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Blind identification of linear instantaneous mixtures of quasi-stationary 

sources (BI-QSS) has received great research interest over the past few 

decades, motivated by its application in blind speech separation. In this 

problem, we identify the unknown mixing system coefficients by exploit-

ing the time-varying characteristics of quasi-stationary sources. Tradi-

tional BI-QSS methods fall into two main categories: i) Parallel Factor 

Analysis (PARAFAC), which is based on tensor decomposition; ii) Joint 

Diagonalization (JD), which is based on approximate joint diagonaliza-

tion of multiple matrices. In both PARAFAC and JD, the joint-source 

formulation is used in general; i.e., the algorithms are designed to identify 

the whole mixing system simultaneously. 

In this thesis, I devise a novel blind identification framework using a 

Khatri-Rao (KR) subspace formulation. The proposed formulation is dif-

ferent from the traditional formulations in that it decomposes the blind 

identification problem into a number of per-source, structurally less com-

plex subproblems. For the overdetermined mixing models, a specialized 

alternating projections algorithm is proposed for the KR subspace for-

mulation. The resulting algorithm is not only empirically found to be 

very competitive, but also has a theoretically neat convergence guarantee. 

Even better, the proposed algorithm can be applied to the underdeter-

mined mixing models in a straightforward manner. Rank minimization 

heuristics are proposed to speed up the algorithm for the underdeter-

mined mixing model. The advantages on employing the rank minimiza-

tion heuristics are demonstrated by simulations. 
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摘要 

由於在盲語音分離的應用，線性準平穩源訊號混合的盲識別獲 

得了巨大的研究興趣。在這個問題上，我們利用準穩態源訊號 

的時變特性來識別未知的混合系統系數。傳統的方法有二 ： 1) 

基於張量分解的平行因子分析（PARAFAC) ； 11)基於對多個矩 

陣的聯合對角化的聯合對角化算法（ J D ) 。一般來說， 

PARAFAC和：ID都採用了源聯合的提取方法；即是說，對應所 

有訊號源的系統係數在算法上是同時進行識別的。 

在這篇論文中，我利用Khati-Rao(KR)子空間來設計一種新的盲 

識別算法。在我設計的算法中提出一種與傳統的方法不同的 

提法。在我設計的算法中，盲識別問題被分解成數個結構上相 

對簡單的子問題,分別對應不同的源。在超定混合模型，我們 

提出了一個專門的交替投影算法（AP)。由此產生的算法，不 

但能從經驗發現是非常有競爭力的，而且更有理論上的利落收 

斂保證。另外，作為一個有趣的延伸，該算法可循一個簡單的 

方式應用於欠定混合模型。對於欠定混合模型，我們提出啟發 

式的秩最小化算法從而提高算法的速度。 
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Chapter 1

Introduction

Blind identification of mixtures refers to the procedure on identifying the

system (or, more specifically, the mixing matrix) mixing multiple sources,

using only the system output. Blind identification of mixtures is closely

related to another interesting problem known as blind source separation

(BSS). In fact, many BSS algorithms employ a two-steps approach: i) es-

timate the mixing matrix (i.e. blind identification of mixtures); and then

ii) separate the sources using the estimated mixing matrix [9, 20, 28, 29].

Blind identification using sensor arrays has received great research inter-

est over the past few decades owing to its wide applicability. Important

applications include direction of arrival (DOA) estimation in sensor array

processing [2, 10, 30], artifact removal in biomedical signal analysis [33],

blind equalization [32] and blind beamforming [31] in wireless communi-

cation, to mention but a few. The main interest of this thesis is blind

identification of speech mixtures, motivated by the well-known cocktail

party problem. In the cocktail party problem, a number of people are

speaking simultaneously in a room, and one is trying to follow one of the

discussions.

In the context of blind identification of mixtures, properties of the

source signals and/or mixing matrix are exploited. In particular, uti-

lizing the quasi-stationarity of the source signals has become one of the

most promising directions. There are two major classes of methods utiliz-

ing the quasi-stationarity. The first class of methods is known as Parallel

1



CHAPTER 1. INTRODUCTION 2

Factor Analysis (PARAFAC, also known as CANDECOMP) , which is

based on three-way array data fitting [10–15, 22, 23]. It has strong con-

nection to an attractive subject in mathematics known as tensor decom-

position [35–37]. Making use of some powerful results in the context of

tensor decomposition, a surprising identifiability result has been shown:

blind identification of mixtures of quasi-stationary sources (BI-QSS) us-

ing PARAFAC is possible even when the number of sensors is roughly half

of the number of sources [37]. Existing algorithms such as Trilinear Alter-

nating Least Squares (TALS) [10,11] and Alternating-Columns Diagonal-

Centers (ACDC) [12] take advantage of the aforementioned identifiability

result. The second class of methods is known as Joint Diagonalization

(JD), where the BI-QSS problem is formulated as a problem of jointly

diagonalizating multiple matrices [4–9, 13]. Joint diagonalization of ma-

trices is a fundamental problem in matrix analysis and has attracted

much interest. Elegant results are provided in this context; see [54] and

the reference therein. JD-based methods such as UWEDGE [9] and FF-

DIAG [4] are well-known for their high e�ciency. Another famous JD

algorithm developed by Pham is equivalent to maximum likelihood esti-

mation under the Gaussian source assumption [5, 6].

In this work, we propose a subspace approach to handle BI-QSS.

Specifically, we first devise a blind identification criterion based on the

quasi-stationarity of the source signals. As we will see, the criterion

involves the subspace formed by the self Khatri-Rao (KR) product of the

mixing matrix; therefore, we call the criterion KR subspace criterion [2].

One salient feature of the KR subspace criterion is that it suggests per-

source identification, as opposed to the joint-source nature of PARAFAC

and JD.

In overdetermined mixing models (i.e. we have more sensors than

sources in a given system), prewhitening is commonly performed before

the BI-QSS procedures [4,7]. Rather unexpectedly, the prewhitening pro-

cedure dramatically improves the convergence behavior of the proposed

algorithm. With the employment of prewhitening, it can be shown that
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the proposed algorithm converges globally to a true mixing matrix col-

umn in one iteration with probability one. Simulation results indicate

that the proposed algorithm exhibits both excellent blind identification

performance and good runtime performance.

An even more challenging problem is BI-QSS in underdetermined

mixing models [20, 21]. As mentioned previously, PARAFAC-based al-

gorithms are able to handle the underdetermined mixing models [22,23].

Apart from that, most algorithms handling the underdetermined mix-

ing models rely on further exploiting properties of source signals, such

as sparsity in time-frequency domain [26] and conditional independence

[18, 19]. Based on the identifiability analysis, the KR subspace criterion

devised in this work can deal with the underdetermined mixing mod-

els, without further exploiting any property of source signals. Although

prewhitening is no longer possible in the underdetermined mixing models,

we propose rank-minimization heuristics [40, 41, 46, 47] to speed up the

identification procedure. There is an interesting connection between the

proposed method and the Huber loss function known in robust statis-

tics [55] and smooth optimization [48, 49]. Simulation results suggest

that the proposed rank minimization heuristics significantly reduce the

number of iterations, subsequently improving the runtime performance.

2 End of chapter.



Chapter 2

Settings of Quasi-Stationary Signals

based Blind Identification

In this chapter, we will introduce the signal model and assumptions used

in this work. Specifically, we will focus on blind identification of mix-

tures of quasi-stationary sources (BI-QSS). By the quasi-stationary as-

sumption of the source signals, a specialized local covariance model will

be introduced. After that, we will discuss two important and commonly

employed preprocessing procedures in BI-QSS.

2.1 Signal Model

Consider a system with N sensors receiving K source signals. Denote

the received signal of the nth sensor by xn(t), and the source signal

emitted from the kth source by sk(t). In this thesis, we assume lin-

ear instantaneous mixing model; i.e., the received signal vector x(t) =

[x
1

(t), . . . , xN(t)]T 2 CN is represented as:

x(t) = As(t) + v(t), t = 0, 1, 2, . . . , (2.1)

where t is the time index, A = [a
1

, . . . , aK ] 2 CN⇥K is the mixing matrix,

s(t) = [s
1

(t), . . . , sK(t)]T 2 CK is the source signal vector and v(t) is

the noise in the received signal vector. The scenario is depicted in Fig.

2.1. There are K speakers speaking simultaneously and there are N

microphones recording the speech mixtures. By the observations x(t)

4



CHAPTER 2. SETTINGS 5

Figure 2.1: Blind identification scenario.

obtained from the microphone array, our goal is to retrieve the mixing

matrix A.

Remark: it has been noticed that a more realistic model for blind speech

separation should be the linear convolutive mixing model; i.e.,

x(t) = A ? s(t) + v(t), t = 0, 1, 2, . . . , (2.2)

where ? is the linear convolution operator. Yet, it is known that a

blind identification problem with linear convolutive mixing model can

be transformed into a set of blind identification problems with linear in-

stantaneous mixing model using discrete Fourier Transform (DFT), for

example [14, 23] . In other words, e�cient algorithms developed based

on the linear instantaneous mixing model can be extended to handle

the convolutive mixing model. For the sake of self-containedness, the

aforementioned transformation will be introduced briefly in Appendix A.

2.2 Assumptions

Strictly speaking, it is extremely di�cult to identify the mixing matrix

A in a completely blind fashion (i.e. no prior information at all), if not

impossible. In most cases, properties of the source signals and/or the

mixing matrix have to be exploited. In speech applications, there are
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many properties one may exploit, e.g. sparsity in the time-frequency

domain [24–26], local dominance [16], conditional independence [18, 19]

and non-Gaussianity [28,29]. In this thesis, we exploit quasi-stationarity

of the source signals, which is defined as:

Definition 2.1 A random process s(t) with mean

µ(t) = E{s(t)}

and autocorrelation function

R(t, t0) = E{s(t)s(t0)}

is said to be wide-sense quasi-stationary if s(t) is wide-sense stationary

for each time window [(m � 1)L + 1,mL], with L denoting the frame

length; i.e.,

µ(t) = µm, for t 2 [(m � 1)L + 1,mL], (2.3)

and

R(t
1

, t

1

+⌧) = R(t
2

, t

2

+⌧), for t

1

, t

2

2 [(m�1)L+1,mL�⌧ ], ⌧ 2 [0, L�1].

(2.4)

As an illustration, a speech segment is given in Fig. 2.2. Although

the speech signal is non-stationary, it is fair to say that it is stationary

within short time windows (segmented by the red dotted line), i.e., quasi-

stationary according to Definition 2.1.

In BI-QSS, we make the following basic assumptions:

(A1) The source signals sk(t), k = 1, . . . , K, are mutually independent,

with zero mean.

(A2) The noise vector v(t) is wide-sense stationary with zero mean and

covariance matrix �2I, and is statistically independent of the source

signals.

(A3) The source signals are wide-sense quasi-stationary with frame length

L; specifically, the power of the source k in the mth frame is:

E{|sk(t)|2} = dmk � 0, for t 2 [(m � 1)L + 1,mL].
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Figure 2.2: A speech segment.

Remark: it is also worthwhile to note that the structure of the mixing

matrix A can also be exploited to aid the blind identification proce-

dure. For example, if the sensor array has a uniform linear array struc-

ture, then under some mild assumptions A has a Vandemonde structure.

The Vandemonde structure of A has been utilized to devise an e�cient

direction-of-arrival (DOA) estimation algorithm [2].

2.3 Local Covariance Model

With the quasi-stationary assumption (A3), we can derive one covariance

matrix of x(t) per frame:

Rm = E{x(t)x(t)H} 2 CN⇥N
, for t 2 [(m � 1)L + 1,mL], (2.5)

where m denotes the frame index. We call Rm the local covariance matrix

of the mth frame. According to assumptions (A1), (A2) and (A3), Rm

can be equivalently written as

Rm = ADmAH + �

2I, (2.6)

where Dm = Diag(dm1

, . . . , dmK) 2 RK⇥K is the source local covariance

matrix of the mth frame. In practice, Rm can be estimated by local time

average:

Rm =
1

L

mL
X

t=(m�1)L+1

x(t)x(t)H
. (2.7)
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Now, suppose that the local covariance matrices {R
1

, . . . ,RM} are

available, where M is the total number of frames. The goal of BI-

QSS is to retrieve A from {R
1

, . . . ,RM} without prior knowledge on

{D
1

, . . . ,DM} and �2.

Before we introduce some existing BI-QSS algorithms, we will dis-

cuss two important preprocessing procedures in BI-QSS, which are noise

covariance removal and prewhitening.

Remark: for blind speech separation utilizing the second-order statistics

(SOSs), it would be interesting to investigate some typical categories of

speech sounds and their impact. The discussion is given in Appendix D.

