On the Construction of Rectilinear
Steiner Minimum Trees among
Obstacles

HUANG, Tao

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
January 2013

Abstract

Rectilinear Steiner minimum tree (RSMT) problem asks fohartest tree span-
ning a set of given terminals using only horizontal and weaitlines. Construc-
tion of RSMTSs is an important problem in VLSI physical desidhis useful for
both the detailed and global routing steps, and it is impdifiar congestion, wire
length and timing estimations during the floorplanning aacelment step. The
original RSMT problem assumes no obstacle in the routingpregHowever, in
today’s designs, there can be many routing blockages, lkeroncells, IP blocks
and pre-routed nets. Therefore, the RSMT problem with dgek has become
an important problem in practice and has received a lot dareh attentions in
the recent years. The RSMT problem has been shown to be Npletnand the

introduction of obstacles has made this problem even margtoated.

In the first part of this thesis, we propose an exact algorittatied ObSteiner,
for the construction of obstacle-avoiding RSMT (OARSMT)tire presence of
complex rectilinear obstacles. Our work is developed basetthe GeoSteiner ap-
proach in which full Steiner trees (FSTs) are first consed@nd then combined
into a RSMT. We modify and extend the algorithm to allow reogiar obstacles in
the routing region. We prove that by adding virtual termsrtaleach routing obsta-
cle, the FSTs in the presence of obstacles will follow sonrg senple structures.
A two-phase approach is then developed for the construcfi@ARSMTS. In the
first phase, we generate a set of FSTs. In the second phasesTisegenerated in
the first phase are used to construct an OARSMT. Experimesdalts show that
ObSteiner is able to handle problems with hundreds of teatsim the presence
of up to two thousand obstacles, generating an optimal isolum a reasonable

amount of time.

In the second part of this thesis, we propose the OARSMT prollith slew
constraints over obstacles. In modern VLSI designs, olestasually block a frac-
tion of metal layers only making it possible to route over tfstacles. However,
since buffers cannot be place on top of any obstacle, we dlawolid routing long
wires over obstacles. Therefore, we impose the slew contrior the intercon-
nects that are routed over obstacles. To deal with this proplve analyze the
optimal solutions and prove that the internal trees witimaiglirection over an ob-
stacle will follow some simple structures. Based on thiseobation, we propose
an exact algorithm, called ObSteiner with slew constraitiat is able to find an
optimal solution in the extended Hanan grid. Experimergalits show that the
proposed algorithm is able to reduce nearly 5% routing nessuon average in

comparison with the OARSMT algorithm and is also very muctda

Acknowledgments

First, my greatest thanks and appreciation go to my supmrégangeline F. Y.
Young. Without her insightful guidance, advise, and camms encouragement,
this thesis would not have been possible. | have learned feolot her kindness,
patience, and positive attitude towards life. All these lddae invaluable through
out my life. I’'m especially grateful for the days back to 20688en she introduced
the Steiner tree problem to me. Little did | know that thisgelet problem would
bring me so much fun, hard work, frustration, satisfacteomg fulfilment.

Also I would like to thank my fellow labmates Xiao Linfu, Qiataichen, Xiao
Zigang, Jiang Yan, Tian Haitong, Cui Guxin, He Xu, Qian FugiaChow Wing
Kai, Kuang Jiang, and Cai Wenzan. Thanks for all your helpgndumy Ph.D.
study. | won’t forget the late nights we worked together fog tontests, and all the
fun we have had in the last three years.

Finally, | want to express my heartfelt thanks to my parenisiity Zengzhang
and Huang Ruizhu, for their love, understanding, and comstapport. Their en-
couragement has always been a powerful source of inspiratid energy. Without
them, this dissertation would not exist. | would also likekpress my deepest grat-
itude to Liang Yuting for everything. Thank you for being tedor me from the

very beginning.

1

Contents

Introduction

11
1.2
1.3
14
15

The rectilinear Steiner minimum tree problem

Applications
Obstacle consideration
Thesisoutline

Thesis contributions

Background

2.1

2.2

RSMT algorithms
211 Heuristics.
2.1.2 Exactalgorithms.
OARSMT algorithms.
221 Heuristics. e

2.2.2 Exactalgorithms.

ObSteiner - an exact OARSMT algorithm

3.1
3.2

3.3

3.4

Introduction.

OARSMT decomposition
3.3.1 Full Steiner trees among complex obstacles
3.3.2 More Theoreticalresults.

OARSMT construction. v v i i it

© o U w

11
11
11
20
30
30
33

Vi

Contents

341 FSTgeneration 62
342 Pruningof FSTs. 66
3.4.3 FSTconcatenation 71
3.5 Incremental construction 82
3.6 EXperiments 83
ObSteiner with slew constraints 97
4.1 Introduction. 97
4.2 Problem Formulation. 100
4.3 Overviewofourapproach. 103
4.4 Internal tree structures in an optimal solution. 103
45 Algorithm. 126
4.5.1 EFSTand SCIFST generation 127
452 Concatenation., 129
4.5.3 Incremental constructian. L. 131
4.6 EXperiments 131
5 Conclusion 135
137

Bibliography

11
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2

List of Figures

Hanangrid.. 2
An example of the routing problem.. 3
Escapegraph.. 5
Eightregionsofaterminal. 13
An example of the iterative 1-Steiner algorithm. 16
An example of the position sequence ofanet.. 18
An example of different Steiner treesforanet.. 18
Two generic forms fora FSTwhen-4. 21
The only exceptionto Theorem2.3.. 21
Emptydiamond.. 23
Empty diamond regions with respecttoa FST.. 23
Empty cornerrectangle.. 24
Empty corner rectangle regions with respectto a FST.. 24
Transformation of a FST to its corner-flipped version. 25
Empty innerrectangleinaFST.. 25
An example of FST in the presence of an obstacle.. 33
Locations of virtual terminals of an obstacle. 34
DecompositionofaFST. 35
Forbidden edges in a FST with blockages. 35
Corners and essential edges of an obstacle. 40

FST structures in the absence of obstacles. (a) Typedtste. (b)

Typell structure.. 41

viii

List of Figures

3.3 (a) AFST structure in the presence of obsatcles. (b) Bposition

of FST after adding virtual terminals. 42
3.4 Anexample of adding virtual terminals. 43

3.5 Two operations on a rectilinear Steiner tree. (a) Stgfand (b)

Flipping.. 44

3.6 A structure of two neighboring Steiner points when bBéth and
Vgy existandViy| > [Vay- (a) In the absence of obstacles. (b) In the

presence of an obstacle. (c) The resulting structure of Lei®ia. 46

3.7 The structure whev, is a corner line ended at a left-turn corner

andHy exists.. 47
3.8 Five possible structures when a Steiner point has twrecdines. 48

3.9 Three possible structures when a Steiner point is adjacenore

than two other Steiner points.. 49

3.10 Special structure of one Steiner point with more tham meigh-

boring Steinerpoints.. o 50
3.11 Animpossible Steiner chain structureinaFST. 50
3.12 Two possible Steiner chain structures.. 51
3.13 The topology whe¥igg exists. 52
3.14 A structure of the Steiner chain when it bends back. 52
3.15 A corner with more than one Steiner point on each line. 53
3.16 A possible structure of the Steinerchain. 54

3.17 A structure of Steiner chain whéfy andA;,1 are connected by a

COMNEL. . . . e o e e e e e e e e e e e e e e e 56

3.18 A structure of Steiner chain when the corner betwgenandA; 3

can not be flipped due toobstacles.. 56

List of Figures IX

3.19 Possible structures of a FST among complex obstaag3ype |

structure. (b) Type Il structure. (c) Type Il structure) {@pe IV

Structure. 58
3.20 Escapegraph.. 59
3.21 Virtualgraph.. 60
3.22 The eightregionsofaterminal. 65
3.23 Pseudocode of the pruning algorithm. 68
3.24 Pseudocode of the branch-and-cut algorithm. 74
3.25 The flow network formulation. 78
3.26 Pseudocode of ObSteiner. 82
3.27 The OARSMTs of (@) INDL (D) IND2.. 86
3.28 The OARSMTs of (@) IND3 (D) IND4.. oot .. 86
3.29 The OARSMTs of (@) IND5 (b)RCOL. 87
3.30 The OARSMTs of (a) RCO2 (b)) RCO3.. 87
3.31 The OARSMTs of (a) RC04 (b) RCO5.. 92
3.32 The OARSMTs of (3) RCO6 (D) RCO7.. v o oo n .. 92
3.33 The OARSMTs of (a) RCO8 (b) RCOQ.. 93
3.34 The OARSMTs of (@) RC10 (b)) RC11.. 93
3.35 The OARSMTs of Q) RTL (D) RT2. oo 94
3.36 The OARSMTsof Q) RT3 (D) RT4. oo 94
3.37 The OARSMTsof RT5. 95

4.1 The routes of a net with a source and two sinks in the poesen

obstacles.. 98
4.2 Boundary terminals on a rectilinear Steinertree.. 100
4.3 A SCIFST and its corresponding binary tree.. 105

4.4 () Shifting (0) FIIPPING. « + « « v v v e oo 106

List of Figures

45 Aninvalid structureina SCIFST.. 108

4.6 The structure when a terminal connected to a Steinet ffowugh

ACOIMEI.. . . . e e e 109
4.7 Possible structures of a subtree of two terminals in &STI. . . 109
4.8 Possible structures of a subtree of three terminals @QIERST. . . 110
4.9 Invalid structures when Fig. 4.7(a) is combined withranteal. . . 110

4.10 Invalid structures when Fig. 4.7(b) is combined witermrtinal.. . 111
4.11 Possible structures of a subtree of four terminals iIG&ST. . . . 113
4.12 Invalid structures when two subtrees of two terminsgscambined113
4.13 The subtree structures when Fig. 4.8(a) is combinddavi¢rminal 114

4.14 Invalid subtree structures when Fig. 4.8(b) is conbingh a ter-

4.15 Possible structures of a subtree of five terminals inl&SC . . . 116
4.16 Possible structures of a subtree of more than five tatmin a
SCIFST. . . . e 117
4.17 Invalid subtree structures when Fig. 4.8(b) is comiimath
FIg. 4.7(8). . o o o o 118
4.18 Invalid subtree structures when Fig. 4.11(a) is coebiwith a
terminal.. 118
4.19 A subtree structure that can be obtained from Fig. $)18(. . . . 118
4.20 The subtree structure when Fig. 4.11(d) is combineld avterminall19
4.21 Invalid subtree structures when Fig. 4.11(e) or Figgl &) is com-
binedwithaterminal.., 119
4.22 Possible structures of a subtree of more than five tatmin a
SCIFST. . . . e 121

4.23 The subtree structure when Fig. 4.11(d) is combinell Fig 4.7(a)122

List of Figures Xi

4.24 The subtree structures when Fig. 4.11(c) is combinddawmother
subtree. 122
4.25 The case when two subtrees as shown in Fig. 4.22(a) aneiiced
together.. 124
4.26 Possible structures of SCIFSTs.. 124
4.27 Possible structuresof EFSTs. 127

List of Tables

3.1 Detailed results of ObSteiner. 88

3.2 Runtime of ObSteiner with and without the pruning prasedand

the incremental approach.. 89
3.3 Results of ObSteiner in comparison with the approacA8h|[. . 90
3.4 Comparison of heuristics based on the OARSMT length. . . . 91

4.1 Results of our approach in comparison with the appraa@al. . 132

CHAPTER 1

Introduction
Contents
1.1 The rectilinear Steiner minimum tree problem. 1
1.2 Applications 3
1.3 Obstacle consideration. 5
1.4 Thesisoutline 6
1.5 Thesiscontributions. 8

1.1 The rectilinear Steiner minimum tree problem

The Steiner minimum tree (SMT) problem asks for a shortesvor that spans

a set of given points in a metric space. The set of given pairgsisually referred

to asterminalsand new auxiliarysteiner pointgan be introduced so that the total

length of the network can be reduced. The history of the SMiblem started

with Fermat (1601-1665) who proposed the problem: giveedlpoints in a plane,

find a fourth point such that the sum of its distances to theetlyiven points is a

minimum. Courant and Robbin4 3] in their famous book “What Is Mathemat-

ics?” first named the problem after Steiner (1796-1863) wdivesl the problem

2 Chapter 1. Introduction

Figure 1.1: Hanan grid.

of joining three villages by a system of roads having minimtatal length. The
popularity of this book has raised the research interestseiSMT problem.

The formulation of the SMT problem is as follows:

The Steiner minimum tree problem: Given a seV of nterminals in the space
Lp!. Find a shortest tree embedded in the space that §pans

The original SMT problem considers the Euclidean space (Le space).
The rectilinear Steiner tree problem (i.e. lin space) is firstly considered by
Hanan R5]. The problem is equivalent to finding a tree connectingradlterminals
by using only horizontal and vertical lines. An optimal dada to this problem is
called a rectilinear Steiner minimum tree (RSMT). Hananvprthat there is at
least one RSMT that is contained in the Hanan grid. The Hamian @& shown
in Fig. 1.1, can be obtained by constructing horizontal and verticaddithrough
each terminal and the intersections of these lines are gmaidate Steiner points.
Although there is a finite number of candidate Steiner pomtise Hanan grid, itis
still a very difficult problem to select a subset of them tostomct a RSMT. In fact,
the RSMT problem is shown to be NP-complete by Garey and &oH{8S]. More-
over, they also showed that the Euclidean Steiner minimesESMT) problem

is NP-hard.

The distance between two points in thgspace can be calculated dyu,v) = (Jux—
1
Vul? + [y = wy|P) P

1.2. Applications 3

i . — Module
L ' T
I

Figure 1.2: An example of the routing problem.

1.2 Applications

The RSMT problem has many applications in VLSI physical giesi

In the VLSI physical design flow, one important step is rogtimhe specifica-
tion of a routing problem usually consists of a set of moduda®etlist, and the area
available for routing. Each module has a set of terminaldsfiged in position. A
netlist is a set of nets. Each net consists of a set of tersithat need to be made
electronically equivalent (i.e. connected by wires). Indam VLSI design, there
exist multiple routing layers, and each routing layer haseal@fined direction (ei-
ther horizontal or vertical) and routing capacity. Conngigt between layers can
be achieved by vias. The objective of routing is to creatsarconnection among
the terminals of same nets such that the total wire lenggh flouting resource)
is minimized. For high performance design, it is also neagst consider other
requirements such as timing budget, signal integrity, andufacturability issues.
An example of the routing problem is shown in Fig2

In VLSI deign, routing is usually performed in two stagesolgl routing fol-
lowed by detailed routing. The task of global routing is tetfpartition the routing
region into tiles and then determine a loose tile-to-tileteofor each net. In this

stage, terminals within the same tile are assumed to be aetiiter of the tile. It

4 Chapter 1. Introduction

is also common to represent a 3D routing problem as a 2D probled perform
layer assignment as a post-processing step. Thereforeptitiag of a net can
be realized by constructing a RSMT. A common approach fabagloouting is to
first generate RSMTs for all the net3g. Since, RSMT only minimizes the wire
length, it is possible that in some tiles, the number of wiresy exceed the rout-
ing capacity creating some congested regions. In such ,castssthat are routed
through the congested region will be ripped up and rerouyedlsing congestion-
aware RSMT 40] or the maze routing algorithm. Given a global routing solu-
tion, detailed routing determines the actual geometrioliapf each net (i.e. exact
tracks, via position, and layer) within the assigned rayitiegions. In this stage,
the RSMTs can also be used to guide the routsiy fo minimize the wire length

and via usage.

Despite extensive applications in the routing stage, RS&éihsalso find its ap-
plication in an even earlier stage in VLSI design flow, suclilesrplanning and
placement. In floorplanning and placement, modules are xed fand their po-
sitions are to be determined. A solution to the problem isyadathat specifies
the location of each module such that there is no overlap. éddtmorplanning
or placement solution should be routable (i.e. be succigstwuted in the later
routing stage) by using the smallest amount of routing res®u This necessitates
congestion and wire length estimations during floorplagrand placement. The
estimation can be done by performing routing, but it is cotapanally too expen-
sive. Therefore, using RSMTs as an approximation becomesiaient alternative
and is adopted by many estimation approacl2&s [Another target of floorplan-
ning and placement is to achieve good timing. As deep sulomigchnology ad-
vances, interconnect delay is becoming increasingly dantiover transistor and

logic delay. Timing estimation has to consider both intercect and gate delays

1.3. Obstacle consideration 5

Figure 1.3: Escape graph.

in order to be accurate. This requires actual topology ol @t which is usually

approximated by using RSMT&1].

1.3 Obstacle consideration

A more general version of the RSMT problem is to consideradies. An obstacle
is a rectilinear polygon, i.e., all boundary edges of anatistare either horizontal
or vertical. The RSMT problem in the presence of obstacle$ sactical interest
because such obstacles exist in modern VLSI designs (e gromalls, IP blocks,
and pre-routed nets).

In the routing region, an obstacle blocks some metal layérshe obstacle
blocks all the metal layers, the routing tree has to avoidl RSMT that avoids ob-
stacles is called an obstacle-avoiding RSMT (OARSMT). Agals to the Hanan
grid for the RSMT problem, Ganley and Coho@1] proposed an escape graph
for the OARSMT problem. The escape graph consists of twostyffesegments.
The first type is the segments that extend from the termimatee vertical and
horizontal directions, until an obstacle boundary is méie $econd type of seg-
ments can be obtained by extending the boundary segmengsiofobstacle until

an obstacle boundary is met. An example of the escape graploven in Fig.1.3.

6 Chapter 1. Introduction

It is proven in B1] that for any OARSMT problem, there is at least one optimal
solution composed only of the escape segments in the escapie. g

If an obstacle blocks only a fraction of metal layers, theutirgy wires on top
of obstacles is possible. However, if a long wire is routedran obstacle, there
will be signal integrity problems because buffers cannoplaeed on top of any
obstacle. As deep submicron technology advances, inteecbrlelay is becom-
ing increasingly dominant over transistor and logic del@ly High interconnect
resistance will cause signal integrity to degrade rapidls long connection. This
problem is usually solved by inserting buffers that breakreglwire into small
segments. Notice that buffers cannot be placed on top of batacdle. There-
fore, although routing over obstacles is possible, onelghmeiaware of the signal
integrity issue and avoid routing long wires on top of oblathat may lead to
complicated post-routing electrical fixups. In this cate OARSMT can be an
option. However, avoiding all obstacles may result in anao@ssary resource
wastage. A smarter router should be able to avoid some ofitsimcles that cause

problems, while allowing wires to cross the others.

1.4 Thesis outline

This dissertation studies the RSMT problem in the presehobsiacles.

In Chapter2, we do a literature review of the RSMT and OARSMT problem.
We introduce a set of heuristics and exact algorithms inotythe state-of-the-art
for the RSMT and OARSMT problem.

In Chapter3, we propose an exact algorithm, called ObSteiner, for tihetroc-
tion of OARSMTs among complex rectilinear obstacles. Olfétas a two-phase

approach in which the optimal solution is constructed bydtecatenation of full

1.4. Thesis outline 7

Steiner trees (FSTs) among complex obstacles. We first diatwiiy adding vir-

tual terminals, the FSTs among complex obstacles can bé#ysaaplified, thus

providing the theoretical foundations for the exact apphod\Ve then describe the
two-phase algorithm in detail including the FST generagibase, the FST pruning
procedure, and the FST concatenation phase. ObSteindeitodiandle complex
obstacles including both convex and concave ones. Expetah@sults show that
benchmarks with hundreds of terminals among a large nunflmdrstacles can be

solved optimally in a reasonable amount of time.

In Chapter4, we study a variant of the RSMT problem in the presence of ob-
stacles that allows wires to be routed over obstacles. Inenmodiesigns, obstacles
usually block the device layer and a fraction of metal layenly. Therefore, rout-
ing wires on top of obstacles is possible. However, if a laageunt of wires
are routed over an obstacle, it may cause signal integritglpms because buffers
cannot be placed on top of any obstacle. To tackle this pnobiee impose slew
constraints on the interconnects that are routed over amaabs This is called the
OARSMT problem with slew constraints over obstacles. We éralyze an op-
timal solution to this problem and find that the tree struesuover obstacles with
slew constraints will follow some very simple forms. Basettbis observation,
we propose an algorithm, called ObSteiner with slew comggato find an opti-
mal solution embedded in the extended Hanan grid. The solittan guarantee
the interconnect performance and avoid post-routing etattfixups due to slew
violations. We also show that the solutions provided by ¢gm@thm can save over
5% routing resources on average in comparison with the OARSMat avoid all

obstacles.

In Chapter5, a conclusion of this thesis is drawn.

8 Chapter 1. Introduction

1.5 Thesis contributions

The contributions of this dissertation can be summarizedlbsvs.

For the OARSMT problem:

1. This is the first work to propose a geometric approach tatgxaolve the
OARSMT problem when there are complex rectilinear obstad@bSteiner
is able to handle both convex and concave rectilinear olestachile previ-

ous exact algorithm can only handle rectangular obstacles.

2. We design an efficient pruning procedure which can greatlyce the size of
the solution space and therefore improve the performanteecélgorithm.
For the second phase of the algorithm, we propose a new fationlfor
the concatenation of FSTs. In the branch-and-cut searcldewelop new
separation algorithm to adapt to the presence of virtuatiteals. We also
adopt an incremental way to handle obstacles. An obstadlé&iconsid-
ered only if it is necessary. By using ObSteiner, benchmarksup to two
thousand obstacles can be solved to optimal in a reasonaiolerd of time,
while previous exact algorithm can only deal with benchreawith around

twenty obstacles.

3. Based on the theorem we developed in this thesis, we fustbeose a sim-
ple graph model that can transfer the geometric OARSMT probihto a
graph problem. We prove that the proposed graph model cengdileast
one optimal solution and is also simpler (in terms of the nemif edges

and nodes) than the simplest graph model in the literature.

For the OARSMT with slew constraints over obstacles:

1.5. Thesis contributions 9

1. We formulate the OARSMT problem with slew constraintsrovestacles.
The solution to this problem is a resource efficient Steiresr that anticipates

good interconnect performance.

2. We analyze an optimal solution to this problem and find thatslew con-

strained tree structures over obstacles will follow sontg gemple forms.

3. We propose an algorithm that can find an optimal solutiobexided in the
extended Hanan grid and show that the solutions providedibglgorithm
can save a significant amount of routing resources and rumitimompari-

son with the state-of-the-art optimal OARSMT algorithm.

Finally, a combination of the above researches providesveegal tool for
solving the RSMT problem in the presence of obstacles. Withoptimal meth-
ods, we can easily compare the performance of differentcagbes and see how
far a heuristic solution is away from the optimum. The workssented in this

dissertation give key insights into this difficult problem.

CHAPTER 2

Background
Contents

21 RSMTalgorithms 11
2.1.1 Heuristics 11

2.1.2 Exactalgorithms. 20

2.2 OARSMTalgorithms 30
221 Heuristics 30

2.2.2 Exactalgorithms. 33

2.1 RSMT algorithms

2.1.1 Heuristics

The RSMT problem is NP-complete. It means that efficient pohgial time exact
algorithm may not exist. Therefore, many researches of @& Rproblem have
been focused on the development of heuristics. Early hesiare mainly based
on improving over a RMST. Starting in 1990s, a new class of R3duristics that

do not rely on the RMST has been proposed. Two typical exasrgole iterated

12 Chapter 2. Background

one Steiner and batched iterated one Steiner. Recentlpkaulo table based al-
gorithm called FLUTE is proposed. Comparing with the othewrstics, FLUTE
can provide the best tradeoff between runtime and accuaatytherefore is the
state-of-the-art algorithm. In this section, a brief imlnation to these approaches

is presented.

2.1.1.1 RMST based heuristics

Let RSMT(V)| and |RMST(V)| be the length of the RSMT and RMST ovér

respectively, The rectilinear Steiner ratio is defined as

p(L1)=infv{%} (2.1)

whereV is a set of points in the rectilinear plane. That is, the lieear Steiner
ratio is the largest possible ratio between the length of IR&nd the length of a
RMST in the rectilinear plane. It has been proved that thelirezar Steiner ratio
is % [26]. This means that any heuristic based on improving over a Ri&h
guarantee a worst-case performance ratié.oTherefore, many RSMT heuristics

in the literature use RMST-based strategies.

A RMST can be computed i@(nlogn) time. The first RMST algorithm with
this complexity is proposed by Hwang7] and the algorithm is based on the con-
struction of the rectilinear Voronoi diagram. Hwang showtiedt the rectilinear
Voronoi diagram can be built i©(nlogn) time. It can also be verified that a
RMST can be computed i®(n) time by using the Voronoi diagram, and there-
fore the complexity of finding a RMST ®(nlogn). However, the computation of
Voronoi diagram can be tedious. A simpler way is to use theastaeighbors of

each terminal. For each terminal we divide its surroundireg anto eight regions

2.1. RSMT algorithms 13

Figure 2.1: Eight regions of a terminal.

separated by lines that intersect at a 45-degree angle oasish Fig.2.1 The

following theorem is firstly proposed by Ya6§).

Theorem 2.1.In a RMST, if two terminals v and u are connected, then v is the

nearest to u in one of the eight regions of u.

