions were

used practically in WCSPs.

In contrast, aglobal cost functionis a cost function with special semantics used

in the WCSP framework. Usually, there are efficient algorithmsdesigned for the

consistency enforcement.

We denote a global cost function asSOFT GCµ(S) if it is derived from the cor-

responding hardglobal constraintGC(S) of the variable scopeS with a violation

measureµ, where global constraints are used in the CSP framework.SOFT GCµ(S)

returns 0iff a given tupleℓ onS satisfies GC. Ifℓ violates GC,SOFT GCµ(S) re-

turnsµ(ℓ) using the violation measure to reflect how much the GC is violated. To

handle global cost functions which are usually of high-arity, common consistencies

are generalized to GAC* [15] and FDGAC* [30, 28], and weak EDGAC*[30, 29].

We give an example to show that by using global cost functions, more hidden in-

formation may be extracted during the consistency enforcement than using the cor-

responding binary cost functions. The global cost functionSOFT ALL DIFFdec(S)

returns 0 when variables inS take distinct values, otherwiseSOFT ALL DIFFdec(S) =

{xi 6= xj|xi, xj ∈ S ∧ i 6= j}.

Example 3.16.Given a WCSP with three variablesX = {x1, x2, x3}, whereD(x1) =

D(x2) = {a, b} andD(x3) = {a, b, c} with all unary costs equal to 0. There are

three binary cost functionsW12,W23, andW13 where a cost of 0 is taken ifx1 6= x2,

x1 6= x3 andx2 6= x3, otherwise a cost of 1 is taken. It is AC* since every variable

is AC* with respect to all related cost functions. If the cost function is replaced by

a SOFT ALL DIFFdec({x1, x2, x3}) cost function, the WCSP is not AC*, since values

a, b ∈ D(x3) has no support with respect to theSOFT ALL DIFFdec cost function.
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Lee and Leung [30, 28] definesT projection-safety. A cost functionWS is

T projection-safeif (a) WS satisfies propertyT , and (b)W ′
S satisfies propertyT ,

whereW ′
S is obtained fromWS by a valid sequence of projections or extensions. In

other words, the propertyT is preserved onWS under projections and extensions.

Given aT projection-safe cost functionWS, if the propertyT allows an efficient

computation of the minimum cost ofWS, it is guaranteed that the minimum cost of

WS can still be computed efficiently after projections and extensions.

Two useful propertiesT are flow-basedness and polynomially decomposable.

Flow-based projection-safe cost functions[30, 28] can be represented as flow net-

works, the minimum cost of which can be computed efficiently by flow algorithms.

Polynomially decomposable cost functions[31] can be represented as dynamic pro-

grams, which allow the minimum costs to be computed efficiently using divide-and-

conquer and memorization.

3.2 Integer Linear Programming

In this thesis, we formulate global cost functions byinteger linear programs[49].

An integer linear programI is defined as follows:

z = min(cTX)

aX ≤ b

l ≤ X ≤ u

X ∈ Zn

X is a set ofvariablessuch thatX = {x1, x2, . . . , xn} andaX ≤ b arelinear

constraintswherea ∈ Qm×n andb ∈ Qm givenn is the number of variables and

m is the number of problem constraints.z = min(cTX) is theobjective function

wherec ∈ Qn. l andu are lower and upper boundson the variablesX where
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l ∈ (Qn ∪ {−∞}) andl ∈ (Qn ∪ {∞}). Solving an integer linear program is to

find values for the variablesX minimizing (or maximizing) the objective function

z = min(cTX) while satisfying all the linear constraintsaX ≤ b.

A linear program[16] is a special case of an integer linear program where all

the variables are not longer required to be integers. So the integrality requirement

X ∈ Zn is removed such thatX ∈ Rn.

An assignmentγ represents the values taken by the variables inX. A feasible

solution is an assignmentγ that satisfies all problem constraintsaX ≤ b. An op-

timal feasible solutionis an assignmentγ representing a feasible solution and the

objective functioncTX gives the minimal value. We call the value of the objective

functionz from an optimal feasible solution ofz = min cTX as theminimumof I

ormin(I).

We use integer linear programs to model global cost functions in WCSPs as

variables in WCSP can only take one and only one value from its domain. Integer

linear programs are also used in situations where it is only meaningful to make

integral quantities in combinatorial optimization problems. However it can be NP-

hard to solve a integer linear program in general. Bylinear relaxation[49], the

integrality requirement is removed and the integer linear program is solved as a

linear program where linear programs were shown to be polynomially solvable.

Since linear relaxation enlarges the set of feasible solutions, solving an integer linear

program with linear relaxation provides a lower bound on itsminimum.

IBM ILOG CPLEX Optimizer [21] is the solver we use in our experiments to

solve the integer linear programs with linear relaxation. While the simplex algo-

rithm used by default is not bounded by polynomial time, its excellent average case

complexity still allow us to solve the problem efficiently compared to other polyno-

mial time bounded algorithms like the interior point method.
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Polynomially Linear Projection-Safe

Cost Functions

Tractable global cost functions require their minimum costs to be computed effi-

ciently. Examples are flow-based projection-safe cost functions and polynomially

decomposable cost functions and they can be used practically in WCSPs. However,

there are many useful global cost functions which do not haveefficient algorithms

to compute their minimum costs yet. In this chapter, we first show that the minimum

cost of a global cost function can be computed efficiently only if enforcing GAC on

its related global constraint is efficient. Accordingly, weprove that it is NP-hard to

compute the minimum costs of several useful global cost functions, including the

soft variants of SLIDING SUM, EGCC, and DISJUNCTIVE/CUMULATIVE . To han-

dle such global cost functions in WCSP, we propose another class ofT projection-

safe global cost functions calledpolynomially linear projection-safe (PLPS)cost

functions. A PLPS cost functionWS can be modeled as an integer linear program

whose size is polynomial to the number of variables and the maximum domain size

of WS. First, we give necessary conditions for cost functions to be PLPS. Second,

we show that we can efficiently approximate a strong lower bound of the minimum

costs of PLPS. We define relaxed consistencies with the approximated minimum

costs. We also show that we can conjoin PLPS cost functions easily given their

special structures. Third, we give examples of the cost functions which can be

33
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modeled as PLPS cost functions. We demonstrate the efficiency of our approaches

experimentally.

4.1 Non-tractable Global Cost Functions in WCSPs

The use of cost functions in WCSPs was limited to binary and ternary cost func-

tions since they were represented as tables, which the time and space requirements

in enforcing different consistencies increase exponentially as the numbers of vari-

ables in the scope of the cost functions increase. The practical use of global cost

functions with high arities is suggested by Lee and Leung [28, 30], who defineflow-

based projection-safe global cost functions. Leeet al. [31] further definetractable

projection-safe global cost functions, which ensure the enforcement of different

consistencies on such cost functions in WCSPs istractableand can be done in poly-

nomial time. Given a cost functionWS, WS is tractable if its minimum cost can

be found in polynomial time;WS is atractable projection-safe global cost function

if both WS andW ′
S are tractable, whereW ′

S is WS after a series of projections or

extensions. Leeet al. [31] also definepolynomially-decomposable cost functions,

as well as flow-based projection-safe cost functions, belong to the class of tractable

projection-safe global cost functions which can be used in WCSPs efficiently.

Given a tupleℓ ∈ L(S) in classical CSP, a hard constraintCS(ℓ) returns either

it is satisfied or violated. A hard constraint istractableif a tuple satisfyingCS can

be found in polynomial time if there exists a such tuple, elsethe violation can be

proven in polynomial time. Given ahard constraintCS and its soft variantWS, CS

is tractable ifWS is tractable. The tractability ofCS can be shown by computing

the minimum cost of the cost functionWS, which can be done in polynomial time.

WS returns 0 if there exists a tuple satisfyingCS, else we can prove that there is no

tuple satisfyingCS.

An important consistency technique used in CSP isgeneralized arc consis-

tency(GAC). Here we give the definition of GAC in CSP.
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Definition 4.1. Given a CSPP (X ,D, C).

• A constraintCS ∈ C is generalized arc consistent(GAC) if for every value

vi ∈ D(xi) and for everyxi ∈ S, there exists a tupleℓ ∈ L(S) such that

ℓ[xi] = vi andℓ satisfiesCS.

• P is GAC iff all constraintsCS ∈ C are GAC.

If a hard constraintCS is tractable, enforcing GAC onCS must be tractable, as

the determinant step of enforcing GAC onCS is to find supports, which amounts to

finding satisfying tuples ofCS.

Efficient enforcement of GAC on a hard constraint in CSPs is required for en-

forcing consistencies on its soft variant in WCSPs efficiently. However, there are

hard constraints which are NP-hard to enforce GAC on them. Currently, there is no

known polynomial time algorithm to enforce GAC on such constraints. Here we call

these hard constraintsnon-tractable constraints. Similarly, we call the cost func-

tions which are NP-hard to find their minimum costsnon-tractable cost functions

and we have the following lemma.

Lemma 4.2.Given a non-tractable constraintCS which is NP-hard to enforce GAC

on CS, and a cost functionWS which is a soft variant ofCS. It is NP-hard to

compute the minimum cost ofWS, soWS must be a non-tractable cost function.

Proof. We can reduce the problem of either finding a satisfying tupleof a constraint

CS or enforcing GAC (generalized arc consistency) onCS to the minimum cost

computation of the corresponding cost functionWS. SinceWS is a soft variant of

CS, suppose we are given a tupleℓ, WS(ℓ) returns a cost of 0 ifℓ satisfiesCS. So

by computing the minimum cost ofWS, we can know ifCS consists of satisfying

tuples. If there exists a satisfying tuple, it can be obtained by repeating the steps for

n times, wheren equals to the number of variables inCS.

The determinant step of enforcing GAC onCS is to find supports, which amounts

to finding satisfying tuples ofCS.
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There are many useful cost functions which are non-tractable since they are de-

rived from non-tractable hard constraints. We give an example with the soft variant

of the SLIDING SUM constraint. The SLIDING SUM constraint is a conjunction of

multiple SUM constraints, where the SUM(S, l, u) constraint restricts the sum of the

values taken by a set of variablesS between a lower boundl and an upper bound

u [7].

The SLIDING SUM(S, [p1, . . . , pm]) [34] constraint takes a sequence ofn vari-

ablesS = {x1, . . . , xn} andm windows. For every windowpi = {li, ui, Si}, the

sum of the variables in the setSi is restricted between a lower boundli and an upper

boundui.

Definition 4.3. TheSLIDING SUM(S, [p1, . . . , pm]) constraint holds iff

li ≤
∑

xj∈Si

xj ≤ ui

for everyi from1 tom.

We can define the SOFT SLIDING SUMdec() cost function with thedecomposition-

basedviolation measuredec by measuring the violation of each window and adding

up their costs, which is similar to the one given by Bessièreet. al.[34].

Definition 4.4. Given theSLIDING SUM() constraint and an assignment tupleℓ on

variablesS, the soft variantSOFT SLIDING SUMdec() is defined as:

SOFT SLIDING SUMdec(S, [p1, . . . , pm])(ℓ)

=
m
∑

i=1

max(
∑

xj∈Si

ℓ[xj]− ui, li −
∑

xj∈Si

ℓ[xj], 0)

Theorem 4.5.Computing the minimum cost ofSOFT SLIDING SUMdec is NP-hard.

Proof. Enforcing GAC on a SUM constraint is NP-hard [7]. As the SLIDING SUM

constraint can be represented by a conjunction of multiple SUM constraints, en-

forcing GAC on SLIDING SUM is NP-hard. As SOFT SLIDING SUMdec is derived
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from the SLIDING SUM constraint, by Lemma 4.2, computing the minimum cost of

SOFT SLIDING SUMdec is NP-hard.

There are also cost functions which are not yet proven to be non-tractable and

some of them have exponential time algorithms to find their minimum costs. Surely

we want some ways to handle such cost functions in WCSPs while they lack effi-

cient algorithms and we proposePolynomially Linear Projection-Safe (PLPS)cost

functions which give the following results. First, PLPS cost functions are cost func-

tions that can be modeled as integer linear programs with sizes polynomial to the

number of variables and the maximum domain size. This class of cost functions

has a strong modeling power but it can be NP-hard to compute their minimum costs

due to the complexity of solving integer linear programs. Second, we define relaxed

consistencies that approximated minimum costs are used instead of exact minimum

costs. The approximated minimum costs of PLPS cost functions can be obtained by

solving the integer linear programs with linear relaxationin polynomial time. Third,

we show that PLPS cost functions can be conjoined easily by conjoining their cor-

responding linear programs. Our experimental results demonstrate improvements

in terms of runtime and search space in general. We give some examples of global

cost functions which can be modeled as linear projection-safe cost functions and

use experiments to show that our framework allows those global cost functions to

be used in WCSPs more efficiently than the existing ways.