2.4 Noise Covariance Removal

It is known that the noise covariance matrix �

2I in Eq. (2.6) can be

removed before BI-QSS [1]. For overdetermined mixing models (i.e. N >

K), the eigenvalue decomposition (EVD) of Rm is given by

Rm = Um⇤mUH
m + �

2I

= Um

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�m1

+ �

2 0 0 · · · 0 0 · · · 0

0 �m2

+ �

2 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · �mK + �

2 0 · · · 0

0 0 0 · · · 0 �

2 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · 0 0 · · · �

2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

UH
m.

(2.8)

where Um 2 CN⇥N is the unitary matrix whose columns are the eigen-

vectors of Rm, and ⇤ = Diag(�m1

, . . . ,�mK) 2 RN⇥N is the diagonal

matrix whose diagonal elements are the corresponding eigenvalues.

Hence, the noise power can be estimated by

�̂

2 = min
m=1,...,M

�

min

(Rm), (2.9)

where �
min

(X) represents the smallest eigenvalue of X. Therefore, the
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noise covariance matrix can be removed by

Rm := Rm � �̂

2I, m = 1, . . . ,M. (2.10)

For underdetermined mixing models (i.e. K > N), we define the

frame averaged covariance matrix R as

R =
1

M

M
X

m=1

Rm. (2.11)

According to our local covariance model (cf. Eq. (2.6)), we have

R = ADAH + �

2I, (2.12)

where D = 1

M

PM
m=1

Dm. By this observation, the noise covariance can

be removed by

Rm := Rm � R = A(Dm � D)AH
, m = 1, . . . ,M. (2.13)

Therefore, we will focus on the following noise-free local covariance

model in the sequel:

Rm = ADmAH
, m = 1, . . . ,M. (2.14)

2.5 Prewhitening

In many BI-QSS algorithms (mainly joint-diagonalization based), a pre-

processing procedure called prewhitening is employed [1,4,7,12,29]. The

purpose of prewhitening is to constrain the solution in order to avoid

trivial solution and at the same time reduce the computational com-

plexity. Although some authors suggested that prewhitening will cause

damage to the problem structure and avoid the algorithms from getting

good solutions [4, 12], empirically we find that the estimation accuracy

with prewhitening can be quite satisfactory. Furthermore, as we will see,

the employment of prewhitening makes a significant di↵erence to our

proposed algorithm.

According to the noise-free local covariance model, the frame averaged

covariance matrix is (cf. Eq (2.12))

R = ADAH
. (2.15)
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Since R is positive semi-definite, we can perform the square root factor-

ization on R; i.e.,

R = BBH
, (2.16)

where B 2 CN⇥K . Then, the prewhitening procedure is:

R̃m = B†Rm(B†)H
, m = 1, . . . ,M, (2.17)

where B† is the Moore-Penrose pesudoinverse of B. It can be verified

that R̃m can be equivalently written as

R̃m = ÃD̃mÃH
, m = 1, . . . ,M, (2.18)

where

D̃m = D
�1

Dm, Ã = B†AD
1/2

. (2.19)

Note that Ã is an unitary matrix. In particular, Eq. (2.18) is equivalent

to the noise-free local covariance model (cf. Eq. (2.14)) with unitary

mixing matrix Ã. Once the equivalent mixing matrix Ã is identified,

the original mixing matrix A can be retrieved by BÃ, according to Eq.

(2.19).

2.6 Summary

In this chapter, we have introduced the system model used throughout

this thesis. A few basic assumptions were discussed. Special attention

has been put on the crucial assumption: the quasi-stationarity of the

source signals. Afterwards, the local covariance model, an important

building block of BI-QSS, has been introduced. Based on that, the ob-

jective of BI-QSS was then stated explicitly. In the next two chapters,

we will introduce blind identification algorithms specialized for the local

covariance model.

2 End of chapter.



Chapter 3

Review on Some Existing BI-QSS

Algorithms

In this chapter, we review some existing BI-QSS algorithms. Firstly,

we will introduce joint diagonalization (JD), in which BI-QSS is han-

dled by joint diagonalization of multiple matrices. Here, we will in-

troduce two classical JD-based algorithms: Fast Frobenius Diagnlaiza-

tion (FFDIAG) and Pham’s JD. Then, we will introduce parallel fac-

tor analysis (PARAFAC), in which a three-way array data fitting ap-

proach is employed to handle BI-QSS. A highly related topic known

as tensor decomposition will first be introduced briefly. The attrac-

tive identifiability result will then be discussed in detail. Following

that, we will describe two popular PARAFAC-based algorithms, namely,

Alternating-Columns Diagonal-Centers (ACDC) and Trilinear Alternat-

ing Least-Squares (TALS).

3.1 Joint Diagonalization

In Joint Diagonalization (JD)-based algorithms, we make one additional

assumption:

(A4 for JD) The mixing matrix A is invertible.

In other words,

W , A�1 (3.1)

11
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exists. For the case where N � K, the invertibility can be ensured using

dimension reduction methods such as prewhitening. According to the

noise-free local covariance model (cf. Section 2.4), we have

WRmWH = (A�1A)Dm(AHA�H)

= Dm, m = 1, . . . ,M,

(3.2)

where A�H , (A�1)H . Simple as it is, Eq. (3.2) suggests a way to find

the mixing matrix: we want to find a matrix W that jointly diagonal-

izes all the local covariance matrices {R
1

, . . . ,RM}. Let us start with

discussing Fast Frobenius Diagonalization (FFDIAG).

3.1.1 Fast Frobenius Diagonalization [4]

Fast Frobenius Diagonalization (FFDIAG) is a method of finding a so-

lution of the following optimization problem:

min
W

M
X

m=1

o↵(WRmWH), (3.3)

where o↵(·) is the o↵-diagonal operator defined as

o↵(X) =
X

i 6=j

X

2

ij. (3.4)

In essence, FFDIAG attempts to find a matrix W such that the squared

sum of all o↵-diagonal elements of {WR
1

WH
, . . . ,WRMWH} are min-

imized. However, by a careful look at Problem (3.3), the solution is

trivial: W = 0. Obviously, it is not desirable. In FFDIAG, the trivial

solution is avoided by enforcing the invertibility of W. The demixing

matrix W is updated multiplicatively:

W(k+1) = (I + V(k))W(k)

, (3.5)

where V(k) is constrained to be all zeros on its main diagonal and k

is the iteration index. According to the update rule (3.5), to ensure

the invertibility of W, it su�ces to ensure the invertibility of I + V.

The matrix invertibility can be guaranteed according to the following

theorem:
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Theorem 3.1 [4] If X 2 Cn⇥n is strictly diagonally-dominant, i.e.

|xii| >
X

j 6=i

|xij|, 8 i = 1, . . . , n, (3.6)

then X is invertible.

Owing to the special structure of I + V and Theorem 3.1, it su�ces to

ensure that

max
i

X

j 6=i

|Vij| = kVk1 < 1 (3.7)

where k · k1 is the matrix infinity norm, defined as the maximum row

sum of a matrix. Therefore, the invertibility of W can be ensured by

dividing V by its infinity norm whenever it exceeds some fixed number

✓ < 1. An even stricter condition can be imposed using the Frobenius

norm:

V(k) :=
✓

kV(k)kF

V(k)

, (3.8)

where k · kF is the Frobenius norm.

Subsequently, we want to know how to compute V such that the

objective function of Problem (3.3) is minimized. Let us consider the

update of the local covariance matrices:

R(k+1)

m = (I + V(k))R(k)

m (I + V(k))H
, m = 1, . . . ,M. (3.9)

We separate the diagonal and o↵-diagonal parts of R(k)

m , i.e.

R(k)

m = D(k)

m + E (k)

m , m = 1, . . . ,M, (3.10)

where D(k)

m and E (k)

m denote the diagonal and o↵-diagonal parts of R(k)

m ,

respectively. In [4], the authors made an important assumption:

(A5 for FFDIAG) kV(k)k and {kE (k)

1

k, . . . , kE (k)

M k} are small.

It can be justified as follows: when the local covariance matrices {R(k)

1

, . . . ,R(k)

M }

are almost diagonalized (i.e. {kE (k)

1

k, . . . , kE (k)

M k} are small), the update

V(k) should be close to zero and hence kV(k)k is small. Eventually, ac-

cording to Eq. (3.9), we have

R(k+1)

m = (I + V(k))(D(k)

m + E (k)

m )(I + V(k))H

⇡ D(k)

m + V(k)D(k)

m + D(k)

m (V(k))H + E (k)

m ,

(3.11)
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where quadratic terms are ignored because of the assumption (A5). We

can see that the local covariance model is highly simplified. Further-

more, by ignoring the already diagonal term D(k)

m , V(k+1) can be found

by considering the following problem (cf. Problem (3.3)):

V(k+1) = arg min
V

M
X

m=1

o↵(VD(k)

m + D(k)

m VH + E (k)

m ), (3.12)

which can be solved e�ciently (the exact implementation details are

skipped here).

3.1.2 Pham’s JD [5,6]

Pham’s JD is a classical BI-QSS algorithm making use of the principle

of maximum likelihood (ML) estimation.

Firstly, assume the source signal vector s(t) is a K-variate Gaussian

random process with zero mean and covariance matrix ⌃(t). As the

sources are mutually independent, ⌃(t) is a diagonal matrix. According

to the linear instantaneous mixing model in the absence of noise (cf.

Section 2.1):

x(t) = As(t), (3.13)

we know that x(t) is also a K-variate Gaussian random process with

zero mean and covariance matrix A⌃(t)AH . Hence, the joint probability

density function (p.d.f.) of x(t) is:

p(x(t)) =
1

(2⇡)K/2|det(A⌃(t)AH)|1/2

e

� 1
2x(t)H(A⌃(t)AH

)

�1x(t)
. (3.14)

Recall that we have assumed the source signals are quasi-stationary (cf.

Section 2.2). Now, consider the time window [(m� 1)L+ 1,mL]; specif-

ically,

⌃(t) = Dm, for t 2 [(m � 1)L + 1,mL].

Define a function f(A,Dm) by

f(A,Dm) , 1

L

mL
X

t=(m�1)L+1

� log p(x(t)). (3.15)
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Then, we have (ignoring the terms independent of A and Dm)

f(A,Dm) =
1

L

mL
X

t=(m�1)L+1

1

2

�

x(t)H(A⌃(t)AH)�1x(t) + log |det(A⌃(t)AH)|
�

=
1

L

mL
X

t=(m�1)L+1

1

2

�

Tr(⌃(t)�1A�1x(t)x(t)HA�H) + log |det(A⌃(t)AH)|
�

=
1

2

0

@Tr(D�1

m A�1R̂mA�H

| {z }

,U

) + log |det(ADmAH)|

1

A

=
1

2

 

K
X

k=1

d

�1

mkukk + 2 log |det(A)| +
K
X

k=1

log dmk

!

(3.16)

where dmk is the (k, k)th element of Dm and

R̂m , 1

L

mL
X

(m�1)L+1

x(t)x(t)H

is the local covariance matrix of the mth frame estimated using local

time average.

In order to maximize the likelihood function, we want to minimize

f(A,Dm). Di↵erentiating f(A,Dm) w.r.t. dmk yields:

@f(A, {dm1

, . . . , dmK})

@dmk

=
1

dmk

� d

�2

mkukk

=
dmk � ukk

d

2

mk

.

(3.17)

By setting Eq. (3.17) to zero, the local minimizer is d

?
mk = ukk, 8 k =

1, . . . , K, as dmk > 0, 8 m, k.

By substituting the solution of Dm back to f(A,Dm), we have (again,

the terms independent of A are ignored)

f(A) , inf
Dm

f(A,Dm)

=
1

2

�

Tr(Diag(U)�1U) + 2 log |det(A)| + log |det(Diag(U))|
�

=
1

2
(log |det(AAH)| + log |det(R̂�1

m )|�

log |det(R̂�1

m )| + log |det(Diag(A�1R̂mA�H))|)

=
1

2

⇣

� log |det(A�1R̂mA�H)| + log |det(Diag(A�1R̂mA�H))|
⌘

,

(3.18)
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where Diag(·) forces its argument to diagonal by setting all its o↵-diagonal

elements to zero. Furthermore, by the Hadamard’s inequality, we know

that for X 2 CK⇥K

|det(X)| 
K
Y

i=1

xii = |det(Diag(X))|. (3.19)

Therefore, we have

� log |det(X)| � � log |det(Diag(X))|. (3.20)

Eventually, we conclude that f(A) is minimized when A�1R̂mA�H is a

diagonal matrix.

For BI-QSS, we want to minimize the following function w.r.t. A, {D
1

, . . . ,DM}:

g(A,D
1

, . . . ,DM) =
M
X

m=1

1

2

⇣

Tr(D�1

m A�1R̂mA�H) + log |det(ADmAH)|
⌘

.

(3.21)

With similar arguments as above, we conclude that

g(A) = inf
D1,...,DM

g(A,D
1

, . . . ,DM)

=
M
X

m=1

1

2

⇣

� log |det(A�1R̂mA�H)| + log |det(Diag(A�1R̂mA�H))|
⌘

.

(3.22)

Then, g(A) is minimized if {A�1R̂
1

A�H
, . . . ,A�1R̂MA�H} are all diag-

onal matrices.

