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Abstract

Rectilinear Steiner minimum tree (RSMT) problem asks for a shortest tree span-

ning a set of given terminals using only horizontal and vertical lines. Construc-

tion of RSMTs is an important problem in VLSI physical design. It is useful for

both the detailed and global routing steps, and it is important for congestion, wire

length and timing estimations during the floorplanning or placement step. The

original RSMT problem assumes no obstacle in the routing region. However, in

today’s designs, there can be many routing blockages, like macro cells, IP blocks

and pre-routed nets. Therefore, the RSMT problem with blockages has become

an important problem in practice and has received a lot of research attentions in

the recent years. The RSMT problem has been shown to be NP-complete, and the

introduction of obstacles has made this problem even more complicated.

In the first part of this thesis, we propose an exact algorithm, called ObSteiner,

for the construction of obstacle-avoiding RSMT (OARSMT) inthe presence of

complex rectilinear obstacles. Our work is developed basedon the GeoSteiner ap-

proach in which full Steiner trees (FSTs) are first constructed and then combined

into a RSMT. We modify and extend the algorithm to allow rectilinear obstacles in

the routing region. We prove that by adding virtual terminals to each routing obsta-

cle, the FSTs in the presence of obstacles will follow some very simple structures.

A two-phase approach is then developed for the constructionof OARSMTs. In the

first phase, we generate a set of FSTs. In the second phase, theFSTs generated in

the first phase are used to construct an OARSMT. Experimentalresults show that

ObSteiner is able to handle problems with hundreds of terminals in the presence

of up to two thousand obstacles, generating an optimal solution in a reasonable

amount of time.
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In the second part of this thesis, we propose the OARSMT problem with slew

constraints over obstacles. In modern VLSI designs, obstacles usually block a frac-

tion of metal layers only making it possible to route over theobstacles. However,

since buffers cannot be place on top of any obstacle, we should avoid routing long

wires over obstacles. Therefore, we impose the slew constraints for the intercon-

nects that are routed over obstacles. To deal with this problem, we analyze the

optimal solutions and prove that the internal trees with signal direction over an ob-

stacle will follow some simple structures. Based on this observation, we propose

an exact algorithm, called ObSteiner with slew constraints, that is able to find an

optimal solution in the extended Hanan grid. Experimental results show that the

proposed algorithm is able to reduce nearly 5% routing resources on average in

comparison with the OARSMT algorithm and is also very much faster.
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CHAPTER 1

Introduction

Contents

1.1 The rectilinear Steiner minimum tree problem. . . . . . . . . . . 1

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Obstacle consideration. . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 The rectilinear Steiner minimum tree problem

The Steiner minimum tree (SMT) problem asks for a shortest network that spans

a set of given points in a metric space. The set of given pointsare usually referred

to asterminalsand new auxiliarySteiner pointscan be introduced so that the total

length of the network can be reduced. The history of the SMT problem started

with Fermat (1601-1665) who proposed the problem: given three points in a plane,

find a fourth point such that the sum of its distances to the three given points is a

minimum. Courant and Robbins [13] in their famous book “What Is Mathemat-

ics?” first named the problem after Steiner (1796-1863) who solved the problem
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Figure 1.1: Hanan grid.

of joining three villages by a system of roads having minimumtotal length. The

popularity of this book has raised the research interests inthe SMT problem.

The formulation of the SMT problem is as follows:

The Steiner minimum tree problem: Given a setV of n terminals in the space

Lp
1. Find a shortest tree embedded in the space that spansV.

The original SMT problem considers the Euclidean space (i.e. L2 space).

The rectilinear Steiner tree problem (i.e. inL1 space) is firstly considered by

Hanan [25]. The problem is equivalent to finding a tree connecting all the terminals

by using only horizontal and vertical lines. An optimal solution to this problem is

called a rectilinear Steiner minimum tree (RSMT). Hanan prove that there is at

least one RSMT that is contained in the Hanan grid. The Hanan grid, as shown

in Fig. 1.1, can be obtained by constructing horizontal and vertical lines through

each terminal and the intersections of these lines are thus candidate Steiner points.

Although there is a finite number of candidate Steiner pointsin the Hanan grid, it is

still a very difficult problem to select a subset of them to construct a RSMT. In fact,

the RSMT problem is shown to be NP-complete by Garey and Johnson [39]. More-

over, they also showed that the Euclidean Steiner minimum tree (ESMT) problem

is NP-hard.

1The distance between two points in theLp space can be calculated byd(u,v) = (∣ux−

vx∣
p+∣uy−vy∣

p)
1
p
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Figure 1.2: An example of the routing problem.

1.2 Applications

The RSMT problem has many applications in VLSI physical design.

In the VLSI physical design flow, one important step is routing. The specifica-

tion of a routing problem usually consists of a set of modules, a netlist, and the area

available for routing. Each module has a set of terminals andis fixed in position. A

netlist is a set of nets. Each net consists of a set of terminals that need to be made

electronically equivalent (i.e. connected by wires). In modern VLSI design, there

exist multiple routing layers, and each routing layer has a predefined direction (ei-

ther horizontal or vertical) and routing capacity. Connectivity between layers can

be achieved by vias. The objective of routing is to create an interconnection among

the terminals of same nets such that the total wire length (i.e. routing resource)

is minimized. For high performance design, it is also necessary to consider other

requirements such as timing budget, signal integrity, and manufacturability issues.

An example of the routing problem is shown in Fig.1.2.

In VLSI deign, routing is usually performed in two stages: global routing fol-

lowed by detailed routing. The task of global routing is to first partition the routing

region into tiles and then determine a loose tile-to-tile route for each net. In this

stage, terminals within the same tile are assumed to be at thecenter of the tile. It
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is also common to represent a 3D routing problem as a 2D problem and perform

layer assignment as a post-processing step. Therefore, therouting of a net can

be realized by constructing a RSMT. A common approach for global routing is to

first generate RSMTs for all the nets [38]. Since, RSMT only minimizes the wire

length, it is possible that in some tiles, the number of wiresmay exceed the rout-

ing capacity creating some congested regions. In such cases, nets that are routed

through the congested region will be ripped up and rerouted by using congestion-

aware RSMT [40] or the maze routing algorithm. Given a global routing solu-

tion, detailed routing determines the actual geometric layout of each net (i.e. exact

tracks, via position, and layer) within the assigned routing regions. In this stage,

the RSMTs can also be used to guide the routing [57] to minimize the wire length

and via usage.

Despite extensive applications in the routing stage, RSMTscan also find its ap-

plication in an even earlier stage in VLSI design flow, such asfloorplanning and

placement. In floorplanning and placement, modules are not fixed and their po-

sitions are to be determined. A solution to the problem is a layout that specifies

the location of each module such that there is no overlap. A good floorplanning

or placement solution should be routable (i.e. be successfully routed in the later

routing stage) by using the smallest amount of routing resources. This necessitates

congestion and wire length estimations during floorplanning and placement. The

estimation can be done by performing routing, but it is computationally too expen-

sive. Therefore, using RSMTs as an approximation becomes anefficient alternative

and is adopted by many estimation approaches [28]. Another target of floorplan-

ning and placement is to achieve good timing. As deep submicron technology ad-

vances, interconnect delay is becoming increasingly dominant over transistor and

logic delay. Timing estimation has to consider both interconnect and gate delays
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Figure 1.3: Escape graph.

in order to be accurate. This requires actual topology of each net which is usually

approximated by using RSMTs [21].

1.3 Obstacle consideration

A more general version of the RSMT problem is to consider obstacles. An obstacle

is a rectilinear polygon, i.e., all boundary edges of an obstacle are either horizontal

or vertical. The RSMT problem in the presence of obstacles isof practical interest

because such obstacles exist in modern VLSI designs (e.g. macro cells, IP blocks,

and pre-routed nets).

In the routing region, an obstacle blocks some metal layers.If the obstacle

blocks all the metal layers, the routing tree has to avoid it.A RSMT that avoids ob-

stacles is called an obstacle-avoiding RSMT (OARSMT). Analogous to the Hanan

grid for the RSMT problem, Ganley and Cohoon [31] proposed an escape graph

for the OARSMT problem. The escape graph consists of two types of segments.

The first type is the segments that extend from the terminals in the vertical and

horizontal directions, until an obstacle boundary is met. The second type of seg-

ments can be obtained by extending the boundary segments of each obstacle until

an obstacle boundary is met. An example of the escape graph isshown in Fig.1.3.
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It is proven in [31] that for any OARSMT problem, there is at least one optimal

solution composed only of the escape segments in the escape graph.

