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Abstract

Inter-modality image synthesis and recognition has been a
hot topic in computer vision. In real-world applications, there
are diverse image modalities, such as sketch images for law en-
forcement and near infrared images for illumination invariant
face recognition. Therefore, it is often useful to transform im-
ages from a modality to another or match images from different
modalities, due to the difficulty of acquiring image data in some
modality. These techniques provide large flexibility for computer
vision applications.

In this thesis we study three problems: face sketch synthesis,
example-based image stylization, and face sketch recognition.

For face sketch synthesis, we expand the frontier to synthesis
from uncontrolled face photos. Previous methods only work un-
der well controlled conditions. We propose a robust algorithm
for synthesizing a face sketch from a face photo with lighting and
pose variations. It synthesizes local sketch patches using a mul-
tiscale Markov Random Field (MRF) model. The robustness
to lighting and pose variations is achieved with three compo-
nents: shape priors specific to facial components to reduce ar-
tifacts and distortions, patch descriptors and robust metrics for
selecting sketch patch candidates, and intensity compatibility
and gradient compatibility to match neighboring sketch patches
effectively. Experiments on the CUHK face sketch database and
celebrity photos collected from the web show that our algorithm

i



significantly improves the performance of the state-of-the-art.
For example-based image stylization, we provide an effective

approach of transferring artistic effects from a template image
to photos. Most existing methods do not consider the content
and style separately. We propose a style transfer algorithm
via frequency band decomposition. An image is decomposed
into the low-frequency (LF), mid-frequency (MF), and high-
frequency(HF) components, which describe the content, main
style, and information along the boundaries. Then the style is
transferred from the template to the photo in the MF and HF
components, which is formulated as MRF optimization. Finally
a reconstruction step combines the LF component of the photo
and the obtained style information to generate the artistic re-
sult. Compared to the other algorithms, our method not only
synthesizes the style, but also preserves the image content well.
We demonstrate that our approach performs excellently in im-
age stylization and personalized artwork in experiments.

For face sketch recognition, we propose a new direction based
on learning face descriptors from data. Recent research has fo-
cused on transforming photos and sketches into the same modal-
ity for matching or developing advanced classification algorithms
to reduce the modality gap between features extracted from pho-
tos and sketches. We propose a novel approach by reducing the
modality gap at the feature extraction stage. A face descrip-
tor based on coupled information-theoretic encoding is used to
capture discriminative local face structures and to effectively
match photos and sketches. Guided by maximizing the mutual
information between photos and sketches in the quantized fea-
ture spaces, the coupled encoding is achieved by the proposed
coupled information-theoretic projection forest. Experiments on
the largest face sketch database show that our approach signifi-
cantly outperforms the state-of-the-art methods.

ii



摘摘摘要要要

跨模態圖像的合成和識別已成為計算機視覺領域的熱點。實際

應用中存在各種各樣的圖像模態，比如刑偵中使用的素描畫和

光照不變人臉識別中使用的近紅外圖像。由於某些模態的圖像

很難獲得，模態間的轉換和匹配是一項十分有用的技術，為計

算機視覺的應用提供了很大的便利。

本論文研究了三個應用：人像素描畫的合成，基於樣本的

圖像風格化和人像素描畫識別。

我們將人像素描畫的合成的前沿研究擴展到非可控條件下

的合成。以前的工作都只能在嚴格可控的條件下從照片合成素

描畫。我們提出了一種魯棒的算法，可以從有光照和姿態變化

的人臉照片合成素描畫。該算法用多尺度馬爾可夫隨機場來合

成局部素描圖像塊。對光照和姿態的魯棒性通過三個部分來實

現：基於面部器官的形狀先驗可以抑制缺陷和扭曲的合成效

果，圖像塊的特征描述子和魯棒的距離測度用來選擇素描圖像

塊，以及像素灰度和梯度的一致性來有效地匹配鄰近的素描圖

像塊。在CUHK人像素描數據庫和網上的名人照片上的實驗結

果表明我們的算法顯著提高了現有算法的效果。

針對基於樣本的圖像風格化，我們提供了一種將模板圖像

的藝術風格傳遞到照片上的有效方法。大多數已有方法沒有考

慮圖像內容和風格的分離。我們提出了一種通過頻段分解的風

格傳遞算法。一幅圖像被分解成低頻、中頻和高頻分量，分別
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描述內容、主要風格和邊緣信息。接著中頻和高頻分量中的風

格從模板傳遞到照片，這一過程用馬爾可夫隨機場來建模。最

後我們結合照片中的低頻分量和獲得的風格信息重建出藝術圖

像。和其它算法相比，我們的方法不僅合成了風格，而且很好

的保持了原有的圖像內容。我們通過圖像風格化和個性化藝術

合成的實驗來驗證了算法的有效性。

我們為人像素描畫的識別提出了一個從數據中學習人臉描

述子的新方向。最近的研究都集中在轉換照片和素描畫到相同

的模態，或者設計復雜的分類算法來減少從照片和素描畫提取

的特征的模態間差異。我們提出了一種新穎的方法：在提取特

征的階段減小模態間差異。我們用一種基於耦合信息論編碼的

人臉描述子來獲取有判別性的局部人臉結構和有效的匹配照片

和素描畫。通過最大化在量化特征空間的照片和素描畫的互信

息，我們設計了耦合信息論投影森林來實現耦合編碼。在世界

上最大的人像素描畫數據庫上的結果表明我們的方法和已有最

好的方法相比有顯著提高。
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Chapter 1

Introduction

1.1 Multi-Modality Computer Vision

The area of computer vision has experienced a rapid progress

during the past decades. Understanding images is a central topic

in computer vision. In practical applications, images are usually

collected in quite different environments or even captured with

different equipments. E.g., in a surveillance system, infrared

cameras are employed to reduce the effect of illumination, so

that the system can work from morning until night, under both

strong and weak illuminations, in an adverse outdoor environ-

ment. The system queries a database of optical face photos

taken with digital cameras, to recognize people captured by in-

frared cameras. Here optical photos and infrared photos are in

1
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different modalities, because they are from different sources and

thus have different visual appearances and pixel values even for

exactly the same content. Different modalities include optical

and infrared images, high-resolution and low-resolution images,

face photos and face sketches, faces of a person at different ages,

and images under different camera views (Fig. 1.1).

Conventional computer vision techniques did not consider

inter-modality differences. In many applications, the differences

are very large and they affect the performance of computer vi-

sion algorithms heavily. So in recent years, there have been

more and more interests in studying images of different modali-

ties. Two major categories of problems are inter-modality image

synthesis, i.e., transforming images from a modality to another

modality, and inter-modality image recognition, i.e., matching

images from different modalities. Inter-modality image synthe-

sis and recognition are of great importance in computer vision,

because it is often difficult to acquire image data in some modal-

ities in real-world applications. These techniques provide large

flexibility for developing real computer vision systems.

In this thesis, we visit three popular problems: face sketch

synthesis from photos, unsupervised image stylization, and face
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Optical image High resolution

Infrared image Low resolution

Photo Age 1 Camera 1

Sketch Age 2 Camera 2

Figure 1.1: Images of different modalities.
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photo-sketch recognition. The first two are synthesis problems

and the last one is a recognition problem. We focus on these

applications, while the proposed approaches can be extended to

other applications.

1.2 Face Sketches

Faces are one of the most commonly used biometrics and impor-

tant in the individual’s social interaction. In order to achieve

computer-based face perception, numerous topics, such as face

detection [75, 63, 73], face recognition [86, 65] and face halluci-

nation [67, 42], have been studied extensively within the last sev-

eral decades. With the advance of these automatic techniques,

it becomes possible to build up systems for various applications,

such as access control, video surveillance, and human computer

interaction, to save human labors and provide better user expe-

riences. However, these techniques are only for face photos and

videos captured by cameras.

In many applications, face sketching is a popular technique

that has been widely used. Psychology studies [4] show that a

sketch captures the most informative part of a face, in a much
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more concise and potentially robust representation. We list two

typical applications as follows.

• Law enforcement. The success of using face sketches to

identify criminal suspects has often been publicized in the

media coverage [23]. The sketches are drawn by artists

based on the recollection of eye-witnesses, and then manu-

ally matched with a police mug-shot database comprising

face photos of known individuals.

• Entertainment. Sketch artists are usually regarded as

popular professionals for their ability to provide people per-

sonalized face drawings. The sketches can be put up on the

wall, or used as people’s identities in the digital world, such

as through the MSN avatar. In the movie industry, sketch

artists also play an active role in drawing cartoon faces.

In these applications, the expertise of the sketch artists is the

key to the success, and it often costs a great amount of time

for the artists to draw a sketch. It becomes unaffordable, if

the size of the applications increase, e.g., drawing sketches for a

thousand people. Therefore, it is desirable to have an automatic

system to assist humans.
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1.2.1 Face Sketch Synthesis

Automatic sketch synthesis system can save a great amount of

time for artists on drawing face sketches. Due to the large de-

mand in real-world applications, face sketch synthesis has drawn

a great deal of attentions in recent years [60, 43, 22, 69, 9]. Face

sketch synthesis also has its root in computer graphics, known

as image stylization, a hot topic of non-photorealistic rendering.

A comprehensive literature review can be found in Chapter 2.1.

Previous research in sketch synthesis can be categorized in

the following two aspects.

• Example-based approaches v.s. image processing

based approaches. Popular sketch synthesis methods

are mostly example-based, which generate a sketch from

an input face photo simulating the artistic style of a set

of training face photo-sketch pairs [60, 43, 69]. Example-

based approaches have the large flexibility of synthesizing

sketches of different styles by choosing training sets of dif-

ferent styles. In contrast, image processing based sketch

generation methods (e.g., [36]) support only limited artis-

tic styles, and for a new style much human knowledge and
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experiences are required.

• Styles with rich textures v.s. line drawing styles.

Recent face sketch synthesis research studies sketch styles

with both contours and shading textures, which are more

expressive than line drawings without texture [36, 19].

Following the above discussions, this thesis focuses on example-

based sketch synthesis with rich textures, which is popular but

challenging.

1.2.2 Face Sketch Recognition

Face sketch recognition is to match a face sketch drawn by an

artist to one of many face photos in the database. In law en-

forcement, it is desired to automatically search photos from po-

lice mug-shot databases using a sketch drawing when the photo

of a suspect is not available. Directly applying existing state-

of-the-art face recognition algorithms leads to poor performance

in this application, because the photos and sketches are in dif-

ferent modalities [60, 35]. Sketches are a concise representation

of human faces, often containing shape exaggeration and having

different textures from photos. Face sketch recognition is a spe-
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cial and challenging application of inter-modality face recogni-

tion. Other examples of inter-modality face recognition include

infrared-optical face recognition, cross-resolution face recogni-

tion, and age-invariant face recognition.

Recently, great progress of face sketch recognition has been

made in two directions.

The first family of approaches [60, 43, 69] focused on the

preprocessing stage and synthesized a pseudo-photo from the

query sketch or pseudo-sketches from the gallery photos to trans-

form inter-modality face recognition into intra-modality face

recognition. Face photo/sketch synthesis is actually a harder

problem than recognition. Imperfect synthesis results signifi-

cantly degrade the recognition performance. The synthesis algo-

rithms usually pursue good visual appearance, while the recogni-

tion algorithms requires distinctive biometric information. The

mismatch of their goals also reduces the performance of the

synthesis-based recognition.

The second family of approaches [41, 38, 35] focused on the

classification stage and tried to design advanced classifiers to

reduce the modality gap between features extracted from pho-

tos and sketches. If the inter-modality difference between the
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extracted features is large, the discriminative power of the clas-

sifiers will be reduced.

For more details about inter-modality face recognition, please

refer to Chapter 2.3.

1.3 Example-based Image Stylization

Image stylization is a generalization of face sketch synthesis,

which focuses on enabling a wide variety of expressive styles

for images. The source modality in image stylization is photos,

and the target modality is stylized images, such as oil paint-

ings. The stylization problem is categorized into the area of

non-photorealistic rendering (NPR) in the graphics community

[24, 26]. Much research has been devoted to rendering different

styles, e.g., oil painting, watercolor painting and pen-and-ink

drawing. However, most of these methods support only limited

artistic styles, and for a new style much human knowledge and

experiences are required [26].

Example-based image stylization provides an easy way of cre-

ating stylized images with a number of styles. The stylized im-

age is synthesized from a real image (e.g., a scene photo) with
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a given style template (e.g., an oil painting). Formally, given

two images as input, a source image A and a template image

B+ whose style is to be simulated, the output A+ is a synthe-

sized image with the main content in A and the similar style to

B+. This process is also called style transfer, i.e., transferring

the style of a template image B+ to a source image (or video)

A. Different from face sketch synthesis, the style template is

usually a single painting, because it is difficult to collect many

paintings with several consistent styles and the size of the tem-

plate is usually large enough to provide rich style information.

A review of existing approaches will be given in Chapter 2.2.

