-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by CUHK Digital Repository

Consistency Techniques for Linear Global Cost
Functions in Weighted Constraint Satisfaction

SHUM, Yu Wai

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Master of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
August 2012

https://core.ac.uk/display/48546347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thesis/Assessment Committee

Prof. WONG Tien Tsin (Chair)
Prof. LEE Ho Man Jimmy (Thesis Supervisor)
Prof. LEE Pak Ching (Committee Member)
Prof. Javier LARROSA (External Examiner)

Abstract

The solving of Weighted CSP (WCSP) with global cost functiotiesen powerful
consistency techniques, but enforcing these consisteociglobal cost functions
is not a trivial task. Lee and Leung suggest that a global ftmsttion can be used
practically if we can find its minimum cost and perform prdiecs/extensions on
it in polynomial time, and at the same time projections anm@sions should not
destroy those conditions. However, there are many usestilfaactions with no
known polynomial time algorithms to compute the minimumtsgst.

We propose a special class of global cost functions whictbeanodeled as in-
teger linear programs, called polynomially linear proj@atsafe (PLPS) cost func-
tions. We show that their minimum cost can be computed bygertprogramming
and this property is unaffected by projections/extensidglinear relaxation we
can avoid the possible NP-hard time taken to solve the inf@ggrams, as the ap-
proximation of their actual minimum costs can be obtainesktwe as a good lower
bound in enforcing the relaxed forms of common consistencie

We show the benefits of using the conjunctions of PLPS costtifums empir-
ically in terms of runtime. We introduce integral polynoftydinear projection-
safe (IPLPS) cost functions as a subclass of PLPS cost éunsctivhose allow us
to characterize the benefits of using the conjunctions ahth&iven a standard
WCSP consistency, we give theorems showing that maintaining relaxedn a
conjunction of IPLPS cost functions is stronger than mamng « on the individ-
ual cost functions. A useful application of our method is oms IPLPS global cost

functions, whose minimum cost computations are tractatkeyat those for their

conjunctions are not. We show that an important subclasswflblased projection-
safe and polynomially decomposable cost functions fatls tinis category.
Experiments are conducted to demonstrate the feasibilitlyedficiency of our
framework. We observe orders of magnitude in runtime antchespace improve-
ments by using the conjunctions of PLPS and IPLPS cost fonmetwith relaxed

consistencies when compared with the existing approaches.

1 5

TEINREZT ARG 2 R R A 22 T (B M B BT 208 R — BUM A I i » T AE
% TR B B b 4 — U AR I B —THA B A TAE - Ge7E ZIHUR A
H Z T EE RO EE » T AR MIERREFT R - %
TCEENEERNEEZRST - (2 - FIRZAMANZ TEERBIHARE £H
TR R RO BLvE 0 H i EE > BRI R BEAE DN L A A2] e o B 56
B e

WATER T — B A BB REN Z T EERE - T A
ZIEA MR R L 2(PLPS) BIEKRE - s EE B R/ EEEHF
ERGUEE B T o TS I SRR IR IR E - 4
P RZ B RERE A H H — M e DB E R E - Wk T B B AR AL
FIINP- B[RV o 3% B E R E R AE 2 S BB R T BR DL A 2 5t
— BB -

EEBETRMRE T APLPSEERNENMHAAGNTR - MERTE
B 2 EA SRR Z 2 () PLPS) BE1E K U 2 PLPSE E B #ny — | 151
A 3 A R R A A R SR B E B R o A — RN RE A TR 2 R RE Y —
B Mo » TR T 761 PLPSEE B BRI A & H 438 52 Bt Lh 77 B 0%
1 PLPSTRE B B 8L A oS8 K o JE 45 SR AT FH 7R Be7E 2 TH sURF] rp 4 HY o 2D
B > [EAGELE Z THARHE P e MR & i MEER) PLPSE{E B EL
oo BN B AL 2(f] ow based proj ection-saf e) XA ZIER
fi#(pol ynomi al |y deconposabl e) {E{E &K &1y — (8 = 21 FHEBE N E
—JERYI PLPSE B EL

EEEPRMRR T RIS ATAT R o e MR s

IR HGE b > BLERAE (T VAAHEL - 7208 F PLPSTR (E N L A0 & Al PLPSTH
{ER YA SRR R — (R R A OE -

Acknowledgments

| sincerely thank Professor Jimmy Lee as my supervisor. Jinsnvery enthusi-

astic about his teaching and research, and | greatly benefit fis lessons. He
teaches me a lot and having discussions with him always talpldp new ideas
and broaden my horizons in different aspects. | am very fyfdfier his invaluable

advices and continuous support for my research.

I would like to thank Professor Javier Larrosa, ProfessoniVbien Tsin, and
Professor Lee Pak Ching to be my examiners. Their give pre@omments on the
improvements of my thesis.

| also thank my members of our research groups. They coteribts of ideas
and fun for my research work. |1 would like to thank Terrencekiandy Wu, Lee
JingYing, Charles Siu and May Woo. | often benefit from themrsing of research
experiences.

Last but not least, | would like to give my best wishes to my ifgrmembers

for their support throughout my master program.

Contents

1 Introduction 1
1.1 Weighted Constraint Satisfaction Problems 2
1.2 Motivationand Goal 2
1.3 OutlineoftheThesis 4
2 Related Work 6
2.1 Soft Constraint Frameworks 6
2.2 Integer Linear Programming 8
2.3 Global Cost FunctionsinWCSP 8
3 Background 11
3.1 Weighted Constraint Satisfaction Problems 11
3.1.1 BranchandBound Search 14
3.1.2 Local consistenciesinWCSP 15
3.1.3 GlobalCostFunctions 30
3.2 Integer Linear Programming 31
4 Polynomially Linear Projection-Safe Cost Functions 33
4.1 Non-tractable Global Cost Functionsin WCSPs 4 3
4.2 Polynomially Linear Projection-Safe Cost Functions 37

4.3 Relaxed Consistencies on Polynomially Linear ProjeeBafe Cost

Functions 44

Vi

4.4 Conjoining Polynomially Linear Projection-Safe Cost €ons . . 50
4.5 Modeling Global Cost Functions as Polynomially Lineanj€ction-

Safe CostFunctions o 53
45.1 The ®FT_SLIDINGSUM™ Cost Function 53
452 The O FTEGCC CostFunction 54
45.3 The ®FT.DISJUNCTIVEICUMULATIVE Cost Function. . . 56
4.6 Implementationlissues 59
4.7 ExperimentalResults 60
4.7.1 Generalized Car Sequencing Problem 62
4.7.2 Magic SeriesProblem oL 63
4.7.3 Weighted Tardiness Scheduling Problem 65
5 Integral Polynomially Linear Projection-Safe Cost Functions 68
5.1 Integral Polynomially Linear Projection-Safe Cost Riores 69
5.2 Conjoining Global Cost FunctionsasIPLPS 2 7
5.3 ExperimentalResults, 76
5.3.1 Car Sequencing Problem 77
5.3.2 Examination Timetabling Problem 78
5.3.3 FairScheduling 79
5.3.4 Comparing WCSP Approach with Integer Linear program-
ming Approach L 81
6 Conclusions 83
6.1 Contributions 83
6.2 FutureWork 85
Bibliography 87

Vil

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

A WCSP with two variables and three cost functions 12
Graphical representationofaWCSP 13
A branch and bound search to solveaWCSP 16
Enforcing NC*onaWCSP 18
Enforcing AC*onaWCSP 20
Enforcing FDAC*onaWCSP 23
Enforcing EDAC*onaWCSP, 26

viii

List of Tables

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

The generalized car sequencing problem usigTSSLIDING SUM™ 64
The magic square problem using’§_ EGCC™*" 65

The weighted tardiness scheduling problem usingiSDISIJUNCTIVE'Y 67

The soft car sequencing problem 78
The soft examination timetabling problem 79
The soft fair scheduling problem 0 8

Comparison with integer linear programming: soft causeging . 81
Comparison with integer linear programming: soft exation timetabling 82

Comparison with integer linear programming: soft falleduling . 82

Chapter 1

Introduction

This thesis reports work on how approximated consistenéyreement on global
cost functions in weighted constraint satisfaction can édgomed efficiently and
effectively using linear programming techniques. We finstaduce the notions of
polynomially linear projection-safe (PLPS) cost funcgpmwhich can be modeled as
integer linear programsvith polynomial sizes. While standard consistencies can be
enforced on PLPS cost functions using integer programnaiogpputing the linear
relaxation of PLPS cost functions provides a good approtiongo the standard
consistencies. We show further that enforcing approxichatasistencies on con-
junctions ofintegral polynomially linear projection-safe (IPLP8pst functions, a
special subclass of PLPS functions, is stronger than enfpstandard consisten-
cies on the individual cost functions alone. Empirical Hssconfirm the theoretical
characterization and exhibit orders of magnitude impraemtsion both runtime and
search space reduction. In this chapter, we first descrio&\ighted Constraint
Satisfaction framework before giving the motivation analgoof this thesis. We

end the chapter with an overview of the structure of the reiiethesis.

Chapter 1 Introduction 2

1.1 Weighted Constraint Satisfaction Problems

Weighted Constraint Satisfaction Problems (WCSPs) [45] idtacseastraint frame-
work for modeling over-constrained problems and those prtferences. It pro-
vides a general model for different applications, sucheasurce allocatiorf10],
combinatorial auctionselectronic market$44], bioinformatics[43], probabilistic
reasoning37], schedulingand etc.

A WCSP consists of a finite set of variables, a finite domain objds values
for each variable and a conjunction of cost functions. Eauiable assignment is
associated with a cost. A cost function returns a cost fon égae. The costs could
be used to represent preferences to the variable assighment

Solving a WCSP is to find an assignment to the variables with timgnmm
cost. Such an assignment often represents the most pcefartbe least violated
situation. The basic solution technique for WCSPs is bramchkound search aug-
mented with various forms of consistencies, such as NC* [@a},[24], FDAC* [25],
and EDAC* [17]. These consistency techniques retrieve mdd&rmation from
cost functions by transporting costs and remove infeastilges from variable do-

mains to prune the search space.

1.2 Motivation and Goal

A good library of global cost functions is essential for usrtodel complex real-
life problems in WCSPs. A global cost function often has highies but a spe-

cial semantics. The structure of the special semanticaalgpecial and efficient
algorithms to be designed to enforce consistencies. Thedrgern with imple-

menting global cost functions is tractability. Lee and Lg(i80, 28] suggest three
requirements for a global cost functions to be practicatstFcomputation of the
minimum cost must be efficient. Second, projections andnskb@s on the cost

functions can be performed efficiently. Third, projectiarsd extensions on the

Chapter 1 Introduction 3

cost functions will not destroy the last two efficiency reganents. This is called
projection safety30, 28]. Lee and Leung further demonstrate that flow-bag8tl |
global cost functions satisfy the first two requirements givé instances that are
flow-based projection-safe. In addition, Lekal.[31] show another class of cost
functions, callegpolynomially decomposabt®st functions, can satisfy these three
requirements and give instances of cost functions whiclpalgnomially decom-
posable.

Our goal is to introduce more practical global cost fundiamo the existing
catalog. Many global cost functions are useful, yet eitheirtminimum cost com-
putations are NP-hard or no polynomial time algorithms asealered yet. An
example is the soft variants of thel$3UNCTIVE constraint, which schedule jobs
without overlapping in a non-preemptive scheduling proble&known algorithms
for computing their minimum cost are exponential.

We first discover that the efficient minimum cost computatiof global cost
functions depend on the efficient enforcemerg@feralized arc consistency (GAC)
of their related hard constraints. There are previous tesul the NP-hardness of
enforcing GAC on several global constraints, which immelyalead to the same
results for the minimum cost computation of their soft vatsa It is natural to ask
whether there are methods to use such cost functions efficiendifferent ways
in WCSPs. We address this problem for the cost functions whechle mod-
eled as integer linear programs with relaxed consisten@gssolving the integer
linear programs with linear relaxation, approximationghafir minimum costs are
obtained and used in the enforcement of the relaxed consiste Such consisten-
cies can be enforced efficiently since linear programmiggréthms exhibit excel-
lent average case behavior. We call this class of cost fumggiolynomially linear
projection-safe (PLPS) cost functions

We also consider the conjunctions of PLPS cost functionsesihe integer lin-
ear programming formulations of PLPS cost functions allben to be conjoined

easily. We present empirical results to demonstrate theflierof propagating on

Chapter 1 Introduction 4

conjunctions in terms of both runtime and pruning in general

We introduce and give sufficient conditions for a specialctads of PLPS cost
functions, namelyntegral polynomially linear projection-safe (IPLP8pst func-
tions. Our results show that propagating on individual IBLd®st functions using
the standard (or relaxed since they are the same) consesaseveaker than prop-
agating on the conjunction of all these IPLPS cost functigsiag the relaxed ver-
sions of the consistencies. These results give exact diearaation on the strength
of the relaxed and standard consistencies on conjunctiolf®.&S cost functions
as compared against the corresponding standard consest@mcindividual IPLPS
cost functions.

This thesis is an extension of the work by Lee and Shum [32].

1.3 Outline of the Thesis

The outline of the thesis is as the follows. Chapter 2 desstibe previous work
on soft constraint framework, especially the WCSP framewdtle also include
information about the integer linear programs, as well asgiiobal cost functions
in weighted constraint satisfaction.

Chapter 3 provides backgrounds of WCSPs with the local consigt® and
global cost functions, as well as the integer linear prograWe also define the
notations that we use throughout the thesis.

Chapter 4 defingsolynomially linear projection-safe (PLPS) cost funcsamd
relaxed consistencies for some non-tractable cost fumstio be used efficiently in
WCSPs. We propose a special class of global cost functiongwelic be modeled
as integer linear programs, and call thenear cost functions We give sufficient
conditions to assure that a linear cost function is a PLPS&faastion. We propose
relaxed consistenciewhich allow a less pruning but much more efficient (approx-
imated) consistency enforcement. We also demonstratectinefits of propagating

on conjunctions of PLPS cost functions in terms of runtimes §We examples of

Chapter 1 Introduction 5

several useful PLPS cost functions and conduct experintenteem to show the
efficiency of our proposed framework.

Chapter 5 definestegral polynomially linear projection-safe (IPLPS) ¢dsnc-
tionsas a special subclass of PLPS cost functions. We introdutgige sufficient
conditions for (IPLPS) cost functions. Our results show fitapagating on individ-
ual IPLPS cost functions using the standard consistensmgaker than propagat-
ing on the conjunction of all these IPLPS cost functions gisire relaxed versions
of the consistencies. The results are useful when we hauefurstions whose
minimum cost computation is polynomial time but that for gometions of such
cost functions is NP-hard. We show that an important clagkwafbased projec-
tion safe[28, 30] andpolynomially decomposab[81] cost functions belong such
IPLPS cost functions. We conduct experiments to demoedtinatimprovements in
terms of runtime and search space of using the conjunctitiLd?S cost functions
against the flow-based and polynomially decomposable appes, as well as pure
integer programming. In addition, The empirical resulteeagwith our theoretical
results.

We conclude the thesis in Chapter 6. We summarize our workeothttsis, and

give future possible directions for further work.

Chapter 2

Related Work

In this chapter, we present the research areas that aredétabur work. We de-
scribe various ways of handling optimization problemsludmg the soft constraint
frameworks and integer linear programming. Next, we pregemverview of some
related techniques used in the WCSP framework, includingltgiagcost functions

and the local consistencies.

2.1 Soft Constraint Frameworks

In classicalconstraint satisfaction problem@&SPs) [33], all the constraints are
hard constraints which can either be satisfied or violatedn&ny real life prob-
lems, the requirements involve preferences which is sonestidifficult to be mod-
eled as a classic CSP. Different soft constraint framewor&sherefore proposed
to solve over-constrained and optimization problems,udiclg the probabilistic
CSPs [18], fuzzy CSPs [46], and partial CSPs [19]. Here we giwedwamples
which are closely related to our work, including tbenstraint optimization prob-
lems(COPs) [39] andveighted constraint satisfaction problefWCSPs) [45].
COPs are CSPs with objective of measuring the preferenceslations. The
optimality of the solutions is modeled by different objgetfunctions based on dif-
ferent cost valuation structures. A way to handle COPs isdffteas-hardSasH) [39]

approach. SasH models soft constraints as hard consinaimse the cost returned

Chapter 2 Related Work 7

by each constraint are modeled as a variable. In this mdaeCOPs can be solved
in the same ways as classical CSPs.

Another way to model optimization problems is to model thesnVdCSPs,
which generalizes the classical CSP framework. In a WCSP, eaddtraint is rep-
resented as a cost function. Instead of either be satisfieidlated, a cost function
returns a cost representing the preference or violatioregedolutions of a WCSP
are the tuples with the minimum cost as the most preferretheidast violated
situation.

To solve WCSPs efficiently, many consistency techniques hega proposed.
Star node consistency (NC*) and star arc consistency (AC*evdaveloped by
Larrosa and Schiex [24]. Consistency notions with strongenipg power are de-
veloped later, including the full star directional arc cstency (FDAC*) [25] and
star existential directional arc consistency (EDAC*) [17]here are other forms
of consistency notions with different pruning power appéalater, includingz-
IC [50], strongo-IC [28, 30], bound arc consistency (BAC) [50], virtual armeo
sistency (VAC) [12, 13], and-consistency [11]. The use of AC*, FDAC* and
EDAC* are limited to binary cost functions. They are genedi to handle high
arity cost functions like global cost functions. Sanclket¢al. [43] extended AC*,
FDAC* and EDAC* for ternary cost functions. On the other handofe&r and
Schiex [43] defined the generalized version of AC* as GAC*. Thragalized ver-
sion of FDAC*, called FDGAC*, is defined by Lee and Leung [28, ,3@}d they
also show that naively generalizing the EDAC* enforcemegoathm will lead to
oscillation problem when it is enforced on cost functionargig more than one
variable. They proposed a weaker form of EDGAC* with cost mtmg partitions
called weak EDGAC* [29, 30].

There is another local consistency in WCSPs which also wilinear program-
ming techniques called optimal soft arc consistency (OSA@) 13]. They model
the projection opportunities of table cost functions intoigteger linear program.

By minimizing the lower bound with linear relaxation, the nmaym lower bound

Chapter 2 Related Work 8

can be inferred by projections is approximated.

2.2 Integer Linear Programming

Apart from soft constraint frameworks, many optimizatiolgems can also be
modeled byinteger linear programmingsinteger linear programs Integer lin-
ear programs are special casesiméar programsto represent discrete choices as
integrality requirements on the variables [49], which rieegithe variables to take
integral values. Linear programs model optimization peat with linear inequali-
ties on continuous variables. Each linear program hasrlioigactive function [16]
which should be minimized (or maximized) such that the mostgored or the least
violated situation can be obtained.

Integer linear programs can be solveddoginch-and-boundearch with a search
tree, where a variable is partially fixed in each search nédleach node, the sub-
problem is solved byinear relaxationwhich is solved as a linear program, and
the descending nodes are branched by the fractional solotithe variable to be
fixed in that node until a suboptimal solution is found. Tharsk can be speed
up by different techniques like using differdmtanching strategief4], the cutting
planeg[35], and theprimal heuristicq5].