4.2 Polynomially Linear Projection-Safe Cost Func-

tions

Linear cost functions are cost functions that can be represented by integer linear pro-

grams while their useful properties are preserved after projections and extensions.

We first give the definition of a linear cost function.
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Definition 4.6. A cost functionWS is linear if it can be represented by an integer

linear programIWS
, such thatmin{WS} is equal to the minimum ofIWS

.

We take the SOFT SLIDING SUM cost function mentioned above as an example.

Given a SOFT SLIDING SUM cost functionWS, we can construct the corresponding

integer linear programIWS
so that the SOFT SLIDING SUM cost function is a linear

cost function.

Given a cost functionWS, we create a variablecxi
in IWS

for each variable

xi ∈ S which has the same domain asxi such thatcxi
= xi. Two set of variables

L = {L1, . . . , Lm} andU = {U1, . . . , Um} are introduced to represent the cost

arising from violating the related hard constraint if the sum of the values is smaller

than the lower bound or greater than the upper bound respectively.

Theorem 4.7.TheSOFT SLIDING SUMdec cost function is a linear cost function.

Proof. The SOFT SLIDING SUMdec(S, [p1, . . . , pm]) cost function can be expressed

as an integer linear programI whereI is defined as:

min
∑m

j=1 Lj + Uj s.t.

lj ≤
∑

xi∈Sj
cxi
− Lj + Uj ≤ uj ∀j = 1 . . .m

Lj ≥ 0, Uj ≥ 0 ∀j = 1 . . .m

cxi
= {Dxi

} ∀xi ∈ S

The minimum ofI gives the minimum cost of SOFT SLIDING SUMdec(S, [p1, . . . , pm]).

By Definition 4.6, the SOFT SLIDING SUMdec cost function is a linear cost func-

tion.

Koster [23] suggests a method to formulate global cost functions into integer

linear programs by treating them as table cost functions andmodeling the cost of

each tuple by an inequality.

Theorem 4.8. [23] Given a cost functionWS, whereL(S) is a set of tuples cor-

responding to all possible assignments on the set of variablesS, ℓ ∈ L(S) is tuple
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represents an assignment,ℓ[x] denotes the value assigned tox in ℓ andWS(ℓ) re-

turns the cost of the tupleℓ in WS. WS is linear since the corresponding integer

linear program can be defined as:

min
∑

ℓ∈L(S)

WS(ℓ) ∗ bℓ

∑

ℓ[x]=a,ℓ∈L(S)

bℓ − cx,a = 0, ∀a ∈ D(x), x ∈ S

∑

a∈D(x)

cx,a = 1, ∀x ∈ D(x)

cx,a ∈ {0, 1}, ∀a ∈ D(x), x ∈ S

bℓ ∈ {0, 1}, ∀ℓ ∈ L(S)

By this method, we can model every cost function into a linear cost function.

However, the number of linear inequalities used is exponential to the number of

variables in the cost function, which is undesirable if we are looking for efficient

ways to solve them. In this thesis, we are focusing on a special class of linear

cost functions which the size of their corresponding integer linear programs are

polynomial to size of the cost functions, and we definepolynomially linearcost

functions.

Definition 4.9. SupposeWS is a cost function.WS is polynomially linearif IWS
has

the number of inequalities and the number of variables polynomial to the number

of variables and the maximum domain size ofWS, whereIWS
is the corresponding

integer linear program ofWS.

A T projection-safe cost function preserves its propertyT after projections and

extensions. For example,T can be flow-based and Lee and Leung [28, 30] give

examples of flow-based projection-safe cost functions. If the minimum cost of aT

projection-safe cost function can be computed efficiently,its minimum cost can still
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be computed efficiently through the consistency enforcements, so it is feasible to

use such a cost function in WCSPs.

We are interested in usingpolynomially linearas the propertyT and we define

polynomially linear projection-safe(PLPS) cost functions.

Definition 4.10. SupposeWS is a polynomially linear cost function.WS is poly-

nomially linear projection-safeif W ′
S is also polynomially linear projection-safe,

whereW ′
S isWS after a series of projections and extensions.

First we give the sufficient conditions to determine whethera cost function is a

PLPS cost function. Then we show that given a PLPS cost function, the minimum

cost can still be computed by solving its corresponding integer linear program after

projections and extension.

Lemma 4.11. Given a cost functionWS which satisfies the following three condi-

tions:

1. WS is linear and has the corresponding integer linear programIWS
, where

the number of inequalities and number of variables ofIWS
are polynomial to

the number of variables and the maximum domain size ofWS;

2. there exists a surjective functionΛ′ mapping each optimal feasible solution

γIWS
in IWS

to each tupleℓ[S] ∈ L(S), whereL(S) denotes the set of tuples

corresponding to all possible assignments on variablesS, and;

3. for each valuev ∈ D(xi) in each variablexi ∈ S, there exists an injection

mapping an assignment{xi 7→ v} to a 0-1 variablecxi,v in IWS
such that if

ℓ[S] = Λ′(γIWS
) for an optimal solutionγIWS

in IWS
and a tupleℓ[S] ∈ L,

wheneverℓ[xi] = v for some tupleℓ[S], γIWS
[cxi,v] = 1; wheneverℓ[xi] 6= v,

γIWS
[cxi,v] = 0

SupposeW ′
S is obtained from projectingα fromWS toWxi

(v), or extendingα from

Wxi
(v) toWS, thenW ′

S also satisfies these conditions.
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Proof. AssumeWS is a PLPS cost function andIWS
is the corresponding integer

linear program ofWS. We first consider the part of projection,i.e. W ′
S is defined

as:

W ′
S(ℓ) =







WS(ℓ)⊖ α if ℓ[xi] = v

WS(ℓ) otherwise

We first show thatW ′
S is also a linear cost function with polynomial size (con-

dition 1)). After projection, we can construct a new integerlinear programIW ′

S

from IWS
by adding an additional term−αci,v to the objective function ofIWS

. The

resulting integer linear programIW ′

S
is corresponding toW ′

S, since:

min(IW ′

S
) = min(IWS

)⊖ αci,v

= min{WS} ⊖ αci,v

=







min{WS} ⊖ α , if ci,v = 1

min{WS} , if ci,v = 0

= min{W ′
S}.

Thus,W ′
S is linear with the corresponding integer linear programIW ′

S
and sat-

isfies the condition 1). Moreover, sinceIW ′

S
has the same set of variables and linear

inequalities asIWS
has,W ′

S also satisfies the conditions 2) and 3).

Then we consider the part of extension,i.e.W ′
S is defined as:

W ′
S(ℓ) =







WS(ℓ)⊕ α if ℓ[xi] = v

WS(ℓ) otherwise

After extension, we can construct a new integer linear program IW ′

S
from IWS

by adding an additional term+αci,v to the objective function ofIWS
.

With similar arguments, the new integer linear programIW ′

S
is still correspond-

ing toW ′
S. ThusW ′

S satisfies the condition 1). Moreover, sinceIW ′

S
has the same

set of variables and linear inequalities asIWS
has,W ′

S also satisfies the conditions
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2) and 3).

Lemma 4.11 implies that if a linear cost function satisfies conditions 2) and 3),

those conditions are preserved throughout a series of projections and extensions.

From Lemma 4.11, we can give the sufficient conditions of a PLPS cost function.

Theorem 4.12.If a global cost functionWS satisfies the conditions stated in Lemma

4.11, it is a PLPS cost function.

Proof. From Lemma 4.11,WS preserves the conditions, as well as the linearity,

throughout a series of projection and extension operations. By the definitions ofT

projection-safe cost functions,WS is a PLPS cost function.

Theorem 4.12 gives a sufficient condition for a global cost function to be a PLPS

cost function. In order to construct the corresponding integer linear programIWS

such that the conditions of a PLPS cost function can be satisfied, binary variables

cxi,d are introduced for every valued in the domaind ∈ D(xi) of every variable

xi ∈ S in IWS
; for each variablexi ∈ S, there is an extra linear cost function

∑

j∈D(xi)
cxi,j added toIWS

such that only a value can be assigned to each variable

xi in WS. According to condition 3), we can easily defineΛ′. In addition, the proof

part of Lemma 4.11 demonstrates a general procedure of performing projections

and extensions on PLPS cost functions.

We use the SOFT SLIDING SUM cost function as an example of a PLPS cost

function. Then, we use this cost function to give another example, which demon-

strates how costs can be projected (and extended) to PLPS cost functions while the

linear projection-safety is preserved.

Theorem 4.13.TheSOFT SLIDING SUMdec cost function is a PLPS cost function.

Proof. The SOFT SLIDING SUMdec(S, [p1, . . . , pm]) cost function can be expressed
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as an integer linear programIWS
whereIWS

is defined as:

min
∑m

j=1 Lj + Uj s.t.

lj ≤
∑

xh∈Sj

∑

d∈D(h) d ∗ cxh,d − Lj + Uj ≤ uj ∀j = 1 . . .m

Lj ≥ 0, Uj ≥ 0 ∀j = 1 . . .m
∑

d∈D(xi)
cxi,d = 1 ∀i = 1 . . . n

cxi,d ∈ {0, 1} ∀xi ∈ S, d ∈ D(xi)

LetDmax be the maximum domain size for the variables inS, the corresponding

integer linear program uses|S| ∗ Dmax + 2 ∗m variables and3 ∗m + |S| + |S| ∗

Dmax inequalities. Ifxi = d, cxi,d = 1; otherwisecxi,d = 0. By Theorem 4.12,

SOFT SLIDING SUMdec cost function is a PLPS cost function.

Example 4.14.Consider the following WCSPP (X ,D,WS, k):

X = {x1, x2, x3}, D(x1) = D(x2) = D(x3) = {1, 2, 3}, p1 = {3, 4, {x1, x2}},

p2 = {4, 5, {x2, x3}},WS = SOFT SLIDING SUMdec([x1, x2, x3], [p1, p2]). The cor-

responding integer linear program ofWS is:

minL1 + U1 + L2 + U2 s.t.

3 ≤ cx1,1 + 2cx1,2 + 3cx1,3 + cx2,1 + 2cx2,2 + 3cx2,3 − L1 + U1 ≤ 4

4 ≤ cx2,1 + 2cx2,2 + 3cx2,3 + cx3,1 + 2cx3,2 + 3cx3,3 − L2 + U2 ≤ 5

cx1,1 + cx1,2 + cx1,3 = 1

cx2,1 + cx2,2 + cx2,3 = 1

cx3,1 + cx3,2 + cx3,3 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0

wherecx1,1, cx1,2, cx1,3, cx2,1, cx2,2, cx2,3, cx3,1, cx3,2, cx3,3 ∈ {0, 1}.

Suppose a cost of 2 is projected fromWS toWx1
(1) such that a term is added to
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the objective function of the corresponding integer linearprogram ofWS. Since the

other parts of the corresponding integer linear program ofWS remain unchanged,

WS is still PLPS. The corresponding integer linear program ofWS becomes:

minL1 + U1 + L2 + U2 − 2cx1,1 s.t.

3 ≤ cx1,1 + 2cx1,2 + 3cx1,3 + cx2,1 + 2cx2,2 + 3cx2,3 − L1 + U1 ≤ 4

4 ≤ cx2,1 + 2cx2,2 + 3cx2,3 + cx3,1 + 2cx3,2 + 3cx3,3 − L2 + U2 ≤ 5

cx1,1 + cx1,2 + cx1,3 = 1

cx2,1 + cx2,2 + cx2,3 = 1

cx3,1 + cx3,2 + cx3,3 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0

wherecx1,1, cx1,2, cx1,3, cx2,1, cx2,2, cx2,3, cx3,1, cx3,2, cx3,3 ∈ {0, 1}.

Linear relaxation allows the minimum of the corresponding integer linear pro-

grams of PLPS cost functions to be approximated in polynomial time. Accordingly,

the relaxed consistency notions can be defined, which are weaker but can be en-

forced more efficiently.

4.3 Relaxed Consistencies on Polynomially Linear Projection-

Safe Cost Functions

Polynomially linear projection-safe (PLPS) cost functions can be represented as

integer linear programs[49]. It is NP-hard to solve an integer linear program in

general, but a good approximation of the minimum cost can be computed with the

linear relaxation using linear programming. Given a PLPS cost functionWS and

its corresponding integer linear programIWS
, we first define the the value of the
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objective functionz from an optimal feasible solution ofz = min cTX using linear

relaxation asrelaxed min(IWS
). We have the following theorem according to the

properties of linear relaxation.