Theorem2.1shows that for the construction of RMST, only the edges cohne
ing nearest neighbors in the eight regions need to be camsidEinding the nearest
neighbor of all terminals in all eight regions can be don®{nlogn) time [20, 24].
Since there are at mosh@dges, a RMST can be therefore foun@ifnlogn) time
by using either the Prim’s or the Kruskal’s algorithm.

With a RMST as a starting point, a direct way to improve anéiolbé RSMT is
to remove overlapping segments by introducing Steinertpoihhese approaches
are called Steinerization. Early overlap removal schenlesake use of simple
heuristics. A pair of edges sharing a common terminals aosearnarbitrarily. If
there is overlap, they are embedded by adding a Steiner. pdims process ter-
minates until all pairs of neighboring edges are explored:ofparison between
different ways on selecting pairs of edges to be process#uhis by Richard43].
Later, Hoet al.[32] gave a polynomial time algorithm to find an optimal embed-

ding. The algorithm starts with a special kind of RMST cakegharable RMST. A

14 Chapter 2. Background

RMST is separable if and only if for any pair of non-adjacaiges in the tree, any
staircase layouts of the two edges will not intersect or lagerThey first gave a
O(n?) time algorithm for the construction of separable RMST. Base the sepa-
rable RMST, arO(n) time optimal algorithm is proposed with the assumption that
each edge has at most one corner (i.e. L-shaped). The &lgastarts by making a
terminal as the root of the tree and solve the problem in abwtip fashion. The
key observation is that the optimal solution of a subtreeeddp only on how the
edge connecting the root node of the subtree and its paseambedded. Since
only L-shaped edges are considered, there are two optioesrfbedding. There-
fore, anO(n) dynamic programming algorithm can find optimal solution. éto
al. further extended the algorithm to handle the case when edgh leas at most
two corners (i.e. Z-shaped). The difference is that therebsamore embedding
options for each subtree. Ha al. showed that the corresponding dynamic pro-
gramming algorithm has a time complexity©@fn’). Finally, they proved that the
resulting RSMT after optimal Z-shaped embedding is alsanogdtwhen there is

no restriction on edge shapes.

Another way to improve over a RMST is to add some new edgespiace
longer ones repeatedly. These approaches are called edgitstion. Borahet
al. [37] proposed an edge-based heuristic that starts with a RM#8Tneanemen-
tally improves the cost by connecting a néde a neighboring edge and removing
the longest edge in the loop thus formed. The reduction icdlseof the tree due to
this operation is the gain. The algorithm works in an iteathanner. In each iter-
ation, a set of such (node, edge) pairs are found and updatepplied to the tree
starting from the (node, edge) pairs with the largest gaoraBet al. showed that

finding all possible (node, edge) pairs with positive gain ba done irO(nlogn)

A node can be a terminal or a Steiner point

2.1. RSMT algorithms 15

time and applying the updates to the tree requires @ily) time. They further
showed that three iterations are sufficient in most casesteftre, the complexity
of the algorithm isO(nlogn). Zhouet al. [23] extended the edge-based heuristic
by using a spanning grapB4]. A spanning graph is an undirected graph over the
points that contains at least one MST. They showed that findotential (node,
edge) pairs in the spanning graph can be more efficient. Tlseypaoposed a sim-
pler way to find the longest edge on the loop formed by conngainode to an
edge with a binary tree merging approach. Although, the e is dominated
by the spanning graph and RMST generation, which takdogn) time, a good

practical performance can be achieved.

2.1.1.2 Iterated 1-Steiner

While the RMST-based heuristics can guarantee a worst aagamance ratio of
%, itis still a problem to find such a heuristic method with jpeniance ratio strictly
less than%. Kahng and Robins2] showed that th(—iZ bound is tight for a large
number of RMST-based methods. Motivated by this fact, Katumdj Robins J]
proposed a heuristic called iterative 1-Steiner that dogsamplicitly or explicitly,
make use of a RMST. The algorithm is based on the answer t@tlog/ing ques-
tion. If at most one Steiner point is allowed, what is the wyati Steiner tree and
where should the Steiner point be placed? This is calledtB&iher problem.

In the Euclidean plane, Georgakopoulos and Papadimitigjudre the first to
give anO(n?) algorithm to solve the 1-Steiner problem. Kahng and Robilapted
this method for the rectilinear plane. The algorithm makss of the concept of
nearest neighbor for the construction of RMST to partitibe plane intaO(n?)

isodendral regions. An important property of isodendrgiaes is that introducing

any point in a given region will result in a constant RMST tmgy. Therefore,

16 Chapter 2. Background

<}:"““l

Figure 2.2: An example of the iterative 1-Steiner algorithm

after anO(n2) preprocessing step, updating the RMST to include a new peint
guires only constant time. Moreover, the optimal Steinenfia each region can
also be determined in constant time. As a result, the 1-&tgroblem can be
solved inO(n?) time by iterating through the isodendral regions and sieig¢he

point with the lowest cost.

The iterative 1-Steiner heuristic works by iteratively atdating optimal 1-
Steiner points and include them into the point set. Acce@tner points are
deleted if they become useless, i.e., if their degree besdnoe 2 in the tree. The
algorithm terminates when no improvement can be achievediding new Steiner
points or the maximum number of iterations has been reache@xample of the
iterative 1-Steiner heuristic is shown in Fig.2 In [3], the maximum number
of iterations is set to be the number of terminals Therefore, the overall time

complexity of iterative 1-Steiner i®(nd).

2.1. RSMT algorithms 17

2.1.1.3 Batched iterated 1-Steiner

Kahng and Robins3] proposed several variants to the iterative 1-Steiner. Agno
those variants, the most promising one make use of a batcinetbwnclude Steiner
points. Instead of adding one Steiner point per iteratiomaximal independent
set of Steiner points are included.

The heuristic starts by evaluating every candidate Stgingits in the Hanan
grid. By preprocessing th@(n?) isodendral regions as a planar subdivision, the
planar region in which a given point lies can be determine@(logn) time. This
preprocessing requiré3(n?logn) time. Since the MST of a planar weighted graph
can be maintained usir@(logn) time per addition of a point, the RMST cost sav-
ings for all the candidate Steiner point can be calculatgd(itlogn) time. Then,
the Steiner point candidates are sorted according to tlagisgn cost savings in
decreasing order. Next, all of the candidates are proceésseder. Each candidate
with a positive gain are added, as long as it is independesit tfe Steiner points
previously added during the round. The criterion for indegence is that no can-
didate is allowed to reduce the potential MST cost savinqgfaiher candidate in
the added set. This process iterates until no Steiner pambe included. The to-
tal time required for one iteration 8(n%logn). Since Steiner point candidates are
added in a batched way, the number of iterations requiragdggnouch more slowly
than the number of Steiner points considered. Empiricalysstnowed that batched
iterated 1-Steiner performs close to iterated 1-Steingrtiie computational cost
is much lower.

Although batched iterated 1-Steiner can be implementedrdn O(n?logn)
per iteration, the computational geometric methods hawgelhidden constant
and are also difficult to code. Therefore, @&in*logn) implementation is used

in [3]. A more efficientO(n3) implementation is later presented by Griffigh

18 Chapter 2. Background

A A
u] 8 =2
V3 | | | |
8 R T
vy | |
Xe 2
v
R N) W s1=3

«— or<hyr<«hh— -

Figure 2.3: An example of the position sequence of a net.

Figure 2.4: An example of different Steiner trees for a net.

al. [29]. Experimental results showed that a speedup factor oétbrders of mag-

nitude over previous implementation can be achieved.

2.1.1.4 FLUTE

The RSMT problem has many applications in very large scaégmation (VLSI)
design. In VLSI circuits, many nets have just a small numlbéemmninals. There-
fore, itis more important for RSMT algorithms to be simplelafficient for small
problems. Based on this observation, Chu and Wdhg@ioposed a RSMT algo-
rithm called fast lookup table estimation (FLUTE).

Given a set oh terminals, the Hanan grid can be built by drawing horizontal
and vertical lines through each terminal. xebe thex-coordinates of the vertical

grid lines such thak; < X» < ... < X, andy; be they-coordinates of the vertical

2.1. RSMT algorithms 19

grid lines such thay; <y, <... <y, Label the terminal in ascending order of
the y-coordinates and let be the rank of terminalin ascending order of the
coordinates. The sequensss;...s, is called the position sequence. An example
is shown in Fig2.3where the position sequence of the netis 3142 vL.e¥;,1-Vi
andh; = x;,1 - X be the distance between adjacent Hanan grid lines. Sincarest
tree in the Hanan grid is a union of Hanan grid edges, the lteafyainy Steiner
tree can always be written as a linear combination of edggttesnn which every
coefficient is a positive integer. For example, the lengtthefthree Steiner trees
as shown in Fig2.4 can be expressed by +2hy + hg+ vy + Vo + 3v3, hy + ho + hg +

vy +2vo + 3vg, andhy + 2ho + h3 + vy + Vo + v3. Therefore, a lookup table can be used
to store the lengths of all possible Steiner trees as lingabmations oh; andy;.
For simplicity, only the vectors of the coefficients are sthre.g. (1, 2, 1, 1, 1,
3),(1,1,1,1,2,3),and (1, 2,1, 1, 1, 1). Itis also easy to fivad some vectors
are suboptimal, e.g. the length induced by (1, 2, 1, 1, 1, Bhatbe shorter than
that of (1, 2, 1, 1, 1, 1). A vector that can potentially progltize optimal length is
called a POWV. For each POWYV, a set of corresponding RSMTedc&OST are
also stored. A key observation is that, if two nets have tineesposition sequence,
then every Steiner tree of one net is topologically equivatie a Steiner tree of the
other net. This means that nets with the same position sequzn be grouped

together to share the set of POWVs and the following theor@mbe stated.

Theorem 2.2. The set of all nets with n terminals can be divided intgroups
according to the position sequence such that all nets in gachp share the same

set of POWVs.

FLUTE makes use of precomputed lookup table of POWVs and BOGiven
a net, its position sequence is firstly determined and thesponding POWVs are

extracted from the table. The tree length of each POWYV is edatpaccording

20 Chapter 2. Background

to the values oh; andv; and the POWYV with minimum length is selected. The
corresponding POSTSs are the RSMTs for the net.

The precomputation of the lookup table for small nets can dreedoy enu-
merating all possible Steiner trees in the Hanan grid. Fgelanets, a boundary-
compaction technique is proposed to efficiently generageasisible POWVs and
POSTs. Some reductions are also applied to reduce the sthe tdokup table.
It is reported that the total table size is only 9.00 MB for radits with up to 9
terminals.

FLUTE is able to generate optimal RSMTs for small nets (e.g¢h wp to 9
terminals) by using the lookup table. However, for largesnéte lookup table
approach is impractical because of the high cost in bothespad time. Therefore,
a large net is divided into small nets with only the breakiegrtinals in common
by using a net breaking heuristic. Each small net is theresidby using the lookup
table and the resulting RSMTs are combined to form a RSMTHerariginal net.
Finally, some refinement schemes are applied to eliminadapping segments or
further reduce the length of the tree.

The total run time complexity of FLUTE i®©(nlogn). Empirical results on
VLSI design showed that FLUTE is more accurate than the ledtchSteiner
heuristic and is almost as fast as a very efficient implentemaf Prim’s RMST

algorithm.

2.1.2 Exact algorithms

In previous sections, we mentioned that at least one RSMTbeaiound in the
Hanan grid graph. Therefore, exact algorithms for the $teproblem in net-
works [16] can also be used to solve the RSMT problem. However, these ap

proaches are considered to be less effective for the RSMilgmrobecause they

2.1. RSMT algorithms 21

N I R
Figure 2.5: Two generic forms for a FST when 4.
[[®

Figure 2.6: The only exception to Theoréhd.

do not exploit the geometric of the problem. Therefore, iis gection, we will
focus on the geometric approaches.

LetV’ be a set of points in the plane, aidoe a SMT spanniny’. T is said
to have afull topologyif every point inV’ is a leaf node ifil. A terminal setV’
is afull setif every SMT forV’ has a full topology. A full Steiner tree (FST) is a
SMT that spans a full set of terminals. It can be easily vetifiet any SMT can be
uniquely decomposed into a set of edge-disjoint FSTs bytisigjiat the terminals
with degre@ more than one. In the rectilinear plane, Hwag§] fiirst characterized
the structures of FSTs. A series of lemmas are developedath rine following

Theorem.

Theorem 2.3. For a full set of n> 4 terminals in the rectilinear plane, there exists
a corresponding FST that either consists of a single lindhwit 1 alternating
incident segments, or a corner with-B alternating segments incident to one leg

and a single segment incident to the other leg.

2The degree of a terminal is the number of edges connecting it.

22 Chapter 2. Background

The two FST structures described in Theor®are shown in Fig2.5. Hwang
also showed that Theoret3 holds forn= 2, 3, or 4. The only exception is when
n=4 and the four terminals are the endpoints of a cross as showigi2.6. We
call these FST topologies, i.e., F@5and Fig.2.6, Hwang's topology. Since any
RSMT can be uniquely decomposed into a set of FSTs and FSTsuate simpler
to construct than RSMTSs, a straightforward strategy to tansRSMTS is to use
a two-phase approach. The first phase is to generate a set sskgh that there is
at least one RSMT composed of the FSTs in the set only. Thisepisecalled the
FST generation phase. In the second phase, a subset of F8iTth&minimum
total length are selected and combined such that all tetsara connected. This

phase is called the FST concatenation phase.

2.1.2.1 FST generation

Salowe and Warmedp| gave the first rectilinear FST generation algorithm. The
algorithm generates FST by considering all pdag) of terminals asackbone

in Hwang'’s topology. The backbone is the complete cornerwahl’s topology
connecting the first terminal from the left and the last ordbeond last terminal as
described in Theorer®@.3. In the corner, the leg with alternating incident segments
is called the long leg, and the other is called the short leg. éach pair(a,b),

all candidates terminals that can be attached to the baekéa@nfound. Then, the
candidate terminals are tried recursively to be attachetti@édbackbone and the
resulting structure is tested to check if a FST can be forrBethe screening tests
are developed to eliminate those FSTs that cannot be in aMIRBhe algorithm

is able to generate FSTs for 100 terminals in a short time. é¥ew it is impractical
for larger instances because of the high computational doster, Warme 49

improved this algorithm to handle 1000-terminal instanckours.

2.1. RSMT algorithms 23

o =

[]
v

Figure 2.7: Empty diamond.

w

Figure 2.8: Empty diamond regions with respect to a FST.

The state-of-the-art rectilinear FST generation algatitis presented by
Zachariasendl]. Let the root of a FST be the terminal incident by the long leg
For a given root, the algorithm works by growing the long legs in four possibl
directions. For a given direction, the algorithm recurbivey to attach terminals
to the long leg. A series of necessary conditions are usedutoepaway useless
FSTs.

Theempty diamond properstates that no other points of the RSMT can lie in
Z(u,v), whereuvis a (horizontal or vertical) segment ard(u, V) is an area on
the plane such that all the points in this area are closerttolbandv thanu andv
are to each other. The empty diamond region of a segmentvesimoFig. 2.7. If
there is a terminalv inside the empty region of segmant, we can deletelv and
connect eitheaw or vwto reduce the length of the tree, a contradiction. The empty
diamond regions with respect to a FST are shown in Zig.

Let uwandvw denote two perpendicular segments sharing a common endpoin

24 Chapter 2. Background

u
®
o—9
w v

Figure 2.9: Empty corner rectangle.

.

Figure 2.10: Empty corner rectangle regions with respeatfST.

w. Theempty corner rectangle properstates that no other points of the RSMT
can lie in the interior of the smallest axis-aligned rectarmgntainingu andv. The
empty corner rectangle region is shown in RAg. Assume that there is a terminal
x inside the empty rectangle region. The unique gaflom x to w in the RSMT
visits eitheru or v first, or none of them, before reachimg If P visitsu (v) first,

we can deleteiw (vw) and add a vertical (horizontal) segment from x to a point
onvw (uw), forming a tree with shorter length. f reaches neithar norv before
reachingw, we can deleteiw or vw and addux or vx depending on the location of

X to obtain a shorter tree, a contradiction. The empty comaangle regions with

respect to a FST are shown in F&j10

The empty inner rectangle propergan be used to prune away useless FSTs.
A FST can be transformed to its corner-flipped version bytisigifsegments and

flipping corners as shown in Fig.11 The empty inner rectangle property states

2.1. RSMT algorithms 25

Figure 2.11: Transformation of a FST to its corner-flippecsian.

Figure 2.12: Empty inner rectangle in a FST.

26 Chapter 2. Background

that no terminal can be in between the backbone of the orogalbgy and that of
the corner-flipped topology. The empty region with respea EST is shown in
Fig. 2.12 Assume that there is a terminal inside the empty inner ngbtaregion.
We can shift some segments and flip some corners to align etketminal such
that splitting at this terminal will result in two smaller FS.

The bottleneck Steiner distancehich is analogous to that of the Steiner tree
problem in networks, can also be used to eliminate uselestimear FSTs. Let
Tr(V) be a tree spanning a terminal 8&t We use{)Tr(vi\,j) to denote the length
of the longest edge on the unique path betwgemdyv; in Tr(V). Let RMSTY)
be a RMST of the terminal s&t, then the bottleneck Steiner distance is equal to
OrmsTvy;)- It can be proved that if RMSV) and RSMTYV) are respectively a
minimum spanning tree and a Steiner minimal tree on a set wicesV, then
6RMST(VM) > 6RSMT(VNJ.) for anyvj,vj eV. Therefore, for a FST to be part of a
RSMT, we require thabrmsTvy) = OFsT(vy)) for anyvi,vj V.

The above conditions are used to prune away those FSTs thadtche part
of any RSMT. Empirical study showed that most of the FSTs @prioned away
by one of these tests and the number of resulting FSTs grawssallinear with
respect to the number of terminals. The algorithm is ableteegate FSTs for 1000

terminals in less than a minute.

2.1.2.2 FST concatenation

LetF = {fq, f2,..., fm} be the set of FSTs generated in the first phase. The second
phase is to select a subset such that all terminals are gphabrifgerent from the
FST generation phase, the FST concatenation phase is mamllginatorial and
metric-independent. Therefore, early FST concatenatigorithms proposed for

the Euclidean Steiner minimum tree (ESMT) problem can aksajtplied for the

2.1. RSMT algorithms 27

rectilinear case. These approaches include backtrackhsedynamic program-

ming, and integer linear programming.
Backtrack search

A straightforward way to combine FSTs is to use backtrackcteaStarting
from a single FST, recursively add new FSTs into the solutiotil the solution
spans all terminals or it can be verified that the solutiomcabe optimal. In these

cases, the search backtracks to try to add some other FSTs.

Winter [50] proposed the first FST concatenation algorithm by backtsaarch
for the ESMT problem. Simple tests such as length tests edemgssts, and cycle
tests are employed during the search. The algorithm is alsle@lte, in a reasonable
amount of time, problems with less than or equal to 15 tertsirxperimental re-
sults showed that, for the instances with more than 15 texisiithe computation
time of the concatenation phase dominates that of the gamenshase. Cock-
ayne and Hewqill 11, 12] presented an improved version of Winter’s algorithm.
Problem decomposition is applied to divide the initial catenation problem into
several sub-problems. If the set of all FSTs can be dividezbiconnected com-
ponents, then each biconnected component correspondsibpeoblem on which
concatenation can be done separately. They also proposese &n incompatibil-
ity matrix to speedup the search. Two FSTs are incompatiliey cannot appear
simultaneously in any of the SMTs (e.g. if they have more tbae terminal in
common, a cycle will be formed). This information is pre-qauted and stored in
a matrix. The incompatibility matrix can be used to guide blaektrack search.
For example, only the FSTs that are compatible with every irSTe current so-
lution can be added. This can significantly reduce the smigpace with almost
no computational overhead. In comparison with the savingearching, the time

required for computation of the incompatibility matrix isgligible. They reported

28 Chapter 2. Background

a solvable range of 32 terminals. Salowe and Wara&$ proposed to select and
add “the most promising” FST during the search. They als@gamore powerful
graph decomposition theorem to decompose the problem. kosntly, Winter
and Zachariaserb]l] improved FST compatibility and FST pruning substantially
and report solutions for 140-terminal instances in the ifleein space.

Dynamic programming

Ganley and CohoorB))] presented a dynamic programming approach to com-
bine FSTs. From Theore 3, it is clear that any RSMT for any set of terminals
is either a FST itself or it can be divided into two smaller RB}Moining at a ter-
minal. Therefore, dynamic programming is applicable. &tdsf terminals are
processed in increasing order of their cardinality. Forsstd of more than two
terminals, the algorithm first tries to construct a FST adow to Theoren?.3
Then, several trees are produced by joining the RSMTs ofyguair of disjoint
subsets having exactly one terminal in common. Since theedstare enumer-
ated in increasing order of cardinality, the RSMTs of the ifEnaubsets are al-
ready computed and stored. Among all the generated treeenthwith minimum
length is remembered in a lookup table. The time compleXityis algorithm is
O(n3"). By proving that the number of candidate FSTs for a set @frminals is
at mostO(nl1.62"), Ganley and Cohoon improved the time complexity of the al-
gorithm toO(n?2.62"). Based on this dynamic programming algorithm, F6Bmeier
and Kaufmann7] make use of the empty region properties to reduce the number
of candidate FSTs. A®(nl1.38") bound is derived which lead to an algorithm
with O(n22.38") time complexity.

Although dynamic programming algorithms can provide thetlibeoretical
worst-case time bound, their practical performance arerimf to the backtrack

search.

2.1. RSMT algorithms 29

Integer linear programming

Despite the substantial efforts made to improve the perocs, backtrack
search and dynamic programming algorithms can only handdlgms with
around 100 terminals. A breakthrough in the concatenatigorithm is achieved
by Warme #9, 14] who observed that the FST concatenation problem is ecgnval
to find a minimum spanning tree in hypergraph and formulatedotoblem as an
integer linear programming (ILP).

LetV be the set of terminals to be connected abheé the number of terminals in
the set. Letm be the number of FSTs generated in the first phase, i.e. theerum
of FSTs inF. Each FSTf; ¢ F is associated with a binary variableindicating
whetherf; is taken as a part of the RSMT. We Udg to denote the size df, i.e.,
the number of terminals connected by and usd; to denote the length ofi. In
the following, (A:B) means{fieF : finA+ @A finB+ @}. The ILP formulation

is as follows.

Minimize:
m
Y lixx. (2.2)
i1
Subject to:
m
Soxix(Ifil-1)=n-1, (2.3)
i1
X >1 VXcV, (2.4)

i:fie(X:V-X)

Y xix([finX]-1) <[X|-1 VX cValX|>2. (2.5)
i:finX+o

In the ILP, the objective function2(2) is to minimize the total length of se-
lected FSTs. Constrain2(3) is thetotal degree constrainthat requires the right

number of FSTs in order to spah Constraints Z.4) are thecutset constraints

30 Chapter 2. Background

The constraints ensure that for any ¢it:V - X) of the terminal set, there should
be at least one selected FST to connect them. Constr@rdsafe thesubtour
elimination constraintghat eliminate any cycle in the solution. Since there is an
exponential number of cutset constraints and subtour editidn constraints, they
are considered in an incremental way and the ILP is solved baach-and-cut
algorithm with the lower bound provided by linear programm{LP) relaxation,
i.e., by relaxing integrality of variabbg to 0< x; < 1. At the beginning of the algo-
rithm, only some simple constraints are considered. Ottestcaints are added by
separation methods. The separation problems can be salpeadyinomial time by
finding minimum cuts in some graphs. It is shown 1d][that Warme’s FST con-
catenation algorithm combined with Zachariasen’s FST gima algorithm can
solve instacnes with as many as 2000 terminals in a reasoaaiunt of time.
More recently, Polzin and Daneshmantl][presented a efficient alternative
for the concatenation phase. The set of FSTs are furthengszsed into a set of
edges. An algorithm which is originally designed for gehgraphs can then be
applied to construct a RSMT. Polzin and Daneshmand shovetdhbir algorithm,
in most cases, is faster than Warme'’s algorithm. They cldithat the superiority
is due to the sophisticated reduction techniques they dpedlto reduce the size

of the problem instance.

2.2 OARSMT algorithms

2.2.1 Heuristics

Since the OARSMT problem is NP-complete, most of the previmorks have
been focused on the development of heuristics. These hesitan be generally

classified into three categories, namely sequential appraaaze-routing based

2.2. OARSMT algorithms 31

approach, and connection graph based approach.

2.2.1.1 Sequential approach

The sequential approach, also called the constructiooegection approach, con-
sists of two steps. In the first step, a RSMT is constructetiowuit considering
any of the obstacles. This step can be done by using any offéhenaentioned
RSMT algorithms. In the second step, edges that overlapatisacles are found
and replaced by edges going around the obstacles. Generalimple line sweep
technique can be applied. Yangal.[56] proposed a complicated 4-step heuristics
to remove the overlaps in the second step. The sequentisdagpis popular in
industry due to its simplicity and efficiency. However, tAgproach usually cannot

provide solution with good quality because it lacks a globalv of the obstacles.