2.3 Global Cost Functions in WCSP

A global constraintis a hard constraint which could be understoodmgxpressive
and concise condition involving a non-fixed number of vdgaf2]. Since global
constraints usually have have special semantics and hitigasa having efficient
consistency enforcement algorithms are important for therbe used in CSPs.
Global constraints are one of the keys for the success otr@nmsprogramming.
Many global constraints have been proposed and studiedh éardous example is

the ALL DIFF constraint [27] which is satisfied if all the variables adang different

Chapter 2 Related Work 9

values. Many real life problems can be modeled by differéoib@ constraints.
Global cost functionsire soft variants of global constraints witiolation mea-
sures Instead of either be satisfied or violated, a global costtion returns 0
if it is not violated; otherwise its violation measure is dge reflect how much
the related global constraint is violated. For example, glabal cost function

SOFT_ALL DIFFdee

with the decomposition-basedolation measure is a soft vari-
ant of the ALLDIFF constraint and returns the number of variable pairs nohtaki
different values as its violation cost.

Different techniques are developed for some global cositfons such that they
can be used in WCSP efficiently. Following the idea of Petial. [40] who use
flow theories to compute the minimum cost returned by saff BALL DIFF? |
Van Hoeveet al. [48] develop a similar idea for the soft variants of theLDIFF,
GCC, AME, and REGULAR constraints.

In addition to the minimum cost computation, Lee and Leur®y 8] further
define7T projection-safetyfor efficient use of global cost functions in WCSP.
projection-safetyensures that the properfy is not affected by projections and
extensions. If the property allows the minimum cost to be computed effi-
ciently, 7 projection-safetyensures that the efficient minimum cost computation
is also not affected by projections and extensions. Bagprojection-safecost
functions can be used in WCSPs efficiently as the consistestyigues can al-
ways be enforced efficiently. He show that some flow-baset foostions, in-
cluding the ®FT_ALLDIFF*®", SOFT_ALLDIFF¥¢, SOFT.GCC'", SOFT.GCC",
SOFT_SAME"”" SOFT_REGULAR', and S>FT_REGULARY! belong to flow-
based projection-safe cost functions.

OtherT projection-safecost functions with different property are also discov-
ered. Leeet al. [31] show that a group of cost functions callpdlynomially de-
composable cost functionsicluding the ®FT_AMONG""", SOFT_REGULAR""",

SOFT_REGULAR®Y, SOFT_GRAMMAR "™, MAX _WEIGHT, and MN_WEIGHT, can

Chapter 2 Related Work 10

be represented as dynamic programs, which allow the minicasts to be com-

puted efficiently using divide-and-conquer and memorzati

Chapter 3

Background

In this chapter, we give the basic background for the reshisfthesis, including
the concept of the weighted constraint satisfaction prabl€/WCSPs), the global
cost functions, local consistencies used in WCSPs, and iniagar programming.
WCSP is a framework extending CSPs to solve combinatorial enedhlvhich in-
volve cost functions. Global cost functions are complex émsctions used to de-
scribe special structures commonly seen in most problemsallconsistencies are
incorporated for efficient solving of WCSPs. Integer lineasgramming is a sub-

area in the operational research for modeling combindtopiémization problems.

3.1 Weighted Constraint Satisfaction Problems

A weighted constraint satisfaction problgfVCSP) [45] is a tupleX, D, C, k). X
is a set ofvariables{x;,zs,.. .z, }. Each variable has its finidomainD(z;) € D
of values that can be assigned to it. Each variable can onbsbrgned with one
value in its corresponding domain. An assignment on a setoébles can be
represented by a tuple We denote/[z;] the value assigned to;, ¢[S] the tuple
formed from the assignment on variables in the SeC X', and £(S) is a set
of tuples corresponding to all possible assignments on eéh@fsvariablesS. C
is a set ofcost functionsiVs, each with scopes. Ws maps tuplesC(S) to a

cost valuation structur& (k) = ([0... k], &, <). The structurd/ (k) contains a set

11

Chapter 3 Background 12

of integers|0, .. ., k] with standard integer ordering. Addition ¢ is defined by
a®b=min(k,a+b). The subtractiomo bfora,b € [0...k] anda > bis defined

as

a—b if a#k

k otherwise

aSb=

Without loss of generality, we assur@e= {W,} U {W,;|z; € X} U CT. Wy is
the constant nullary cost function, representing the Idwemd of the WCSPY;

is a unary cost function associated with variablec X. We may also call the
costs of the unary cost functions associated with each \altlee variables as the
unary costof that value.C" is a set of cost functions with scopes of two or more
variables. If a cost function has a scope of only two varigile, z; }, we call it a

binary cost functiorand we uséV;; to denote it.

Example 3.1.Figure 3.1 shows a WCSP with two variabl®s= {1, x5} with do-
mainsD(z,) = {a,b,c} and D(z,) = {a, b} respectively, and three cost functions
Wi, Wy andCt = {Wi,} given as tablesW/; and IV, are unary cost functions,
and Wy, is a binary cost function. The lower boufid, equals to 0 and the upper

boundk is set to be 5.

T) W12

a | a 2

a | b 1

T Wl b a 0

a 1 i) WQ b b 0

b 0 a 1 c | a 0

c 5 b 2 c| b 0
(@) W1 (b) W> (c) Wiz

Figure 3.1:A WCSP with two variables and three cost functions

The graphical representation of this WCSP is shown in figure B.&ctangle
represents a variable domain, where each value is repreddngea circle inside

the rectangle of that variable. The numbers in the circlemgtfor the unary costs

Chapter 3 Background 13

given by the unary cost functions, which is omitted if the esponding value has
zero unary cost. An edge between two circles represents theyliost associated
to the tuple formed by the two values represented by the twiesir@ labelw is

associated on each edge representing the binary cost of¢beceted tuple. The

labelw is omitted ifw = 1. The edge is omitted df = 0.

®
b () (2)] b

Figure 3.2:Graphical representation of a WCSP

The cost of a tuplé for a WCSP corresponding to an assignmenios defined

as

cost(l) =Wy @ @ Wi(l[zi]) @ GB Ws(£[S])

reX WseCt
A tuple ¢ is feasibleif cost(¢) < k. Our goal is to find a tuplé which has the
minimum cost among all the feasible tuples, and such a tgpéesolutionof the

WCSP. For convenience, we writein{1¥s} to denotemin{Ws(¢) | £ € L(S)}.

Example 3.2. Given the WCSP shown in Example 3.1. The cost of each tuple is

shown as follows.
cost(a,a) =4 cost(bya) =1 cost(c,a) =6
cost(a,b) =4 cost(b,b) =2 cost(c,b) =7
The tuples(c,a) and (¢, b) are not feasible since their costs are equal to or

greater than the upper boundd = 5. Besides, among all tupleg), a) has the

minimum cost and thus it is the solution of this WCSP.

Chapter 3 Background 14

3.1.1 Branch and Bound Search

Solutions of a WCSP can be found by systematic search. A syStes®arch

method guarantees to find a solution of a WCSP if there existsangrove no

solution. A type of systematic search techniques commoséyldor WCSPs is the

branch and boundBnB) search algorithm. It traverses the search tree of allipos

ble assignments in a depth-first left-to-right manner. GigeNCSP &', D,C, k),

the procedurdr anchandBound(X, D,C,0, k,) in Algorithm 1 returns one

of its solutions if there exists at least one, or proves notsm by returningt [26].

A W N P

© 0 N o O

11
12

13

14
15
16
17
18

19

20

ProcedureBr anchAndBound(X', D,C, Wy, k, 1) begin
if X = @ then
L store(l);

return Wy;

x; + chooseVar (X) ;

foreachv € D(z;) do

'+ 1U{x; — v}

WL+ Wy @ Wiv);

C' <1 ookAhead(C, {x; — v});
enforceLocalConsistency™();

if W5 > kthenreturn k;

k < BranchAndBound(X\{xz;},D,C, W/, k,l');

| return k;

Procedurel ookAhead(C, {x; — v}) begin
C'+ C\{W;};
foreachW;; € C do
foreachb € D(z;) do
L Wj(0) = W(b) & Wi (v, b);
C'« C"\{W;}
return C’

Algorithm 1: Branch and Bound Search Algorithm for a WCSP

During the search, aurrently best feasible tuples kept as the upper bound.

Initially, the upper bound is set to be and updated when a better feasible tuple

is found. On each search node, a value is assignegddad the WCSP is reduced

Chapter 3 Background 15

to a new WCSPX\{z;}, D, C, k). C' is formed by the proceduteook Ahead() ,
which reduces the cost functions involving by removingz; from that cost func-
tion.

The procedurenforcelLocalConsistency*() enforces the local consistency
on the current WCSP, which will be discussed in the next seemwhwe omit the
details for the moment.

The lower bound at this nod&’, is then evaluated. If it is not less than the upper
bound, it proves that no feasible tuple with a cost lower ttheat of the currently
best feasible tuple can appear in the search tree beneatbetliich node. In this
case the algorithm immediately backtracks.

If X is reduced to an empty set, all variables are assigned, aridwker bound
W equals to the cost of the corresponding tuple. If such a tiggtaund, this tuple
is stored as a currently best feasible tuple and the upperddois updated to the
cost of this tuple, such that the algorithm has to find a nevethpving the cost
lower than that of the currently best feasible tuple. Fintie algorithm returns the
best feasible tuple found as a solution of the WCSP.

This algorithm can also be applied on non-binary cost femstiby modify-
ing the proceduré ookAhead() . Figure 3.3 shows a search tree for solving the

WCSP in Example 3.1 using the branch and bound search algorithm

3.1.2 Local consistencies in WCSP

Different local consistency techniques can be incorpdratgh the basic branch
and bound search with the procedetef orceLocalConsistency*() . They are

capable of removing infeasible values in the domains andaed a lower bound of
the minimum cost, where the lower bound can be used to tritpgdvacktrack from
the search nodes. The consistency notions for WCSPs are edHig\equivalence

preserving transformation.

Definition 3.3. Given two WCSP®, = (X', D;,Cy, k) and Py, = (X, Dy, Cy, k), Py

16

Chapter 3 Background

1of

1of

1eof

Figure 3.3: A branch and bound search to solve a WCSP

Chapter 3 Background 17

is equivalent ta?, iff for all feasible tupleg € £(X) in both problemsgost p, (¢) =
costp,({).

In the following, we briefly discuss those consistency nadi;mn WCSPs includ-
ing NC* [24], (G)AC* [24, 15], FD(G)AC* [25, 30], and (weak) ED(AC* [17,
30].

The enforcement of those consistencies involves findingrtimemum costs of
the cost functions, and moving those costs between costidumscby projections
andextensiong11]. Projections move costs fromrnary cost functions to unary
cost functions and from unary cost functions to the nullargid’,,. GivenS, C Si,

a projection of cost from W, to W, with respecttd € £(.5;) is a transformation
of (Ws,, Ws,) to (Wg , Wy,), where

Ws,(¢) a if €[Sy =
W§1(€’>{ o TS

(£)
W, (¢) otherwise
Ws,(lY®a ifl =1
Wé2 (5,) _ 52() |
Ws, (¢) otherwise

If Sy = @, itis a projection tolV,. Extensions are the inverse of projections,
and are defined similarly. We assume that the minimum cogteotost functions

min{W¢} cannot be smaller than O after a projection or extensionatioer.
Star Node Consistency

Definition 3.4. [24] Given a WCSPP = (X, D, C, k).

e Avaluev € D(z;) wherez; € X is star node consisteffNC*) if W, &
WZ<U) < k.

e Avariablex; € X is NC* if all values inD(z;) is NC* and there exists a
valuev € D(z;) such thati¥;(v) = 0. Such a value is called anary support

e P is NC*if all its variables are NC*.

Chapter 3 Background 18

NC* increasedV, from unary cost functions and remove infeasible values. It
helps the branch and bound search to detect unsatisfiatylighecking if empty
domain exists oV, reaches the upper boukdWe use the WCSP from Figure 3.2

as an example.

Example 3.5. The WCSP in Figure 3.4(a) is not NC*. The value D(x;) is not
NC* sincel;(c) = 5 = k. Besidesg, is not NC* since no value have zero unary
costinD(z,). To transform the WCSP into an equivalent WCSP which is NC*, we
remove the value from the domain o (z;) as shown in Figure 3.4(b). After that
we project a cost of 1 frol, to 1, as shown in Figure 3.4(c) and the resultant

WCSP is NC*.

Wg:O,k:5 Wgzo,k:-S Wgzl,k:5

1 X2 g X2 1 X2

D2 Dl e o2 D] o D20
b1() (216 b)) (26 b)) (D] b
| ®

(@) The original WCSP (b) After ¢ € D(x;) is re-(c) After projecting fromiVs
moved to Wy

Figure 3.4:Enforcing NC* on a WCSP

The procedureenf or ceNCx () in Algorithm 2 enforce NC* for a WCSP
(X,D,C, k) [26]. The algorithm first projects cost from each variabl&eif it re-
moves infeasible values according to the lower bodfgd The functiorunar yPr oj ect ()
projects a suitable cost frof; to 1/, to produce a unary support, while the func-

tion pr uneVal () removes the infeasible values which is not NC*.

(Generalized) Star Arc Consistency

Definition 3.6. [24] Given a WCSFP = (X, D,C, k).

Chapter 3 Background 19

=

Procedureenf or ceNC+ () begin
2 foreachx; € X do
3 | unaryProj ect (z;);

4 foreachx; € X do
| pruneVval (z;);

[62]

Function unar yPr oj ect (z;) begin
a:=k;
foreachv € D(z;) do

L if o > W;(v) then a := W(v);
10 Wy =Wy & a;
11 | foreachv € D(z;) do
12 L Wi(v) .= Wi(v) & «;

© 00 N O

13 Function pr uneVal (z;) :Booleanbegin

14 fl ag :=false

15 | foreachv € D(x;) s.t. W;(v) ® Wy =k do
16 L D(z;) := D(x;)\{v};

17 flag :=true;

18 | return flag;

Algorithm 2: Enforcing NC* for a WCSP

e Avaluev € D(z;) wherex; € X is star arc consistent (AC*) with respect
to a binary constrainti¥;; over variablesz; and z; if there exists a value
u € D(xz;) such thatl;;(a,b) = 0. Such a value is called simple support
ofa € D(x;).

e Avariablez; € X is AC* if it is NC* and each value irD(z;) is AC* with

respect to every binary cost function ouer
e P is AC*if all its variables are AC*.

AC* helps extract cost information hidden in binary cost filoies and ex-

presses it as unary costs. We use the WCSP from Figure 3.4(oc)exsmple.

Example 3.7.The WCSP in Figure 3.5(a) is NC* but not AC*. The value D(z;)

is not AC*. If a is assigned tor;, the binary cost function;, returns a cost

Chapter 3 Background 20

of at least one no matter what valug takes. As shown in Figure 3.5, we can
transform the WCSP into an equivalent one which is AC* by prinjg@ cost of 1
from W12($1 = a) to W, (a)

Wgzl,k:5 Wgzl,k:5

1 T2 X X2

Ol «|el—10]-
b () (e () (1))

(a) The original WCSP (b) After projecting fromWis(z; = a) to
Wi(a)

Figure 3.5:Enforcing AC* on a WCSP

AC* can only be enforced on binary cost functions, but it camgéeeralized to
generalized star arc consisten@@AC*) [15] in order to be enforced on n-ary cost

functions.

Definition 3.8. A variablez; € S is GAC* [15] with respect to a cost functios
if:

e 1, iS NC* and;

o for each valuev; € D(x;), there exists values; € D(z;) for all j # i and
x; € S so that they form a tupléwith Wg(¢) = 0. ¢ is asimple supporof v;
with respect tdVs.

A WCSP isGAC* iff all variables are GAC* with respect to all cost functionsdn
The second requirement can be reformulated as:

For each value; € D(x;), min{Wgs(¢) | ¢ € L(S) A l|x;] = v;} = 0.

Chapter 3 Background 21

Lee and Leung [30, 28] gives the algorithm for enforcing GAThe procedure
enf or ceGAC+ () in Algorithm 3 enforce GAC* for a WCSRX', D,C, k). The
propagation queu@ stores a set of variables. If z; € Q, all variables in the cost
functions involvingz; are potentially not GAC*. Initially all variables are i@. A
variablez; is pushed inta@ after values are removed frof(z ;). At each iteration,
an arbitrary variable ; is removed from the queue by the functipap() atline 4.
The existence of a simple support with respect to the nomywowst functionC's for
the value inD(z;), wherex; € S, is enforced by the functiohi ndSupport ()
at line 8. Lastly, the infeasible values are removed by timetion pr uneVal ()
at lines 9 and 12. If a value from(z;) is removed, the simple supports of other
variables may be destroyed amdis pushed inta@. Lee and Leung [30, 28] also

proves that this algorithm must terminal by stating its ctaxiy.

Full Star Directional (Generalized) Arc Consistency
Definition 3.9. [25] Given a WCSFP = (X, D,C, k).
e The valueb € D(z;) is afull supportof a valuea € D(z;) if Wi;(a,b) &

W(b) = 0).

e The valuea € D(z;) is directional arc consistenwith respect to a binary

constraintlV;; wherej > i if there exists a full support itV (z;).

e A variablez; is star directional arc consiste(@AC?) if it is NC* and each
value in its domain is directional arc consistent with refdstcall binary

constraintsiv;; wherej > 7.

e P isfully star arc consisteFDAC*) if all variables are AC* and DAC*.

FDAC* also helps extract hidden cost information and exmgssas unary

costs. We use the WCSP from Figure 3.5(c) as an example.

Example 3.10. The WCSP in Figure 3.6(a) is not AC* but not FDAC*. The value

a € D(x;) is not FDAC* since it cannot find a full support with respecttg. To

Chapter 3 Background 22

1 Procedureenf or ceGAC+ () begin

2 Q:=X;

3 while Q # @ do

4 zj :==pop(Q) ;

5 fl ag := false

6 foreachWg s.t. {z;} C Sdo

7 foreachz; € S\ {z;} do

8 flag:=flagVvfindSupport(Ws,z;);
9 if pruneVal (z;) then Q@ := QU {x;};

10 if:‘ | ag then
11 foreachx; € X do
12 | if pruneVval (z;) then Q := QU {x;};

13 Function f i ndSupport (Ws, z;) :Booleanbegin
14 fl ag :=false
15 | foreachwv € D(z;) do

16 a = min{Wg(0)|t € L(S) AN l]x;] = v};
17 if Wi(v) =0Aa>0thenfl ag :=true;
18 Wi(v) := W;(v) @ o

19 foreach? € L(S) s.t.{[x;] = v do

20 | Ws(0) :=Ws(l) & a

21 | unaryProject(xz;);
22 | return flag;

Algorithm 3: Enforcing GAC* for a WCSP

transform the WCSP into an equivalent one which is FDAC*, we ebderost of 1
from Wy(b) to W1, as shown in Figure 3.6(b). After that we can project a cost of 1
from W1, to C4 (a) and the resultant WCSP is FDAC* as shown in Figure 3.6(c).

Similar to AC*, FDAC* can only be enforced on binary cost fulocts and it
can be generalized tll star generalized arc consisten¢fDGAC*) [30, 28] in

order to be enforced on n-ary cost functions.

Definition 3.11. A variablex; € S'is star directional generalized arc consist@®AC*) [30,

28] with respect to a cost functiois if:

e 1;is NC*, and;

Chapter 3 Background 23

Wgzl,k:5 Wg:1,k:5 Wgzl,k:5

o @ ——O)e @0« @ O
b1() (Djo b)) Olb b)) ()] b

(a) The original WCSP (b) After extending (c) After projecting fromit/o
from Ws(b) to Wio to Cy(a)

Figure 3.6:Enforcing FDAC* on a WCSP

o for each valuev € D(z;), there exists values; € D(z;) for all j # i and
x; € S such that they form a tuplewith Wg(¢) & EB%,UN. W,(l[z,]) = 0. ¢

is a full supportof v; with respect tdVs.
The second requirement can be reformulated as:

For each valuev; € D(z;), min{Ws(() & D, ;- W;(llz;]) [¢ €
L(S) Nl[z;] =v;} = 0.