Theorem 4.15. [49] Given an integer linear programIWS
, relaxed min(IWS

) ≤

min(IWS
) and⌈relaxed min(IWS

)⌉ ≤ min(IWS
).

The pair of⌈ ⌉ symbols represents the ceiling function, where⌈x⌉ gives the

smallest integer not less thanx.

Given a PLPS cost functionWS and its corresponding integer linear program

IWS
, solving IWS

by linear relaxation gives an lower bound of its minimum cost

min{WS}. Such an approximation of the minimum costs by linear relaxation forms

the basis of relaxed but weaker forms of common consistencies for PLPS cost func-

tions. We name the approximation of the minimum costs of a PLPS cost function

WS by solving its corresponding integer linear programIWS
with linear relaxation

relaxed min(IWS
) asrelaxed minimum costsdenoted asrelaxed min{WS}, such

that relaxed min{WS} = relaxed min(IWS
). Sincemin(IWS

) = min{WS}, we

have the following corollary:

Corollary 4.16. Given a PLPSWS and its corresponding integer linear program

IWS
, relaxed min{WS} ≤ min{WS} and⌈relaxed min{WS}⌉ ≤ min{WS}.

To define a relaxed version of GAC* using the relaxed minimum costs of PLPS

cost functions, we first reformulate the definition of GAC*. GAC* requires that for

each value of each variable, there must exists a supporting tuple with its cost equals

to 0 in each cost function related to that value of that variable. If min{WS(ℓ)|ℓ[xi] =

a)} = 0, there exists such a supporting tuple for the valuea in the variablexi. So

we give an equivalent definition of GAC* according to Definition 3.8:

Definition 4.17. A variablexi ∈ S is GAC* [15] with respect to a cost function

WS if:

• xi is NC*, and;
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• for each valuevi ∈ D(xi), min{WS(ℓ) | ℓ ∈ L(S) ∧ ℓ[xi] = vi} = 0.

A WCSP isGAC* iff all variables are GAC* with respect to all cost functions inC.

By Corollary 4.16, we can define an relaxed version of GAC* calledrelaxed

GAC*by relaxing the requirements of GAC* and replacingmin{WS} by relaxed min{WS}.

Definition 4.18. A variablexi ∈ S is relaxed GAC*with respect to a cost function

WS if:

• xi is NC*, and;

• for each valuevi ∈ D(xi), relaxed min{WS(ℓ) | ℓ ∈ L(S)∧ℓ[xi] = vi} ≤ 0.

of vi with respect toCS.

To compare the strength of GAC* and relaxed GAC*, we define that given a

WCSPP , a consistencyα is strictly weakerthan another consistencyβ, written as

α < β, iff P is α wheneverP is β, but not vice versa. Sincerelaxed min{WS} is

a lower bound ofmin{WS}, by Corollary 4.16 we immediately have the following

theorem.

Theorem 4.19.Relaxed GAC* is strictly weaker than GAC*.

According to the algorithm of enforcing GAC*, any WCSP can be transformed

to an equivalent one which is GAC*. Here we give the algorithm of enforcing re-

laxed GAC* which can transform any WCSP to an equivalent one which is relaxed

GAC*. It is similar to that of enforcing GAC* listed in Algorithm 7, except that

relaxed min(WS) does not always return an integer. We define the cost to be pro-

jected in enforcing relaxed GAC*α′ = max(⌈relaxed min{WS}⌉, 0) and we have

the following theorem.

Theorem 4.20.SupposeIWS
is an integer linear program corresponding to a PLPS

cost functionWS, and there exists a costα = min{WS} to be projected in enforcing

GAC*. After projecting a costα′ = max(⌈relaxed min{WS}⌉, 0) in enforcing

relaxed GAC*,min{WS} is greater than or equal to 0.
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Proof. Letmin(IWS
) = α, such that after projectingα in enforcing GAC*,min{WS}

is greater than or equal to 0. SolvingIWS
by linear relaxation obtains an relaxed

minimum costrelaxed min{WS} = relaxed min(IWS
) to be projected. Given

thatα′ = ⌈relaxed min(IWS
)⌉ ≤ min(IWS

) = α, we can ensure that after project-

ing ⌈relaxed min(IWS
)⌉, min{WS} is still greater than or equal to 0.

At the same time asmin{WS} is greater than or equal to 0 after projectingα in

enforcing GAC*. Evenrelaxed min(IWS
) < 0 after enforcing relaxed GAC*, we

can still ensure thatmin{WS} is greater than or equal to 0.

The procedureenforceRelaxedGAC* in Algorithm 7 enforce relaxed GAC*

for a WCSP(X ,D, C, k) based on Algorithm 3 of enforcing GAC*. The function

findSupport() is replaced byrelaxedFindSupport() and the cost to be

projectedα becomesmax(⌈relaxed min{WS}⌉, 0).

To define the relaxed version of FDGAC*, we first give an equivalent definition

of FDGAC* according to Definition 3.11:

Definition 4.21. A variablexi ∈ S is DGAC* [15] with respect to a cost function

WS if:

• xi is NC*, and;

• for each valuevi ∈ D(xi), min{WS(ℓ) ⊕
⊕

xj |j>iWj(ℓ[xj]) | ℓ ∈ L(S) ∧

ℓ[xi] = vi} = 0.

A WCSP is FDGAC* iff it is GAC* and all variables are DGAC* with respect to all

cost functions inC.

By Corollary 4.16, we can define an the relaxed version of FDGAC* calledre-

laxed FDGAC*by relaxing the requirements of FDGAC* and replacingmin{WS}

by relaxed min{WS}.

Definition 4.22. A variablexi ∈ S is relaxed DGAC*with respect to a cost function

WS if:
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1 ProcedureenforceRelaxedGAC*()begin
2 Q := X ;
3 while Q 6= ∅ do
4 xj :=pop(Q);
5 flag := false;
6 foreachWS s.t.{xj} ⊂ S do
7 foreachxi ∈ S \ {xj} do
8 flag := flag ∨ relaxedFindSupport(WS, xi);
9 if pruneVal(xi) thenQ := Q ∪ {xi};

10 if flag then
11 foreachxi ∈ X do
12 if pruneVal(xi) thenQ := Q ∪ {xi};

13 Function relaxedFindSupport(WS, xi):Booleanbegin
14 flag := false;
15 foreachv ∈ D(xi) do
16 α := max(⌈relaxed min{WS(ℓ)|ℓ ∈ L(S) ∧ ℓ[xi] = v}⌉, 0);
17 if Wi(v) = 0 ∧ α > 0 then flag := true;
18 Wi(v) := Wi(v)⊕ α;
19 foreach ℓ ∈ L(S) s.t. ℓ[xi] = v do
20 WS(ℓ) := WS(ℓ)⊖ α;

21 unaryProject(xi);
22 return flag;

Algorithm 7: Enforcing relaxed GAC* for a WCSP

• xi is NC*, and;

• for each valuevi ∈ D(xi), relaxed min{WS(ℓ) ⊕
⊕

xj |j>iWj(ℓ[xj]) | ℓ ∈

L(S) ∧ ℓ[xi] = vi} ≤ 0.

A WCSP is relaxed FDGAC* iff it is relaxed GAC* and all variables are relaxed

DGAC* with respect to all cost functions inC.

Sincerelaxed min{WS} is a lower bound ofmin{WS}, by Corollary 4.16 we

immediately have the following theorem.

Theorem 4.23.Relaxed FDGAC* is strictly weaker than FDGAC*.
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The procedure of enforcing relaxed FDGAC* is similar to that of enforcing

FDGAC* in Algorithm 4, except that thefindSupport() function is replaced

by therelaxedFindSupport() function in Algorithm 7.

To define a relaxed version of weak EDGAC*, first we give an equivalent defi-

nition of weak EDGAC* according to Definition 3.15:

Definition 4.24. Given a WCSPP = (X ,D, C, k) and any fully supported set

U(WS, xi) for each variablexi ∈ X and each cost functionWS ∈ C. A variable

xi ∈ S is weak EGAC* [29, 30] if:

• xi is NC*, and;

• there exists a valuev ∈ D(xi) such that for each cost functionWS ∈ C with

xi ∈ S andU(WS, xi), min{
⊕

xi∈S
WS(ℓ) ⊕

⊕

xj |j∈U(WS ,xi)
Wj(ℓ[xj]) | ℓ ∈

L(S) ∧ ℓ[xi] = vi} = 0.

A WCSP is weak EDGAC* iff it is FDGAC* and all variables are weak EDGAC*.

By Corollary 4.16, we can define an relaxed of relaxed weak EDGAC*called

relaxed weak EDGAC*by relaxing the requirements of weak EDGAC* and replac-

ingmin{WS} by relaxed min{WS}.

Definition 4.25. Given a WCSPP = (X ,D, C, k) and any fully supported set

U(WS, xi) for each variablexi ∈ X and each cost functionWS ∈ C. A variable

xi ∈ S is relaxed weak EGAC* if:

• xi is NC*, and;

• there exists a valuev ∈ D(xi) such that for each cost functionWS ∈ C with

xi ∈ S andU(WS, xi), relaxed min{
⊕

xi∈S
WS(ℓ)⊕

⊕

xj |j∈U(WS ,xi)
Wj(ℓ[xj]) | ℓ ∈

L(S) ∧ ℓ[xi] = vi} ≤ 0.

A WCSP is relaxed weak EDGAC* iff it is relaxed FDGAC* and all variables are

relaxed weak EDGAC*.
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Sincerelaxed min{WS} is a lower bound ofmin{WS}, by Corollary 4.16 we

immediately have the following theorem.

Theorem 4.26.Relaxed weak EDGAC* is strictly weaker than weak EDGAC*.

The procedure of enforcing relaxed weak EDGAC* is similar to that of enforc-

ing weak EDGAC* in Algorithm 6, except that thefindSupport() function in

thefindFullSupport() function is replaced by therelaxedFindSupport()

function in Algorithm 7, similar to the algorithm of enforcing relaxed FDGAC*.

4.4 Conjoining Polynomially Linear Projection-Safe

Cost Functions

If two constraints or cost functions share more than one variable, they areover-

lapping. In the rest parts of this thesis, we consider conjunctions of overlapping

cost functions. In general, enforcing a consistency on the individual cost functions

may not imply the same consistency on the conjunction of the two. An example

is given by Bessìereet al. [6]. According to that example, enforcing GAC on two

overlapping ALL DIFF constraints does not imply GAC on the conjunction of them.

It is easy to check that the result also holds for cost functions. By discovering extra

pruning opportunities, propagating on conjunctions of cost functions may reduce

more search space than propagating on individual cost functions can.

Every PLPS cost function has an associated integer linear program. PLPS cost

functions can be conjoined together easily by combining their corresponding integer

linear programs in a straightforward manner. Given two integer linear programs

IWS1
andIWS2

, we defineIWS1
∧ IWS2

to be their combination by taking the union

of their linear inequalities and adding up their objective functions. The following

theorem ensures that conjunctions of PLPS cost functions remain PLPS.

Lemma 4.27. SupposeWS1
andWS2

are PLPS cost functions. The conjunction

Wconj ≡ WS1
∧WS2

is also PLPS.
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Proof. SupposeWS1
andWS2

have their corresponding integer linear programIWS1

andIWS2
respectively. The integer linear programIWconj

for Wconj can simply be

formed byIWconj
≡ IWS1

∧ IWS2
. It is easy to check thatWconj satisfies the condi-

tions for PLPS.

An immediate question is whether a conjunction of PLPS cost functions always

gives a stronger bound than using the individual PLPS cost functions, given that the

same level of consistency is maintained. Given WCSPPPLPS = (X ,D, CPLPS, k),

where each cost functionWS ∈ CPLPS is PLPS with corresponding integer linear

programIWS
. We assume thatCPLPS contains overlapping cost functions. We can

construct an equivalent WCSPPconj = (X ,D, Cconj, k) whereCconj = {Wconj} and

Wconj ≡
∧

WS∈CPLPS
WS with the corresponding scopeSconj ≡

⋃

WS∈CPLPS
S and

integer linear programIWconj
≡

∧

WS∈CPLPS
IWS

. SinceCPLPS is a set of PLPS cost

functions, the conjunctionWconj must be a PLPS cost function.

Given a problemP representable by two WCSP modelsφ(P ) andψ(P ). A

consistencyΦ on φ(P ) is strictly strongerthan another consistencyΨ on ψ(P ),

written asΦ on φ(P ) > Ψ on ψ(P ) , iff ψ(P ) is Ψ wheneverφ(P ) is Φ, but not

vice versa[30].

We show that (FD)GAC* and weak EDGAC* onPconj are strictly stronger than

their counterparts onPPLPS respectively by the following theorem.

Theorem 4.28.Supposeα-consistency is one of GAC*, FDGAC*, and weak EDGAC*.