If an obstacle blocks only a fraction of metal layers, then routing wires on top

of obstacles is possible. However, if a long wire is routed over an obstacle, there

will be signal integrity problems because buffers cannot beplaced on top of any

obstacle. As deep submicron technology advances, interconnect delay is becom-

ing increasingly dominant over transistor and logic delay [8]. High interconnect

resistance will cause signal integrity to degrade rapidly in a long connection. This

problem is usually solved by inserting buffers that break a long wire into small

segments. Notice that buffers cannot be placed on top of any obstacle. There-

fore, although routing over obstacles is possible, one should be aware of the signal

integrity issue and avoid routing long wires on top of obstacles that may lead to

complicated post-routing electrical fixups. In this case, the OARSMT can be an

option. However, avoiding all obstacles may result in an unnecessary resource

wastage. A smarter router should be able to avoid some of the obstacles that cause

problems, while allowing wires to cross the others.

1.4 Thesis outline

This dissertation studies the RSMT problem in the presence of obstacles.

In Chapter2, we do a literature review of the RSMT and OARSMT problem.

We introduce a set of heuristics and exact algorithms including the state-of-the-art

for the RSMT and OARSMT problem.

In Chapter3, we propose an exact algorithm, called ObSteiner, for the construc-

tion of OARSMTs among complex rectilinear obstacles. ObSteiner is a two-phase

approach in which the optimal solution is constructed by theconcatenation of full
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Steiner trees (FSTs) among complex obstacles. We first show that, by adding vir-

tual terminals, the FSTs among complex obstacles can be greatly simplified, thus

providing the theoretical foundations for the exact approach. We then describe the

two-phase algorithm in detail including the FST generationphase, the FST pruning

procedure, and the FST concatenation phase. ObSteiner is able to handle complex

obstacles including both convex and concave ones. Experimental results show that

benchmarks with hundreds of terminals among a large number of obstacles can be

solved optimally in a reasonable amount of time.

In Chapter4, we study a variant of the RSMT problem in the presence of ob-

stacles that allows wires to be routed over obstacles. In modern designs, obstacles

usually block the device layer and a fraction of metal layersonly. Therefore, rout-

ing wires on top of obstacles is possible. However, if a largeamount of wires

are routed over an obstacle, it may cause signal integrity problems because buffers

cannot be placed on top of any obstacle. To tackle this problem, we impose slew

constraints on the interconnects that are routed over an obstacle. This is called the

OARSMT problem with slew constraints over obstacles. We first analyze an op-

timal solution to this problem and find that the tree structures over obstacles with

slew constraints will follow some very simple forms. Based on this observation,

we propose an algorithm, called ObSteiner with slew constraints, to find an opti-

mal solution embedded in the extended Hanan grid. The solutions can guarantee

the interconnect performance and avoid post-routing electrical fixups due to slew

violations. We also show that the solutions provided by our algorithm can save over

5% routing resources on average in comparison with the OARSMTs that avoid all

obstacles.

In Chapter5, a conclusion of this thesis is drawn.
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1.5 Thesis contributions

The contributions of this dissertation can be summarized asfollows.

For the OARSMT problem:

1. This is the first work to propose a geometric approach to exactly solve the

OARSMT problem when there are complex rectilinear obstacles. ObSteiner

is able to handle both convex and concave rectilinear obstacles, while previ-

ous exact algorithm can only handle rectangular obstacles.

2. We design an efficient pruning procedure which can greatlyreduce the size of

the solution space and therefore improve the performance ofthe algorithm.

For the second phase of the algorithm, we propose a new formulation for

the concatenation of FSTs. In the branch-and-cut search, wedevelop new

separation algorithm to adapt to the presence of virtual terminals. We also

adopt an incremental way to handle obstacles. An obstacle will be consid-

ered only if it is necessary. By using ObSteiner, benchmarkswith up to two

thousand obstacles can be solved to optimal in a reasonable amount of time,

while previous exact algorithm can only deal with benchmarks with around

twenty obstacles.

3. Based on the theorem we developed in this thesis, we further propose a sim-

ple graph model that can transfer the geometric OARSMT problem into a

graph problem. We prove that the proposed graph model contains at least

one optimal solution and is also simpler (in terms of the number of edges

and nodes) than the simplest graph model in the literature.

For the OARSMT with slew constraints over obstacles:
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1. We formulate the OARSMT problem with slew constraints over obstacles.

The solution to this problem is a resource efficient Steiner tree that anticipates

good interconnect performance.

2. We analyze an optimal solution to this problem and find thatthe slew con-

strained tree structures over obstacles will follow some very simple forms.

3. We propose an algorithm that can find an optimal solution embedded in the

extended Hanan grid and show that the solutions provided by our algorithm

can save a significant amount of routing resources and run time in compari-

son with the state-of-the-art optimal OARSMT algorithm.

Finally, a combination of the above researches provides a powerful tool for

solving the RSMT problem in the presence of obstacles. With our optimal meth-

ods, we can easily compare the performance of different approaches and see how

far a heuristic solution is away from the optimum. The works presented in this

dissertation give key insights into this difficult problem.
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2.1 RSMT algorithms

2.1.1 Heuristics

The RSMT problem is NP-complete. It means that efficient polynomial time exact

algorithm may not exist. Therefore, many researches of the RSMT problem have

been focused on the development of heuristics. Early heuristics are mainly based

on improving over a RMST. Starting in 1990s, a new class of RSMT heuristics that

do not rely on the RMST has been proposed. Two typical examples are iterated
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one Steiner and batched iterated one Steiner. Recently, a look up table based al-

gorithm called FLUTE is proposed. Comparing with the other heuristics, FLUTE

can provide the best tradeoff between runtime and accuracy,and therefore is the

state-of-the-art algorithm. In this section, a brief introduction to these approaches

is presented.

2.1.1.1 RMST based heuristics

Let ∣RSMT(V)∣ and ∣RMST(V)∣ be the length of the RSMT and RMST overV

respectively, The rectilinear Steiner ratio is defined as

ρ(L1) = infV {∣RSMT(V)∣
∣RMST(V)∣} (2.1)

whereV is a set of points in the rectilinear plane. That is, the rectilinear Steiner

ratio is the largest possible ratio between the length of a RSMT and the length of a

RMST in the rectilinear plane. It has been proved that the rectilinear Steiner ratio

is 2
3 [26]. This means that any heuristic based on improving over a RMST can

guarantee a worst-case performance ratio of3
2. Therefore, many RSMT heuristics

in the literature use RMST-based strategies.

A RMST can be computed inO(nlogn) time. The first RMST algorithm with

this complexity is proposed by Hwang [27] and the algorithm is based on the con-

struction of the rectilinear Voronoi diagram. Hwang showedthat the rectilinear

Voronoi diagram can be built inO(nlogn) time. It can also be verified that a

RMST can be computed inO(n) time by using the Voronoi diagram, and there-

fore the complexity of finding a RMST isO(nlogn). However, the computation of

Voronoi diagram can be tedious. A simpler way is to use the nearest neighbors of

each terminal. For each terminal we divide its surrounding area into eight regions
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Figure 2.1: Eight regions of a terminal.

separated by lines that intersect at a 45-degree angle, as shown in Fig.2.1. The

following theorem is firstly proposed by Yao [58].

Theorem 2.1. In a RMST, if two terminals v and u are connected, then v is the

nearest to u in one of the eight regions of u.

Theorem2.1shows that for the construction of RMST, only the edges connect-

ing nearest neighbors in the eight regions need to be considered. Finding the nearest

neighbor of all terminals in all eight regions can be done inO(nlogn) time [20, 24].

Since there are at most 8n edges, a RMST can be therefore found inO(nlogn) time

by using either the Prim’s or the Kruskal’s algorithm.

With a RMST as a starting point, a direct way to improve and obtain a RSMT is

to remove overlapping segments by introducing Steiner points. These approaches

are called Steinerization. Early overlap removal schemes all make use of simple

heuristics. A pair of edges sharing a common terminals are chosen arbitrarily. If

there is overlap, they are embedded by adding a Steiner point. This process ter-

minates until all pairs of neighboring edges are explored. Acomparison between

different ways on selecting pairs of edges to be processed isdone by Richards [43].

Later, Hoet al. [32] gave a polynomial time algorithm to find an optimal embed-

ding. The algorithm starts with a special kind of RMST calledseparable RMST. A
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RMST is separable if and only if for any pair of non-adjacent edges in the tree, any

staircase layouts of the two edges will not intersect or overlap. They first gave a

O(n2) time algorithm for the construction of separable RMST. Based on the sepa-

rable RMST, anO(n) time optimal algorithm is proposed with the assumption that

each edge has at most one corner (i.e. L-shaped). The algorithm starts by making a

terminal as the root of the tree and solve the problem in a bottom-up fashion. The

key observation is that the optimal solution of a subtree depends only on how the

edge connecting the root node of the subtree and its parent, is embedded. Since

only L-shaped edges are considered, there are two options for embedding. There-

fore, anO(n) dynamic programming algorithm can find optimal solution. Hoet

al. further extended the algorithm to handle the case when each edge has at most

two corners (i.e. Z-shaped). The difference is that there can be more embedding

options for each subtree. Hoet al. showed that the corresponding dynamic pro-

gramming algorithm has a time complexity ofO(n7). Finally, they proved that the

resulting RSMT after optimal Z-shaped embedding is also optimal when there is

no restriction on edge shapes.