A WCSP idully star directional generalized arc consistdriDGAC*) iff it is GAC*

and all variables are DGAC* with respect to all cost function’i

The procedurenf or ceFDGAC* () in Algorithm 4 enforces FDGAC* for a
WCSP [30, 28]. The propagation queu@sand R store a set of variables. If
z; € Q, all variables involving in the same cost functionsagsare potentially
not GAC*; if x; € R, the variablesr; with j > 4 involving in the same cost
functions asr; are potentially not DGAC*. A variable; is pushed intoQ only
after values are removed frofi(z;), or the unary support of; is modified. At
each iteration, GAC* is enforced first by the first inner wHid®@p from line 4
to 14. DGAC* is then enforced by the second inner while-logprfrlines 15 to
20. Enforcing DGAC* follows the ordering from the largest éxdto the small-
est index such that the full supports of values in the do- mainvariables with
smaller indices are not destroyed by DGAC*-enforcementHosé with larger in-

dices. The variable with the largest index/nis removed froniR by the function

Chapter 3 Background 24

popMax() in constant time. DGAC* enforcement is performed by the pdoce
fi ndFul | Support (). Lastly, NC*is enforced by the for-loop from lines 21 to
23. Lee and Leung [30, 28] also proves that this algorithmtrirsninal by stating

its complexity.

(Weak) Star Existential Directional (Generalized) Arc Congstency
Definition 3.12. [17] Given a WCSPP = (X, D,C, k).

e A variablez; is star existential arc consiste(EAC*) if there exists at least
one valuev € D(z;) such thatWW;(v) = 0 and it has a full support with
respect to every binary cost functid¥i;;. Such a value is called thefully

supported valuef z;.
e P isexistential arc consisteQEAC*) if all variables are NC* and EAC*.

e P is star existential directional arc consistéBRDAC?) if it is FDAC* and

EAC*.

By enforcing EDAC*, 1/, can be increased further. We use the following ex-

ample to demonstrate this idea.

Example 3.13.The WCSP shown in Figure 3.7(a) is FDAC* but not EAC*. Con-
sider the variablers;, both valuese and b must take a cost of at least 1, since
Was(v, a) @ Wa(v) > 1 for everyv € D(z,) andWis(v,b) @ Wi(v) > 1 for every

v € D(x1). As a result, the solution should have a cost of at least 1.ufthér
increasell;, we first extend a cost of 1 froi; (b) to 173 and also a cost of 1 from
Ws(a) to Was as shown in Figure 3.7(b). Then we project a cost of 1 fidig to
W3(b) and another cost of 1 fro/y; to W5(a) as shown in Figure 3.7(c). Finally
we enforce NC* onx3 and the lower boundll, is increased by 1, and the resultant
WCSP is EDAC* as shown in Figure 3.7(d).

Lee and Leung [30, 29] showed that a naive generalizationrDAE to high

arity cost functions is not always enforceable, i.e. th@algm may not terminate.

Chapter 3 Background 25

1 Procedureenf or ceFDGAC* () begin

2 R :=Q :=X;

3 while R # o Vv Q # @ do

4 while Q # @ do

5 zj :=pop(Q) ;

6 fl ag := false

7 foreachWg s.t. {z;} C S do

8 foreachz; € S\ {z;} do

9 R =R U{x;};

10 L fl ag :=true;

11 if f1 ag then

12 foreachz; € X's.t.pruneVal (x;) do

13 Q:= QU {x};

14 R =R U{z};

15 while R # @ do

16 x; = popMax(R);

17 foreachWg s.t. {z;} C Sdo

18 for i = ndownto1s.t.z; € S\{z,} do

19 if fi ndFul | Support (Ws,z;, {x,|u > i} NS)
then

20 L R :=RU{z};

21 foreachz; € X s.t.pruneVal (z;) do

22 Q:= QU {x};

23 R :=RU{z;};

24 Function f i ndFul | Support (Wg, z;, U) :Booleanbegin

25 | foreachz; € U do

26 foreachv € D(z;) do

27 foreach? € L(S) s.t.{[z;] = v do

28 L Wg(g) = Wg(g)) Wj('l}j);

29 Wj(vj) = 0;

30 flag:=findSupport (Ws,x;);

31 foreachz; € U dofi ndSupport (Wg,z;) ;

32 unar yProj ect (z;);

33 return f | ag;

Algorithm 4: Enforcing FDGAC* for a WCSP

Chapter 3 Background

Wgzl,k:5

€3

QO

T2

()
=

QO

(b) After extensions

Wg - 1, k - 5
T
« | ()
T3
| O——10
€2
« | >
0 |
(a) The original WCSP
Wg - 1, k - 5
xy
« | (Oh
T3
1O ©
X2
«| () &
8| O

(c) After projections

O Q]35O O

d) After enforcing NC* onzs
(g

Figure 3.7:Enforcing EDAC* on a WCSP

26

Chapter 3 Background 27

They define a weaker form of EDGAC* with fully support sets edlveak star

existential directional generalized arc consisteifayeak EDGAC*).

Definition 3.14. Thefully supported set/(Ws, z;) for a variablez; and a cost

functionWg with z; € S is a set of variables such that:
o UWs,z;) CS;

o UWg,x;) NUWr,z;) = @ for two different cost function8’s, Wr € C,

and;

hd UWSeC/\a:ieS U<W37xi) = (UWSEC/\ziES S)\{xz}

They give a simple way to compute the fully supported set fearaablex; in 5.

Proceduref i ndFul | ySupport edSet () begin
Y = (U WS]- ceCAux; € S]Sj>\{l‘l},
foreachWs, € Cs.t.x; € S; do

U(Cs;,z;) =Y NS,
L Y =Y\S;;

a b~ W N

Algorithm 5: Finding the fully supported set for a variablg

Definition 3.15. Given a WCSPP = (X, D,C, k) and any fully supported set
U(Ws, z;) for each variabler; € X and each cost functiol’s € C. A variable
x; € S isweak star existential generalized arc consisfergak EGAC*) [30, 29]
if:

e 1, IS NC*, and;

e there exists a value € D(z;) such that for each cost functidits € C with
x; € SandU(Wsg, z;), there exists values; € D(x;) forall j # i andz; €
S such that they form a tuplewith Ws({) ® @, ;e wy o) Willlz;]) = 0.

v is aweak fully supported valuef ;.

The second requirement can be reformulated as:

Chapter 3 Background 28

there exists a value € D(z;) such that for each cost functidiis € C
withz; € SandU(Ws, z;), min{€®,, s Ws(O)BD, jev e Willlz]) [€ €

A WCSP isveak star existential directional generalized arc coestgiveak EDGAC*)
iff it is FDGAC* and all variables are weak EDGAC*.

The procedurenf or ceWeak EDGAC () in Algorithm 6 enforces weak EDGAC*
of a WCSP [30, 29]. The fully supported set is first computedrst #. The proce-
dure makes use of four propagation quefe®, R andS. If xz; € P, the variable
x; 1S potentially not weak EGAC* due to a change in unary costsrenaval of val-
ues in some variables. f; € R, the variables:; with ; > 7 involving in the same
cost function ag;; are potentially not DGAC*. IF; € Q, all variables in the same
cost function as;; are potentially not GAC*. The propagation quesi&ielps build
cost functions as; are potentially not GAC*. The propagation queti@elps build
P efficiently. The procedure consists of three inner-whilep® and one for-loop.
The first inner-while loop from from lines 5 to 9 enforces wdaBAC* on each
variable by the procedurel ndExi st ent i al Support () atline 7. If the pro-
cedure returns true, a projection from some constraint; teas been performed.
The weak fully-supported values of other variables may bstrdged. Thus, the
related variables are pushed backRdor revision at line 9. The second inner-
while loop from lines 11 to 17 enforces DGAC*, while the thirther-while loop
from lines 18 to 25 enforces GAC*. A change in unary cost regpire-examining
DGAC* and weak EGAC*, which is done from lines 8 to 9 and from #ri6 and
17. Lastly, NC* is enforced by the for-loop from lines 26 to 2@ain, if a value in
D(x;) is removed, GAC*, DGAC* or weak EGAC* may be destroyed, andire
pushed into the corresponding queues for re-examinatier.dnd Leung [30, 29]

also proves that this algorithm must terminal by statingasplexity.

Chapter 3 Background

=

© 00 N o o b~ W

10
11
12
13
14
15

16
17

18
19
20
21
22
23
24
25

26
27
28
29

30
31
32

33
34
35
36

37

Procedureenf or ceWeak EDGAC* (') begin
foreachz; € X dofi ndFul | ySupport edSet (z;)
S =R =0:=4%;
whileS #9 VR #92V Q # @do
P:=S8U Uxies,wsec(s\{xi})i
while P # @ do
z; :=pop(P);
if fi ndExi stenti al Support (x;) then
L P :=PU({xjlz;,x; € We, Wg € C}\{z;});

S =

while R # @ do

x, = popMax(R);
foreachWg s.t. {x,} C Sdo

for i = ndownto 1 s.t.z; € S\{z,} do
if
fi ndFul | Support (W, z;, {z;]j >iAx; € S})
then
W;}ile Q#wdo
Ty, = pop(Q) ;
fl ag :=false

foreachCys s.t.{z,} C S do
foreachz; € S\{z,} do
if fi ndSupport (Cg,z;) then

foreachz; € X s.t.pruneVal (z;) do
Q= QU {z};
R :=RU{z};

Function fi ndExi st enti al Support (z;) :Booleanbegin
fl ag :=false
Q= minaeD(a:i){Wz‘(a) D @xies,wsec minf[%FG{WS(@ b
@ijU(WS,xi) Wi (€lxs]))}
if o > 0then

fl ag :=true;

foreachWg € C s.t.x; € S do

| findFul | Support (Ws,z;,U(Ws, z,)) ;

return f | ag;

Algorithm 6: Enforcing weak EDGAC* for a WCSP

29

Chapter 3 Background 30

3.1.3 Global Cost Functions

The cost functions used in WCSPs can be represented as tahke® @ach entry
specifies the cost of a tuple in each cost function. Howeversthe of the cor-
responding table is exponential to the number of the vaggabi a cost function.
Thus with such table representation, only binary and tgrcast functions were
used practically in WCSPs.

In contrast, aglobal cost functions a cost function with special semantics used
in the WCSP framework. Usually, there are efficient algoritldasigned for the
consistency enforcement.

We denote a global cost function asFT.GC*(S) if it is derived from the cor-
responding hardlobal constraintGC(S) of the variable scop® with a violation
measure, where global constraints are used in the CSP framevawkT GC*(S)
returns Giff a given tuple/ on S satisfies GC. I¥ violates GC SOFT.GC!(S) re-
turnsp(¢) using the violation measure to reflect how much the GC is tedlaTo
handle global cost functions which are usually of highyagbmmon consistencies
are generalized to GAC* [15] and FDGAC* [30, 28], and weak EDGARS, 29].

We give an example to show that by using global cost functioase hidden in-
formation may be extracted during the consistency enfoecgniman using the cor-
responding binary cost functions. The global cost funcBa®TALL DIFF?(S)

returns 0 when variables fitake distinct values, otherwis®FT ALL DIFF(S) =

{zi # @jlei, z; € SNLF#)

Example 3.16.Given a WCSP with three variablas = {x1, x5, x5}, whereD(x;) =
D(zy) = {a,b} and D(z3) = {a, b, c} with all unary costs equal to 0. There are
three binary cost functiond’;,, Ws3, and;3 where a cost of O is taken:if;, # -,

xr1 # w3 andxz,y # x3, otherwise a cost of 1 is taken. It is AC* since every variable
is AC* with respect to all related cost functions. If the costdiion is replaced by

a SOFTALL DIFFY“({x, x5, z3}) cost function, the WCSP is not AC*, since values

a,b € D(x3) has no support with respect to ts®FT ALL DIFF? cost function.

Chapter 3 Background 31

Lee and Leung [30, 28] define€g projection-safety A cost functionWs is
T projection-safef (a) Wy satisfies property, and (b)IV¢ satisfies property,
wherelWy is obtained fronilg by a valid sequence of projections or extensions. In
other words, the property is preserved omls under projections and extensions.
Given a7 projection-safe cost functioWs, if the property7 allows an efficient
computation of the minimum cost &Fs, it is guaranteed that the minimum cost of
W can still be computed efficiently after projections and egiens.

Two useful propertie§ are flow-basedness and polynomially decomposable.
Flow-based projection-safe cost functidid®, 28] can be represented as flow net-
works, the minimum cost of which can be computed efficienylylow algorithms.
Polynomially decomposable cost functi¢gB$] can be represented as dynamic pro-
grams, which allow the minimum costs to be computed effiyarging divide-and-

conquer and memorization.

3.2 Integer Linear Programming

In this thesis, we formulate global cost functionsibteger linear programg$49].

An integer linear prograni is defined as follows:

z = min(c’ X)
aX <b

[<X <u
Xez"

X is a set ofvariablessuch thatX = {z,z,...,2,} andaX < b arelinear
constraintswherea € Q™*™ andb € Q™ givenn is the number of variables and
m is the number of problem constraints.= min(c’ X) is the objective function

wherec € Q". [andwu arelower and upper boundn the variablesX where

Chapter 3 Background 32

[€ (Q"U{—o0})andl € (Q" U {co}). Solving an integer linear program is to
find values for the variableX minimizing (or maximizing) the objective function
z = min(c? X') while satisfying all the linear constraints{’ < b.

A linear program[16] is a special case of an integer linear program where all
the variables are not longer required to be integers. Santlegriality requirement
X € Z"is removed such that € R".

An assignmenty represents the values taken by the variable¥ inA feasible
solutionis an assignment that satisfies all problem constraintX’ < b. An op-
timal feasible solutions an assignmeni representing a feasible solution and the
objective function:” X gives the minimal value. We call the value of the objective
function z from an optimal feasible solution af = min ¢’ X as theminimumof I
or min(/).

We use integer linear programs to model global cost funstionWCSPs as
variables in WCSP can only take one and only one value from isadl@ Integer
linear programs are also used in situations where it is ordamngful to make
integral quantities in combinatorial optimization praile However it can be NP-
hard to solve a integer linear program in general. liBgar relaxation[49], the
integrality requirement is removed and the integer lineagmm is solved as a
linear program where linear programs were shown to be potyaity solvable.
Since linear relaxation enlarges the set of feasible swiatisolving an integer linear
program with linear relaxation provides a lower bound omitsimum.

IBM ILOG CPLEX Optimizer [21] is the solver we use in our expeents to
solve the integer linear programs with linear relaxation. il¢/the simplex algo-
rithm used by default is not bounded by polynomial time, Xsedlent average case
complexity still allow us to solve the problem efficientlyrapared to other polyno-

mial time bounded algorithms like the interior point method

Chapter 4

Polynomially Linear Projection-Safe

Cost Functions

Tractable global cost functions require their minimum sdst be computed effi-
ciently. Examples are flow-based projection-safe costtfans and polynomially
decomposable cost functions and they can be used pragiic®ICSPs. However,
there are many useful global cost functions which do not ledfieient algorithms
to compute their minimum costs yet. In this chapter, we flististhat the minimum
cost of a global cost function can be computed efficiently drénforcing GAC on
its related global constraint is efficient. Accordingly, p®ve that it is NP-hard to
compute the minimum costs of several useful global costtfans, including the
soft variants of 8IDING Sum, EGCC, and DSJUNCTIVE/CUMULATIVE . To han-
dle such global cost functions in WCSP, we propose anothes ofds projection-
safe global cost functions callggblynomially linear projection-safe (PLP$pst
functions. A PLPS cost functiol/s can be modeled as an integer linear program
whose size is polynomial to the number of variables and thamman domain size
of Wy. First, we give necessary conditions for cost functionse¢dhPS. Second,
we show that we can efficiently approximate a strong lowemnidoaf the minimum
costs of PLPS. We define relaxed consistencies with the appated minimum
costs. We also show that we can conjoin PLPS cost functiosi$yegiven their

special structures. Third, we give examples of the costtfons which can be

33

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 34

modeled as PLPS cost functions. We demonstrate the effic@rmur approaches

experimentally.

4.1 Non-tractable Global Cost Functions in WCSPs

The use of cost functions in WCSPs was limited to binary andatgroost func-
tions since they were represented as tables, which the tichg@ace requirements
in enforcing different consistencies increase exponkyn@s the numbers of vari-
ables in the scope of the cost functions increase. The peahetse of global cost
functions with high arities is suggested by Lee and Leung328 who defindlow-
based projection-safe global cost functiohgeet al. [31] further defindractable
projection-safe global cost functionsvhich ensure the enforcement of different
consistencies on such cost functions in WCSRsustableand can be done in poly-
nomial time. Given a cost functio’s, Wy is tractableif its minimum cost can
be found in polynomial timells is atractable projection-safe global cost function
if both Wg and W are tractable, wher®/’(is W after a series of projections or
extensions. Leet al.[31] also defingpolynomially-decomposable cost functipns
as well as flow-based projection-safe cost functions, lgetorthe class of tractable
projection-safe global cost functions which can be used in R&Sficiently.

Given a tuple € L(S) in classical CSP, a hard constradri¢(¢) returns either
it is satisfied or violated. A hard constrainttiactableif a tuple satisfyingCs can
be found in polynomial time if there exists a such tuple, ¢fseviolation can be
proven in polynomial time. Givenlaard constraintCs and its soft variantVg, C's
is tractable ifiVs is tractable. The tractability af's can be shown by computing
the minimum cost of the cost functidits, which can be done in polynomial time.
W returns O if there exists a tuple satisfyiafy, else we can prove that there is no
tuple satisfying’s.

An important consistency technique used in CSRjeseralized arc consis-

tency(GAC). Here we give the definition of GAC in CSP.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 35

Definition 4.1. Given a CSPP(X', D, C).

e A constraintC's € C is generalized arc consiste(@BAC) if for every value
v; € D(z;) and for everyz; € S, there exists a tuplé € £(S) such that

l[x;] = v; and/(satisfies.
e P is GAC iff all constraint®’s € C are GAC.

If a hard constrainty is tractable, enforcing GAC of's must be tractable, as
the determinant step of enforcing GAC 6 is to find supports, which amounts to
finding satisfying tuples of’s.

Efficient enforcement of GAC on a hard constraint in CSPs isiired for en-
forcing consistencies on its soft variant in WCSPs efficientlpwever, there are
hard constraints which are NP-hard to enforce GAC on thenre@tly, there is no
known polynomial time algorithm to enforce GAC on such comists. Here we call
these hard constraint®n-tractable constraintsSimilarly, we call the cost func-
tions which are NP-hard to find their minimum costen-tractable cost functions

and we have the following lemma.

Lemma 4.2. Given a non-tractable constraidts which is NP-hard to enforce GAC
on Cg, and a cost functioi?y which is a soft variant of”s. It is NP-hard to

compute the minimum costBfs, solVs must be a non-tractable cost function.

Proof. We can reduce the problem of either finding a satisfying top&econstraint
C's or enforcing GAC (generalized arc consistency)@nto the minimum cost
computation of the corresponding cost functidiz. SincelVy is a soft variant of
Cs, suppose we are given a tuglelVs(¢) returns a cost of O if satisfiesC's. So
by computing the minimum cost d¥5, we can know ifC's consists of satisfying
tuples. If there exists a satisfying tuple, it can be obtaimg repeating the steps for
n times, where: equals to the number of variablesaiy.