We haveα-consistent onPconj > α-consistent onPPLPS.

Proof. We prove the part for GAC*. The proofs for the other consistencies are

similar.

AssumePconj is GAC*, butPPLPS is not GAC*. There exists a variablexi ∈ X

with a valuea ∈ D(xi) and a cost functionWS ∈ CPLPS in PPLPS such that
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min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0. Now, we have

min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)}

≥
⊕

WS∈CPLPS
min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

So we cannot find a simple support fora andxi cannot be GAC* with respect to

Wconj in Pconj.

Consider WS1
= SOFT ALL DIFFvar(x1, x2, x3) and WS2

=

SOFT ALL DIFFvar(x2, x3, x4), whereD(x1) = {a, b}, D(x2) = D(x3) = {a, b, c}

andD(x4) = {b, c}. It is easy to check thatPPLPS = (X ,D, {WS1
,WS2

}, k) is

GAC*. However,Pconj = (X ,D, {WS1
∧WS2

}, k) is not GAC* since the minimum

cost whenx1 = a is 1 > 0.

Result follows.

When standard consistencies are replaced by their relaxed versions, result sim-

ilar to that of Theorem 4.28 does not hold. For simplicity, weassumeCPLPS =

{WS1
,WS2

}. SupposePconj is relaxed GAC*. We have

0 ≥ approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(Sconj)}

≥
⊕

WS∈CPLPS
approx min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)}

In order for the sum to be non-positive, it is possible for theapproximated minimum

cost of one of{WS1
,WS2

} to be negative and the other one positive. Therefore, one

of them is not relaxed GAC*. However, this peculiar bad situation just described

does not happen often in practice and we will demonstrate that it is worthwhile to

propagate on the conjunction instead of individual cost functions in the experiments

in the last section of this chapter.
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4.5 Modeling Global Cost Functions as Polynomially

Linear Projection-Safe Cost Functions

In this section we introduce three global cost functions, including the SOFT SLIDING SUM,

SOFT EGCC, and SOFT DISJUNCTIVE/CUMULATIVE cost functions. Following

the Lemma 4.2, we prove that it is NP-hard to compute their minimum cost by

showing that it is NP-hard to enforce GAC [9], a consistency notion in classical

CSPs, on the related hard constraint. By modeling them as polynomially linear

projection-safe cost functions, we can obtain the relaxed minimum costs by linear

relaxation and enforce relaxed consistencies.

4.5.1 The SOFT SLIDING SUM dec Cost Function

The SLIDING SUM() constraint [34] represents a sequence of SUM() constraints and

each of the SUM() constraint restricts the sum of the values taken by the variables in

its scope between between a lower bound and an upper bound. A soft variant for the

SLIDING SUM() constraint is called the SOFT SLIDING SUMdec() cost function. The

definition of SOFT SLIDING SUMdec() is given in Definition 4.4 in Section 4.1 and

it is shown to be PLPS in Theorem 4.13 in Section 4.2. Here we give an example of

modeling a SOFT SLIDING SUMdec() cost function as a PLPS cost function.

Example 4.29.Consider the following WCSPP (X ,D,WS, k):

X = {x1, x2, x3}, D(x1) = D(x2) = D(x3) = {1, 2, 3}, p1 = {3, 4, {x1, x2}},

p2 = {4, 5, {x2, x3}}, WS = SOFT SLIDING SUMdec([x1, x2, x3], [p1, p2]). For ex-

ample,WS(1, 1, 3) = 1 becausel1 − (x1 + x2) = 1 and l2 ≤ (x2 + x3) ≤ u2. The

corresponding integer linear program ofWS is:

minL1 + U1 + L2 + U2 s.t.

3 ≤ cx1,1 + 2cx1,2 + 3cx1,3 + cx2,1 + 2cx2,2 + 3cx2,3 − L1 + U1 ≤ 4
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4 ≤ cx2,1 + 2cx2,2 + 3cx2,3 + cx3,1 + 2cx3,2 + 3cx3,3 − L2 + U2 ≤ 5

cx1,1 + cx1,2 + cx1,3 = 1

cx2,1 + cx2,2 + cx2,3 = 1

cx3,1 + cx3,2 + cx3,3 = 1

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0

wherecx1,1, cx1,2, cx1,3, cx2,1, cx2,2, cx2,3, cx3,1, cx3,2, cx3,3 ∈ {0, 1}.

4.5.2 The SOFT EGCCvar Cost Function

The EGCC(SX , SY ) constraint [22] is defined for two sets ofn + m variables

SX andSY whereSX = {x1, . . . , xn} is a set of assignment variables andSY =

{yd1 , . . . , ydm} is a set of counting variables. The idea is that each valuedj where

ydj ∈ SY is used exactlyydj times by the variablesSX .

Definition 4.30. The EGCC(SX , SY ) constraint holds iffocc(di, (x1, . . . , xn)) =

ydi for everydi whereydi ∈ SY .

whereocc(v, T ) is the number of occurrences ofv in T .

Theorem 4.31.Enforcing GAC on every variable ofEGCC is NP-hard [22].

We can define the SOFT EGCCvar cost function with the same violation mea-

sure as the variable-based violation measure used in SOFT EGCCvar [48]. The

constraint is softened by allowing the counting variablesydi ∈ SY to take values

other thanocc(di(x1, . . . , xn)).

Definition 4.32. Given theEGCC() constraint and an assignment tupleℓ in vari-

ablesS = SX ∩ SY ,

SOFT EGCCvar(SX , SY )(ℓ)

=
m
∑

j=1

|ydj − occ(dj, (x1, . . . , xn))|
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Theorem 4.33.Computing the minimum cost ofSOFT EGCCvar() is NP-hard.

Proof. The SOFT EGCCvar() cost function is derived from theEGCC constraint

and it is NP-hard to enforce GAC on theEGCC constraint. So, computing the

minimum cost of SOFT EGCCvar() is NP-hard.

We can model this cost function in the form of a PLPS cost function such that

we can compute the approximated minimum cost efficiently by linear relaxation.

Theorem 4.34.TheSOFT EGCCvar() cost function is a PLPS cost function.

Proof. The SOFT EGCCvar() cost function can be expressed as an integer linear

programI whereI is defined as:

min
∑m

j=1 Lj + Uj s.t.
∑n

i=1 cxi,dj − (
∑

h∈D(ydj )
h ∗ cydj ,h)− Lj + Uj = 0 ∀j = 1 . . .m

Lj ≥ 0, Uj ≥ 0 ∀j = 1 . . .m
∑m

j=1 cxi,dj = 1 ∀dj ∈ D(xi) ∀i = 1 . . . n
∑m

j=1 cxi,dj = 0 ∀dj /∈ D(xi) ∀i = 1 . . . n
∑

h∈Dydj

cydj ,h = 1 ∀j = 1 . . .m

cxi,dj ∈ {0, 1} ∀xi ∈ X, dj ∈ D(xi)

cydj ,h ∈ {0, 1} ∀ydj ∈ Y, h ∈ Dydj

Let Dmax be the maximum domain size for the variables inS, the corresponding

integer linear program uses|X| ∗ Dmax + |Y | ∗ Dmax + 2 ∗ Dmax variables and

4 ∗ |Y | + 2 ∗ |X| + |X| ∗ Dmax + |Y | ∗ Dmax inequalities. Ifxi = dj, cxi,dj = 1;

otherwisecxi,dj = 0. If ydj = h, cydj ,h = 1; otherwisecydj ,h = 0. By Theorem 4.12,

SOFT EGCCvar cost function is a PLPS cost function.

Example 4.35.Consider the following WCSPP = {X ,D,WS, k}: X = {x1, x2, ya, yb},

D(x1) = D(x2) = {a, b},D(ya)D = (yb) = {0, 1, 2},WS = SOFT EGCCvar(x1, x2, ya, yb).

For example,WS(a, a, 2, 1) = 1 because|ya−occ(a, (x1, x2))|+ |yb−occ(b, (x1, x2))| =

1.
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The corresponding integer linear program is:

minL1 + U1 + L2 + U2 s.t.

cx1,a + cx2,a − cya,1 − 2cya,2 − L1 + U1 = 0

cx1,b + cx2,b − cyb,1 − 2cyb,2 − L2 + U2 = 0

L1 ≥ 0, U1 ≥ 0, L2 ≥ 0, U2 ≥ 0

cx1,a + cx1,b = 1

cx2,a + cx2,b = 1

cya,0 + cya,1 + cya,2 = 1

cyb,0 + cyb,1 + cyb,2 = 1

wherecx1,a, cx1,b, cx2,a, cx2,b, cya,0, cya,1, cya,2, cyb,0, cyb,1, cyb,2 ∈ {0, 1}.

4.5.3 The SOFT DISJUNCTIVE /CUMULATIVE Cost Function

The DISJUNCTIVE(S, p1, . . . , pn) constraint [20] is used in non-preemptive schedul-

ing. A set ofn variablesS = x1, . . . , xn is used to represent the beginning time of

n jobs. Each jobxi ∈ S has its process timepi and its possible start time defined

by its domaind ∈ D(xi). After a job has started, it cannot be interrupted to process

another job. The DISJUNCTIVEconstraint restricts that no more than one job can be

processed at the same time. The CUMULATIVE (S, p1, . . . , pn, k) constraint allows

k jobs to be processed at the same time instead of 1 in the DISJUNCTIVEconstraint.

We first define a setT which consists of every possible time in a constraint such

thatT =
⋃

∀xi∈S
{d+ q | d ∈ D(xi), 0 ≤ q ≤ pi}.

Definition 4.36. The DISJUNCTIVE(S, p1, . . . , pn) constraint holds if(xi + pi ≤

xj) ∨ (xj + pj ≤ xi) for every pair ofxi, xj ∈ S [20].
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Definition 4.37. The CUMULATIVE (S, p1, . . . , pn, k) constraint holds if∀t ∈ T ,

|{xi | xi ≤ t ≤ xi + pi}| ≤ k [20].

Theorem 4.38.Enforcing GAC onDISJUNCTIVEandCUMULATIVE constraints is

NP-hard [1].

The DISJUNCTIVE constraint is softened by allowing more than one job to be

processed at the same time with a cost given as the penalty. The CUMULATIVE can

also be softened by allowing more thank jobs can be processed at the same time

with a penalty.

Definition 4.39. Given theDISJUNCTIVE() constraint and an assignment tupleℓ in

variablesS,

SOFT DISJUNCTIVEval(xi, . . . , xn, p1, . . . , pn)(ℓ)

=
T
∑

t=0

n
∑

i=1

max(|{i|ℓ[xi] ≤ t ≤ ℓ[xi] + pi}| − 1, 0)

Definition 4.40. Given theCUMULATIVE () constraint and an assignment tupleℓ in

variablesS,

SOFT CUMULATIVE val(xi, . . . , xn, p1, . . . , pn, k)(ℓ)

=
T
∑

t=0

n
∑

i=1

max(|{i|ℓ[xi] ≤ t ≤ ℓ[xi] + pi}| − k, 0)

Theorem 4.41. Computing the minimum costs ofSOFT DISJUNCTIVEval and

SOFT CUMULATIVE val cost functions is NP-hard.

Proof. As the SOFT DISJUNCTIVEval cost function is derived from the DISJUNC-

TIVE constraint and it is NP-hard to enforce GAC on the DISJUNCTIVE con-

straint. By Lemma 4.2, computing the minimum cost of SOFT DISJUNCTIVEval

is NP-hard. The SOFT CUMULATIVE val cost function is a generalized version
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of the SOFT DISJUNCTIVEval cost function, so computing the minimum cost of

SOFT DISJUNCTIVEval is also NP-hard.

We can model this cost function in the form of a PLPS cost function such that

we can compute the approximated minimum cost efficiently by linear relaxation.

Theorem 4.42.TheSOFT DISJUNCTIVEval andSOFT CUMULATIVE val cost func-

tions are PLPS cost functions.

Proof. The SOFT DISJUNCTIVEval cost function can be expressed as an integer

linear programI whereI is defined as:

min
∑

t∈T Ut s.t.
∑n

i=1

∑t
j=max(t−pi,0)

cxi,j − Ut ≤ 1 ∀t ∈ T
∑

d∈D(xi)
cxi,d = 1 ∀i = 1, 2, . . . , n

wherecxi,d ∈ {0, 1} for all xi ∈ S andd ∈ D(xi). Let Dmax be the maximum

domain size for the variables inS, the corresponding integer linear program uses

|S|∗Dmax+|T | variables and|T |+|S|+|S|∗Dmax inequalities. Ifxi = d, cxi,d = 1;

otherwisecxi,d = 0. By Theorem 4.12, the SOFT DISJUNCTIVEval cost function is

a PLPS cost function.