Another way to improve over a RMST is to add some new edges to replace

longer ones repeatedly. These approaches are called edge-substitution. Borahet

al. [37] proposed an edge-based heuristic that starts with a RMST and incremen-

tally improves the cost by connecting a node1 to a neighboring edge and removing

the longest edge in the loop thus formed. The reduction in thecost of the tree due to

this operation is the gain. The algorithm works in an iterative manner. In each iter-

ation, a set of such (node, edge) pairs are found and updates are applied to the tree

starting from the (node, edge) pairs with the largest gain. Borahet al. showed that

finding all possible (node, edge) pairs with positive gain can be done inO(nlogn)
1A node can be a terminal or a Steiner point
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time and applying the updates to the tree requires onlyO(n) time. They further

showed that three iterations are sufficient in most cases. Therefore, the complexity

of the algorithm isO(nlogn). Zhouet al. [23] extended the edge-based heuristic

by using a spanning graph [24]. A spanning graph is an undirected graph over the

points that contains at least one MST. They showed that finding potential (node,

edge) pairs in the spanning graph can be more efficient. They also proposed a sim-

pler way to find the longest edge on the loop formed by connecting a node to an

edge with a binary tree merging approach. Although, the run time is dominated

by the spanning graph and RMST generation, which takeO(nlogn) time, a good

practical performance can be achieved.

2.1.1.2 Iterated 1-Steiner

While the RMST-based heuristics can guarantee a worst case performance ratio of

3
2, it is still a problem to find such a heuristic method with performance ratio strictly

less than3
2. Kahng and Robins [2] showed that the32 bound is tight for a large

number of RMST-based methods. Motivated by this fact, Kahngand Robins [3]

proposed a heuristic called iterative 1-Steiner that does not, implicitly or explicitly,

make use of a RMST. The algorithm is based on the answer to the following ques-

tion. If at most one Steiner point is allowed, what is the optimal Steiner tree and

where should the Steiner point be placed? This is called the 1-Steiner problem.

In the Euclidean plane, Georgakopoulos and Papadimitriou [19] are the first to

give anO(n2) algorithm to solve the 1-Steiner problem. Kahng and Robins adapted

this method for the rectilinear plane. The algorithm makes use of the concept of

nearest neighbor for the construction of RMST to partition the plane intoO(n2)
isodendral regions. An important property of isodendral regions is that introducing

any point in a given region will result in a constant RMST topology. Therefore,
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Figure 2.2: An example of the iterative 1-Steiner algorithm.

after anO(n2) preprocessing step, updating the RMST to include a new pointre-

quires only constant time. Moreover, the optimal Steiner point in each region can

also be determined in constant time. As a result, the 1-Steiner problem can be

solved inO(n2) time by iterating through the isodendral regions and selecting the

point with the lowest cost.

The iterative 1-Steiner heuristic works by iteratively calculating optimal 1-

Steiner points and include them into the point set. AcceptedSteiner points are

deleted if they become useless, i.e., if their degree becomes 1 or 2 in the tree. The

algorithm terminates when no improvement can be achieved byadding new Steiner

points or the maximum number of iterations has been reached.An example of the

iterative 1-Steiner heuristic is shown in Fig.2.2. In [3], the maximum number

of iterations is set to be the number of terminalsn. Therefore, the overall time

complexity of iterative 1-Steiner isO(n3).
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2.1.1.3 Batched iterated 1-Steiner

Kahng and Robins [3] proposed several variants to the iterative 1-Steiner. Among

those variants, the most promising one make use of a batched way to include Steiner

points. Instead of adding one Steiner point per iteration, amaximal independent

set of Steiner points are included.

The heuristic starts by evaluating every candidate Steinerpoints in the Hanan

grid. By preprocessing theO(n2) isodendral regions as a planar subdivision, the

planar region in which a given point lies can be determined inO(logn) time. This

preprocessing requiresO(n2logn) time. Since the MST of a planar weighted graph

can be maintained usingO(logn) time per addition of a point, the RMST cost sav-

ings for all the candidate Steiner point can be calculated inO(n2logn) time. Then,

the Steiner point candidates are sorted according to their gains on cost savings in

decreasing order. Next, all of the candidates are processedin order. Each candidate

with a positive gain are added, as long as it is independent ofall the Steiner points

previously added during the round. The criterion for independence is that no can-

didate is allowed to reduce the potential MST cost saving of any other candidate in

the added set. This process iterates until no Steiner point can be included. The to-

tal time required for one iteration isO(n2logn). Since Steiner point candidates are

added in a batched way, the number of iterations required grows much more slowly

than the number of Steiner points considered. Empirical study showed that batched

iterated 1-Steiner performs close to iterated 1-Steiner, but the computational cost

is much lower.

Although batched iterated 1-Steiner can be implemented to run in O(n2logn)
per iteration, the computational geometric methods have a large hidden constant

and are also difficult to code. Therefore, anO(n4logn) implementation is used

in [3]. A more efficientO(n3) implementation is later presented by Griffithet
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Figure 2.3: An example of the position sequence of a net.

Figure 2.4: An example of different Steiner trees for a net.

al. [29]. Experimental results showed that a speedup factor of three orders of mag-

nitude over previous implementation can be achieved.

2.1.1.4 FLUTE

The RSMT problem has many applications in very large scale integration (VLSI)

design. In VLSI circuits, many nets have just a small number of terminals. There-

fore, it is more important for RSMT algorithms to be simple and efficient for small

problems. Based on this observation, Chu and Wong [4] proposed a RSMT algo-

rithm called fast lookup table estimation (FLUTE).

Given a set ofn terminals, the Hanan grid can be built by drawing horizontal

and vertical lines through each terminal. Letxi be thex-coordinates of the vertical

grid lines such thatx1 ≤ x2 ≤ . . . ≤ xn, andyi be they-coordinates of the vertical
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grid lines such thaty1 ≤ y2 ≤ . . . ≤ yn. Label the terminal in ascending order of

the y-coordinates and letsi be the rank of terminali in ascending order of thex-

coordinates. The sequences1s2 . . .sn is called the position sequence. An example

is shown in Fig.2.3where the position sequence of the net is 3142. Letvi = yi+1−yi

andhi = xi+1−xi be the distance between adjacent Hanan grid lines. Since a Steiner

tree in the Hanan grid is a union of Hanan grid edges, the length of any Steiner

tree can always be written as a linear combination of edge lengths in which every

coefficient is a positive integer. For example, the length ofthe three Steiner trees

as shown in Fig.2.4can be expressed byh1+2h2+h3+v1+v2+3v3, h1+h2+h3+
v1+2v2+3v3, andh1+2h2+h3+v1+v2+v3. Therefore, a lookup table can be used

to store the lengths of all possible Steiner trees as linear combinations ofhi andvi .

For simplicity, only the vectors of the coefficients are stored, e.g. (1, 2, 1, 1, 1,

3), (1, 1, 1, 1, 2, 3), and (1, 2, 1, 1, 1, 1). It is also easy to findthat some vectors

are suboptimal, e.g. the length induced by (1, 2, 1, 1, 1, 3) cannot be shorter than

that of (1, 2, 1, 1, 1, 1). A vector that can potentially produce the optimal length is

called a POWV. For each POWV, a set of corresponding RSMTs called POST are

also stored. A key observation is that, if two nets have the same position sequence,

then every Steiner tree of one net is topologically equivalent to a Steiner tree of the

other net. This means that nets with the same position sequence can be grouped

together to share the set of POWVs and the following theorem can be stated.

Theorem 2.2. The set of all nets with n terminals can be divided into n! groups

according to the position sequence such that all nets in eachgroup share the same

set of POWVs.

FLUTE makes use of precomputed lookup table of POWVs and POSTs. Given

a net, its position sequence is firstly determined and the corresponding POWVs are

extracted from the table. The tree length of each POWV is computed according
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to the values ofhi andvi and the POWV with minimum length is selected. The

corresponding POSTs are the RSMTs for the net.

The precomputation of the lookup table for small nets can be done by enu-

merating all possible Steiner trees in the Hanan grid. For larger nets, a boundary-

compaction technique is proposed to efficiently generate all possible POWVs and

POSTs. Some reductions are also applied to reduce the size ofthe lookup table.