The determinant step of enforcing GAC 64 is to find supports, which amounts

to finding satisfying tuples af’s. O

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 36

There are many useful cost functions which are non-tragtsibce they are de-
rived from non-tractable hard constraints. We give an examwh the soft variant
of the S.IDING SuM constraint. The BDING SUM constraint is a conjunction of
multiple SUM constraints, where theu® (.S, [, u) constraint restricts the sum of the
values taken by a set of variabl§sbetween a lower boundand an upper bound
u [7].

The SIDING SUM(S, [p1, - - ., pm]) [34] constraint takes a sequencerofrari-
ablesS = {x,...,z,} andm windows. For every window,; = {l;, u;, S;}, the
sum of the variables in the s8tis restricted between a lower bouh@nd an upper

boundu;.
Definition 4.3. TheSLIDING SUM(S, [p1, - . -, pm]) coOnstraint holds iff
l; < Z Ty < u;
IjGSi

for everyi from 1 to m.

We can define the & T_SLIDING SuM?“() cost function with thelecomposition-
basedviolation measuréec by measuring the violation of each window and adding

up their costs, which is similar to the one given by Besset. al.[34].

Definition 4.4. Given theSLIDING SuM() constraint and an assignment tuglen

variabless, the soft varianSoFT_SLIDING SuM®<() is defined as:

SOFT_SLIDING SUM™(S, [p1, - - ., pm]) (€)

= Zmax(Z lxj| — wi, l; — Z l[z;],0)

J:jESi CIZJ‘GSi

Theorem 4.5. Computing the minimum cost 8bFT_SLIDING SUM?* is NP-hard.

Proof. Enforcing GAC on a 8M constraint is NP-hard [7]. As theL®ING Sum
constraint can be represented by a conjunction of multiple $onstraints, en-

forcing GAC on S.IDING SuM is NP-hard. As ®FT_SLIDING SuM®* is derived

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 37

from the S.IDING SuM constraint, by Lemma 4.2, computing the minimum cost of

SOFT_SLIDING SuM? is NP-hard. O

There are also cost functions which are not yet proven to betractable and
some of them have exponential time algorithms to find themmium costs. Surely
we want some ways to handle such cost functions in WCSPs wlgleléitk effi-
cient algorithms and we propo&elynomially Linear Projection-Safe (PLP8)st
functions which give the following results. First, PLPS s ctions are cost func-
tions that can be modeled as integer linear programs wigs iplynomial to the
number of variables and the maximum domain size. This clas®gi functions
has a strong modeling power but it can be NP-hard to compatertiinimum costs
due to the complexity of solving integer linear programscd@el, we define relaxed
consistencies that approximated minimum costs are usezhohef exact minimum
costs. The approximated minimum costs of PLPS cost funetian be obtained by
solving the integer linear programs with linear relaxaftiopolynomial time. Third,
we show that PLPS cost functions can be conjoined easily bjotong their cor-
responding linear programs. Our experimental results detnate improvements
in terms of runtime and search space in general. We give sgara@es of global
cost functions which can be modeled as linear projectida-sast functions and
use experiments to show that our framework allows thoseaglobst functions to

be used in WCSPs more efficiently than the existing ways.

4.2 Polynomially Linear Projection-Safe Cost Func-

tions

Linear cost functions are cost functions that can be repteddy integer linear pro-
grams while their useful properties are preserved aftgeptions and extensions.

We first give the definition of a linear cost function.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 38

Definition 4.6. A cost functioniVs is linearif it can be represented by an integer

linear programIy,,, such thatmin{WWs} is equal to the minimum di,.

We take the SFT_SLIDING SuM cost function mentioned above as an example.
Given a FT_SLIDING SUM cost functioniVs, we can construct the corresponding
integer linear prograni,,, so that the 8FT_SLIDING SUM cost function is a linear
cost function.

Given a cost functioriVs, we create a variable,, in Iy, for each variable
x; € S which has the same domain @assuch that,, = z;. Two set of variables
L ={Ly,...,L,}andU = {Uy,...,U,,} are introduced to represent the cost
arising from violating the related hard constraint if thensof the values is smaller

than the lower bound or greater than the upper bound resphcti
Theorem 4.7. The SOFT_SLIDING SuM?“ cost function is a linear cost function.

Proof. The SOFT_SLIDING SUM®“(S, [p1, ..., pm]) cOst function can be expressed

as an integer linear prografmwherel! is defined as:

miny 7, Lj + Uj st.
i< Yges; Co —Li+tUj<u; Vi=1...m
L; >0,U; >0 Vi=1l...m
¢e; = {Dg, } Vz; € S

The minimum off gives the minimum cost of & T_SLIDING SUM™(S, [p1, . . ., Pm]).
By Definition 4.6, the ®FT_SLIDING SUM?* cost function is a linear cost func-

tion.]

Koster [23] suggests a method to formulate global cost fanstinto integer
linear programs by treating them as table cost functionsmaodeling the cost of

each tuple by an inequality.

Theorem 4.8. [23] Given a cost functioriVs, whereL(S) is a set of tuples cor-

responding to all possible assignments on the set of vaashl ¢ € £(.5) is tuple

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 39

represents an assignmelitz] denotes the value assignedatan ¢ and Wg(¢) re-
turns the cost of the tupléin Ws. Wy is linear since the corresponding integer

linear program can be defined as:

min Z WS(Z) *bg

LeL(S)

Z bp —Cra =0, Ya€ D(x),x €8
Lz]=aleL(S)

cza €{0,1}, Ya€ D(x),z € S
by € {0,1}, VL e L(S)

By this method, we can model every cost function into a linesst éunction.
However, the number of linear inequalities used is expaaktd the number of
variables in the cost function, which is undesirable if we koking for efficient
ways to solve them. In this thesis, we are focusing on a sbelzias of linear
cost functions which the size of their corresponding intdgesar programs are
polynomial to size of the cost functions, and we defoatynomially linearcost

functions.

Definition 4.9. SupposéVs is a cost functionlVy is polynomially linearif Iy, has
the number of inequalities and the number of variables pmiyial to the number
of variables and the maximum domain sizél¢f, wherelyy,, is the corresponding

integer linear program oiVs.

A T projection-safe cost function preserves its prop@&rigfter projections and
extensions. For exampl€, can be flow-based and Lee and Leung [28, 30] give
examples of flow-based projection-safe cost functionsddfrhinimum cost of §

projection-safe cost function can be computed efficieitdyninimum cost can still

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 40

be computed efficiently through the consistency enforcespeso it is feasible to
use such a cost function in WCSPs.
We are interested in usimplynomially linearas the property” and we define

polynomially linear projection-saféPLPS) cost functions.

Definition 4.10. SupposédVy is a polynomially linear cost functionlVs is poly-
nomially linear projection-safé W is also polynomially linear projection-safe,

whereWW} is Wy after a series of projections and extensions.

First we give the sufficient conditions to determine whethepst function is a
PLPS cost function. Then we show that given a PLPS cost fomcthe minimum
cost can still be computed by solving its correspondinggetdinear program after

projections and extension.

Lemma 4.11. Given a cost functiom’s which satisfies the following three condi-

tions:

1. Wy is linear and has the corresponding integer linear progrém,, where
the number of inequalities and number of variable$,pf are polynomial to

the number of variables and the maximum domain siZ&€ gf

2. there exists a surjective functiori mapping each optimal feasible solution
Vrw, IN Iy, to each tuple[S] € L(S), whereL(S) denotes the set of tuples

corresponding to all possible assignments on varialbleand;

3. for each values € D(x;) in each variabler; € S, there exists an injection
mapping an assignmeft; — v} to a 0-1 variablec,, , in Iy, such that if
([S] = N (vny,) for an optimal solutionyr,, in Iy, and a tuple([S] € L,
whenever|[z;| = v for some tupl€[S], v1,, [cz,0] = 1; Whenever[z;] # v,

Vg [Cai0] = 0

Supposél’{ is obtained from projecting from W to W, (v), or extendingxy from

W, (v) to Wg, thenW also satisfies these conditions.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 41

Proof. AssumelWs is a PLPS cost function anfiy, is the corresponding integer
linear program ofi¥s. We first consider the part of projectione. Wy is defined

as:

Wi { Ws() oo if] =
Ws () otherwise

We first show thatV; is also a linear cost function with polynomial size (con-
dition 1)). After projection, we can construct a new inteirear program/yy;
from Iy, by adding an additional termac; , to the objective function ofy,,. The

resulting integer linear prograty,, is corresponding tél’g, since:

min(ly,) = min(fw,) © aci
=min{Ws} © ac;,
) min{Wstoa ,ifcy=1
- { min{Ws} ,if ¢0 =0
= min{W¢}.

Thus, Wy is linear with the corresponding integer linear program and sat-
isfies the condition 1). Moreover, sinég-, has the same set of variables and linear

inequalities adyy, has,IW also satisfies the conditions 2) and 3).

Then we consider the part of extensiar, Wy is defined as:

Wi { Ws() @ if ;] =
Ws(?) otherwise

After extension, we can construct a new integer linear @aogky, from Iy,
by adding an additional termac; , to the objective function ofyy, .

With similar arguments, the new integer linear program is still correspond-
ing to W§. ThusWy satisfies the condition 1). Moreover, sinkg, has the same

set of variables and linear inequalitiesfas, has,W} also satisfies the conditions

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 42

2) and 3).]

Lemma 4.11 implies that if a linear cost function satisfiesditbons 2) and 3),
those conditions are preserved throughout a series ofghi@js and extensions.

From Lemma 4.11, we can give the sufficient conditions of a®tést function.

Theorem 4.12.1f a global cost functioVs satisfies the conditions stated in Lemma

4.11, itis a PLPS cost function.

Proof. From Lemma 4.11}Vs preserves the conditions, as well as the linearity,
throughout a series of projection and extension operatiByshe definitions of/”

projection-safe cost function/s is a PLPS cost function. n

Theorem 4.12 gives a sufficient condition for a global costfion to be a PLPS
cost function. In order to construct the correspondinggetdinear prograntyy,
such that the conditions of a PLPS cost function can be satidfinary variables
¢z, are introduced for every valuéin the domaind € D(z;) of every variable
z; € Sin Iyy,; for each variabler; € S, there is an extra linear cost function
> jeD(a: Cxij added talyy, such that only a value can be assigned to each variable
x; in Ws. According to condition 3), we can easily definé In addition, the proof
part of Lemma 4.11 demonstrates a general procedure ofrpeng projections
and extensions on PLPS cost functions.

We use the SFT_SLIDING SuM cost function as an example of a PLPS cost
function. Then, we use this cost function to give anothengxda, which demon-
strates how costs can be projected (and extended) to PLPfinosons while the

linear projection-safety is preserved.
Theorem 4.13.The SOFT_SLIDING SUM?“ cost function is a PLPS cost function.

Proof. The SOFT_SLIDING SUM™“(S, [p1, ..., p,]) cOSt function can be expressed

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 43

as an integer linear prografy,, wherely,, is defined as:

min) 7, Lj + Uj st.
ljStheSjZdeD(h)d*cxh,d_Lj+UjSuj Vi=1...m
Lj>0,U; >0 Vi=1...m
2odeD(w:) Cand = 1 Vi=1...n
Czid € {0, 1} V; € S,d € D(x;)

Let D,., be the maximum domain size for the variables'inthe corresponding
integer linear program uséS| x D,,., + 2 * m variables an® x m + |S| + |S| *
Diax inequalities. Ifz; = d, ¢,, 4 = 1; otherwisec,, ;, = 0. By Theorem 4.12,

SOFT_SLIDING SuM? cost function is a PLPS cost function.]

Example 4.14.Consider the following WCSP(X, D, W, k):
X = {ZE1,$2,$3}, D(xl) = D(‘r?) = D(I?)) = {17273}1p1 = {3a47 {fEl,,Ig}},
po = {4,5,{xs, 23} }, Ws = SOFT_SLIDING SUM?“([21, 3, 23], [p1, p2]). The cor-

responding integer linear program &¥ is:
min L; + Uy + Ly 4+ Us Sit.

3 <y 1+ 2050+ 3C 3+ Cogn + 20,0+ 3Ch3 — L1 +U; < 4
4 <cyy1+ 20,0+ 3Cs,3+ Crgn + 20,0+ 3,3 — Lo+ Uz <5
Cop1F Co2+ o3 =1
Capt F Cap2 + Cap3 =1
Crg1l + Cpg2+ Cpy3 =1
Li>0,U; 20,Ly >0,U; >0

Wherecxl,la Ce1,25C21,35 Cxy.15 Cag.2y Cag 3y Czg,15 C3,25 Ca3,3 € {Oa 1}

Suppose a cost of 2 is projected frdiy to 1V, (1) such that a term is added to

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 44

the objective function of the corresponding integer linpangram ofiVs. Since the
other parts of the corresponding integer linear program/o§ remain unchanged,

W is still PLPS. The corresponding integer linear progranié§ becomes:
min Ll + Ul + LQ + U2 — 20$171 S.t.

3 < Copq 2000+ 3C 3+ Cop1 + 2000+ 33— L1 +U; <4
4 <cpo1+ 20,0+ 3Cs,3+ Cogn + 20,0+ 3,3 — Lo+ Us <5
CopgtCay2+ Coy3=1
Cpyl + Cpp2+ Cppz =1
Crz1 + Cpgo + Cayz =1
L >0,U; 20,Ly >0,U; >0
Wherec,, 1, 2, 2, Cay 3y Cag 15 Can 2, Can 35 Carg 15 Caog 25 Cag.3 € {0, 1}

Linear relaxation allows the minimum of the correspondimigger linear pro-
grams of PLPS cost functions to be approximated in polynbtinie. Accordingly,
the relaxed consistency notions can be defined, which ar&ewdat can be en-

forced more efficiently.

4.3 Relaxed Consistencies on Polynomially Linear Projection-

Safe Cost Functions

Polynomially linear projection-safe (PLPS) cost funciczan be represented as
integer linear programg49]. It is NP-hard to solve an integer linear program in
general, but a good approximation of the minimum cost canoeptited with the
linear relaxation using linear programming. Given a PLPS ¢onctionWWs and

its corresponding integer linear prografy.,, we first define the the value of the

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 45

objective function: from an optimal feasible solution af= min ¢’ X using linear
relaxation aselaxed_min(/yy,). We have the following theorem according to the

properties of linear relaxation.

Theorem 4.15. [49] Given an integer linear prograndy, relaxed_min(Iyy,) <

min(ly) and [relaxed_min(ly,)] < min(ly,).

The pair of [| symbols represents the ceiling function, whége gives the
smallest integer not less than

Given a PLPS cost functioi’s and its corresponding integer linear program
Iy, solving Iy, by linear relaxation gives an lower bound of its minimum cost
min{Ws}. Such an approximation of the minimum costs by linear relaregorms
the basis of relaxed but weaker forms of common consistsficid®LPS cost func-
tions. We name the approximation of the minimum costs of agPt&st function
W by solving its corresponding integer linear progrégm, with linear relaxation
relaxed_min(/y,) asrelaxed minimum costenoted aselaxed_min{Ws}, such
thatrelaxed_min{Ws} = relaxed-min(lw,). Sincemin(ly,) = min{Ws}, we

have the following corollary:

Corollary 4.16. Given a PLPSVg and its corresponding integer linear program

Iy, relaxed_min{Ws} < min{Ws} and [relaxed_min{Ws}] < min{Ws}.

To define a relaxed version of GAC* using the relaxed minimustsof PLPS
cost functions, we first reformulate the definition of GAC*. GArequires that for
each value of each variable, there must exists a suppotipig with its cost equals
to 0 in each cost function related to that value of that véeialh min{ W (¢)|([z;] =
a)} = 0, there exists such a supporting tuple for the value the variabler;. So

we give an equivalent definition of GAC* according to Definiti8.8:

Definition 4.17. A variablez; € S is GAC* [15] with respect to a cost function
WS if:

e 1; is NC*, and;

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 46

e for each valuey; € D(z;), min{Ws(¢) | ¢ € L(S) A l]z;] = v;} = 0.
A WCSP isGAC* iff all variables are GAC* with respect to all cost functionsdn

By Corollary 4.16, we can define an relaxed version of GAC* catkdexed

GAC* by relaxing the requirements of GAC* and replacing{ W5} by relaxed_ min{Wjs}.

Definition 4.18. A variablez; € S is relaxed GAC*with respect to a cost function

WS if:
e 1, is NC* and;

e for each value; € D(z;), relaxed_min{Ws(¢) | ¢ € L(S)NLl[z;] = v;} <O.

of v; with respect ta’.

To compare the strength of GAC* and relaxed GAC*, we define thatrga
WCSPP, a consistency is strictly weakerthan another consistengy written as
a < f,iff Pisa wheneverP is /3, but not vice versa. Sinaelaxed_min{Ws} is
a lower bound ofnin{W5s}, by Corollary 4.16 we immediately have the following

theorem.
Theorem 4.19.Relaxed GAC* is strictly weaker than GAC*.

According to the algorithm of enforcing GAC*, any WCSP can basfarmed
to an equivalent one which is GAC*. Here we give the algorithinerforcing re-
laxed GAC* which can transform any WCSP to an equivalent one lwisicelaxed
GAC*. It is similar to that of enforcing GAC* listed in Algorittm 7, except that
relaxed_min(Ws) does not always return an integer. We define the cost to be pro-
jected in enforcing relaxed GAGY = max([relaxed_min{Ws}],0) and we have

the following theorem.

Theorem 4.20.Supposéyy, is an integer linear program corresponding to a PLPS
cost functiori¥g, and there exists a cost= min{Ws} to be projected in enforcing
GAC*. After projecting a cost’ = max([relaxed_min{Ws}],0) in enforcing

relaxed GAC*min{Ws} is greater than or equal to 0.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 47

Proof. Letmin(/y,) = «, such that after projectingin enforcing GAC*,min{Ws}
is greater than or equal to 0. Solvidg,, by linear relaxation obtains an relaxed
minimum costrelaxed_min{Wgs} = relaxed_min(/y,) to be projected. Given
thata/ = [relaxed_min(Iy,)] < min(/w,) = «, we can ensure that after project-
ing [relaxed_min(/w,)], min{Ws} is still greater than or equal to 0.

At the same time asiin{Ws} is greater than or equal to O after projectimin
enforcing GAC*. Evenelaxed_min(Iy,) < 0 after enforcing relaxed GAC*, we

can still ensure thahin{1Ws} is greater than or equal to O.]

The procedurenf or ceRel axedGACx in Algorithm 7 enforce relaxed GAC*
fora WCSP(X, D, C, k) based on Algorithm 3 of enforcing GAC*. The function
fi ndSupport () isreplaced by el axedFi ndSupport () and the cost to be
projectedn becomesnax([relaxed_min{Wg}|,0).

To define the relaxed version of FDGAC*, we first give an eq@madefinition
of FDGAC* according to Definition 3.11:

Definition 4.21. A variablez; € S is DGAC* [15] with respect to a cost function
WS if:

e 1;iS NC* and;

o for each valuey; € D(z;), min{Ws({) ® @, ;- W;(l[z;]) |[€ € L(S) A

A WCSP is FDGAC* iff it is GAC* and all variables are DGAC* with regpéo all

cost functions irt.

By Corollary 4.16, we can define an the relaxed version of FDGA4ledre-
laxed FDGAC*by relaxing the requirements of FDGAC* and replacingnh{ IV}
by relaxed_min{Ws}.