Remark 1: a subtle requirement by the Pham’s JD is that all the lo-

cal covariance matrices must be positive-definite, as the log-determinant

function has been introduced.

Remark 2: fundamentally, JD-based methods are not applicable to K >

N , as there is be no way to reduce the dimension of A to square and at

the same time ensuring the invertibility.

3.2 Parallel Factor Analysis

Parallel Factor Analysis (PARAFAC) is a data analysis tool firstly intro-

duced in psychometrics. Recall the noise-free local covariance model (cf.

Section 2.4):

Rm = ADmAH
, m = 1, . . . ,M. (3.23)
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For the PARAFAC-based algorithms, the blind identification criterion is:

min
A,{D1,...,DM}:diagonal

M
X

m=1

kRm � ADmAHk2

F , (3.24)

which is a data fitting problem. In other words, PARAFAC finds the

matrices {A,D
1

, . . . ,DM} that best fit the data Rm in a least-squares

sense. From the above formulation, we can already see some advantages

against JD: i) it does not have the risk of yielding the trivial solution

A = 0; ii) it does not require A�1 to exist. Moreover, as we will discuss,

PARAFAC is applicable to underdetermined mixing models (i.e. K >

N).

In this section, we will first discuss tensor decomposition. In par-

ticular, the identifiability result for PARAFAC-based algorithms will be

discussed. Then, we will introduce the Alternating-Columns Diagonal-

Centers (ACDC) and Trilinear Alternating Least-Squares (TALS) algo-

rithms, in which Problem (3.24) is handled using alternating optimiza-

tion.

3.2.1 Tensor Decomposition [37]

Tensor decomposition is an attractive topic in the context of multilinear

algebra, in which the methods used in linear algebra are extended. Im-

portant applications can be found in signal processing, numerical linear

algebra, computer vision, to mention but a few. For a comprehensive

review on tensor decomposition, please refer to [56] and the references

therein.

Consider a matrix X 2 RI⇥J with rank equals 3. Then, the rank-3

decomposition of X is

X = a
1

bT
1

+ a
2

bT
2

+ a
3

bT
3

. (3.25)

for some vectors ai 2 RI
,bi 2 RJ

, i = 1, 2, 3. Equivalently, we write

X = ABT , where A = [a
1

, a
2

, a
3

] 2 RI⇥3 and B = [b
1

,b
2

,b
3

] 2 RJ⇥3.

It is important to note that the outer product form in (3.25) is not unique,

as

X = ABT = ATT�1BT
,
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for any invertible matrix T.

Now, consider a three dimensional tensor X 2 RI⇥J⇥K . Denote xijk

by the (i, j, k)th element of X . The F -component trilinear decomposition

of X is defined as

xijk =
F
X

f=1

aifbjfckf , 8 i, j, k. (3.26)

In (3.26), X is expressed as a sum of F rank-1 tensors, where the tensor

rank is defined as the minimum number of rank-1 components required in

decomposing a given tensor. A surprising result in tensor decomposition

lies in its uniqueness, which is missing in matrix rank-r decomposition.

Define the matrices A 2 RI⇥F , B 2 RJ⇥F and C 2 RK⇥F with

Aif = aif , Bjf = bjf , Ckf = ckf . (3.27)

Under some mild conditions, the tensor decomposition is unique up to

scaling and permutation ambiguities; that is, given X , A,B,C are unique

up to the inherently unresolvable ambiguities.

Before we state the uniqueness theorem of three dimensional tensor

decomposition, an important concept called Kruskal rank (krank) has to

be introduced.

Definition 3.1 Given a matrix X 2 RI⇥F . We have

krank(X) = r

if and only if every r columns of X are linearly independent, and there

exists one set of r + 1 columns of X are linearly dependent.

Then, we state the famous uniqueness result shown by Kruskal:

Theorem 3.2 [37] Consider the F-component trilinear decomposition

xijk =
F
X

f=1

aifbjfckf , 8i, j, k. (3.28)

Given X , the matrices A,B,C (defined in Eq. (3.27)) are unique up to

scaling and permutation ambiguities if

krank(A) + krank(B) + krank(C) � 2F + 2. (3.29)
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Before we further discuss the tensor decomposition, let us recall the

noise-free local covariance model (cf. Section 2.4):

Rm = ADmAH
, m = 1, 2, . . . ,M. (3.30)

Define a matrix  2 RM⇥K as

 =

2

6

6

6

6

6

6

4

diag(D
1

)T

diag(D
2

)T

...

diag(DM)T

3

7

7

7

7

7

7

5

, (3.31)

where diag(Dm) takes the main diagonal of Dm and stacks it into a col-

umn vector. Then, the local covariance model in (3.30) can be rewritten

as

Rm = ADm( )AH
,m = 1, 2, . . . ,M, (3.32)

where Dm( ) takes the mth row of  and stacks it into a diagonal

matrix.

By writting out the (i, j)th element of Rm and Theorem 3.2, it can

be shown that the K-component trilinear decomposition is unique if

krank(A) + krank(A⇤) + krank( ) � 2K + 2. (3.33)

In BI-QSS, it is reasonable to make the following assumptions:

(A4 for PARAFAC) The mixing matrix A 2 CN⇥K has full Kruskal rank.

(A5 for PARAFAC)  2 RM⇥K has full Kruskal rank.

Assumption (A4) means that for N � K, A has full column rank; for

N < K, any K columns of A are linearly independent. For source sig-

nals coming from significantly di↵erent paths, assumption (A4) is well-

justified. Physically, the ith column of  describes the power distribu-

tion of the ith source. Hence, for sources having significantly di↵erent

power distributions, assumption (A5) is also well-justified. Now, let us

investigate the uniqueness results case by case:

Case 1: N � K,M � K. According to assumption (A4), condition

(3.33) becomes

2K + krank( ) � 2K + 2. (3.34)
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According to assumption (A5), krank( ) = K. Therefore, the

tensor decomposition is unique when there are more than or equal

to 2 sources (i.e. K � 2) in a given system.

Case 2: N � K and M < K. Here, krank( ) = M according to

(A5). Then, if we partition the received signals into no less than

2 frames (i.e. M � 2), the tensor decomposition is unique.

Case 3: N < K and M � K. According to assumption (A4), we have

krank(A)=N . Then, condition (3.33) becomes

2N + krank( ) � 2K + 2.

Also, as krank( ) = K, the tensor decomposition is unique when

K  2N � 2. (3.35)

Case 4: N < K and M < K. In this case, we have krank( ) = M .

Therefore, the tensor decomposition is unique when

K  N � 1 +
M

2
. (3.36)

Remark 1: Eq. (3.35) and (3.36) shows the applicability of PARAFAC-

based algorithms in underdetermined mixing models.

Remark 2: in BI-QSS, we usually have M � K in order to capture the

non-stationarity of the source signals. That is, the uniqueness result of

PARAFAC used in BI-QSS is stated in Case 1 and Case 3.

Remark 3: the uniqueness result of tensor decomposition is very powerful.

For a general tensor decomposition problem, we can shu✏e A,B and C

in Eq. (3.28) in order to get the best identifiability. Moreover, there

exists some even more powerful probabilistic uniqueness results of tensor

decomposition [11].

Another important property of tensor is the matrix unfolding. It

is a generalization of vectorization in matrix case. Vectorization is a

procedure in converting a matrix into a vector, while preserving all the

elements; matrix unfolding is to convert a tensor into multiple matrices.

A three dimensional tensor gets three di↵erent matrix unfoldings. Con-

sider a three dimensional tensor as a cuboid, as shown in Fig. 3.1. There
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are three di↵erent ways to cut the cuboid into slices (which are matrices),

corresponding to three di↵erent matrix unfoldings. Then, matrix unfold-

ings of a three dimensional tensor are obtained by stacking the slices into

big matrices. Matrix unfolding is an important procedure used in TALS,

as we will see shortly.

M1 M2 M3

Figure 3.1: Matrix unfoldings.

3.2.2 Alternating-Columns Diagonal-Centers [12]

Recall the blind identification criterion of PARAFAC:

min
A,{D1,...,DM}:diagonal

M
X

m=1

kRm � ADmAHk2

F . (3.37)

The idea of Alternating-Columns Diagonal-Centers (ACDC) is to use

alternating optimization to handle Problem (3.37). Specifically, we first

update A with fixed {D
1

, . . . ,DM}; then we update {D
1

, . . . ,DM} with

fixed A. The author of ACDC [12] called the first phase the “alternating

columns” phase and the second phase the “diagonal centers” phase. We

will discuss two phases separately.

Alternating Columns

The first phase is called “alternating columns” (AC). In this phase, the

diagonal matrices {D
1

, . . .DM} are all fixed. The mixing matrix A is

updated in a column-by-column fashion.

The objective function of (3.37) can be rewritten as

CLS(A,D
1

, . . . ,DM) =
M
X

m=1

kRm�ADmAk2

F =
M
X

m=1

�

�

�

�

�

Rm �
K
X

k=1

dmkaka
H
k

�

�

�

�

�

2

F

,

(3.38)
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where ak is the kth column of A and dmk is the (k, k)th element of Dm.

Define R̀m by

R̀m = Rm �
X

k 6=l

dmkaka
H
k . (3.39)

Here, we want to update the lth column of A (i.e. al). Consider CLS for

fixed A, {D
1

, . . .DM} except al:

CLS(al) =
M
X

m=1

�

�

�

�

�

Rm �
K
X

k=1

dmkaka
H
k

�

�

�

�

�

2

F

=
M
X

m=1

�

�

�

R̀m � dmlala
H
l

�

�

�

2

F

=
M
X

m=1

Tr
⇣

[R̀m � dmlala
H
l ]H [R̀m � dmlala

H
l ]
⌘

= � aH
l

"

M
X

m=1

dml

h

R̀H
m + R̀m

i

#

al + (aH
l al)

2

M
X

m=1

(dml)
2 + Constant.

(3.40)

Decomposing al into

al = c↵,where ↵H↵ = 1, (3.41)

the objective function (3.40) reduces to

CLS(c,↵) = �2c2↵HP↵ + c

4

p + Constant, (3.42)

where P =
PM

m=1

dmlR̀m and p =
PM

m=1

(dml)2. Di↵erentiating Eq.

(3.42) w.r.t. c and equating the result to zero yields c = 0 or

c

2 =
1

p

↵HP↵. (3.43)

As P is positive semi-definite, c =
q

1

p
↵HP↵. By substituting the result

back to CLS(c,↵), the partial minimization problem w.r.t. ↵ is:

min
↵

� 1

p

(↵HP↵)2

s.t. ↵H↵ = 1,

(3.44)

in which the solution is given by a principle eigenvector of P. The AC

phase stops when all K columns of A are updated once.
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Diagonal Centers

The second phase is called “diagonal centers” (DC). In this phase, the

mixing matrix A is fixed and one diagonal matrix Dm is updated at one

time. The objective function CLS for fixed A and {D
1

, . . . ,Dm�1

,Dm+1

, . . . ,DM}

is

CLS(Dm) = kRm � ADmAHk2

F . (3.45)

Define ym = vec(Rm) and dm = diag(Dm), where vec(·) is the vectoriza-

tion operator and diag(·) is the diagonalization operator. Then, (3.45)

becomes

CLS(dm) = [ym � (A⇤ � A)dm]H [ym � (A⇤ � A)dm], (3.46)

where � denotes the Khatri-Rao product (also known as column-wise

Kronecker product). To minimize CLS w.r.t. dm, the solution is given

by

dm =
�

(A⇤ � A)H(A⇤ � A)
��1

(A⇤ � A)Hym. (3.47)

The DC phase stops when {D
1

, . . . ,DM} are all updated once. ACDC

alternates the AC phase and DC phase, until a stopping criterion is met.

3.2.3 Trilinear Alternating Least-Squares [10, 11]

Similar to ACDC, Trilinear Alternating Least-Squares (TALS) algorithm

handles Problem (3.24) using alternating optimization. One of the dis-

tinguishing features of TALS is that Problem (3.24) is rewritten as three

data fitting problems employing matrix unfolding of tensors. By prop-

erly arranging those three problems, Problem (3.24) can be handled e�-

ciently.

Now, define the tensor R 2 CN⇥N⇥M by1

R
:,:,m = Rm = ADmAH

,m = 1, . . . ,M. (3.48)

Here, we are interested in matrix unfoldings of R. There are many ways

in defining matrix unfoldings and we adopt the convention used in [11]2.

1We use the notations used in MATLAB for convenience.
2There are some typos in this paper. I have verified the expressions used here and

confirmed they are consistent with the MATLAB code provided.
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Define the matrices Ra 2 RMN⇥N , Rb 2 RMN⇥N and Rc 2 RN2⇥M by

Ra =

2

6

6

6

6

6

6

4

R
:,:,1

R
:,:,2

...

R
:,:,M

3

7

7

7

7

7

7

5

, Rb =

2

6

6

6

6

6

6

4

RT
:,1,:

RT
:,2,:

...