It is reported that the total table size is only 9.00 MB for allnets with up to 9

terminals.

FLUTE is able to generate optimal RSMTs for small nets (e.g. with up to 9

terminals) by using the lookup table. However, for large nets, the lookup table

approach is impractical because of the high cost in both space and time. Therefore,

a large net is divided into small nets with only the breaking terminals in common

by using a net breaking heuristic. Each small net is then solved by using the lookup

table and the resulting RSMTs are combined to form a RSMT for the original net.

Finally, some refinement schemes are applied to eliminate overlapping segments or

further reduce the length of the tree.

The total run time complexity of FLUTE isO(nlogn). Empirical results on

VLSI design showed that FLUTE is more accurate than the batched 1-Steiner

heuristic and is almost as fast as a very efficient implementation of Prim’s RMST

algorithm.

2.1.2 Exact algorithms

In previous sections, we mentioned that at least one RSMT canbe found in the

Hanan grid graph. Therefore, exact algorithms for the Steiner problem in net-

works [16] can also be used to solve the RSMT problem. However, these ap-

proaches are considered to be less effective for the RSMT problem because they
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Figure 2.5: Two generic forms for a FST whenn> 4.

Figure 2.6: The only exception to Theorem2.3.

do not exploit the geometric of the problem. Therefore, in this section, we will

focus on the geometric approaches.

Let V′ be a set of points in the plane, andT be a SMT spanningV ′. T is said

to have afull topology if every point inV ′ is a leaf node inT. A terminal setV ′

is a full set if every SMT forV′ has a full topology. A full Steiner tree (FST) is a

SMT that spans a full set of terminals. It can be easily verified that any SMT can be

uniquely decomposed into a set of edge-disjoint FSTs by splitting at the terminals

with degree2 more than one. In the rectilinear plane, Hwang [26] first characterized

the structures of FSTs. A series of lemmas are developed to reach the following

Theorem.

Theorem 2.3. For a full set of n> 4 terminals in the rectilinear plane, there exists

a corresponding FST that either consists of a single line with n−1 alternating

incident segments, or a corner with n−3 alternating segments incident to one leg

and a single segment incident to the other leg.

2The degree of a terminal is the number of edges connecting it.
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The two FST structures described in Theorem2.3are shown in Fig.2.5. Hwang

also showed that Theorem2.3holds forn= 2, 3, or 4. The only exception is when

n= 4 and the four terminals are the endpoints of a cross as shown in Fig. 2.6. We

call these FST topologies, i.e., Fig.2.5and Fig.2.6, Hwang’s topology. Since any

RSMT can be uniquely decomposed into a set of FSTs and FSTs aremuch simpler

to construct than RSMTs, a straightforward strategy to construct RSMTs is to use

a two-phase approach. The first phase is to generate a set of FSTs such that there is

at least one RSMT composed of the FSTs in the set only. This phase is called the

FST generation phase. In the second phase, a subset of FSTs with the minimum

total length are selected and combined such that all terminals are connected. This

phase is called the FST concatenation phase.

2.1.2.1 FST generation

Salowe and Warme [45] gave the first rectilinear FST generation algorithm. The

algorithm generates FST by considering all pairs(a,b) of terminals asbackbone

in Hwang’s topology. The backbone is the complete corner in Hwang’s topology

connecting the first terminal from the left and the last or thesecond last terminal as

described in Theorem2.3. In the corner, the leg with alternating incident segments

is called the long leg, and the other is called the short leg. For each pair(a,b),
all candidates terminals that can be attached to the backbone are found. Then, the

candidate terminals are tried recursively to be attached tothe backbone and the

resulting structure is tested to check if a FST can be formed.Some screening tests

are developed to eliminate those FSTs that cannot be in any RSMT. The algorithm

is able to generate FSTs for 100 terminals in a short time. However, it is impractical

for larger instances because of the high computational cost. Later, Warme [49]

improved this algorithm to handle 1000-terminal instance in hours.
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Figure 2.7: Empty diamond.

Figure 2.8: Empty diamond regions with respect to a FST.

The state-of-the-art rectilinear FST generation algorithm is presented by

Zachariasen [61]. Let the root of a FST be the terminal incident by the long leg.

For a given rootz, the algorithm works by growing the long legs in four possible

directions. For a given direction, the algorithm recursively try to attach terminals

to the long leg. A series of necessary conditions are used to prune away useless

FSTs.

Theempty diamond propertystates that no other points of the RSMT can lie in

L (u,v), whereuv is a (horizontal or vertical) segment andL (u,v) is an area on

the plane such that all the points in this area are closer to both u andv thanu andv

are to each other. The empty diamond region of a segment is shown in Fig.2.7. If

there is a terminalw inside the empty region of segmentuv, we can deleteuv and

connect eitheruwor vw to reduce the length of the tree, a contradiction. The empty

diamond regions with respect to a FST are shown in Fig.2.8.

Let uwandvwdenote two perpendicular segments sharing a common endpoint
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Figure 2.9: Empty corner rectangle.

Figure 2.10: Empty corner rectangle regions with respect toa FST.

w. Theempty corner rectangle propertystates that no other points of the RSMT

can lie in the interior of the smallest axis-aligned rectangle containingu andv. The

empty corner rectangle region is shown in Fig.2.9. Assume that there is a terminal

x inside the empty rectangle region. The unique pathP from x to w in the RSMT

visits eitheru or v first, or none of them, before reachingw. If P visits u (v) first,

we can deleteuw (vw) and add a vertical (horizontal) segment from x to a point

on vw (uw), forming a tree with shorter length. IfP reaches neitheru nor v before

reachingw, we can deleteuw or vw and addux or vx depending on the location of

x to obtain a shorter tree, a contradiction. The empty corner rectangle regions with

respect to a FST are shown in Fig.2.10.

The empty inner rectangle propertycan be used to prune away useless FSTs.

A FST can be transformed to its corner-flipped version by shifting segments and

flipping corners as shown in Fig.2.11. The empty inner rectangle property states
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Figure 2.11: Transformation of a FST to its corner-flipped version.

Figure 2.12: Empty inner rectangle in a FST.
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that no terminal can be in between the backbone of the origin topology and that of

the corner-flipped topology. The empty region with respect to a FST is shown in

Fig. 2.12. Assume that there is a terminal inside the empty inner rectangle region.

We can shift some segments and flip some corners to align with the terminal such

that splitting at this terminal will result in two smaller FSTs.

Thebottleneck Steiner distance, which is analogous to that of the Steiner tree

problem in networks, can also be used to eliminate useless rectilinear FSTs. Let

Tr(V) be a tree spanning a terminal setV. We useδTr(viv j) to denote the length

of the longest edge on the unique path betweenvi andv j in Tr(V). Let RMST(V)

be a RMST of the terminal setV, then the bottleneck Steiner distance is equal to

δRMST(viv j). It can be proved that if RMST(V) and RSMT(V) are respectively a

minimum spanning tree and a Steiner minimal tree on a set of verticesV, then

δRMST(viv j) ≥ δRSMT(viv j) for any vi ,v j ∈V. Therefore, for a FST to be part of a

RSMT, we require thatδRMST(viv j) ≥ δFST(viv j) for anyvi ,v j ∈V.

The above conditions are used to prune away those FSTs that cannot be part

of any RSMT. Empirical study showed that most of the FSTs can be pruned away

by one of these tests and the number of resulting FSTs grows almost linear with

respect to the number of terminals. The algorithm is able to generate FSTs for 1000

terminals in less than a minute.

2.1.2.2 FST concatenation

Let F = { f1, f2, . . ., fm} be the set of FSTs generated in the first phase. The second

phase is to select a subset such that all terminals are spanned. Different from the

FST generation phase, the FST concatenation phase is purelycombinatorial and

metric-independent. Therefore, early FST concatenation algorithms proposed for

the Euclidean Steiner minimum tree (ESMT) problem can also be applied for the
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rectilinear case. These approaches include backtrack search, dynamic program-

ming, and integer linear programming.

Backtrack search

A straightforward way to combine FSTs is to use backtrack search. Starting

from a single FST, recursively add new FSTs into the solutionuntil the solution

spans all terminals or it can be verified that the solution cannot be optimal. In these

cases, the search backtracks to try to add some other FSTs.

Winter [50] proposed the first FST concatenation algorithm by backtrack search

for the ESMT problem. Simple tests such as length tests, degree tests, and cycle

tests are employed during the search. The algorithm is able to solve, in a reasonable

amount of time, problems with less than or equal to 15 terminals. Experimental re-

sults showed that, for the instances with more than 15 terminals, the computation

time of the concatenation phase dominates that of the generation phase. Cock-

ayne and Hewgill [11, 12] presented an improved version of Winter’s algorithm.