Definition 4.22. A variablez; € S isrelaxed DGAC*with respect to a cost function
WS if:

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 48

1 Procedureenf or ceRel axedGAC* () begin

2 Q:=X;

3 while Q # @ do

4 zj :==pop(Q) ;

5 fl ag := false

6 foreachWg s.t. {z;} C Sdo

7 foreachz; € S\ {z;} do

8 flag:=flag Vvrel axedFi ndSupport (Ws, ;) ;
9 if pruneVal (z;) then Q@ := QU {x;};

10 if:‘ | ag then
11 foreachx; € X do
12 | if pruneVval (z;) then Q := QU {x;};

13 Function r el axedFi ndSupport (Ws, x;) :Booleanbegin
14 fl ag :=false
15 | foreachwv € D(z;) do

16 a := max([relaxed_min{Ws(0)|¢ € L(S) A {[x;] = v}],0);
17 if Wi(v) =0Aa>0thenfl ag :=true;

18 Wi(v) := W;(v) @ o

19 foreach? € L(S) s.t.{[x;] = v do

20 | Ws(0) :=Ws(l) & a

21 | unaryProject(xz;);
22 | return flag;

Algorithm 7: Enforcing relaxed GAC* for a WCSP

e 1;is NC*, and;

e for each valuev; € D(x;), relaxed-min{Ws(() & D, ;- W;(l[z;]) [£ €
L(S) N Llx;] =v;} <0.

A WCSP is relaxed FDGAC* iff it is relaxed GAC* and all variablas aelaxed

DGAC* with respect to all cost functions (h

Sincerelaxed_min{Ws} is a lower bound ofnin{Ws}, by Corollary 4.16 we

immediately have the following theorem.

Theorem 4.23.Relaxed FDGAC* is strictly weaker than FDGAC*.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 49

The procedure of enforcing relaxed FDGAC* is similar to th&teaforcing
FDGAC* in Algorithm 4, except that théi ndSupport () function is replaced
by ther el axedFi ndSupport () function in Algorithm 7.

To define a relaxed version of weak EDGAC?, first we give an egjent defi-

nition of weak EDGAC* according to Definition 3.15:

Definition 4.24. Given a WCSPP = (X,D,C, k) and any fully supported set
U(Wg, z;) for each variabler; € X and each cost functiol’s € C. A variable
x; € Sis weak EGAC* [29, 30] if:

e 1, iS NC* and;

e there exists a value € D(z;) such that for each cost functidits € C with
z; € SandU(Ws,z;), min{P, .5 Ws(l) & DB, jevrvsen Willlz;]) | € €

A WCSP is weak EDGAC* iff it is FDGAC* and all variables are weak EB3A

By Corollary 4.16, we can define an relaxed of relaxed weak EDGédlted
relaxed weak EDGACbYy relaxing the requirements of weak EDGAC* and replac-
ing min{Ws} by relaxed-min{Ws}.

Definition 4.25. Given a WCSPP = (X, D,C, k) and any fully supported set
U(Ws, x;) for each variabler; € X and each cost functiol/s € C. A variable

x; € S is relaxed weak EGAC* if:
e 1;iS NC* and;

e there exists a value € D(x;) such that for each cost functidits € C with
z; € SandU(Ws, x;), relaxed-min{@D,,cs Ws(O)ODB,, jevrwy o0 Willlzs]) [€ €

A WCSP is relaxed weak EDGAC* iff it is relaxed FDGAC* and all vaies are
relaxed weak EDGAC*.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 50

Sincerelaxed_min{Wg} is a lower bound ofnin{Ws}, by Corollary 4.16 we

immediately have the following theorem.
Theorem 4.26.Relaxed weak EDGAC* is strictly weaker than weak EDGAC*.

The procedure of enforcing relaxed weak EDGAC* is similarttattof enforc-
ing weak EDGAC* in Algorithm 6, except that tifé ndSupport () function in
thef i ndFul | Support () functionis replaced by theel axedFi ndSupport ()

function in Algorithm 7, similar to the algorithm of enforg relaxed FDGAC*.

4.4 Conjoining Polynomially Linear Projection-Safe

Cost Functions

If two constraints or cost functions share more than oneabwde| they areover-
lapping In the rest parts of this thesis, we consider conjunctidnsverlapping
cost functions. In general, enforcing a consistency onrnbdevidual cost functions
may not imply the same consistency on the conjunction of wee tAn example
is given by Besgireet al. [6]. According to that example, enforcing GAC on two
overlapping AL DIFF constraints does not imply GAC on the conjunction of them.
It is easy to check that the result also holds for cost funsti®y discovering extra
pruning opportunities, propagating on conjunctions oft foactions may reduce
more search space than propagating on individual costitursctan.

Every PLPS cost function has an associated integer linegrgm. PLPS cost
functions can be conjoined together easily by combining toeresponding integer
linear programs in a straightforward manner. Given twogeteinear programs
Ly andly, , we definely, A I, to be their combination by taking the union
of their linear inequalities and adding up their objectiuadtions. The following

theorem ensures that conjunctions of PLPS cost functionairePLPS.

Lemma 4.27. SupposéVs, and W, are PLPS cost functions. The conjunction
Weonj = Ws, A Wg, is also PLPS.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 51

Proof. SupposéVs, andVs, have their corresponding integer linear program

for Wee,; can simply be

conj

and Iy, respectively. The integer linear prograffy
formed by/y,

conj

tions for PLPS.]

= Iws, A lwg, It is easy to check that’,,,,; satisfies the condi-

An immediate question is whether a conjunction of PLPS agsttions always
gives a stronger bound than using the individual PLPS costions, given that the
same level of consistency is maintained. Given W@%Prs = (X, D,Cprps, k),
where each cost functioW's € Cpps is PLPS with corresponding integer linear
programly,,. We assume thaty, ps contains overlapping cost functions. We can
construct an equivalent WCSR,,,; = (X, D, Ceonj, k) WhereC,p,; = {We,;} and
Weon; = /\Wsechps Ws with the corresponding sco@e,,,; = UWsechps S and

integer linear prograny,

c

oni = Nwicep, ps Iws- SINCECpLpg is a set of PLPS cost
functions, the conjunctiofl’,,,; must be a PLPS cost function.

Given a problemP representable by two WCSP model&P) and(P). A
consistencyP on ¢(P) is strictly strongerthan another consistency on ¢ (P),
written as® on ¢(P) > ¥ ony(P) , iff ¢(P) is ¥ wheneverp(P) is ¢, but not
vice versd30].

We show that (FD)GAC* and weak EDGAC* af.,,,; are strictly stronger than

their counterparts oRp;, ps respectively by the following theorem.

Theorem 4.28.Supposer-consistency is one of GAC*, FDGAC*, and weak EDGAC*.

We havex-consistent orP,,,; > a-consistent orPpy pg.

Proof. We prove the part for GAC*. The proofs for the other consisienare
similar.
Assumer,,,; is GAC*, but Pp;pg is not GAC*. There exists a variablg € X

with a valuea € D(zx;) and a cost functioilWs € Cprps in Pprps such that

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 52

min{Ws(¢) | {[z;] = a Nl € L(S)} > 0. Now, we have

min{Wconj ’ g[xz] =aNle E(Sconj)}
> Dwiecp,ps M{Ws(0) | llz] =anl e L(S)} >0

So we cannot find a simple support f@andx; cannot be GAC* with respect to
Weon; IN Peopj.

Consider Wg, = SOFT ALLDIFF* (21, x9,23) and Wg, =
SOFT_ALLDIFF*® (xq, x3, 24), WhereD(x;) = {a, b}, D(x2) = D(z3) = {a,b,c}
and D(xz4) = {b,c}. Itis easy to check thabp.ps = (X,D,{Ws,, Ws,}, k) is
GAC*. However,P,,,; = (X, D,{Ws, A\Wg,}, k) is not GAC* since the minimum
costwhenr; = ais1 > 0.

Result follows.]

When standard consistencies are replaced by their relaxsmns, result sim-
ilar to that of Theorem 4.28 does not hold. For simplicity, assumeCp; ps =

{Ws,, Ws,}. SUppOSE,,,; is relaxed GAC*. We have

0 > approxmin{We,,; | {[z;] =a Nl & L(Sconj)}
> DBwicep, ps APPIOXmin{Ws(l) | lz;] = a Al € L(S)}

In order for the sum to be non-positive, it is possible fordpproximated minimum
cost of one of W, , W, } to be negative and the other one positive. Therefore, one
of them is not relaxed GAC*. However, this peculiar bad situajust described
does not happen often in practice and we will demonstratettisaworthwhile to
propagate on the conjunction instead of individual costfioms in the experiments

in the last section of this chapter.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 53

4.5 Modeling Global Cost Functions as Polynomially

Linear Projection-Safe Cost Functions

In this section we introduce three global cost functionsluiding the FT_SLIDING SuM,
SOoFT_EGCC, and ®FT_DISIJUNCTIVEICUMULATIVE cost functions. Following
the Lemma 4.2, we prove that it is NP-hard to compute theirimmam cost by
showing that it is NP-hard to enforce GAC [9], a consistenotian in classical
CSPs, on the related hard constraint. By modeling them as poiatly linear
projection-safe cost functions, we can obtain the relaxadmum costs by linear

relaxation and enforce relaxed consistencies.

45.1 The FT_SLIDING Sum%c Cost Function

The S.IDING SuM() constraint [34] represents a sequence 0§ constraints and
each of the 8M() constraint restricts the sum of the values taken by thialkas in
its scope between between a lower bound and an upper bourdt Viasant for the
SLIDING SUM() constraint is called the@T_SLIDING SUuM?() cost function. The
definition of SOFT_SLIDING SUM?<() is given in Definition 4.4 in Section 4.1 and
it is shown to be PLPS in Theorem 4.13 in Section 4.2. Here weah example of

modeling a ®FT_SLIDING SUM?<() cost function as a PLPS cost function.

Example 4.29.Consider the following WCSP(X, D, W, k):

X ={z1, 22,23}, D(z1) = D(22) = D(w3) = {1,2,3}, p1 = {3,4, {z1, 22} },
po = {4,5,{xy,23}}, Wg = SOFT_SLIDING SUM™([1, 79, 73], [p1, pa]). FOr €x-
ample,Ws(1,1,3) = 1 becausé; — (z1 + x2) = 1 andly < (29 + 23) < uy. The

corresponding integer linear program ofs is:
min Ly + U; + Ly + Us Sit.

3 <yt 202+ 33+ Cop1 + 2000+ 3C,3— L1 +U; < 4

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 54

4 < cpp1+ 2050+ 3C,3+ Cog1 + 20550 +3Cpy3 — Lo+ Uy <5
Cog +CoatCpz=1
Cpol F Cpp2+ Cpp3 =1
Cag1 T Cag2 + Cag3 =1
Ly >0,U; >0,Ly >0,U; >0

WhereCm,l’ Cz1,2, Cx1,35 Caa, 1y Cao,25 C20,35 Caz 15 Cag 25 Cay 3 € {07 1}'

45.2 The SFT_EGCC" Cost Function

The EGCC(SY, Sy) constraint [22] is defined for two sets aof + m variables
Sx and Sy whereSx = {x1,...,z,} is a set of assignment variables afid =
{Yay,---,vya, } is aset of counting variables. The idea is that each véjuehere

ya, € Sy is used exactly,, times by the variableSx.

Definition 4.30. TheEGC((Sy, Sy) constraint holds iffocc(d;, (x4, ..., x,)) =
yq, for everyd; wherey,. € Sy.

whereocc(v, T) is the number of occurrencesofn 7.
Theorem 4.31.Enforcing GAC on every variable @G CCis NP-hard [22].

We can define the &T_EGCC"" cost function with the same violation mea-
sure as the variable-based violation measure usedrr EGCC'" [48]. The
constraint is softened by allowing the counting variabjgse Sy to take values

other tharvee(d; (z1, . . ., x,)).

Definition 4.32. Given theeGC(() constraint and an assignment tuplen vari-
ablesS = Sy N Sy,
SOFT_EGCC(Sx, Sy)(¥)

= Z \ya, — occ(dy, (w1,...,2,))|
j=1

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 55

Theorem 4.33.Computing the minimum cost 86bFT_EGCC’*"() is NP-hard.

Proof. The SOFT_.EGCC'() cost function is derived from theGCC constraint
and it is NP-hard to enforce GAC on tm& CC constraint. So, computing the
minimum cost of ®FT_EGCC’*() is NP-hard. n

We can model this cost function in the form of a PLPS cost fiencsuch that

we can compute the approximated minimum cost efficientlyirgar relaxation.
Theorem 4.34.TheSOoFT_EGCC" () cost function is a PLPS cost function.

Proof. The SOFT_.EGCC'*() cost function can be expressed as an integer linear

program/ where! is defined as:

min T, Lj + Uj st.
D i Cond; — (ZhGD(ydj) h Cydj7h) —L;+U;=0 Vj=1...m
L;>0,U; >0 Vi=1...m
Doy Cayd; = 1 Vdj € D(w;) Vi=1...n
> iy Caopd; =0 Vd; ¢ D() Vi=1...n
2heny, Cah =1 Vi=1...m
Card; €1{0,1} Va; € X,d; € D(;)
Cyq;h € {0,1} Vya; € Y,h € Dy,

Let Dy, be the maximum domain size for the variablesSinthe corresponding
integer linear program us@s| * Dyax + |Y| * Dmax + 2 % Diax Variables and
45 |Y |+ 2% |X| + |X]| % Diax + [Y| % Dyax inequalities. Ifz; = dj, ¢g,q, = 1;

otherwiser,, 4, = 0. If yg, = h, ¢, » = 1; otherwiser,, , = 0. By Theorem 4.12,

SOFT_EGCC" cost function is a PLPS cost function.]

Example 4.35.Consider the following WCSP = {X, D, W, k}: X = {x1, 22, Ya, Us }
D(x1) = D(x2) = {a,b}, D(y,)D = (v») = {0, 1,2}, Wg = SOFT.EGCC'" (21, T2, Ya, Us)-
For exampleWs(a, a,2,1) = 1 becauséy,—occ(a, (x1,x2))| + |yp—occ(b, (x1,12))| =

1.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 56
The corresponding integer linear program is:
min Iy + Uy + Ly + Us St.

Cora + Coga — Cyo1 — 24,0 — L1 + U =0
Car b T Canp — Cyy1 — 2Cy, 2 — Lo+ Uy =0
Li>0,U; >20,Ly >0,U; >0
Corat Cop =1
Caga T Cogp = 1
Cyar0 T Cyat + Cyo2 =1
Cyp0 + Cyp1 T Cy2 =1

WHerec,, a; Cay by Casas Caa by Cyas0 Cyals Cyar2s Cyp 05 Cup 15 Cp 2 € 10, 1}

45.3 The FT_DISJUNCTIVE/CUMULATIVE Cost Function

The DISJUNCTIVE(S, p1, - . ., pn) CcONstraint [20] is used in non-preemptive schedul-
ing. A set ofn variablesS = z4, ..., z, is used to represent the beginning time of
n jobs. Each jobr; € S has its process timg and its possible start time defined
by its domaind € D(x;). After a job has started, it cannot be interrupted to process
another job. The B3JUNCTIVE constraint restricts that no more than one job can be
processed at the same time. TheMULATIVE (S, p1, . .., pn, k) constraint allows

k jobs to be processed at the same time instead of 1 in theUNCTIVE constraint.

We first define a se€t’ which consists of every possible time in a constraint such
that? = Uy,,cs{d + ¢ | d € D(x:),0 < g < pi}.

Definition 4.36. The DISJUNCTIVE(S, p1, ..., p,) constraint holds if(z; + p; <

z;) V (z; + p; < z;) for every pair ofz;, z; € S [20].

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 57

Definition 4.37. The CUMULATIVE (S, p1, . . ., pn, k) constraint holds ifvt € T,
{a: | 2 <t <+ p}| < k[20]

Theorem 4.38.Enforcing GAC orDIsJuNCTIVEand CUMULATIVE constraints is
NP-hard [1].

The DISJUNCTIVE constraint is softened by allowing more than one job to be
processed at the same time with a cost given as the penayCIMULATIVE can
also be softened by allowing more tharobs can be processed at the same time

with a penalty.

Definition 4.39. Given theDISJUNCTIVE() constraint and an assignment tuglen

variabless,

SOFT_DISJUNCTIVE' (4, ..., 2, P1, - - -, Pn) (£)

_ ZZmaX {ilflz:] <t <) + pi}| = 1,0)

t=0 i=1

Definition 4.40. Given theCUMULATIVE () constraint and an assignment tuglen

variabless,

SOFT_CUMULATIVE * (24, ..., T, 1y - - -, Py k) (£)

_ZZmax {illla;] <t < llzi] + pi}| — k., 0)

t=0 =1
Theorem 4.41. Computing the minimum costs &FT_DISJUNCTIVE' and

SOFT_CUMULATIVE " cost functions is NP-hard.

Proof. As the SFT_DISJUNCTIVE'Y cost function is derived from the IBJUNGC-
TIVE constraint and it is NP-hard to enforce GAC on thesIUNCTIVE con-
straint. By Lemma 4.2, computing the minimum cost @rS_DISJUNCTIVE'

is NP-hard. The 8FT_CUMULATIVE ** cost function is a generalized version

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 58

of the SOFT_DISJUNCTIVE'® cost function, so computing the minimum cost of
SOFT_DISJUNCTIVE is also NP-hard.
O

We can model this cost function in the form of a PLPS cost fonmcsuch that

we can compute the approximated minimum cost efficientlyirmar relaxation.

Theorem 4.42.TheSoFT_DISJUNCTIVE'® and SOFT_CUMULATIVE ** cost func-

tions are PLPS cost functions.

Proof. The SOFT_DISJUNCTIVE'® cost function can be expressed as an integer

linear programy where/ is defined as:

min ZteT Ut s.t.
t
> i Zj:max(t—pi,o) Coij — Uy <1 VEeT
ZdED(azi) Copd =1 Vi=1,2,...,n

wherec,, 4 € {0,1} for all z; € S andd € D(xz;). Let Dy,, be the maximum
domain size for the variables ifi, the corresponding integer linear program uses
|S|* Dinax+|T'| variables andl’| + | S|+ | S| * Dumax inequalities. lfx; = d, ¢, 4 = 1;
otherwisec,, , = 0. By Theorem 4.12, the &T_DISJUNCTIVE'™ cost function is

a PLPS cost function.
The SOFT_CUMULATIVE *“ cost function can be expressed as an integer linear

program/ where/ is defined as:

min ZteT Ut S.t.
t
Z?:l Zj:max(t_pi,o) Cx;j — U<k VteT
ZdED(azi) Copd = 1 Vi=1,2,....n

wherec,, 4 € {0, 1} forall z; € Sandd € D(xz;). The corresponding integer linear
program usesS |* Dp,.x+|1'| variables andll’|+|S|+|S|* Dmax inequalities. Ifx; =
d, ¢y, 4 = 1; otherwisec,, ; = 0. By Theorem 4.12, the@&T_DISJUNCTIVE'™ cost

function is a PLPS cost function.]

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 59

Example 4.43.Consider the following WCSP = {X, D, Ws, k}: X = {z1, 22},
D(zy) = {0,1,2,3}, Wg = SOFT_DISJUNCTIVE' (1, x4, 2,3). For example,
Ws(2,0) = 1 because when= 2, z; <t < x;+2andxy <t < zy+ 3 and
the two jobs overlap each other, add,_, >0, |{iz; < 2 < z; +p;}| = 1. The

corresponding integer linear program is:
minUO +U; +U; + U3 + U, s.t.