1.4 Contributions and Summary of Approaches

In addition to improving existing models to achieve better per-

formance, we feel that it is important to look at the problems

in a bigger picture. The central of our study is how to match

patterns from two different modalities, under complicated real-

world scenarios. In particular, we want to expand the frontier

of inter-modality synthesis and recognition in the following as-

pects:
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• Exploring real-world face sketch synthesis. Real-

world face photos have various lightings and poses. Mis-

matching frequently occurs for inter-modality photo-sketch

patch matching using state-of-the-art methods such as mul-

tiscale Markov random field [69]. We propose a lighting

and pose robust face sketch synthesis algorithm, which in-

cludes several components, such as preprocessing for photo-

to-photo patch matching, descriptor-based photo-to-sketch

patch matching and face shape priors, to reduce mismatch-

ing and improve the robustness of the state-of-the-art. Our

approach has superior performance on both controlled face

databases and internet face photos.

• Studying style transfer with content and style sep-

aration. A critical problem of previous approaches is that

they do not separate the style and content in the style trans-

formation process. Only luminance is transferred from B+

to A [27, 12, 52], which brings two drawbacks. First, the

luminance of two input images may not be in the same

dynamic range. To address this problem, a linear mapping

that matches the means and variances of the two luminance

distributions is often adopted. But usually good correspon-
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dences cannot be found for some input images. Second,

the content of B+ may appear in the output images. To

break these limitations, we introduce frequency band de-

composition, to decompose an image into low-frequency,

mid-frequency and high-frequency components. Then the

style information in the mid-frequency and high-frequency

components are transferred from the template image to the

source image. Experiments show that the new approach

obtains better synthesis results than previous state-of-the-

art.

• Proposing a new direction based on feature repre-

sentations for face photo-sketch recognition. Recent

research has focused on transforming photos and sketches

into the same modality for matching or developing ad-

vanced classification algorithms to reduce the modality gap

between features extracted from photos and sketches. We

propose a new inter-modality face recognition approach by

reducing the modality gap at the feature extraction stage.

A new face descriptor based on coupled information-theoretic

encoding is used to capture discriminative local face struc-

tures and to effectively match photos and sketches. Guided
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by maximizing the mutual information between photos and

sketches in the quantized feature spaces, the coupled en-

coding is achieved by the proposed coupled information-

theoretic projection tree, which is extended to the random-

ized forest to further boost the performance. We demon-

strate the effectiveness of this novel method with the largest

face sketch database in the world.

1.5 Thesis Road Map

The remaining part of this thesis is organized as follows. Chap-

ter 2 reviews related work on face sketch synthesis and recogni-

tion, image stylization and inter-modality face recognition. De-

tails of our algorithm developed for each application and its

experimental results are presented in Chapter 3 – 5. In Chapter

6, we conclude the thesis and discuss future work.

2 End of chapter.



Chapter 2

Literature Review

Inter-modality image synthesis and recognition is a field which

attracts researchers from both computer vision and computer

graphics.

2.1 Related Works in Face Sketch Synthesis

Computer-based face sketch synthesis is different from line draw-

ing generation [36][19]. Line drawings without texture are less

expressive than sketches with both contours and shading tex-

tures. Popular sketch synthesis methods are mostly example-

based, which generates a sketch with rich textures from an in-

put face photo based on a set of training face photo-sketch pairs

[60, 43, 69]. These approaches can synthesize sketches of differ-

14
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ent styles by choosing training sets of different styles.

Existing face sketch synthesis techniques can be divided into

global approaches and patch-based approaches (Table 2.1).

Global approaches learn a global mapping from face photos

to face sketches. Tang and Wang [60] proposed to apply the

eigentransform globally to synthesize a sketch from a photo.

The global linear model does not work well if the hair region

is included, as the hair styles vary significantly among different

people. Lin and Tang [40] proposed coupled bidirectional trans-

form utilizing embedded spaces to estimate the transforms. Liu

et al. [44] developed a Bayesian tensor inference model for image

style transformation. Another global approach proposed by Gao

et al. [22] was based on the embedded hidden Markov model and

the selective ensemble strategy. The common limitation of the

global approaches is that it is difficult to learn a global map-

ping to handle face photo-sketch transformation, because high

dimensionality of the input and output images makes the un-

derlying mapping complicated and nonlinear. It is known as

curse-of-dimensionality in pattern recognition [25].

To overcome the limitation of global approaches, patch-based

approaches were proposed by dividing the image into local patches
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and learning mappings from photo patches to sketch patches. In

this category of methods, Liu et al. [43] proposed locally linear

embedding (LLE) based reconstruction, and Chang et al. [9] pro-

posed sparse representation based reconstruction. Gao et al. [21]

proposed to jointly training dictionaries for sparse representa-

tion based reconstruction. Ji et al. [32] investigated and com-

pared different regression models, such as k-nearest-neighbor re-

gression, least squares, ridge regression and lasso [25] in this ap-

plication. The drawback of these approaches is that the patches

are synthesized independently, ignoring their spatial relation-

ships, such that some face structures cannot be well synthesized

and the resulting sketches are not smooth enough. In addi-

tion, face sketch synthesis through regression, i.e., representing

output sketch patches as linear combinations of training sketch

patches, causes the blurring effect.

A state-of-the-art approach using a multiscale Markov ran-

dom field (MRF) model has been proposed recently [69] and

achieved good performance under well controlled conditions (i.e.

the testing face photo has to be taken in the frontal pose and

under a similar lighting condition as the training set). This

approach has some attractive features: (1) it can well synthe-
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Table 2.1: Existing approaches for face sketch synthesis.
Category Method

Global approaches [60], [40], [44], [22]

Patch-based approaches

Synthesizing patches [43], [9], [21], [32]
independently
Synthesizing patches with [69], [87] and ours
neighboring compatibility

size complicated face structures, such as hair, which are difficult

for previous methods [60]; (2) it significantly reduces artifacts,

such as the blurring and aliasing effects, which commonly ex-

ist in the results of previous methods [60, 43]. Zhou et al. [87]

proposed Markov weights field, which is similar to MRF but

allows linear combinations of patches. It was formulated as a

convex quadratic programming problem. Other than selecting

local sketch patches from a set of training data, it can synthesize

new sketch patches via linear combinations.

2.2 Related Works in Example-based Image

Stylization

Non-photorealistic rendering (NPR) is an area of computer graph-

ics that focuses on enabling a wide variety of expressive styles

for digital art. In the field of NPR, there has been a rich amount
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of research on example-based image stylization. The essential

problem in this field is to find the mapping from the local pix-

els/patches of the source image to those of the stylized image.

Previous methods assume three different settings: supervised,

semi-supervised, and unsupervised (see Table 2.2), which are

terms borrowed from the area of machine learning [25].

In the supervised setting, the ground-truth image B corre-

sponding to B+ is given. Hertzmann et al. proposed the frame-

work of image analogies to estimate the mapping, using the

source image B to the stylized image B+ [27]. Image styliza-

tion for highly specialized problems has also been attempted for

faces [60, 69, 82], using very large sets of training data.

In the semi-supervised setting, some parts of A+ are available

as training data, and thus ground-truth, i.e., some corresponding

parts between A and A+ are known. Cheng et al. proposed to

use a semi-supervised component to exploit this setting. The

similarities between the source patches are utilized to propagate

information from the sources patches with stylized counterpart

to the source patches without stylized counterpart.

In the unsupervised setting, the ground-truth source image

A is not given. In real-world problems, people usually have a
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painting without the corresponding real image. Therefore, the

unsupervised setting is more user friendly, but more difficult

as well. To deal with the difficulty of lacking ground-truth B,

Rosales et al used a finite set of patch transformations [52]. They

formulated the problem as inferring the latent variables. Wang

et al.’s method requires the user-specified blocks in B+ as sample

textures, and then the textures are applied on segmented image

A [64]. Our method also belongs to this category. Comparing

to them, our method requires the least information: neither

user input [64] nor assuming a set of transformations [52]. In

addition, we utilize the full image of B+ instead of a very small

subset of B+ [64]. The required supervision information of the

above-mentioned approaches is summarized in Table 2.2.

As mentioned in Chapter 1.4, our approach separates the

style and content using frequency band decomposition, and thus

avoids the severe problems of applying the existing approaches

in example-based image stylization [27, 12, 52, 64] to real-world

applications. There were some existing methods exploring con-

tent and style decomposition. Tenenbaum and Freeman [62]

separated style and content with bilinear models. Drori et al.’s

locally linear model [16] is an example-based synthesis technique
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Table 2.2: Comparison of the required supervision information in different
example-based image stylization approaches. The input source image and
the output image of all the methods are denoted by A and A+. B is the
ground-truth image corresponding to B+.

Approach Supervision information Category

[27] well aligned B and B+ Supervised
[12] available parts of A+ Semi-supervised
[64] user-selected parts of B+ Unsupervised
[52] B+ and a set of transformations Unsupervised
ours B+ Unsupervised

that extrapolates novel styles for a given input image. However,

these methods used a set of images with the same style to learn

content and style decomposition. It is not trivial to apply the so-

lutions to existing example-based image stylization approaches.

Constrained texture synthesis [51, 88] is a topic related to

example-based image stylization. However, all existing meth-

ods for constrained texture synthesis were supervised. In ad-

dition, the mismatching problem between the characteristics of

the source image and the template image does not need to be

considered in this application.
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2.3 Related Works in Face Sketch Recogni-

tion

To match a face sketch drawn by an artist to one of many face

photos in the database, great progress has been made in two

directions.

The first family of approaches [60, 43, 69] focused on the

preprocessing stage and synthesized a pseudo-photo from the

query sketch or pseudo-sketches from the gallery photos to trans-

form inter-modality face recognition into intra-modality face

recognition. We introduced the existing face sketch synthesis

approaches in Chapter 2.1. The synthesis-based approaches

have also been used to solve other problems. In infrared face

recognition, Chen et al. first transformed an infrared image

to a normal optical image and then performed the matching

[10]. In face recognition across ages, Suo et al. and Park et

al. first transformed images of different ages to the same age

and then performed the recognition [57, 48]. Javed et al. pro-

posed to learn the brightness transform functions in order to

match objects observed in different camera views [31]. However,

face photo/sketch synthesis is actually a harder problem than
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Modality A Modality B

Mapping A Mapping B

Class 1

Class 2
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Common
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Figure 2.1: Illustration of the common subspace approaches for inter-
modality face recognition.

recognition. Imperfect synthesis results significantly degrade the

recognition performance. The synthesis algorithms usually pur-

sue good visual appearance, while the recognition algorithms re-

quires distinctive biometric information. The mismatch of their

goals also reduces the performance of the synthesis-based recog-

nition.

The second family of approaches [41, 38, 35] focused on the

classification stage and tried to design advanced classifiers to re-

duce the modality gap between features extracted from photos

and sketches. Several methods have been proposed to mapped

feature vectors from two modalities into a common discrimina-

tive subspace (as illustrated in Fig. 2.1). The mappings for

photo feature vectors and for sketch feature vectors are differ-
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ent, to deal with inter-modality differences. Using these meth-

ods, the classification can be performed in the common discrim-

inative subspace. Among them, canonical correlation analysis

(CCA) is a classical unsupervised model introduced by Hotelling

for correlating linear relationships between two sets of vectors

[28]. Lin and Tang [41] incorporated label information utiliz-

ing the within-class scatter matrix and between-class scatter

matrix. Lei and Li [38] proposed a more computationally ef-

ficient approach called coupled spectral regression for learning

projections to map data from two modalities into a common sub-

space. Sharma et al. introduced Partial Least Squares [53] for

this task. Klare et al. [35] proposed local feature-based discrim-

inant analysis (LFDA). They used multiple projections to ex-

tract a discriminative representation from partitioned vectors of

local binary patterns (LBP) [1] and dense scale-invariant feature

transform (SIFT) [45] features. Bhatt et al. [5] extracted mul-

tiscale extended uniform circular local binary patterns features

and used a genetic optimization based approach to find the op-

timal weights for computing the χ2 distances between features.

for matching sketches with digital face images.

Feature extraction and classification are two major compo-
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(a)

(b)

Figure 2.2: Example of viewed sketches and corresponding face photos. (a) A
sketch and the corresponding photo without shape exaggeration from CUHK
face sketch database. (b) A sketch and the corresponding photo with shape
exaggeration from CUHK face sketch FERET database.

nents in face recognition. Although the classification-based ap-

proaches utilized different features in their papers, these ap-

proaches are independent of the features, i.e., they can be ap-

plied to any kind of facial features. If the inter-modality differ-

ence between the extracted features is large, the discriminative

power of the classifiers will be reduced.

In addition to computer-based methods, Zhang et al. studied
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(a)

(b)

Figure 2.3: Example of forensic sketches and corresponding face photos. (a)
A sketch of good quality and the corresponding photo. (b) A sketch of poor
quality and the corresponding photo. Both are adopted from [35].

human perceptions on face sketch recognition [85, 84].

Viewed Sketches v.s. Forensic Sketches. Two differ-

ent types of face sketches has been introduced into face sketch

recognition: viewed sketches (see Fig. 2.2) and forensic sketches

(see Fig. 2.3). A viewed sketch is drawn while the artist views

a photo of the person, while a forensic sketch is drawn by inter-

viewing a witness to gain a description of the suspect. In this
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research, we adopt viewed sketch databases for testing synthe-

sis and recognition algorithms, because (1) in some applications,

such as entertainment, view sketches are used instead of forensic

sketches; (2) the quality of forensic sketches are usually uncon-

trollable (e.g, some sketches may have as good qualities as the

one Fig. 2.3 (b) and some may have as poor qualities as the one

in Fig. 2.3 (b)), due to the approximate, possibly incomplete,

descriptions provided by the eye-witness. So it is difficult to

identify which factors affect the performances of algorithms; (3)

forensic sketch databases are much smaller than viewed sketch

databases.