Problem decomposition is applied to divide the initial concatenation problem into

several sub-problems. If the set of all FSTs can be divided into biconnected com-

ponents, then each biconnected component corresponds to a subproblem on which

concatenation can be done separately. They also proposed touse an incompatibil-

ity matrix to speedup the search. Two FSTs are incompatible if they cannot appear

simultaneously in any of the SMTs (e.g. if they have more thanone terminal in

common, a cycle will be formed). This information is pre-computed and stored in

a matrix. The incompatibility matrix can be used to guide thebacktrack search.

For example, only the FSTs that are compatible with every FSTin the current so-

lution can be added. This can significantly reduce the solution space with almost

no computational overhead. In comparison with the savings in searching, the time

required for computation of the incompatibility matrix is negligible. They reported
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a solvable range of 32 terminals. Salowe and Warme [45] proposed to select and

add “the most promising” FST during the search. They also gave a more powerful

graph decomposition theorem to decompose the problem. Morerecently, Winter

and Zachariasen [51] improved FST compatibility and FST pruning substantially

and report solutions for 140-terminal instances in the Euclidean space.

Dynamic programming

Ganley and Cohoon [30] presented a dynamic programming approach to com-

bine FSTs. From Theorem2.3, it is clear that any RSMT for any set of terminals

is either a FST itself or it can be divided into two smaller RSMTs joining at a ter-

minal. Therefore, dynamic programming is applicable. Subsets of terminals are

processed in increasing order of their cardinality. For subsets of more than two

terminals, the algorithm first tries to construct a FST according to Theorem2.3.

Then, several trees are produced by joining the RSMTs of every pair of disjoint

subsets having exactly one terminal in common. Since the subsets are enumer-

ated in increasing order of cardinality, the RSMTs of the smaller subsets are al-

ready computed and stored. Among all the generated trees, the one with minimum

length is remembered in a lookup table. The time complexity of this algorithm is

O(n3n). By proving that the number of candidate FSTs for a set ofn terminals is

at mostO(n1.62n), Ganley and Cohoon improved the time complexity of the al-

gorithm toO(n22.62n). Based on this dynamic programming algorithm, Fößmeier

and Kaufmann [17] make use of the empty region properties to reduce the number

of candidate FSTs. AnO(n1.38n) bound is derived which lead to an algorithm

with O(n22.38n) time complexity.

Although dynamic programming algorithms can provide the best theoretical

worst-case time bound, their practical performance are inferior to the backtrack

search.
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Integer linear programming

Despite the substantial efforts made to improve the performance, backtrack

search and dynamic programming algorithms can only handle problems with

around 100 terminals. A breakthrough in the concatenation algorithm is achieved

by Warme [49, 14] who observed that the FST concatenation problem is equivalent

to find a minimum spanning tree in hypergraph and formulated the problem as an

integer linear programming (ILP).

LetV be the set of terminals to be connected andnbe the number of terminals in

the set. Letm be the number of FSTs generated in the first phase, i.e. the number

of FSTs inF. Each FSTfi ∈ F is associated with a binary variablexi indicating

whetherfi is taken as a part of the RSMT. We use∣ fi ∣ to denote the size offi , i.e.,

the number of terminals connected byfi , and usel i to denote the length offi . In

the following,(A ∶ B) means{ fi ∈ F ∶ fi ∩A≠ ∅∧ fi ∩B≠ ∅}. The ILP formulation

is as follows.

Minimize:
m∑

i=1
l i ×xi . (2.2)

Subject to:
m∑

i=1
xi ×(∣ fi ∣ −1) = n−1, (2.3)

∑
i∶ fi∈(X∶V−X)

xi ≥ 1 ∀X ⊂V, (2.4)

∑
i∶ fi∩X≠∅

xi ×(∣ fi ∩X∣ −1) ≤ ∣X∣ −1 ∀X ⊂V ∧∣X∣ ≥ 2. (2.5)

In the ILP, the objective function (2.2) is to minimize the total length of se-

lected FSTs. Constraint (2.3) is thetotal degree constraintthat requires the right

number of FSTs in order to spanV. Constraints (2.4) are thecutset constraints.
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The constraints ensure that for any cut(X ∶V −X) of the terminal set, there should

be at least one selected FST to connect them. Constraints (2.5) are thesubtour

elimination constraintsthat eliminate any cycle in the solution. Since there is an

exponential number of cutset constraints and subtour elimination constraints, they

are considered in an incremental way and the ILP is solved by abranch-and-cut

algorithm with the lower bound provided by linear programming (LP) relaxation,

i.e., by relaxing integrality of variablexi to 0≤ xi ≤ 1. At the beginning of the algo-

rithm, only some simple constraints are considered. Other constraints are added by

separation methods. The separation problems can be solved in polynomial time by

finding minimum cuts in some graphs. It is shown in [14] that Warme’s FST con-

catenation algorithm combined with Zachariasen’s FST generation algorithm can

solve instacnes with as many as 2000 terminals in a reasonable amount of time.

More recently, Polzin and Daneshmand [41] presented a efficient alternative

for the concatenation phase. The set of FSTs are further decomposed into a set of

edges. An algorithm which is originally designed for general graphs can then be

applied to construct a RSMT. Polzin and Daneshmand showed that their algorithm,

in most cases, is faster than Warme’s algorithm. They claimed that the superiority

is due to the sophisticated reduction techniques they developed to reduce the size

of the problem instance.

2.2 OARSMT algorithms

2.2.1 Heuristics

Since the OARSMT problem is NP-complete, most of the previous works have

been focused on the development of heuristics. These heuristics can be generally

classified into three categories, namely sequential approach, maze-routing based
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approach, and connection graph based approach.

2.2.1.1 Sequential approach

The sequential approach, also called the construction-by-correction approach, con-

sists of two steps. In the first step, a RSMT is constructed without considering

any of the obstacles. This step can be done by using any of the aforementioned

RSMT algorithms. In the second step, edges that overlap withobstacles are found

and replaced by edges going around the obstacles. Generally, a simple line sweep

technique can be applied. Yanget al.[56] proposed a complicated 4-step heuristics

to remove the overlaps in the second step. The sequential approach is popular in

industry due to its simplicity and efficiency. However, thisapproach usually cannot

provide solution with good quality because it lacks a globalview of the obstacles.

2.2.1.2 Maze-routing based approach

The maze-routing approach is originally proposed by Lee [10] for making connec-

tion between two points. Since then, several multi-terminal variants have been pro-

posed. Despite early works that will incur unsatisfiable solution quality, recent de-

velopments on maze-routing demonstrate its effectivenesson the OARSMT prob-

lem. Hentschkeet al.[42] presented AMAZE, a fast maze-routing based algorithm

to build Steiner trees. The algorithm starts from a particular terminal and grow the

tree by connecting one terminal at a time by using A* search. Li and Young [35]

proposed another maze-routing based approach for the OARSMT problem. Similar

to Hentschke’s algorithm, during the construction of the tree, terminals are added

one by one to the existing tree. The key difference is that, inthe work by Li and

Young, instead of adding only one path between terminals, multiple paths will be

kept and the path selection is delayed until all the terminals are reached. During
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this process, a number of candidate Steiner points can be generated. A MST is

then constructed to connect all the Steiner points and the terminals. By deleting

dangling Steiner points, an OARSMT can be obtained. Although this approach can

provide solutions with high quality, the space and time complexities are relatively

high which limit its applications to large scale problems. Recently, Liuet al. [6]

extended Li’s work by using a linear-space rectilinear graph. They showed that the

proposed graph contains satisfactory Steiner point candidates and is also much sim-

pler than the extended Hanan grid. The experimental resultsdemonstrated a very

competitive performance of the algorithm in both solution quality and run time.

2.2.1.3 Connection graph based approach

Most of the recent approaches on the OARSMT problem are graphbased algo-

rithms where an OARSMT is built based on a connection graph (not necessary

rectilinear) that captures the global blockage information. Shiet al. [55] proposed

to use the global routing graph which contains the escape graph as its subgraph

as the connection graph. They developed a circuit simulation- based technique to

build the OARSMTs. Fenget al. [59] proposed anO(nlogn) algorithm to con-

struct OARSMTs in a graph called obstacle-avoiding constrained Delaunay trian-

gulation. Shenet al. [60] proposed to use the obstacle-avoiding spanning graph.