RT
:,N,:

3

7

7

7

7

7

7

5

,Rc =

2

6

6

6

6

6

6

4

R
1,:,:

R
2,:,:

...

RN,:,:

3

7

7

7

7

7

7

5

. (3.49)

It can be verified that the matrix unfoldings have the following forms:

Ra = ( � A)B, Rb = (BT � )AT
, Rc = (A � BT ) T

, (3.50)

where  is defined in (3.31) and3 B = AH .

Then, we consider the following three data fitting problems:

min kRa � ( � A)Bk2

F , (3.51)

min kRb � (BT � )AT k2

F , (3.52)

min kRc � (A � BT ) T k2

F . (3.53)

Note that the variables of the above minimization problems are not

stated. The variables A,B, must be updated once in these minimiza-

tion problems, in order to find the best fit. An important observation is

that

min
B

kRa � (�� A)Bk2

F , (3.54)

min
A

kRb � (BT � )AT k2

F , (3.55)

min
 

kRc � (A � BT ) T k2

F , (3.56)

are linear least-squares fitting problems, and the solutions lead us to the

following simple closed form updates:

B(k+1) := (�(k) � A(k))†Ra, (3.57)

A(k+1) :=
⇣

�

(BT )(k+1) ��(k)

�†
Rb

⌘T

, (3.58)

�(k+1) :=
⇣

�

A(k+1) � (BT )(k+1)

�†
Rc

⌘T

. (3.59)

Upon convergence, the mixing matrix A is given by

Â =
A + BH

2
. (3.60)

3We have this transformation because TALS was actually designed to handle the unsym-

metric cases, i.e. Rm = ADmB.
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3.3 Summary

In this chapter, we have briefly introduced four BI-QSS algorithms in-

cluding FFDIAG, Pham’s JD, TALS and ACDC. Extra assumptions

made by those algorithms are stated explicitly.

For FFDIAG, the introduction of the demixing matrix W simplifies

the problem structure. By imposing some implicit invertibility constraint

on W, trivial solution can be avoided. The problem structure is further

simplified by making one extra assumption (cf. (A5 for FFDIAG)). For

Pham’s JD, the maximum likelihood (ML) estimation is employed in

handling BI-QSS. It gives an alternative interpretation of joint diagonal-

ization.

PARAFAC is highly related to tensor decomposition. In this chapter,

we have first provided a short discussion on tensor decomposition, with

emphasis put on its uniqueness result. It reveals the powerful identifiabil-

ity of PARAFAC-based algorithms. Then, the matrix unfolding of tensor

was introduced. Afterwards, we discussed ACDC which handles BI-QSS

using alternating optimization. TALS, making use of the matrix unfold-

ings of tensor, rewrites the BI-QSS problem into three least-squares data

fitting problems which can be handled e�ciently.

An important observation is that a joint-source identification ap-

proach is used for both JD and PARAFAC; i.e., they aim at identify-

ing the whole mixing matrix A simultaneously. In the next chapter,

we will propose a blind identification criterion which inherently suggests

per-source identification.

2 End of chapter.



Chapter 4

Proposed Algorithms

In this chapter, we will first devise a blind identification criterion based on

the subspace characteristic of the observations. The proposed criterion

is structurally di↵erent from that of PARAFAC and JD. Specifically, it

inherently suggests a per-source identification procedure for identifying

the mixing matrix A [1, 2]. In addition, the proposed criterion provides

strong identifiability.

Then, we will devise BI-QSS algorithms utilizing the proposed crite-

rion. A simple technique called Alternating Projections (AP) [3] will be

used to handle the problem. The resulting BI-QSS algorithm contains

only simple closed form updates. An all-column identification procedure

will also be introduced to complement the per-source identification pro-

cedure suggested by the proposed criterion.

Afterwards, we will focus on overdetermined mixing models, in which

prewhitening is possible. With the employment of prewhitening, the

convergence behavior of AP is dramatically improved [1]. We will show

that the proposed algorithm converges to the true mixing matrix columns

in one iteration with probability one. As a side benefit, the all-column

identification procedure can be significantly simplified in overdetermined

mixing models.

We will then consider the more challenging underdetermined mixing

models. As prewhitening is no longer possible, AP may be ine�cient.

We will propose rank minimization heuristics to speed up the algorithm.

26
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Recently, the rank minimization heuristic has received great research

interest in many areas like image processing and video processing [40–

42,44]. Furthermore, in order to improve the runtime performance, ideas

from the augmented Lagrangian method [41,48,52] is used. Interestingly,

the resulting algorithm possesses a smooth optimization interpretation

[43]. Specifically, we will show the connection between the proposed

algorithm and the Huber loss function widely used in robust statistics

[55].

At the end of this chapter, we consider a practical situation in which

corrupted local covariance matrices exist. To the best of my knowledge,

there are few works that explicitly consider blind identification with ro-

bustness against corrupted data. In this thesis, we will consider robust

subspace extraction, in which the corrupted local covariance matrices are

detected and dropped in the subspace extraction procedure.

4.1 KR Subspace Criterion

Let us first devise the proposed blind identification criterion. Recall the

noise-free local covariance model (cf. Section 2.3):

Rm = ADmAH
, m = 1, . . . ,M. (4.1)

Define ym 2 CN2
by:

ym , vec(Rm) = vec(
K
X

k=1

dmkaka
H
k )

=
K
X

k=1

dmk(a
⇤
k ⌦ ak) (4.2)

= (A⇤ � A)dm (4.3)

where vec(·) is the vectorization operator, � is the Khatri-Rao (KR)

product and dm = [dm1

, . . . , dmK ]T . The equality in (4.2) is due to a

property of Kronecker product1. Furthermore, stacking all ym yields

Y , [y
1

, . . . ,yM ] = (A⇤ � A) T 2 CN2⇥M
, (4.4)

1We have a⌦ b = vec(baT ).
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where  T = [d
1

, . . . ,dM ] (cf. Eq. (3.31)). We are interested in the

subspace characteristics of Y. Here, we make the following two additional

assumptions:

(A4) The mixing matrix A 2 CN⇥K has full Kruskal rank;

(A5)  has full column rank for M > K;

where the justifications are already given in Section 3.2.1.

According to assumption (A4) , it can be shown that

A⇤ � A 2 CN2⇥K

has full column rank for K  2N � 1. Therefore, it is easy to verify that

R(Y) = R(A⇤ � A), (4.5)

where R(X) is the range space of X. An important implication of (4.5)

is that

a⇤
k ⌦ ak 2 R(Y), k = 1, . . . , K,

where R(Y) can be extracted from the observations. Specifically, ac-

cording to the full column rank condition of A⇤ � A and  , Y admits

the following compact singular value decomposition (SVD):

Y = Us⌃sV
H
s , (4.6)

where ⌃s 2 RK⇥K is the non-zero singular value matrix and Us 2 CN2⇥K

and Vs 2 CM⇥K are the associated left and right singular matrices,

respectively. We also have

R(Us) = R(Y). (4.7)

Based on Eq. (4.5) and (4.7), we know that the mixing matrix columns

satisfy

a⇤
k ⌦ ak 2 R(Us). (4.8)

Therefore, the mixing matrix columns can be identified by the following

blind identification criterion:

find a

s.t. a⇤ ⌦ a 2 R(Us).
(4.9)
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As the above identification criterion involved the subspace of the self

KR product of A, we will call it the KR Subspace Criterion in the sequel.

One distinguishing feature of the KR subspace criterion is that it suggests

a per-source identification procedure in identifying A.

Before seeking a way to find a solution of the KR subspace criterion,

let us investigate its identifiability; i.e. under what conditions the mix-

ing matrix columns can be uniquely identified using the KR subspace

criterion, up to a scaling factor. For Vandemonde mixing matrix A, the

identifiability of the KR subspace criterion has been investigated in [2].

In this thesis, we generalize the result to consider A with full Kruskal

rank.

Theorem 4.1 Under (2.14), (A4), (A5). Then, K  2N � 2 is a neces-

sary and su�cient condition for

a = cak () a⇤ ⌦ a 2 R(Us), (4.10)

for any k = 1, . . . , K and for any non-zero constant c.

The proof of Theorem 4.1 is given in Appendix B.1. Theorem 4.1 implies

that the mixing matrix columns can be unambiguously identified using

the KR subspace criterion up to a scaling factor. In addition, it reveals

that the KR subspace criterion can deal with underdetermined mixing

models (i.e. K > N).

4.2 Blind Identification using Alternating Projec-

tions

In this section, we will focus on per-source blind identification suggested

by the KR subspace criterion. Motivated by the KR subspace criterion,

we consider the following problem:

min
↵,a,h

k↵a⇤ ⌦ a � hk2

s.t. |↵| = 1, kak2 = 1,h 2 R(Us),
(4.11)
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where k · k is the Euclidean norm. In essence, we want to minimize the

di↵erence between a vector having a self Kronecker product structure

and a vector in the KR subspace R(Us).

We employ alternating projections (AP) to handle Problem (4.11).

AP is a simple technique for finding an intersection point of some given

sets [3]. For Problem (4.11), AP splits the problem into two partial

minimization problems, one minimizing (4.11) w.r.t. h only while the

other minimizing (4.11) w.r.t. (↵, a) only. The partial minimization

problem of Problem (4.11) w.r.t. h with (↵, a) fixed is:

min
h

k↵a⇤ ⌦ a � hk2

s.t. h 2 R(Us),
(4.12)

which is a linear projection problem. The solution of Problem (4.12) is

given by

h = UsU
H
s (↵a⇤ ⌦ a). (4.13)

In addition, the partial minimization problem of Problem (4.11) w.r.t.

(↵, a) with h fixed is:

min
↵,a

k↵a⇤ ⌦ a � hk2

s.t. |↵| = 1, kak2 = 1.
(4.14)

Problem (4.14) also admits closed form solutions. To see this, consider

the objective function of Problem (4.14):

k↵a⇤ ⌦ a � hk2 = |↵|2ka⇤ ⌦ ak2 � 2Re{↵⇤(a⇤ ⌦ a)Hh} + khk2

= 1 � 2Re{↵⇤aHvec�1(h)a} + khk2 (4.15)

= 1 � 2Re{↵⇤aHH̃a} + khk2 (4.16)

� 1 � 2|aHH̃a| + khk2

, (4.17)

where H̃ , 1

2

�

vec�1(h) + (vec�1(h))H
�

and vec�1(·) is the devectoriza-

tion operator. Again, a property of Kronecker product2 has been used in

obtaining (4.15). To minimize (4.17) w.r.t. a, the solution is given by

a = q
max

(H̃), (4.18)

2We have (b⇤ ⌦ a)Hvec(C) = aHCb
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where q
max

(X) denotes a unit-norm eigenvector of X associated with an

eigenvalue with the largest absolute value �
max

(X). Moreover, it is easy

to verify that the equality in (4.17) holds when

↵ = �

max

(H̃)/|�
max

(H̃)|. (4.19)

The alternating projections algorithm iteratively updates (↵, a,h) until

some stopping criterion is satisfied. We end this section by providing the

AP algorithm in Algorithm 1.

Algorithm 1 Alternating Projections Algorithm for Problem (4.11).

Input: Us: KR subspace; h 2 R(Us): a randomly generated initial point

Output: a: a mixing matrix column;

1: repeat

2: H̃ = 1

2

�

vec�1(h) + (vec�1(h))H
�

;

3: a = q
max

(H̃);

4: ↵ = �
max

(H̃)/|�
max

(H̃)|;

5: h = UsUH
s (↵a⇤ ⌦ a);

6: until a stopping criterion is satisfied.

4.2.1 All-Columns Identification

As the KR subspace criterion suggests a per-column identification ap-

proach, a way to identify all mixing matrix columns must be found.

Here, we propose a simple all-column identification procedure: we ran-

domly generate a large number of initializations h 2 R(Us). Every

time a solution is obtained from AP, we check the cross-correlation with

all previously identified columns. We accept a newly identified column if

the cross-correlations with the previously identified columns are less than

certain predefined constant 0 < � < 1. The exact algorithm is listed in

Algorithm 2.
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Algorithm 2 All-column Identification using Alternating Projections.

Input: Us: KR subspace; �: a small constant;

Output: A = [a
1

, . . . ,aK ]: mixing matrix;

1: initialize i = 1; randomly generate an initial point h 2 R(Us);

2: use the AP algorithm in Algorithm 1 with KR subspace Us and initial-

ization h to obtain a;

3: if i = 1 then

4: goto step 11;

5: end if

6: while i < K do

7: repeat

8: randomly generate an initial point h 2 R(Us);

9: use the AP algorithm in Algorithm 1 with KR subspace Us and

initialization h to obtain a;

10: until
|aH

j a|
kajkkak < �, 8 j = 1, . . . , i � 1.