2.2.1.2 Maze-routing based approach

The maze-routing approach is originally proposed by L€ for making connec-
tion between two points. Since then, several multi-teriniagiants have been pro-
posed. Despite early works that will incur unsatisfiableisoh quality, recent de-
velopments on maze-routing demonstrate its effectiveoeshe OARSMT prob-
lem. Hentschket al.[42] presented AMAZE, a fast maze-routing based algorithm
to build Steiner trees. The algorithm starts from a paréctérminal and grow the
tree by connecting one terminal at a time by using A* seardtand Young B9
proposed another maze-routing based approach for the OARBdblem. Similar
to Hentschke’s algorithm, during the construction of tleeirterminals are added
one by one to the existing tree. The key difference is thathénwork by Li and
Young, instead of adding only one path between terminaldtipheipaths will be

kept and the path selection is delayed until all the termsiaa¢ reached. During

32 Chapter 2. Background

this process, a number of candidate Steiner points can bergjed. A MST is
then constructed to connect all the Steiner points and theirtals. By deleting
dangling Steiner points, an OARSMT can be obtained. Altinahg approach can
provide solutions with high quality, the space and time claxigies are relatively
high which limit its applications to large scale problemsecBntly, Liuet al. [6]
extended Li's work by using a linear-space rectilinear graghey showed that the
proposed graph contains satisfactory Steiner point catescand is also much sim-
pler than the extended Hanan grid. The experimental redalt®onstrated a very

competitive performance of the algorithm in both solutialify and run time.

2.2.1.3 Connection graph based approach

Most of the recent approaches on the OARSMT problem are goagkd algo-
rithms where an OARSMT is built based on a connection gragi fecessary
rectilinear) that captures the global blockage inforntatiShiet al.[55] proposed

to use the global routing graph which contains the escapehgaa its subgraph
as the connection graph. They developed a circuit simutabased technique to
build the OARSMTs. Fengt al. [59] proposed arO(nlogn) algorithm to con-
struct OARSMTs in a graph called obstacle-avoiding comstichDelaunay trian-
gulation. Sheret al. [60] proposed to use the obstacle-avoiding spanning graph.
The obstacle-avoiding spanning graph can be formed by rgatonnections be-
tween terminals and obstacle corners. The authors showethéhgraph contains
only O(n) edges and is much simpler than the escape graph. A MST in #phgr
can be easily found i®(nlogn) time. The OARSMT can then be generated by
rectilinearizing the MST. They showed that the proposedsimey graph can al-
ways produce a RSMT with good quality. The worst case timeptexity of the

algorithm isQ(n2logn). Lin et al. [9] extended Shen’s approach by identifying

2.2. OARSMT algorithms 33

r ¢
S S

| AL

Figure 2.13: An example of FST in the presence of an obstacle.

many “essential’ edges that can lead to more desirableisofuin the construc-
tion of the obstacle-avoiding spanning graph. They proved their algorithm
guarantees to find optimal OARSMT for any 2-pin nets. For &rghin net, their
algorithm is able to find solutions with better quality. Hoxee the number of
edges, in the worst case, is increase®(o?). Therefore, the time complexity of
their algorithm isO(n®). Long et al. [33] presented an efficier®(nlogn) four-
step algorithm to construct an OARSMT. They proposed a mpaesge graph and
efficient local and global refinements were used to improeesibiution quality.
Liu et al.[7] proposed anothed(nlogn) algorithm based on the generation of crit-
ical paths. Recently, Ajwaret al. [18] presented the FOARS, a FLUTE-based
top down approach for the OARSMT problem. They apply the adistavoiding
spanning graph to partition the problem and construct th&SMT by using the
obstacle-aware version of FLUTE. The time complexity ofitladgorithm is also

O(nlogn).

2.2.2 Exact algorithms

In comparison with heuristics, there has been relativedg lesearch on exact al-
goriths for the OARSMT problem. Maze-routing(can give optimal solutions
to two-terminal instances. Along with the escape graph,|&aand Cohoon3]]
presented a topology enumeration scheme to construct algtmee-terminal and

four-terminal OARSMTSs.

34 Chapter 2. Background

Virtual terminal
o o
@ o

Figure 2.14: Locations of virtual terminals of an obstacle.

For multi-terminal instances, a natural idea is to make tiseeotwo-phase ex-
act algorithm (i.e. generate FSTs in the first phase and tbeoatenate them in
the second phase) which is originally proposed for the RSkbblem. However,
this algorithm cannot be directly applied when obstaclaster the plane. An
example is shown in Fig2.13 In the absence of obstacles, a FST has a topology,
as characterized by Hwang, that consists of a backbone #emhating incident
segments connecting the terminals. In contrast, the stresbf FSTs in the pres-
ence of obstacles can be very different. Therefore, thetagri®on of FSTs in the
presence of obstacles can itself be a difficult problem thatd the application of
the two-phase algorithm for the OARSMT problem.

Li et al.[36, 48] presented a pioneer work to extend the two-phase approach
to solve the OARSMT problem. The key observation is that, @girag the so-
calledvirtual terminals the structures of FSTs can be greatly simplified. For each
obstacle, four virtual terminals are added to its four cosras shown in Fig2.14
We useT to denote the set of virtual terminals added. The direct chphadding
virtual terminals is that FSTs can be further decomposeal $mtaller FSTs by
splitting at these virtual terminals. In Fig.15 the FST can be decomposed into a
set of five smaller FSTs each of which is of simple structuteese smaller FSTs
are called FSTs with blockages.

Lett be a rectilinear Steiner tree. A tréeis equivalent ta if and only if t’

2.2. OARSMT algorithms 35

Figure 2.15: Decomposition of a FST.

edge L

edge I edge

Figure 2.16: Forbidden edges in a FST with blockages.

can be obtained fromby shifting or flipping some edges which have no nodes on
them. With the concept of equivalent trees, a FST with blgekiover a set of

terminalsT; c (V + T) can be defined as follows:
1. fisan OARSMT ovef;
2. every terminal iT; has degree one ihand in all its equivalent trees;

3. all the equivalent trees dfcannot contain forbidden edges as shown in Fig-

ure2.16 (Otherwise, splitting can be done to further decomposé&8ie)

With the definition, it can be easily verified that an OARSMTaisinion of
FSTs with blockages. An important theoretical result ig tha structures of FSTs
with blockages are the same as those of FSTs in the absendsstactes. This
indicates that, by adding virtual terminals, we can use Weephase approach to
construct an OARSMT efficiently. In the first phase, we geteegasufficient set
of FSTs with blockages. In the second phase, we identify amdbine a subset
of FSTs with minimum total length such that all real termgate interconnected.

For simplicity, we will use FSTs to denote FSTs with blockagethe following.

36 Chapter 2. Background

To generate FSTs with more than two terminals, a modifiediversf the
Zachariasen’s algorithn6]l] is used. To generate FSTs with exactly two termi-
nals, a more efficient way is proposed. For the FST concatenphase, it can be
formulated as an ILP. Warme’s branch-and-cut algorith8j {s extended to solve
the ILP. Experimental results showed that the proposed adethable to handle
problems with hundreds of terminals in the presence of plelbbstacles, gener-
ating optimal solution in a reasonable amount of time. Havethe performance
is severely affected by the number of obstacles and all tivalsie test cases con-
tain less than one hundred obstacles. Moreover, the digortian only handle

rectangular obstacles.

CHAPTER 3

ObSteiner - an exact OARSMT

algorithm
Contents

3.1 Introduction 38
3.2 Preliminaries. 39
3.2.1 OARSMT problem formulation. 39
3.2.2 Anexact RSMTalgorithm 40

3.3 OARSMTdecomposition. 42
3.3.1 Full Steiner trees among complex obstacles 42
3.3.2 More Theoreticalresults 59

3.4 OARSMTc construction 62
3.4.1 FSTgeneration., 62
342 Pruningof FSTs 66
3.4.3 FSTconcatenation. 71

3.5 Incremental construction 82
3.6 Experiments e 83

38 Chapter 3. ObSteiner - an exact OARSMT algorithm

3.1 Introduction

In this chapter, we study the OARSMT problem. In recent yea@y heuristics
have been proposed for the OARSMT problem. On the other loariyg few exact
algorithms have been proposed. The state-of-the-art miessen 36] and 48] ex-
tended GeoSteinel f] to an obstacle-aware version. Their algorithms are able to
generate optimal OARSMTSs for multi-terminal nets in thegemce of rectangular
obstacles. However, these approaches cannot be appliegdthére are complex
rectilinear obstacles in the routing region, as is oftencdi®e in the routing prob-
lem. Moreover, their algorithms can only handle benchmaritk less than one
hundred obstacles, while modern VLSI design may contain one thousand ob-
stacles. To the best of our knowledge, no previous algordtamgenerate optimal
solutions to the OARSMT problem with a large number of tefrmsramong com-
plex rectilinear obstacles. Although the escape graph mgate transform the
OARSMT problem into a graph problem which can be solved ogilyrby us-

ing some graph based algorithrdd [15], these approaches are believed to be less
efficient than the geometric approaches for solving the ggoaSteiner tree prob-
lem!. An example is GeoSteinet4] that remains to be the most efficient approach
to solve the RSMT problem when no obstacle exists. Thergibienecessary to
develop an efficient exact algorithm that allows the presesfccomplex obsta-
cles. The aim of this chapter is to propose an algorithm dalleSteiner to con-
struct OARSMTs among rectilinear obstacles of both convek@ncave shapes.

To generate OARSMTSs, we first study the full Steiner treesT@y&mong com-

!Standard benchmarks for the Steiner tree problem in grasbsireclude rectilinear
graphs which correspond to the RSMT problems. When solieget problems, most of
the algorithms 41, 15] will preprocess them by using the first phase of GeoSteihdlr [
to reduce the problem size. Otherwise, the problem will behmaore difficult to solve.
This is mainly because the algorithms for Steiner tree jgmlih graphs cannot exploit the
geometric of the RSMT problem.

3.2. Preliminaries 39

plex obstacles and verify how their structures can be sfraglby adding virtual
terminals. We then propose an iterative two-phase apprmacbnstruct optimal
OARSMTSs based on GeoSteiner.

The rest of this chapter is organized as follows. In Se@i@we give prelimi-
naries on the OARSMT problem and an exact algorithm for theIRBroblem. In
Section3.3, we study the structures of FSTs among complex obstacleto88.4
and3.5describe the proposed exact algorithm in detail. Finalpegiment results

are presented in Secti@b.

3.2 Preliminaries

3.2.1 OARSMT problem formulation

In this problem, we are given a sétof terminals and a séD of obstacles. An
obstacle is a rectilinear polygon. All edges of an obstadeesther horizontal or
vertical. Rectilinear polygons can be classified into twpety. convex polygons
and concave polygons. A rectilinear polygon iscavex rectilinear polygoif any
two points in the polygon have a shortest Manhattan patly lyiside the polygon.
Otherwise, it is called aoncave rectilinear polygan

As shown in Figure3.1, a corner of an obstacle is the meeting point of two
neighboring edges. If the two neighboring edges of a coroenfa 90 degree
angle inside the polygon, the corner is calledamvex corner Otherwise, if the
two neighboring edges of a corner form a 270 degree anglédrise polygon, the
corner is called aoncave cornerlf both end points of an edge are convex corners,
this edge is called aassential edgée.g. Fig.3.1). Note that the essential edge
defined in this chapter is also known as extreme edg&3ng]. However, the way

we make use of essential edges is very different.

40 Chapter 3. ObSteiner - an exact OARSMT algorithm

A terminal cannot be located inside an obstacle, but it caatlike corner or
on the edge of an obstacle. The OARSMT problem asks for dinear Steiner
tree with minimum total length that connects all termin&ls.edge in the tree can
intersect with any obstacle, but it can be point-touchedcaraer or line-touched
on an edge of an obstacle. This tree is known as an OARSMT.

In the following figures, we use a solid circle to denote a teahand an empty
circle to denote a Steiner point.

Concave corner
.]
Convex corner \A\‘

Essential edge —>|

|

Figure 3.1: Corners and essential edges of an obstacle.

3.2.2 Anexact RSMT algorithm

The RSMT problem in the absence of obstacles has been stextiedsively over
years [L6]. Among various approaches, GeoSteirtef [is the most efficient exact
algorithm in practice. The algorithm is developed basedhendonstruction of
full Steiner trees (FSTs). A FST is a rectilinear Steiner imium tree in which
every terminal is a leaf node (i.e. of degree one). In theratesef obstacles, it is
proved in R6] that a FST has one of the two generic forms as shown in3g).
consisting of a backbone and alternating incident legs ectimg the terminals. A
folk theorem states that any RSMT can be decomposed intod edge-disjoint

FSTs by splitting at terminals with degree more than onecé&ESTs are much

3.2. Preliminaries 41

(@) (b)

Figure 3.2: FST structures in the absence of obstacles. y(@ structure. (b)
Type Il structure.

easier to construct than RSMTs, most of the exact algorifiomhe construction
of a RSMT will first generate its FST components. GeoSteiregten use of a two-
phase approach, consisting of a FST generation phase andl adASatenation
phase, to construct a RSMT. In the first phase, a set of FSTgesrerated such
that there is at least one RSMT composed of the FSTs in therdgt ¢n the
second phase, a subset of FSTs are selected and combined ®oRSMT. The key
observation is thatthe FST concatenation problem is etgnvto the spanning tree
in hypergraph problem and can be formulated as an integgarprogramming. On
the rectilinear plane, GeoSteiner remains the fastest elgarithm for the RSMT

problem, but it cannot be applied when obstacles exist imahgng plane.

42 Chapter 3. ObSteiner - an exact OARSMT algorithm

3.3 OARSMT decomposition

The exact algorithm for the RSMT problem indicates the intgooce of studying
the structures of FSTs when there are obstacles in the gprggion. However,
the structures of these FSTs can be complicated due to thege of rectilinear
obstacles. We will show in this section how we can simplify BST structures in
the presence of complex obstacles by adding the so calledhvierminals. In ad-
dition, we will propose a new simple graph model that corgaitieast one optimal
solution for the OARSMT problem. This section gives the tletioal foundations

for the exact algorithm for the OARSMT problem.

!
é

(@) (b)

Figure 3.3: (a) A FST structure in the presence of obsat@@$ecomposition of
FST after adding virtual terminals.

3.3.1 Full Steiner trees among complex obstacles

To construct OARSMTs among complex obstacles, we first staeySTs in the

presence of complex obstacles. An example of such a FST iprédsence of one

3.3. OARSMT decomposition 43

Virtual terminal

b l

Figure 3.4: An example of adding virtual terminals.

obstacle is shown in Fig3.3(a). As we can observe from the figure, the structure
of FSTs in the presence of obstacles can be very complicatesiich a case, the
construction of FSTs can itself be a hard problem which Brtfie application of
the two-phase approach to the OARSMT problem. Thereforgyaliterminals
are added to simplify their structures in our approach. &hesminals are called
virtual because they can be connected by the OARSMT or nehdtld be noted
that although virtual terminals are also usedi6,[48], there are critical differences
when dealing with rectilinear obstacles. In this work, thegual terminals are
added in such a way that there is at least one virtual ternoinavery essential
edge of all the obstacles. This is a simplified but sufficieaywf adding virtual
terminals in comparison with those i8¢, 48]. Note that the location of a virtual
terminal on an essential edge is not restricted. It will fégc the optimality of
the solution. For simplicities, in the following proofs, vassume that the virtual
terminal on an essential edge is located at one of its endofn example is
shown in Fig.3.4. Note that for two essential edges sharing a common endpoint
at a corner, we only need to add one virtual terminal at thetero We useJ to
denote the set of virtual terminals we added. The direct ahpaadding virtual

terminal is that we can further decompose the complicatésK8.g. Fig.3.3a))

44 Chapter 3. ObSteiner - an exact OARSMT algorithm

into smaller and simpler FSTs by splitting at the virtuaimarals (e.g. Fig3.3(b)).
We call these smaller treésSTs among complex obstaclda the following, we
will give a formal definition to the FSTs among complex obkta@nd prove that

they will follow some very simple structures.

I

x——A——a

ol e wh B

|
,l
|
I

a y
(@) (b)

Figure 3.5: Two operations on a rectilinear Steiner treg Stafting and (b) Flip-
ping.

To define FSTs among complex obstacles, we introduce twatpes as fol-
lows. As defined in 26], there are two basic operations on a tree that will not
change the total lengtrshiftingsandflippings as shown in Fig3.5. Shifting a
line means moving a line between two parallel lines to a nesitpm. Flipping a
corner means moving the two perpendicular lines of the eagoas to move the
corner to the opposite position diagonally. A rectilinegzifer tred is equivalent
to another tre¢’ if and only if t can be obtained frorti by flipping and shifting
some lines that have no node on them. With these two opesat®oRST among

complex obstacles can be defined as follows.

Definition 3.1. A FST f over a setMcV +U of terminals is an OARSMT of;V
such that every terminal aV; is a leaf node in f and in all its equivalent trees.
Moreover, all the equivalent trees of f cannot contain fdd@n edges. A forbidden

edge is an edge that passes through a virtual terminal. If & F®r its equivalent

3.3. OARSMT decomposition 45

trees contain forbidden edges, we can split this FST intdlenféSTs at this virtual

terminal.

Note that the definition of FST in this chapter is similar te tefinitions in 86,
48]. However, the obstacles considered in this work are reefir polygons, which
are more general and complicated than the rectangles evadith B6, 48]. In the
following, we use FSTs to refer FSTs among complex obstdolesmplicities.

To derive the structures of a FST, we mainly follow the stepsiescribed
in [26] and [48]. The main difference is that there can be rectilinear alteta
in the routing region. For the two operations (i.e. shiffirand flippings) used in
the proofs, it is possible that some of the operations cammperformed due to ob-
stacles. We will show in the following how this problem candmdved by adding
virtual terminals.

The notations we are going to use in this section are the sanme[26]. A
vertex can be anode(real terminal or virtual terminal) or &teiner point An
edge between two vertices is a sequence of alternatingakaind horizontal lines
and each turning point is@orner. A line has only one direction but may contain
a number of vertices on itVy, (Vyg) denotes the maximal vertical line at point
x which is above (belowk excludingx itself. Similarly Hy, (Hy) denotes the
maximal horizontal line at poiltwhich is on the right (left) ok excludingx itself.

If a line ends at a node and contains no other vertices, wet@aiiode line If it
ends at a corner and contains no vertices, we caltdraer line In the following
figures for the proofs, we use an empty circle to represenem&tpoint and an

solid circle to represent a node.

Lemma 3.1. All Steiner points in a FST either have degree three or defpae

46 Chapter 3. ObSteiner - an exact OARSMT algorithm

VA u VBu VAu —L.u— VBu VA u VBu
O O o, O
A B A B A B
(a) (b) (c)

Figure 3.6: A structure of two neighboring Steiner pointsewhbothVa, andVgy
exist andVgy| > |Va |- (a) In the absence of obstacles. (b) In the presence of an
obstacle. (c) The resulting structure of Lem&a

Lemma 3.2. Let A and B be two adjacent Steiner points in a FST. Supposéa
is a horizontal line and bothA(, sy exist. ThenVgy| > [Vay| implies that \{, is a

line that ends at a corner turning away fromV

Proof. See Fig.3.6(a). Supposé is to the left ofB.

() Vay contains no terminal at its end point, for otherwise we cdft ${B to
that terminal and obtain an equivalent tree in which a teahhas degree more than
one. If the lineAB cannot be shifted due to some obstacles as shown ir3F&(p),
we can shiftAB up until it overlaps with an edgeof the obstacle. According to the
definition, since the two endpoints efare convex cornergis an essential edge.
Let u be the virtual terminal added @ As a result AB will pass throughu and
thus is a forbidden edge, which is a contradiction to the defmof FSTs.

(i) No Steiner points oV, can have a line going right, for otherwise we can
replaceAB by extending that line to me&f, and reduce the total length. If the
line cannot be extended due to obstacles, we can repeat¢hatiop described in
the previous step and result in a contradiction.

(iif) Therefore, the upper endpoint bk, cannot be a Steiner point since it has

no lines going right or upward, hence it must be a corner ngrteft, as shown in

3.3. OARSMT decomposition 47

Fig. 3.6(c).

(iv) Vay can contain no Steiner point, for I€tbe such a Steiner point which is
nearest to the corner point. Singe, does not existHc) must exist. We can then
shift the line between poir€@ and the corner point to the left to reduce the total
length, a absurdity. If the line cannot be shifted due to solv&acles (this line
overlaps with an edge of the obstacle and this edge must beecated edge), the

line will pass through a virtual terminal, an absurdity.]

Corollary: Suppose ¥, contains a vertex, thenayis a corner line that ends at a

corner turning away from ¥, and |Vay| < [Vgy|-

Proof. By Lemma&B.2, if |Vay| > [VBy, VBu Must be a corner line and can have no
vertex on it. ThereforelVay| < [Vey- Again from Lemma.2, V, is a corner line

that ends at a corner turning away frifg,.]

Lemma 3.3. Suppose ¥, (where x is a vertex) is a corner line ends at a corner

turning left (right), then K, (Hy) does not exist.

qu
Hxl

X

Figure 3.7: The structure whafy, is a corner line ended at a left-turn corner and
Hy, exists.

Proof. See Fig.3.7. If Hy exists, we can shift the ling, to the left and reduce
the total length. If the line cannot be shifted due to someauthss, the tree will
contain a forbidden edge that passes through a virtual tedira violation of the

FST definition. O

48 Chapter 3. ObSteiner - an exact OARSMT algorithm

Lemma 3.4. No Steiner point can have more than one corner line.

(@) (b) () (d) (€)

Figure 3.8: Five possible structures when a Steiner poisitiea corner lines.

Proof. Consider a Steiner pointwith two corner lines. Without loss of generality,
we assumé,,, exists and ends at a corner turning left. The second comeican

be Vyq, Hy, Or Hyy and ends at a corner turning to two different directions. The
case wheriy, exists and ends at a corner turning up is equivalent to theewhen

Hy exists and ends at a corner turning down, and thus can be esmdterefore,
there are totally five possible cases as shown in¥#).Fig. 3.8(@) and (e) cannot
exist according to Lemma.3. Fig. 3.8(b) and (d) is impossible because the third
line at the Steiner point cannot exist by Lem®8. Considering Fig3.8(c), by
Lemma3.3 Hy cannot exist, and therefotdy, must exist. We can shift the hor-
izontal line containing to the left to reduce the wire length, an absurdity. If the
line cannot be shifted due to some obstacles, the tree witboo a forbidden edge

that passes through a virtual terminal, a violation of th& B8&finition. O
Lemma 3.5.If f is a FST, the Steiner points in f form a chain.
Proof. First of all, if f is a FST, the Steiner points inare connected, for otherwise

some Steiner points have to be connected by terminals okddgro or more.

Therefore we only need to prove that no Steiner poirftis adjacent to more than

3.3. OARSMT decomposition 49

CQ C
¢ o0—o—O0 0—O
B A4 D B A4
o O o)
B A D EO D
(@) (b) (©)

Figure 3.9: Three possible structures when a Steiner poadjacent to more than
two other Steiner points.

two other Steiner points. Suppose the contrary, and le¢ such a Steiner point.
Then from Lemm&.3and Lemma3.4, the connection betweeghand its adjacent
Steiner points must be in one of the three forms as shown ir38Fg

First, consider Fig3.9(a) and Fig.3.9b). Supposéic exists. Then, from the
corollary of Lemma3.2, Hc) must be a corner line that ends at a corner turning up.
Similarly, if Hey exists, it is also a corner line ends at a corner turning upcesi
C is a Steiner point, at least two of the three linég, Hcr and Ve, must exist.
However, regardless of which two (or all three) exist, we Bpé contradiction to
either Lemmé&.3or Lemma3.4.

Next, consider Fig3.9c). The argument orHc| is the same as that in
Fig. 3.9@) and Fig.3.9b). If Hc, exists andHc,| < [Har|, the argument omc,
is again the same. Thus, we only need to discuss the casgHthat |[Ha| (see
Fig. 3.10.

Let a be the corner on the edge connectihgndD. Shift ACto a and let the
new line meetHc, at 3. Now, the tree contains a Steiner pointhat is adjacent to
three other Steiner poinfs B andD in the form of Fig.3.9a), which has already
been shown to be impossible. AC cannot be shifted due to some obstacles, we

can shiftAC to the boundary of the obstacle and achieve an equivalentitiid

50 Chapter 3. ObSteiner - an exact OARSMT algorithm

¢ 3

> O
N ¢

D

Figure 3.10: Special structure of one Steiner point withertban two neighboring
Steiner points.

forbidden edges, a contradiction to the assumptionthata FST. O

We call the chain of Steiner points tiseiner chain

Lemma 3.6. Suppose f is a FST. Then its Steiner chain cannot containuie s

graph shown in Fig3.11

O
B C

Figure 3.11: An impossible Steiner chain structure in a FST.

Proof. SupposédHa, exists. Then from the corollary of Lemn3a2, Hp, is a corner
line. SinceHa, andVa, cannot both exist by Lemn&3, Hy must exists foA is a
Steiner point. IfHa, exists, we can simply shif&Bto af3, as shown in Fig3.12b),
and obtain a similar structure as F12a). Therefore, in the following, we can

just consider the case wh¥&f, exists.