The obstacle-avoiding spanning graph can be formed by making connections be-

tween terminals and obstacle corners. The authors showed that the graph contains

only O(n) edges and is much simpler than the escape graph. A MST in the graph

can be easily found inO(nlogn) time. The OARSMT can then be generated by

rectilinearizing the MST. They showed that the proposed spanning graph can al-

ways produce a RSMT with good quality. The worst case time complexity of the

algorithm isΩ(n2logn). Lin et al. [9] extended Shen’s approach by identifying
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Figure 2.13: An example of FST in the presence of an obstacle.

many “essential” edges that can lead to more desirable solutions in the construc-

tion of the obstacle-avoiding spanning graph. They proved that their algorithm

guarantees to find optimal OARSMT for any 2-pin nets. For higher-pin net, their

algorithm is able to find solutions with better quality. However, the number of

edges, in the worst case, is increased toO(n2). Therefore, the time complexity of

their algorithm isO(n3). Long et al. [33] presented an efficientO(nlogn) four-

step algorithm to construct an OARSMT. They proposed a more sparse graph and

efficient local and global refinements were used to improve the solution quality.

Liu et al.[7] proposed anotherO(nlogn) algorithm based on the generation of crit-

ical paths. Recently, Ajwaniet al. [18] presented the FOARS, a FLUTE-based

top down approach for the OARSMT problem. They apply the obstacle avoiding

spanning graph to partition the problem and construct the OARSMT by using the

obstacle-aware version of FLUTE. The time complexity of their algorithm is also

O(nlogn).

2.2.2 Exact algorithms

In comparison with heuristics, there has been relatively less research on exact al-

goriths for the OARSMT problem. Maze-routing [10] can give optimal solutions

to two-terminal instances. Along with the escape graph, Ganley and Cohoon [31]

presented a topology enumeration scheme to construct optimal three-terminal and

four-terminal OARSMTs.
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Figure 2.14: Locations of virtual terminals of an obstacle.

For multi-terminal instances, a natural idea is to make use of the two-phase ex-

act algorithm (i.e. generate FSTs in the first phase and then concatenate them in

the second phase) which is originally proposed for the RSMT problem. However,

this algorithm cannot be directly applied when obstacles exist in the plane. An

example is shown in Fig.2.13. In the absence of obstacles, a FST has a topology,

as characterized by Hwang, that consists of a backbone and alternating incident

segments connecting the terminals. In contrast, the structures of FSTs in the pres-

ence of obstacles can be very different. Therefore, the construction of FSTs in the

presence of obstacles can itself be a difficult problem that limits the application of

the two-phase algorithm for the OARSMT problem.

Li et al. [36, 48] presented a pioneer work to extend the two-phase approach

to solve the OARSMT problem. The key observation is that, by adding the so-

calledvirtual terminals, the structures of FSTs can be greatly simplified. For each

obstacle, four virtual terminals are added to its four corners as shown in Fig.2.14.

We useT to denote the set of virtual terminals added. The direct impact of adding

virtual terminals is that FSTs can be further decomposed into smaller FSTs by

splitting at these virtual terminals. In Fig.2.15, the FST can be decomposed into a

set of five smaller FSTs each of which is of simple structure. These smaller FSTs

are called FSTs with blockages.

Let t be a rectilinear Steiner tree. A treet ′ is equivalent tot if and only if t ′
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Figure 2.15: Decomposition of a FST.
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Figure 2.16: Forbidden edges in a FST with blockages.

can be obtained fromt by shifting or flipping some edges which have no nodes on

them. With the concept of equivalent trees, a FST with blockage f over a set of

terminalsTf ⊆ (V +T) can be defined as follows:

1. f is an OARSMT overTf ;

2. every terminal inTf has degree one inf and in all its equivalent trees;

3. all the equivalent trees off cannot contain forbidden edges as shown in Fig-

ure2.16. (Otherwise, splitting can be done to further decompose theFST.)

With the definition, it can be easily verified that an OARSMT isa union of

FSTs with blockages. An important theoretical result is that the structures of FSTs

with blockages are the same as those of FSTs in the absence of obstacles. This

indicates that, by adding virtual terminals, we can use the two-phase approach to

construct an OARSMT efficiently. In the first phase, we generate a sufficient set

of FSTs with blockages. In the second phase, we identify and combine a subset

of FSTs with minimum total length such that all real terminals are interconnected.

For simplicity, we will use FSTs to denote FSTs with blockages in the following.
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To generate FSTs with more than two terminals, a modified version of the

Zachariasen’s algorithm [61] is used. To generate FSTs with exactly two termi-

nals, a more efficient way is proposed. For the FST concatenation phase, it can be

formulated as an ILP. Warme’s branch-and-cut algorithm [49] is extended to solve

the ILP. Experimental results showed that the proposed method is able to handle

problems with hundreds of terminals in the presence of multiple obstacles, gener-

ating optimal solution in a reasonable amount of time. However, the performance

is severely affected by the number of obstacles and all the solvable test cases con-

tain less than one hundred obstacles. Moreover, the algorithm can only handle

rectangular obstacles.
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3.1 Introduction

In this chapter, we study the OARSMT problem. In recent years, many heuristics

have been proposed for the OARSMT problem. On the other hand,only few exact

algorithms have been proposed. The state-of-the-art presented in [36] and [48] ex-

tended GeoSteiner [14] to an obstacle-aware version. Their algorithms are able to

generate optimal OARSMTs for multi-terminal nets in the presence of rectangular

obstacles. However, these approaches cannot be applied when there are complex

rectilinear obstacles in the routing region, as is often thecase in the routing prob-

lem. Moreover, their algorithms can only handle benchmarkswith less than one

hundred obstacles, while modern VLSI design may contain over one thousand ob-

stacles. To the best of our knowledge, no previous algorithmcan generate optimal

solutions to the OARSMT problem with a large number of terminals among com-

plex rectilinear obstacles. Although the escape graph model can transform the

OARSMT problem into a graph problem which can be solved optimally by us-

ing some graph based algorithms [41, 15], these approaches are believed to be less

efficient than the geometric approaches for solving the geometric Steiner tree prob-

lem1. An example is GeoSteiner [14] that remains to be the most efficient approach

to solve the RSMT problem when no obstacle exists. Therefore, it is necessary to

develop an efficient exact algorithm that allows the presence of complex obsta-

cles. The aim of this chapter is to propose an algorithm called ObSteiner to con-

struct OARSMTs among rectilinear obstacles of both convex and concave shapes.

To generate OARSMTs, we first study the full Steiner trees (FSTs) among com-

1Standard benchmarks for the Steiner tree problem in graphs also include rectilinear
graphs which correspond to the RSMT problems. When solving these problems, most of
the algorithms [41, 15] will preprocess them by using the first phase of GeoSteiner [14]
to reduce the problem size. Otherwise, the problem will be much more difficult to solve.
This is mainly because the algorithms for Steiner tree problem in graphs cannot exploit the
geometric of the RSMT problem.



3.2. Preliminaries 39

plex obstacles and verify how their structures can be simplified by adding virtual

terminals. We then propose an iterative two-phase approachto construct optimal

OARSMTs based on GeoSteiner.

The rest of this chapter is organized as follows. In Section3.2, we give prelimi-

naries on the OARSMT problem and an exact algorithm for the RSMT problem. In

Section3.3, we study the structures of FSTs among complex obstacles. Section3.4

and3.5describe the proposed exact algorithm in detail. Finally, experiment results

are presented in Section3.6.

3.2 Preliminaries

3.2.1 OARSMT problem formulation

In this problem, we are given a setV of terminals and a setO of obstacles. An

obstacle is a rectilinear polygon. All edges of an obstacle are either horizontal or

vertical. Rectilinear polygons can be classified into two types: convex polygons

and concave polygons. A rectilinear polygon is aconvex rectilinear polygonif any

two points in the polygon have a shortest Manhattan path lying inside the polygon.

Otherwise, it is called aconcave rectilinear polygon.

As shown in Figure3.1, a corner of an obstacle is the meeting point of two

neighboring edges. If the two neighboring edges of a corner form a 90 degree

angle inside the polygon, the corner is called aconvex corner. Otherwise, if the

two neighboring edges of a corner form a 270 degree angle inside the polygon, the

corner is called aconcave corner. If both end points of an edge are convex corners,

this edge is called anessential edge(e.g. Fig.3.1). Note that the essential edge

defined in this chapter is also known as extreme edge in [53, 5]. However, the way

we make use of essential edges is very different.



40 Chapter 3. ObSteiner - an exact OARSMT algorithm

A terminal cannot be located inside an obstacle, but it can beat the corner or

on the edge of an obstacle. The OARSMT problem asks for a rectilinear Steiner

tree with minimum total length that connects all terminals.No edge in the tree can

intersect with any obstacle, but it can be point-touched at acorner or line-touched

on an edge of an obstacle. This tree is known as an OARSMT.