2 End of chapter.



Chapter 3

Lighting and Pose Robust

Sketch Synthesis

Automatic face sketch synthesis has drawn a great deal of at-

tention in recent years [60, 61, 43, 22, 69] due to its applications

in law enforcement and digital entertainment. For example, in

law enforcement, it is useful to develop a system to search pho-

tos from police mug-shot databases using a sketch drawing when

the photo of a suspect is not available. By transferring face pho-

tos to sketches, inter-modality face recognition is made possible

[61]. In the movie industry, artists can save a great amount of

time on drawing cartoon faces with the assistance of an auto-

matic sketch synthesis system. Such a system also provides an

easy tool for people to personalize their identities in the digital

27
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(a) (b) (c) (d)

Figure 3.1: Examples of synthesized sketches from web face photos. (a) Test
photos; (b) Sketches synthesized by [69]; (c) Sketches synthesized by [69] with
luminance remapping [27]; (d) Sketches synthesized by our method. Note
that luminance remapping refers to zero-mean unit-variance normalization
of the luminance channel of all photos in our implementation. This simple
technique was found to be better than non-smooth mappings in image style
transformation, such as histogram matching/equalization [27]. The results
are best viewed on screen.

world, such as through the MSN avatar.

Although great progress has been made in recent years (see

2.1), previous methods only work under well controlled condi-

tions and often fail when there are variations of lighting and

pose. If the testing face photo is taken in a different pose or

under a different lighting condition (even if the lighting change

is not dramatic) from the training set, the problem could be

challenging. Some examples are shown in Fig. 3.1. Due to the



CHAPTER 3. LIGHTING AND POSE ROBUST SKETCH SYNTHESIS29

variations of lighting and pose, on the synthesized sketches by

[69] some face structures are lost, some dark regions are syn-

thesized as hair, and there are a great deal of distortions and

artifacts. This is also a serious problem not addressed by other

approaches [60][43][22]. It limits their applications to real-world

problems.

In face recognition studies, some preprocessing techniques

such as histogram equalization, and features such as Local Bi-

nary Patterns (LBP) [1], were used to effectively recognize face

photos under lighting variations. In the area of nonphotorealis-

tic rendering, luminance remapping was introduced to normalize

lighting variations [27]. However, experiments show that simply

borrowing these techniques is not effective in face sketch syn-

thesis. See examples in Fig. 3.1.

In this chapter, we address this challenge: given a limited

set of photo-sketch pairs with frontal faces and normal lighting

conditions, how to synthesize face sketches for photos with faces

in different poses (in the range of [−45o + 45o]) and under dif-

ferent lighting conditions. We adopt the multiscale MRF model

whose effectiveness has been shown in face sketch synthesis [69]

and many low-level vision problems [18]. In order to achieve



CHAPTER 3. LIGHTING AND POSE ROBUST SKETCH SYNTHESIS30

MRF OptimizationInput Photo
Training Set:Photo-Sketch Pairs Preprocessing Output SketchLocal EvidencePhoto to Sketch Patch MatchingPhoto to Photo Patch Matching

Neighboring CompatibilityIntensity CompatibilityGradient Compatibility
Prior InformationShape Prior

Figure 3.2: Illustration of our framework.

the robustness to variations of lighting and pose, some impor-

tant improvements are made in the design of the MRF model

as summarized in Fig. 3.2. Firstly, a new term of shape priors

specific to face components are introduced in our MRF model.

It effectively reduces distortions and artifacts and restores lost

structures as shown in Fig. 3.1. Secondly, patch descriptors and

metrics which are more robust to lighting variations are used to

find candidates of sketch patches given a photo patch. In ad-

dition to photo-to-photo patch matching, which was commonly

used in previous approaches [43][69], our “local evidence” term
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also includes photo-to-sketch patch matching, which improves

the matching accuracy with the existence of lighting and pose

variations. Lastly, a smoothing term involving both intensity

compatibility and gradient compatibility is used to match neigh-

boring sketch patches on the MRF network more effectively.

The effectiveness of our approach is evaluated on the CUHK

face sketch database which includes face photos with different

lightings and poses. We also test on face photos of Chinese

celebrities downloaded from the web. The experimental re-

sults show that our approach significantly improves the perfor-

mance of face sketch synthesis compared with the state-of-the-

art method [69] when the testing photo includes lighting or pose

variations.

3.1 The Algorithm

In this section, we present our algorithm for face sketch syn-

thesis. For ease of understanding, we use the single-scale MRF

model in the presentation, instead of the two-scale MRF model

in our implementation1.

1We do find that the two-scale MRF model performs better. The details of multiscale
MRF can be found in [69]. However, it is not the focus of this chapter.
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3.1.1 Overview of the Method

A graphical illustration of the MRF model is shown in Fig. 3.3.

A test photo is divided into N overlapping patches with equal

spacing. Then a MRF network is built. Each test photo patch

xpi is a node on the network. Our goal is to estimate the status

yi = (ypi , y
s
i ), which is a pair of photo patch and sketch patch

found in the training set, for each xpi . Photos and sketches in

the training set are geometrically aligned. ypi is a photo patch

and ysi is its corresponding sketch patch. If patches i and j are

neighbors on the test photo, nodes yi and yj are connected by an

edge, which enforces a compatibility constraint. The sketch of

the test photo is synthesized by stitching the estimated sketch

patches {ysi }. Based on the MRF model, our energy function is

defined in the following form,

E({yi}Ni=1) =
N∑
i=1

EL(x
p
i , yi) +

N∑
i=1

EPi(yi) +
∑

(i,j)∈Ξ

EC(y
s
i , y

s
j),

(3.1)

where Ξ is the set of pairs of neighboring patches, EL(x
p
i , yi)

is the local evidence function (Subsection 3.1.2), EPi(yi) is the

shape prior function (Subsection 3.1.3), and EC(y
s
i , y

s
j) is the

neighboring compatibility function (Subsection 3.1.4). The shape
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prior function is specific to face components, which means that

different location indicated by i has different EPi. The above

MRF optimization problem can be solved by belief propagation

[18] [76].

A MRF model was also used in [69], however, with several

major differences with ours. It has no shape prior function

which is effective in sketch synthesis. Its local evidence func-

tion only computes the sum of the squared differences (SSD)

between xpi and ypi and is sensitive to lighting variations. Our

local evidence function uses new patch descriptors which are

more robust to lighting variations. Our method includes not

only photo-to-photo patch matching (between xpi and ypi ) but

also photo-to-sketch patch matching (between xpi and ysi ) to im-

prove the robustness. The neighboring compatibility function in

[69] is to minimize SSD between neighboring estimated sketch

patches (ysi and ysj) in their overlapping region, while ours also

minimizes the difference of gradient distributions. Details will

be explained in the following subsections.
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Output Sketch
Training Photo-Sketch Pairs

EL(xi p,yi) EL(xj p,yj)EC(yi s,yj s) yi yjxj pxi pEL(xi p,yi) EL(xj p,yj)EPi(yi) EPj(yj)
xi p xj pyi p

Input Photo
yi s yj pyj s EC(yi s,yj s)

Figure 3.3: Illustration of the MRF model for face sketch synthesis.

3.1.2 Local Evidence

The goal of the local evidence function is to find a sketch patch

ysi in the training set best matching the photo patch xpi in test.

However, since photos and sketches are in different modalities,

it is unreliable to directly match them. So the training photo

patch ypi corresponding to a training sketch patch ysi is involved.

It is assumed that if ypi is similar to xpi , it is likely for ysi to be

a good estimation of the sketch patch to be synthesized. We

propose to match a testing photo patch with training photo

patches and also with training sketch patches simultaneously,

i.e. we define the local evidence function as the weighted sum of
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(a) (b) (c)

Figure 3.4: Compare the results with/without DoG filtering under a normal
lighting condition. (a) Test photos which are under the same lighting as
the training set. (b)Synthesized sketch by the method in [69] without DoG
filtering. (c) Synthesized sketches by our method with DoG filtering. To
evaluate the effectiveness of DoG filtering, other parts, such as shape priors
and photo-to-sketch patch matching, in our framework are not used in these
examples.

squared intra-modality distance d2L1 and squared inter-modality

distance d2L2,

EL(x
p
i , yi) = d2L1(x

p
i , y

p
i ) + λL2d

2
L2(x

p
i , y

s
i ), (3.2)

where λL2 is the weight to balance different terms in the energy

function E and it is chosen as 2 in our experiments.
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Figure 3.5: Examples of DoG filtering with (σ0, σ1) = (0, 4). Photo A is
from the training set taken under the normal lighting condition, and Photo
B is from the testing set taken under a different lighting condition. The
pixel values of DoG filtered photos are scaled to [0, 1] for visualization. (a)
Histograms of pixel values of the two photos after luminance remapping.
They do not match well. (b) Histograms of pixel values of the two photos
after DoG filtering and normalization. They match well.
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Photo-to-Photo Patch Matching

A straightforward choice of EL is the Euclidean distance be-

tween xpi and ypi as used in [69]. However, it does not perform

well when the lighting condition varies. Noticing that most of

the sketch contours correspond to edges in the photo, we use a

difference-of-Gaussians (DoG) filter to process each photo, i.e.

convolving each photo with the difference of two Gaussian ker-

nels with standard deviations σ0 and σ1, and normalize all pixel

values to zero-mean and unit-variance. In our experiments, we

find that (σ0, σ1) = (0, 4) or (1, 4) performs the best. DoG fil-

tering has two advantages. First, it can detect and enhance the

edges, and thus the synthesized sketch has better facial details.

As shown in Fig. 3.4, even for normal lighting, the DoG filtering

can improve facial details. Second, subtracting low-frequency

component reduces the effect of lighting variations, e.g. shad-

ing effects. The example in Fig. 3.6 shows that DoG filtering

improves synthesized facial details, especially on the nose and

the eyebrows, when there are lighting variations. Luminance

remapping [27], which normalizes the distribution of pixel val-

ues in an image to zero-mean and unit-variance, is commonly

used for lighting normalization. However, its improvement is
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limited in this application. An example is shown in Fig. 3.5.

After luminance remapping, the distributions of pixel values in

two photos taken under different lighting conditions still do not

match. On the contrary, their distributions after DoG filtering

match well. In some cases, photo-to-photo patch matching is

not enough and the mismatching problem, such as the hair and

profile regions shown in Fig. 3.6 (c), still exists. Thus, photo-

to-sketch patch matching is introduced.

Photo-to-Sketch Patch Matching

The intra-modality distance between photo patches does not

always work for selecting a good sketch patch. Similar photo

patches under the Euclidean distance may correspond to very

different sketch patches. Interestingly, people have the ability

to directly match photos with sketches. Inspired by this, we

propose to use inter-modality distance between testing photo

patches and training sketch patches to enhance the selection

ability. As the visual appearances of photo and sketch patches

are different, it is difficult to directly match them. However,

there exists some similarity of gradient orientations between a

photo and its sketch. We choose to use the dense SIFT descrip-
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Sequential illustration of the roles of each part in our framework.
(a) Test photo under a different lighting condition than the training set; (b)
Sketch by the method in [69] with luminance remapping as preprocessing
[27]; (c) Sketch by our method with P2P+IC; (d) Sketch by our method
with P2P+P2S+IC; (e) Sketch by our method with P2P+P2S+prior+IC;
(f) Sketch by our method with P2P+P2S+prior+IC+GC. P2P, P2S, prior,
IC and GC represent photo-to-photo patch matching, photo-to-sketch patch
matching, shape priors, intensity compatibility and gradient compatibility,
respectively. The results are best viewed on screen.

tor [45] from the family of histogram-of-orientations descriptors.

Our strategy is to assign each patch a dense SIFT descriptor, and

use the Euclidean distance between SIFT descriptors of photo

patches and sketch patches as the inter-modality distance. To

capture structures in large scales, we extract the descriptors in

larger regions than patches. For each patch, we extract a region
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of size 36 × 36 centered at the center of the patch (the size of

patch is 10×10), and divide it into 4×4 spatial bins of the same

size. 8 orientation bins are evenly spaced over 0◦-360◦. The vote

of a pixel to the histogram is weighted by its gradient magnitude

and a Gaussian window with parameter σ = 6 centered at the

center of the patch. So the descriptor is 128 dimensional. The

descriptor is normalized by its L2−norm, clipped by a threshold

0.2 and renormalized as reported in [45]. The synthesis result

with photo-to-sketch patch matching is shown in Fig. 3.6 (d).

It restores the hair and partial profile lost in Fig. 3.6 (c).

3.1.3 Shape Prior

Face images are a special class of images with well regularized

structures. Thus shape priors on different face components can

be used to effectively improve the synthesis performance. The

loss of some face structures, especially the face profile, is a com-

mon problem for the patch-based sketch synthesis methods with-

out referring to global structures. When this happens, the con-

tours of some face components are replaced by blank regions.