11: ai = a; i = i+ 1;

12: end while

4.3 Overdetermined Mixing Models (N > K): Prewhitened

Alternating Projection Algorithm (PAPA)

Although we have shown that the operation on AP consists of only sim-

ple closed form updates, it has been noticed that AP may require a large

number of iterations to converge in general [3]. More importantly, the

all-column identification procedure in Algorithm 2 is ine�cient. Rather

unexpectedly, both the convergence behavior of AP and the way to iden-

tify all columns become dramatically di↵erent when the local covariance

matrices are prewhitened before the BI-QSS (cf. Section 2.5). In this

section, we will focus on the overdetermined mixing models in which

prewhitening is possible.

To facilitate our discussion, let us first introduce the following Theo-

rem:

Theorem 4.2 Suppose that A is unitary and the model error is absent
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(i.e. the local covariance model in Eq. (2.14) holds ideally). If the ini-

tialization of the AP algorithm is randomly generated by h = Us⇠ where

⇠ ⇠ CN (0, I), then, the AP algorithm converges to any one of the true

mixing matrix columns up to a scaling factor in one iteration with prob-

ability one.

The proof of Theorem 4.2 is given in Appendix B.2. Recall that the equiv-

alent mixing matrix Ã after prewhitening the local covariance matrices

{R
1

, . . . ,RM} is unitary (cf. Section 2.5). Hence, for the overdetermined

mixing models, we can first employ prewhitening, followed by applying

AP. In Fig. 4.1, the projection error

k(I � UsU
H
s )a⇤ ⌦ ak

against iteration is shown to demonstrate this desirable behavior. The

simulation is based on a perfect data scenario; i.e. the local covariance

matrices

Rm = ADmAH
, m = 1, . . . ,M

are synthetically generated, where A 2 R6⇥5. We can see that the num-

ber of iterations required by AP can be significantly reduced with the

employment of prewhitening.

Even better, with the employment of prewhitening, we can systemat-

ically identify all columns of the mixing matrix by exploiting the column

orthogonality of Ã (cf. Section 2.5). Suppose that we have already iden-

tified ãr. It can be shown that

R(P?
˜a⇤
r⌦˜ar

Us) = R(P?
˜a⇤
r⌦˜ar

Ã⇤ � Ã) = R(Ã�r � Ã�r), (4.20)

where Ã�r , [ã
1

, . . . , ãr�1

, ãr+1

, . . . , ãK ] and P?
˜a⇤
r⌦˜ar

is the orthogonal

complement projector of ã⇤
r ⌦ ãr. Therefore, by extracting the basis

matrix Qs 2 CN2⇥(K�1) from P?
˜a⇤
r⌦˜ar

Us using SVD and updating the KR

subspace

Us := Qs,

the identified column ãr will be completely eliminated from the KR sub-

space. For convenience, we call the proposed algorithm the Prewhitened
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Figure 4.1: Projection error against iteration

Alternating Projections Algorithm (PAPA) where the complete pseudo-

code is provided in Algorithm 3.

4.4 Underdetermined Mixing Models (N < K)

According to Theorem 4.1, BI-QSS algorithms devised from the KR sub-

space criterion (4.9) will also be applicable for K  2N � 2. However,

prewhitening is no longer possible when K > N . Therefore, AP may

exhibit slow convergence. In this section, we propose rank minimization

heuristics to speed up the AP convergence.

4.4.1 Rank Minimization Heuristic

Without prewhitening, the alternating projections algorithm in Algo-

rithm 1 may be slow in terms of number of iterations required [3]. Yet,

there is one interesting observation on the AP algorithm:
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Algorithm 3 Prewhitened Alternating Projection Algorithms.

Input: local covariance matices {R
1

, . . . ,RM};

Output: A = [a
1

, . . . ,aK ] = BÃ: mixing matrix;

1: perform the noise covariance removal procedure describe in Section 2.4;

2: compute R = 1

M

PM
m=1

Rm and perform a square-root factorization on R;

i.e., R = BBH ;

3: compute R̃m = B†Rm(B†)H , m = 1, . . . ,M ;

4: compute the compact SVD of Y = [vec(R̃
1

), . . . , vec(R̃M )]; i.e., Y =

Us⌃sVH
s , and set i = 1;

5: use the AP algorithm in Algorithm 1 with KR subspace Us and initial-

ization h = Us⇠ for ⇠ ⇠ CN (0, I) to obtain ãi;

6: compute P?
˜a⇤
i ⌦˜ai

= I � (ã⇤
i ⌦ ãi)(ã⇤

i ⌦ ãi)
H and obtain the basis matrix

Qs 2 CK2⇥(K�i)of P?
˜a⇤
i ⌦˜ai

Us using SVD;

7: update the KR subspace Us := Qs, set i := i + 1 and goto step 5 until

i > K;

8: Ã = [ã
1

, . . . , ãK ].

Observation 4.1 If the matrix H̃ in Algorithm 1 is of rank-1, then a

satisfies the KR subspace criterion in its next iteration.

The proof of Observation 4.1 is given in Appendix B.3. The desirable

property of H̃ can be incorporated by introducing a regularization term.

In essence, we consider the following rank regularized minimization prob-

lem (the objective function of Problem (4.11) is devectorized for nota-

tional convenience):

min
↵,a,H

k↵aaH � Hk2

F + �rank(H)

s.t. |↵| = 1, kak2 = 1, vec(H) 2 R(Us),
(4.21)

where H , vec�1(h) and � is a properly chosen regularization constant.

In Problem (4.21), we put incentive to lower the rank alongside with

finding a vector a⇤ ⌦ a in the KR subspace R(Us).

However, Problem (4.21) is challenging to be solved in general, owing

to the combinatorial nature of the rank function [40]. All is not lost,

nonetheless, as it has been known that nuclear norm is a simple yet
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e�cient heuristic in replacing the rank function [45–47]. Nuclear norm

is defined as

kXk⇤ = �

1

+ . . . + �r, (4.22)

where �i is the ith non-zero singular value of X and r is the rank of X.

Therefore, instead of attempting to solve Problem (4.21), we consider the

following nuclear norm regularization problem:

min
↵,a,H

k↵aaH � Hk2

F + �kHk⇤

s.t. |↵| = 1, kak2 = 1, vec(H) 2 R(Us).
(4.23)

Interestingly, the above formulation is similar to `

1

-`
2

optimization

used in basis pursuit (BP) [43], a very powerful technique used in com-

pressive sensing [39, 47]. In BP, we consider the following problem:

min
z

ky � Azk2 + �kzk
1

, (4.24)

where y is the observation, A is the dictionary, z is the variable known

to be sparse and � is a properly chosen regularization constant. In BP,

the `
2

-norm term is for the solution accuracy and the `
1

-norm term is

to promote the solution sparsity. The nuclear norm can be considered

as a matrix extension of the `
1

-norm in promoting low-rankness of the

solution.

Again, we use AP to handle Problem (4.23). For fixed h, the partial

minimization problem of Problem (4.23) w.r.t. (↵, a) is essentially the

same as Problem (4.14). Therefore, the closed form solutions of ↵ and a

in Algorithm 1 can be applied. For fixed (↵, a), the partial minimization

problem of Problem (4.23) w.r.t. h is:

min
H

k↵aaH � Hk2

F + �kHk⇤

s.t. vec(H) 2 R(Us),
(4.25)

which is a convex optimization problem. Thus, convex optimization al-

gorithms such as the Interior Point Method (IPM) [59] can be used to

handle Problem (4.25). Here, we use CVX [62, 63] to handle Problem

(4.25). The AP algorithm for Problem (4.23) is provided in Algorithm

4.
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Algorithm 4 Alternating Projections Algorithm for Problem (4.23).

Input: Us: KR subspace; h 2 R(Us): a randomly generated initial point;

Output: a: a mixing matrix column;

1: repeat

2: H̃ = 1

2

�

H + HH
�

;

3: a = q
max

(H̃);

4: ↵ = �
max

(H̃)/|�
max

(H̃)|;

5: compute H by handling Problem (4.25) using CVX;

6: until a stopping criterion is satisfied.

4.4.2 Alternating Projections Algorithm with Huber Function

Regularization

Solving Problem (4.25) using general purpose toolboxes (e.g. CVX) can be

slow in general, in terms of runtime. For alternating projections, simple

closed form solutions are highly desirable (cf. Algorithm 1). Therefore,

we are motivated to find a computational e�cient way to update H.

In Problem (4.25), the subspace constraint vec(H) 2 R(Us) prevents

one from getting closed form solution. In fact, in the absence of the

subspace constraint, H can be updated in closed form using the singular

value thresholding (SVT) [40, 44]. Specifically, the SVT is defined as:

SVT(X, µ) = U(⌃� µI)
+

VH
, (4.26)

where X = U⌃VH and (·)
+

is the element-wise thresholding operator

defined as:


(X)
+

�

ij

=

8

>

<

>

:

xij � µ if xij � µ,

0 if xij < µ.

(4.27)

Let us consider the following equivalent formulation of Problem (4.25):

min
H,G

k↵aaH � Hk2

F + �kGk⇤

s.t. vec(H) 2 R(Us),H = G,

(4.28)

where G is a splitting variable. Although Problem (4.28) is equivalent

to (4.25), the variables in the Frobenius norm and the nuclear norm

are now split up in the objective function. Now, consider the following
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approximation:

min
H,G

k↵aaH � Hk2

F + ⇢kH � Gk2

F + �kGk⇤

s.t. vec(H) 2 R(Us),
(4.29)

where an augmented term is added for the constraint H = G in Problem

(4.28) and ⇢ is a properly chosen regularization constant for the aug-

mented term. With a properly chosen ⇢, the solution of Problem (4.29)

should be close to that of Problem (4.28). It is important to note that

the subspace constraint and nuclear norm are now split to two di↵erent

variables H and G.

Again, we use alternating projections to handle Problem (4.29). As

mentioned previously (cf. Section 4.4.1), the partial minimization prob-

lem of Problem (4.29) w.r.t ↵ and a both have closed form solutions (cf.

Algorithm 1). Furthermore, the partial minimization problem of Prob-

lem (4.29) w.r.t both H and G also admit closed form solutions. Firstly,

let us consider the partial minimization problem of Problem (4.29) w.r.t.

H:
min
H

k↵aaH � Hk2

F + ⇢kH � Gk2

F

s.t. vec(H) 2 R(Us),
(4.30)

which is a linear projection problem. The solution of Problem (4.30) is

given by

H = vec�1

✓

1

1 + ⇢

UsU
H
s (↵a⇤ ⌦ a + ⇢vec(G))

◆

. (4.31)

Then, we consider the partial minimization problem of Problem (4.29)

w.r.t. G:

min
G

⇢kH � Gk2

F + �kGk⇤, (4.32)

whose solution is given by the SVT of H (for the sake of self-containedness,

the derivation of SVT is provided in Appendix C):

G = SVT

✓

H,

�

2⇢

◆

. (4.33)

Therefore, as both ↵, a,H and G admit closed form updates, the al-

gorithm is expected to be e�cient. More importantly, the above formula-

tion possesses a smooth optimization interpretation. Minimizing a non-

smooth function (e.g. `

1

norm) is computationally undesirable, in the
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Figure 4.2: Huber loss function.

sense that non-descent iterative method such as subgradient method [61]

has to be used. In the compressive sensing society, the `
1

-norm kxk
1

is

usually substituted by a general penalty function 's(x) =
P

i 's(xi) [43].

In order to accelerate convergence, naturally we would choose a convex

and smooth 's. A popular choice is the Huber loss function defined as

's(xi) =

8

>

<

>

:

x2
i

2µ
, 0  |xi|  µ,

|xi| � µ
2

, otherwise,
(4.34)

which is depicted in Fig. 4.3. Huber loss function makes compromise

between the `
1

and `
2

-norm. It has stronger incentive in penalizing small

values, and is essentially the same as `
1

-norm when the value is greater

than certain threshold. Now, consider the following proposition:

Proposition 4.1 In Problem (4.32), the optimal objective value is equiv-

alent to

min
G

⇢kH � Gk2

F + �kGk⇤ =
r
X

i=1

's(�i), (4.35)



CHAPTER 4. PROPOSED ALGORITHMS 40

where r is the rank of H, �i is the ith singular value of H and

's(�i) =

8

>

<

>

:

��i � �2

4⇢
, if �i � �

2⇢
,

⇢�

2

i , if �i <
�
2⇢
.

(4.36)

The proof of Proposition 4.1 is given in Appendix B.4. From Proposition

4.1, Problem (4.29) can be rewritten as

min
H,G

k↵aaH � Hk2

F + ⇢kH � Gk2

F + �kGk⇤

s.t. vec(H) 2 R(Us),

= min
H

n

k↵aaH � Hk2

F + min
G

⇢kH � Gk2

F + �kGk⇤

o

s.t. vec(H) 2 R(Us),

= min
H

k↵aaH � Hk2

F +
r
X

i=1

's(�i)

s.t. vec(H) 2 R(Us),

(4.37)

where �i is the ith singular value of H. Specifically, a smooth approx-

imation of the nuclear norm is employed. For convenience, we call the

algorithm KR Huber, in which the algorithm is given in Algorithm 5.