In the following figures, we use a solid circle to denote a terminal and an empty

circle to denote a Steiner point.

ABCDEF GBHCEH

ABCGIDE GBHCEH

JKKECLMIN EOPE

Figure 3.1: Corners and essential edges of an obstacle.

3.2.2 An exact RSMT algorithm

The RSMT problem in the absence of obstacles has been studiedexcessively over

years [16]. Among various approaches, GeoSteiner [14] is the most efficient exact

algorithm in practice. The algorithm is developed based on the construction of

full Steiner trees (FSTs). A FST is a rectilinear Steiner minimum tree in which

every terminal is a leaf node (i.e. of degree one). In the absence of obstacles, it is

proved in [26] that a FST has one of the two generic forms as shown in Fig.3.2,

consisting of a backbone and alternating incident legs connecting the terminals. A

folk theorem states that any RSMT can be decomposed into a setof edge-disjoint

FSTs by splitting at terminals with degree more than one. Since FSTs are much
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(a) (b)

Figure 3.2: FST structures in the absence of obstacles. (a) Type I structure. (b)
Type II structure.

easier to construct than RSMTs, most of the exact algorithmsfor the construction

of a RSMT will first generate its FST components. GeoSteiner makes use of a two-

phase approach, consisting of a FST generation phase and a FST concatenation

phase, to construct a RSMT. In the first phase, a set of FSTs aregenerated such

that there is at least one RSMT composed of the FSTs in the set only. In the

second phase, a subset of FSTs are selected and combined to form a RSMT. The key

observation is that the FST concatenation problem is equivalent to the spanning tree

in hypergraph problem and can be formulated as an integer linear programming. On

the rectilinear plane, GeoSteiner remains the fastest exact algorithm for the RSMT

problem, but it cannot be applied when obstacles exist in therouting plane.
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3.3 OARSMT decomposition

The exact algorithm for the RSMT problem indicates the importance of studying

the structures of FSTs when there are obstacles in the routing region. However,

the structures of these FSTs can be complicated due to the existence of rectilinear

obstacles. We will show in this section how we can simplify the FST structures in

the presence of complex obstacles by adding the so called virtual terminals. In ad-

dition, we will propose a new simple graph model that contains at least one optimal

solution for the OARSMT problem. This section gives the theoretical foundations

for the exact algorithm for the OARSMT problem.

(a) (b)

Figure 3.3: (a) A FST structure in the presence of obsatcles.(b) Decomposition of
FST after adding virtual terminals.

3.3.1 Full Steiner trees among complex obstacles

To construct OARSMTs among complex obstacles, we first studythe FSTs in the

presence of complex obstacles. An example of such a FST in thepresence of one
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Figure 3.4: An example of adding virtual terminals.

obstacle is shown in Fig.3.3(a). As we can observe from the figure, the structure

of FSTs in the presence of obstacles can be very complicated.In such a case, the

construction of FSTs can itself be a hard problem which limits the application of

the two-phase approach to the OARSMT problem. Therefore, virtual terminals

are added to simplify their structures in our approach. These terminals are called

virtual because they can be connected by the OARSMT or not. Itshould be noted

that although virtual terminals are also used in [36, 48], there are critical differences

when dealing with rectilinear obstacles. In this work, the virtual terminals are

added in such a way that there is at least one virtual terminalon every essential

edge of all the obstacles. This is a simplified but sufficient way of adding virtual

terminals in comparison with those in [36, 48]. Note that the location of a virtual

terminal on an essential edge is not restricted. It will not affect the optimality of

the solution. For simplicities, in the following proofs, weassume that the virtual

terminal on an essential edge is located at one of its end points. An example is

shown in Fig.3.4. Note that for two essential edges sharing a common endpoint

at a corner, we only need to add one virtual terminal at that corner. We useU to

denote the set of virtual terminals we added. The direct impact of adding virtual

terminal is that we can further decompose the complicated FSTs (e.g. Fig.3.3(a))
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into smaller and simpler FSTs by splitting at the virtual terminals (e.g. Fig.3.3(b)).

We call these smaller treesFSTs among complex obstacles. In the following, we

will give a formal definition to the FSTs among complex obstacles and prove that

they will follow some very simple structures.

[

\′
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^′

(a)

_

`α

α ′

(b)

Figure 3.5: Two operations on a rectilinear Steiner tree. (a) Shifting and (b) Flip-
ping.

To define FSTs among complex obstacles, we introduce two operations as fol-

lows. As defined in [26], there are two basic operations on a tree that will not

change the total length:shiftingsandflippings, as shown in Fig.3.5. Shifting a

line means moving a line between two parallel lines to a new position. Flipping a

corner means moving the two perpendicular lines of the corner so as to move the

corner to the opposite position diagonally. A rectilinear Steiner treet is equivalent

to another treet ′ if and only if t can be obtained fromt ′ by flipping and shifting

some lines that have no node on them. With these two operations, a FST among

complex obstacles can be defined as follows.

Definition 3.1. A FST f over a set Vf ⊆V +U of terminals is an OARSMT of Vf

such that every terminal v∈Vf is a leaf node in f and in all its equivalent trees.

Moreover, all the equivalent trees of f cannot contain forbidden edges. A forbidden

edge is an edge that passes through a virtual terminal. If a FST f or its equivalent
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trees contain forbidden edges, we can split this FST into smaller FSTs at this virtual

terminal.

Note that the definition of FST in this chapter is similar to the definitions in [36,

48]. However, the obstacles considered in this work are rectilinear polygons, which

are more general and complicated than the rectangles considered in [36, 48]. In the

following, we use FSTs to refer FSTs among complex obstaclesfor simplicities.

To derive the structures of a FST, we mainly follow the steps as described

in [26] and [48]. The main difference is that there can be rectilinear obstacles

in the routing region. For the two operations (i.e. shiftings and flippings) used in

the proofs, it is possible that some of the operations cannotbe performed due to ob-

stacles. We will show in the following how this problem can besolved by adding

virtual terminals.

The notations we are going to use in this section are the same as in [26]. A

vertex can be anode(real terminal or virtual terminal) or aSteiner point. An

edge between two vertices is a sequence of alternating vertical and horizontal lines

and each turning point is acorner. A line has only one direction but may contain

a number of vertices on it.Vxu (Vxd) denotes the maximal vertical line at point

x which is above (below)x excludingx itself. Similarly Hxr (Hxl) denotes the

maximal horizontal line at pointx which is on the right (left) ofx excludingx itself.

If a line ends at a node and contains no other vertices, we callit a node line. If it

ends at a corner and contains no vertices, we call it acorner line. In the following

figures for the proofs, we use an empty circle to represent a Steiner point and an

solid circle to represent a node.

Lemma 3.1. All Steiner points in a FST either have degree three or degreefour.
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Figure 3.6: A structure of two neighboring Steiner points when bothVAu andVBu

exist and∣VBu∣ ≥ ∣VAu∣. (a) In the absence of obstacles. (b) In the presence of an
obstacle. (c) The resulting structure of Lemma3.2.

Lemma 3.2. Let A and B be two adjacent Steiner points in a FST. Suppose that AB

is a horizontal line and both VAu, VBu exist. Then∣VBu∣ ≥ ∣VAu∣ implies that VAu is a

line that ends at a corner turning away from VBu.

Proof. See Fig.3.6(a). SupposeA is to the left ofB.

(i) VAu contains no terminal at its end point, for otherwise we can shift AB to

that terminal and obtain an equivalent tree in which a terminal has degree more than

one. If the lineABcannot be shifted due to some obstacles as shown in Fig.3.6(b),

we can shiftABup until it overlaps with an edgeeof the obstacle. According to the

definition, since the two endpoints ofe are convex corners,e is an essential edge.

Let u be the virtual terminal added one. As a result,AB will pass throughu and

thus is a forbidden edge, which is a contradiction to the definition of FSTs.

(ii) No Steiner points onVAu can have a line going right, for otherwise we can

replaceAB by extending that line to meetVBu and reduce the total length. If the

line cannot be extended due to obstacles, we can repeat the operation described in

the previous step and result in a contradiction.

(iii) Therefore, the upper endpoint ofVAu cannot be a Steiner point since it has

no lines going right or upward, hence it must be a corner turning left, as shown in
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Fig. 3.6(c).

(iv) VAu can contain no Steiner point, for letC be such a Steiner point which is

nearest to the corner point. SinceHCr does not exist,HCl must exist. We can then

shift the line between pointC and the corner point to the left to reduce the total

length, a absurdity. If the line cannot be shifted due to someobstacles (this line

overlaps with an edge of the obstacle and this edge must be a essential edge), the

line will pass through a virtual terminal, an absurdity.