This problem becomes much more serious when there are vari-

ations of lighting and pose. See examples in Fig. 3.1. However,
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it can be effectively alleviated by using the prior information

on different face components to guide the selection of sketch

patches. In our approach, a state-of-the-art face alignment al-

gorithm [39] is first utilized to detect some predefined landmarks

on both the training sketches and the testing photo. The chosen

landmarks locate in regions where loss of structures often hap-

pens, especially on the face profile. Shape priors are imposed to

these regions but not in other regions. If a landmark f falls into

patch i on the test photo, a prior distribution is computed via

kernel density estimation,

EPi(yi) = λP ln

[
1√
2πNt

Nt∑
k=1

exp

(
−(β(y

s
i )− βk,f)

2

h2
f

)]
. (3.3)

Nt is the number of sketches in the training set. β(ysi ) is some

statistic on the sketch patch ysi . βk,f is the statistic on a sketch

patch centered at landmark f in sketch image k. hf is the band-

width of landmark f and is set as three times of the standard

deviation of {βk,f}. The weight λP = 0.01 is to normalize the

metric scale of the shape prior term and the performance of our

algorithm is robust to λP in a fairly large range.

We test several kinds of patch statistics, such as mean gradi-
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ent magnitude, variance of pixel values, proportion of edge pix-

els, and find that mean gradient magnitude performs the best

and it is chosen as β(·). It can well solve the problem of losing

structures, as shown in Fig. 3.6 (e).

3.1.4 Neighboring Compatibility

The goal of the neighboring compatibility function is to make

the neighboring estimated sketch patches smooth and thus to

reduce the artifacts on the synthesized sketch. In our model it

is defined as

EC(yi, yj) = λICd
2
IC(y

s
i , y

s
j) + λGCd

2
GC(y

s
i , y

s
j), (3.4)

where the intensity compatibility term d2IC is the SSD in the

overlapping region between two neighboring sketch patches ysi

and ysj , and the gradient compatibility term d2GC is the squared

Euclidean distance between the dense SIFT descriptors of ysi

and ysj . The intensity compatibility term is for the smoothness

of the output sketch. However, only using this term tends to lose

some face structures since two blank regions in neighbors have

high intensity compatibility. Thus, we further add the gradient

compatibility constraint, which requires that the neighboring



CHAPTER 3. LIGHTING AND POSE ROBUST SKETCH SYNTHESIS43

patches have similar gradient orientations. The use of gradient

compatibility can further alleviate the structural loss, an exam-

ple of which is given in Fig.s 3.6 (e) and (f) (the region in the

red box). We set the weights λIC = 1 and λGC = 0.1.

3.1.5 Implementation Details

All the photos and sketches are translated, rotated, and scaled

such that the two eye centers of all the face images are at fixed

position. We crop the images to 250 × 200 and the two eye

center positions are (75, 125) and (125, 125). All color images

are converted to grayscale images for sketch synthesis.

• Preprocessing on Test Photos. Empirically, when light-

ing is near frontal, our algorithm can work well without

the preprocessing step. However, for side light, we need

to use Contrast Limited Adaptive Histogram Equalization

(CLAHE) [50] for preprocessing.2 We use the setting that

the desired histogram shape is Rayleigh distribution (pa-

rameter α = 0.7).

• Candidate Selection. In order to save computational

2CLAHE improves the method in [69] little and deteriorates its performance in some
cases. So we choose to report their results without the preprocessing.
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cost, a step of candidate selection as suggested in [18] is

used before optimizing the MRF model. For each test photo

patch xpi , top K (K = 20) photo-sketch pairs with the

smallest energy of EL(x
p
i , yi)+EPi(yi) are selected from the

training set as candidates. In order to take the advantage

of face structures, candidates are searched within a 25× 25

local region around patch i instead of in the entire images.

The final estimation yi on node i is selected as one of the

K candiates through joint optimization of all the nodes on

the MRF network.

• Two-scale MRF. We use two-scale MRF with the same

setting as in [69]. Patch sizes at the two layers are 10× 10

and 20 × 20, respectively. MAP estimate is used in the

belief propagation algorithm [18].

• Stitching Sketch Patches. To avoid blurring effect, we

use a minimum error boundary cut between two overlap-

ping patches on their overlapped pixels as what is usually

done for texture synthesis [17].
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3.1.6 Acceleration

The bottleneck of accelerating the algorithm is patch candidate

selection (see Subsection 3.1.5). In order to find the photo-

sketch patch pairs which best match the input photo patch xpi ,

the distances d2L1(x
p
i , y

p
i ) and d2L2(x

p
i , y

s
i ) in the local evidence

term Eqn. (3.2) have to be computed for all possible patch

pairs yi in the training database.

• Integral histogram for photo-to-photo patch distances.

The photo-to-photo patch distance

d2L1(x
p
i , y

p
i ) =

∑
s∈R

(Ipt (s)− Ip0 (s+ s0))
2,

where Ipt and Ip0 are DoG filtered test and training photos.

s ∈ R is the spatial location of pixels in test patch xpi and

s0 ∈ [−12, 12]× [−12, 12] is the shifting amount of training

patches. Fixing s0, computing the distances between all xpi

and their corresponding ypi can be speeded up using inte-

gral computation [63]. We first compute an integral image

of the squared difference between Ipt and shifted Ip0 , and

then compute statistics over the rectangle regions over the

image.
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• Compression of SIFT descriptors for photo-to-sketch

patch distances. We use linear projections to reduce the

dimensionality of SIFT descriptors. Coupled linear projec-

tions are trained using regularized Canonical Correlation

Analysis [83] for training photo-sketch patch pairs. Then

we can use the photo projection vector and sketch projec-

tion vector to compress photo patches and sketch patches,

respectively. Note that the projection vectors and the com-

pressed SIFT descriptors of the training sketch patches can

be computed offline and stored. As shown in Fig. 3.7,

we compare the results with and without SIFT descriptor

compression. We find that the visual quality of synthesized

sketches does not change when reducing 128-dimensional

SIFT to 64-dimensional.

It takes about 10 seconds running our optimized C++ imple-

mentation, while 90 seconds running a naive C++ implementa-

tion to synthesize a sketch on a computer with 3.20 GHz CPU.
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(a) (b) (c)

Figure 3.7: Representative results on the baseline set. (a) Test photo; (b)
Sketch synthesized without SIFT descriptor compression; (c) Sketch synthe-
sized with 50% SIFT descriptor compression. The results are best viewed on
screen.

3.2 Experimental Results

We conduct experiments on the CUHK database [69] commonly

used in face sketch synthesis research, and a set of celebrity face

photos from the web. In all the experiments, 88 persons from the

CUHK database are selected for training, and each person has

a face photo in a frontal pose under a normal lighting condition,

and a sketch drawn by an artist while viewing this photo. In

the first experiment, 100 other persons are selected for testing.

We have three data sets: the baseline set, the lighting varia-

tion set, and the pose variation set. The baseline set includes

100 face photos taken in a frontal pose under the same lighting

condition as the training set. The lighting variation data set

includes three photos with faces in a frontal pose with three dif-



CHAPTER 3. LIGHTING AND POSE ROBUST SKETCH SYNTHESIS48

(a) (b) (c) (d)

Figure 3.8: Representative results on the baseline set. (a) Test photo; (b)
Sketch drawn by the artist while viewing the normal lighting photo; (c)
Sketch by the method in [69]; (d) Sketch by our method. The results are
best viewed on screen.

ferent lightings (dark frontal/dark left/dark right) for each per-

son. And the pose variation set includes two photos with faces

in left and right poses (with 45 degrees) under a normal lighting

condition for each person. In the second experiment, some face

photos of Chinese celebrities with uncontrolled lighting condi-

tions and poses are downloaded from the web.3 All photos are

with a neutral expression. Parameters are fixed throughout the

experiments. Due to the thesis length, only a limited number of

examples are shown in this paper.

3The CUHK database cannot be used as a training set for photos of people from other
ethnic groups, partially due to the human perception.
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Table 3.1: Rank-1 and Rank-10 recognition rates using whitened PCA [74].
The whitened PCA model is trained on the 100 sketches drawn by the artist
while viewing the baseline set. It performs better than standard PCA without
whitening on all the tasks. The reduced number of dimension is 99, and it is
the best for all the tasks.

Rank-1 recognition rates
Testing set [69] [69] with LBP [69] with HE [69] with LR Ours
Baseline 96% - - - 99%
Front Light 58% 58% 70% 75% 84%
Side Lights 23.5% 25.5% 38% 41.5% 71%

Rank-10 recognition rates
Testing set [69] [69] with LBP [69] with HE [69] with LR Ours
Baseline 100% - - - 100%
Front Light 87% 87% 95% 96% 96%
Side Lights 56% 75.5% 80.5% 78.5% 87.5%

3.2.1 Lighting and Pose Variations

We first investigate the effect of lighting and pose variations

separately on the CUHK database. A preliminary test is on

the baseline set. Our algorithm performs as well as the method

in [69]. On some photos, our algorithm can produce even bet-

ter face sketches as shown in Fig. 3.8. To give a quantitative

evaluation of the performance, we test the rank-1 and rank-10

recognition rates when a query sketch synthesized from a test

photo is used to match the sketches drawn by the artist. The
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(a) (b) (c) (d) (e)

Figure 3.9: Representative results on photos under the dark frontal lighting.
(a) Test photo; (b) Sketch drawn by the artist while viewing a normal lighting
photo; (c) Sketch by the method in [69]; (d) Sketch by the method in [69]
with luminance remapping [27]; (e) Sketch by our method. The results are
best viewed on screen.

results are shown in Table 3.1.4 Our algorithm slightly beats

the previous method by 3%.

Lighting

Although the previous method performs well on the normal

lighting set, their performance degrades dramatically when the

4Recognition rates cannot completely reflect the viual quality of synthesized sketches.
It is used as an indirect measurement to evaluate the performance of sketch synthesis since
no other proper quantitative evaluation methods are available.
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(a) (b) (c) (d) (e)

Figure 3.10: Representative results of photos under dark side lightings. The
notations (a)–(e) are the same as Fig. 3.9. The results are best viewed on
screen.
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lighting changes. Our method performs consistently well under

different lighting conditions. To make a fair comparison, we also

report the results of [69] with several popular illumination nor-

malization methods, including histogram equalization (HE) and

luminance remapping (LR) [27], and with LBP [1], an illumina-

tion invariant feature.

On the recognition rate, our method beats all the others, as

shown in Table 3.1. The method in [69] performs very poorly

without any preprocessing. LR and HE improve the method in

[69], but LBP improves little. LR performs better than HE and

LBP. As hair and background are included in face photos, pre-

vious illumination normalization methods, such as HE, do not

perform well. By converting a patch to its LBP feature, infor-

mation to distinguish different components, which is important

for sketch synthesis, may be lost and thus mismatching often

occurs. In addition, we find that dark side lighting conditions

are more difficult than dark frontal lighting, and under dark side

lightings, our method beats all the others by a large amount on

the rank-1 recognition rate.

On the visual quality, LR improves the method in [69], but as

shown in Fig.s 3.9 and 3.10, the facial details and profile are still
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(a) (b) (c)

Figure 3.11: Representative results of photos with pose variations. (a) Photo;
(b) Sketch by the method in [69]; (c) Sketch by our method. The results are
best viewed on screen.

much worse than those given by our method. Under dark frontal

lighting, their results usually have incorrect blank regions and

noisy details. Under dark side lightings, the preprocessing helps

only a little as it processes the photos globally. See the failed

results shown in Fig. 3.10.

Pose

To test the robustness of our method to pose variations, we use

the pose set with the similar lighting condition as the training

set. As shown in Fig. 3.11, our method performs better than
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the method in [69].5 With pose variations, the major problem

of the results by [69] is to lose some structures especially on the

profile. This problem can be efficiently alleviated by the shape

priors, photo-to-sketch patch matching and gradient compati-

bility designed in our model.

3.2.2 Celebrity Faces from the Web

The robustness of our method is further tested on a challeng-

ing set of face photos of Chinese celebrities with uncontrolled

lighting and pose variations from the web. They even have a va-

riety of backgrounds. As shown in Fig. 3.12 and Fig. 3.13,

the method in [69] usually produces noisy facial details and

distortions, due to the uncontrolled lightings and backgrounds,

and the large variations of pose and face shape. However, our

method performs reasonably well.

3.3 Conclusion

We proposed a robust algorithm to synthesize face sketches from

photos with different lighting and poses. We introduced shape

5As we do not have the sketches drawn by the artist for different poses, the recognition
rates are not tested.
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(a) (b) (c)

Figure 3.12: Results of Chinese celebrity photos. (a) Photo; (b) Sketch by
the method in [69] with luminance remapping [27]; (c) Sketch by our method.
The results are best viewed on screen.
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(a) (b) (c)

Figure 3.13: More results of Chinese celebrity photos. (a) Photo; (b) Sketch
by the method in [69] with luminance remapping [27]; (c) Sketch by our
method. The results are best viewed on screen.
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priors, robust patch matching, and new compatibility terms to

improve the robustness of our method. Our method is formu-

lated using the multiscale MRF. It significantly outperforms the

state-of-the-art approach. In the future work, we would like to

further investigate face sketch synthesis with expression varia-

tions.