C1,0 T Cono — Up <0
Ce1,0 1+ Cay 1+ Cop0 + Capy — U <0
Cay g F Cay 2+ Cap o+ Can + Capo — Uy <0
Cpy 2+ Cop 3+ Cppl + Cppo 4 Cpy3 — Us <0
Cor 3+ Coyg + Cop2 + Cap 3+ Capa — Uy <0
Up>0,U,20,U;>20,U3>20,Us >0
Cp1,0 F Coyq T Coyot a3 =1
Cpo0 F Copg1 + Cppo + Cppz =1

Wherecaﬁ,Oa Ca1,15C21,25 C2x1,35 Cap,0) Cag 15 Czo,25 Cap 3 S {07 1}

4.6 Implementation Issues

In this section, we discuss the issues when we implementraurework into a
WCSP solver. In our experiments, we use IBM ILOG CPLEX Optimiz2R1to
solve the corresponding linear programs of PLPS cost fanstiWe discuss three
main issues in our implementaion: (1) reducing the numbead$ to linear pro-
gramming solver for PLPS cost functions; (2) speeding upittear programming

solver by solving linear programs incrementally, and; (& floating point rounding

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 60

problem in the linear programming solver.

First, although enforcing relaxed consistencies on PLBBfooctions requires
only polynomial time, it is still expensive to solve the largprograms. To reduce
the number of calling the linear program solver, we includiata structure to re-
member the unbroken supports. To compute the cost of a watuix;st check if the
cost is affected by previous modifications. If it is the cdbke,cost is recomputed;
otherwise the stored value is returned in order to save time.

Second, CPLEX can solve linear programs incrementally basetde solution
of a similar linear program. Since enforcing consistenoie®LPS cost functions
requires solving linear programs with minor modificatioms allow CPLEX to
handle compute the solutions of linear programs increntigntestead of creating
a new linear program whenever the domains and costs are gthdifihe same
method can also be applied when a value is removed, whichedore by setting
the upper bound of the corresponding value to 0.

Third, when integers are stored with floating point représtgm, an inevitable
tiny error is often introduced and this case also happens ItEQRPand a bigger
error will be introduced if the ceiling function is applietterward. For example, if
the minimum cost of a variable is 1 and a tiny error is addeg|yapg the ceiling
function on this variable returns 2 and a wrong value can bgpted in enforcing
relaxed consistencies. In order to avoid such error, wectiienthe floating point
numbers used in CPLEX at the 10th decimal place and minus atimper before

finding the ceiling of these numbers.

4.7 Experimental Results

In this section, we first conduct experiments on the PLPS twsttions we

have introduced, including the 08T_SLIDING SUM?*, SOFT_EGCC"", and

SOFT_DISJUNCTIVE' cost functions and demonstrate the efficiency of our frame-

work. Finally we will discuss the results.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 61

The benchmarks we use consist of hard constraints in natdreaan be modeled
as hard CSPs directly. We soften them by assigning a randorg aast from 0O to
9 to each value in the domain of each variable representigig pneferences, and
replacing the hard constraints with their soft variants.

To demonstrate the efficiency of PLPS cost functions and $keeofi their con-
junctions, we compare the performances of the following et®dh this experi-
ment. We include (a) models using PLPS cost functions, (bjetsousing con-
joined PLPS cost functions, and (c) models using flow-basepgtion-safe cost
functions. Since the GT_SLIDING SUM?* and SOFT_.EGCC'™ cost functions
cannot be modeled directly as flow-based projection-sagefaactions, we model
the instances with flow-based projection-safe cost funstioy decomposing the
SOFT_SLIDING SuM® and SOFT_EGCCY™ cost functions in the model (c). We
also add (d) models using PLPS cost functions with decontp8SeT_SLIDING Sum®*
and FT_EGCC™ cost functions to compare with the model (c).

Since there is no well-known efficient or effective algomitito model the
SOFT_DISJUNCTIVE'™ cost functions, model (c) and model (d) cannot be con-
structed. Instead, we compare (c) the model with the intégear program ap-
proach without linear relaxation and show that the speegupsing the approxi-
mation by linear relaxation can compensate the enlargadisspace of enforcing
weaker consistencies.

The consistencies GAC*, FDGAC*, weak EDGAC* and their relaxedsions
are implemented in Toulbar2 v0.9. IBM ILOG CPLEX Optimizer 22s called
from Toulbar2 to solve (integer) linear programs. Variagbhgth smaller domains
and values with lower unary costs are assigned first. Therempets are conducted
on an Intel Core2 Duo E7400 (2 x 2.80GHz) machine with 4GB RAMeé#th
benchmark we use different parameter settings to congliffietent instances, and
10 random cases are generated with each parameter settiegis&\the timeout
of 3600 seconds and report the average number of backtrapksnd the average

runtime in seconds (time) for solved cases. The runtimeided the CPU time used

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 62

by both the WCSP solver Toulbar2 and the linear program solvéEXPNext to
the total CPU time, we also report separately in brackets thé {@Re used by the
linear program solver denoted as CPLEX (CPLEX). We truncagdltating point
variables in CPLEX at the 10-th decimal place. We mark theientrith a “*” if
the execution of one of the 10 instances exceeds the tim&batbest result among

those with the most cases solved is highlighted in bold.

4.7.1 Generalized Car Sequencing Problem

The Generalized Car Sequencing Problem (Generalizing pdolwDCSPLIb) is to
find a sequence fot cars ofu € U different types to be built. There is a set of
options/ which may or may not be equipped by each type, and each assénabl
of an option: € [restricts that at most; cars for everys; cars with that option
equipped can be built. We generalize the problem such thestag; is required
for each type of car € U for each optiont € I to be equipped, and each assembly
line of an optioni € I allows a maximum ofn; costs to be spent on that option for
everys; cars in total. A GCC constraint is used to ensure that the renmicars of
each type is built according to the plan. TherS_SLIDING SuM®* cost functions
are used to ensure the restrictions of each assembly lirsatiséied. We fiX/| = 3
andu = 5 and use instances with differemin our experiments.

To model the problem with flow-based projection-safe costfions, we de-

dec cost functions into 8FT_Sum® cost func-

compose the SFT_SLIDING SUM
tions, which can be modeled by theSr_ REGULAR"" cost functions [30] as flow-

based projection-safe cost functions.

Definition 4.44. Given a tuple/, the Sum(S,l,u) constraint holds ifi <

> e.es U] < u, wherel|z;] is the value assigned tq in the tuplef.

Definition 4.45. Given theSum() constraint and an assignment tuglen variables
S,
SOFT_SUM™ (S, 1, u)(¢) = max(Y l[z;] —u,l— > ([x;],0)

.Z’iES T, €S

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 63

Results are shown in Table 4.1. In the models with decomposed
SOFT_SLIDING Sum®* cost functions (models (c) and (d)), model (d) requires more
time than model (c) as the overhead of finding the minimum cbatsingle PLPS
cost function is greater than that of a flow-based projeesiaie cost function. How-
ever, in model (a) and model (b), using PLPS cost functiobomit decomposing
the SOFT_SLIDING SuM?* cost functions outperforms model (c). By conjoining
PLPS cost functions, model (b) prunes even more and redesssime than other
models. Since the instances only contain PLPS cost furg;tibey are conjoined
into a single PLPS cost function in our model. As there is nesgile propagation
between cost functions, the effects of relaxed GAC*, relds5@&AC*, and relaxed
weak EDGAC* are similar. So relaxed FDGAC* and relaxed weak BOG do
not infer a much better bound than relaxed GAC* when conjolPEHES cost func-
tions are used. The reduction in search space does not ceatpdor the pruning
overhead, and the simpler and less costly relaxed GAC* givedest results in

terms of run-time.

4.7.2 Magic Series Problem

The Magic Series Problem (prob019 in CSPLib) is to find a secgiefn. variables
which forms a magic series. A non-empty finite se§es (sq, s1, .. ., s,) IS magic
if and only if there ares; occurrences of € S for each integet ranging from 0 to
n. For exampleS = (3,2,1,1,0,0,0) is an example of a magic series for= 6 as
there are three O's, two 1's, a 2, a 3, and no 4, 5, and 6 in thesser We use the
SOFT_EGCC™" cost functions to restrict the occurrences of each values.

To model the problem with flow-based projection-safe costfions, we de-
compose the SFT.EGCC’ cost functions into SFT_ AMONG_VAR"*" cost func-
tions, which is a generalization of thedoST_AMONG cost function with a count
variable. Similar to 8FT_ AMONG, The SOSFT_ AMONG_VAR""" cost function can

be modeled as flow-based projection-safe cost function.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 64

(a) Modeling with PLPS cost functions
N relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt time (CPLEX) bt time (CPLEX) bt time (CPLEX)
8 19.0 0.21 (0.20) 9.2 0.20 (0.19) 9.0 0.25(0.23)
10 41.2 0.55 (0.51) 21.0 0.52 (0.49) 19.8 0.73 (0.68)
12 119.6 1.44 (1.35) 48.2 1.15 (1.07) 45.6 1.34 (1.26)
14 585.1 17.63 (16.91) 264.8 13.12 (12.76) 249.0 15.19 (14.61)
(b) Modeling with conjoined PLPS cost functions
N relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt | time (CPLEX) bt | time (CPLEX) bt | time (CPLEX)
8 16.0 0.19 (0.18) 12.4 0.30 (0.28) 12.4 0.38 (0.35)
10 30.6 0.46 (0.43) 20.0 0.71 (0.65) 17.8 0.86 (0.80)
12 86.4 1.07 (1.01) 43.0 1.52 (1.45) 36.4 1.62 (1.55)
14 133.0 1.30 (1.26) 74.2 1.77 (1.71) 64.1 1.77 (1.72)
(c) Modeling with flow-based cost functions@8T_REGULAR)
N GAC* FDGAC* weak EDGAC*
bt time bt time bt time
8 558.6 0.97 243.1 0.41 198.0 0.45
10| 4023.4 1.57 865.2 0.72 559.1 0.68
12 | 55866.2 24.73 | 24496.9 22.15| 6741.8 15.49
14 | 279748 152.24| 104588 108.94 20341 65.13
(d) Modeling with PLPS cost functions (decomposezF$ SLIDING Sum©)
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
" bt | time (CPLEX) bt time (CPLEX) bt | time (CPLEX)
8 558.6 23.13 (22.36) 243.1 9.53 (9.17) 198.0 14.08 (13.62)
10 | 4023.4 39.61 (39.07) 865.2 18.91 (18.12) 559.1 23.35(22.86)
12 | 55866.2| 730.32 (721.96) 24496.9| 224.81 (219.15) 6741.8| 276.92 (271.07)
14 * * * * * *

Table 4.1: The generalized car sequencing problem usiRy SLIDING Sum

Definition 4.46. TheAMONG_VAR(S, y, v) constraint holds ify = occ(v, S), where

occ(v, S) is the number of occurrencesofn S.

Definition 4.47. Given theAMONG_VAR constraint and an assignment tuglen

variabless,
SOFT_AMONG_VAR" (S, y,v)({) = |y — occ(v, S)|

Results are shown in Table 4.2. Similar to the last experijmantel (d) re-
quires more time than model (c) as the overhead of PLPS costifuns are greater.
On the other hand model (a) and model (b) outperform model By) conjoin-

ing PLPS cost functions, model (b) prunes more and requesstime than other

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 65

(a) Modeling with PLPS cost functions
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt| time (CPLEX) bt| time (CPLEX) bt| time (CPLEX)
9 23.1 0.24 (0.23 19.3 0.27 (0.26 17.1 0.43(0.41
12 54.7 0.71 (0.65 44.9 0.99 (0.93 42.3 1.52(1.43
15 89.2 1.70 (1.59 53.1 2.32(2.21 50.2 3.64 (3.46
18 93.7 3.03 (2.89 64.7 4.80 (4.64 59.8 6.41 (6.13
(b) Modeling with conjoined PLPS cost functions

" relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt| time (CPLEX) bt| time (CPLEX) bt| time (CPLEX)
9 12.8 0.27 (0.25 9.8 0.43(0.40 9.7 0.54 (0.50

12 33.5 0.86 (0.81 24.6 1.55(1.48 24.3 1.89(1.80
15 39.2 1.62 (1.52 32.6 2.95(2.86 32.3 3.64 (3.51
18 49.4 2.96 (2.87 36.7 5.78 (5.48 36.4 7.29 (6.82
(c) Modeling with flow-based cost functions@8T_AMONG"*")

GAC* FDGAC* weak EDGAC*
" bt time bt time bt time
9 680.2 5.00 83.4 1.26 62.1 1.30
12| 6141.8 220.22| 252.3 19.15| 213.4 18.82
15 * * 809.9 228.03| 539.2 203.14
18 * * * * * *
(d) Modeling with PLPS cost functions (decomposear$ EGCC’*")

n relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt| time (CPLEX) bt| time (CPLEX) bt| time (CPLEX)

9 680.2| 164.12 (162.03 83.4| 29.76 (28.51 62.1| 38.41(36.93
12 * * 252.3| 533.12 (526.19) 213.4| 679.03 (671.56
15 * * * * * *
18 * * * * * *

Table 4.2: The magic square problem usiraFr$ EGCC™"

models. (Relaxed) weak EDGAC* also prunes more than tharxgd)a=FDGAC*

and (relaxed) GAC* in all models with either PLPS cost funetior flow-based
projection-safe cost functions. Similar to that of the gberiment, relaxed GAC*
gives the best results in model (b) in terms of run-time as gimpler and less

costly.

4.7.3 Weighted Tardiness Scheduling Problem

The Weighted Tardiness Scheduling Problem (in OR-Librasypifind a schedule
of n jobs to be processed, where no two jobs are processed atriteetsae. In

each problem, there is jobs and a set of total available time sldfs Each job

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 66

is given a time slot, if a job cannot be processed within tlvemgitime slot, a ear-
liness/tardiness penalty is given. AOBT_DISJUNCTIVE'® cost function is used
to ensure no two jobs are processed at the same time. The costs/are used
to model the earliness/tardiness penalty of each job. Ih estance, we use the
number of jobs:, the size of the the total available time sI¢t3, and the average
duration of each joll as the parameters. A time slot with the length/Bf/2 is
given to each job, and a random earliness/tardiness pasa@tyen to each job if it
cannot be processed within the given time slot.

Since there is no other efficient way to modelr§_DiSJUNCTIVE'Y cost func-
tions in WCSP. Instead of the model (c) and (d) defined above, ongoare the
result of the linear cost function approach aff&_DiSJUNCTIVE'™ with the inte-
ger programming approach of the same implementation aslt@dehich allows
the exact minimum costs to be found and the common consis&gorithms in
WCSP like GAC*, FDGAC*,etc, to be enforced.

Results are shown in Table 4.3. In this benchmark, the intégear program
approach (model (c)) prunes more than modeling with PLPS&faastions (model
(a)) as relaxed consistencies are weaker than standarcstemtses. However it
also takes much more time to solve and the extra pruning poffered in using in-
teger linear programs does not pay off. By conjoining PLP$ toxtions, model
(b) prunes more and requires less time than other modelsaX&Blweak EDGAC*
also prunes more than than (relaxed) FDGAC* and (relaxed) GGl models
with either PLPS cost functions or flow-based projectiofesast functions. Sim-
ilar to that of the above experiments, relaxed GAC* gives tbst besults in model

(b) in terms of run-time as it is simpler and less costly.

Chapter 4 Polynomially Linear Projection-Safe Cost Funcsion 67
(a) Modeling with PLPS cost functions
n,d,|T| relaxe.d GAC* relaxed.FDGAC* relaxed wgak EDGAC*
Y bt| time (CPLEX) bt| time (CPLEX) bt| time (CPLEX)
3,3,12 7.0 0.05 (0.05 6.0 0.06 (0.06 6.0 0.08 (0.08
4,4,20 13.0 0.14 (0.13 8.0 0.18 (0.17 8.0 0.25(0.24
5,5,30 35.0 0.60 (0.56 19.0 0.68 (0.63 15.0 0.98 (0.92
6,5,35 382.0 7.01(6.75 32.1 1.90 (1.82 28.1 2.41(2.32
7,540 | 2253.6) 61.89 (60.14 27.0 2.78 (2.47 25.2 3.51(3.32
8,5,45 * *(* | 2140 22.09(21.23) 210.1] 30.16(28.90
(b) Modeling with conjoined PLPS cost function
n,d,|T| relaxe_d GAC* relaxed.FDGAC* relaxed we_ak EDGAC*
T bt| time (CPLEX) bt| time (CPLEX) bt| time (CPLEX)
3,3,12 6.0 0.05 (0.05 6.0 0.09 (0.09 6.0 0.16 (0.13
4,4,20 8.0 0.15(0.14 8.0 0.29 (0.28 8.0 0.35(0.34
5,5,30 15.5 0.53(0.50 15.2 1.04 (1.01 15.0 1.29 (1.25
6,5,35 23.2 0.95(0.90 18.8 1.90 (1.83 18.0 2.32(2.24
7,5,40 35.2 1.72 (1.64 27.0 3.44 (3.30 21.0 4.23 (4.07
8,5,45 40.1 3.49 (3.24 345 7.38(7.08 33.1 8.71(8.31
(c) Modeling with PLPS cost functions, linear programs sdlas integer programs
n,d, |T| GAC* FDQAC* weak EDGAC*
@ bt] time (CPLEX) bt] time (CPLEX) bt] time (CPLEX)
3,3,12 6.8 1.02 (0.96 6.0 1.37 (1.29 6.0 1.84 (1.78
4,4,20 12.7 6.62 (6.34 8.0 7.56 (7.23 8.0 9.37 (8.93
5,5,30 34.8| 38.28 (37.71 15.0| 40.77 (40.20 15.0| 54.12(53.69
6,5,35 61.1] 100.99 (99.82 19.0| 121.82(120.13 18.0| 153.09 (151.62
7,5,40 81.0| 219.85 (213.13 23.2| 302.98 (292.65 22.8| 453.10 (440.12
8,5,45 * * * * * *
Table 4.3: The weighted tardiness scheduling problem using

SOFT_DISJUNCTIVE'™

Chapter 5

Integral Polynomially Linear

Projection-Safe Cost Functions

In this chapter, we propodategral Polynomially Linear Projection-Safe (IPLPS)
cost functions as a subclass of PLPS cost functions. Sollimgorresponding inte-
ger linear programs of IPLPS cost functions with linearxataon always gives inte-
gral minimums. Given a standard WCSP consistenoye give theorems showing
that maintaining a relaxed consistencie®n a conjunction of IPLPS cost func-
tions is strictly stronger than maintaining on the individual cost functions. A
useful application of our method is on some IPLPS global émsttions, whose
minimum cost computations are tractable and yet those fr tonjunctions are
not. We show that flow-based projection-safe and polyndynitldcomposable cost
functions fall into this category. Experiments are condddb confirm empirically
that performing relaxed consistencies on the conjoined foostions is more ef-
ficient than performing the corresponding standard cosrsesés on the individual

cost functions.

68

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 69

5.1 Integral Polynomially Linear Projection-Safe Cost

Functions

Integral polynomially linear projection-safe (IPLP8dst functions form a special
subclass of PLPS cost functions. A cost functig is integral polynomially linear
if (@) Wy is linear, (b) the size of the corresponding integer progsgpolynomial to
the number of variables and the maximum domain size, anté@timal solution,
if it exists, of the linear relaxation of its correspondimgelar integer progranfy,

is always integral.
Lemma 5.1. Integral polynomially linear cost functions are polynotiydinear.

An immediate observation is that the exact minimum cost ohégral linear
cost function can be obtained by solving the linear relaxatif their corresponding

integer linear programs.

Lemma 5.2. If Wy is an integral polynomially linear cost functiomin{Ws} =

approx_min{Ws}.

Theorem 5.3. Minimum cost computation of integral polynomially lineast func-

tions is polynomial.

Proof. Sincemin{Ws} = approx_min{Ws}, min{Ws} can be determined using
interior point algorithms [49] for linear programs with tisrst case complexity

bounded by polynomial time. n

Recall the notion of projection-safety. In addition to flow-basedness and poly-
nomially linearity, integral polynomially linearity is ather good property” to be
maintained across projections/extensions. Therefomneakies sense to require cost
functions to bantegral polynomially linear projection-safe (IPLP.S)

We give the possible sufficient conditions to identify IPLESSt functions.