To illustrate the e�cacy of nuclear norm regularization and Huber

regularization, let us check the convergence behavior of AP. The projec-

tion error k(I � UsUH
s )a⇤ ⌦ ak2 is shown in Fig. 4.2. Here, we consider

the perfect data scenario (cf. Section 4.3) where A 2 R5⇥7. The regular-

ization constants are (�, ⇢) = (0.5, 1). We can see that the nuclear norm

regularization dramatically reduces the number of iterations required by

AP. The Huber regularization reduces the number of iterations as well,

although the reduction is traded o↵ by the computational e�ciency.

4.5 Robust KR Subspace Extraction

In our framework, a very important step is to extract the KR subspace

Us. The KR subspace is extracted by computing the compact SVD of

Y (cf. Section 4.2):

Y = [vec(R
1

), . . . , vec(RM)].
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Figure 4.3: Projection error against iteration

If there is no modeling error on the local covariance matrices {R
1

, . . . ,RM},

using SVD is satisfactory. In practice, however, the estimated local co-

variance matrices may su↵er from severe modeling errors; i.e.,

Rm = ADmAH + Em, m = 1, . . . ,M, (4.38)

where {E
1

, . . . ,EM} represent modeling errors. In BI-QSS, the local co-

variance model is based on the assumption that the sources are mutually

independent; nevertheless, in some cases, this assumption can be severely

violated. In other words, the source covariance matrices {D
1

, . . . ,DM}

may no longer be diagonal. In Fig. 4.4, the correlation between two

speech sources against the frame number is shown. The correlation of

two vectors x
1

and x
2

is defined as

xH
1

x
2

kx
1

kkx
2

k .

We can see that the correlation is small in general. However, in some

frames, the source correlation can be quite high. The local covariance
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Algorithm 5 KR Huber.

Input: Us: KR subspace; h 2 R(Us),G: randomly generated initial points.

Output: a: a mixing matrix column;

1: H = vec�1(h);

2: repeat

3: H̃ = 1

2

�

H + HH
�

;

4: a = q
max

(H̃);

5: ↵ = �
max

(H̃)/|�
max

(H̃)|;

6: repeat

7: G = SVT
⇣

H, �
2⇢

⌘

;

8: H = vec�1

⇣

1

1+⇢UsUH
s (↵a⇤ ⌦ a + ⇢vec(G))

⌘

;

9: until a stopping criterion is satisfied.

10: until a stopping criterion is satisfied.
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Figure 4.4: Source correlation.

matrices corresponding to those frames will be corrupted. Eventually,

the KR subspace obtained from Y will be corrupted as well, i.e.

R(Us) 6= R(A⇤ � A). (4.39)

Therefore, identifying mixing matrix columns from the corrupted KR

subspace will be problematic.

In this section, we propose a way to detect and drop highly corrupted

local covariance matrices together with the KR subspace extraction pro-

cedure. To facilitate our discussion, let us first review the procedure in

extracting the KR subspace using SVD. The SVD of Y may be described
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Figure 4.5: Linear regression with outliers.

by the following optimization problem:

min
K,Us

kY � UsKk2

F

s.t. UH
s Us = I

= min
{k1,...,kM},Us

M
X

m=1

kym � Uskmk2

s.t. UH
s Us = I,

(4.40)

where K = [k1, . . . ,kM ] = ⌃sVH
s According to Problem (4.40), SVD

finds a basis matrix Us and a set of coe�cient vectors {k
1

, . . . ,kM} that

best fit the observations {y
1

, . . . ,yM} in a least-squares sense. If there

are some highly corrupted data in the set {y
1

, . . . ,yM}, finding a best

least-squares fit might result in corrupted subspace. Consider a linear

regression problem in the presence of outliers depicted in Fig. 4.5. In

Fig. 4.5, the normal data (the blue dots) show a clear linear pattern;

yet the linear regression model may give us a wrong model, e.g. the red

dotted line, because of the existence of outliers (the red squares). Here,

if we can detect and remove outliers before finding the linear regression

model, hopefully a more representative model can be obtained (i.e. the

blue dotted line).

Here, we incorporate a recently proposed method to drop highly cor-

rupted frames [38]. The rationale behind the method is that if the fitting

error

kym � Uskmk2 (4.41)
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is large, ym is likely to be corrupted. Therefore, we want to eliminate

those highly corrupted local covariance matrices during the extraction of

KR subspace. Consider the following problem:

min
num{z1,...,zM}Z

(

min
{k1,...kM},Us:UH

s Us=I

M
X

m=1

kym � Uskm � zmk2

)

,

(4.42)

where num{z
1

, . . . , zM} denotes the number of non-zero vectors in {z
1

, . . . , zM}

and Z is the predicted number of highly corrupted frames. Here, the

additional variables {z
1

, . . . , zM} is introduced to cancel out the highly

corrupted terms, determined by the fitting error kym � Uskmk2.

Problem (4.42) can be handled using alternating optimization. Specif-

ically, the partial minimization problem of Problem (4.42) w.r.t. {Us,k1

, . . . ,kM}

with {z
1

, . . . , zM} fixed is:

min
{k1,...,kM},Us

M
X

m=1

k(ym � zm) � Uskmk2

s.t. UH
s Us = I,

(4.43)

which can be handled by SVD (cf. Problem (4.40)); moreover, the partial

minimization problem w.r.t. {z
1

, . . . , zM} with {Us,k1

, . . . ,kM} fixed is

min
num{z1,...,zM}Z

M
X

m=1

k(ym � Uskm) � zmk2

, (4.44)

whose solution is given by

zm =

8

>

<

>

:

ym � Uskm, if m 2 I = {i
1

, i

2

, . . . , iZ},

0, if m /2 I,
(4.45)

where ik is the index of the kth largest value in {ky
1

�Usk1

k2

, . . . , kyM �

UskMk2}. From the above procedure, we can see that the most corrupted

Z frames will be discarded in the next subspace extraction procedure,

while the good frames remain intact. The robust KR subspace extraction

procedure is given in Algorithm 6.

4.6 Summary

In this chapter, we have introduced the KR subspace criterion based on

the local covariance model. The criterion is significantly di↵erent from
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Algorithm 6 Robust KR Subspace Extraction.

Input: {y
1

, . . . ,yM}: vectorized covariance matrices;

Output: Us: robust KR subspace;

1: initialize {z
1

, . . . , zM}.

2: repeat

3: compute the compact SVD of Ỹ = [y
1

� z
1

, . . . ,yM � zM ];

i.e., Ỹ = UsK;

4: compute the index set I by checking the value of

{ky
1

� Usk1

k2, . . . , kyM � UskMk2};

5: zm =

8

>

<

>

:

ym � Uskm, if m 2 I = {i
1

, i
2

, . . . , iZ},

0, if m /2 I,
6: until a stopping criterion is satisfied.

that of PARAFAC and JD, in the sense that per-column identification

procedure is suggested. We have shown that K  2N � 2 is an su�cient

condition for the KR subspace criterion to uniquely identify the mixing

matrix columns, up to scaling factor.

Then, an algorithm handling BI-QSS utilizing the KR subspace cri-

terion was devised. Specifically, alternating projections (AP) is used to

handle BI-QSS whose solution can be computed in simple closed forms.

An all-column identification procedure based on multiple randomized ini-

tializations is used to complement the per-column identification nature

of the KR subspace criterion.

The subsequent development was divided into two parts. First of all,

we considered overdetermined mixing models (N > K). In that case,

we have shown that employing prewhitening before BI-QSS is beneficial

to our proposed algorithm. With the employment of prewhitening, the

proposed algorithm possesses provably rapid convergence. Moreover, we

proposed a specialized all-column identification procedure by exploiting

the unitarity of the mixing matrix after prewhitening.

In underdetermined mixing models (K > N), prewhitening is no

longer possible. In order to speed up the convergence, rank minimization

heuristics were proposed. Specifically, we considered a nuclear norm reg-
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ularized problem. We have demonstrated that the nuclear regularization

works well. Then, we proposed an e�cient way to handle the nuclear

norm regularized problem which shows connections with the Huber loss

function used in smooth optimization and robust estimation.

Finally, we considered a practical situation where corrupted local co-

variance matrices are present. A robust subspace extraction procedure

was proposed to mitigate the e↵ect of corrupted data.

2 End of chapter.



Chapter 5

Simulation Results

In this chapter, we will use simulations to demonstrate the e�cacy of

PAPA and KR Huber. We will first introduce the general settings used

throughout this chapter. Then, the discussion will be divided into two

parts. In the first part, we will show the performance of PAPA in overde-

termined mixing models. We will compare PAPA with FFDIAG [4],

UWEDGE [9], Pham’s JD [5] and TALS [11]. In the second part, the

performance of KR Huber in underdetermined mixing models will be

examined. We will compare KR Huber with TALS [11] and ACDC [12].

5.1 General Settings

The general settings used in both overdetermined and underdetermined

mixing models are listed below:

(S1) The mixing matrix A 2 RN⇥K is randomly generated at each trial,

where the elements of A are i.i.d. Gaussian distributed with zero

mean and unit variance. The columns of A are then normalized to

unit norm.

(S2) The source signals are speech recordings. A database consisting of

23 speech signals, each with length 6 seconds, is used. The speech

signals are normalized to zero mean and unit power. The sampling

rate is equal to 16kHz.

(S3) The received signals x(t) are partitioned into M frames, each with

47
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L samples. Furthermore, in the estimation of local covariance ma-

trices, frames with 50% overlapping is employed; i.e.

Rm =
1

L

0.5(m�1)L+L
X

t=�0.5(m�1)L+1

x(t)xH(t). (5.1)

(S4) To simulate a noisy environment, noise is added to the observations.

The signal-to-noise ratio (SNR) is defined as

SNR =
1

T

T�1

X

t=0

E{kAs(t)k2}
E{kv(t)k2} ,

where T = M ⇥ L is the length of source signals.

(S5) The noise removal procedure discussed in Section 2.4 was applied

to the estimated local covariance matrices {R
1

, . . . ,RM}.

(S6) The robust subspace extraction procedure provided in Algorithm

6 is used. It stops when the relative change in objective value is

lower than 10�3, or the number of iterations exceed 15. We assume

15% of the frames (after frame overlapping) are corrupted.

(S7) The proposed algorithms will be stopped when its relative change

in objective value is lower than 10�6; i.e.,

|f (n+1) � f

(n)|
|f (n)| < 10�6

,

where f

(n) is the objective value of the algorithm at the nth it-

eration; we stop other BI-QSS algorithms using similar stopping

criteria for benchmarking.

(S8) The maximum allowable number of iterations is 2000.

(S9) The performance measure employed here is the average mean square

error (MSE), defined as

MSE = min
⇡2⇧,

c1,...,cK2{±1}

1

K

K
X

k=1

�

�

�

�

ak

kakk
� ck

â⇡(k)

kâ⇡(k)

k

�

�

�

�

2

,

where⇧ is the set of all bijections ⇡ : {1, 2, . . . , K} ! {1, 2, . . . , K};

A and Â are the true and estimated mixing matrix, respectively.

In essence, the MSE is calculated after fixing the scaling and per-

mutation ambiguities.
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(S10) All the algorithms are run on a Desktop PC with Core 2 Duo 3GHz

CPU and 4GB RAM, and the codes are all written in MATLAB.

One thousand independent trials are performed.

5.2 Overdetermined Mixing Models

In this section, we consider overdetermined mixing models. Specifically,

we will compare PAPA with FFDIAG [4], UWEDGE [9], Pham’s JD1 [5],

and TALS [11]. Except for TALS, the noise covariance removed local

covariance matrices are prewhitened.

5.2.1 Simulation 1 - Performance w.r.t. SNR

Let us first examine the performance of BI-QSS w.r.t. SNR. We fix

(N,K) = (6, 5) and (M,L) = (399, 200). Note that the number of avail-

able frames M is calculated after frame overlapping. The average MSEs

of the various algorithms w.r.t. SNR are shown in Fig. 5.1. We can see

that TALS performs well in low SNR regime. For SNR � 5dB, PAPA

yields the best estimation accuracy.

Table 5.1 shows the average runtimes of the various algorithms w.r.t.

SNR. For PAPA, we also listed the average number of iterations required

for the AP to converge. PAPA clearly demonstrated its high e�ciency.

It is at least four times faster than UWEDGE. It is also worth noticing

that even in face of modeling error, PAPA converges with small number of

iterations. It matches the rapid convergence behavior shown in Theorem

4.2.

5.2.2 Simulation 2 - Performance w.r.t. the Number of Avail-

able Frames M

Next, let us examine the e↵ect of the number of available frames M on

BI-QSS. We fix (N,K) = (6, 5) and L = 200. The SNR is fixed at 10dB.

The average MSEs of the various algorithms w.r.t. M are shown in Fig.

1Diagonal loading �I with � = 1e�6 is added to the local covariance matrices to ensure

positive definiteness.
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Figure 5.1: The average MSEs of the various algorithms w.r.t. SNR.