2 End of chapter.



Chapter 4

Style Transfer via Band

Decomposition

4.1 Introduction

Image stylization, which focuses on enabling a wide variety of

expressive styles for images, has been an emerging technique

during the past decade [24, 26]. Much research has been devoted

to rendering different styles, e.g., oil painting, watercolor paint-

ing and pen-and-ink drawing. However, most of these methods

support only limited artistic styles, and for a new style much

human knowledge and experiences are required [26].

Example-based image stylization provides an easy way of cre-

ating stylized images with a number of styles. The stylized im-

58
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A B+

A+ by image analogies [27] A+ by our method

Figure 4.1: Comparison of luminance-based style transfer and our method.
The body of the swan appears in A+ by image analogies. The source image
and style template are downloaded from the project page of image analogies.

age is synthesized from a real image (e.g., a scene photo) with a

given style template (e.g., an oil painting). Formally, given two

images as input, a source image A and a template image B+

whose style is to be simulated, the output A+ is a synthesized

image with the main content in A and the similar style to B+.
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This process is also called style transfer, i.e., transferring the

style of a template image B+ to a source image (or video) A.

One critical problem of the existing approaches is that they

do not separate the style and content in the style transformation

process. In [27], [12], [52], only luminance is transferred from

B+ to A, which brings two drawbacks. First, the luminance

of two input images may not be in the same dynamic range.

To address this problem, a linear mapping that matches the

means and variances of the two luminance distributions is often

adopted. But usually good correspondences cannot be found

for some input images. We will show some such examples in

Section 4.4 for examples. Second, the content of B+ may appear

in the output images. Fig. 4.1 shows such an example.

In this chapter, we propose a novel algorithm to convert a

real image to a stylized image with similar artistic style with

an arbitrarily given template image. To break the limitations of

the previous approaches, the basic idea is to decompose pixels

into different components. Both the source image and template

image are decomposed into the LF, MF, and HF components,

which describe the content, main style, and information along

the boundaries. We introduce the pixel grouping technique from
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image analysis, to simplify the frequency band decomposition

greatly. Then the style is transferred from the template im-

age to the source image in the MF and HF components. Style

transfer is formulated as a global optimization problem by using

Markov random fields (MRFs) [18], and a coarse-to-fine belief

propagation algorithm is used to solve the optimization problem.

To combine the LF component and the obtained style informa-

tion, the final artistic result can be achieved via a reconstruction

step.

One advantage of our method is its ease of use. For a given

arbitrary style template image, it can automatically transform

the style of an input image to the template style. It does not

require the registered pair of source and stylized images [27, 12],

or any user input [64]. The second advantage is that compared

with other methods, our algorithm preserves the content of the

input image and synthesizes the style, since we solve the problem

in different frequency components. The third advantage is that

it can be easily extended. We present an application of our

image style transfer method: personalized artwork.
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4.2 Algorithm Overview

Our main idea originates from the classical theory of image anal-

ysis. In the view of image analysis, the low-frequency part con-

tains the main content of an image, and the high-frequency part

reflects the detail and boundary information of an image. Our

style transfer approach separates an image into three frequency

components, the LF, MF, and HF components. In our method,

the LF part represents the main content of an image, the MF

part represents the style (e.g., different artistic styles to differ-

ent paintings), and the HF part represents the details along the

boundaries.

Such a band decomposition solves the style transfer problem

for A and B+ with different luminance distribution (content)

elegantly. First, the luminance distributions of A and B+ are

determined by the LF component. Then the MF and HF com-

ponents of A+ simulate the characteristics of the corresponding

components of B+. In our algorithm, the simulation step is

formulated as a global optimization problem using MRFs [18].

Finally the three components of A+ are merged to reconstruct

the final image A+. The three-stage process is shown in Fig. 4.2.
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4.3 Image Style Transfer

Before the processing, we convert two input images A and B+

from the RGB color space to the YIQ color space. In our algo-

rithm, all operations are conducted in the Y channel (i.e., the

luminance channel), and the I and Q channels are stored for the

final color restoration. The reason of selecting only the Y chan-

nel for processing is that the artistic style is much more visually

sensitive to changes in the Y channel than in the other two.

4.3.1 Band Decomposition

We consider the style transfer problem in different frequency

components. We notice that different frequency components in

an image contain different information. The LF component is

affected by the illuminance and radiation of the image formation

process and is almost irrelevant with the style. The MF compo-

nent contains textures and determines the style of the image. In

our algorithm, the HF component represents information along

the boundaries. In addition, the LF component in an image

is normally much larger in amplitude than the HF component.

So, we argue that it is necessary to perform a frequency band
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decomposition before transferring the style from the template

image to the input source image. To our best knowledge, we

are the first to consider this problem for example-based image

stylization.

In our approach, an image I(x, y) is a combination of LF,

MF, and HF components. We denoted it as

I(x, y) = IL(x, y)⊕ IM(x, y)⊕ IH(x, y), (4.1)

where IL, IM , and IH are the LF, MF, and HF components,

respectively.

We design a two-step strategy in our algorithm, instead of

using the traditional frequency band decomposition techniques

in signal and image processing. The first step is to separate

the MF component from the image. It can be achieved via

image segmentation, which is simply a partition of an image

into contiguous regions of pixels that have similar appearances

such as color or texture. Let the segmented image of A be AS,

in which each segment is represented by its mean luminance. AS

contains AL(x, y) and AH(x, y), the LF and HF components of
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A, which is

AS(x, y) = AL(x, y)⊕ AH(x, y). (4.2)

We define

AM(x, y) = A(x, y)− AS(x, y), (4.3)

where AM is the MF component of A.

Mean shift is a nonparametric data clustering technique, which

does not need to specify the number of clusters, and has been

successfully applied to image segmentation [13]. Therefore, it is

adopted in our algorithm. In the mean shift image segmenta-

tion, each pixel is assigned a feature point in a five-dimensional

space, consisting of two spatial coordinates and three color com-

ponents. The feature points are grouped by the clustering algo-

rithm.

In the second step, we use the gradients of the segmented

image AS to estimate the HF component of A, i.e.,

AH(x, y) =

[
∂AS(x, y)

∂x
,
∂AS(x, y)

∂y

]
. (4.4)

We also perform the same decomposition on B+ to obtain B+
S ,

B+
M and B+

H .
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4.3.2 MF and HF Component Processing

In this stage, information is propagated from the MF and HF

components of B+ to those of A, respectively. Patches are sam-

pled from the components of B+, and organized to be the com-

ponents of a new image A+, which is close to A in some measure,

i.e., we obtain A+
M and A+

H from B+ and A. In the following de-

scription, the reference images are referred to the components

of B+, which the candidate patches come from, and the target

images are the corresponding components of A, which need to

be covered by patches. Note that the following computation is

conducted independently in the MF and HF components.

Global Optimization on Markov Random Fields

We formulate the patch mapping problem as a labeling problem

modeled by discrete MRFs [18]. First, the reference image is

sampled as a dictionary P of w × h patches. Then the target

image is divided into overlapping patches with the same size.

Construct an undirected graph G = (V,E), where the node

set V = {v1, v2, ..., vN} contains all the patches in the target

image, and E is the set of edges connecting each node to its

four neighbors. For each node vi we assign a patch xi from the



CHAPTER 4. STYLE TRANSFER VIA BAND DECOMPOSITION 68

dictionary P . Then the problem is to find the best configura-

tion X = {x1, x2, ..., xN} to minimize an energy function defined

later, where xi ∈ P (1 ≤ i ≤ N).

The placement of patches should match the target image and

have local consistency. So, our energy function is

E(X) =
∑
vi∈V

E1(xi) + λ
∑

(vi,vj)∈E

E2(xi, xj), (4.5)

where E1(xi) is the penalty cost of assigning the patch xi to the

node vi, E2(xi, xj) is the consistency cost of a neighboring node

pair (vi, vj) having labels (xi, xj), and λ is a balance factor. We

set λ = 5 in all experiments.

The definition of E1(xi) is the sum of the squared differences

(SSD) of pixel features between xi and the region that xi covers

in the target image. E2(xi, xj) is the SSD of pixel features in

the overlapping region between xi and xj. In summary, E1 is

used to control the reliability of the synthesized image and E2

helps to produce a seamless synthesized image.

Component Image Quilting

After the placement of the patches, the component image quilt-

ing from patches is performed via the minimum cut algorithm.
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Image quilting, which aims to produce a seamless image from

overlapping patches, has been extensively studied in texture syn-

thesis [17], [37]. The idea of image quilting is to find a seam with

the least inconsistencies between neighboring patches with over-

lapping regions, which is formulated as a minimum cut problem.

In our implementation, the patches are placed successively. For

the placement of each patch, we construct a graph whose nodes

are the pixels that are in the overlapping region of the existing

patches and the new patch. A source node and a sink node are

added to represent the existing patches and the new patch, re-

spectively. In the graph, the boundary pixels are connected to

the source or sink node with an infinite weight and each node

is connected to its four neighbors. The weight of the edge con-

necting a neighboring pixel pair (i, j) is defined as

W (i, j) = ∥F(i)− Fnew(i)∥2 + ∥F(j)− Fnew(j)∥2, (4.6)

where F(·) and Fnew(·) denote the existing and new features

of a pixel, respectively, and ∥ · ∥ is the L2-norm. After a cut

is obtained, the existing features are updated according to the

cut.



CHAPTER 4. STYLE TRANSFER VIA BAND DECOMPOSITION 70

Implementation Details

The following implementation details of the above steps are

highly related to the quality and speed of synthesis, both of

which are critical for real-world applications.

First, to enhance the synthesis quality, we observe that the

MF component of the template image usually contains strong

style characteristic, which may bring noise in the MRF model.

So in the MRF model, the MF component of the template image

is processed as (Fig. 4.3)

B̃+
M = Median(B+

M), (4.7)

and the dictionary P is taken from B̃+
M , where Median is the

median filter. In the quilting step, we use the corresponding

patches from the original MF component B+
M to keep the style

characteristic.

Second, we design several mechanisms to speed up the MRF

optimization. In our application, both the size of dictionary P

and the number of nodes in MRFs are large, due to the large

size of images used for stylization. Although the popular belief

propagation (BP) is adopted to efficiently solve the energy min-
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(a) (b)

(c) (d)

Figure 4.3: Components of a template image. (a) The template image.
(b) The segmented image. (c) The MF component. (d) The filtered MF
component. The segmented image has strong boundaries, which belong to
the HF component. The MF component contains the style characteristic,
while a median filter can remove most of the style.

Figure 4.4: Comparison of the output images with MF and HF processing
(the left column) and with only MF processing (the right column). The
template image is “Freud” in Fig. 4.5.



CHAPTER 4. STYLE TRANSFER VIA BAND DECOMPOSITION 72

imization problem, it is still necessary to find some way to speed

up the optimization. In this work, we accelerate the algorithm

via three aspects as follows. The first two are for reducing the

size of dictionary P, as the computational complexity of BP is

the square of the number of the patches in the dictionary, and

the last one is for reducing the number of nodes in the MRF.

1) In order to reduce the size of the dictionary, we utilize

only 50% of the most representative sampled patches. In our

implementation of constructing the MF component dictionary,

the quality of a patch in representing the style is measured by

dp =
∑

(x,y)∈p

|B̃+
M(x, y)−B+

M(x, y)|, (4.8)

where (x, y) ∈ p means that (x, y) is a point in patch p. The

larger dp is, the more style information the patch p contains. We

choose the patches with the top 50% d values in the dictionary.

It works well for all the artistic styles we test.

2) We use a two-step coarse-to-fine BP algorithm [30] to re-

duce the computational cost. First, the patches in the dictionary

are divided into K clusters with the k-means algorithm. Then,

the first BP is applied to find labels in the set of centers of
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clusters Pc = {c1, c2, ..., cK}, where ci is the center of the i-th

cluster. Finally, we perform the second BP for each cluster to

select the best patches in the cluster. More details about the

two-step BP can be found from [30].

3) In the optimization process for the HF component,

if ∀(x, y) ∈ p,AH(x, y) = 0, then A+
H(x, y) = 0. (4.9)

It means that, for the patches far away from the boundaries

in the image, we keep their result all zero in the optimization

process, since no boundary information should be transferred

to regions far away from the boundaries. Thus the number of

unlabeled nodes is greatly reduced in the optimization step for

the HF component, which greatly reduces the running time.

Besides, for the MF and HF components, the patch sizes are

different. The HF component uses a small size to keep more

details, while the MF component uses a relatively large size to

make the algorithm faster.

The processing of the HF component described in Section 4.3.2

is to create good appearance along the boundaries. If the HF

component of A is copied to the output image A+ without any
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processing, the boundaries of the output image A+ are of high

contrast (see Fig. 4.4 for example). Most of the artistic styles

do not have such high contrast.

For some styles, the amount of HF components is impor-

tant. A case in point, would be impressionist art with lots of

little strokes. Please notice that keeping the MF of the paint-

ing/image does not make the points and little strokes disappear

if the image is not in a very low resolution. The HF component

is contributed by the boundaries of the points and little strokes

only, but not by the whole points and little strokes. Therefore,

our algorithm can still handle images with many points and

small strokes. One example is the “Rhone” style in Fig. 4.6.