The SOFT CUMULATIVE val cost function can be expressed as an integer linear

programI whereI is defined as:

min
∑

t∈T Ut s.t.
∑n

i=1

∑t
j=max(t−pi,0)

cxi,j − Ut ≤ k ∀t ∈ T
∑

d∈D(xi)
cxi,d = 1 ∀i = 1, 2, . . . , n

wherecxi,d ∈ {0, 1} for all xi ∈ S andd ∈ D(xi). The corresponding integer linear

program uses|S|∗Dmax+|T | variables and|T |+|S|+|S|∗Dmax inequalities. Ifxi =

d, cxi,d = 1; otherwisecxi,d = 0. By Theorem 4.12, the SOFT DISJUNCTIVEval cost

function is a PLPS cost function.
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Example 4.43.Consider the following WCSPP = {X ,D,WS, k}: X = {x1, x2},

D(x1) = {0, 1, 2, 3}, WS = SOFT DISJUNCTIVEval(x1, x2, 2, 3). For example,

WS(2, 0) = 1 because whent = 2, x1 ≤ t ≤ x1 + 2 andx2 ≤ t ≤ x2 + 3 and

the two jobs overlap each other, and
∑T

t=0

∑n

i=1 |{i|xi ≤ 2 ≤ xi + pi}| = 1. The

corresponding integer linear program is:

minU0 + U1 + U2 + U3 + U4 s.t.

cx1,0 + cx2,0 − U0 ≤ 0

cx1,0 + cx1,1 + cx2,0 + cx2,1 − U1 ≤ 0

cx1,1 + cx1,2 + cx2,0 + cx2,1 + cx2,2 − U2 ≤ 0

cx1,2 + cx1,3 + cx2,1 + cx2,2 + cx2,3 − U3 ≤ 0

cx1,3 + cx1,4 + cx2,2 + cx2,3 + cx2,4 − U4 ≤ 0

U0 ≥ 0, U1 ≥ 0, U2 ≥ 0, U3 ≥ 0, U4 ≥ 0

cx1,0 + cx1,1 + cx1,2 + cx1,3 = 1

cx2,0 + cx2,1 + cx2,2 + cx2,3 = 1

wherecx1,0, cx1,1, cx1,2, cx1,3, cx2,0, cx2,1, cx2,2, cx2,3 ∈ {0, 1}.

4.6 Implementation Issues

In this section, we discuss the issues when we implement our framework into a

WCSP solver. In our experiments, we use IBM ILOG CPLEX Optimizer 12.2 to

solve the corresponding linear programs of PLPS cost functions. We discuss three

main issues in our implementaion: (1) reducing the number ofcalls to linear pro-

gramming solver for PLPS cost functions; (2) speeding up thelinear programming

solver by solving linear programs incrementally, and; (3) the floating point rounding
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problem in the linear programming solver.

First, although enforcing relaxed consistencies on PLPS cost functions requires

only polynomial time, it is still expensive to solve the linear programs. To reduce

the number of calling the linear program solver, we include adata structure to re-

member the unbroken supports. To compute the cost of a value,we first check if the

cost is affected by previous modifications. If it is the case,the cost is recomputed;

otherwise the stored value is returned in order to save time.

Second, CPLEX can solve linear programs incrementally basedon the solution

of a similar linear program. Since enforcing consistencieson PLPS cost functions

requires solving linear programs with minor modifications,we allow CPLEX to

handle compute the solutions of linear programs incrementally instead of creating

a new linear program whenever the domains and costs are modified. The same

method can also be applied when a value is removed, which can be done by setting

the upper bound of the corresponding value to 0.

Third, when integers are stored with floating point representation, an inevitable

tiny error is often introduced and this case also happens in CPLEX and a bigger

error will be introduced if the ceiling function is applied afterward. For example, if

the minimum cost of a variable is 1 and a tiny error is added, applying the ceiling

function on this variable returns 2 and a wrong value can be projected in enforcing

relaxed consistencies. In order to avoid such error, we truncate the floating point

numbers used in CPLEX at the 10th decimal place and minus a tinynumber before

finding the ceiling of these numbers.

4.7 Experimental Results

In this section, we first conduct experiments on the PLPS costfunctions we

have introduced, including the SOFT SLIDING SUMdec, SOFT EGCCvar, and

SOFT DISJUNCTIVEval cost functions and demonstrate the efficiency of our frame-

work. Finally we will discuss the results.
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The benchmarks we use consist of hard constraints in nature and can be modeled

as hard CSPs directly. We soften them by assigning a random unary cost from 0 to

9 to each value in the domain of each variable representing their preferences, and

replacing the hard constraints with their soft variants.

To demonstrate the efficiency of PLPS cost functions and the use of their con-

junctions, we compare the performances of the following models in this experi-

ment. We include (a) models using PLPS cost functions, (b) models using con-

joined PLPS cost functions, and (c) models using flow-based projection-safe cost

functions. Since the SOFT SLIDING SUMdec and SOFT EGCCvar cost functions

cannot be modeled directly as flow-based projection-safe cost functions, we model

the instances with flow-based projection-safe cost functions by decomposing the

SOFT SLIDING SUMdec and SOFT EGCCvar cost functions in the model (c). We

also add (d) models using PLPS cost functions with decomposed SOFT SLIDING SUMdec

and SOFT EGCCvar cost functions to compare with the model (c).

Since there is no well-known efficient or effective algorithm to model the

SOFT DISJUNCTIVEval cost functions, model (c) and model (d) cannot be con-

structed. Instead, we compare (c) the model with the integerlinear program ap-

proach without linear relaxation and show that the speedup by using the approxi-

mation by linear relaxation can compensate the enlarged search space of enforcing

weaker consistencies.

The consistencies GAC*, FDGAC*, weak EDGAC* and their relaxed versions

are implemented in Toulbar2 v0.9. IBM ILOG CPLEX Optimizer 12.2 is called

from Toulbar2 to solve (integer) linear programs. Variables with smaller domains

and values with lower unary costs are assigned first. The experiments are conducted

on an Intel Core2 Duo E7400 (2 x 2.80GHz) machine with 4GB RAM. Ineach

benchmark we use different parameter settings to constructdifferent instances, and

10 random cases are generated with each parameter setting. We use the timeout

of 3600 seconds and report the average number of backtracks (bt) and the average

runtime in seconds (time) for solved cases. The runtime includes the CPU time used
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by both the WCSP solver Toulbar2 and the linear program solver CPLEX. Next to

the total CPU time, we also report separately in brackets the CPU time used by the

linear program solver denoted as CPLEX (CPLEX). We truncate the floating point

variables in CPLEX at the 10-th decimal place. We mark the entries with a “*” if

the execution of one of the 10 instances exceeds the timeout.The best result among

those with the most cases solved is highlighted in bold.

4.7.1 Generalized Car Sequencing Problem

The Generalized Car Sequencing Problem (Generalizing prob001 in CSPLib) is to

find a sequence forn cars ofu ∈ U different types to be built. There is a set of

optionsI which may or may not be equipped by each type, and each assembly line

of an optioni ∈ I restricts that at mostmi cars for everysi cars with that option

equipped can be built. We generalize the problem such that a cost cu,i is required

for each type of caru ∈ U for each optioni ∈ I to be equipped, and each assembly

line of an optioni ∈ I allows a maximum ofmi costs to be spent on that option for

everysi cars in total. A GCC constraint is used to ensure that the number of cars of

each type is built according to the plan. The SOFT SLIDING SUMdec cost functions

are used to ensure the restrictions of each assembly line aresatisfied. We fix|I| = 3

andu = 5 and use instances with differentn in our experiments.

To model the problem with flow-based projection-safe cost functions, we de-

compose the SOFT SLIDING SUMdec cost functions into SOFT SUMval cost func-

tions, which can be modeled by the SOFT REGULARvar cost functions [30] as flow-

based projection-safe cost functions.

Definition 4.44. Given a tupleℓ, the SUM(S, l, u) constraint holds if l ≤
∑

xi∈S
ℓ[xi] ≤ u, whereℓ[xi] is the value assigned toxi in the tupleℓ.

Definition 4.45. Given theSUM() constraint and an assignment tupleℓ in variables

S,

SOFT SUMval(S, l, u)(ℓ) = max(
∑

xi∈S

ℓ[xi]− u, l −
∑

xi∈S

ℓ[xi], 0)
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Results are shown in Table 4.1. In the models with decomposed

SOFT SLIDING SUMdec cost functions (models (c) and (d)), model (d) requires more

time than model (c) as the overhead of finding the minimum costof a single PLPS

cost function is greater than that of a flow-based projection-safe cost function. How-

ever, in model (a) and model (b), using PLPS cost functions without decomposing

the SOFT SLIDING SUMdec cost functions outperforms model (c). By conjoining

PLPS cost functions, model (b) prunes even more and requiresless time than other

models. Since the instances only contain PLPS cost functions, they are conjoined

into a single PLPS cost function in our model. As there is no possible propagation

between cost functions, the effects of relaxed GAC*, relaxedFDGAC*, and relaxed

weak EDGAC* are similar. So relaxed FDGAC* and relaxed weak EDGAC* do

not infer a much better bound than relaxed GAC* when conjoinedPLPS cost func-

tions are used. The reduction in search space does not compensate for the pruning

overhead, and the simpler and less costly relaxed GAC* gives the best results in

terms of run-time.

4.7.2 Magic Series Problem

The Magic Series Problem (prob019 in CSPLib) is to find a sequence ofn variables

which forms a magic series. A non-empty finite seriesS = (s0, s1, . . . , sn) is magic

if and only if there aresi occurrences ofi ∈ S for each integeri ranging from 0 to

n. For example,S = (3, 2, 1, 1, 0, 0, 0) is an example of a magic series forn = 6 as

there are three 0’s, two 1’s, a 2, a 3, and no 4, 5, and 6 in the seriesS. We use the

SOFT EGCCvar cost functions to restrict the occurrences of each values.

To model the problem with flow-based projection-safe cost functions, we de-

compose the SOFT EGCCvar cost functions into SOFT AMONG VARvar cost func-

tions, which is a generalization of the SOFT AMONG cost function with a count

variable. Similar to SOFT AMONG, The SOFT AMONG VARvar cost function can

be modeled as flow-based projection-safe cost function.
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(a) Modeling with PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

8 19.0 0.21 (0.20) 9.2 0.20 (0.19) 9.0 0.25 (0.23)
10 41.2 0.55 (0.51) 21.0 0.52 (0.49) 19.8 0.73 (0.68)
12 119.6 1.44 (1.35) 48.2 1.15 (1.07) 45.6 1.34 (1.26)
14 585.1 17.63 (16.91) 264.8 13.12 (12.76) 249.0 15.19 (14.61)

(b) Modeling with conjoined PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

8 16.0 0.19 (0.18) 12.4 0.30 (0.28) 12.4 0.38 (0.35)
10 30.6 0.46 (0.43) 20.0 0.71 (0.65) 17.8 0.86 (0.80)
12 86.4 1.07 (1.01) 43.0 1.52 (1.45) 36.4 1.62 (1.55)
14 133.0 1.30 (1.26) 74.2 1.77 (1.71) 64.1 1.77 (1.72)

(c) Modeling with flow-based cost functions (SOFT REGULAR)

n
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
8 558.6 0.97 243.1 0.41 198.0 0.45

10 4023.4 1.57 865.2 0.72 559.1 0.68
12 55866.2 24.73 24496.9 22.15 6741.8 15.49
14 279748 152.24 104588 108.94 20341 65.13

(d) Modeling with PLPS cost functions (decomposed SOFT SLIDING SUMdec)

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

8 558.6 23.13 (22.36) 243.1 9.53 (9.17) 198.0 14.08 (13.62)
10 4023.4 39.61 (39.07) 865.2 18.91 (18.12) 559.1 23.35 (22.86)
12 55866.2 730.32 (721.96) 24496.9 224.81 (219.15) 6741.8 276.92 (271.07)
14 * * * * * *

Table 4.1: The generalized car sequencing problem using SOFT SLIDING SUMdec

Definition 4.46. TheAMONG VAR(S, y, v) constraint holds ify = occ(v, S), where

occ(v, S) is the number of occurrences ofv in S.

Definition 4.47. Given theAMONG VAR constraint and an assignment tupleℓ in

variablesS,

SOFT AMONG VARvar(S, y, v)(ℓ) = |y − occ(v, S)|

Results are shown in Table 4.2. Similar to the last experiment, model (d) re-

quires more time than model (c) as the overhead of PLPS cost functions are greater.