3.3. OARSMT decomposition 51

> A ”

OO0

o :
C B B
(a) (b)

Figure 3.12: Two possible Steiner chain structures.

o,
B

From LemmaB.3, Hp cannot be a corner line. Besidés, cannot contain any
Steiner points. IfHa contains a Steiner poir8 Va, cannot contain any Steiner
points by LemmaB.5. If Va is a corner line, it must be a corner turning right by
Lemma3.3. We can shift the line between the corner &b the right and obtain
a similar structure as Fi@.12a). Therefore, we can assume without loss of gen-
erality thatVa, is a node line. Sinc&is a Steiner point, two of the linddg), Vs,
andVsgq must exist. By the corollary of Lemm&2, Vs, andVsg must be corner
lines and the corners must turn away fré&B. As a result, by Lemm&.3 and
Lemma3.4, Ha cannot contain any Steiner point. Moreovidy, cannot contain
more than one node for the tree is a FST. Therefdig,is a node line. By sym-
metry,Vcg exists and is a node line. SinBas a Steiner point, at least one of the
linesHg or Vg exists. We first assume théty exists and/g; does not exist. Since
Vg contains a vertex (see Fig.13), by the corollary of Lemma&.2, Vgg must be a
corner line that ends at a corner (denoted@pyurning left and connects to a node
b by Lemma3.5. But this is impossible, for otherwise we can sl to fa to ob-
tain a tree in which bothiy andHg, are node lines, a contradiction to Lem@\a

If the line cannot be shifted due to some obstacles, the trés equivalent will

52 Chapter 3. ObSteiner - an exact OARSMT algorithm

contain forbidden edges, an absurdity. SimilaHy, cannot exist. As a resulB

cannot be a Steiner point which is contradictory to the aggiom. O
e—0 A4
a
B
(o, C
p a
O—Ll -
b c

Figure 3.13: The topology wheérgy exists.

Define a staircase to be a continuous path of alternatingcaklines and hor-

izontal lines such that their projections on the vertical horizontal axes have no

overlaps.

Lemma 3.7. Suppose f is a FST. The Steiner chain of f is then a staircase.

A O

B

BO

Figure 3.14: A structure of the Steiner chain when it bend&ba

Proof. Suppose that the Steiner chain bends back as shown i3 Bij.whereA

andB are Steiner points that are closest to the turning pa@irdad3. There must

be at least two Steiner points oif8, for otherwise we can shifif3 to the left and

reduce the total length. If the line cannot be shifted duetesobstacles, the tree

will contain forbidden edges. From LemrBz6, neithera nor 3 can be a Steiner

3.3. OARSMT decomposition 53

point. From Lemm&.3 and Lemma3.5, the horizontal line of any Steiner point
on afy must be a node line and the first one beldw must be a line going right.
From the corollary of Lemma&.2, the adjacent Steiner points o8 cannot have
horizontal lines going in the same direction. TherefarB,must have more left
lines (includingAa andBp) than right lines, which implies that we can shaf to

the left and reduce the total length, an absurdity.]

Lemma 3.8. Suppose f is a FST. The Steiner chain of f cannot contain aecorn

with more than one Steiner points on the two neighboringsline

A
B

C D
a O O

Figure 3.15: A corner with more than one Steiner point on diaeh

Proof. Suppose to the contrary thacontains the subgraph shown in F&j15
From Lemma3.3, V¢, does not exist. Thus/cq exists and is a node line by
Lemma3.3 and Lemma3.5. Supposé/pq exists. Then from the corollary of
Lemma3.2 Vpq is a corner line. As a resulHp, does not exist by Lemma.3.
ThereforeVpg andHp, cannot both exist, and hen¥g, must exist and is a node
line by Lemma3.3and LemmaB.6. If |Vpy| < |Ba|, we can shifDa to the node on
Vpy and obtain an tree in which a node has degree two. If the lineatde shifted,
the tree will contain forbidden edges.|Vby| > |Ba|, we can shifDa to B moving
the Steiner poin€ to C’. But the induced subgraph betwe&BC' cannot exist by

Lemma3.6. Again, the line can be shifted, or else it cannot be a partk8a [

54 Chapter 3. ObSteiner - an exact OARSMT algorithm

Lemma 3.9. Suppose f is a FST. If the number of Steiner points is grehtar t
two, either every vertical line on the Steiner chain consaimore than one Steiner
points (except possibly the first and the last vertical)reexl every horizontal line

on the Steiner chain contains no Steiner point except atridgeint, or vice versa.

Figure 3.16: A possible structure of the Steiner chain.

Proof. By Lemma3.4, a Steiner point cannot have two corner lines. Hence at
least two of the first three Steiner points (counting fronmesitend) are collinear.
Without loss of generality, suppose the first collinearitgars on a vertical line.
Let A be the first Steiner point (if any) not on the vertical line €ftA\ is connected

to its preceding Steiner point through a corner as showngr3FL6by Lemma3.6.

Let B be the Steiner point (if any) succeedidgThenA andB must be on the same
vertical line, for otherwise either Lemnga8is contradicted (ifA andB are on the
same horizontal line), or Lemnta4is contradicted foA has two corner lines (if

A andB are connected through a corner). If there are more SteinetspafterB,

we repeat the above argument to prove Lend®a O

Note that the structure of a FST is not affected by ninety elegotation. In the
following lemmas and theorems, we assume thdtig a FST, the corresponding

Steiner chain will consist of a set of vertical lines and adj# vertical lines are

3.3. OARSMT decomposition 55

connected by corners. We label ti& Steiner point on the chain counting from

above byA.

Lemma 3.10.Suppose f is a FST. Every Steiner point on f must have a hoaizon

node line and the node lines alternate in the left-right diien.

Proof. Note that a horizontal line not on the Steiner chain cannotaio any
Steiner points, nor can it contain more than one node siniea FST. There-
fore it suffices to show that there exists a horizontal lind &cannot be a corner
line.

(i) If the Steiner point is connected to its preceding Stejp@nt through a
corner A in Fig. 3.16), the third line of the Steiner point cannot be a vertica¢lin
according to Lemma&.3. Therefore, the third line must be horizontal and it cannot
be a corner line by Lemma.4.

(i) If the Steiner point is on the vertical line of the Steirmdain B in Fig. 3.16),
the third line must be horizontal and it cannot be a corner lim Lemma3.3.

By the corollary of Lemma&.2, two adjacent Steiner points on the same line
cannot have node lines on the same side. For the Steinesmoinbected through
corner, itis also easy to prove this (Lem®&). Hence, iff is a FST, the node line

on the Steiner chain must alternate in the left-right dioect O

The proofs of the above lemmas are similar to those4B), [except that of
Lemma3.11in which flippings are required. In this chapter, a differlmmma is

proposed.

Lemma 3.11.Let A be the i" Steiner point on the Steiner chain of a FST. A corner
connecting Aand A, can be transferred to either one connectingfand A_1,

or one connecting A, and A, 3, regardless of whether the place it transfers to has

56 Chapter 3. ObSteiner - an exact OARSMT algorithm

a corner of not. If the corner cannot be transferred due taatles, A 3 is the last

Steiner point or Ais the first Steiner point on the chain (if,A or A; exist).

A

L

Ai +1

ai O , JUR|
|
|
|
a1)@ y Az‘+2
Ai+3

Figure 3.17: A structure of Steiner chain wh&nandA;.1 are connected by a
corner.

o)
A,
"o 0.
A 3
A
i+3
Aisq
a;, 4 @——0

Figure 3.18: A structure of Steiner chain when the cornewbehA;,, andA;. 3
can not be flipped due to obstacles.

3.3. OARSMT decomposition 57

Proof. From Lemma3.9 and Lemma3.10 whenA; andA;,; are connected by a
corner, the graph must be the one given in Bid.7. We useg; to denote the node
connected bw.

Necessarilya;.2Ai ;2| > |aA11|, for otherwise we can shify, 1A, » to a2 and
obtain an equivalent tree in whieh,» has degree two. Now shif§, 1A;,» toa and
suppose this line meetg, 2A; .2 aty. Flip the corneA;,» betweerny andA;, 3. The
corner connectingy andA;. 1 is then transferred to one connectig, andA;, 3.

If the cornerA;,» cannot be flipped due to obstacles aqg, exists, the graph
must be the one given in Fi§.18 in which there are obstacles inside the bounded
rectangular region defined ., andA;.3. We usef3 to denote the corner con-
nectingA;,» andA;. 3. We can shif3A;, 4 to the left until it meets an edgeon one
of the obstacle inside the rectangular region. Similar egtoof for LemmeB.1,
eis an essential edge and has a virtual terminal on it. Thexeftbe FST has an
equivalent tree that passes through a virtual terminal,rdéradiction. If shifting
BA; .4 meetsa. 4 first, the FST has an equivalent tree in whighy has degree two,
again a contradiction. As a result, if the corner cannot dedfierred due to obsta-
cles,A, 3 is the last Steiner point on the chain if it exists. Similavle can transfer
the corner to one connectifg_» andA;_1. If the corner cannot be transferred,
is the first Steiner point on the chain if it exists.

Note that ifA;;3 does not exist, the above operation eliminates the corner be

tweenA; andA;. 1. O

Lemma 3.12. Suppose f is a FST and let m be the number of Steiner points on f.
There exists a‘fequivalent to f such that

() if m is odd, the Steiner chain of s a straight line.

(ii) if m is even, all the Steiner points are on a straight leecept possibly the

last one.

58 Chapter 3. ObSteiner - an exact OARSMT algorithm

Proof. By pushing the corners along the direction according to Ler@rhl, there

will be at most one corner connecting the last two Steinentgoilf mis odd, the

corner can be eliminated. O
®
®
o—0
o—0
o—e
o—e
o—O0 t|
—@
(a) (b) () (d)

Figure 3.19: Possible structures of a FST among complexaclest (a) Type |
structure. (b) Type Il structure. (c) Type Il structure) {@pe IV structure.

To summarize, if the Steiner chain is a straight line, thazomtal node line
linked to the sequence of Steiner points must alternatearetft-right directions.
Hence, each Steiner point has exactly one horizontal nodeskcept the first and
the last one. Similar as i@f], by putting all of the above lemmas together, we can

have the following conclusion:

Theorem 3.1. The structures of a FST among complex obstacles must be iof one

the four forms as shown in Fi§.19

As we can observe from the figures, the structures of FSTseiptésence of
rectilinear obstacles are very similar to those26][and [48]. The first two struc-

tures are exactly the same as those2@ pnd [48. However, in the presence of

3.3. OARSMT decomposition 59

complex obstacles, the FSTs have two additional structukasain characteris-
tic of these two additional structures is that the last coomanecting two Steiner
points or one Steiner point and one terminal is blocked byesobstacles. The
similarities indicate that we can use the same method tararishe FSTs defined
in this chapter efficiently, making it possible to use the4uase approach to solve

an OARSMT problem in the presence of complex rectilineatautss.

3.3.2 More Theoretical results

We mentioned in the previous section that the OARSMT probdam be trans-
formed into a graph problem by using the escape graph. Tla@esgaph is known
to be the simplest graph model that contains at least onenapsolution to the
OARSMT problem. In this section, we will introduce a new dragalledvirtual

graphthat is simpler than the escape graph. Based on the theorepnesented
in the previous section, we will show that the virtual graplaistrong connection

graph that contains at least one optimal solution.

R T S e e St S '
R R A T ‘
Pt i } | Lo 1 i !
S e R T A e 4t
! I | ! ! I I I !
i] I | | o ! i | | |
| b~ [NS SR SRS QS S Y
i } [i "r [(f i T !
| N, i S
! |] ! ! | I I I !
| |
gt R S e S -4 !
| T ¢
b 4
o T e AR : :
. . L] |
P T’"I\’fﬁ?’"""JT"JFT*JTIT |
P S S S S S S S S S I
SIS NSNS :
P SE e — — A — — —f Lo _ b6 & e o _________ !
T VT Tt T 1
L_ 4 & e __&__ [S A S S 3
R L e ISR Gl g B b
S e e g e +
| | | | | | | | | !
[[I Lo Lo | |
b O A S G +
S G A S
o o R S
| | | | | | | | | | !
R S)3 j
S o S | G i
P S S SN SRR S b ___ 4 4 & ____ 3

o — 6 ——

Figure 3.20: Escape graph.

60 Chapter 3. ObSteiner - an exact OARSMT algorithm

The escape graph consists of two types of segments. Theyfiesis the seg-
ments that extend from the terminals in the vertical andzomtal directions, and
end at an obstacle boundary or the boundary of the wholengtgigion. The other
type of segments is obtained by extending boundary segrate&h obstacle un-
til an obstacle boundary or the boundary of the whole routéggon is met. The
vertices of the graph are the terminals and the segmensédgon points. An ex-
ample is given in Fig3.20where there are three terminals in the presence of three
rectilinear obstacles. Therefore, the size of the escagehgsO((m+b)?2), where
m s the number of terminals arulis the number of obstacle boundary segments.
It is proven in BQ] that for any OARSMT problem, there is at least one optimal
solution composed only of the escape segments in the escapke. grhe impor-
tance of the escape graph is that, with this model, one casftrlan the geometric
OARSMT problem into a graph problem. As a result, some graded searching
algorithms 41, 15] can also be applied to this problem. The introduction oapsc

graph has also led to a set of heuristig4, (5] for the OARSMT problem.

i O********?********’***? *********************** 2
| i 1 ! ! ;Vl !
| | Ao __ S ——_ g e - _____ 24
o ——_ & v M
T | 7 L |
L bonae | L |
| | | |
|
} } ?777}f77777777?’77jf 777777777777777 r 777777 {‘)
| |
Ot b P i !
i A] !] }
‘ O-------- (Fm—b-==gmmmmm-mmm- 4 ‘
] | i R < 1
- -9 ———————————¢ i I
| | | | | | |
. ! | | |
| | | | | & —— |
Lo R | ! Pl |
R R SR R !
S ittt B O
. ‘ B ! S B I
) S GRS AP S S D E— i
,,,,,,,,,,,,,,,, . SR S S S
i A S O t '
| | | |
'\L i I } -9 | I ! !
pomeeee S W i
| | | | |
| | e | |
| | 'i’“—? 777777777 ,Ir | | |
! | L ’ | | !
L .. | 03 |
| | S L b A t
S bomn by F S — by

Figure 3.21: Virtual graph.

3.3. OARSMT decomposition 61

In the following, we will introduce a new graph called virtuaaph based on
the virtual terminals we added to the problem. The virtualpgris composed of
two types of segments. The first type is the segments that@ktem the terminals
and virtual terminals in the vertical and horizontal direns, and end at an obstacle
boundary or the boundary of the whole routing region. Theosdadype is the
obstacle boundary segments. The vertices of the graph aretiminals, virtual

terminals and the segment intersection points. An examsghawn in Fig3.21

Theorem 3.2. For any OARSMT problem, there is at least one optimal salutio

contained in the virtual graph.

Proof. Any optimal OARSMT can be decomposed into a set of FSTs amonyg ¢
plex obstacles. By Theorefl, there are only two types of segments in the FSTs.
The first type is the segments that extend from either a teinoinvirtual terminal
horizontally or vertically. The second type is the segméinés go around obsta-
cles. By the definition of the virtual graph, it can be easkyified that all FSTs
can be further decomposed into segments in the virtual grépérefore, there is

at least one optimal solution contained in the virtual graph O

By TheorenB.2, we can see that virtual graph is also a strong connectigrhgra
The size of the graph ©((m+e)?+b), whereeis the number of essential edges.
In comparison with the escape graph, the size of the virttagllgis smaller. In the
particular examples shown in Fi§.20and3.21, the escape graph consists of 184
nodes and 319 edges while the virtual graph only consist®4fribdes and 158
edges. The simplicity of virtual graph also benefits fromftagibility in choosing
the positions of the virtual terminals. Note that we onlyuieg one virtual terminal
on each essential edge. As shown in B@1, three virtual terminals are chosen

to be internal points of essential edges to align with reahieals or other virtual

62 Chapter 3. ObSteiner - an exact OARSMT algorithm

terminals. This can further reduce the size of the graph.

Proposing a simple graph model is of vital importance for@#RSMT prob-
lem. Since the problem is NP-complete, a simpler graph caa e a dramatic
reduction of the solution space. Moreover, this graph madalso promising for

the graph-based heuristics to improve their performance.

3.4 OARSMT construction

An OARSMT can be patrtitioned into a set of FSTs by splittingest| terminals
or virtual terminals of degree more than one. Therefore, QARSMT is a union
of FSTs. As we can observe, FSTs are much easier to geneaat©OHMRSMTS.
Therefore, one possible way to construct an OARSMT is todwsistruct its FSTs
components and then combine a subset of them.

Similar to [48], we adopt a two-phase approach to construct an OARSMT. The
first phase is to generate a set of FSTs. The second phaseastone a subset
of FSTs generated in the first phase to construct an OARSMdJuirearly experi-
ments, we found that the FST concatenation phase usuallyndtes the total run
time. Therefore, we propose a pruning algorithm to furthienieate useless FSTs
resulting from the FST generation phase. This can reduceuimder of FSTs that
needs to be considered in the second phase leading to acghifnprovement on

the total run time.

3.4.1 FST generation

To grow FSTs of a RSMT, Zachariase®l] proposed an efficient algorithm in
which some pre-processing information is applied to prumayathose FSTs that

are not required in any RSMTSs. In this chapter, we modify #igorithm for the

3.4. OARSMT construction 63

generation of FSTs with blockages. Our FST generation glgordiffers from
the previous one in the following aspects. First, we extémscreening tests to
handle virtual terminals and blockages. Second, we dealogfficient approach

to construct two-terminal FSTs when virtual terminals &xis

3.4.1.1 Generation of FSTs with three or more terminals

The structures described in Theor&x will be used to identify FSTs. To reduce
the number of resulting FSTs, we identify some necessarglitons for a FST to
be a part of an OARSMT as ibll]. Most of the conditions in§1] are applicable
to the proposed FSTs after some modifications. In the fofigywive will focus on
the modifications made when obstacles and virtual termiats.

The bottleneck Steiner distan@an be used to eliminate useless FSTs when
obstacles exist. Let OARMSV(be an obstacle avoiding rectilinear minimum
spanning tree of the point set andv;, v; €V be a pair of vertices. The bot-
tleneck Steiner distanoéOARMSKvivj) betweenv; andv; is equal to the length
of the longest edge on the unique path betwgeandv; in OARMST(). Sa-
lowe et al. [45] proposed a theorem stating thaMiST andSMT are respectively
a minimum spanning tree and a Steiner minimal tree on a setrtitesV, then
OvsT(vv) = OsmT(vy;) for anyvi,vjeV. It can be easily verified that the prop-
erty also holds for OARMS™N) and OARSMTYV). For a FSTf to be part of an
OARSMT, we require thaEBMST(ViVJ.) > 6S(vi\,j) for anyvi,vje fnV.

The empty diamond propertgroposed in §1] states that no other points of
the RSMT can lie inZ(u,v), whereuv is a (horizontal or vertical) segment and
Z(u,v) is an area on the plane such that all the points in this arealeser to
bothu andv thanu andv are to each other. However, when there are obstacles and

virtual terminals, the points which cannot lieif(u,v) are the real terminals i

64 Chapter 3. ObSteiner - an exact OARSMT algorithm

only.

The empty corner rectangle property also proposed in6[l]. Let uwandvw
denote two perpendicular segments sharing a common erndjpaolinen, no other
points of the RSMT can lie in the interior of the smallest axligned rectangle
containingu andv. However, when there are obstacles and virtual terminatsan
routing region, we only need to consider real terminals Wizian be projected on
uw andvw without intersecting with any obstacles.

We also make use of thempty inner rectangle propergyroposed in$1]. A
FST can be transformed to its corner-flipped version byisigitegments and flip-
ping corners. The empty inner rectangle property statesnimaerminal (real or
virtual) should be located between the backbone of therot@pology and that of
the corner-flip topology.

Based on the above properties, we can generate all the edde@8Ts by grow-

ing them recursively as ir6fL].

3.4.1.2 Generation of FSTs with two terminals

For those FSTs with exactly two terminals, we will constriheim by the following

method. First of all, these FSTs can be divided into two typé&e first type has its

two end points both iN. The second type has at least one of its end poiritk in
For the first type, we can construct them according to thefotlg lemma

which is proposed by FoRmeiet al.[17].

Lemma 3.13.Let G= (W,E) be a graph with edges assigned mutually distinct
weights and let Wbe a subset of W. Let L be an MST of G andé& an MST of
G[W’], the subgraph of G induced by’ WThen every edg@u,w) in L where both

u and w are in Wwill also appear in L.

3.4. OARSMT construction 65

This lemma indicates that every two-terminal FST, in the @MY and with
its two end points both iV, will also appear in the OARMST of. In order to
generate all possible type one two-terminal FSTs, we ongdrte construct an
OARMST ofV and include all the edges in it as candidates. In order tolkand
the requirement of mutually distinct weights, we arrangedbges with the same
length by comparing their positions in the edge array. Thethat has a smaller
index is assumed to be “shorter”. Note that this will not effftne optimality of the

generated OARSMT.

Figure 3.22: The eight regions of a terminal.

For the second type, we will make use of a lemma proposed by5&o We
know that at least one of the two end points of the FST undestooction is inU
and the rectangular area covered by the two end points ia@dbdtee (otherwise
we can flip the edge to the boundary of the obstacle to obtaggaivalent tree with
forbidden structures). For each virtual terminad U, we divide its surrounding
area into eight regiong; fori=1,...,8, as shown in Fig3.22 In every regiorR;,
we find the pointve V that has the shortest manhattan distamigg) from u and
the rectangular area coveredigndv has no obstacle. Then, the edge connecting
u andv is a two-terminal FST candidate. In this regi®) we also find those

pointsw € U with distanced,y < dyy and the rectangular area coveredgndw

66 Chapter 3. ObSteiner - an exact OARSMT algorithm

is obstacle free. Then, the edge connectirammdw will also be included as a FST
candidate. To verify the correctness of this approach, warae on the contrary
that there exist a two-terminal FST in the OARSMT, but not um candidate set.
Without loss of generality, we uses U andweV +U to denote the two end points
of the FST. Assume that is in the R¢ region ofu. Since the FST is not in our
candidate set, there exist a termivalV in R¢ such thatd,y, < dyw. According

to [58], we haved, < dyw, but this is impossible for otherwise we can del@igw)

and connect eitheiu, v) or (w,Vv) to build a shorter tree. Therefore, the FST cannot
exist which proves the correctness of our approach.

Based on the above methods, we can find all necessary twatdrFSTs.
Since the number of two-terminal FSTs is very large, somiertiggies are adopted
to remove redundancies. Firstly, the empty diamond prgpsertested for every
two-terminal FST and those that fail to satisfy the conditwill be eliminated.
Secondly, according to the definition of FSTs, we will remawveedge if the rect-
angular area covered by the end points is not obstacle freallys the empty inner
rectangle property is checked. If the rectangular areareavey the end points is
obstacle free but contains some terminals irwe will also remove the FST. This

technique has also been adopted by Zachariaseétijn [

3.4.2 Pruning of FSTs

We propose an efficient pruning procedure to reduce the nuafilf&Ts needed to
construct an OARSMT. Although some pruning is also done@R8T generation
phase, these tests consider only one FST at a time. To futineinate useless
FSTs, a set of FSTs should be considered simultaneouslypip®sed pruning
algorithm works by growing a FST to larger trees and test if these larger trees

can exist in the optimal solution. We know that virtual temads in an OARSMT

3.4. OARSMT construction 67

must have degree two, three or four. Therefore, it is possdblgrow a tree at a
leaf node which is a virtual terminal. The growing is done bynbining FSTs at
virtual terminals. The rationale behind is that a F6&¢an be eliminated if no tree
grew from f can exist in an OARSMT. The pseudocode of the pruning algorit
is shown in Fig.3.23
The input of the function PRUNE] is a FSTf. The function returns a value
true or falseto indicate whethef can be eliminated or not. A que@is used to
store all the trees we can grow frofrduring the test. InitiallyQ containsf only.
The algorithm repeatedly removes a tiedrom Q and tests ifT can be a part of
any OARSMT. The function PASS_TESIT) returnstrueif T passes all the tests
used to eliminate useless trees. In this case, the functtohST DEGREE()
is used to select a virtual terminalthat is also a leaf node df. If there are
more than one such virtual terminals, the function retunesine that is connected
by the least number of FSTs. The algorithm then tries to grolay connecting
T with combinations of FSTs at. All such expansions are added to the queue.
If PASS_TESTT) returnsfalse T can be eliminated and no more expansion is
needed. The algorithm stops wh@ns empty which means that no tree grew from
f can be in an OARSMT. We can then safely elimin&téf at some poinQ is full
or all leaf nodes oT are real terminals, the algorithm terminates and retiahse
Four tests are used in the function PASS_TERSTp eliminate useless trees.
In the following, we letvt ¢V +U be the set of terminals connected by

The first test tries to construct a shorter tree that spansaime set of terminals.