4.3.3 Reconstruction

The reconstruction step is to reconstruct final A+ from the pre-

vious obtained results. There are three steps in our reconstruc-

tion scheme. First, A+
S is obtained from AS and A+

H , where A+
S

corresponds to AS (the segmentation result of A). Then, from

(4.3) and achieved A+
M , A+ = A+

S +A+
M is obtained. As we state

previously, the synthesized A+ is in the luminance channel. Fi-

nally, by combining A+ and the components of the input image
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A in the I and Q channels, the final colorful stylized result is

obtained.

Among these three steps, steps 2 and 3 can be performed

straightforwardly. We discuss step 1 in more details here. De-

note that A+
H = [Gx, Gy]. A

+
S can be achieved by solving such a

least-square (LS) problem that minimizes

J(A+
S ) =

∑
(x,y)

[
γ
(
A+

S (x, y)− AS(x, y)
)2

+
(
(A+

S )x −Gx

)2
+
(
(A+

S )y −Gy

)2]
, (4.10)

where γ is a constant, and
(
A+

S

)
x
,
(
A+

S

)
y
are partial derivatives

of A+
S in the x and y direction, respectively. In all experiments,

we set γ = 0.01.

The optimal A+
S of the above LS is the solution of the matrix

equation

γA+
S + A+

SD
T
xDx +DT

y DyA
+
S = γAS +GxDx +DT

y Gy, (4.11)

where Dx and Dy are the 1D differential operators, such that

A+
SD

T
x =

(
A+

S

)
x
and DyA

+
S =

(
A+

S

)
y
. This equation is of the

form of the Lyapunov matrix equation AX + XA = B, where

X is unknown and A and B are given.
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Source Pastel

Rhone Craquelure

Freud Watercolor

Figure 4.5: Template images.

4.4 Experiments

4.4.1 Comparison to State-of-the-Art

In this section, we test our method on a variety of source images

and template styles, and compare it with the image analogies

approach [27]. There are two reasons to compare our algorithm
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with image analogies. First, image analogies is known to be the

best example-based image stylization algorithm so far. Consid-

ering the space limitation, we only compare our algorithm with

the best performance. Second, since we focus on the automatic

image stylization problem for a given arbitrary style template

image, we do not compare our algorithm with the ones such as

[12], [64], [16] that need manual input or other different input

(please refer to Table 2.2).

A source image and several style template images are given

in Fig. 4.5. In our experiments, there are five template images,

called Pastel, Rhone, Craquelure, Freud, and Watercolor, re-

spectively. The Freud style contains many strokes since it is

an oil painting, while the Watercolor style contains brushes and

diffusion. The difference can be well found on the screen via

zooming by, say, 300%. Note that the image analogies approach

requires the ground-truth image B, while our method does not.

To our best knowledge, there is no quantitative metric for

evaluating the results of image stylization. We evaluate the

results visually. The comparison results of our algorithm and

image analogies are given in Fig. 4.6.1 From the results we

1We use the executable program of image analogies provided by the authors, available
at http://www.mrl.nyu.edu/projects/image-analogies/.
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can see that our results have better appearances than those of

image analogies. The content of the source image is changed

much more by using image analogies than our algorithm. For

example, for the “Pastel” and “Rhone” styles (Fig. 4.6), image

analogies changes the content greatly, while our algorithm pre-

serves the content better. This is because in our algorithm, the

LF component representing the image content is extracted and

kept unchanged, while in image analogies, no similar scheme is

used to preserve the content.

On the other hand, our algorithm synthesizes the style bet-

ter than image analogies. Because no linear mapping can be

found to align the luminance distributions of the input source

and style template image perfectly, image analogies cannot syn-

thesize some styles well. The distribution of style patterns relies

strongly on the luminance in the result of image analogies. The

result on a region with homogenous luminance has the trend

of being one with a homogenous pattern. For example, for the

style “Craquelure” (see Fig. 4.6), there are weak patterns in the

dark regions in the result of image analogies. Another obvious

example is for the style of “Pastel”. Some other results of our

algorithm are provided in Fig. 4.7 and Fig. 4.8.
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“Pastel” style

“Rhone” style

“Craquelure” style

“Freud” style

“Watercolor” style

Figure 4.6: Comparison of the results of image analogies (left) and our
method (right). The results are best viewed with zooming-in on screen.
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Source “Pastel”

“Rhone” “Craquelure”

“Freud” “Watercolor”

Figure 4.7: More results of our method. The results are best viewed with
zooming-in on screen.
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Source “Pastel”

“Rhone” “Craquelure”

“Freud” “Watercolor”

Figure 4.8: More results of our method. The results are best viewed with
zooming-in on screen.
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4.4.2 Extended Application: Personalized Artwork

Personalized artworks appear in our daily life and have drawn

more and more attentions with the rapid popularization of digi-

tal images. Recently, a novel work called EasyToon has utilized

vision and graphics technologies to insert the real face from pho-

tos into cartoon images [11]. Inspired by this approach, we pro-

pose an alternative way to create a personalized artwork, i.e., to

convert a personal photo to an artistic image with the real facial

appearance. The face is the most identifiable personal feature

and the identity information is usually lost in the stylized face

(compare Figs. 4.9(a) and (b)). So we propose the following

procedure to create a personalized artwork. First, the face is

extracted from the source photograph with the boosting based

face detection [73] and active shape model based face alignment

[89], and a mask is generated to separate the face and non-facial

part. Then, the non-facial part is processed with our image style

transfer algorithm. Finally, face blending is applied to synthe-

size a personalized artwork from the face and stylized non-facial

part. As both parts are originally from the same photograph,

the only necessary operation in face blending is illumination

blending, which is much simpler than EasyToon [11].
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(a) “Watercolor”, κ = 0 (b) “Watercolor”, κ = 0.7

(c) “Freud”, κ = 0.5 (d) “Freud”, κ = 1

(e) “Pastel”, κ = 0.5 (f) “Pastel”, κ = 1

Figure 4.9: Results of personalized artworks. The results are best viewed
with zooming-in on screen.
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Sometimes people may prefer to simultaneously stylize the

face and keep the personal facial feature. Therefore, a linear

coefficient κ between 0 and 1 is utilized to control the amount

of personal information on the stylized face, i.e.,

f = κfns + (1− κ)fs, (4.12)

where f , fns, and fs are final, completely stylized, and not styl-

ized face. In Figs. 4.9(b) and (c), where κ = 0.5, we can recog-

nize the person though the style exists on the face.

4.5 Conclusion

In this chapter, we proposed a frequency band decomposition

based approach for transferring the style of an artistic image

to real photographs. In our approach, three components, in-

cluding the low-frequency, mid-frequency, and high-frequency

components, are used to describe the content, main style in-

formation, and information along the boundaries of an image,

respectively. Our algorithm preserves the content of the source

image and synthesizes the style by copying style patches from

the template. The patch copying process is formulated as a
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global optimization problem using Markov random fields, and

the optimization problem is solved using a coarse-to-fine belief

propagation. We further extend our approach to create per-

sonalized artwork. Inspired by EasyToon [11], which produces

personalized cartoons, we propose a general framework to create

personalized artworks from photos.

It is interesting to extend our work to produce stylized videos

using an artistic image as the template. Cao et al. [7] investi-

gated video stylization and personalization utilizing our algo-

rithm [80].

We find some styles that our current framework does not

work well on. One example is highly abstract artworks, e.g., the

style of Picasso’s surrealistic paintings. To deal with these prob-

lems, human interaction may be incorporated. It is attractive

to continue our research in this direction.

2 End of chapter.



Chapter 5

Coupled Encoding for Sketch

Recognition

5.1 Introduction

Face photo-sketch recognition is to match a face sketch drawn

by an artist to one of many face photos in the database. In

law enforcement, it is desired to automatically search photos

from police mug-shot databases using a sketch drawing when

the photo of a suspect is not available. This application leads

to a number of studies on this topic [59, 60, 61, 69, 22, 35, 9].

Photo-sketch generation and recognition are also useful in digital

entertainment industry.

The major challenge of face photo-sketch recognition is to

86
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match images in different modalities. Sketches are a concise

representation of human faces, often containing shape exagger-

ation and having different textures than photos. It is infea-

sible to directly apply face photo recognition algorithms. Re-

cently, great progress has been made in two directions. The

first family of approaches [60, 43, 69] focused on the preprocess-

ing stage and synthesized a pseudo-photo from the query sketch

or pseudo-sketches from the gallery photos to transform inter-

modality face recognition into intra-modality face recognition.

Face photo/sketch synthesis is actually a harder problem than

recognition. Imperfect synthesis results significantly degrade

the recognition performance. The second family of approaches

[41, 38, 35] focused on the classification stage and tried to design

advanced classifiers to reduce the modality gap between features

extracted from photos and sketches. If the inter-modality differ-

ence between the extracted features is large, the discriminative

power of the classifiers will be reduced. A literature review can

be found in Chapter 2.3.

In this chapter, we propose a new approach of reducing the

modality gap at the feature extraction stage. A new face descrip-

tor is designed by the coupled information-theoretic encoding,
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Sketch vector space

Photo vector space

CITP tree

Photos

Sketches

Figure 5.1: A CITP tree with three levels for illustration purpose. The local
structures of photos and sketches are sampled and coupled encoded via the
CITP tree. Each leaf node of the CITP tree corresponds to a cell in the
photo vector space and in the sketch vector space. The sampled vectors in
the same cell are assigned the same code, so that different local structures
have different codes and the same structures in different modalities have the
same code.

which quantizes the local structures of face photos and sketches

into discrete codes. In order to effectively match photos and

sketches, it requires that the extracted codes are uniformly dis-

tributed across different subjects, which leads to high discrimi-

native power, and that the codes of the same subject’s photo and

sketch are highly correlated, which leads to small inter-modality

gap. These requirements can be well captured under the crite-

rion of maximizing the mutual information between photos and
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sketches in the quantized feature spaces. The coupled encoding

is achieved by the proposed randomized coupled information-

theoretic projection forest, which is learned with the maximum

mutual information (MMI) criterion.

Another contribution of this work is to release CUHK Face

Sketch FERET Database (CUFSF)1, a large scale face sketch

database. It includes the sketches of 1, 194 people from the

FERET database [49]. Wang and Tang [69] published the CUFS

database with sketches of 606 people. The sketches in the CUFS

database had less shape distortion. The new database is not only

larger in size but also more challenging because its sketches have

more shape exaggeration and thus are closer to practical appli-

cations. Experiments on this large scale dataset show that our

approach significantly outperforms the state-of-the-art methods.

5.1.1 Related work

There is an extensive literature on descriptor-based face recog-

nition [1, 58, 71, 90, 70], due to its advantages of computational

efficiency and relative robustness to illumination and pose vari-

ations. They are relevant to our coupled encoding. However,

1Available at http://mmlab.ie.cuhk.edu.hk/cufsf/.
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those handcrafted features, such as local binary patterns (LBP)

[1], dense scale-invariant feature transform (SIFT) [45], learning-

based descriptor (LE) [8] and their variants [81, 78, 79, 71, 15],

were not designed for inter-modality face recognition. The ex-

tracted features from photos and sketches may have large inter-

modality variations.

Although information-theoretic concepts were explored in build-

ing decision trees and decision forests for vector quantization

[2, 47, 54] in the application of object recognition, these algo-

rithms were applied in a single space and did not address the

problem of inter-modality matching. With the supervision of

object labels, their tree construction processes were much more

straightforward than ours.

5.2 Information-Theoretic Projection Tree

Vector quantization was widely used to create discrete image

representations, such as textons [46] and visual words [55], for

object recognition and face recognition. Image pixels [8, 54],

filter-bank responses [46] or invariant descriptors [55, 72] were

computed either sparsely or densely on a training set, and clus-
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tered to produce a codebook by algorithms such as k-means,

mean shift [33], random projection tree [8, 20, 72] and random

forest [47, 54]. Then with the codebook any image could be

turned into an encoded representation.

However, to the best of our knowledge, it has not been clear

how to apply vector quantization to cross-modality object match-

ing yet. In this section, we present a new coupled information-

theoretic projection (CITP) tree for coupled quantization across

modalities. We further extend the CITP tree to the randomized

CITP tree and forest. For clarity of exposition, we present the

method in the photo-sketch recognition scenario.

5.2.1 Projection Tree

A projection tree [20] partitions a feature space RD into cells.

It is built in a recursive manner, splitting the data along one

projection direction at a time. The succession of splits leads

to a binary tree, whose leaves are individual cells in RD. With

a built projection tree, a code is assigned to each test sample

x, according to the cell (i.e. leaf node) it belongs to. The

sample is simply propagated down the tree, starting from the

root node and branching left or right until a leaf node is reached.
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Each node is associated with a learned binary function f(x) =

sign(wTx− τ). The node propagates x to its left child if f(x) =

−1 and to its right child if f(x) = 1.

5.2.2 Mutual Information Maximization

Since quantization needs to be done in both the photo space

and the sketch space, we extend a projection tree to a coupled

projection tree. In a coupled projection tree, vectors sampled

from photos and sketches share the same tree structure, but

are input to different binary functions fp(xp) and fs(xs) at each

node. A vector xp sampled from the neighborhood of a photo

pixel is quantized with fp and a vector xs sampled from the

neighborhood of a sketch pixel is quantized with fs. Then the

sampled photo vectors and sketch vectors are mapped to the

same codebook, but their coding functions represented by the

tree are different, denoted by Cp and Cs, respectively.