Theorem 5.4. A cost functiori¥Vs is integral polynomially linear projection-saiie

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 70

1. Ws is PLPS and has the corresponding integer linear progiam, and;

2. Iy, istotally dual integrabr the associated matrix diy, is totally unimod-

ular.

Proof. By lemma 4.11, PLPS cost functions remain PLPS after prajestand
extensions, sVs is PLPS after projections and extensions given the comditjo
In addition, if a linear program is totally dual integral ¢s iassociated matrix is
totally unimodular, its optimal solutions must be intedi@6]. Since projections
and extensions can be performedldig by adding terms to the objective function
of Iyy,. The structure ofy,, remains unchanged and the condition 2) is preserved
after projections and extensions.

As a result, we can construct the sufficient conditions f&RB cost functions

as above.]

Integral polynomially linear and polynomially linear peation-safe cost func-
tions are interesting since their conjunctions are PLPS.

By Lemma 4.27 and 5.1, we have the following corollary.

Corollary 5.5. SupposéVs, andWg, are IPLPS cost functions. The conjunction

Wconj = Wg, AWy, is PLPS.

Corollary 5.6. SupposéVs is IPLPS, andx-consistency is one of GAC*, FDGAC*
and weak EDGAC*. Relaxegconsistent ori¥g is equivalent tax-consistent on
Ws.

In general, it is NP-hard to compute the minimum cost of thejuaction of
overlapping IPLPS cost functions. On the other hand, th@ioation of their corre-
sponding linear programs may not always give integral mimmra when there exists
a minimum [49]. As the conjunction of IPLPS cost functionsieens PLPS, linear
programming techniques allow its approximated minimunt tme computed ef-

ficiently, and relaxed form of standard consistencies cas be enforced. We have

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 71

the following result when relaxed consistencies are eefibian the conjunction of
IPLPS cost functions compared to the corresponding (naxed) consistencies
enforced on the individual cost functions.

Given WCSPP;prps = (X,D,Crprps, k), where each cost functios €
Crprps IS IPLPS with corresponding integer linear progrém,. We assume that
Crprps Ccontains overlapping cost functions. We can construct aivalgnt WCSP
Peonj = (X, D, Ceonj, k) WhereCepnj = {Weonj} @aNdWeonj = Awice,pyps Vs
with the corresponding scop®,,;, = Uwsecmps S and integer linear program
I,y = /\Wsecszps -

We show that relaxed (FD)GAC* and relaxed weak EDGAC* Bp,,; are
strictly stronger than (FD)GAC* and weak EDGAC* diyp; ps respectively by

the following theorem.

Theorem 5.7.Suppose-consistency is one of GAC*, FDGAC* and weak EDGAC*.

Relaxedr-consistent orP,,,,; is strictly stronger thanx-consistent orP;py,pg.

Proof. We prove the part for relaxed GAC*. The proofs for the othersistencies
are similar.

Assumer,,,; is relaxed GAC*, butP’; p; ps is not GAC*. There exists a variable
z; € X with a valuea € D(z;) and a cost functiomVs € C;prps in Prprps Such
thatmin{Wg(¢) | ¢[z;] = ant € L(S)} > 0. Since all cost function8/’s € C;prps

are IPLPS, we have

approxfmin{wconj ‘ g[:L‘,L] =aNle [,(S)}
Dvscerprps aPProx-min{We | l[z;] = a Al € L(S)}
- ®WSECIPLPS min{WS(ﬁ) | E[xl] =aNle ‘C<S)} >0

Thus,a cannot have simple support amdcannot be relaxed GAC* with respect to
Wconj in Pconj-
Consider W, = SOFT_ALLDIFF*® (x1,29,23) and Wi, =

SOFT_ALLDIFF*™ (x, 23, 24), WhereD(xy) = {a,b}, D(x3) = D(z3) = {a,b,c}

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 72

andD(z4) = {b,c}. Itis easy to check tha®;p;ps = (X, D,{Ws,, Ws,}, k) is
GAC*. However,P,,,; = (X,D,{Ws, A Ws,}, k) is not relaxed GAC* since the
approximated minimum cost when = ais1 > 0.

Result follows.]

Since relaxed consistencies are the weaker forms of sthcdasistencies, we

have the following lemma.

Lemma 5.8. Supposer-consistency is one of GAC*, FDGAC* and weak EDGAC*.

We havex-consistent orP,,,,; > relaxeda-consistent orF,, ;.

Enforcinga-consistency or,,,,; infers better bounds, but it can be NP-hard if
computing the minimum costs of conjunctions of IPLPS coatfions is NP-hard.
It may not be worthwhile to do so, while relaxed consistescien still be enforced

efficiently onP,,,;.

5.2 Conjoining Global Cost Functions as IPLPS

An immediate application of Theorem 5.7 is to existing glatisst functions with
polytime minimum cost computation. In many cases the mimngost computation
for their conjunctions is NP-hard. Theorem 5.7 suggestithatstill worthwhile
to enforce relaxed consistencies on these cost functiofwy-lfased projection-
safe cost functions [28, 30] and polynomially decomposabt functions [31] are
such examples. By enforcing relaxed consistencies on tbejunctions, the search

benefits from the better bounds inferred.
Theorem 5.9. Flow-based projection-safe cost functions are IPLPS.

Proof. Every flow-based projection-safe cost function has a cpoeding network
flow problem, which in turn has a corresponding integer lirgagram with a to-
tally unimodular matrix [38]. The cost function, the flow ptem, and the inte-
ger linear program shares the same minimum cost. Since tegeinlinear pro-

gram always has integral solutions when solved with linetaxation, the result

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 73

follows. Ol

Corollary 5.10. The flow-based projection-safe cost functions [30, 29]
SOFT_ALLDIFF*™, SOFT.ALLDIFF*¢, SOFT.GCC'*, SoFT.GCC'¥,
SOFT_SAME"™, SOFT_SAME', SOFT_REGULAR'”, and SOFT_REGULAR®%

are IPLPS cost functions.

Leeet al.[31] define polynomially decomposable cost functions ane gheir
sufficient conditions. They further give some examples ¢ypoamially decompos-
able cost functions with the corresponding distributivetaaggregation function.
Those examples fulfill the sufficient conditions of polynaityi decomposable cost
functions as they are using the stated distributive agg@géunction. Here we
give the related definitions and show that those cost funstare also IPLPS cost

functions.

Definition 5.11. [31] A cost functioniVs can besafely decomposei a set of cost

functionsQ2 = {wsg,, . .., ws,, } USINg cost aggregation functiofy whereS; C S, iff
1. Ws(l) = f({ws, (¢[S]) | ws, € ©2}), and;
2. fisdistributive i.e.

(@) min{Ws,} = f({min{ws,} | ws, € ©2}), and;

(b) For a variablez € S, a costa and a tuplel € L(S), Ws({) ® o =
f{ws, ([S]) @ vas () | ws, € Q}) andWs(() S a = f({ws, (([Si]) ©
vp.s(a) | ws, € 1}), where the functiow is defined ag, s, () = « if

x € S;, and 0 otherwise.

A cost functioni¥s can bepolynomially decomposethto a set of cost functions

O ={ws,,...,ws, }, WhereS; C S, if

1. m is polynomial to the size ¢f and maximum domain sizg

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 74

2. Eachwg, € QU {ws,,,, }, wherewg, ., = W, is either a tractable unary
cost function, or can be safely decomposed e {ws, | j < i} using a

tractable cost aggregation functiofj.

Lemma 5.12. [31] If a global cost functioniVs can be represented d§'s(¢) =
ming:l{@;i1 ws, ; (K[S@j])}, where:

1. >:_, n,; is polynomial tg.S| andd, and;
2. for eachi, SZ'J‘ N Si,]f =y |ff] 7é k andU?i Si,j =3,
thenWj is safely decomposable.

Theorem 5.13. SupposédVy is a polynomially decomposable cost function using

the aggregation function stated in Lemma 5.12, thénis IPLPS.

Proof. We show thatVy is IPLPS by first showing that it is flow-based projection-
safe. The aggregation function stated in Lemma 5.12 cansishe operationsiin
and@p, which can be represented and computed in flow networksl1gazan be
represented as a min-cost flow problem with a correspondmmgrietwork, where
each cost functiong, ; is represented by a node. The operatian is represented
by a new node as the sink and all the nodes of the related aostidns are con-
nected to it. The operatiofp is represented by a path connecting all the nodes of
the related cost functions.

As a result Wy is a flow-based projection-safe cost function. By Theorem 5.9

Wy is an IPLPS cost functions. O

Corollary 5.14. The polynomially decomposable cost functions [S@FT_AMONG"*",
SOFT_REGULAR"™, SOFT_GRAMMAR"*", MAX _WEIGHT, andMIN_WEIGHT use

the aggregation function stated in Lemma 5.12 and they ar® 8

We note that, for the cost functions mentioned above, thregliaated polynomial
time algorithms are usually more efficient than interiormpalgorithms or linear

programming.

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 75

By propagating the conjunction of cost functions, extra prgropportunities
can be discovered which may reduce more search space thaegptng the indi-
vidual cost functions. Unfortunately, it can be NP-hard eonpute the minimum
cost for the conjunction of IPLPS cost functions even aniefficpolynomial time
algorithm is given for the individual cost functions.

Bessereet al. [8] show the above result on the hard I2DIFF constraints and
it can be generalized to theo®T_ALL DIFF'", SOFT_ALL DIFF%¢, SOFT.GCC"™,
SOFT_.GCC', and FT_SAME"™" cost functions. Rgin [42] also shows the above
result on the hard MONG [3] constraints, where anMONG constraint restricts the
number of variables to be assigned to a value from a specificTdee result can
be generalized to thecd®T_AMONG""", SOFT_.REGULAR"", SOFT_.REGULAR",
and FT_GRAMMAR """ cost functions. Theorem 5.7 suggests that enforcing the
relaxed consistencies on the conjunction of such IPLPSfoastions can still be
more efficient and worthwhile than handling them individyal

Given WCSPP,prps = (X,D,Crprps, k), WwhereCrppps consists of some
IPLPS cost functions, and an equivalent WC8BR,; = (X,D,C.n;, k) Where
Ceonj = {Weons } andWe,,; = /\Wsecmps Ws. We give an example similar to
the one given by Begsieet al. [8] in the following theorem. By propagating on a
conjunction of IPLPS cost functions with relaxed consistes, a higher bound can
be inferred earlier in an exponentially number of stepsradubranch-and-bound

search in such a case.

Theorem 5.15.Supposer-consistency is one of GAC*, FDGAC* and weak EDGAC*.
There exists a class of WC3Rp,, pg, so that if we enforce--consistency o,

and a-consistency orP; p;,ps in branch-and-bound search, an exponential search
tree needs to be explored f&%p; ps to infer the same minimum cost as in the case

of Propj.

Proof. We prove the part for relaxed GAC*. The proofs for the othersien

tencies are similar. Given a WCSP;p; ps = (X UY U Z,D,Crprps, k)

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 76

where X = {zy,...,2,}, Y = {z1,...,20.}, Z = {x1,..., 2.}, Crprps =
{SOFT_ALLDIFF**" (X UY), SOFT_ALLDIFF**" (Y U Z)}, D(X;) = [1,2n — 1],
i=1,...,n, D(Y;) = [L,4n — 1], i = 1,...,2n, and D(Z;) = [2n,4n — 1],
1=1,...,n.

Consider the WCSI,,,,; = (X UY U Z, D, Ceonj, k) WhereCeon; = {Weon;
andW.,,; = SOFT_ALLDIFF*" (X UY) ASOFT_ALLDIFF* (Y U Z). We,n; Qives
an approximated minimum cost apprexin{W.,,;} of 1 which can be inferred
by enforcing relaxed GAC* oi€.,,,;. On the other hand, a subset:ofor fewer
variables has at leagt — 1 values in their domains and a subsetof 1 to 3n
variables hasln — 1 values in their domains. Thus, to infer a minimum cost of
1 in P;prps by enforcing GAC* onC;prps, We must instantiate at least— 1

variables.]

In addition to the theoretical results, we conduct expenim¢o show the ef-
ficiency of modeling cost functions as IPLPS cost functiond propagating their

conjunctions in the next section.

5.3 Experimental Results

To demonstrate the efficiency of our framework, we compaeepérformances of
(a) models using conjunctions of IPLPS cost functions aiain) models using
individual flow-based projection-safe / polynomially degmosable cost functions.
The consistencies GAC*, FDGAC*, weak EDGAC* and their relaxedsions are
implemented in Toulbar2 v0.9. IBM ILOG CPLEX Optimizer 12.2called from
Toulbar2 to solve (integer) linear programs. Our benchsiamodels consist of
both IPLPS global cost functions as well as table cost fonstithe latter of which
are handled individually using exact minimum costs evenrwigdaxed consisten-
cies are used.

Variables with smaller domains and values with lower unastg are assigned

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 77

first. The experiments are conducted on an Intel Core2 Duo &{2& 2.80GHz)
machine with 4GB RAM. In each benchmark we use different patansettings to
construct different instances and 10 random cases areagedavith each parameter
setting. We use the timeout of 3600 seconds and report thegeewumber of
backtracks (bt) and the average runtime in seconds (timeddived cases. The
runtime includes the CPU time used by both the WCSP solver Tdulad the
linear programming solver CPLEX. Next to the runtime, we akgoort separately
in brackets the CPU time used by CPLEX denoted as (CPLEX). Wedtarthe
floating point variables in CPLEX at the 10-th decimal places WMark the entries
with a “*” if the execution of one of the 10 instances excedustimeout. The best
result among those with the most cases solved is highlightbdid.

To utilize the global cost functions described above, weesothe following
problems by replacing the global constraints by their safiants, by either the
flow-based projection-safe / polynomially decomposablpl@mentations or the
IPLPS implementations. For each variab)entroduced, a random unary cost from
0 to 9 is assigned to each value inz;). Random preferences are added to the
instances in the form of table cost functions. Note that nedsing IPLPS cost
functions contain also table cost functions and are thubeapywith a mix of relaxed

a-consistency (for IPLPS functions) andconsistency (for table functions).

5.3.1 Car Sequencing Problem

The car sequencing problem (prob001 in CSPLib) finds a seguehe cars of
u € U different types to be built. There is a set of optiahsvhich may or may
not be equipped by each type and each assembly line of amapto! restricts
that at mostn,; cars for everys; cars with that option equipped can be built. A
GCC [41] constraint is used to ensure that the number of dazach type is built
according to the plan. Overlappingp8T_AMONG"*"() [47] cost functions are used

to ensure the restrictions of each assembly line are satiafid they are modeled

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 78

Modeling with the conjunction of IPLPS cost functions
relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
" bt | time (CPLEX) bt | time (CPLEX) bt | time (CPLEX)
12 72.6 2.22 (1.58) 12.1 0.47 (0.33) 12.0 0.85 (0.67)
14 85.7 3.11 (2.39) 15.8 0.73 (0.55) 15.0 1.30(1.07)
16 89.3 4.33 (3.47) 16.1 1.13(0.87) 15.6 1.92 (1.59)
18 123.3 7.20 (5.87) 18.9 1.38 (1.06) 18.0 2.24 (1.89)
20 139.7 10.29 (8.51) 22.0 2.01 (1.49) 20.6 3.31 (2.69)
Modeling with polynomially decomposable cost functions

. GAC* FDGAC* weak EDGAC*
bt time bt time bt time
12 23667.9 23.03 563.4 2.67 210.3 1.54
14 310845 328.49 2774.9 16.53 983.1 11.89
16 * * 6653.2 53.06 2191.3 25.10
18 * * 8104.2 93.87 3651.7 49.62
20 * * 21285.5 303.10 8025.6 161.82

Table 5.1: The soft car sequencing problem

by either polynomially decomposable cost functions or IBld8st functions. There
are preferences for each assembly line, e.g. two conseadns of the same type
are preferred, and they are modeled by table cost functigvesfix || = 5 and
u = 5 and use instances with differemin our experiments.

Results are shown in Table 5.1. The model using conjunctibmBLd®S cost
functions using relaxed-consistency run faster and prune more than the model
with individual flow-based projection-safe / polynomiatlgcomposable cost func-
tions usingu-consistency in many cases, especially when the problesrislarge.

As stronger consistencies have higher overhead, we gaiumtmre only when
the extra prunings can compensate for the overhead. That th@ case in general
for relaxed weak EDGAC* in our easy problem instances as tegan these tables.

That is why relaxed FDGAC* exhibits better runtime behaviwrt weak EDGAC*.

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 79
Modeling with the conjunction of IPLPS cost functions
n.d relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*

’ bt | time (CPLEX) bt | time (CPLEX) bt | time (CPLEX)
25,8 5507.6| 405.67 (379.50 29.8 3.77 (3.25) 25.4 4.32 (3.66)
30,8 * * 63.4| 18.37 (16.09) 50.4 8.50 (6.99)
35,8 * * 35.8 7.96 (5.62) 35.0 10.85 (7.21)

30, 12 * * 140.1| 26.49 (20.64) 124.7| 30.88(22.91)
35,12 * * 93.0| 45.02(37.15) 78.3| 51.41 (40.31)
Modeling with flow-based projection-safe cost functions
n.d GAC* FDGAC* weak EDGAC*

’ bt time bt time bt time
25,8 16747.8 41.514 97.8 0.67 92.6 0.68
30,8 * * 224.0 7.93 208.4 8.75
35,8 * * 72.2 0.51 62.4 0.44

30' 12 * * * * * *
35, 12 * * * * * *

Table 5.2: The soft examination timetabling problem

5.3.2 Examination Timetabling Problem

The examination timetabling problem finds a schedulenf@xaminations oved

days fors groups of students, Each group of students attends a sehudsit! ex-

aminations and the number of days with more than 1 examimatiould be mini-

mized for every group of students. A08T_ALLDIFF**() [40] cost function is used

for every group of student, and they are modeled by either-Hased projection-

safe cost functions or IPLPS cost functions. There are peées between exam-

inations, e.g. the locations of two examinations are faryaaad should not be

scheduled on the same day in case there are students attdmodinof them and

they are modeled by table cost functions. Wesfix 4 and use different andd in

our experiments.

Results are shown in Table 5.2. Similar to the last experinmeatiels using con-

junctions of IPLPS cost functions using relaxegtonsistency run faster and prune

more than models with individual flow-based projectionedgiolynomially decom-

posable cost functions usingconsistency in most cases. Also relaxed FDGAC*

exhibits better runtime behavior than weak EDGAC* since trabjem instances

used are easy and the overhead of stronger consistency ¢cemgiensated by the

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 80
Modeling with the conjunction of IPLPS cost functions
n relaxed GAC* relaxed FDGAC* relaxed weak EDGAC*
bt | time (CPLEX) bt | time (CPLEX) bt | time (CPLEX)
6 2253.1 617.2 67.1 4.19 (4.01) 45.1 5.89 (5.71)
8 * * 78.2 6.02 (5.86) 54.1 8.01 (7.79)
10 * * 1253 10.27 (9.81) 79.3| 13.23(12.77)
12 * * 183.5| 21.50(20.08) 98.4| 22.10 (20.46)
Modeling with flow-based projection-safe cost functions
" GAC* FDGAC* weak EDGAC*
bt time bt time bt time
6 * * 231.8 4.89 196.4 3.56
8 * * 769.7 9.88 438.9 7.52
10 * * 2031.4 103.52 802.3 65.17
12 * * * * * *

Table 5.3: The soft fair scheduling problem

extra prunings.