On the other hand model (a) and model (b) outperform model (c). By conjoin-

ing PLPS cost functions, model (b) prunes more and requires less time than other
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(a) Modeling with PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

9 23.1 0.24 (0.23) 19.3 0.27 (0.26) 17.1 0.43 (0.41)
12 54.7 0.71 (0.65) 44.9 0.99 (0.93) 42.3 1.52 (1.43)
15 89.2 1.70 (1.59) 53.1 2.32 (2.21) 50.2 3.64 (3.46)
18 93.7 3.03 (2.89) 64.7 4.80 (4.64) 59.8 6.41 (6.13)

(b) Modeling with conjoined PLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

9 12.8 0.27 (0.25) 9.8 0.43 (0.40) 9.7 0.54 (0.50)
12 33.5 0.86 (0.81) 24.6 1.55 (1.48) 24.3 1.89 (1.80)
15 39.2 1.62 (1.52) 32.6 2.95 (2.86) 32.3 3.64 (3.51)
18 49.4 2.96 (2.87) 36.7 5.78 (5.48) 36.4 7.29 (6.82)

(c) Modeling with flow-based cost functions (SOFT AMONGvar)

n
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
9 680.2 5.00 83.4 1.26 62.1 1.30

12 6141.8 220.22 252.3 19.15 213.4 18.82
15 * * 809.9 228.03 539.2 203.14
18 * * * * * *

(d) Modeling with PLPS cost functions (decomposed SOFT EGCCvar)

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

9 680.2 164.12 (162.03) 83.4 29.76 (28.51) 62.1 38.41 (36.93)
12 * * 252.3 533.12 (526.19) 213.4 679.03 (671.56)
15 * * * * * *
18 * * * * * *

Table 4.2: The magic square problem using SOFT EGCCvar

models. (Relaxed) weak EDGAC* also prunes more than than (relaxed) FDGAC*

and (relaxed) GAC* in all models with either PLPS cost functions or flow-based

projection-safe cost functions. Similar to that of the lastexperiment, relaxed GAC*

gives the best results in model (b) in terms of run-time as it is simpler and less

costly.

4.7.3 Weighted Tardiness Scheduling Problem

The Weighted Tardiness Scheduling Problem (in OR-Library) is to find a schedule

of n jobs to be processed, where no two jobs are processed at the same time. In

each problem, there isn jobs and a set of total available time slotsT . Each job
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is given a time slot, if a job cannot be processed within the given time slot, a ear-

liness/tardiness penalty is given. A SOFT DISJUNCTIVEval cost function is used

to ensure no two jobs are processed at the same time. The unarycosts are used

to model the earliness/tardiness penalty of each job. In each instance, we use the

number of jobsn, the size of the the total available time slots|T |, and the average

duration of each jobd as the parameters. A time slot with the length of|T |/2 is

given to each job, and a random earliness/tardiness penaltyis given to each job if it

cannot be processed within the given time slot.

Since there is no other efficient way to model SOFT DISJUNCTIVEval cost func-

tions in WCSP. Instead of the model (c) and (d) defined above, we compare the

result of the linear cost function approach of SOFT DISJUNCTIVEval with the inte-

ger programming approach of the same implementation as model (c), which allows

the exact minimum costs to be found and the common consistency algorithms in

WCSP like GAC*, FDGAC*,etc., to be enforced.

Results are shown in Table 4.3. In this benchmark, the integerlinear program

approach (model (c)) prunes more than modeling with PLPS cost functions (model

(a)) as relaxed consistencies are weaker than standard consistencies. However it

also takes much more time to solve and the extra pruning poweroffered in using in-

teger linear programs does not pay off. By conjoining PLPS cost functions, model

(b) prunes more and requires less time than other models. (Relaxed) weak EDGAC*

also prunes more than than (relaxed) FDGAC* and (relaxed) GAC*in all models

with either PLPS cost functions or flow-based projection-safe cost functions. Sim-

ilar to that of the above experiments, relaxed GAC* gives the best results in model

(b) in terms of run-time as it is simpler and less costly.
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(a) Modeling with PLPS cost functions

n, d, |T |
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

3,3,12 7.0 0.05 (0.05) 6.0 0.06 (0.06) 6.0 0.08 (0.08)
4,4,20 13.0 0.14 (0.13) 8.0 0.18 (0.17) 8.0 0.25 (0.24)
5,5,30 35.0 0.60 (0.56) 19.0 0.68 (0.63) 15.0 0.98 (0.92)
6,5,35 382.0 7.01 (6.75) 32.1 1.90 (1.82) 28.1 2.41 (2.32)
7,5,40 2253.6 61.89 (60.14) 27.0 2.78 (2.47) 25.2 3.51 (3.32)
8,5,45 * * (*) 214.0 22.09 (21.23) 210.1 30.16 (28.90)

(b) Modeling with conjoined PLPS cost function

n, d, |T |
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

3,3,12 6.0 0.05 (0.05) 6.0 0.09 (0.09) 6.0 0.16 (0.13)
4,4,20 8.0 0.15 (0.14) 8.0 0.29 (0.28) 8.0 0.35 (0.34)
5,5,30 15.5 0.53 (0.50) 15.2 1.04 (1.01) 15.0 1.29 (1.25)
6,5,35 23.2 0.95 (0.90) 18.8 1.90 (1.83) 18.0 2.32 (2.24)
7,5,40 35.2 1.72 (1.64) 27.0 3.44 (3.30) 21.0 4.23 (4.07)
8,5,45 40.1 3.49 (3.24) 34.5 7.38 (7.08) 33.1 8.71 (8.31)

(c) Modeling with PLPS cost functions, linear programs solved as integer programs

n, d, |T |
GAC* FDGAC* weak EDGAC*

bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
3,3,12 6.8 1.02 (0.96) 6.0 1.37 (1.29) 6.0 1.84 (1.78)
4,4,20 12.7 6.62 (6.34) 8.0 7.56 (7.23) 8.0 9.37 (8.93)
5,5,30 34.8 38.28 (37.71) 15.0 40.77 (40.20) 15.0 54.12 (53.69)
6,5,35 61.1 100.99 (99.82) 19.0 121.82 (120.13) 18.0 153.09 (151.62)
7,5,40 81.0 219.85 (213.13) 23.2 302.98 (292.65) 22.8 453.10 (440.12)
8,5,45 * * * * * *

Table 4.3: The weighted tardiness scheduling problem using
SOFT DISJUNCTIVEval



Chapter 5

Integral Polynomially Linear

Projection-Safe Cost Functions

In this chapter, we proposeIntegral Polynomially Linear Projection-Safe (IPLPS)

cost functions as a subclass of PLPS cost functions. Solvingthe corresponding inte-

ger linear programs of IPLPS cost functions with linear relaxation always gives inte-

gral minimums. Given a standard WCSP consistencyα, we give theorems showing

that maintaining a relaxed consistenciesα on a conjunction of IPLPS cost func-

tions is strictly stronger than maintainingα on the individual cost functions. A

useful application of our method is on some IPLPS global costfunctions, whose

minimum cost computations are tractable and yet those for their conjunctions are

not. We show that flow-based projection-safe and polynomially decomposable cost

functions fall into this category. Experiments are conducted to confirm empirically

that performing relaxed consistencies on the conjoined cost functions is more ef-

ficient than performing the corresponding standard consistencies on the individual

cost functions.

68
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5.1 Integral Polynomially Linear Projection-Safe Cost

Functions

Integral polynomially linear projection-safe (IPLPS)cost functions form a special

subclass of PLPS cost functions. A cost functionWS is integral polynomially linear

if (a)WS is linear, (b) the size of the corresponding integer programis polynomial to

the number of variables and the maximum domain size, and (c) the optimal solution,

if it exists, of the linear relaxation of its corresponding linear integer programIWS

is always integral.

Lemma 5.1. Integral polynomially linear cost functions are polynomially linear.

An immediate observation is that the exact minimum cost of anintegral linear

cost function can be obtained by solving the linear relaxation of their corresponding

integer linear programs.

Lemma 5.2. If WS is an integral polynomially linear cost function,min{WS} =

approx min{WS}.

Theorem 5.3.Minimum cost computation of integral polynomially linear cost func-

tions is polynomial.

Proof. Sincemin{WS} = approx min{WS}, min{WS} can be determined using

interior point algorithms [49] for linear programs with theworst case complexity

bounded by polynomial time.

Recall the notion ofT projection-safety. In addition to flow-basedness and poly-

nomially linearity, integral polynomially linearity is another good propertyT to be

maintained across projections/extensions. Therefore, itmakes sense to require cost

functions to beintegral polynomially linear projection-safe (IPLPS).

We give the possible sufficient conditions to identify IPLPScost functions.

Theorem 5.4.A cost functionWS is integral polynomially linear projection-safeif:
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1. WS is PLPS and has the corresponding integer linear programIWS
, and;

2. IWS
is totally dual integralor the associated matrix ofIWS

is totally unimod-

ular.

Proof. By lemma 4.11, PLPS cost functions remain PLPS after projections and

extensions, soWS is PLPS after projections and extensions given the condition 1).

In addition, if a linear program is totally dual integral or its associated matrix is

totally unimodular, its optimal solutions must be integral[36]. Since projections

and extensions can be performed onWS by adding terms to the objective function

of IWS
. The structure ofIWS

remains unchanged and the condition 2) is preserved

after projections and extensions.

As a result, we can construct the sufficient conditions for IPLPS cost functions

as above.

Integral polynomially linear and polynomially linear projection-safe cost func-

tions are interesting since their conjunctions are PLPS.

By Lemma 4.27 and 5.1, we have the following corollary.

Corollary 5.5. SupposeWS1
andWS2

are IPLPS cost functions. The conjunction

Wconj ≡ WS1
∧WS2

is PLPS.

Corollary 5.6. SupposeWS is IPLPS, andα-consistency is one of GAC*, FDGAC*

and weak EDGAC*. Relaxedα-consistent onWS is equivalent toα-consistent on

WS.

In general, it is NP-hard to compute the minimum cost of the conjunction of

overlapping IPLPS cost functions. On the other hand, the conjunction of their corre-

sponding linear programs may not always give integral minimums when there exists

a minimum [49]. As the conjunction of IPLPS cost functions remains PLPS, linear

programming techniques allow its approximated minimum cost to be computed ef-

ficiently, and relaxed form of standard consistencies can thus be enforced. We have
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the following result when relaxed consistencies are enforced on the conjunction of

IPLPS cost functions compared to the corresponding (non-relaxed) consistencies

enforced on the individual cost functions.

Given WCSPPIPLPS = (X ,D, CIPLPS, k), where each cost functionWS ∈

CIPLPS is IPLPS with corresponding integer linear programIWS
. We assume that

CIPLPS contains overlapping cost functions. We can construct an equivalent WCSP

Pconj = (X ,D, Cconj, k) whereCconj = {Wconj} andWconj ≡
∧

WS∈CIPLPS
WS

with the corresponding scopeSconj ≡
⋃

WS∈CIPLPS
S and integer linear program

IWconj
≡

∧

WS∈CIPLPS
IWS

.

We show that relaxed (FD)GAC* and relaxed weak EDGAC* onPconj are

strictly stronger than (FD)GAC* and weak EDGAC* onPIPLPS respectively by

the following theorem.

Theorem 5.7.Supposeα-consistency is one of GAC*, FDGAC* and weak EDGAC*.

Relaxedα-consistent onPconj is strictly stronger thanα-consistent onPIPLPS.

Proof. We prove the part for relaxed GAC*. The proofs for the other consistencies

are similar.

AssumePconj is relaxed GAC*, butPIPLPS is not GAC*. There exists a variable

xi ∈ X with a valuea ∈ D(xi) and a cost functionWS ∈ CIPLPS in PIPLPS such

thatmin{WS(ℓ) | ℓ[xi] = a∧ℓ ∈ L(S)} > 0. Since all cost functionsWS ∈ CIPLPS

are IPLPS, we have

approx min{Wconj | ℓ[xi] = a ∧ ℓ ∈ L(S)}

≥
⊕

WS∈CIPLPS
approx min{WS | ℓ[xi] = a ∧ ℓ ∈ L(S)}

=
⊕

WS∈CIPLPS
min{WS(ℓ) | ℓ[xi] = a ∧ ℓ ∈ L(S)} > 0

Thus,a cannot have simple support andxi cannot be relaxed GAC* with respect to

Wconj in Pconj.

Consider WS1
= SOFT ALL DIFFvar(x1, x2, x3) and WS2

=

SOFT ALL DIFFvar(x2, x3, x4), whereD(x1) = {a, b}, D(x2) = D(x3) = {a, b, c}
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andD(x4) = {b, c}. It is easy to check thatPIPLPS = (X ,D, {WS1
,WS2

}, k) is

GAC*. However,Pconj = (X ,D, {WS1
∧WS2

}, k) is not relaxed GAC* since the

approximated minimum cost whenx1 = a is 1 > 0.