To train a coupled projection tree, a set of vector pairs X =

{(xp
i ,x

s
i ), i = 1, ..., N} is prepared, where xp

i ,x
s
i ∈ RD. In this

work, xp
i and xs

i are the normalized vectors of sampled gra-

dients around the same location2 in a photo and a sketch of

2We sample the gradients (i.e. the first-order derivatives in the horizontal and vertical
directions) Iu and Iv for an image I. Please refer to Section 5.3 for details.
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the same subject, respectively. Denote that Xp = [xp
1, ...,x

p
N ],

Xs = [xs
1, ...,x

s
N ]. Since xp

i and xs
i are sampled from the same

subject at the same location, it is expected that they are quan-

tized into the same code by the coupled projection tree. In the

meanwhile, in order to increase the discriminative power, it is

expected that the codes of Xp and Xs are uniformly distributed

across different subjects. To achieve these goals, our coupled

information-theoretic projection (CITP) trees are learned us-

ing the maximum mutual information (MMI) criterion (see Fig.

5.2).

Mutual information, which is a symmetric measure to quan-

tify the statistical information shared between two random vari-

ables [14], provides a sound indication of the matching quality

between coded photo vectors and coded sketch vectors. For-

mally, the objective function is as follows.3

I(Cp(Xp); Cs(Xs)) = H(Cp(Xp))−H(Cp(Xp)|Cs(Xs)). (5.1)

To increase the discriminative power, the quantization should

maximize the entropy H(Cp(Xp)) so that the samples are nearly

3The mutual information is originally defined between two random variables Cp(xp
i ) and

Cs(xs
i ). We use the empirical mutual information estimated on the training set throughout

this chapter.
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uniformly distributed over the codebook. To reduce the inter-

modality gap, the quantization should minimize the conditional

entropy H(Cp(Xp)|Cs(Xs)).

5.2.3 Tree Construction with MMI

Similar to random projection tree [20], the CITP tree is also

built top down recursively. However, it is different in that the

CITP tree is not a balanced binary tree, i.e. the leaf nodes are at

different levels. So the tree building process consists of searching

for both the best tree structure and the optimal parameters at

each node.

Tree structure searching. We adopt a greedy algorithm to

build the tree structure. At each iteration, we search the node

whose splitting can maximize the mutual information between

the codes of sampled photo and sketch vectors. The mutual

information, given in Eqn. (5.1), can be easily approximated in

a nonparametric way. All the sampled photo and sketch vectors

in the training set are quantized into codes with the current tree

after splitting the candidate node, and the joint distribution of

photo and sketch codes is computed to estimate the mutual

information. A toy example is shown in Fig. 5.2.
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Figure 5.2: An illustration of tree construction with MMI. In each step,
all current leaf nodes are tested and the one with the maximum mutual
information is selected to split. For a leaf node, we try to split it and obtain
a tree to encode photo vectors and sketch vectors. The selected leaf node
should satisfy: (1) the codes are uniformly distributed; (2) the codes of
photo vectors and corresponding sketch vectors are highly correlated. These
requirements can be well captured under the MMI criterion. In this example,
if we split node A, requirement (2) will not be satisfied, and if we split
node C, requirement (1) will not be satisfied. The corresponding mutual
information I of both are relatively small. So node B with the maximum
mutual information is selected. The histograms and joint histograms of photo
and sketch codes are visualized. In joint histograms, the colors represent the
joint probability densities.

Node parameter searching. It is critical to search for

optimal parameters of binary functions fp(xp) and fs(xs) to de-



CHAPTER 5. COUPLED ENCODING FOR SKETCH RECOGNITION96

termine how to split the node. Formally, we aim at finding

projection vectors wp,ws and thresholds τp, τs for node k
4, such

that

ypi = wT
p x

p
i − τp, ŷpi = sign(ypi ),

ysi = wT
s x

s
i − τs, ŷsi = sign(ysi ).

(5.2)

Then a binary value ŷpi (or ŷsi ) is assigned to each vector xp
i (or

xs
i ), to split the training data into two subsets and propagate

them to the two child nodes. The node propagates a training

vector pair (xp
i ,x

s
i ) to its children only if the binary values ŷpi

and ŷsi are the same. Otherwise, the vector pair is treated as an

outlier and discarded.

Suppose that the input of a node k is a set of vector pairs

Xk = {(xp
ki
,xs

ki
), 1 ≤ i ≤ Nk}. Denote that Xp

k = [xp
k1
, ...,xp

kNk
],

Xs
k = [xs

k1
, ...,xs

kNk
], Yp

k = [ypk1, ..., y
p
kNk

], Ys
k = [ysk1, ..., y

s
kNk

],

Ŷp
k = [ŷpk1, ..., ŷ

p
kNk

] and Ŷs
k = [ŷsk1, ..., ŷ

s
kNk

]. The node is split

according to the MMI criterion, i.e. maximizing

I(Ŷp
k; Ŷ

s
k) = H(Ŷp

k) +H(Ŷs
k)−H(Ŷp

k, Ŷ
s
k). (5.3)

Instead of solving the above maximization problem directly,

an approximate objective I(Yp
k;Y

s
k) is maximized first. Through

4We omit index k of the parameters, for conciseness.
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maximizing I(Yp
k;Y

s
k), wp and ws are estimated without con-

sidering τp and τs. Assume that ypki and yski are jointly Gaussian

distributed. The entropy of a jointly Gaussian random vector g

is 1
2 ln[det(Σg)] + const [14], where Σg is the covariance matrix

of g. Following this, the mutual information can be rewritten

in a simple form

I(Yp
k;Y

s
k) =

1

2
ln

(
det(Σp

k) det(Σ
s
k)

det(Σk)

)
+ const, (5.4)

where Σp
k, Σ

s
k andΣk are the covariance ofY

p
k,Y

s
k and [(Yp

k)
T
, (Ys

k)
T ]T ,

respectively. According to Eqn (5.2),

Σp
k = wT

pC
p
kwp, Σs

k = wT
s C

s
kws,

Σk =

 wT
pC

p
kwp wT

pC
p,s
k ws(

wT
pC

p,s
k ws

)T
wT

s C
s
kws

 ,
(5.5)

where Cp
k and Cs

k are the covariance matrix of Xp
k, X

s
k, respec-

tively, and Cp,s
k is the covariance matrix between Xp

k and Xs
k.

Substituting Eqn. (5.5) into Eqn. (5.4), we find the equiva-

lence between maximizing (5.4) and the Canonical Correlation
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Analysis (CCA) model

max
wp,ws

wT
pC

p,s
k ws√

wT
pC

p
kwpwT

s C
s
kws

. (5.6)

So the optimal wp and ws are obtained by solving CCA (details

are given later). CCA is found with good trade-off between the

scalability and performance, when the input set is usually of a

large size (about 2.5 million sample pairs in our experiments).

To estimate the thresholds τp and τs, we use brute-force search

to maximize (5.3) in the region (τp, τs) ∈ [µ̂p− σ̂p, µ̂p+ σ̂p]× [µ̂s−

σ̂s, µ̂s+ σ̂s], where µ̂p = mediani(y
p
i ) and σ̂p = mediani(|ypi − µ̂

p|)

are the median and median of absolute deviation of ypi , respec-

tively, and µ̂s and σ̂s are the median and median of absolute

deviation of ysi , respectively.

Canonical Correlation Analysis. CCA was introduced by

Hotelling for correlating linear relationships between two sets of

vectors [28]. It was used in some computer vision applications

[77, 34, 56]. However, it has not been explored as a component

of a vector quantization algorithm. Blaschko and Lampert [6]

proposed an algorithm for spectral clustering with paired data

based on kernel CCA. However, this method is not appropriate
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for quantization, as the kernel trick causes high computational

and memory cost due to the very large size of the training set,

and the nearest centroid assignment may be unstable (there is no

hard constraint to require a pair of vectors in the same cluster).

To solve CCA in (5.6), let

Sm =

 0 Cp,s
k

(Cp,s
k )

T
0

 ,Sn =

 Cp
k Cp,s

k

(Cp,s
k )

T
Cs

k

 ,

and then w = [wT
p ,w

T
s ]

T can be solved as the eigenvector asso-

ciated with the largest eigenvalue of the generalized eigenvalue

problem Smw = λ(Sn+εI)w, where ε is a small positive number

for regularization.

The whole algorithm for building a CITP tree is summarized

as Algorithm 1.
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Algorithm 1 Algorithm of building a CITP Tree

1: Input: a set of vector pairs X = {(xp
i ,x

s
i ), i = 1, ..., N}, where xp

i ,x
s
i ∈

RD, and the expected number of codes (i.e. leaf nodes) nL.
2: Create an empty set S, and add the root node to S.
3: repeat
4: for each node k in S and its associated vector set Xk do
5: Compute the possible node splitting:

(i) Generate projection vectors wp,ws and thresholds τp, τs with Xk;
(ii) For its left child L and right child R,
XL ← {(xp

i ,x
s
i )|wT

p x
p
i ≤ τp,w

T
s x

s
i ≤ τs},

XR ← {(xp
i ,x

s
i )|wT

p x
p
i > τp,w

T
s x

s
i > τs},

(XL ⊂ Xk,XR ⊂ Xk);
6: end for
7: Select the best node splitting with the maximum mutual information

in Eqn. (5.1);
8: Split the node, remove the node from S and add its child nodes to S;
9: until the number of leaf nodes is nL.
10: Output: the CITP tree with projection vectors and thresholds at each

node.
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5.2.4 Randomized CITP Forest

Randomization is an effective way to create an ensemble of trees

to boost the performance of tree structured algorithms [47, 54,

72]. The randomized counterpart of the CITP tree includes two

modifications on node splitting as follows.

Randomization in sub-vector choice. At each node, we

randomly sample α percent (empirically α = 80) of the element

indices of the sampled vectors, i.e. use a sub-vector of each sam-

pled vector, to learn the projections. To improve the strength

of generated trees, the random choice is repeated for 10 times

empirically at each node, and the one with the maximum mu-

tual information in Eqn. (5.3) is selected. The randomization at

each node results in randomized trees with different tree struc-

tures and utilizing different information from the training data.

Therefore, the randomized trees are more complementary.

Randomization in parameter selection. The eigenvec-

tors associated with the first d largest eigenvalues in the CCA

model are first selected. Then a set of n vectors are generated by

randomly linearly combining the d selected eigenvectors.5 Ac-

5The eigenvectors are orthogonalized with Gram-Schmidt orthogonalization and nor-
malized with L2-norm.
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cording to the MMI criterion in Eqn. (5.3), the best one is

selected from the set of n random vectors and used as the pro-

jection vectors wp and ws. In our experiments, we choose d = 3

and n = 20.

The creation of a random ensemble of diverse trees can sig-

nificantly improve the performance over a single tree, which is

verified by our experiments.

5.3 Coupled Encoding Based Descriptor

In this section, we introduce our coupled information-theoretic

encoding (CITE) based descriptor. With a CITP tree, a photo

or a sketch can be converted into an image of discrete codes.

The CITE descriptor is a collection of region-based histograms

of the “code” image. The pipeline of photo-sketch recognition

using a single CITP tree is shown in Fig. 5.3. The details are

given as follows.

Preprocessing. The same geometric rectification and pho-

tometric rectification are applied to all the photos and sketches.

With affine transform, the images are cropped to 80 × 64, and

the two eye centers and the mouth center of all the face images
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are at fixed positions. Then both the photo and sketch images

are processed with a Difference-of-Gaussians (DoG) filter [29]

to remove both high-frequency and low-frequency illumination

variations. Empirical investigations show that (σ1, σ2) = (1, 2)

is the best in our experiments.

Sampling and normalization. At each pixel, its neighbor-

ing pixels are sampled in a certain pattern to form a vector. A

sampling pattern is a combination of one or several rings and

the pixel itself. On a ring with radius r, 8r pixels are sampled

evenly. Fig. 5.3 shows the sampling pattern of r = 2. We denote

a CITE descriptor by a sampling pattern with rings of radius

r1, ..., rs as CITEr1,...,rs.

We find that sampling the gradients Iu and Iv results in a

better descriptor than sampling the intensities [8]. The gradi-

ent domain explicitly reflects relationships between neighboring

pixels. Therefore, it has more discriminating power to discover

key facial features than the intensity domain. In addition, the

similarity between photos and sketches are easier to compare in

the gradient domain than intensity domain [82].

After the sampling, each sampled vector is normalized such

that its L2-norm is unit.
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Coupled Information-Theoretic Encoding. In the en-

coding step, the sampled vectors are turned into discrete codes

using the proposed CITP tree (Section 5.2). Then each pixel

has a code and the input image is converted into a “code” im-

age. The vectors sampled from photos and sketches for training

CITP tree are paired according to the facial landmarks detected

by a state-of-the-art alignment algorithm [39].6 Specifically, a

pixel in the sketch image finds its counterpart in the photo im-

age using a simple warping based on the landmarks. Note that

the pairing is performed after sampling so that local structures

are not deformed by the warping.

CITE Descriptor. The image is divided into 7 × 5 local

regions with equal size, and a histogram of the codes is computed

in each region. Then the local histograms are concatenated to

form a histogram representation of the image, i.e. the CITE

descriptor.