Lemma 3.14. T cannot be a part of any OARSMT over V, if the length of T is
larger than the length of an OARSMT over.V

Proof. If T is part of a Steiner minimum tree, we can replaceith the OARSMT

overVr, yielding a tree with shorter length, an absurdity. O

68 Chapter 3. ObSteiner - an exact OARSMT algorithm

Algorithm 1: PRUNE(f)
Input: f

Output: trueor false
1: initialize a queu&

2: pushf - Q

3: while Q is not emptydo

4: popT «<Q

5. if PASS_TESTY) then

6: if ALL_REAL(T) then

7 return false

8: end if

9: u=LEAST _DEGREET)

10: S={fi: (fieF)A(ue fi)A(fi¢T)}
11: forall T’ e f u ‘Zs)u(i)do
12: pushTuT’ - Q
13: if Qis full then
14: return false
15: end if
16: end for
17: end if

18: end whileRETURN(true

Figure 3.23: Pseudocode of the pruning algorithm

To compute an OARSMT ovéfr, we will include all FSTs that span exactly a
subset of/; and pass them to the FST concatenation phase. Since the tadiopu
of OARSMT oven/T can be expensive, this test is performed only when the number
of terminals inT is less than a predefined number (this number is set to 30 in our
implementation).

The second test makes use of the bottleneck Steiner distaecg/ +U, E, c)
be the distance grapiof V +U, with E being the set of edges between every pair
of terminals inV +U andc: E - R* being a positive length function da. A path

P in the distance graph is an elementary path if both of its tadpeints are V.

2A distance graph is a graph formed from a collection of pointthe plane by con-
necting every two points by an edge, and the edge weight £guidhe distance between
the two points.

3.4. OARSMT construction 69

The Steiner distance &1 is the length of the longest elementary patiPinThe
bottleneck Steiner distansgy betweeru andv is the minimum Steiner distance
over all the paths fromtovin (V +U,E,c). Such a path is known as a bottleneck

Steiner path.

Lemma 3.15.T cannot be a part of any OARSMT over V, if the length of the tree
c(T) is larger than the length of the minimum spanning tree oyen(V +U E, s)
(the graph that uses distanceg,sas a measure of the edge weight for every pair

of terminals).

Proof. Itis proven in [L5, 41] that if ¢(T) is larger than the length of the minimum
spanning tree ovafr in (V +U,E,s), a tree shorter thae{T) spanning/r exists in

(V+U,E,c). As aresult, in such a casg,cannot be a part of any OARSMT.]

The third test compares the tree distance and the bottleBiker distance

between two terminals if.

Lemma 3.16.Let u and v be two terminals in T angitbe the length of the longest
edge on the path between uand vin T. T cannot be a part of an\s®ARver

V y |f tu’v > SJN'

Proof. Assume the contrary that is in a Steiner minimum tree. Remove the
longest edge on the path betweeandv in T and the Steiner minimum tree is
divided into two components. Along the bottleneck Steirethgetweemn andyv,

let P’ be an elementary path such that its two endpoints are irréiffeomponents.
Note that the length & should be no larger thag y. Therefore, we can reconnect

the two components by’ yielding a shorter tree, a contradiction. O

Note that the second and third tests both make use of theebetk Steiner

distance between pairs of vertices. The bottleneck Stelis¢ance between any

70 Chapter 3. ObSteiner - an exact OARSMT algorithm

pair of verticesu andv in the graph(V +U,E,c) can be obtained by determining
the Steiner distance on the path between these two verticé® ispanning tree
overV.

The fourth test exploits the lower and upper bounds on thgtlheof a Steiner
minimum tree. To obtain the lower bound on the length of an GAR, one way
is to solve the linear programming relaxation of the FST ed@cation problem
formulation as described imf]. However, this approach is not practical due to
its high computational cost. An alternative is the dual as¢euristic proposed
in [52], which is a fast heuristic that provides a lower bound fa 8teiner ar-
borescence problem in a directed graph. To apply this methedirst construct
a directed grapliV +U + S Eg,d). Sis the set of all Steiner points in all FSHg
is the set of directed edges which is generated by transfeeach edge in a FST
to its two directed versionsd : Ep - R* is the edge length function. It can be
easily verified that the FST concatenation problem is edgemido finding a short-
est arborescence tree (M +U + S Er,d) that rooted at a terminaland spans all
the other terminals iW. As a result, we can use the dual ascent heuristic to com-
pute the lower bound and the associated reduced cost foreeleh To compute
an upper bound, the maze routing based heuristic propod&d|irs used. In the
following, letlower be the lower boundjpperbe the upper bound, Er - R* be
the reduce codtfunction onEg, andr(u,Vv) be the reduced cost distance betwaen
andvin the graph. Lely,l»,.. ..l be the leaves oF and?i be the directed version

of T rooted atj. We user(T;) to denote the reduced costffi.

Lemma 3.17.T cannot be a part of any OARSMT over V, if lowenin{r(z ;) +

3Finding a shortest arborescence tree in a graph can be fateduhs an integer linear
programming. In linear programming, the reduced cost vaidécates how much the
objective function coefficient on the corresponding vddaiust be improved before the
value of the variable will be positive in the optimal solutio

3.4. OARSMT construction 71

r(Ti)+ X+ Miney_» 1 (1j,V) } > upper in which z is the root node.

Proof. It is proven in B1] that lowergonstrained= lower+ min{r(zl;) +r(T;) +
2+ min,ev_{z}r(lj,v)} is a lower bound for the length of any Steiner tree with
the additional constraint that it contaiiis Therefore, ifower.onstrained> UP PEF,

T cannot be a part of any OARSMT. O

If T fails any of these four tests, PASS_TES$TJ feturnsfalse andT can be

eliminated.

3.4.3 FST concatenation

The second phase of the algorithm is to use the FSTs genendteslfirst phase to
construct an OARSMT spanning all real terminals with theimumm total length.
In the construction of RSMTs, Warmé9] found that the FST concatenation prob-
lem is equivalent to the minimum spanning tree problem irengpaph and formu-
lated it as an integer linear program (ILP). A branch-andatgorithm is used to
solve this problem. In this section, we will show that the F®hcatenation prob-
lem in this chapter can also be formulated as an ILP and sblyeding the branch-
and-cut search. Generally, our FSTs concatenation ph#sesdrom the previous
one in the following aspects. We modify the ILP formulati@n FST concatena-
tion and the separation algorithm 9 to handle virtual terminals. New features
are introduced to accommodate the presence of virtual taisiWe also provide

a theoretical proof to verify the correctness of the new & algorithm.

3.4.3.1 ILP formulation

In the following, letF be the set of all FSTs found. L#t be the set of all real

terminals andJ be the set of all virtual terminals. L&¢| be the number of real

72 Chapter 3. ObSteiner - an exact OARSMT algorithm

terminals,|F| be the number of FSTs iR and|U| be the number of virtual ter-
minals. Each FST; € F is associated with a binary variabtgindicating whether
fi is taken as a part of the OARSMT. Besides, there are binanghblasy; for
i=1...|U|indicating whether virtual terminak €U is connected in the OARSMT.
We us€ fi| to denote the size df, i.e., the number of terminals (including virtual
ones) connected bfy, and usd; to denote the length of. The ILP formulation is

as follows.

Minimize:

IF|

> lixx. (3.1)

i=1

Subject to:

IF| |

>x(lfil-1) = V[-1+> i, (3.2)

i=1 i=1

2yi< > % VujeU, (3.3)
iujefi

4y,- > Z X Vuj eU, (3.4)
iujefi
> X >1

i:fie(X:V+U-X)

vYXcV+U andV ¢ X andXnV + @, (3.5)

Yox(finX|-1) <[XnV]+ > yi-1
i:finX+o i:ujeX
VX cV+U andXnV =@ and|X|>2, (3.6)
>, X(finX[=1)< > yi-maXyex (Vi)
i:finX+o iUy eX
VX cU and|X|> 2. (3.7)

The notationX:V+U -X) in (3.5 meang fieF: finX+aA fin(V+U-X) #

3.4. OARSMT construction 73

@}. Constraint 8.2) is thetotal degree constraintlt requires the right amount of

FSTs to construct an OARSMT. Each selected FSdontributeg fi| - 1 edges for

L:J|1Yi

is added to indicate the number of selected virtual termmin&onstraints3.3)

the tree. Since we do not know the exact number of terminailse'rtree,z!

and B.4) bound the degree of any selected virtual terminal to be tiwee, or
four. Constraints3.5) are thecutset constraints The constraints require that a
solution should be connected, that is, for any cut with parts X andV +U - X,
there must be at least one selected FST to connect them. Wea¥aqV + @ and

V ¢ X, because we do not need to ensure the connectivity of theaVterminals.
Constraints §.6) and @.7) are thesubtour elimination constrainthat are used to
eliminate cycles. In3.6), we consider those se¥s\V = @. Sincey; tells whethew;

is selected X nV|+Y;.,.ex ¥i gives the exact number of selected terminals including
virtual ones inX. In (3.7), we use}xYi to indicate the number of selected
terminals inX. Since it is possible that the number of selected termiralX i
is equal to zero, we do not simply subtract one from the rigirtchside of the
inequality. Instead, the term maxx (i) is used to ensure that the inequality is

not binding when the number of selected terminalX iis zero.

3.4.3.2 Branch-and-cut

The ILP described in the above section is solved via a bramcheut framework
using lower bounds provided by the linear programming (lefxation. We adopt
the algorithm proposed by Warméd and extend it for solving the ILP formula-
tion of our FST concatenation problem. The pseudocode dltf@ithm is shown
in Fig. 3.24 In the following, we will give a brief overview of the algohim, in-
cluding initialization, node processing, and branchimgl point out the differences

in the separation algorithm in order to deal with our forntiola. The readers may

74 Chapter 3. ObSteiner - an exact OARSMT algorithm

refer to 49] for more details.

Algorithm branch-and-cuK)
Input: F // The set of all FSTs
Output: OARSMT
1: initialization
2: add the first node to the node list
3: while node list is not emptgo

4: select a node from the node list

5. repeat

6: node processing

7 if LP feasibleand objective value< best known objeg-

tive valuethen

8: if the LP solution is integral and connectiben

9: save it as the best known integral solution
10: end if
11: separation
12: end if

13: until 1: LP infeasiblepr
2: objective value: best known objective value,
or
3: separation found no violation

14: if case lor case Zhen

15: delete the current node

16: endif

17: if case 3hen

18: if the solution is fractionahen
19: branching

20: end if

21: if the solution is integrahen
22: delete the current node

23: end if

24: end if

25: end while
26: return the best integral solution // OARSMT

Figure 3.24: Pseudocode of the branch-and-cut algorithm.

Initialization
Since there are an exponential number of constraints aogptal the problem

formulation, we handle them incrementally by using someasspn methods.

3.4. OARSMT construction 75

A constraint pool is used to keep all the currently processionstraints of the
ILP. At the beginning of the algorithm, the constraint poinitialized with the
total degree constrainB8(2), constraints for virtual terminals3(3) and @.4), all
one-terminal cutset constraint3(%) with |X| = 1), and all two-terminal subtour
elimination constraints §.6) and @.7) with |X| = 2). Besides, an LP tableaux is
constructed to store the constraints (which is a subseteotdmstraints retained
in the constraint pool) being handled by the LP solver. TheainLP tableaux
consists of all the constraints in the constraint pool ektieptwo-terminal subtour

elimination constraints.
Node processing

The objective of the node processing procedure is to comgrutaptimal LP
solution over the current constraint pool. The processrsagith solving a linear
relaxation with the constraints in the LP tableaux. If a soluexists, we will
scan the constraint pool and check for violations. All viethconstraints found
will be added to the LP tableaux which is solved again in the iteration. This
operation terminates when the LP solution satisfies all dmsicaints in the pool
(LP feasible) or a feasible solution does not exist (LP isilgl@). If the result is
LP infeasible or the objective value of the LP solution exisethe objective value
of the best known integral solution, the processing of tlidenends and the node
will be deleted. If the objective value of the LP solution estter than that of the
best known integral solution, the integrality and connastiof the LP solution
is checked. If the solution is both integral and connectet saved as the best
known integral solution. A separation procedure will thenitwoked. Note that
after obtaining an optimum over the current pool, slack trasts will be deleted

from the LP tableaux (but are retained in the constraint)pool

4Slack values of linear constraints are available to be gderom the LP solver.

76 Chapter 3. ObSteiner - an exact OARSMT algorithm

Separation

The objective of the separation procedure is to find a set o$tcaints that is
not present in the constraint pool, but is violated by theenirsolution. These
constraints will be added to the constraint pool. There aagniy two sets of
constraints to be considered, namely the cutset condr@r) and the subtour

elimination constraints3(6) and 3.7).

The first step in the separation procedure is to find the @t + U — X) with
Yi-fie(xv+u-x) Xi = 0 that violate the cutset constraing&sg). We first compute the
connected componeni;, D», D3, ..., Dy of the solution. Since we do not need to
ensure the connectivity of the virtual terminals, we reguhatD; nV = @, V1<
i<k If k>1, there exist cutsets of zero weight. kik 10, we generate cutsets
constraints for all the cuts induced by the connected compisn Ifk > 10, we
only generate the cutset constrai(is : V +U —D;) for 1<i < k. Notice that we do
not consider those cuts withd®;. 1, (x.v+u—-x) X <1 because they are too expensive

to be identified while little improvement in the objectivdwa can be made.

The second step is to find violations of the subtour elimarationstraints3.6)

and 3.7). We define the following function

FX)=Xav]+ S yi- 3 x(lfinX|-1). (3.8)

iUeX i:finX+@

Then finding violations of constraint8.@) is equivalent to finding alX cV +U
such thatX + @ and f(X) < 1. Before exactly solving this problem, we first apply
problem reductions to speedup the process4®h the “congestion level” of a real

terminalb\,j is defined as

ivjefi

3.4. OARSMT construction 77

A real terminalv; is uncongested iby, <1. In this chapter, we define the

“congestion level” of a virtual terminal as

by = Y X (3.10)

iujefi
We say that a virtual terminal; is uncongested ib,; <yj. By the definition of

“congestion level” we can have the following lemma.

Lemma 3.18. If a terminal w is uncongested and X u {w}) < 1, then f(X) <

F(Xu{w}) <1.

Proof. Let

A={fieF:|finX|>1awe fi} andB={fieF:|finX|>1Aw¢ fi}.

Then

fF(XU{w)) - F(X)

=|(Xu{w})nV|+ Z Yi — Z | fi n X|x; — Z (|finX]-1)x;

i:ujeXu{w} i:fieA i:fieB
- XnV|- Z Vi + Z ([finX]|-1)x + Z (|finX|-1)x.
i:ujeX i:fieA i:fieB

If wis a real terminal, then

F(Xu{w}) - 1(X)

=[XnV]+1- > [finX|x-[XnV]+ > [finX]x— > X
i:fieA i:fieA i:fieA

=1- > x>1-by>0.

i:fieA

78 Chapter 3. ObSteiner - an exact OARSMT algorithm

If wis a virtual terminal and its index lgs then

fF(Xu{w})-f(X)

=XV [+yc= 20 [finXpki=[XnV[+ 30 [finXxi-)] %

i:fieA i:fieA i:fieA
=Yk— Y, X >Yk—bw>0.
i:fiEA
In conclusion, we havé(X) < f(Xu{w}) <1.]

Figure 3.25: The flow network formulation.

According to LemmeB.18 we can eliminate all uncongested terminals while
looking for violations of the subtour elimination constrs. Since subtour elim-
ination constraints are used to eliminate cycles, we cahduiconfine our search
to within several biconnected components. We @s€,,Cs, ...,Ci to denote the
biconnected components in which every terminal is congest®w, the problem

is reduced to identifying violations withi@1,C,,Cs, ...,C¢. For each component

3.4. OARSMT construction 79

Ci with less than 10 terminals, we will enumerate all sub¥ets C; checking for
violations of 3.6) and @.7). For each remaining componé@jt we use a determin-
istic network flow method to find violations 08(6) and @3.7). The deterministic
flow networkG = (N, A) is defined as follows. Le\l = {o} uYuZu {1} be the set
of nodes in the graph, wheye= { f;: finC; + @}, andZ = {v; :v; G} u{u;:u; G}
Let the arcs in the graph b= AjuA; UAz, whereA = {(0, f)}, Az = {(fi,vj):
vje fitu{(fi,uj):ujefi}, andAg = {(vj,T) :vj eCi}u{(uj,T) :uj €Ci}. Letthe
arcsA; have capacity;. Let arcsA; have infinite capacity. Let arqs/j, 1) € Ag
have capacityy, -1, and(uj, 1) € Az have capacityp,; -y;. The flow network is
shown in Fig.3.25 Note that different from the flow network formulation g,
there are nodes that represent virtual terminals in our titation.

We define a source to terminal qW : N-W) of G such thatt e W andt e (N-
W). The capacity of the cut(W) is the sum of the capacity of all ar¢a,b) € A
such thaae W andb e (N-W). We have the following theorem.

Theorem 3.3.Let(W:N-W) be a source to terminal cut of G that minimiz&\t).
Let Xn={w:weV +UaweN-W}. Then X, minimizes {X).

Proof. Let W = {g} ul uJ be such a minimum cut db, wherel cY andJ c Z.
According to 9], | is completely determined by,
Letw, =1 if vj eW andw\,j = 0 otherwise. Letw, =1 if ujeW andwu]. =0

otherwise. Ther(W) can be written as

c(W)= (1— [Tw, [] wuj)><a+_2 (by; - L)wy,

i:fieF jovjef jrujefi jivjeV
+ Z (ij_yj)WUj
jiujelU

2 (% T T) 5 02

i:fieF jrvjef jeujefi jivjeV

80 Chapter 3. ObSteiner - an exact OARSMT algorithm

+ > (by —ypw + Y X

jiujeU i:fieF

Note that the last term in the equation does not depend,par wy,;, and therefore
is a constant. Now consider the functid(X). Let z,=1 if vj e X and z,=0
otherwise. Leg,, = 1if uj e X andz,, = 0 otherwise. Let,, = 1-z, andz, = 1~z

be the complementary variables. We can rewfit¥) as

f(X)
=XaV]+ > yvi- > x([finX|-1)
i:ujeX i:finX+g
= 2 Zit)L 2
jivjev jrujeU
—Z[(Zz\,j+ Zzuj) 1+ [] (-2 [] (1-zy)
i:fieF jrvjef jrujefi jovjef jeujefi
= Z (1_2_\/j)+ Z (1_Z_Uj)yj
jivjev j:ujelU
- Z Z (1_Z_Vj)+ Z (1_Z_Uj) -1+ Z_v,- Z_uj Xi
i:fieF jrvjef jujef jrvjef jrujefi
=NVI= D0 3+ D0 Yi-) Ay
jivjeVv j:ujed j:ujed
=2 M= > & -)z -1+ [T 2 [T 2 |x
i:fieF jovjef jujef jrvjef jeujefi
=VI= 20 z+ Y yi-) zyi- Y, (fil-1)x
jvjev jrujeU jrujeU i:fieF

Bz sbze

i:fieF jivjef i:fieF jrujefi

=M= >z Y yi- Yy Y (fil-1)x

jivjeV jrujeU jrujeU i:fieF

3.4. OARSMT construction 81

+) (Z_v,- > Xi)+ 2. (Z_uj 2. Xi)— D (Xi_:H Z, Hz_u,)

jvjev ivjef j:ujelU i:ujefi i:fieF

SVI= 20 &g+ 2L yim) zyi-) (fil-1)x

jvjeV j:ujed j:ujed i:fieF

P g ape San T (x5 1T %)

jvjeV jrujeU i:fieF jovjef joujefi

T« IE Ta)r £ w00

i:fieF jivjefy jeujefi jivjeV

+ 2 Zy(by-yi)- X (fil-Dx+ Y yj+V].

jiujeU i:fieF j:ujeU

The last three terms do not depend@nor z,;, and therefore are constants. By
settingz,; = w,, andz,; =w;, we can see that(W) and f(X) differ only by a
constant. Therefore, minimizirgfW) is equivalent to minimizing (X). Let (W :
N -W) be a source to terminal cut @& such thatc(W) is minimized, thenXy, =

{w:weV +UaweN-W} is a minimum off (X). O

This theorem states that finding Znof C; that violates 8.6) can be reduced
to finding a minimum cut on the flow networ®. This problem can be solved in
polynomial time. Note that although the above procedureotsemact in finding

violations of constraints3(7), it can still provide good estimations.
Branching

If no violation can be found by separation and the node pgicggerminates
with a fractional solution, branching on the current nodeuss. A branch vari-
ablex; (yj) with non-integral value is selected. Two new nodes are igéee by
appending the constrairts=0 orx; = 1 (y; = 0 ory; = 1) to the current node. The
processing of the current node terminates. New nodes agetsedlfor processing

until there is no node left in the node list.

82 Chapter 3. ObSteiner - an exact OARSMT algorithm

Algorithm 2: ObSteinen/, O)
Input: V, O
Output: OARSMT
1: initialize the obstacle lisDL to @
2: while truedo
3: FST generation
4: FST pruning
5. FST concatenation
6: forall FSTs in the current solutioto
7 for all line segments in the FSdo
8: check if the line segment intersects with any obsta-
cles
9: if it intersects with obstacldben
10: add the dominating obstacle @
11: end if
12: end for
13: end for
14. if no overlapping obstacle exidtsen
15: goto line 18
16: endif
17: end while
18: return the OARSMT

Figure 3.26: Pseudocode of ObSteiner.

3.5 Incremental construction

By using the two-phase approach, we can solve the OARSMTlgmmobptimally.

However, considering all obstacles together may resuliange number of virtual
terminals. In our early experiments, we found that addihgladtacles simultane-
ously would result in an explosion of FSTs. A more efficieniywaato consider an
obstacle only when it is necessary. Therefore, we adopt@enmental approach
to construct an OARSMT. An obstacle list is maintained dgitime generation of
the OARSMT. The list is responsible for keeping track of ttstacles we need
to avoid during the construction. Initially, the OARSMT ptem with an empty

list of obstacles is solved resulting in an RSMT. We then &Hec obstacles that

3.6. Experiments 83

overlap with the solution. For each FST used to build theesursolution, we de-
compose it into line segments. For each line segment, wectvdtk whether it
intersects with any obstacles. Among all overlapping atbstawe will choose the
dominating one. For example, for a vertical segment, we ehilose an obstacle
that has the largest width. All chosen obstacles are add#tketobstacle list. A
new iteration then starts again by solving the OARSMT probleith the obsta-
cles in the renewed list. This procedure repeats until nolapping obstacle can
be found. This approach is effective as in most cases onlgciidn of the obsta-
cles will affect the final OARSMT. The pseudocode of this OARISconstruction

framework is shown in Fig3.26

3.6 Experiments

We implemented ObSteiner in C based on GeoSteinerdR.The experiments are
conducted on a Sun Blade 2500 workstation with two 1.6GHzegssors and 2GB
memory. Our program runs sequentially on a single proce3éare are 21 bench-
mark circuits which are commonly used as test cases for thRSDAT problem.
IND1-INDS5 are industrial test cases from Synopsys. RCOI-R@&re benchmarks
used in p9]. RT1-RT5 are randomly generated circuits use®in [Note that there
are overlapping obstacles in these benchmarks. We regarthpping obstacles as
one rectilinear obstacle.

Table 3.1 shows the results obtained by ObSteiner. Columi grovides the
number of terminals in each benchmark. Columhgrovides the number of ob-
stacles in each benchmark. Colump:s” provides the total run time of the algo-
rithm. Column tprune’ provides the run time of the pruning procedure. Column

“loL

" provides the number of obstacles considered in the algoritWe can see

84 Chapter 3. ObSteiner - an exact OARSMT algorithm

that all benchmarks are solved to optimal in a reasonableuatmaf time. For

small benchmarks (RC01-RCO05, IND1-IND5), it takes onlycsets to obtain the
optimal solution. For the benchmarks with less than or etqu&00 obstacles, the
required time is in minutes. We can also observe that thértotdime is closely re-

lated to the number of obstacles, and more obstacles useatiyto more iterations
of the algorithm. In the table, we also list the average FSilicdon achieved by
the FST pruning procedure and the run time over all iteratiéior all benchmarks,
around 60% of the FSTs can be eliminated and the run time girilv@ng proce-

dure in most cases is less than half of the total time. Thisgeaatly reduce the
search space of the branch-and-cut algorithm, and theré#ads to a significant
improvement in performance. The computational overheadedy the pruning
procedure is small compared to the savings in the concadenalhase. We can
also observe from the table that the incremental constmucsi very effective. On

average, only 23.1% obstacles needs to be considered. ahgreatly reduce the

number of additional virtual terminals and the resultingBS

In order to clearly show the effectiveness of the pruningcpdure and the
incremental approach, we compare the run time of ObSteitidr amd without
these two techniques. Results are listed in T8 Considering the incremental
approach, we can see that, without using this techniquepR&GI11 and RT1-RT5
will not be solvable within the run time limit. Although fohé small benchmarks
with 10 obstacles, the incremental approach may worseruthéme, the speedup
on large benchmarks is tremendous. Considering the prymowedure, although
it is not as effective as the incremental approach, a coreditke speedup can still
be achieved. Without using the technique, RT5 cannot beedaiithin time limit.
For small benchmarks, the benefit of using pruning procedunaited. However,

the technique can be very useful for difficult cases. Thiesalise the parameters

3.6. Experiments 85

in the pruning procedure (e.g. when to stop pruning) arecarding to the large

benchmarks, which may not be necessary for small cases.