Result follows.

Since relaxed consistencies are the weaker forms of standard consistencies, we

have the following lemma.

Lemma 5.8.Supposeα-consistency is one of GAC*, FDGAC* and weak EDGAC*.

We haveα-consistent onPconj > relaxedα-consistent onPconj.

Enforcingα-consistency onPconj infers better bounds, but it can be NP-hard if

computing the minimum costs of conjunctions of IPLPS cost functions is NP-hard.

It may not be worthwhile to do so, while relaxed consistencies can still be enforced

efficiently onPconj.

5.2 Conjoining Global Cost Functions as IPLPS

An immediate application of Theorem 5.7 is to existing global cost functions with

polytime minimum cost computation. In many cases the minimum cost computation

for their conjunctions is NP-hard. Theorem 5.7 suggest thatit is still worthwhile

to enforce relaxed consistencies on these cost functions. Flow-based projection-

safe cost functions [28, 30] and polynomially decomposablecost functions [31] are

such examples. By enforcing relaxed consistencies on their conjunctions, the search

benefits from the better bounds inferred.

Theorem 5.9.Flow-based projection-safe cost functions are IPLPS.

Proof. Every flow-based projection-safe cost function has a corresponding network

flow problem, which in turn has a corresponding integer linear program with a to-

tally unimodular matrix [38]. The cost function, the flow problem, and the inte-

ger linear program shares the same minimum cost. Since the integer linear pro-

gram always has integral solutions when solved with linear relaxation, the result
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follows.

Corollary 5.10. The flow-based projection-safe cost functions [30, 29]

SOFT ALL DIFFvar, SOFT ALL DIFFdec, SOFT GCCvar, SOFT GCCval,

SOFT SAMEvar, SOFT SAMEval, SOFT REGULARvar, and SOFT REGULARedit

are IPLPS cost functions.

Leeet al. [31] define polynomially decomposable cost functions and give their

sufficient conditions. They further give some examples of polynomially decompos-

able cost functions with the corresponding distributive cost aggregation function.

Those examples fulfill the sufficient conditions of polynomially decomposable cost

functions as they are using the stated distributive aggregation function. Here we

give the related definitions and show that those cost functions are also IPLPS cost

functions.

Definition 5.11. [31] A cost functionWS can besafely decomposedto a set of cost

functionsΩ = {ωS1
, . . . , ωsm} using cost aggregation functionf , whereSi ⊆ S, iff

1. WS(ℓ) = f({ωSi
(ℓ[Si]) | ωSi

∈ Ω}), and;

2. f is distributive, i.e.

(a) min{WSi
} = f({min{ωSi

} | ωSi
∈ Ω}), and;

(b) For a variablex ∈ S, a costα and a tupleℓ ∈ L(S), WS(ℓ) ⊕ α =

f({ωSi
(ℓ[Si])⊕νx,Si

(α) | ωSi
∈ Ω}) andWS(ℓ)⊖α = f({ωSi

(ℓ[Si])⊖

νx,Si
(α) | ωSi

∈ Ω}), where the functionν is defined asνx,Si
(α) = α if

x ∈ Si, and 0 otherwise.

A cost functionWS can bepolynomially decomposedinto a set of cost functions

Ω = {ωS1
, . . . , ωsm}, whereSi ⊆ S, if

1. m is polynomial to the size ofS and maximum domain sized,
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2. EachωSi
∈ Ω ∪ {ωSm+1

}, whereωSm+1
= WS, is either a tractable unary

cost function, or can be safely decomposed intoΩi ⊆ {ωSj
| j < i} using a

tractable cost aggregation functionfi.

Lemma 5.12. [31] If a global cost functionWS can be represented asWS(ℓ) =

minr
i=1{

⊕ni

j=1 ωSi,j
(ℓ[Si,j ])}, where:

1.
∑r

i=1 ni is polynomial to|S| andd, and;

2. for eachi, Si,j ∩ Si,k = ∅ iff j 6= k and
⋃ni

j Si,j = S,

thenWS is safely decomposable.

Theorem 5.13.SupposeWS is a polynomially decomposable cost function using

the aggregation function stated in Lemma 5.12, thenWS is IPLPS.

Proof. We show thatWS is IPLPS by first showing that it is flow-based projection-

safe. The aggregation function stated in Lemma 5.12 consists of the operationsmin

and
⊕

, which can be represented and computed in flow networks. So,WS can be

represented as a min-cost flow problem with a corresponding flow network, where

each cost functionωSi,j
is represented by a node. The operationmin is represented

by a new node as the sink and all the nodes of the related cost functions are con-

nected to it. The operation
⊕

is represented by a path connecting all the nodes of

the related cost functions.

As a result,WS is a flow-based projection-safe cost function. By Theorem 5.9,

WS is an IPLPS cost functions.

Corollary 5.14. The polynomially decomposable cost functions [31]SOFT AMONGvar,

SOFT REGULARvar, SOFT GRAMMAR var, MAX WEIGHT, andM IN WEIGHT use

the aggregation function stated in Lemma 5.12 and they are IPLPS.

We note that, for the cost functions mentioned above, their dedicated polynomial

time algorithms are usually more efficient than interior point algorithms or linear

programming.
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By propagating the conjunction of cost functions, extra pruning opportunities

can be discovered which may reduce more search space than propagating the indi-

vidual cost functions. Unfortunately, it can be NP-hard to compute the minimum

cost for the conjunction of IPLPS cost functions even an efficient polynomial time

algorithm is given for the individual cost functions.

Bessìereet al. [8] show the above result on the hard ALL DIFF constraints and

it can be generalized to the SOFT ALL DIFFvar, SOFT ALL DIFFdec, SOFT GCCvar,

SOFT GCCval, and SOFT SAMEvar cost functions. Ŕegin [42] also shows the above

result on the hard AMONG [3] constraints, where an AMONG constraint restricts the

number of variables to be assigned to a value from a specific set. The result can

be generalized to the SOFT AMONGvar, SOFT REGULARvar, SOFT REGULARedit,

and SOFT GRAMMAR var cost functions. Theorem 5.7 suggests that enforcing the

relaxed consistencies on the conjunction of such IPLPS costfunctions can still be

more efficient and worthwhile than handling them individually.

Given WCSPPIPLPS = (X ,D, CIPLPS, k), whereCIPLPS consists of some

IPLPS cost functions, and an equivalent WCSPPconj = (X ,D, Cconj, k) where

Cconj = {Wconj} andWconj ≡
∧

WS∈CIPLPS
WS. We give an example similar to

the one given by Bessièreet al. [8] in the following theorem. By propagating on a

conjunction of IPLPS cost functions with relaxed consistencies, a higher bound can

be inferred earlier in an exponentially number of steps during branch-and-bound

search in such a case.

Theorem 5.15.Supposeα-consistency is one of GAC*, FDGAC* and weak EDGAC*.

There exists a class of WCSPPIPLPS, so that if we enforceα-consistency onPconj

andα-consistency onPIPLPS in branch-and-bound search, an exponential search

tree needs to be explored forPIPLPS to infer the same minimum cost as in the case

of Pconj.

Proof. We prove the part for relaxed GAC*. The proofs for the other consis-

tencies are similar. Given a WCSPPIPLPS = (X ∪ Y ∪ Z,D, CIPLPS, k)
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whereX = {x1, . . . , xn}, Y = {x1, . . . , x2n}, Z = {x1, . . . , xn}, CIPLPS =

{SOFT ALL DIFFvar(X ∪ Y ), SOFT ALL DIFFvar(Y ∪ Z)}, D(Xi) = [1, 2n − 1],

i = 1, . . . , n, D(Yi) = [1, 4n − 1], i = 1, . . . , 2n, andD(Zi) = [2n, 4n − 1],

i = 1, . . . , n.

Consider the WCSPPconj = (X ∪ Y ∪ Z,D, Cconj , k) whereCconj = {Wconj}

andWconj ≡ SOFT ALL DIFFvar(X∪Y )∧SOFT ALL DIFFvar(Y ∪Z). Wconj gives

an approximated minimum cost approxmin{Wconj} of 1 which can be inferred

by enforcing relaxed GAC* onCconj. On the other hand, a subset ofn or fewer

variables has at least2n − 1 values in their domains and a subset ofn + 1 to 3n

variables has4n − 1 values in their domains. Thus, to infer a minimum cost of

1 in PIPLPS by enforcing GAC* onCIPLPS, we must instantiate at leastn − 1

variables.

In addition to the theoretical results, we conduct experiments to show the ef-

ficiency of modeling cost functions as IPLPS cost functions and propagating their

conjunctions in the next section.

5.3 Experimental Results

To demonstrate the efficiency of our framework, we compare the performances of

(a) models using conjunctions of IPLPS cost functions against (b) models using

individual flow-based projection-safe / polynomially decomposable cost functions.

The consistencies GAC*, FDGAC*, weak EDGAC* and their relaxed versions are

implemented in Toulbar2 v0.9. IBM ILOG CPLEX Optimizer 12.2 iscalled from

Toulbar2 to solve (integer) linear programs. Our benchmarks’ models consist of

both IPLPS global cost functions as well as table cost functions, the latter of which

are handled individually using exact minimum costs even when relaxed consisten-

cies are used.

Variables with smaller domains and values with lower unary costs are assigned
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first. The experiments are conducted on an Intel Core2 Duo E7400 (2 x 2.80GHz)

machine with 4GB RAM. In each benchmark we use different parameter settings to

construct different instances and 10 random cases are generated with each parameter

setting. We use the timeout of 3600 seconds and report the average number of

backtracks (bt) and the average runtime in seconds (time) for solved cases. The

runtime includes the CPU time used by both the WCSP solver Toulbar2 and the

linear programming solver CPLEX. Next to the runtime, we alsoreport separately

in brackets the CPU time used by CPLEX denoted as (CPLEX). We truncate the

floating point variables in CPLEX at the 10-th decimal place. We mark the entries

with a “*” if the execution of one of the 10 instances exceeds the timeout. The best

result among those with the most cases solved is highlightedin bold.

To utilize the global cost functions described above, we soften the following

problems by replacing the global constraints by their soft variants, by either the

flow-based projection-safe / polynomially decomposable implementations or the

IPLPS implementations. For each variablexi introduced, a random unary cost from

0 to 9 is assigned to each value inD(xi). Random preferences are added to the

instances in the form of table cost functions. Note that models using IPLPS cost

functions contain also table cost functions and are thus applied with a mix of relaxed

α-consistency (for IPLPS functions) andα-consistency (for table functions).

5.3.1 Car Sequencing Problem

The car sequencing problem (prob001 in CSPLib) finds a sequence of n cars of

u ∈ U different types to be built. There is a set of optionsI which may or may

not be equipped by each type and each assembly line of an option i ∈ I restricts

that at mostmi cars for everysi cars with that option equipped can be built. A

GCC [41] constraint is used to ensure that the number of cars of each type is built

according to the plan. Overlapping SOFT AMONGvar() [47] cost functions are used

to ensure the restrictions of each assembly line are satisfied and they are modeled
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Modeling with the conjunction of IPLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

12 72.6 2.22 (1.58) 12.1 0.47 (0.33) 12.0 0.85 (0.67)
14 85.7 3.11 (2.39) 15.8 0.73 (0.55) 15.0 1.30 (1.07)
16 89.3 4.33 (3.47) 16.1 1.13 (0.87) 15.6 1.92 (1.59)
18 123.3 7.20 (5.87) 18.9 1.38 (1.06) 18.0 2.24 (1.89)
20 139.7 10.29 (8.51) 22.0 2.01 (1.49) 20.6 3.31 (2.69)

Modeling with polynomially decomposable cost functions

n
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
12 23667.9 23.03 563.4 2.67 210.3 1.54
14 310845 328.49 2774.9 16.53 983.1 11.89
16 * * 6653.2 53.06 2191.3 25.10
18 * * 8104.2 93.87 3651.7 49.62
20 * * 21285.5 303.10 8025.6 161.82

Table 5.1: The soft car sequencing problem

by either polynomially decomposable cost functions or IPLPS cost functions. There

are preferences for each assembly line, e.g. two consecutive cars of the same type

are preferred, and they are modeled by table cost functions.We fix |I| = 5 and

u = 5 and use instances with differentn in our experiments.

Results are shown in Table 5.1. The model using conjunctions of IPLPS cost

functions using relaxedα-consistency run faster and prune more than the model

with individual flow-based projection-safe / polynomiallydecomposable cost func-

tions usingα-consistency in many cases, especially when the problem size is large.

As stronger consistencies have higher overhead, we gain in runtime only when

the extra prunings can compensate for the overhead. This is not the case in general

for relaxed weak EDGAC* in our easy problem instances as reported in these tables.