Classifier. We use a simple PCA+LDA classifier7 [3, 66]

to compute the dissimilarity between a photo and a sketch. By

6According to our observation, a general face alignment algorithm trained on commonly
used face photo data sets is actually also effective for sketch alignment. We did not
separately train a face alignment algorithm for sketches.

7A small regularization parameter is added to the diagonal elements of the within-class
matrix of LDA to avoid singularity.
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learning a linear projection matrix on the training set, it projects

CITE descriptors into a low-dimensional space. Note that the

descriptors are centered, i.e. the mean of the training CITE

descriptors is subtracted from them. Then each projected CITE

descriptor is normalized to a unit L2-norm and the Euclidean

distance between the normalized low-dimensional representation

of a photo and a sketch is computed as their dissimilarity.

Fusion. We use a linear SVM to fuse dissimilarities by dif-

ferent CITE descriptors. The different CITE descriptors can

be obtained by running the randomized CITP tree algorithm

repeatedly. To train the one-class SVM, we select all the intrap-

ersonal pairs and the same number of interpersonal pairs with

smallest dissimilarities.

5.4 Experiments

In this section, we study the performance of our CITE descrip-

tors and CITP trees on face photo-sketch recognition task. We

first compare the performance of our CITE descriptor, with a

single sampling pattern and single tree, to popular facial fea-

tures, including LBP [1] and SIFT [45]. The classifier is not
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Figure 5.4: Examples of photos from the CUFSF database and corresponding
sketches drawn by the artist.

used in this part to clearly show their difference. Then we inves-

tigate the effect of various free parameters on the performance

of the system. Finally we show that our method is superior to

the state-of-the-art.

Datasets. The CUHK Face Sketch FERET Database (CUFSF)

is used for the experiments. There are 1, 194 people with light-

ing variations in the set. Each person has a photo and a sketch

with shape exaggeration drawn by an artist. Some examples

are shown in Fig. 5.4. The CUFS database [69] is also used

as a benchmark. This dataset consists of 606 persons, each of

which has a photo-sketch pair. The sketches were drawn without

exaggeration by an artist when viewing the photo.

On the CUFSF database, 500 persons are randomly selected

as the training set, and the remaining 694 persons form the

testing set. On the CUFS database, 306 persons are in the
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Figure 5.5: Comparison between CITE2 (single CITP tree), LBP and SIFT.
The dissimilarity between a photo and a sketch is computed as the distance
between descriptors extracted on them. The χ2 distance [1] is used for LBP
and CITE2, and Euclidean distance is used for SIFT. For simplicity, we give
the length of a local histogram for each descriptor, instead of the length of
the whole descriptor, in brackets.

training set and the other 300 persons are in the testing set.

Evaluation metrics. The performance is reported as Veri-

fication Rates (VR) at 0.1% False Acceptance Rate (FAR) and

Receiving Operator Characteristic (ROC) curves.

5.4.1 Descriptor Comparison

We compare our descriptor with LBP [1] and SIFT [45]. The

LBP is computed based on sampling points on a circle. We
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explore different numbers of sampling points and different ra-

diuses. We find that the LBP descriptors extracted from DoG

filtered images perform better than from original images. The

128-dimensional SIFT has 4×4 spatial bins of the same size and

8 orientation bins evenly spaced over 0◦ − 360◦. The vote of a

pixel to the histogram is weighted by its gradient magnitude and

a Gaussian window with parameter σ centered at the center of

the region. We explore different sizes of the region and different

σ. For our CITE descriptor, we use the sampling pattern of a

single ring with r = 2 as shown in Fig. 5.3. We test on different

numbers of leaf nodes (i.e. different sizes of a local histogram).

The ROC curves are shown in Fig. 5.5. Even 32-dimensional

CITE2 (please refer to Section 5.3 for this notation) significantly

outperforms the 59-dimensional LBP and 128-dimensional SIFT.

The 256-dimensional CITE2 (68.58%) beats the best results of

LBP (41.35%) and SIFT (44.96%) by 20% on VR at 0.1% FAR.

5.4.2 Parameter Exploration

We investigate the effect of various free parameters on the per-

formance of the system, including the number of leaf nodes, the

projected dimension by PCA+LDA, the size of randomized for-



CHAPTER 5. COUPLED ENCODING FOR SKETCH RECOGNITION110

est and the effect of using different sampling patterns. We fix

the other factors when investigating one parameter.

Number of Leaf Nodes. We compare the effect of using

different numbers of leaf nodes in a CITP tree. The number is

extensively studied from 32 (25) to 1024 (210). As shown in Fig.

5.6(a), the VR initially increases, and does not increase when

the number is larger than 256. Due to small performance gain

and high computational cost of a large leaf node number, we

choose 256 leaf nodes as our default setting.

PCA+LDA Dimension. The reduced dimension is an im-

portant parameter of PCA+LDA. The VR has a fairly large

stable region and varies less than 1% from 500 to 950 (see Fig.

5.6(b)). We choose 600 PCA+LDA dimensions in our final sys-

tem.

Size of Randomized Forest. We vary the number of ran-

domized trees in the CITP forest from 1 to 9. Fig. 5.6(c) shows

that increasing the number of trees from 1 to 5 increases the

VR from 87.90% to 93.95%, with little improvement beyond

this. Hence, we fix the number of randomized trees in a CITP

forest to be 5.
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Figure 5.6: VR at 0.1% FAR vs. (a) number of leaf nodes; (b) PCA+LDA di-
mension; (c) size of randomized forest; (d) comparison of ensemble of forests
with different sampling patterns and the forest with a single sampling pat-
tern. In (a)–(c), The descriptor is CITE2. In (a), the descriptors are com-
pressed to 600 dimensional using PCA+LDA, and a single CITP tree is used.
In (b), we use 256 leaf nodes and a single CITP tree. In (c) and (d), we use
256 leaf nodes and 600 PCA+LDA dimensions.
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Ensemble of Randomized Forests with Different Sam-

pling Patterns. Although the performance increases slowly

when the number of randomized trees is more than 5, using en-

semble of randomized forests with different sampling patterns

can further boost the performance. Different sampling patterns

can capture rich information across multiple scales. Fig. 5.6(d)

shows that using five sampling patterns improves the VR at

0.1% FAR from 93.95% to 98.70%.

5.4.3 Experiments on Benchmarks

We compare our algorithm with the following state-of-the-art

approaches on the CUFSF database. The algorithms are tuned

to the best settings according to their paper.

• MRF-based synthesis [69]. Pseudo photos are synthesized

from query sketches, and random sampling LDA (RS-LDA)

[68] is used to match them to gallery photos. In addition, we

test LE [8] on matching pseudo photos and gallery photos.

• Kernel CSR [38]. The CSR model is trained to seek for a

common discriminative subspace, based on intensities, LBP

and SIFT feature vectors separately.
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Figure 5.7: Comparison of the state-of-the-art approaches and our method
on the CUFSF database. ROC curves and VR at 0.1% FAR are shown.

• LFDA [35]. It fuses the LBP features with four different

radiuses and the SIFT features with a discriminative model.

For each feature, multiple projection vectors are learnt.

Fig. 5.7 shows that our method significantly outperforms

the state-of-the-art approaches. MRF-based synthesis requires

that there is no significant shape distortion between photos and
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sketches in the training set, and also that training photos are

taken under similar lighting conditions. This method does not

work well in this new data set because the drawing style of the

artist involves large shape exaggeration and the photos in the

FERET database are taken under different lightings with large

variations. Therefore, the pseudo photos by MRF-based syn-

thesis have artifacts such as distortions. Such artifacts degrade

the performance of state-of-the-art face photo recognition algo-

rithms including RS-LDA and LE. The results of Kernel CSR

on different features verify that the inappropriate selection of

features will reduce the discriminative power of the classifier.

SIFT features have better results than LBP on the photo-sketch

recognition task. LFDA achieves a good result by fusing five

different kinds of features with two different spatial partitions.

However, its error rate (9.22%) is much higher than ours (1.30%)

for 0.1% FAR.

Our method also has superior performance on the CUFS

database, a standard benchmark for face photo-sketch recog-

nition, as shown in Table 5.1. Apparently, this dataset is now

an easy one for the state-of-the-art methods.
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Table 5.1: Rank-1 recognition rates on the CUFS database. The recognition
rates are averaged over five random splits of 306 training persons and 300
testing persons. We test our method with the same configuration of training
and testing splits as [69, 35].

MRF+RS-LDA [69] LFDA [35] Ours
96.30% 99.47% 99.87%

5.5 Conclusions

We proposed a coupled information-theoretic encoding based de-

scriptor for face photo-sketch recognition. We introduced cou-

pled information-theoretic projection forest to maximize the mu-

tual information between the encoded photo and encoded sketch

of the same subject. Our system significantly outperforms the

state-of-the-art approaches. In the future work, we would like to

further investigate the system with more cross-modality recog-

nition problems.

2 End of chapter.



Chapter 6

Conclusion

In many domains of computer vision, data can be represented

in multiple modalities. Different modalities of the same object

or scene are generated by different processes. In the previous

chapters we have been through several topics in inter-modality

image synthesis and recognition: face sketch synthesis, example-

based image stylization, and face photo-sketch recognition.

The first part of the thesis focuses on real-world face sketch

synthesis. Automatic face sketch synthesis has important appli-

cations in law enforcement and digital entertainment. Although

great progress has been made in recent years, previous methods

only work under well controlled conditions and often fail when

there are variations of lighting and pose. In Chapter 3, we pro-

pose a robust algorithm for synthesizing a face sketch from a face
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photo taken under a different lighting condition and in a differ-

ent pose from the training set. It synthesizes local sketch patches

using a multiscale Markov Random Field (MRF) model. The

robustness to lighting and pose variations is achieved in three

steps. Firstly, shape priors specific to facial components are

introduced to reduce artifacts and distortions caused by vari-

ations of lighting and pose. Secondly, new patch descriptors

and metrics which are more robust to lighting variations are

used to find candidates of sketch patches given a photo patch.

Lastly, a smoothing term measuring both intensity compatibility

and gradient compatibility is used to match neighboring sketch

patches on the MRF network more effectively. The proposed

approach significantly improves the performance of the state-of-

the-art method. Its effectiveness is shown through experiments

on the CUHK face sketch database and celebrity photos col-

lected from the web.

Then we explore unsupervised style transfer, i.e., transfer-

ring the artistic style from a template image to photos. It is a

more general problem than face sketch synthesis, and has wide

applications of making artistic effects for images and videos.

However, most existing methods do not consider the content
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and style separately. In Chapter 4, we propose a style transfer

algorithm via a novel frequency band decomposition approach,

based on techniques from image analysis. First, an image is

decomposed into the low-frequency (LF), mid-frequency (MF),

and high-frequency(HF) components, which describe the con-

tent, main style, and information along the boundaries. Then

the style is transferred from the template image to the source

photo in the MF and HF components. Style transfer is also for-

mulated as a global optimization problem by using MRF, and a

coarse-to-fine belief propagation algorithm is used to solve the

optimization problem. To combine the LF component of the

source photo and the obtained style information, the final artis-

tic result can be achieved via a reconstruction step. Compared

to the other algorithms, our method not only synthesizes the

style, but also preserves the image content well. We extend our

algorithm to personalized artwork. The results indicate that

our approach performs excellently in image stylization and the

extended application.

Finally we consider the problem of inter-modality face recog-

nition through proposing a new feature representation. We

studied face photo-sketch recognition, which is a typical and
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challenging inter-modality face recognition problem. Recent re-

search has focused on transforming photos and sketches into

the same modality for matching or developing advanced clas-

sification algorithms to reduce the modality gap between fea-

tures extracted from photos and sketches. In Chapter 5, we

propose a new inter-modality face recognition approach by re-

ducing the modality gap at the feature extraction stage. A new

face descriptor based on coupled information-theoretic encoding

is used to capture discriminative local face structures and to ef-

fectively match photos and sketches. Guided by maximizing the

mutual information between photos and sketches in the quan-

tized feature spaces, the coupled encoding is achieved by the

proposed coupled information-theoretic projection tree, which

is extended to the randomized forest to further boost the per-

formance. We create the largest face sketch database including

sketches of 1, 194 people from the FERET database. Experi-

ments on this large scale dataset show that our approach signif-

icantly outperforms the state-of-the-art methods.

Although our work on inter-modality image synthesis achieved

state-of-the-art performance, it should be noted that there is still

a long way to go for simulating arbitrary artistic styles with au-
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tomatic algorithms. Our work does not work well on styles with

large shape exaggeration or high abstraction, because patch-

based methods require good alignment between modalities and

do not model semantic information. To our best knowledge,

there is barely any existing research on such styles. It is worthy

to explore along this direction.

For the future work, we also plan to explore more innovative

feature representations for inter-modality matching and more

applications of the proposed methods. We will apply the cou-

pled information-theoretic encoding based descriptor to more

potential applications, such as optical-infrared face recognition,

cross-age face recognition and cross-pose face recognition. We

will utilize the proposed descriptor in our face sketch synthe-

sis algorithm. We will test the face sketch synthesis algorithm

for more sketch styles and other artistic styles. Some of these

extensions are straight-forward, but we believe many exciting

problems can be found in this process and it will benefit the

future development of the multi-modality computer vision.

2 End of chapter.
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