To show the efficiency of ObSteiner, we compare our methol e approach
in [48]. The results are tabulated in Tal8e8. We execute the algorithm ir§)
on our platform. Since48] can only handle rectangular obstacles, we change the
benchmarks by dissecting rectilinear obstacles into s¢vectangular obstacles.
For completeness, we also tabulate the results of twentyialal test cases which
are used in48]. These test cases can be divided into two categories. Hte te
cases in the first category are generated by taking the fwsblstacles in the cor-
responding benchmarks. We use “benchmark_number” to d¢hem, in which
“benchmark” is the original benchmark and “number” is thenter of obstacles
taken. The test cases in the second category are generatedify the obsta-
cles randomly. We use “benchmark_rand_number” to denet@ thNVe run each
test case for 96 hours at most. In the table, “-” means thasoh&ion cannot be
achieved within the run time limit. As can be observed fromteible, the run time
required for the OARSMT construction has been improved ayatur algorithm.
Comparing with the approach id§], ObSteiner can solve problems with up to
two thousand obstacles, while the approachdi] fan only deal with cases with
less than one hundred obstacles. For small solvable cagespproach is 31 times

faster than the approach iag] on average.

Table 3.4 compares the performance of some recently published heuris
tics [6, 35, 7, 18] based on the optimal solutions provided by the proposedtexa
algorithm. The results are quoted from the correspondipggsa We can see that
all four heuristics works better on small problems, obtagnoptimal solutions in
several cases. The performance gradually decreases withdteasing number of

obstacles.

86 Chapter 3. ObSteiner - an exact OARSMT algorithm

L S T

(@) (b)

Figure 3.27: The OARSMTs of (a) IND1 (b) IND2.

,_l—’—’—

(a) (b)

Figure 3.28: The OARSMTs of (a) IND3 (b) IND4.

Fig. 3.27-3.37 shows the resulting OARSMTs generated by ObSteiner for all

the benchmarks.

3.6. Experiments 87

(a) (b)

Figure 3.29: The OARSMTs of (a) IND5 (b) RCO1.

4 ——

(a) (b)

Figure 3.30: The OARSMTs of (a) RC02 (b) RCO03.

Chapter 3. ObSteiner - an exact OARSMT algorithm

88

Table 3.1: Detailed results of ObSteiner.

OARSMT FST rune Number of
Benchmark) — m : length ttotal (S) reduction (%) Cprune () ttFt’oT (%) iterations oy | o)

RCO1 10 10 25980 0.16 76.1 0.02 12.5 2 3 30.0
RCO02 30 10 41350 0.52 63.8 0.18 34.6 2 3 30.0
RCO3 50 10 54160 0.68 59.6 0.21 30.9 3 6 60.0
RC04 70 10 59070 0.95 72.5 0.37 38.9 2 5 50.0
RCO05 100 10 74070 1.31 63.7 0.51 38.9 2 6 60.0
RCO06 100 | 500 79714 335 60.3 180 53.7 6 89 36.0
RCO7 200 | 500 108740 541 62.6 324 59.9 7 100 20.0
RCO08 200 800 112564 24170 67.1 4549 18.8 7 161 20.1
RCO09 200 | 1000 111005 14174 72.8 5026 35.5 7 192 19.2
RC10 500 100 164150 176 63.7 90 511 5 28 28.0
RC11 1000 | 100 230837 706 66.4 345 48.9 3 18 18.0
RT1 10 500 2146 25 72.0 10 40.0 6 33 6.6
RT2 50 500 45852 31 61.3 23 74.2 5 42 8.4
RT3 100 500 7964 840 71.6 794 94.5 5 61 12.2
RT4 100 | 1000 9693 34521 63.7 7939 23.0 11 197 19.7
RT5 200 | 2000 51313 276621 64.4 26772 9.7 13 388 19.4
IND1 10 32 604 0.11 63.3 0.02 18.2 1 0 0
IND2 10 43 9500 0.25 61.4 0.05 20.0 3 5 11.6
IND3 10 59 600 0.19 68.5 0.04 21.1 2 2 3.4
IND4 25 79 1086 0.87 55.7 0.25 28.7 4 11 13.9
IND5 33 71 1341 1.03 43.9 0.27 26.2 4 14 19.7

Average 645 37.1 23.1

Table 3.2: Run time of ObSteiner with and without the prumngcedure and the incremental approach.

ObSteiner | ObSteiner| ObSteiner .
Benchmarkl /o PN &IN| wioIN | wiopn | OPStener
RCO01 0.38 0.23 0.17 0.16
RCO02 0.21 0.19 0.65 0.52
RCO03 0.18 0.20 0.78 0.68
RC04 0.50 0.32 0.96 0.95
RCO05 0.70 0.52 1.63 1.31
RCO06 - - 876 335

RCO7 - - 1796 541
RCO08 - - 61005 24170
RCO09 - - 40150 14174
RC10 - - 855 176
RC11 - - 21242 706
RT1 - - 81 25
RT2 - - 32 31
RT3 - - 478 840
RT4 - - 120552 34521
RT5 - - - 276621
IND1 29.88 20.78 0.13 0.11
IND2 23.25 18.92 0.27 0.25
IND3 8.78 6.07 0.18 0.19
IND4 133852 1089 0.96 0.87
IND5 43.59 4.24 1.20 1.03
Average 15431 156x 3.2% 1.00«

sjuswadxy '9'g

68

Chapter 3. ObSteiner - an exact OARSMT algorithm

90

Table 3.3: Results of ObSteiner in comparison with the aqgon 48].

Benchmark ObSteiner Huang B8] :_2 Benchmark ObSteiner Huang A8 :_2
Ly t1 Lo to . Ly ty Lo to .
RC1 25980 0.16 | 25980 | 0.58 | 3.63« RC6_40 76946 | 3.20 | 76946 | 264 82.5¢
RC2 41350 0.52 | 41350 | 0.55 | 1.06x RC7_40 105956 | 20 | 105956 | 179 8.95«
RC3 54160 0.68 | 54160 | 0.58 | 0.85« RC8_30 107833| 17 | 107833| 495 | 29.1%
RC4 59070 0.95 | 59070 | 1.10 | 1.16x RC9_30 106139| 5.89 | 106139 | 174 | 29.54
RC5 74070 1.31 | 74070| 2.09 | 1.60« RC10_30 163050| 48 | 163050| 1463 | 30.48«
RC6 79714 335 - - - RT1_40 1872 | 0.16 | 1872 | 1.11 | 6.94x
RC7 108740| 541 - - - RT2_30 44294 | 0.50 | 44294 | 45 90.00«
RC8 112564 | 24170 - - - RT3_30 7580 | 1.02 | 7580 179 | 179.4%
RC9 111005| 14174 - - - RT4_30 7825 | 6.05| 7825 63 10.41x
RC10 164150 176 - - - RT5_30 42879 | 10 | 42879 | 40 4.00x
RC11 230837 | 706 - - - RC6_rand_40| 76840 | 3.03 | 76840 | 538 | 177.56
RT1 2146 25 - - - RC7_rand_40| 105358 | 14 | 105358| 154 | 11.00¢
RT2 45852 31 - - - RC8 rand_30| 107811 | 5.55| 107811| 385 | 69.3%
RT3 7964 840 - - - RC9 rand_30| 105875| 4.44 | 105875| 84 18.9%
RT4 9693 | 34521 - - - RC10_rand_30 162470| 147 | 162470| 733 4.99%
RT5 51313 | 276621 - - - RT1 rand_40| 1817 | 0.14| 1817 | 2.02 | 14.4%
IND1 604 0.11 604 0.46 | 4.18« RT2_rand_30| 44358 | 0.54 | 44358 | 23 42.5%
IND2 9500 0.25 9500 | 3.44 | 13.76x RT3 rand_30| 7595 | 1.04| 7595 33 31.73
IND3 600 0.19 600 1.31 | 6.8% RT4 rand_30| 7681 | 4.23| 7681 64 15.13«
IND4 1086 0.87 1086 | 3.15 | 3.62« RT5 rand_30| 42821 | 5.26 | 42821 | 97 18.44«
IND5 1341 1.03 1341 | 24.73 | 24.01x Average 31.08«

Table 3.4: Comparison of heuristics based on the OARSMTtkeng

Benchmark| OARSMT Wirelength (XX;L) (%)

length () || Liu[6] (A) | Li[35(B) | Awani[18](C) | Liu[7](D) || X=A | X=B | X=C | X=D

RCO1 25980 26040 25980 25980 26740 0.23 | 0.00 | 0.00 | 2.84
RC02 41350 41570 42010 42110 42070 053 | 157 | 180 | 1.71
RCO03 54160 54620 54390 56030 54550 084 | 042 | 3.34 | 0.71
RCO04 59070 59860 59740 59720 59390 1.32 | 1.12 | 1.09 | 0.54
RCO5 74070 74770 74650 75000 75430 094 | 0.78 | 1.24 | 1.80
RCO06 79714 81854 81607 81229 81903 261 | 232 | 187 | 2.67
RCO7 108740 110851 111542 110764 111752 190 | 251 | 1.83 | 2.70
RCO08 112564 115516 115931 116047 118349 256 | 290 | 3.00 | 4.89
RCO09 111005 113254 113460 115593 114928 1.99 | 216 | 3.97 | 341
RC10 164150 166970 167620 168280 167540 1.69 | 207 | 245 | 2.02
RC11 230837 234875 235283 234416 234097 1.72 | 1.89 | 153 | 1.39
RT1 2146 2193 2231 2191 2259 214 | 381 | 2.05 | 5.00
RT2 45852 47488 47297 48156 48684 345 | 3.06 | 478 | 5.82
RT3 7964 8231 8187 8282 8347 3.24 | 272 | 3.84 | 459
RT4 9693 9893 9914 10330 10221 202 | 223 | 6.17 | 5.17
RT5 51313 52509 52473 54598 53745 228 | 221 | 6.02 | 4.53
IND1 604 604 619 604 626 0.00 | 242 | 0.00 | 3.51
IND2 9500 9600 9500 9500 9700 1.04 | 0.00 | 0.00 | 2.06
IND3 600 600 600 600 600 0.00 | 0.00 | 0.00 | 0.00
IND4 1086 1092 1096 1129 1095 055 | 091 | 3.81 | 0.82
IND5 1341 1374 1360 1364 1364 240 | 140 | 169 | 1.69
Average 159 | 1.74 | 240 | 2.76

sjuswadxy '9'g

16

92 Chapter 3. ObSteiner - an exact OARSMT algorithm

ﬁ L
(a) (b)

Figure 3.31: The OARSMTs of (a) RC04 (b) RCO5.

(@) (b)

Figure 3.32: The OARSMTs of (a) RCO06 (b) RCO7.

3.6. Experiments

93

(a) (b)

Figure 3.33: The OARSMTs of (a) RC08 (b) RCO09.

(a) (b)

Figure 3.34: The OARSMTs of (a) RC10 (b) RC11.

94 Chapter 3. ObSteiner - an exact OARSMT algorithm

—h 1T
kL

:

(a) (b)

Figure 3.35: The OARSMTSs of (a) RT1 (b) RT2.

45

(a) (b)

Figure 3.36: The OARSMTs of (a) RT3 (b) RT4.

3.6. Experiments

95

Figure 3.37: The OARSMTs of RT5.

CHAPTER4

ObSteiner with slew constraints

Contents

4.1 Introduction 97

4.2 Problem Formulation. L 100

4.3 Overviewofourapproach. 103

4.4 Internal tree structures in an optimal solution 103

45 Algorithm 126
45.1 EFSTand SCIFST generatian. 127
452 Concatenation, 129
4.5.3 Incremental construction. 131

4.6 EXperiments e 131

4.1 Introduction

In this chapter, we study a variant of the OARSMT problem. lodern VLSI
designs, obstacles usually occupy a fraction of the megat$a Therefore, routing

wires on top of obsatcles is possible. However, since baiffannot be placed on

98 Chapter 4. ObSteiner with slew constraints

(@) (b) (€)

Figure 4.1: The routes of a net with a source and two sinks enpifesence of
obstacles.

top of any obstacle, one should be aware of the signal injemsue and avoid
routing long wires on top of obstacles that may lead to cocapdid post-routing
electrical fixups. One way to tackle this problem is to camdtan OARSMT 1.8,
7, 35, 36, 46, 47, 48]. However, avoiding all obstacles may result in an unneagss
resource overhead. A smarter router should be able to asmeé f the obstacles
that cause problems, while allowing wires to cross the ather

Consider a problem of finding a rectilinear Steiner tree tonezt a net with a
source and two sinks in the presence of two obstacles, asnsindvig. 4.1 One
way is to use a RSMT as shown in Fig1(a) which is the shortest possible con-
nection. However, there is a long wire crossing the leftatlstand this may cause
signal integrity problems because no buffer can be placepf the obstacle.
An alternative is to find an OARSMT as shown in Higl(b). Since the tree avoids
routing over any obstacle, it may take more routing res@itban necessary. In
comparison with these two solutions, a better way is to avoie of the obstacles
that cause problem while allow wires to cross the other, asvshn Fig.4.1(c).
This solution achieves better performance with less resooverhead.

This chapter aims at solving the RSMT problem in the presehobstacles. In
order to keep circuit performance, we impose slew congsain the interconnects
that are routed over obstacles. This is because slew is ot ohost important

factors in electrical correctness. Violations to the sl@mstraints may result in a

4.1. Introduction 99

misleading timing analysis, and therefore degrade thepadnce and yield of the
design. Moreover, slew constraints are more prevalent tin@ng constraints in
the buffer insertion step. According td4], for the majority of the nets in a design
(around 90-95%), if the net’s slew constraint is met, thangrconstraint can be
satisfied as well. Therefore, it is more important to resthe routing on top of an
obstacle to meet the slew constraints. This problem iscd#hie OARSMT problem
with slew constraints over obstacles. Since slew conggrane related to both wire
length and delay, this problem is more complicated thanrtwittonal OARSMT
problem that does not consider timing. The solutions toghidlem can guarantee
the interconnect performance and avoid post-routing etattfixups due to slew
violations. Comparing with OARSMT, the solutions to thisplem can reduce
the routing resource overhead. In this thesis, we propos&aat algorithm, called
ObSteiner with slew constraints, that is able to find an ogtisoelution embedded
in the extended Hanan grid. Experimental results show ltlegptoposed algorithm
is able to reduce nearly 5% routing resources on averagenpaoson with the

OARSMT algorithm and is also very much faster.

The rest of this chapter is organized as follows. In Sectidh we give a
formal formulation of the problem. In Sectigh3, we present an overview of our
approach. In SectioA.4, we study the structures of the trees inside obstacles in an
optimal solution. Sectiod.5 describes the algorithm to find the optimal solution
embedded in the extended Hanan grid. Finally, experimeesailts are provided

in Section4.6.

100 Chapter 4. ObSteiner with slew constraints

A C

Sop ® ® mS,

B
S

Figure 4.2: Boundary terminals on a rectilinear Steineg.tre

4.2 Problem Formulation

Given a sourcey, a set of sinks, and a set of rectangular obstadzsa rectilinear
Steiner tred is a tree that connects all nodes/r {5} uS. We define a new type
of nodes inT calledthe boundary terminalsA boundary terminal is a node that
is on the boundary of an obstacle and has at least one of itfeimiclines lying
over the obstacle. An example is shown in Mg whereA, B, andC are three
boundary terminals. Note that a line going along the boundéian obstacle is
considered to be outside the obstakldy splitting at the boundary terminals,
a treeT can be uniquely decomposed into two sets of smaller trebsrdiging
completely inside an obstacle or lying completely outsiti®lastacles. We call
them internal trees and external trees andTulsandT O to denote these two sets,
respectively. For example, the tree in Fg2 can be decomposed into four smaller
trees in which the tree connectidgB andC is completely inside the obstacle and
the rest three trees are completely outside the obstacl@as¥ane that buffers can
be inserted outside an obstacle. Therefore, a buffer camsleeted on atreige TO
but it cannot be inserted on a trge T1 except right at the leaf nodes (boundary
terminals). To ensure signal integrity along the wires edubver obstacles, we

impose slew constraints to the internal tree$ In

'For abutted obstacles, we consider the the boundary betiieenas outside obsta-
cles.

4.2. Problem Formulation 101

The slew rate of a signal refers to the rising or falling tini@®ignal. In this
chapter, the slew rate is defined as the time it takes for afaaneo cross the 10%
point and the 90% point. The slew model proposedidj {s employed to compute
the slew rate. We first briefly introduce this slew model. LUebe an upstream
node,u; be a downstream node in a tree gmdde the path between them. Assume

a bufferb atu; but no buffer onp. The slew value atij is given by

S(U}) =/ Sou(U)? + Su(p)2. (4.1)

Sw(p) is the slew degradation along patlgiven by

Sw(p) =1n9-D(p), (4.2)

whereD(p) is the EImore delay from; to uj. S, out(Ui) is the output slew of buffer
b given by
Sp.out(Ui) = Ry-C(Ui) + Kp, (4.3)

whereC(u;) is the downstream capacitanceugtR;, is the slew resistance bfand

Ky is the intrinsic slew ob. Slew constrained buffer insertion problem is to insert
buffers on a routing tree such that the input slew at eaclebaoffsink is no greater
than a constard. In our current problem, instead of assuming a given treeyilve

construct a slew-aware but length-optimal tree in the presef obstacles.

Given an internal treg € T | in a rectilinear Steiner treg€, we useup to denote
the source of; (i.e. a terminal that is closest ® in T) andU; to denote the
set of sinks ori; (i.e. the remaining terminals). Without loss of generalitythe
computation of the best possible slewtjpive assume that a buffer will be inserted

at up and at each nodeec U;. Note that we are not really inserting buffers there,

102 Chapter 4. ObSteiner with slew constraints

but just assuming the best possible buffer locations tofséelation to the slew
constraint will still be caused. Therefore, the slew 1&te) at each sinki€ U; can

be computed by4.1). We define the slew of an internal trgeo be

Sin(ti) = maxueu; {S(u) }. (4.4)

As a result, the slew of an internal tree is defined as the maxirslew taking
over the slew rates at all the sinks, and accordingttd) (this is related to the tree
capacitanc€(up) (i.e. tree length) and the delay from the source to the dix{ks.

Based on this definition, the slew of a general rectilineair@t tree is defined
as

Sree(T) =max,ti{Sn(t)}. (4.5)

whereT | is the set of internal trees after breakifigt the boundary terminals.

At this stage, we want to focus on the routing problem to redhe required
routing resource as much as possible, while keeping theclagtraints in mind to
avoid complicated post-routing electrical fixups. Thereféhe OARSMT problem
with slew constraints over obstacles is formulated as WiloGiven a sourcey, a
set of sinksS, and a set of rectangular obstac@sconstruct a rectilinear Steiner

treeT that

minimize: len(T), (4.6)

subjectto Syee(T) <a. (4.7)

wherelen(T) is the length ofl anda is the slew limit2.

2|t should be noted that, in our implementation accordingoigedion @.1), we assume
a uniform unit wire resistance and capacitance. Althoudferdint layer assignment can
lead to different unit wire resistances and capacitantésacceptable to assume uniform

4.3. Overview of our approach 103

4.3 Overview of our approach

From the problem formulation, we can see that any optimaltswi to the
OARSMT problem with slew constraints over obstacles canrguely decom-
posed into a set of external tre€® and a set of internal tredsl. Therefore, one
way to construct an optimal solution is to first construceitgernal tree candidates
and internal tree candidates. This fact brings out the itapoe of studying the
structures of the trees iNO andTI. We will show that,in an optimal solution, the
trees inT | with slew constraints will follow some very simple forms. Bpplying
existing lemmas, we can show that the tree® @will also be very simple. There-
fore, we can use a two-phase algorithm to generate an opdwhaion. In the first
phase, we generate a set of candidate tredsl iand a set of candidate trees in
TO. In the second phase, we select and combine a subset of teesed give an

optimal solution.

4.4 Internal tree structures in an optimal solution

We have shown in the previous section that a fezan be uniquely decomposed
into two sets of smaller treeBl and T O either inside an obstacle or outside all
obstacles. For the treesTrO, we only need to concern about minimizing the total
wire length, since buffers can be inserted flexibly and theraonnect performance
can be guaranteed. We will impose slew constraints on tee trd'|. For the trees
in T1, we not only will consider the length of the tree but also Hamarefully the

timing, because the slew constraint is closely related th bwe tree length and

unit resistance and capacitance values by taking the wasstwalues. This can guarantee
the correctness of a solution no matter how layer assignisetibne. Moreover, since
obstacles usually block lower metal layers and the uppeaing layers will have similar
parasitics, this assumption will not lead to a significargrdéation of solution quality.

104 Chapter 4. ObSteiner with slew constraints

delay. This critical requirement makes previous approaameapable of handling
this new problem. Note that our internal trees are diffefearh the Steiner trees
that consider source-to-sink del&84[22], as we only need to consider slew con-
straints for the parts that overlap with obstacles. Theegfibis possible to change
the internal tree structure to move a part of the tree out dbl@stacle to reduce
the slew. In this section, we are interested in the possiletsires of the trees
in T1. We will show that, in an optimal solution, the treesTih will follow some
very simple forms. In the figures of this section, we use alsulicle to denote a
boundary terminal and an empty circle to denote a Steinet pbor simplicity, we
will use the term terminal instead of boundary terminal iis gection.

We first make the following observations about the propgudiean internal tree

ti e Tl in an optimal solution.

1. tj connects a set of boundary terminals on an obstacle andeatiaihnected

terminals have degree one in the tree.

2. One of the connected terminals is the source anhd all the other terminals

are sinks.
3. The slew constraint is satisfied, i.8e¢(ti) < O.

4. tj is length-optimal over all the trees connecting the samefke&trminals

subject to the slew constraint.

The first property is true because the set of trEess obtained by splitting at the
boundary terminals. If there is a terminal of degree mora thrae, we will split
the tree into two smaller trees with at most one tre& in The second and third
properties are obviously true according to the problem tdation. The fourth
property is true becausetifis not length-optimal, we can replagevith a shorter

tree that satisfies the slew constraint, a contradictiorhéofact thattj is in an

4.4. Internal tree structures in an optimal solution 105

e A

CDEFB

a

Figure 4.3: A SCIFST and its corresponding binary tree.

optimal solution.

Since there can be several length-optimal trees that gaftisfslew constraint,
in order to construct a tree with better timing, we furtheyuiee that; should have
the smallest slew rat®ec(ti) over all length-optimal trees connecting the same set
of terminals subject to the slew constraint. That is, amdhtha length-optimal
trees, we always prefer the one with the smallest slew rakes i§ a reasonable
requirement because it provides more flexibilities for tted buffer insertion step.
We call the internal trees satisfying the above properi@s sonstrained internal

full Steiner trees (SCIFSTS).

In the following, we will show that the SCIFSTs will follow ste very simple
structures. The proof begins with the observation thatdpelbgy of any SCIFST
can be represented by a binary tree with the source as thealbsinks as leaf
nodes and all Steiner points as internal nodes. An exammeaan in Fig.4.3
whereA is the source. Without loss of generality, we allow edgesenb 2ength
in the binary tree so that Steiner points with degree mora theee can also be
represented. As we can see, any subtree in the binary tressponds to a subtree
in the SCIFST. Since any subtree in the binary tree is a coatiom of its left sub-
tree and right subtree, we can view a subtree in a SCIFST ashication of two

smaller subtrees in the SCIFST. We will start with the snsabeibtree in a SCIFST,

106 Chapter 4. ObSteiner with slew constraints

A C CE' y S B
T »

E F :

B D 4" c
(@) (b)

Figure 4.4: (a) Shifting (b) Flipping.

and show that these subtrees will just have some very linsitiecttures. We then
consider larger subtrees as combinations of these smatkegsbtand show that all
subtrees in a SCIFST will be very simple, and thus leadingnmpke structures of
the resulting SCIFSTSs. In the following figures, we use antgraguare to denote
the root node of a subtree.

Before the proof, we introduce two operatiosiftingandflipping on a tree,
as shown in Fig4.4. Shifting a line means moving a line between two parallel
lines to a new position. Flipping an edge with two perpenidiclines meeting
at a corner means moving these two lines to flip the cornerdofiposite side
diagonally. Note that these two operations will not charfgeléngth of the tree.
In the following, shifting a line towards the source in a treeans shifting the line
to a position that is closer to the source by counting theadi in the tree (not

geometric distance).

Lemma 4.1. Shifting a line towards the source in a tree t will not incredake slew

rate at any sink of t.