5.3.3 Fair Scheduling

The fair scheduling problem [2] consists @fgroups of people, each of them can
be scheduled into one ofshifts overd days. Among each group of people and a
specific period within thel days, the schedule should far such that they attend
the same number of shift for every shift snin that period. For example, given a
problem withn = 2, s = 4, andd = 4, a fair schedule over all the 4 days is that
bothp, andp, are assigned to the shift 2 and shift 3 once, and the shift @&twi
p1 IS assigned to all of the shift 1, shift 2, shift 3, and shiftnte instead, it is not a
fair schedule. There are preferences between some groapsx&mple, there are
groups preferred to be scheduled in the same shift. Suckrprefes are modeled
by table cost functions. We model the problem by a set of s x;; } denoting
the shift thei’” person is assigned to on tli& day. We use the &T_SAME """ cost
functions to model the restrictions. We fix= 5 andd = 5 and use different n in
our experiment.

Results are shown in Table 5.3. Similar to the last experinmeotiels using con-

junctions of IPLPS cost functions using relaxegtonsistency run faster and prune

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions 81

more than models with individual flow-based projectionedadolynomially decom-
posable cost functions usingconsistency in most cases. Also relaxed FDGAC*
exhibits better runtime behavior than weak EDGAC* since trablem instances
used are easy and the overhead of stronger consistency ¢gemgiensated by the

extra prunings.

5.3.4 Comparing WCSP Approach with Integer Linear program-
ming Approach

We use slightly easier problem instances so that we can negils#de comparisons
with the weaker consistencies and the flow-based projestda / polynomially
decomposable cost function implementations. Note thagart linear program-
ming solver can also solve our benchmarks competitively. Udé&e more difficult
instances with more preferences (table cost function)itgpare the performances
of modeling the problem witlinteger linear programgILPs) solved by the IBM
ILOG CPLEX Optimizer 12.2 with both of the models above. We tgeencoding
method introduced by Koster [23] to formulate binary cosltdiions as integer lin-
ear programs. We only show the results for the models with-Based projection-
safe / polynomially decomposable (p.d.) cost functionagisveak EDGAC* and
IPLPS cost functions using relaxed weak EDGAC* as those nsdukle the best
results among the other (relaxed) consistencies in the saode! in this setting.
Similar to the experiments we have conducted above, the Inusdey IPLPS cost
functions contains table cost functions and it is thus &opWith a mix of relaxed

weak EDGAC* (for IPLPS functions) and weak EDGAC* (for tablenfions).

p.d. & weak EDGAC* IPLPS & relaxed weak EDGAC* ILPs
" bt time bt time (CPLEX) time
12 527.8 119.96 37.8 103.26 (68.73) 63.28
14 2287.2 788.94 42.6 155.21 (135.49) 177.79
16 6835.1 1828.22 96.3 207.07 (175.64) 386.30
18 * * 110.1 653.82 (549.44) 662.56
20 * * 311.2 | 1163.03 (1026.89 1442.44

Table 5.4: Comparison with integer linear programming: saftsequencing

Chapter 5 Integral Polynomially Linear Projection-Safe CBsinctions

82
n.d flow-based & weak EDGAC* | IPLPS & relaxed weak EDGAC* ILPs
’ bt time bt time (CPLEX) time
25,8 211.0 2.93 47.0 5.87 (4.22) 2.29
30,8 1140.1 31.28 105.0 11.53(9.61) 10.76
35,8 704.2 19.77 84.1 11.07 (8.17) 12.56
30, 12 * * 790.1| 544.01 (449.89) 725.54
35,12 * * 681.0| 738.09 (640.58) 876.47
Table 5.5: Comparison with integer linear programming: sefamination
timetabling

n.d flow-based & weak EDGAC* | IPLPS & relaxed weak EDGAC* ILPs
’ bt time bt time (CPLEX) time
6 355.6 8.07 53.8 7.18 (6.51) 8.91
8 973.4 35.88 155.4 31.82 (26.44) 35.96
10 * * 413.0 286.13 (223.08) 325.92
12 * * 892.3 923.21 (813.51) 1315.61

Table 5.6: Comparison with integer linear programming: sftscheduling

Results are shown in Tables 5.4, 5.5, and 5.6. In almost adkcasir models us-
ing conjunctions of IPLPS cost functions run faster and pnmore than the models
with individual flow-based projection-safe / polynomiatlgcomposable cost func-
tions usingy-consistency. On the other hand, our model runs faster iargéwhen
compared with the integer linear programming model using E2Rhas the integer

linear program solver. The trend is more apparent when thielggm size grows.

Chapter 6

Conclusions

In this chapter, we summarize the contributions of the theSVe also propose

possible future directions of our research.

6.1 Contributions

In this thesis, we enhance the weighted constraint satigfaby introducing the
concept opolynomially linear projection-safe (PLPS) cost funcgoWe define re-
laxed consistencies for polynomially linear projecti@fescost functions based on
the existing standard consistencies. In addition, we detnate the benefits of con-
joining such cost functions experimentally, and defimgdger polynomially linear
projection-safe (IPLPS) cost functioas a special subclass of PLPS cost functions
to characterize the strength of the relaxed consistenagm®bn the conjunctions
of IPLPS cost functions. Our contributions are five-fold.

First, we define thgolynomially linear projection-safe (PLPS) cost funcgon
based on theimteger linear programformulations with size polynomial to their
number of variables and maximum domain size. Their minimostxcan be com-
puted by solving their related integer linear programs. \We the sufficient con-
ditions for polynomially linear projection-safe cost fuions whose properties are
preserved in projections and extensions.

Second, we propose the relaxed consistencies on PLPS nosbfus, which are

83

Chapter 6 Conclusions 84

weaker but the enforcement can be much more efficient comparthe standard
counterparts. The approximated minimum costs of PLPS eosgttibns can be
computed by solving their related integer linear progranth Vinear relaxations.
We give proofs for the feasibility of projecting the the shaat integral cost which
is not less than the approximated minimum cost. Thus, we eéinathe relaxed
version for the standard consistency notions including GAIIGAC*, and weak
EDGAC* by reformulating their requirements based on the mum costs of a set
of cost functions and replaced by their approximated mimmuosts.

Third, we propose the use of the conjunctions of PLPS costtimms, which
gives benefits in terms of pruning and runtime shown by erpents. We show
that the conjunctions of PLPS cost functions remain PLP8hith relaxed con-
sistencies can still be applied on them. We show that prdpegan a conjunction
using the standard consistencies is stronger than prapggat the individual cost
functions. Although it is not always true when relaxed cstesicies are enforced,
the benefits of using the conjunctions of PLPS cost functeawashown experimen-
tally.

Fourth, we definentegral polynomially linear projection-safe (IPLPS) ¢dsnc-
tions which is a subclass of PLPS cost functions and we charaetére strength
of the relaxed consistency notions on the conjunctions lboPE’cost functions over
the strength of the corresponding standard consistenggnsobn the individual
IPLPS cost functions. IPLPS cost functions are special Pt&$ functions and
their exact minimum costs can be computed by solving théated integer lin-
ear programs with linear relaxation. In addition, the miaimcost of an IPLPS
function can be computed in polynomial time. The same is maessarily true
for the conjunctions of IPLPS cost functions, which we showee still PLPS. Our
central results show that propagating on individual IPLBSt éunctions using the
standard (or relaxed since they are the same) consistesewesiker than propagat-
ing on the conjunction of all these IPLPS cost functions gisire relaxed versions

of the consistencies, which is in turn weaker than propagatn the conjunction

Chapter 6 Conclusions 85

using the standard consistency. The latter is NP-hard iergénTherefore, it is
always more desirable to propagate on conjunctions of IRdd3Efunctions using
even just relaxed consistencies. The results are useful whéhave cost functions
whose minimum cost computation is polynomial time but tlwatdonjunctions of
such cost functions is not. We show ttitw-based projection saf@8, 30] and
polynomially decomposab[81] cost functions are IPLPS, in which the minimum
cost computation is NP-hard for the conjunctions of an irtgrarsubclass of them.
Fifth, we demonstrate the practicality of our frameworkhnaétmpirical results.
We conduct experiments on several examples of polynomig@ar projection-
safe cost functions and integral polynomially linear petign-safe cost functions,
together with their conjunctions, against the flow-basedl @olynomially decom-
posable approaches as well as pure integer programming. béére orders of
magnitude in runtime and search space improvements wheaoottjanctions of
PLPS or IPLPS cost functions are used together with relagedistencies and the

results agree with our theorems.

6.2 Future Work

We have introduced the concept of polynomially linear progn-safe cost func-
tions and integral polynomially linear projection-safesttunctions, together with
relaxed consistencies. They give at least three posskifior future work.

The first possible question is whether we can enhance theekonsistencies
for stronger consistency notions like optimal soft arc estesicy (OSAC) [14, 13],
virtual arc consistency (VAC) [12, 13] artdconsistency [11]. Currently, we only
give the relaxed versions of star generalized arc conggtEBAC*) [43], full star
generalized directional arc consistency (FDAC*) [28, 304 aveak star existen-
tial directional generalized arc consistency (weak EDGA[29, 30]. They can
be reformulated such that their major conditions are regmtesl with the minimum

costs of cost functions. Those consistency notions canlage by replacing the

Chapter 6 Conclusions 86

minimum costs into approximated minimum costs in their ¢oials. It might not
be straight forward to relax the consistency notions wiffedent kinds of condi-
tions and involving rational costs like OSAC and VAC. It isangsting to see if
there are different ways to relax the consistency notiorishvtan also tackle those
consistency notions.

The second possible question is whether we can give negessaditions for
polynomially linear projection-safety and othgrprojection-safety. Currently, we
only give the sufficient conditions for polynomially lineprojection-safety. The
necessary conditions of polynomially linear projecti@iety may allow us to find
out whether the other kinds of useful global cost functiosRLPS or not.

We also observe that the effects of enforcing relaxed ctergiges on some
polynomially linear projection-safe cost functions canveey different from that
of enforcing standard consistencies on them. For exampfer@ng relaxed con-
sistencies on the &T_NVALUE cost functions may have little or no effect since
the minimum cost arising from the minimum number of valuesdssl cannot be
approximated. The third possible question is whether wegras conditions to

identify such kind of cost functions and suggest practicayswto handle them.

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in Order to $olomplex

[2]

[3]

[4]

Scheduling and Placement Problemathematical and Computer Modelling
17(7):57-73, 1993.

N. Beldiceanu, M. Carlsson, and J. Rampon. Global Const@atalog. SICS
Research Report, 2005.

N. Beldiceanu and E. Contejean. Introducing Global Comsttsan CHIP.
Mathematical and Computer Modelling0(12):97-123, 1994.

M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. &ibj and D. Vin-
cent. Experiments in Mixed Integer Linear Programmiltathematical Pro-
gramming 1(1):76-94, 1971.

[5] T. Berthold. Primal Heuristics for Mixed Integer ProgramMaster’s thesis,

Technische Universit Berlin, 2006.

[6] C. Bessere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Thelt&

Meta-Constraint. Technical report, 2007.

[7] C. Bessere and P. V. Hentenryck. To Be or Not to Be a Global Constraint.

In Proceedings of the 9th International Conference on Prires@nd Practice

of Constraint Programmingpages 789—-794, 2003.

87

[8] C.Bessere, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. WaPsop-
agating Conjunctions of AL DIFFERENT Constraints. IrProceedings of the
24th AAAI Conference on Atrtificial Intelligenggages 27-32, 2010.

[9] C. Bessere and J.-C. Bgin. Arc Consistency for General Constraint Net-
works: Preliminary Results. IRroceedings of the 15th International Joint

Conferences on Atrtificial Intelligencpages 398-404, 1997.

[10] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. WesneRadio Link
Frequency Assignmen€onstraints 4(1):79-89, 1999.

[11] M. C. Cooper. High-Order Consistency in Valued Constraiatissaction.
Constraints 10(3):283-305, 2005.

[12] M. C. Cooper, S. de Givry, M. &hchez, T. Schiex, and M. Zytnicki. Virtual
Arc Consistency for Weighted CSP. Rroceedings of the 23rd AAAI Confer-
ence on Artificial Intelligencepages 253-258, 2008.

[13] M. C. Cooper, S. de Givry, M.&hchez, T. Schiex, M. Zytnicki, and T. Werner.
Soft Arc Consistency Revisited Artificial Intelligence 174(7-8):449-478,
2010.

[14] M. C. Cooper, S. de Givry, and T. Schiex. Optimal Soft Arc €istency. In
Proceedings of the 20th International Joint Conferences difiéal Intelli-

gence pages 68—73, 2007.

[15] M. C. Cooper and T. Schiex. Arc Consistency for Soft ConstgaiArtificial
Intelligence 154(1-2):199-227, 2004.

[16] G. B. Dantzig. Linear Programming and Extensiandrinceton University
Press, 1963.

[17] S.de Givry, F. Heras, M. Zytnicki, and J. Larrosa. Egigtal Arc Consistency:
Getting Closer to Full Arc Consistency in Weighted CSPsPioceedings of

88

the 19th International Joint Conferences on Atrtificial Ihigdnce pages 84—
89, 2005.

[18] H. Fargier and J. Lang. Uncertainty in Constraint Satisbn Problems: a
Probabilistic Approach. IfProceedings of the 2nd European Conference on
Symbolic and Quantitative Approaches to Reasoning and tthinogy, pages
97-104, 1993.

[19] E. C. Freuder and R. J. Wallace. Partial Constraint Satisfa Artificial
Intelligence 58(1-3):21-70, 1992.

[20] J. N. Hooker.Integrated Methods for Optimizatiospringer Science + Busi-
ness Media, LLC, 2007.

[21] IBM. IBM ILOG CPLEX Optimizer. http://ww O1.i bm com

software/integration/optimzation/cplex-optimzer/.

[22] |. Katriel and S. Thiel. Complete Bound Consistency for@iebal Cardinal-
ity Constraint.Constraints 10(3):115-135, 2005.

[23] A. M. Koster. Frequency Assignment: Models and Algorithni#hD thesis,
University of Maastricht, 1999.

[24] J. Larrosa. Node and Arc Consistency in Weighted CSPPraceedings of
the 18th AAAI Conference on Atrtificial Intelligengages 48-53, 2002.

[25] J. Larrosa. In the Quest of the Best Form of Local Consestéor Weighted
CSP. InProceedings of the 18th International Joint Conferences uifiéal
Intelligence pages 239-244, 2003.

[26] J. Larrosa and T. Schiex. Solving Weighted CSP by Maiig Arc Consis-
tency. Artificial Intelligence 159(1-2):1-26, 2004.

[27] J.-L. Lauriere. A Language and a Program for Stating $alding Combina-
torial ProblemsArtificial Intelligence 10(1):29-127, 1978.

89

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J.H. M. Lee and K. L. Leung. Towards Efficient Consiste&tiforcement for
Global Constraints in Weighted Constraint SatisfactiorPioceedings of the
21st International Joint Conferences on Artificial Inteligce pages 559-565,
2009.

J. H. M. Lee and K. L. Leung. A Stronger Consistency fortSaibbal Con-
straints in Weighted Constraint Satisfaction.Aroceedings of the 24th AAAI
Conference on Atrtificial Intelligen¢@ages 121-127, 2010.

J. H. M. Lee and K. L. Leung. Consistency Techniques faw-Based
Projection-Safe Global Cost Functions in Weighted Condtr&atisfaction.
Journal of Artificial Intelligence Research3:257-292, 2012.

J. H. M. Lee, K. L. Leung, and Y. Wu. Polynomially Decongadle Global
Cost Functions in Weighted Constraint Satisfaction. Ploceedings of the

26th AAAI Conference on Artificial Intelligengeages 507-513, 2012.

J.H. M. Lee and Y. W. Shum. Modeling Soft Global Consttsias Linear Pro-

grams in Weighted Constraint Satisfaction.Aroceedings of the 23rd IEEE
International Conference on Tools with Artificial Intelliges pages 305-312,
2011.

A. K. Mackworkth. Consistency in Networks of RelationAttificial Intelli-
gence 8(1):99-118, 1977.

M.J. Maher, N. Narodytska, C.-G. Quimper, and T. Walslow-Based Prop-
agators for the SEQUENCE and Related Global ConstraintBrdoeedings
of the 14th International Conference on Principles and Picebf Constraint

Programming pages 159-174, 2008.

H. Marchand and L. A. Wolsey. Aggregation and Mixed e Rounding to
Solve MIPs.Operations Resear¢d9(3):363-371, 2001.

90

[36] C. H. Papadimitriou and K. Steiglitz.Combinatorial Optimization: Algo-
rithms and ComplexityPrentice-Hall, 1982.

[37] J. PearlProbabilistic Reasoning in Intelligent Systems: NetworkBlafisible

Inference Morgan Kaufmann, San Mateo, CA, 1988.

[38] G. Pesant, C.-G. Quimper, L.-M. Rousseau, and M. Sellmdime Polytope
of Context-Free Grammar Constraints. Pnoceedings of the 8th Interna-
tional Conference on Integration of Atrtificial Intelligen¢&l) and Operations

Research (OR) techniques in Constraint Programmpages 29-43, 20009.

[39] T. Petit, J.-C. Rgin, and C. Besgre. Meta-Constraints on Violations for
Over Constrained Problems. Rroceedings of the 12th IEEE International

Conference on Tools with Artificial Intelligengegages 358—-365, 2000.

[40] T. Petit, J.-C. Rgin, and C. Bessre. Specific Filtering Algorithm for Over-
Constrained Problems. Proceedings of the 7th International Conference on

Principles and Practice of Constraint Programmimzages 451-463, 2001.

[41] J.-C. Regin. Generalized Arc Consistency for Global Cardinality Gaists.
In Proceedings of the 13th AAAI Conference on Artificial Ingelfice pages
209-215, 1996.

[42] J.-C. Regin. Combination of Among and Cardinality ConstraintsPtoceed-
ings of the 2nd International Conference on Integration olaAtl OR Tech-
niques in Constraint Programming for Combinatorial Optinmiaa Problems
pages 288-303, 2005.

[43] M. Sanchez, S. de Givry, and T. Schiex. Mendelian Error DetadgticCom-
plex Pedigrees Using Weighted Constraint Satisfaction figctes. Con-
straints 13(1-2):130-154, 2008.

91

[44]

[45]

[46]

[47]

[48]

[49]

[50]

T. Sandholm. An Algorithm for Optimal Winner Determinan in Combina-
torial Auctions. InProceedings of the 16th International Joint Conferences on
Artificial Intelligence pages 542-547, 1999.

T. Schiex, H. Fargier, and G. Verfaillie. Valued ConsiteéSatisfaction Prob-
lems: Hard and Easy Problems. In Chris Mellish, ediRmceedings of the
14th International Joint Conferences on Atrtificial Inteligce pages 631—
639, 1995.

L. Shapiro and R. Haralick. Structural Descriptions dndxact Match-
ing. IEEE Transactions Pattern Analysis Machine Intelliger®):504-519,
1981.

C. Solnon, V. Cung, A. Nguyen, and C. Artigues. The Car SequgrProb-
lem: Overview of State-of-the-Art Methods and Industrias€&tudy of the
ROADDEF’2005 Challenge Problenturopean Journal of Operational Re-
search 191(3):912-927, 2008.

W. van Hoeve, G. Pesant, and L. Rousseau. On Global WarrRiow-Based

Soft Global ConstraintsJournal of Heuristics12(4-5):347-373, 2006.
L. Wolsey. Integer ProgrammingWiley, 1998.

M. Zytnicki, C. Gaspin, and T. Schiex. A New Local Consistg for Weighted
CSP Dedicated to Long Domains. Rroceedings of the 2006 ACM Sympo-
sium on Applied Computingages 394-398, 2006.

92