5.2. When the number of frames is not enough, BI-QSS algorithms are

not able to capture the non-stationarity of the source signals. Therefore,

estimation accuracy of the various algorithms are poor. We can see when

M is su�ciently large, PAPA yields the best estimation accuracy.

Table 5.2 shows the average runtimes of the various algorithms w.r.t.

M . When the number of frames is not su�cient, the runtime of PAPA is

less competitive. However, we can see that the runtime of PAPA grows

slowly against M , comparing with other algorithms. It is due to the fact

that after extracting the robust KR subspace, the number of frames M

has no e↵ect to PAPA.

5.2.3 Simulation 3 - Performance w.r.t. the Number of Sources

K

We also test the proposed algorithm with di↵erent number of sources.

Here, the number of sensors is equal to K + 1 and (M,L) = (399, 200).
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Table 5.1: The average runtimes of the various algorithms w.r.t. SNR.

SNR-10dB 0dB 10dB 20dB 30dB 40dB

PAPA
Time (sec.) 0.00722 0.00798 0.00556 0.00537 0.00536 0.00539

Iteration 13.22 6.972 4.336 3.614 3.504 3.479

FFDIAG Time (sec.) 0.167 0.0685 0.0391 0.034 0.0334 0.0329

UWEDGE Time (sec.) 0.186 0.0554 0.03 0.0246 0.0234 0.0236

Pham’s JD Time (sec.) 5.935 1.952 1.401 1.119 1.045 1.04

TALS Time (sec.) 2.484 1.252 1.327 1.307 1.335 1.348

Table 5.2: The average runtimes of various algorithms w.r.t. M .

M=39 159 319 479 639 799 959

PAPA
Time (sec.) 0.00849 0.00588 0.00568 0.00625 0.00699 0.00762 0.0083

Iteration 15.0702 5.153 4.394 4.289 4.374 4.39 4.277

FFDIAG Time (sec.) 0.00729 0.00172 0.0333 0.0479 0.0624 0.0796 0.0956

UWEDGE Time (sec.) 0.0062 0.0112 0.0211 0.0306 0.0388 0.0490 0.0586

Pham’s JD Time (sec.) 0.0575 0.3501 1.097 2.29 3.789 6.208 8.959

TALS Time (sec.) 0.386 0.594 1.068 1.996 3.543 5.553 7.402
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Figure 5.2: The average MSEs of the various algorithms w.r.t. M .

The SNR is fixed at 10dB. The performance is given in Table 5.3. We can

see that PAPA gives satisfactory estimation accuracy and at the same

time quite e�cient.

5.3 Underdetermined Mixing Models

In this section, we consider underdetermined mixing models. We will

compare KR Huber with TALS [11] and ACDC [12]. Throughout this

section, we fix (N,K) = (5, 7) and (M,L) = (399, 400). Moreover, it has

been noticed that in underdetermined mixing models, good conditioning

of A is crucial [20–22]. Here, we constrain the columns of A to have

cross-correlation less than 0.8; i.e.,

|aH
i aj| < 0.8, 8 i 6= j.
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Table 5.3: Identification performance of various algorithms w.r.t. K.

K =6 7 8 9 10

PAPA

MSE (dB) -25.68 -23.49 -22.65 -22.29 -21.07

Time (sec.) 0.0104 0.0176 0.0268 0.0426 0.0616

Iteration 4.626 4.794 4.918 5.008 5.092

FFDIAG
MSE (dB) -20.48 -19.71 -18.64 -18.78 -17.91

Time (sec.) 0.0491 0.0628 0.0737 0.0946 0.103

UWEDGE
MSE (dB) -20.48 -19.71 -18.64 -18.78 -17.91

Time (sec.) 0.0464 0.0581 0.0691 0.0872 0.0977

For KR Huber (cf. Algorithm 4), we set (�, ⇢) = (0.5, 1). Also, the

inner alternating projections (Problem (4.29)) terminates when

|g(n+1) � g

(n)|
|g(n)| < 10�3

,

where g

(n) is the objective value of Problem (4.29) at the nth iteration.

5.3.1 Simulation 1 - Success Rate of KR Huber

In underdetermined mixing models, all-column identification of KR Hu-

ber relies on randomized initializations (cf. Algorithm 2). In this sec-

tion, let us begin with examining the e�cacy of Algorithm 2. Here, we

fix the maximum number of randomized initializations to 20 ⇥K = 140.

Algorithm 2 will be terminated when K columns with cross-correlations

|âH
i âj| < 0.8

are obtained.

The performance of Algorithm 2 applying to KR Huber is given in

Table 5.4. Specifically, Algorithm 2 is considered to be “successful”

if K columns with cross-correlation less than 0.8 are obtained. For low

SNR (SNR=-10dB), Algorithm 2 performs badly. When the SNR is so

low, the modeling error is severe. Even with robust KR subspace extrac-

tion, the extracted subspace can be severely corrupted. Fortunately, for

reasonable SNR, promising success rate can be seen.
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Table 5.4: Performance on the all-column identification heuristic.

Success rate

SNR (dB) -10 0 10 20 30 40

KR Huber (%) 6.2 79.7 87.7 87.5 88.1 87.6

Table 5.5: The average runtimes of the various algorithms w.r.t. SNR.

SNR-10dB 0dB 10dB 20dB 30dB 40dB

KR Huber Time (sec.) 2.6 0.54 0.304 0.31 0.291 0.29

TALS Time (sec.) 2.654 1.82 1.782 1.778 1.772 1.849

ACDC Time (sec.) 19.3 14.05 13.88 14.43 14.92 14.32

5.3.2 Simulation 2 - Performance w.r.t. SNR

Subsequently, let us compare KR Huber with TALS and ACDC. For the

case where Algorithm 2 fails, the remaining unidentified columns are

randomly generated. In those instances, the estimation is completed by

putting the estimated mixing matrix Â to TALS as an initialization. The

average MSEs of the various algorithms w.r.t SNR are shown in Fig. 5.3.

In the low SNR regime, PARAFAC-based algorithms are competitive.

On the other hand, for SNR �5dB, KR Huber starts to work better.

KR Huber yields significantly better estimation accuracy comparing to

TALS and ACDC when SNR �15dB.

The average runtimes of the various algorithms w.r.t. SNR are listed

in Table 5.5. In the low SNR regime, as KR Huber is almost impossible

to get all K columns using Algorithm 2. As it relies heavily on TALS,

the runtime performance is similar to TALS. In the high SNR regime,

however, significantly better runtime performance of KR Huber can be

seen.

5.3.3 Simulation 3 - Performance w.r.t. M

Let us examine the e↵ect of the number of available frames M on BI-QSS.

We fix (N,K) = (5, 7) and L = 400. The SNR is fixed at 10dB. The

average MSEs of the various algorithms w.r.t. M are shown in Fig. 5.4.
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Figure 5.3: The average MSEs of the various algorithms w.r.t SNR.

Table 5.6: The average runtimes of the various algorithms w.r.t. M .

M=39 119 199 279 359 439 479

KR Huber Time (sec.) 0.943 0.49 0.329 0.318 0.303 0.308 0.318

TALS Time (sec.) 0.201 0.314 0.48 0.729 0.983 1.268 1.48

ACDC Time (sec.) 4.1 6.67 8.28 10.6 12.84 14.79 16.58

KR Huber performs substantially better than both TALS and ACDC,

and the performance gap is even wider when we have more frames.

Table 5.6 shows the average runtimes of the various algorithms w.r.t.

M . To KR Huber, insu�ciency of available frames has huge impact.

However, when M is getter greater, the average runtime of KR Huber

is almost invariant w.r.t. M . On the other hand, the computational

e�ciency of TALS and ACDC are getting worse when M increases.
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Figure 5.4: The average MSE of the various algorithms w.r.t. M .

5.3.4 Simulation 4 - Performance w.r.t. N

Finally, we test KR Huber with di↵erent number of sensors. Here, the

number of sources is equal to 2N � 3 and (M,L) = (399, 200). The SNR

is fixed at 10dB. The performance is given in Table 5.7. We can see that

KR Huber estimates the mixing matrix A quite accurately even when

we have so many sources. In terms of runtime performance, KR Huber

is also attractive.

5.4 Summary

In this chapter, we have demonstrated the e�cacy of PAPA and KR

Huber by extensive simulations. The two algorithms yield competitive

estimation accuracy and computational e�ciency. Hence, we conclude

that the proposed BI-QSS algorithms are e�cient and serve as good BI-

QSS alternatives in practice.
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Table 5.7: Performance of various algorithms against N .

N =5 6 7 8 9

KR Huber
MSE (dB) -22.95 -21.08 -19.69 -17.96 -17.52

Time (sec.) 0.293 0.58 0.948 1.52 2.281

TALS
MSE (dB) -14.06 -14.17 -13.89 -14.12 -13.73

Time (sec.) 1.468 2.247 3.364 4.927 6.277

ACDC
MSE (dB) -15.43 -15.55 -15.75 -15.65 -15.39

Time (sec.) 13.77 18.3 22.14 21.7 25.36

2 End of chapter.



Chapter 6

Conclusion and Future Works

In this thesis, blind identification of mixtures of quasi-stationary sources

(BI-QSS) has been studied. Specifically, a second-order statistics (SOSs)

based per-source blind identification criterion has been developed based

on exploiting the time-varying characteristics of quasi-stationary sig-

nals. We have shown that this blind identification criterion uniquely

determines (up to scaling ambiguity) the mixing matrix columns for

K  2N � 2, where N and K denote the number of sensors and sources

in a given system, respectively. Moreover, for the overdetermined mixing

models, a specialized alternating projections algorithm has been pro-

posed, in which the mixing matrix column can be uniquely determined

in one iteration with probability one under some mild conditions. For

the more challenging underdetermined mixing models, rank-minimization

heuristics were proposed to speed up the alternating projections algo-

rithm. In practical situations, the existence of corrupted data is in-

evitable. A specialized robust subspace extraction procedure was em-

ployed to mitigate the damage caused by corrupted data. Extensive

simulation results illustrate that KR subspace based algorithms are com-

petitive in both computational complexity and estimation accuracy.

As a future direction, it would be interesting to seek a systematic

way in performing all-column identification in underdetermined mixing

models. We have already seen the competitive performance of KR Huber

when the all-column identification heuristic works well. Also, with the
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ability to systematically cancel the estimated columns, the runtime per-

formance can be significantly improved. Besides, it would be interesting

to see how the joint BSS [17] work can be incorporated in our proposed

algorithms in e�ciently handling convolutive mixtures. Owing to the

high e�ciency of PAPA, real-time blind identification would also be an

interesting direction to pursue.

2 End of chapter.



Appendix A

Convolutive Mixing Model

Recall the linear convolutive mixing model:

x(t) = A ? s(t) + v(t)

=
L
X

⌧=0

A(⌧)s(t � ⌧) + v(t), t = 0, 1, 2, . . . ,
(A.1)

where L is the length of the convolutional sum. This linear convolutive

mixing model is considered to be a realistic model because the rever-

beration of the recording environment is taken into account. A typical

reverberative environment is illustrated in Fig. A.1. In a reverberative

environment, in addition to the directed sound, there are also reflected

sounds from the surfaces. The reflected sounds are di↵erently delayed

and mixed to form the received signal vector x(t).

Figure A.1: Reverberation.

To handle the linear convolutive mixing model, one may transform it

into the frequency domain and solve a set of blind identification prob-

lems with linear instantaneous mixing model corresponding to di↵erent

frequencies. To do so, we make use of the discrete Fourier Transform
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(DFT). Recall an important property of DFT:

F(x(t) � y(t)) = F(x(t))F(y(t)), (A.2)

where F(·) is the DFT operator and � is the circular convolution operator.

It is known that linear convolution can be approximated by a circular

convolution if the size of DFT is much larger than L [14]. Hence, by

applying DFT to both sides of Eq. (A.1), we get

x(f, t) ⇡ A(f)s(f, t) + v(f, t), for T � L, (A.3)

where x(f, t) ,PT�1

⌧=0

x(t+⌧)e� j2⇡f⌧
T is the DFT of [x(t), . . . ,x(t+T�1)].

The expressions of A(f) and s(f, t) carry in the same fashion. With the

model in Eq. (A.3), the local covariance model can be derived. The local

covariance matrix in the mth frame at frequency f is defined as

Rm(f) = E{x(f, t)x(f, t)H}, for t 2 [(m � 1)L + 1,mL]. (A.4)

Since we have assumed that the sources are mutually independent (cf.

Assumption (A1)), we have

Rm(f) = A(f)Dm(f)A(f)H + �

2(f)I. (A.5)

where Dm(f) is the source local covariance matrix in the mth frame at

frequency f and �

2(f) is the variance of v(f, t) at frequency f . One

important observation is that Eq. (A.5) is exactly the same as the lo-

cal covariance model with linear instantaneous mixing model (cf. Eq.