Proof. Consider Fig4.4(a) and assume without loss of generality thas closest
to the source of the tree. Lét be the length oAB andCD, |, be the length of
EF, d be the distance betwednandE, andc(B), ¢(C), ¢(D) be the downstream

capacitance dB, C, D, respectively. Note that the slew rates at the sinks aréeckla

4.4. Internal tree structures in an optimal solution 107

to both the tree length and delay (equatidril)). Since shifting will not change
the length of a tree, we focus on the delay. The delay ffotm B, C andD can be

given as

D(A - B) =drg[(2l1+l2—-d)cy+c(B) +¢(C) +¢(D)]

+0.5d%corg + (11— d)roc(B) +0.5(11 —d)?corg
=dro[(I1+12)Co+C(C) +¢(D)] +11roc(B) +0.512coro, (4.8)
D(A - D) =drg[(2l1+l2-d)cy+c(B) +¢(C) +¢(D)]
+0.5d%corg + (11— d)roc(D) +0.5(11 —d)?coro

+12ro(l1co+¢(C) +¢(D)) +0.5rocol 2

= dro[(I1+12)Co+¢(B) +¢(C)] +I1roc(D) +0.512corg
+loro(l1co+¢(C) +¢(D)) +0.5rgc0l 2, (4.9)
D(A—C) =dro[(2l1+l2-d)cy+c(B) +¢(C) +c(D)]

+0.5d%coro +loro(l1¢o +¢(C) +¢(D)) +0.5roCol 5

+droc(C) +0.5d%corg

= dro[(2l1+12)co+c(B) +¢(C) +¢(D)]

+12ro(11Co+¢(C) +¢(D)) +0.5roCol 2 + droc(C), (4.10)

wherecy andrg are the unit wire capacitance and resistance, respectitsliyve
can see,4.8), (4.9, and @.10 are all strictly increasing function with respect to
d. If we shift EF up (i.e. towards the source),will decrease and thus the delays
from A to B, C andD will all decrease. Therefore, the delays of all downstream
sinks of Awill also decrease. Since the tree length is not changedielag's of the
sinks that are not downstream Afwill be the same. As a result, the slew rates at

all downstream sinks ok will be reduced and the slew rates of all the other sinks

108 Chapter 4. ObSteiner with slew constraints

| ¢

B C

Figure 4.5: An invalid structure in a SCIFST.

that are not downstream #fwill remain unchanged. O

According to Lemmat.1, shifting a line in a tree towards the source will reduce
the slew rates at some sinks while keeping the slew rateseofetimaining sinks
unchanged. Note that the slew of an internal tree is definédeasiaximum slew
taking over the slew rates at all its sinks (equatibd)). Therefore, shifting a line
towards the source may or may not reduce the slew of the trathoW¥ loss of
generality, we further require that all lines (that can biist) have been shifted to
a position that is closest to the source in a SCIFST. Notetkhsiwill not change

the optimality of the resulting solution.

Lemma 4.2. A subtree in a SCIFST will not contain the structure as shomvn i

Fig. 4.5where B is a Steiner point and R is the root of the subtree.

Proof. Since the root node is to be connected to the source (i.eotitennde is
a point in the subtree that is closest to the source of the SOIFby Lemma&4.1,
we can shifBC up (i.e. towards the source) to reduce the slew rates at dozans

sinks, an absurdity. As a result, the structure cannot.exist]

Lemma 4.3. In a SCIFST, a terminal must be connected to a Steiner point or
another terminal by a straight line that is perpendicularth@ boundary on which

the terminal is located.

Proof. Assume the contrary that in a SCIF$Ta terminalA is connected to a

Steiner poinB (or another terminal) through a corr@ras shown in Fig4.6. We

4.4. Internal tree structures in an optimal solution 109

Figure 4.6: The structure when a terminal connected to a&tgoint through a
corner.

AN

A

o—l .
B R

(@) (b)

Figure 4.7: Possible structures of a subtree of two termaimah SCIFST.

can flip AB and move the corner fro@ to C’. Nowt becomes a new treé that
consists of an external treAC’) and an internal treg. Note thatC’ now is also
a boundary terminal and we can insert a buffer there. Acogrth equation4.5),
slew Syree(t’) of t’ is equal toSy(t1) which is smaller than the sleee(t) of t
(assuming that buffers will be inserted at the boundary iteais). This violates
the last property of SCIFST that the slew rate is the minimassfble one. As a

result, the statement is true. O

Lemma 4.4. In a SCIFST, a subtree of two terminals must be one of the &ses

shown in Fig4.7.

Proof. Note that the root node of a subtree in a SCIRSTust be an internal
node inside the blockage to be connected to the source. Bynaeh8, if the two
terminals are both located on a horizontal or a vertical bewoy of the obstacle,
they must have the sanxecoordinate ory-coordinate and the tree structure must

be the one as shown in Fig.7(b). If the two terminals are located on a horizontal

110 Chapter 4. ObSteiner with slew constraints

A A
B D B R
R D
C C
(@) (b)
Figure 4.8: Possible structures of a subtree of three teisiin a SCIFST.
A C
B D
R

Figure 4.9: Invalid structures when Fi.7(a) is combined with a terminal.

and a vertical boundary of the obstacle, according to LemBathey must be

connected by the root node of the subtree as shown iMEi(a).]

Corollary 4.1. In a SCIFST, any subtree must be connecting terminals Idaate

at least two different boundaries of the obstacle.

Proof. Consider a subtree connecting two terminals. By Lendmdait must be
one of the trees as shown in F§.7. Therefore, it connects two terminals located
on two different boundaries of the obstacle. Since any sebdf more than two
terminals must contain at least one subtree of two termittadsstatement is true.

O

Lemma 4.5. In a SCIFST, a subtree of three terminals must be one of tke tig

shown in Fig4.8.

Proof. A subtree of three terminals must be a combination of a seldfeawo

terminals (as shown in Fig..7) with another terminal.

4.4. Internal tree structures in an optimal solution 111

(@) (b)

Figure 4.10: Invalid structures when F#.7(b) is combined with a terminal.

(1) Consider the case when Fig.7(a) is combined with a terminal. By
Lemma4.2 and Lemma4.3, the combined tree must be one of the subtrees as
shown in Fig.4.9or Fig.4.8 For Fig.4.9, we can delet®R, connectAC and flip
AB to the boundary of the obstacle. The SCIFSBecomes another trééthat
consists of one smaller internaland two external trees connectiAG andAB re-
spectively. First of all, the length of will not be longer than the original SCIFST.
Besides, the slew df is smaller than the slew d@f an absurdity. Therefore, the
only possible structures are shown in Hg8. Note that in Fig4.8a), the root
node can be anywhere &€ except atA andC, and in Fig.4.8(b) the root can be
anywhere orRC except atC.

(2) Consider the case when Fig.7(b) is combined with a terminal. By
Lemma4.2and Lemma.3, the combined tree must be one of the trees as shown
in Fig. 4.10 We first consider Figd.10a). If ARis longer tharRD, we can remove
ARand connecAC to obtain a shorter tree with smaller slew, an absurdityARf
is not longer tharRD, we can remov&D and connecAC. The original SCIFST
t becomes a new tre that consists of two smaller internal tregst, that are
connected by an external tré€. The total wire length of the new tree will remain
unchanged. Int’, for the internal tree; connecting sinkA, we can easily verify

that the slew rates at all sinks will be reduced. For the iv#ketreet, connecting

112 Chapter 4. ObSteiner with slew constraints

C andB, C will become the source d@$. SinceARis not longer tharkRD, CD will
not be longer thaRD implying that the delay fron€ to B will be smaller than the
delay fromRto B int. Therefore, the slew rate at siBkwill also be reduced. As a
result,Sree(t’) = max{Sn(t1), Sn(t2) } will be smaller thar§ee(t) and Fig.4.1Qa)
is not a valid subtree in a SCIFST. Consider Ed.Qb). R cannot be connected to
the source through a line going up, or otherwise we can Bidfup (i.e. towards
to source) to reduce the slew rates at downstream sRkannot be connected to
the source through a line going down either, or otherwise areshiftRD down
to reduce the slew rates at downstream sinks. Therefore4HRigb) is also not
a valid subtree in a SCIFST. Note that in Fg1QDb), if the root node is right at
D, we can consider the tree as a combination of &ig@a) with another terminal
instead and all such redundant cases will not be discusgsbé proofs.

As a result, a subtree of three terminals can only be one dféles as shown

in Fig. 4.8]

Corollary 4.2. In a SCIFST, a subtree of three terminals must be connedineg t

terminals on three different boundaries of the obstacle.

Lemma 4.6. In a SCIFST, a subtree of four terminals must be one of the tse

shown in Fig4.11

Proof. A subtree of four terminals can be a combination of two su#stref two
terminals or a combination of a subtree of three terminalk amother terminal.

(1) Considering a subtree of four terminals as a combinatidwo subtrees of
two terminals, by Lemmd.2 and Lemma4.4, the combined tree must be one of
the trees as shown in Fig.12or Fig.4.11(a)-(c). Consider Figd.1a). R cannot
be connected to the source through a line going down, orwikemwe can shift

RF down (i.e. towards to source) to reduce the slew, an abgur&imilarly, R

4.4. Internal tree structures in an optimal solution 113

De ng gf
[—i ; ﬂ
(a) (b) (c)
f _LT!
F
Be® O
E
r
(d) (€)

Figure 4.11: Possible structures of a subtree of four teataim a SCIFST.

y c A
R R
E F E
E_oC
B D B D

(@) (b) (€)

A

i

0=

S e—0—

Figure 4.12: Invalid structures when two subtrees of twmteals are combined.

cannot be connected to the source through a line going ugtdiflee flip RE).
Therefore, Fig4.12a) is invalid. For similar reason, in Fig.12b), R cannot be
connected to the source through a line going up or down, amlFig.4.12Db) is
invalid. In Fig.4.12c), R cannot be connected to the source through a line going
up, down, or left (if we flipRF), and thus Fig4.12c) is invalid. As a result, if a
subtree of four terminals is a combination of two subtredsvofterminals, it must

be in the form as shown in Fig.11(a)-(c). Note that in Fig4.11(a), the root node
can be anywhere o&F except right at poinE andF, or otherwise we can delete

EF and connecBC to reduce the slew. For similar reason, in Fdl1(a)-(b), the

114 Chapter 4. ObSteiner with slew constraints

y y
c R c R
F F } ' JD)]
B D B
(a) (b)

Figure 4.13: The subtree structures when Biga) is combined with a terminal.

A A
E E
C R C R
F F D

B D B

(a) (b)

Figure 4.14: Invalid subtree structures when Bigdb) is combined with a termi-
nal.

root can be anywhere daF except the points that have the saxaeoordinate as

EorF.

(2) Consider a subtree of four terminals as a combinationseftdree of three

terminals with another terminal.

Firstly, we consider the subtree of three terminals as shawiig. 4.8@). R
cannot be connected to the source through a line going letitheerwise we can
shift RD left to reduce the slew. Therefore, by Lem#& and Lemma4.3, the
combined tree must be in the form as shown in Bid3 Fig.4.13a) is invalid and
the reason is the same as why FdlL(@) is invalid. Fig4.13b) is invalid because
R cannot be connected to the source through a line going upvan.ddherefore,

Fig. 4.8(@) cannot be combined to form a subtree of four terminalsSICHST.

Secondly, we consider the subtree of three terminals asrsholtig. 4.8(b). R

4.4. Internal tree structures in an optimal solution 115

cannot be connected to the source through a line going leftlés to Fig. 4.8a))
or up (or we can shifRE up), and therefore, by Lemn2 and Lemma4.3 the
combined tree must be as shown in Fgl4or Fig.4.11(d)-(f). For the same rea-
sons as Figd.13a) and Fig4.13b), Fig.4.14a) and Fig4.14(b) are both invalid.
As a result, if a subtree of four terminals is a combinatioracfubtree of three
terminals with another terminal, it must be in the form asmshn Fig.4.11(d)-(f).
Note that in Fig4.11(d), the root node can be anywherelo@ except aC andF.
In Fig. 4.11(e)-(f), the root can only be &, or otherwise we can fliRF and shift

EF up (i.e. towards the source).]

Corollary 4.3. In a SCIFST, a subtree of four terminals must be connecting fo

terminals on at least three different boundaries of the atist

Corollary 4.4. In a SCIFST, a subtree of more than two terminals must be con-

necting terminals located on at least three different baures of the obstacle.

Proof. By Corollary 4.2 and Corollary4.3, a subtree of three or four terminals
must be connecting terminals located on at least threerdiffdooundaries of the
obstacle. Moreover, a subtree of five terminals must be aimggfive terminals
located on at least three different boundaries, since itt rooistain at least one
subtree of three or four terminals. We assume that up to aesibtn terminals,
the statement is still true. Since a subtreaefl terminals must contain at least
one subtree of more than two terminals, its terminals musitéx on at least three
different boundaries of the obstacle. Therefore, by indacthe statement is true.

O

Lemma 4.7. In a SCIFST, a subtree of five terminals must be one of the &ges

shown in Fig4.15

116 Chapter 4. ObSteiner with slew constraints

4 A A D
G R G R H P G
B F H EB F B F H R
C D C D C E
) (b))

(a (c
A D A D
Sl Al
R
C E C
(d) (e) ()

Figure 4.15: Possible structures of a subtree of five teri:iina SCIFST.

Proof. A subtree of five terminals can be a combination of a subtreeo@termi-
nals with a subtree of three terminals or a combination ofdreae of four terminals

with another terminal.

(1) Consider a subtree of five terminals as a combination ob#rse of three
terminals as shown in Figt.8 with a subtree of two terminals. Fig.8@) cannot
be combined with any subtree of two terminals as shown in&ig.The reason is
the same as why Fid.7(b) cannot be combined with any subtree of two terminals.
Fig. 4.8(b) cannot be combined with Fig.7(b) to form a subtree of five terminals,
and the reason is the same as why Big(a) cannot be combined with Fig.7(b).
Therefore, the only possible case is when Big(b) is combined with Fig4.7(a).
By Lemma4.2, the combined tree must be in the form as shown in &ig7 or
Fig.4.15a)-(b). Fig.4.17a) is invalid becausB cannot be connected to the source
through a line going up, down, or right (if we fliRG). Similarly, Fig.4.174b) is

invalid as well. As a result, if a subtree of five terminals isambination of a

4.4. Internal tree structures in an optimal solution 117

Figure 4.16: Possible structures of a subtree of more thant&uminals in a
SCIFST.

subtree of three terminals with a subtree of two termin&ks,combined tree must
be in the form as shown in Fi¢.15a)-(b). Note that in Fig4.15a)-(b), the root
node can be anywhere @H except the points that have the saxaeordinate as

G or H, or otherwise we can delete eith@R or RH and connecED to reduce the

118 Chapter 4. ObSteiner with slew constraints

(b)

Figure 4.17: Invalid subtree structures when Fg8b) is combined with
Fig. 4.7(a).

(@) (b)

Figure 4.18: Invalid subtree structures when Bid.1(a) is combined with a termi-
nal.

Ty

C B
Figure 4.19: A subtree structure that can be obtained fragmd=L8Db).

slew.

(2) Consider a subtree of five terminals as a combination afbérse of four
terminals as shown in Fig..11with another terminal.

Firstly, we consider Figd.11(a). SinceR cannot be connected to the source by
a line going down, by Lemmé.2, the combined tree must be in the form as shown
in Fig. 4.18 Fig.4.18@a) is invalid becaus& cannot be connected to the source
through a line going left or right. For Fig.18b), we can delet®G HG, FG, and

connectED, BCto change the subtree to F§19with equal length and reduce the

4.4. Internal tree structures in an optimal solution 119

A
Be I
F

ty

{10
=

®(

Se—o00
ol

Figure 4.20: The subtree structure when Bid.1(d) is combined with a terminal.

4 D E A D E
G R
Be—i—— pe—q G o |
C C
(a) (b)

Figure 4.21: Invalid subtree structures when Hdl1(e) or Fig.4.11(f) is com-
bined with a terminal.

slew of the tree, an absurdity. Therefore, Fdl1(a) cannot be combined to form
a subtree of five terminals, and neither do HdL1(b) and Fig.4.11(c) for similar
reasons.

Secondly, we consider when Fig.11(d) is combined with a terminal.R
cannot be connected to the source through a line going dowhtreerefore, by
Lemma4.2, the combined tree must be in the form as shown in &80 How-
ever, the combined tree is invalid becaeannot be connected to the source
through a line going left or right.

Thirdly, we consider when Figt.11(e) is combined with a terminal. This case
is similar to the case when Fig4.8(b) is combined with a terminal. Siné&cannot
be connected to the source through a line going down, by Lefghthe combined
tree must be in the form as shown in F§21(a) or Fig.4.15c)-(d). However,
Fig.4.21(a) is invalid for we can deletd Rand connedDE (similar to Fig4.14a)).
Therefore, the only possible cases are Big5c)-(d). Note that in Fig4.15c) the

120 Chapter 4. ObSteiner with slew constraints

root node can only be &, and in Fig.4.15d) the root node can be anywhere on
HE expect aH andE.

Finally, we consider when Figt.11(f) is combined with a terminal. This case
is similar to the case we discussed above. The combined wetla in the form as
shown in Fig.4.21(b) or Fig.4.15e)-(f). However, Fig4.21(b) is invalid. There-
fore, the only possible cases are HglHe)-(f). Note that in Fig4.15e) the root
node can only be @& and in Fig.4.15f), the root node can be anywhere Bift

expect aH andE. O

Lemma 4.8. In a SCIFST, a subtree of more than five terminals must be otie of

trees as shown in Figt.22

Proof. Without loss of generality, we can generalize F¢(b), Fig.4.11(e), and
Fig. 4.15c) as Fig.4.2%a) that consists of a single line and alternating incident
segments connecting to the terminals. We call this line am&tehain. We can
also generalize Figd.11(f) and Fig.4.15e) as Fig.4.224e). The only difference
between Fig4.22a) and (b) is that in the Steiner chain in Hg22b), the first two
Steiner points are connected by a corner.

To prove this lemma, we first prove that some of the subtreesatée grown
to larger subtrees. Consider F§11(d). We have already shown that Fig11(d)
cannot be combined with a terminal. By Corollatyd, Fig. 4.11(d) can only be
combined with a subtree of two terminals as shown ind=i§a), or otherwise there
will be intersection. The combined tree must be in the formstasvn in Fig.4.23
which is invalid forR cannot be connected to the source by a line going left, right,
or up. Therefore, Figd.11(d) cannot be combined to form a larger subtree. For
similar reason, Fig4.15a), Fig.4.15b), Fig.4.15d) and Fig.4.15f) cannot be

grown to a larger subtree either.

4.4. Internal tree structures in an optimal solution 121

Figure 4.22: Possible structures of a subtree of more thant&minals in a
SCIFST.

Secondly, we eliminate some impossible combinations. dengig.4.11(c).
If Fig. 4.11(c) is combined with a subtree of two terminals, by Lem#n? the
combined tree must be in the form as shown in Big4a) or (b). Fig.4.24a)

is invalid for R cannot be connected to the source through a line going left or

122 Chapter 4. ObSteiner with slew constraints

A E
B® rg e
D

Figure 4.23: The subtree structure when Bid.1(d) is combined with Figt.7(a).

F
J
EFe O e[J
R E R
D HIGAD H[G/4
C B
(b)

(€) (d)

Figure 4.24: The subtree structures when Hig.1(c) is combined with another
subtree.

right. Fig.4.24(b) is invalid forR cannot be connected to the source through a line
going left, right, or up. For similar reason Fig.11(c) cannot be combined with
Fig. 4.8(a) either. If two subtrees as shown in Fgll(c) are combined together,
the combined tree will be in the form as shown in Fg24(c). The combined
tree is invalid forR cannot be connected to the source through a line going left
or right. For similar reason, Figt.11(c) cannot be combined with Fig.11(a)

or Fig. 4.11(b). Consider a combination of Fig.11(c) with Fig. 4.22a). The
combined tree must be as shown in Big4(d). However, this subtree is invalid for

R cannot be connected to the source through a line going upvan.déor the same

4.4. Internal tree structures in an optimal solution 123

reason, Fig4.11(c) cannot be combined with Fig.22e). Therefore, Figd.11(c)
cannot be combined with all the subtrees we have enumerafedeb Fig.4.11(a)
and Fig.4.11(b) can be discussed in the same way and they cannot be cambine

with all the subtrees we have enumerated either.

Thirdly, we will show that the possible combinations wilakkto subtrees as
shown in Fig.4.22 among which only Fig4.22a) and Fig.4.22e) can be com-
bined to form larger subtrees. Note that the remaining way®tm a subtree
of more than five terminals are: (1) to combine Mg22a) or Fig.4.22e) with
Fig.4.7(a), Fig.4.7(b), Fig.4.8(a), or a terminal, (2) to combined two Fig.22a),
two Fig.4.22b), or Fig.4.22a) with Fig.4.2e).

The case when Fig.22a) is combined with Figd.7(a), Fig.4.7(b), Fig.4.8a),
or a terminal is similar to the case when F§8(b) is combined with one of
these subtrees. For the same reasons as discussed in [&6amal Lemmad.7,
the combined tree must be in the form as shown in Big2Xa)-(d). Note that
if Fig. 4.22a) is combined with a terminal, one of the resulting sulstregn be
generalized as Figt.22a) itself. Moreover, for the same reason as Big.1(d),
Fig. 4.22b)-(d) cannot be combined to form a larger subtree. The wvdsn
Fig. 4.22e) is combined with Fig4.7(a), Fig.4.7(b), or Fig.4.8(a) can be dis-
cussed similarly. The combined tree must be in the form awslio Fig. 4.22e)-

(9), among which only Figd.22e) can be combined to form a larger subtree.

Consider when two subtrees as shown in Big2a) are combined together.
The combined tree must be in the form as shown in Eig5a) or Fig.4.22h).
Fig. 4.25a) is invalid forR cannot be connected to the source through a line go-
ing up or down. Therefore, the only possible subtree is Big2h). We then
prove that Fig4.22h) cannot be combined to form a larger subtree. By Corol-

lary 4.1, it can only be combined with a terminal. SinReannot be connected to

124 Chapter 4. ObSteiner with slew constraints

Figure 4.25: The case when two subtrees as shown idE2g(a) are combined
together.

(f)

Figure 4.26: Possible structures of SCIFSTSs.

the source through a line going down, the combined tree ma&t the form as
shown in Fig.4.25b). However, this tree is invalid fdR cannot be connected to
the source. The case when two FHg22e) are combined together and the case
when Fig.4.22a) are combined with Figl.22e) can be discussed similarly. The
resulting trees will be in the form as shown in Fg22i)-(j). Moreover, both trees
cannot be grown to larger subtrees.

Finally, since all possible combinations of subtrees, tiaatbe grown to larger
subtree, can all be generalized as Big2a) or Fig.4.22e), we can conclude that

a subtree of more than five terminals must be in the form asishowig.4.22 [

4.4. Internal tree structures in an optimal solution 125

Theorem 4.1. A SCIFST must have one of the structures as shown iiR2.

Proof. Firstly, consider a SCIFST connecting the source with onk enly. By
Lemma4.3, the SCIFST must be in the form as shown in Fg2§a). For the
rest SCIFSTSs, they can be constructed by connecting a suddrdeduced by the
above lemmas to the source. By Lem#é 3 to form a SCIFST, a subtree should be
connected to the source directly by a straight line. ComaadeCIFST connecting
the source with two sinks. By Lemn#a4, the final SCIFST (connecting the root
of a 2-terminal subtree to the source) must be in the form assin Fig.4.26D).
Consider a SCIFST connecting the source with three sinkBiglf4.8a) is con-
nected to the source and the root node iB athe resulting SCIFST will be in the
form as shown in Figd.26c). If the root node is not dd, since the root cannot be
connected to the source through a line going left, the selatae only be connected
to the source on the right boundary. The resulting SCIFSTheageneralized as
the form shown in Fig4.26e). Similarly, if Fig.4.8(b) is connected to the source,
the resulting SCIFSTs can either be generalized asAF2§(d) or Fig.4.26e). Fi-
nally, we can follow the same way to analyze the rest casefrahthat a complete
SCIFST must be in one of the structures as shown idE2¢ For example, sub-
trees Fig4.11(a)(d)(e), Fig4.15b)(c)(d), and Fig4.22a)(b)(c)(h) will all lead to
the SCIFST as shown #h.26e). O

Theorem 1 shows that the SCIFSTSs (internal trees in an opsiahation) will
follow some simple structures. This result leads to a twaseralgorithm presented

in the next section.

126 Chapter 4. ObSteiner with slew constraints

4.5 Algorithm

We have shown in the previous section that, in an optimatsoiwf the OARSMT
problem with slew constraints over obstacles, the tredd wmill follow some very
simple structures. Now, we consider the external tred<Jim an optimal solution.
We can further divide the trees 1hO into smaller trees by splitting at sinks and
the source with degree more than one. Then, atgre& O will have the following

properties.

1. t, connects a set of nodesVhand boundary terminals, and all the connected

nodes have degree one in the tree.

2. One of the connected nodes in the tree is a source and allltbenodes are

sinks.

3. tp is length-optimal over all the trees connecting the samefsabdes.