That is why relaxed FDGAC* exhibits better runtime behavior than weak EDGAC*.
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Modeling with the conjunction of IPLPS cost functions

n, d
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

25, 8 5507.6 405.67 (379.50) 29.8 3.77 (3.25) 25.4 4.32 (3.66)
30, 8 * * 63.4 18.37 (16.09) 50.4 8.50 (6.99)
35, 8 * * 35.8 7.96 (5.62) 35.0 10.85 (7.21)

30, 12 * * 140.1 26.49 (20.64) 124.7 30.88 (22.91)
35, 12 * * 93.0 45.02 (37.15) 78.3 51.41 (40.31)

Modeling with flow-based projection-safe cost functions

n, d
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
25, 8 16747.8 41.514 97.8 0.67 92.6 0.68
30, 8 * * 224.0 7.93 208.4 8.75
35, 8 * * 72.2 0.51 62.4 0.44

30, 12 * * * * * *
35, 12 * * * * * *

Table 5.2: The soft examination timetabling problem

5.3.2 Examination Timetabling Problem

The examination timetabling problem finds a schedule forn examinations overd

days fors groups of students, Each group of students attends a set of atmostd ex-

aminations and the number of days with more than 1 examination should be mini-

mized for every group of students. A SOFT ALLDIFFvar() [40] cost function is used

for every group of student, and they are modeled by either flow-based projection-

safe cost functions or IPLPS cost functions. There are preferences between exam-

inations, e.g. the locations of two examinations are far away and should not be

scheduled on the same day in case there are students attending both of them and

they are modeled by table cost functions. We fixs = 4 and use differentn andd in

our experiments.

Results are shown in Table 5.2. Similar to the last experiment, models using con-

junctions of IPLPS cost functions using relaxedα-consistency run faster and prune

more than models with individual flow-based projection-safe / polynomially decom-

posable cost functions usingα-consistency in most cases. Also relaxed FDGAC*

exhibits better runtime behavior than weak EDGAC* since the problem instances

used are easy and the overhead of stronger consistency is notcompensated by the
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Modeling with the conjunction of IPLPS cost functions

n
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)

6 2253.1 617.2 67.1 4.19 (4.01) 45.1 5.89 (5.71)
8 * * 78.2 6.02 (5.86) 54.1 8.01 (7.79)

10 * * 125.3 10.27 (9.81) 79.3 13.23 (12.77)
12 * * 183.5 21.50 (20.08) 98.4 22.10 (20.46)

Modeling with flow-based projection-safe cost functions

n
GAC* FDGAC* weak EDGAC*

bt time bt time bt time
6 * * 231.8 4.89 196.4 3.56
8 * * 769.7 9.88 438.9 7.52

10 * * 2031.4 103.52 802.3 65.17
12 * * * * * *

Table 5.3: The soft fair scheduling problem

extra prunings.

5.3.3 Fair Scheduling

The fair scheduling problem [2] consists ofn groups of people, each of them can

be scheduled into one ofs shifts overd days. Among each group of people and a

specific period within thed days, the schedule should befair such that they attend

the same number of shift for every shift ins in that period. For example, given a

problem withn = 2, s = 4, andd = 4, a fair schedule over all the 4 days is that

bothp1 andp2 are assigned to the shift 2 and shift 3 once, and the shift 2 twice. If

p1 is assigned to all of the shift 1, shift 2, shift 3, and shift 4 once instead, it is not a

fair schedule. There are preferences between some groups. For example, there are

groups preferred to be scheduled in the same shift. Such preferences are modeled

by table cost functions. We model the problem by a set of variables{xij} denoting

the shift theith person is assigned to on thejth day. We use the SOFT SAMEvar cost

functions to model the restrictions. We fixs = 5 andd = 5 and use different n in

our experiment.

Results are shown in Table 5.3. Similar to the last experiment, models using con-

junctions of IPLPS cost functions using relaxedα-consistency run faster and prune
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more than models with individual flow-based projection-safe / polynomially decom-

posable cost functions usingα-consistency in most cases. Also relaxed FDGAC*

exhibits better runtime behavior than weak EDGAC* since the problem instances

used are easy and the overhead of stronger consistency is notcompensated by the

extra prunings.

5.3.4 Comparing WCSP Approach with Integer Linear program-

ming Approach

We use slightly easier problem instances so that we can make sensible comparisons

with the weaker consistencies and the flow-based projection-safe / polynomially

decomposable cost function implementations. Note that integer linear program-

ming solver can also solve our benchmarks competitively. Weuse more difficult

instances with more preferences (table cost functions) to compare the performances

of modeling the problem withinteger linear programs(ILPs) solved by the IBM

ILOG CPLEX Optimizer 12.2 with both of the models above. We usethe encoding

method introduced by Koster [23] to formulate binary cost functions as integer lin-

ear programs. We only show the results for the models with flow-based projection-

safe / polynomially decomposable (p.d.) cost functions using weak EDGAC* and

IPLPS cost functions using relaxed weak EDGAC* as those models have the best

results among the other (relaxed) consistencies in the samemodel in this setting.

Similar to the experiments we have conducted above, the model using IPLPS cost

functions contains table cost functions and it is thus applied with a mix of relaxed

weak EDGAC* (for IPLPS functions) and weak EDGAC* (for table functions).

n
p.d. & weak EDGAC* IPLPS & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
12 527.8 119.96 37.8 103.26 (68.73) 63.28
14 2287.2 788.94 42.6 155.21 (135.49) 177.79
16 6835.1 1828.22 96.3 207.07 (175.64) 386.30
18 * * 110.1 653.82 (549.44) 662.56
20 * * 311.2 1163.03 (1026.89) 1442.44

Table 5.4: Comparison with integer linear programming: softcar sequencing
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n, d
flow-based & weak EDGAC* IPLPS & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
25, 8 211.0 2.93 47.0 5.87 (4.22) 2.29
30, 8 1140.1 31.28 105.0 11.53 (9.61) 10.76
35, 8 704.2 19.77 84.1 11.07 (8.17) 12.56

30, 12 * * 790.1 544.01 (449.89) 725.54
35, 12 * * 681.0 738.09 (640.58) 876.47

Table 5.5: Comparison with integer linear programming: softexamination
timetabling

n, d
flow-based & weak EDGAC* IPLPS & relaxed weak EDGAC* ILPs

bt time bt time (CPLEX) time
6 355.6 8.07 53.8 7.18 (6.51) 8.91
8 973.4 35.88 155.4 31.82 (26.44) 35.96

10 * * 413.0 286.13 (223.08) 325.92
12 * * 892.3 923.21 (813.51) 1315.61

Table 5.6: Comparison with integer linear programming: softfair scheduling

Results are shown in Tables 5.4, 5.5, and 5.6. In almost all cases, our models us-

ing conjunctions of IPLPS cost functions run faster and prune more than the models

with individual flow-based projection-safe / polynomiallydecomposable cost func-

tions usingα-consistency. On the other hand, our model runs faster in general when

compared with the integer linear programming model using CPLEX as the integer

linear program solver. The trend is more apparent when the problem size grows.
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Conclusions

In this chapter, we summarize the contributions of the thesis. We also propose

possible future directions of our research.

6.1 Contributions

In this thesis, we enhance the weighted constraint satisfaction by introducing the

concept ofpolynomially linear projection-safe (PLPS) cost functions. We define re-

laxed consistencies for polynomially linear projection-safe cost functions based on

the existing standard consistencies. In addition, we demonstrate the benefits of con-

joining such cost functions experimentally, and definedinteger polynomially linear

projection-safe (IPLPS) cost functionsas a special subclass of PLPS cost functions

to characterize the strength of the relaxed consistency notions on the conjunctions

of IPLPS cost functions. Our contributions are five-fold.

First, we define thepolynomially linear projection-safe (PLPS) cost functions

based on theirinteger linear programformulations with size polynomial to their

number of variables and maximum domain size. Their minimum costs can be com-

puted by solving their related integer linear programs. We give the sufficient con-

ditions for polynomially linear projection-safe cost functions whose properties are

preserved in projections and extensions.

Second, we propose the relaxed consistencies on PLPS cost functions, which are

83
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weaker but the enforcement can be much more efficient compared to the standard

counterparts. The approximated minimum costs of PLPS cost functions can be

computed by solving their related integer linear programs with linear relaxations.

We give proofs for the feasibility of projecting the the smallest integral cost which

is not less than the approximated minimum cost. Thus, we can define the relaxed

version for the standard consistency notions including GAC*, FDGAC*, and weak

EDGAC* by reformulating their requirements based on the minimum costs of a set

of cost functions and replaced by their approximated minimum costs.

Third, we propose the use of the conjunctions of PLPS cost functions, which

gives benefits in terms of pruning and runtime shown by experiments. We show

that the conjunctions of PLPS cost functions remain PLPS, inwhich relaxed con-

sistencies can still be applied on them. We show that propagating on a conjunction

using the standard consistencies is stronger than propagating on the individual cost

functions. Although it is not always true when relaxed consistencies are enforced,

the benefits of using the conjunctions of PLPS cost functionsare shown experimen-

tally.

Fourth, we defineintegral polynomially linear projection-safe (IPLPS) cost func-

tions, which is a subclass of PLPS cost functions and we characterize the strength

of the relaxed consistency notions on the conjunctions of IPLPS cost functions over

the strength of the corresponding standard consistency notions on the individual

IPLPS cost functions. IPLPS cost functions are special PLPScost functions and

their exact minimum costs can be computed by solving their related integer lin-

ear programs with linear relaxation. In addition, the minimum cost of an IPLPS

function can be computed in polynomial time. The same is not necessarily true

for the conjunctions of IPLPS cost functions, which we show to be still PLPS. Our

central results show that propagating on individual IPLPS cost functions using the

standard (or relaxed since they are the same) consistenciesis weaker than propagat-

ing on the conjunction of all these IPLPS cost functions using the relaxed versions

of the consistencies, which is in turn weaker than propagating on the conjunction
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using the standard consistency. The latter is NP-hard in general. Therefore, it is

always more desirable to propagate on conjunctions of IPLPScost functions using

even just relaxed consistencies. The results are useful when we have cost functions

whose minimum cost computation is polynomial time but that for conjunctions of

such cost functions is not. We show thatflow-based projection safe[28, 30] and

polynomially decomposable[31] cost functions are IPLPS, in which the minimum

cost computation is NP-hard for the conjunctions of an important subclass of them.

Fifth, we demonstrate the practicality of our framework with empirical results.

We conduct experiments on several examples of polynomiallylinear projection-

safe cost functions and integral polynomially linear projection-safe cost functions,

together with their conjunctions, against the flow-based and polynomially decom-

posable approaches as well as pure integer programming. We observe orders of

magnitude in runtime and search space improvements when theconjunctions of

PLPS or IPLPS cost functions are used together with relaxed consistencies and the

results agree with our theorems.

6.2 Future Work

We have introduced the concept of polynomially linear projection-safe cost func-

tions and integral polynomially linear projection-safe cost functions, together with

relaxed consistencies. They give at least three possibilities for future work.

The first possible question is whether we can enhance the relaxed consistencies

for stronger consistency notions like optimal soft arc consistency (OSAC) [14, 13],

virtual arc consistency (VAC) [12, 13] andk-consistency [11]. Currently, we only

give the relaxed versions of star generalized arc consistency (GAC*) [43], full star

generalized directional arc consistency (FDAC*) [28, 30] and weak star existen-

tial directional generalized arc consistency (weak EDGAC*)[29, 30]. They can

be reformulated such that their major conditions are represented with the minimum

costs of cost functions. Those consistency notions can be relaxed by replacing the
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minimum costs into approximated minimum costs in their conditions. It might not

be straight forward to relax the consistency notions with different kinds of condi-

tions and involving rational costs like OSAC and VAC. It is interesting to see if

there are different ways to relax the consistency notions which can also tackle those

consistency notions.

The second possible question is whether we can give necessary conditions for

polynomially linear projection-safety and otherT projection-safety. Currently, we

only give the sufficient conditions for polynomially linearprojection-safety. The

necessary conditions of polynomially linear projection-safety may allow us to find

out whether the other kinds of useful global cost functions are PLPS or not.

We also observe that the effects of enforcing relaxed consistencies on some

polynomially linear projection-safe cost functions can bevery different from that

of enforcing standard consistencies on them. For example, enforcing relaxed con-

sistencies on the SOFT NVALUE cost functions may have little or no effect since

the minimum cost arising from the minimum number of values needed cannot be

approximated. The third possible question is whether we cangive conditions to

identify such kind of cost functions and suggest practical ways to handle them.
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[6] C. Bessìere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The SLIDE

Meta-Constraint. Technical report, 2007.
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