(2.6)). Therefore, for fixed f , technique developed based on the linear

instantaneous mixing model (e.g. PAPA and KR Huber) can be applied

to identify A(f).

However, there is another practical and even more challenging issue

that one must be careful of. It is well known that A(f) can only be

specified up to permutation and scaling; i.e.,

Â(f) = D(f)⇧(f)A(f), f = 0, . . . , T � 1. (A.6)

With instantaneous mixing model, these ambiguities are immaterial.

However, it poses a serious problem in convolutive mixing model. Specif-

ically, consistent permutations and scalings across frequencies are neces-

sary for correctly reconstructing the sources s(t) [14,23]. In fact, resolving
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the frequency-dependent scaling and permutation ambiguities arising in

convolutive mixing model is a very challenging topic and active research

are still on-going.



Appendix B

Proofs

B.1 Proof of Theorem 4.1

Let us begin with the su�ciency. For K  2N � 2, we have R(Us) =

R(A⇤ � A). Then, it is trivial that

a = cak =) a⇤ ⌦ a 2 R(Us).

For the converse, we first write a⇤ ⌦ a = (A⇤ � A)�, where � =

[�
1

, . . . , �K ]T 2 CK . Equivalently, by devectorization, we have

aaH = ADAH
, (B.1)

where D = Diag(�). Assume without loss that �
1

, . . . , �J > 0, where

J  K. Let us examine the ranges of J :

Case 1: when J  N , we have

aaH = ǍĎǍH
, (B.2)

where Ď = [�
1

, . . . , �J ] 2 CJ⇥J and Ǎ = [a
1

, . . . , aJ ] 2 CN⇥J . Since Ǎ

has full column rank (according to (A4)) and L.H.S. of (B.2) is of rank

1, there can only be one non-zero element in Ď, which implies a = cak.

Case 2: when N < J  K, we will show it by contradiction. We first

observe that span{a
1

, . . . , aN} = CN . Then, assume

a = A
1

⌘

without loss of generality where A
1

= [a
1

, . . . , aN ] 2 CN⇥N and ⌘ =
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[⌘
1

, . . . , ⌘N ]. By (B.1), we have

aaH = A
1

⌘⌘HAH
1

= A
1

D
1

AH
1

+ A
2

D
2

AH
2

, (B.3)

where D
1

= Diag(�
1

, . . . , �N) 2 CN⇥N , D
2

= Diag(�N+1

, . . . , �J , 0, . . . , 0) 2

CK�N⇥K�N and A
2

= [aN+1

, . . . , aK ] 2 CN⇥K�N . According to Eq.

(B.3), we have

A
1

⌘⌘HAH
1

� A
1

D
1

AH
1

= A
2

D
2

AH
2

. (B.4)

According to the full column rank condition of A
1

and A
2

, we have

rank(A
1

⌘⌘HAH
1

� A
1

D
1

AH
1

) = rank(⌘⌘H � D
1

) � N � 1

and

rank(A
2

D
2

AH
2

) = rank(D
2

) = J � N  K � N.

As a consequence, we arrive at K � 2N � 1, which contradict to the

assumption K  2N �2. It means that case 2 can never happen and the

su�ciency is completed.

For the necessity, we proof it by contradiction. Consider a Vander-

monde A; i.e., ak = [1, ej✓k
, . . . , e

j(N�1)✓k ], for which ✓k 2 [0, 2⇡) and

✓i 6= ✓j, 8 k 6= j. This A has full Kruskal rank [58], which satisfies (A4).

Suppose that

a = [1, ej 
, . . . , e

j(N�1) ]

for some  and K = 2N � 1 (thus K > 2N � 2). Then, by choosing

✓k =

8

>

<

>

:

2⇡(k�1)

N
, k = 1, . . . , N,

2⇡(k�N�1)

N
+ ⇡

N
, k = N + 1, . . . , 2N � 1,

and  = 2⇡(N�1)

N
+ ⇡

N
. It can be verified that A

1

and [A
2

, a] are both

unitary. By choosing D
1

= I and D
2

= �I, both sides of Eq. (B.3) will

be equal to I. It implies a⇤ ⌦ a 2 R(Us) but a 6= cak, 8 k and the proof

is completed. ⌅
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B.2 Proof of Theorem 4.2

It can be verified that for a unitary A, A⇤ � A is semi-unitary (i.e.

(A⇤ � A)H(A⇤ � A) = I). With this property, it can be shown that

Us = (A⇤ � A)� (B.5)

for some unitary � 2 CK⇥K . By the unitarity of �, we have ⌘ , �⇠ ⇠

CN (0, I). Subsequently, the initialization can be expressed as

h = Us⇠ = (A⇤ � A)⌘. (B.6)

Let us consider the devectorization of h. Devectorizing both sides of

(B.6) yields

vec�1(h) = ADiag(⌘)AH
. (B.7)

Therefore, we have

H̃ =
1

2

�

vec�1(h) + vec�1(h)H
�

= A

✓

Diag(⌘ + ⌘⇤)

2

◆

AH

= ADiag(Re{⌘})AH
.

(B.8)

Since A is unitary, the right hand side of Eq. (B.8) is in fact an eigen-

value decomposition (EVD) of H̃. The remaining question is whether

(B.8) is the unique EVD. It is known that if the eigenvalues Re{⌘
1

}, . . . ,Re{⌘K}

are distinct, then the correspecting EVD is unique. As ⌘ is a continu-

ous random vector, Re{⌘i} = Re{⌘j} holds with probability zero for any

i 6= j and the proof is completed. ⌅

B.3 Proof of Observation 4.1

Denote (↵(k)

, a(k)

,h(k)

, H̃(k)) by the solutions of AP after the kth iteration

according to Algorithm 1 (cf. Section 4.2). Suppose that H̃(k) is of

rank-1, i.e.

H̃(k) = �bbH
,

for some � 2 C,b 2 CN . Then, in the next AP iteration (cf. Algorithm

1), we have

↵

(k+1)a(k+1)(a(k+1))H = �bbH = H̃(k)

. (B.9)
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We also have

h(k+1) = UsU
H
s

⇣

↵

(k+1)

�

a(k+1)

�⇤ ⌦ a(k+1)

⌘

= UsU
H
s vec(H̃(k)).

(B.10)

Therefore, the objective value of (4.11) after the (k + 1)th iteration is

k↵(k+1)

⇣

�

a(k+1)

�⇤ ⌦ a(k+1)

⌘

� h(k+1)k2

=k(I � UsU
H
s )vec(H̃(k))k2

=0,

(B.11)

where the last equality is due to the fact that vec(H̃) 2 R(Us) as h 2

R(Us). It means that (a(k+1))⇤ ⌦ a(k+1) 2 R(Us), in which the KR

subspace criterion is satisfied. Thus, the AP terminates as it has already

reached an intersection of two given sets and the proof is completed. ⌅

B.4 Proof of Proposition 4.1

Let us assume H is of rank-1 for simplicity. Denote the non-zero singular

value of H by �. Therefore, for � � �
2⇢

, we have

⇢kH � G?k2

F + �kG?k⇤ = ⇢

✓

� � (� � �

2⇢
)

◆

2

+ �(� � �

2⇢
)

= �� � �

2

4⇢
.

(B.12)

And for � <

�
2⇢

, we have

⇢kH � G?k2

F + �kG?k⇤ = ⇢�

2

. (B.13)

To summarize, we have

⇢kH � G?k2

F + �kG?k⇤ =

8

>

<

>

:

�� � �2

4⇢
, if � � �

2⇢
,

⇢�

2

, if � <

�
2⇢
,

(B.14)

which is equivalent to a Huber loss function mapping the singular value

of H. The above derivation can be generalized to H of rank r in a

straightforward manner and the proof is completed. ⌅
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Singular Value Thresholding

Consider the following problem:

min
G

⇢kH � Gk2

F + �kGk⇤. (C.1)

The above problem is a proximal minimization problem in which the

solution is given by:

G? = SVT(H,

�

2⇢
), (C.2)

where SVT(·) is the singular value thresholding operator (cf. Eq. (4.26)

and (4.27)).

To see this, first note that the objective function of Problem (C.1) is

strictly convex. Therefore, there exists a unique minimizer to Problem

(C.1). Thus, we want to show that the unique minimizer is equal to

SVT(H,

�
2⇢

).

For convenience, define

h(G) = ⇢kH � Gk2

F + �kGk⇤. (C.3)

It is known that [61]

h(G?) = inf
G

h(G) () 0 2 @h(G?), (C.4)

where @h(G?) is the subdi↵erential of h(G) at G?. In other words, we

have

0 2 H � G? +
�

2⇢
@kG?k⇤. (C.5)

It is known that [44]

@kXk⇤ = {UVH + W|UHW = 0,WV = 0, kWk
2

 1}, (C.6)
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where X = U⌃VH and k · k
2

is the dual norm of nuclear norm, i.e. the

spectral norm [54].

We set Ĝ = SVT(H,

�
2⇢

). Now, we want to show that Ĝ obeys Eq.

(C.5). Firstly, we decompose H as

H = U
0

⌃
0

VH
0

+ U
1

⌃
1

VH
1

, (C.7)

where U
0

, V
0

(resp. U
1

, V
1

) are the left and right singular matrices

associated with singular values greater than or equal to (resp. smaller

than) �
2⇢

. By this specialized decomposition, we have

Ĝ = U
0

(⌃
0

� �

2⇢
I)VH

0

, (C.8)

and therefore
Ĝ � H = � �

2⇢
U

0

VH
0

� U
1

⌃
1

VH
1

= � �

2⇢
(U

0

VH
0

+ W),
(C.9)

where W , 2⇢
�
U

1

⌃
1

VH
1

. By the unitarity of [U
0

,U
1

] and [V
0

,V
1

], we

have

UH
0

W = 0, WV
0

= 0. (C.10)

Moreover, by the decomposition structure of H, diagonal elements of ⌃
1

are all less than �
2⇢

; i.e.,

kWk
2

 1. (C.11)

Hence, we have

U
0

VH
0

+ W 2 @kĜk⇤, (C.12)

which implies that

0 2 H � Ĝ +
�

2⇢
@kĜk⇤. (C.13)

According to Eq. (C.5) and the strict convexity of Problem (C.1), we

have

Ĝ = G? = SVT(H,

�

2⇢
), (C.14)

and the derivation is completed.



Appendix D

Categories of Speech Sounds and

Their Impact on SOSs-based BI-QSS

Algorithms

Although methods devised in this thesis are applicable for many di↵er-

ent kinds of quasi-stationary signals such as EEG signals [33], speech

signals are of particular interest motivated by the cocktail party prob-

lem. Hence, it would be interesting to analyze the second-order statis-

tics (SOSs) based BI-QSS methods under di↵erent typical categories of

speech sounds. In spoken language, a speech signal is composed of three

basic elements: vowels, consonants and silent pauses.

D.1 Vowels

Vowels are referred to sounds pronounced with an open vocal tract. It

has been noticed that voiced vowels are typically quasi-stationary over

40–80ms time windows [34].

D.2 Consonants

In contrast to vowels, consonants are produced by severely restricting or

even completely stopping the flow of air by controlling the vocal tract.

Typically, the quasi-stationary assumption for consonants is only valid
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when the analyze window is very short (less than 20ms [34]).

To sum up, in order to capture a stationary frame, the window length

should not be too long. For example, in automatic speech recogni-

tion (ASR), windows with length 20–30ms is used to capture the quasi-

stationarity of speech signals [34]. For frames significantly violating the

quasi-stationary assumption, those frames are corrupted. The proposed

robust subspace extraction procedure (cf. Section 4.5) will automatically

detect and eliminate those corrupted frames.

D.3 Silent Pauses

Simply put, silent pause means that the speakers momentarily stops their

speech. In order to simplify the discussion, we consider a scenario in

which two speakers are talking simultaneously and more than two mi-

crophones are recording the speech mixtures. The e↵ect of silent pauses

can be best understood by considering the local covariance model:

Rm = E{x(t)x(t)H}, for t 2 [(m � 1)L + 1,mL]

= ADmAH + �

2I, m = 1, . . . ,M.

Case 1: If two speech segments are both in silent pauses, which means

that there is no sources being active in this frame. In noise-free situation,

Rm will be equal to zero. However, in the presence of noise, if there is

a prior information on the existence of such frame, the noise covariance

removal (Section 2.4) can be performed e↵ectively. In essence, we can first

perform a scanning, and then estimate the noise power in that particular

frame.

Case 2: Suppose that only source one is active in frame m. Then, we

have

Rm = dm1

a
1

aH
1

.

The above rank one structure of the local covariance matrix is favorable.

In fact, if we know a prior that there exists two rank one frames, one

with source one being active and the other frame with source two being

active, the so-called local dominance condition is satisfied. By exploiting



APPENDIX D. SPEECH SOUNDS 71

this local dominance structure of {R
1

, . . . ,RM}, very simple algorithm

to identify the mixing matrix A has been devised. For detailed discussion

on the local dominance and the interesting insights it brings us, we refer

readers to [16].

2 End of chapter.
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