By applying the lemmas proposed i, it can be shown that the trees with the
above properties will also follow some simple structurestaswvn in Fig4.27. In
this chapter, we call these trees external full Steinest(B&STs). Therefore, one
way to construct an optimal OARSMT with slew constraintsrovestacles is to
first construct a set of candidate SCIFSTsTihaccording to Fig4.26and a set
of candidate EFSTs i O according to Fig4.27, and then select and combine a
subset of them.

However, this process is still difficult to realize, becatise locations of the
boundary terminals are not fixed. Therefore, in this chapteraim at providing
an optimal solution that is embedded in the extended Hanidn @onsidering a
set of node¥ = Su {5y} and a set of rectangular obstact®sthe extended Hanan
grid is a grid graph formed by constructing vertical and bonital lines through

each node iV and each corner of the obstacles. By restricting the saiutdhe

4.5. Algorithm 127

Figure 4.27: Possible structures of EFSTSs.

extended Hanan grid, the boundary terminals are the gedsattion points on the
boundaries of the obstacles. We use aBs&t denote these boundary terminals. In
this way, we can realize a two-phase algorithm to constmictimal solution as

follows.

45.1 EFST and SCIFST generation

The first phase is to generate a set of EFSTs and a set of SCIFSTs

We first consider the construction of EFSTs. Note that EF3& vary similar
to the full Steiner trees (FSTs) defined in the RSMT probléd). [However, there
are two critical differences. Firstly, EFSTs are trees tt@inect the nodes in
V uB, while FSTs are trees that connect the node¥ ionly. Secondly, EFSTs
are directed, while FSTs are not. The reason we need direithat, in the
computation of slew rate, we need to calculate the delay oé@ dand we must

have the source and sink information. A feasible interres {lover obstacle) with

128 Chapter 4. ObSteiner with slew constraints

a specific terminal as the source may fail to meet the slewt@nsif the source
is changed to another terminal. Therefore, in order to enaueasible solution,
we need to keep the source/sink information and the signaldlcections in both
EFSTs and SCIFSTs. In general, we can modify the algorithserdzed in p1]

to generate EFSTs. However, we need to apply different sorgeests to prune

useless trees taking into consideration the directiorrimédion.

We then consider the construction of SCIFSTs. Since eackSICls com-
pletely within an obstacle, for each obstaclednwe will generate a set of SCIF-
STs that connect its boundary terminals. It can be obsehadite structures of
SCIFSTs are very similar to the structures of EFSTs. The diffgrent structure
is Fig. 4.24f). Therefore, we can make use the algorithm that geneE#&s's to
construct the SCIFSTs as shown in g2Ga)-(e). For each of the generated trees,
we will check if the slew constraint can be met. All SCIFSTattbatisfy the slew
constraint will be save as candidatedin We can also see that a tree with structure
Fig. 4.26f) can actually be obtained from another tree with strueteig. 4.26d)
or Fig. 4.26e), by moving a part of the Steiner chain towards the souNete
that this operation will increase the tree length but mayucedthe slew of the
tree. Therefore, for each of the generated SCIFSTs witlctstrel Fig.4.26d) or
Fig. 4.26e), if the slew constraint cannot be satisfied and the tretsire can be
changed to that in Figd.26f), we will try to move the Steiner chain towards the
source to meet the constraint. Note that in this operati@pmy need to consider
the Hanan grid lines, and thus it can be done efficiently. Iinall the internal

trees that fail to satisfy the slew constraint will be dislead.

It should be noted that during the construction of externdliaternal trees, the
algorithm will try all combinations of terminals to genezatll possible candidates.

However, we adopt some very efficient pruning techniqueditoirgate useless

4.5. Algorithm 129

trees. Therefore, the run time in this stage is not signifiaad the resulting set of

candidate trees are kept in a reasonable size.

Moreover, the proposed algorithm can be easily extendedaitalle routing
obstacles that blocks all routing resources. For eachnmgutbstacle we can simply

eliminate all associated SCIFSTSs forcing the algorithmvimichthe obstacle.

4.5.2 Concatenation

Let E = {ep,€1,€,...} be the set of directed trees we generated in the first phase.
The second phase of the algorithm is to select a subsEttofform an optimal
solution to the problem. That is, to find a set of directedgne@&h minimum total
length such that there is a path from the sousgé¢o every sinkse S. We use

a binary variable to indicate whether a treq € E is selected as a part of the
solution and a binary variablg to indicate whether a boundary termirak B is
selected as a part of the solution. V¢tV uB be a set of nodes. We defide(W)

to be the set of trees i that have their source W and at least one sink W.
Similarly, 8" (W) is defined as the set of treesknthat have their source W and

at least one sink ilV. Then, the EFST an SCIFST concatenation problem can be

formulated as an integer linear program (ILP) as follows.

Minimize:

> len(e) xx. (4.11)
i:g€eE
Subject to:

>, X=1VseS (4.12)
i:ged=({s})

130 Chapter 4. ObSteiner with slew constraints

Y x> VbjeBVeced ({bj}), (4.13)

i:eed ({bj})

yi>X VbjeB Ve cEst bjeg (4.14)
>, Xzl

i:ged~ (W)

YWcVUBASeWAWNYV & (4.15)
> xi(lenX|=1)<XnV]+ Y yi-1

i:gNX+g i:bjeX

VXcVUBAXNV £gA|X]>2, (4.16)
>, x(lenX][-1)< 3 yi-maXyex (Vi)

i:gNX+g i:bjexX

VXcBA|X|>2. (4.17)

Constraints 4.12 require that the flow in of a sink must be one. Con-
straints .13 ensure that there is no boundary terminal that only has flatbot
no flow in. Constraints4.14) ensure that if a tree is selected, all the boundary ter-
minals it connects are selected as well. Constrathty are the cutset constraints
that guarantee, for any partitidl andW with the sourcesy in W and at least one
sink inW, there must be at least one selected tree crossing themhaitingit di-
rection. Constraints4(16 and @.17) are the subtour elimination constraints that

eliminate cycles.

This ILP can be solved by a branch-and-bound framework. Véethes algo-
rithm proposed in49], which is the FST concatenation algorithm for the RSMT

problem, and extend it to solve the ILP formulated in thisptka

4.6. Experiments 131

4.5.3 Incremental construction

Given a source, a set of sinks, and a set of rectangular déstatwe include
all the obstacles in the algorithm, an optimal solution carobtained by running
the two-phase algorithm once. However, this is usuallyficieht for two reasons.
Firstly, among all the obstacles, only a fraction of them axkerlap with the routing
tree. Secondly, among all the obstacles that overlap wéltrée, only a fraction
of them may cause slew problems. Therefore, we adopt artiviei@proach. In
the first iteration, we construct a solution without consilaig any of the obstacles.
Then, we check if there is a part of the tree that is over anagbestnd the slew
constraint is violated. If the constraint is violated, &k&tcorresponding obstacles
will be included in the algorithm and a new iteration will lz@ihched. This process

iterates until no slew violation is found.

4.6 Experiments

We implemented ObSteiner with slew constraints based oG#usteiner-3.11]
and all the tests are conducted on a Sun Blade 2500 workstatib two 1.6GHz
processors and 2GB memory. Note that although a dual pracesshine is used,
our algorithm runs sequentially on only one processor. Weleyna set of 21
test cases, RC1-RC11, RT1-RT5, IND1-IND5, which are comgnased for the
OARSMT problem. The technology parameters are set acaptdirthose used
in [44]. For the slew constraintt, we set it according to the size of the rout-
ing region of each benchmark. We let= 0.3ns for the larger benchmarks (i.e
IND2, RC01-RC11). anax = 0.2nsfor the remaining smaller benchmarks. For
comparison, we run the executable of an optimal algorithniife OARSMT {6

problem on our platform. We chooséq for comparison because it provides op-

132 Chapter 4. ObSteiner with slew constraints

Table 4.1: Results of our approach in comparison with theagyh in f6].

Bench ObSteiner [46] L—L t,
mark| ™ | K E[T L [u®)] L [@) T %) § &)
IND1| 10 | 32 61 604 1 604 1 0 1
IND2 | 10 | 43 31 9100 | 1 9500 1 4.21 1
IND3 | 10 | 50 37 587 1 600 1 2.17 1
IND4| 25 | 79 | 315 | 1078 1 1086 1 0.74 1
IND5| 33 | 71 | 231 | 1295 1 1341 1 3.43 1
RC1| 10 | 10 43 | 25290| 1 | 25980 1 2.66 1
RC2| 30 | 10 | 357 | 41060, 1 | 41350 1 0.70 1
RC3| 50 | 10 | 492 | 52540, 1 | 54160 1 2.99 1
RC4| 70 | 10 | 800 | 56570, 2 | 59070 1 4.23 0.5
RC5|100| 10 | 991 | 72090, 1 | 74070 1 2.67 1

RC6 | 100 | 500 | 1686| 76680, 3 | 79714| 369 3.81 123
RC7 | 200 | 500 | 5573|105290 109 108740 629 3.17 5.8
RC8 | 200 | 800 | 4716|107849 66 |112564 25027| 4.19 | 379.2
RC9 | 200 [1000| 3632|105911 87 |111005 18849| 4.59 | 216.7
RC10| 500 | 100 | 7892|16192Q 107 |16415Q0 149 1.36 1.4
RC11|1000| 100 |15309 229971 2011230837 778 0.38 0.4

RT1 | 10 | 500| 33 | 1817 | 1 | 2146 22 15.33 22
RT2 | 50 | 500 | 649 | 44217 2 | 45852| 35 3.57 17.5
RT3 | 100| 500 | 1230 7579 | 1 | 7964 | 774 4.83 774
RT4 | 1001000 1582| 7634 | 3 | 9693 | 42418| 21.24 |14139.3
RT5 | 200 {2000 3686 | 42706| 105| 51313|289363 16.77 | 2755.8

| Avg | | | | | | | | 4.91 | 878.3]

timal OARSMTs that give the lower bounds of the wire lengths ean achieve
by avoiding all obstacles. In this way, we can clearly seebireefits of allowing
some wires to be routed over obstacles. Moreover, since dgtrithms aim at

achieving the optimal solutions, it is reasonable to cormplae run time of them.

The results of the experiments are illustrated in Tablle Column ‘M’ pro-
vides the number of sinks and the source in the benchmarkin@otk” provides
the number of obstacles in the benchmark. Colufii’‘provides the number of
candidate trees generated in the first phase. Coluintisahd “L,” provide the

wire lengths of the solution. Columng;™ and “t,” provide the run times of the

4.6. Experiments 133

two algorithms in seconds, respectively.

We can observe from the table that by using our algorithm, réseilting
OARSMTs with slew constraints over obstacles can save n&& routing re-
sources on average in comparison with the optimal OARSMegead by 46].
In particular, our algorithm is more efficient for the bendrks that contain a
smaller number of terminals but a larger number of obstadies those bench-
marks, our solutions can save more than 10% of the routirmuress. Since the
majority of the nets in a design will not have a large numbeeahinals, the solu-
tions provided by us will thus be very applicable in practi¢ée also observe that
our algorithm runs much faster in most of the cases. On aeemgy algorithm
can achieve over 800 times speedup. When there are only aldstaabes in the
routing region, the running time of the two algorithms ammitar. However, as
the number of obstacles increases, our algorithm will beenaoxd more efficient
than 46]. The main reason is that when there are a large number chadbst an
OARSMT algorithm will try to avoid every obstacle even if ibels not cause prob-
lems, while our algorithm will only focus on the problematices which may be
a small fraction. It should also be mentioned that the sepbrade (concatenation
phase) of our algorithm dominates the total run time. Onayerover 90% of the

run time is spent in the second phase.

CHAPTERD

Conclusion

In this thesis, we study the RSMT problem in the presence stiaaies. The RSMT
problem has been of both theoretical and practical inteffiestnearly half a cen-
tury. Substantial efforts have been made to develop efti@igorithms, prove
performance bound of approximations, and solve the prolgeactly. Being a
premier application of the RSMT problem, the increasing dedion the design
automation of VLSI has greatly promoted the research deveémt of the prob-
lem.

In modern VLSI designs, there can be obstacles such as maltsplP blocks,
and pre-routed nets. How to adapt to these obstacles is lieg@mew challenge
of the RSMT problem. Previous research works on this prolblane been focused
heuristic methods. The state-of-the-art exact algoritiam @nly handle less than
one hundred rectangular obstacles. However, the hard It peu chip can easily
be thousands in the recent future. In order to deal with theserequirements, we
present efficient exact algorithms for the RSMT problem mphesence of obsta-
cles. For the obstacles that block all routing layers, aceARSMT algorithm is
developed. For the obstacles that block a fraction of thenguayers, we propose
the OARSMT with slew constraints over obstacles and soleptimally. A combi-
nation of these researches provides a powerful tool forisglthe RSMT problem
in the presence of obstacles. With our optimal methods, wesaaily compare the

performance of different approaches and see how far a tiewswution is away

136 Chapter 5. Conclusion

from the optimum. The works presented in this dissertatiga gey insights into
this difficult problem.

As the process technology advances, the number of nets isigndean easily
be tens of millions and is still growing. Highly efficient RSMalgorithms are still
in great demand. Besides minimizing the wire length, fureésearch on RSMT
should also be adapted to the new requirements of VLSI desigeh as timing

constraints, signal integrity, and the manufacturabifgues.

Bibliography

[1] GeoSteiner - Software for ~ Computing Steiner Trees.

http://www.diku.dk/geosteiner/.

[2] A. Kahng and G. Robins. On Performance Bounds for Two iReear
Steiner Tree Heuristics in Arbitrary DimensiolEEE Trans. on Compouter-

Aided Design11:1462-1465, 1992.

[3] A. Kahng and G. Robins. A New Class of Iterative SteineedHeuristics
with Good Performance EEE Trans. on Compouter-Aided Desjdri:893—
902, 1994.

[4] C.ChuandY.C.Wong. FLUTE: Fast Lookup Table Based Reetar Steiner
Minimal Tree Algorithm for VLSI Design.IEEE Trans. on Comput.-Aided
Des. Integr. Circuits Syst27:70-83, 2008.

[5] C. D. Yang, D. T. Lee, and C. K. Wong. Rectilinear Path Pealis among
Rectilinear Obstacles RevisitedEEE Transaction on Computer-Aided De-

sign, 24(3):457-472, 1995.

[6] C. H. Liu, S. Y. Kuo, D. T. Lee, C. S. Lin, J. H. Weng, and S.Yan .
Obstacle-Avoiding Rectilinear Steiner Tree ConstructidnSteiner-Point-
Based Algorithm.IEEE Trans. on Comput.-Aided Des. Integr. Circuits Syst.
31:1050-1060, 2012.

[7] C. H. Liu, S. Y. Yuan, S. Y. Kuo, and Y. H. Chou. An(@logn) Path-based
Obstacle-avoiding Algorithm for Rectilinear Steiner Trt@enstruction. In

Proc. Design Automation Conpages 314—-319, 2009.

138 Bibliography

[8] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer Insertiar Noise and
Delay Optimization. IEEE Trans. on Comput.-Aided Des. Integr. Circuits
Syst, 18(11):1633-1645, 1999.

[9] C. W. Lin, S. Y. Chen, C. F. Li, Y. W. Chang, and C. L. Yang. fiEent
Obstacle-avoiding Rectilinear Steiner Tree ConstructiarProc. Int. Symp.

Phys. Des.pages 380-385, 2007.

[10] C. Y. Lee. An Algorithm for Connections and Its Appliaai. IRE Trans. on
Electronic Computempage 346°C365, 1961.

[11] E. J. Cockayne and D. E. Hewgill. Exact Computation cfiisgr Minimal
Trees in the Plandnf. Process. Letf.22:151-156, 1986.

[12] E. J. Cockayne and D. E. Hewgill. Improved ComputatidiiPmne Steiner
Minimal Trees.Algorithmica 7:219-229, 1992.

[13] R. Courant and H. Robbin¥Vhat is Mathematics®xford Univ., New York,
1941.

[14] D. M. Warme, P. Winter, and M. Zachariasen. Exact alfpons for plane
steiner tree problems: A computational study. In D. Z. DWMJSmith, and
J. H. Rubinstein, editor#ddvances in Steiner Tregsages 81-116. Kluwer
Academic Publishers, Boston, 2000.

[15] C. Duin. Preprocessing the steiner problem in grapld. M. Smith D. Z. Du
and J. H. Rubinstein, editor&dvances in Steiner Treepages 81-116.

Kluwer Academic Publishers, Boston, 2000.

[16] F. K. Hwang, D. S. Richards, and P. Wint&he Steiner Tree ProblerNum-

ber 53. Elsevier, Amsterdam, Netherlands, 1992.

Bibliography 139

[17] U. FoBmeier and M. Kaufmann. On Exact Solutions for thectitinear
Steiner Tree Problem Part I: Theorectical Resulsgorithmica 26:68-99,
2000.

[18] G. Ajwani, C. Chu, and W. K. Mak. FOARS: FLUTE Based Olu#ta
Avoiding Rectilinear Steiner Tree Construction. Pmoc. Int. Symp. Phys.

Des, pages 27-34, 2010.

[19] G. Georgakopoulos and C. H. Papadimitriou. The 1-$teimee ProblemJ.
Algorithms 8:122-130, 1987.

[20] L. J. Guibas and J. Stolfi. On Computing All North-eastiNest Neighbor in
thelL, Metric. Inf. Process. Lef.17:219-223, 1983.

[21] H. Chen, C. Qiao, F. Zhou, and C. K. Cheng. Refined SingleR Tree:
A Rectilinear Steiner Tree Generator For Interconnect ietiedh. In Proc.
international workshop on System-level interconnect iotexh, pages 85—

89, 2002.

[22] H. Hou, J. Hu, and S. S. Sapatnekar. Non-Hanan RoutiBEE Trans. on
Comput.-Aided Des. Integr. Circuits Sy4i8(4):436-444, 1999.

[23] H. Zhou. Efficient Steiner Tree Construction Based oar8png Graphs. In
Proc. Int. Symp. Phys. Degage 152°C157, 2003.

[24] H. Zhou, N. Shenoy, and W. Nicholls. Efficient Spanningd Construction
Without Delaunay Triangulationnf. Process. Lett.81:271°C276, 2002.

[25] M. Hanan. On Steiner Minimal Trees with Rectilinear @isce. J. SIAM
Appl. Math, 14:225-265, 1966.

140

Bibliography

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

F. K. Hwang. On Steiner Minimal Trees with Rectilineaistance.SIAM J.

Appl. Math, 30:104-114, 1976.

F. K. Hwang. AnO(nlogn) Algorithm for Rectilinear Minimal Spanning
Trees.J. Assoc. Comput. Macgt26:177-182, 1979.

J. A. Roy and I. L. Markov. Seeing the Forest and the Tr&teiner Wire-
length Optimization in PlacementEEE Trans. on Comput.-Aided Des. In-

tegr. Circuits Syst.26(4):632—-644, 2007.

J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Clgshe Gap: Nearop-
timal Steiner Trees in Polynomial TimdEEE Trans. on Compouter-Aided

Design 13:1351-1365, 1994.

J. L. Ganley and J. P. Cohoon. Optimal Rectilinear SteMinimal Trees in
O(n22.62MTime In Proc. Canad. Conf. on Computational Geomepsge
308°C313, 1994.

J. L. Ganley and J. P. Cohoon. Routing a Multi-terminati€al Net: Steiner
Tree Construction in the Presence of ObstaclesProc. of IEEE ISCAS
pages 113-116, 1994.

G. Vijayan J. M. Ho and C. K. Wong. New Algorithms for thee@ilinear
Steiner Tree ProblemMEEE Trans. on Compouter-Aided Desjgn185-193,
1990.

J. Y. Long, H. Zhou, and S. O. Memik. EBOARST: An Efficidatige-Based
Obstacle-Avoiding Rectilinear Steiner Tree Constructidgorithm. IEEE
Trans. on Comput.-Aided Des. Integr. Circuits Sy&1:2169-2182, 2008.

Bibliography 141

[34] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins. Rigar Steiner
Trees with Minimum Elmore Delay. IRroc. Design Automation Conpages

381-386, 1994.

[35] L. Liand Evangeline F. Y. Young. Obstacle-avoiding Rl@zear Steiner Tree

Construction. IrProc. Int. Conf. Comput.-Aided Depages 523-528, 2008.

[36] L. Li, Z. Qian, and Evangeline F. Y. Young. GeneratiorQytimal Obstacle-
avoiding Rectilinear Steiner Minimum Tree. PFroc. Int. Conf. Comput.-

Aided Des.pages 21-25, 2009.

[37] M. Borah, R. M. Owens, and M. J. Irwin. An Edge-Based Hstic for
Steiner Routing.IEEE Trans. on Compouter-Aided DesjdiB:1563—-1568,
1994.

[38] M. D. Moffitt, J. A. Roy and I. L. Markov. The Coming of Agd (Academic)
Global Routing. InProc. Int. Symp. Phys. Degages 148-155, 2008.

[39] M. Garey and D. Johnson. The Rectilinear Steiner Trezblem is NP-
Complete.SIAM Journal of Applied Mathematic32:826-834, 1977.

[40] M. Pan and C. Chu. FastRoute: A Step to Integrate GlomltiRg into
Placement. IrProc. Int. Conf. Comput.-Aided Depages 464—-471, 2006.

[41] T. Polzin and S. V. Daneshmand. On Steiner Trees andrivim Spanning
Trees in Hypergraph€perations Research Lettef31:12°C20, 2003.

[42] R. Hentschke, J. Narasimham, M. Johann, and R. ReisefRanting Steiner
Trees with Effective Critical Sink Optimization. IRroc. Int. Symp. Phys.
Des, pages 135-142, 2007.

142 Bibliography

[43] D. S. Richards. On the effectivenness of greed heasidor the rectilinear

steiner tree problem. Technical report, Univ. of Virgini&91.

[44] S. Hu, C. J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shida@. N. Sze. Fast
Algorithm for Slew Constrained Minimum Cost Buffering. Rroc. Design

Automation Conf.pages 308-313, 2006.

[45] J. S. Salowe and D. M. Warme. Thirty-five-point Rectlar Steiner Minimal
Trees in a DayNetworks 25:69-87, 1995.

[46] T. Huang and Evangeline F. Y. Young. Obstacle-avoidiegtilinear Steiner
Minimum Tree Construction: An Optimal Approach. Rroc. Int. Conf.

Comput.-Aided Despages 610-613, 2010.

[47] T.Huang and Evangeline F. Y. Young. An Exact Algorithon the Construc-
tion of Rectilinear Steiner Minimum Trees Among Complex @loes. In

Proc. Design Automation Conpages 164-169, 2011.

[48] T. Huang, L. Li, and Evangeline F. Y. Young. On the Coustion of Opti-
mal Obstacle-avoiding Rectilinear Steiner Minimum TreHdSEE Trans. on

Comput.-Aided Des. Integr. Circuits Sy&0:718-731, 2011.

[49] D. M. Warme. A new exact algorithm for rectilinear steirminimal trees.

Technical report, System Simulation Solutions, Inc., Aledria, VA, 1997.

[50] P. Winter. An Algorithm for the Steiner Problem in the didean Plane.
Networks 15:323-345, 1985.

[51] P. Winter and M. Zachariasen. Euclidean Steiner Mimmilrees: An Im-

proved Exact AlgorithmNetworks 30:149-166, 1997.

Bibliography 143

[52] R.T.Wong. A Dual Ascent Approach for Steiner Tree Peob$ on a Directed
Graph.Mathematical Programming8:271-287, 1984.

[53] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong. Rewar Shortest
Paths and Minimum Spanning Trees in the Presence of Reailidbstacles.

IEEE Transaction on Computer-Aided Desi@6(3):321-331, 1987.

[54] Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, and@&n,. FORst:
A 3-step Heuristic for Obstacle-avoiding Rectilinear S&zi Minimal Tree
ConstructionJournal of Information and Computational Scienpages 107—

116, 2004.

[55] Y. Shi, P. Mesa, H. Yao, and L. He. Circuit Simulation Bdbstacle-aware
Steiner Routing. IfProc. Asia South Pacific Des. Automat. Copages 385—
388, 2006.

[56] Y. Yang, Q. Zhu, T. Jing, X. Hong, and Y. Wang. Rectilin&teiner Minimal
Tree among Obstacles. Rroc. Intl. Conf. on ASICpages 348—-351, 2003.

[57] Y. Zhang and C. Chu. RegularRoute: An Efficient DetaiRaliter with Reg-

ular Routing Patterns. IRroc. Int. Symp. Phys. Degpages 45-52, 2011.

[58] A. C. C. Yao. On Constructing Minimal Spanning Treeskidimensional
Spaces and Related Probler88AM J. Comput.11:721-736, 1982.

[59] Z.Feng, Y.Hu, T.Jing, X. Hong, X. Hu, and G. Yan. Arfi@ogn) Algorithm
for Obstacle-avoiding Routing Tree Construction in Ahgeometry Plane. In

Proc. Int. Symp. Phys. Degages 48-55, 2006.

[60] Z. Shen, C. Chu, and Y. Li. Efficient Rectilinear Steif@ee Construction

with Rectilinear Blockages. IRroceedings ICCDpages 38—-44, 2005.

144 Bibliography

[61] M. Zachariasen. Rectilinear Full Steiner Tree GenemalNetworks 33:125—

143, 1999.