Corollary: Suppose VBu contains a vertex, then VAu is a corner line that ends at a

corner turning away from VBu and ∣VAu∣ < ∣VBu∣.
Proof. By Lemma3.2, if ∣VAu∣ ≥ ∣VBu∣, VBu must be a corner line and can have no

vertex on it. Therefore,∣VAu∣ < ∣VBu∣. Again from Lemma3.2, VAu is a corner line

that ends at a corner turning away fromVBu.

Lemma 3.3. Suppose Vxu (where x is a vertex) is a corner line ends at a corner

turning left (right), then Hxl (Hxr) does not exist.

{|}

~|�

�

Figure 3.7: The structure whenVxu is a corner line ended at a left-turn corner and
Hxl exists.

Proof. See Fig.3.7. If Hxl exists, we can shift the lineVxu to the left and reduce

the total length. If the line cannot be shifted due to some obstacles, the tree will

contain a forbidden edge that passes through a virtual terminal, a violation of the

FST definition.
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Lemma 3.4. No Steiner point can have more than one corner line.

�

(a)

�

(b)

�

(c)

�

(d)

�

(e)

Figure 3.8: Five possible structures when a Steiner point has two corner lines.

Proof. Consider a Steiner pointx with two corner lines. Without loss of generality,

we assumeVxu exists and ends at a corner turning left. The second corner line can

beVxd, Hxl, or Hxr and ends at a corner turning to two different directions. The

case whenHxr exists and ends at a corner turning up is equivalent to the case when

Hxl exists and ends at a corner turning down, and thus can be removed. Therefore,

there are totally five possible cases as shown in Fig.3.8. Fig. 3.8(a) and (e) cannot

exist according to Lemma3.3. Fig. 3.8(b) and (d) is impossible because the third

line at the Steiner point cannot exist by Lemma3.3. Considering Fig.3.8(c), by

Lemma3.3 Hxl cannot exist, and thereforeHxr must exist. We can shift the hor-

izontal line containingx to the left to reduce the wire length, an absurdity. If the

line cannot be shifted due to some obstacles, the tree will contain a forbidden edge

that passes through a virtual terminal, a violation of the FST definition.

Lemma 3.5. If f is a FST, the Steiner points in f form a chain.

Proof. First of all, if f is a FST, the Steiner points inf are connected, for otherwise

some Steiner points have to be connected by terminals of degree two or more.

Therefore we only need to prove that no Steiner point inf is adjacent to more than
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Figure 3.9: Three possible structures when a Steiner point is adjacent to more than
two other Steiner points.

two other Steiner points. Suppose the contrary, and letA be such a Steiner point.

Then from Lemma3.3and Lemma3.4, the connection betweenA and its adjacent

Steiner points must be in one of the three forms as shown in Fig. 3.9.

First, consider Fig.3.9(a) and Fig.3.9(b). SupposeHCl exists. Then, from the

corollary of Lemma3.2, HCl must be a corner line that ends at a corner turning up.

Similarly, if HCr exists, it is also a corner line ends at a corner turning up. Since

C is a Steiner point, at least two of the three linesHCl, HCr andVCu must exist.

However, regardless of which two (or all three) exist, we endup a contradiction to

either Lemma3.3or Lemma3.4.

Next, consider Fig.3.9(c). The argument onHCl is the same as that in

Fig. 3.9(a) and Fig.3.9(b). If HCr exists and∣HCr∣ ≤ ∣HAr∣, the argument onHCr

is again the same. Thus, we only need to discuss the case that∣HCr∣ > ∣HAr∣ (see

Fig. 3.10).

Let α be the corner on the edge connectingA andD. Shift AC to α and let the

new line meetHCr at β. Now, the tree contains a Steiner pointα that is adjacent to

three other Steiner pointsβ, B andD in the form of Fig.3.9(a), which has already

been shown to be impossible. IfAC cannot be shifted due to some obstacles, we

can shiftAC to the boundary of the obstacle and achieve an equivalent tree with
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Figure 3.10: Special structure of one Steiner point with more than two neighboring
Steiner points.

forbidden edges, a contradiction to the assumption thatf is a FST.

We call the chain of Steiner points theSteiner chain.

Lemma 3.6. Suppose f is a FST. Then its Steiner chain cannot contain the sub-

graph shown in Fig.3.11.

� �

�

Figure 3.11: An impossible Steiner chain structure in a FST.

Proof. SupposeHAr exists. Then from the corollary of Lemma3.2, HAr is a corner

line. SinceHAr andVAu cannot both exist by Lemma3.3, HAl must exists forA is a

Steiner point. IfHAr exists, we can simply shiftAB to αβ, as shown in Fig.3.12(b),

and obtain a similar structure as Fig.3.12(a). Therefore, in the following, we can

just consider the case whenVAu exists.



3.3. OARSMT decomposition 51

� �

�
�

(a)
  ¡

¢£ ¤

¥

(b)

Figure 3.12: Two possible Steiner chain structures.

From Lemma3.3, HAl cannot be a corner line. Besides,HAl cannot contain any

Steiner points. IfHAl contains a Steiner pointS, VAu cannot contain any Steiner

points by Lemma3.5. If VAu is a corner line, it must be a corner turning right by

Lemma3.3. We can shift the line between the corner andB to the right and obtain

a similar structure as Fig.3.12(a). Therefore, we can assume without loss of gen-

erality thatVAu is a node line. SinceS is a Steiner point, two of the linesHSl, VSu

andVSd must exist. By the corollary of Lemma3.2, VSu andVSd must be corner

lines and the corners must turn away fromAB. As a result, by Lemma3.3 and

Lemma3.4, HAl cannot contain any Steiner point. Moreover,HAl cannot contain

more than one node for the tree is a FST. Therefore,HAl is a node line. By sym-

metry,VCd exists and is a node line. SinceB is a Steiner point, at least one of the

linesHBl orVBd exists. We first assume thatVBd exists andVBl does not exist. Since

VCd contains a vertex (see Fig.3.13), by the corollary of Lemma3.2, VBd must be a

corner line that ends at a corner (denoted byβ) turning left and connects to a node

b by Lemma3.5. But this is impossible, for otherwise we can shiftBC to βα to ob-

tain a tree in which bothHAl andHβl are node lines, a contradiction to Lemma3.2.

If the line cannot be shifted due to some obstacles, the tree or its equivalent will
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contain forbidden edges, an absurdity. Similarly,HBl cannot exist. As a result,B

cannot be a Steiner point which is contradictory to the assumption.

¦
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Figure 3.13: The topology whenVBd exists.

Define a staircase to be a continuous path of alternating vertical lines and hor-

izontal lines such that their projections on the vertical and horizontal axes have no

overlaps.

Lemma 3.7. Suppose f is a FST. The Steiner chain of f is then a staircase.

®¯

° ±

Figure 3.14: A structure of the Steiner chain when it bends back.

Proof. Suppose that the Steiner chain bends back as shown in Fig.3.14, whereA

andB are Steiner points that are closest to the turning pointsα andβ. There must

be at least two Steiner points onαβ, for otherwise we can shiftαβ to the left and

reduce the total length. If the line cannot be shifted due to some obstacles, the tree

will contain forbidden edges. From Lemma3.6, neitherα nor β can be a Steiner
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point. From Lemma3.3 and Lemma3.5, the horizontal line of any Steiner point

on αβ must be a node line and the first one belowAα must be a line going right.

From the corollary of Lemma3.2, the adjacent Steiner points onαβ cannot have

horizontal lines going in the same direction. Therefore,αβ must have more left

lines (includingAα andBβ) than right lines, which implies that we can shiftαβ to

the left and reduce the total length, an absurdity.

Lemma 3.8. Suppose f is a FST. The Steiner chain of f cannot contain a corner

with more than one Steiner points on the two neighboring lines.

²

³
´ µ

α
Figure 3.15: A corner with more than one Steiner point on eachline.

Proof. Suppose to the contrary thatf contains the subgraph shown in Fig.3.15.

From Lemma3.3, VCu does not exist. Thus,VCd exists and is a node line by

Lemma3.3 and Lemma3.5. SupposeVDd exists. Then from the corollary of

Lemma3.2, VDd is a corner line. As a result,HDr does not exist by Lemma3.3.

ThereforeVDd andHDr cannot both exist, and henceVDu must exist and is a node

line by Lemma3.3and Lemma3.6. If ∣VDu∣ ≤ ∣Bα∣, we can shiftDα to the node on

VDu and obtain an tree in which a node has degree two. If the line cannot be shifted,

the tree will contain forbidden edges. If∣VDu∣ > ∣Bα∣, we can shiftDα to B moving

the Steiner pointC to C′. But the induced subgraph betweenABC′ cannot exist by

Lemma3.6. Again, the line can be shifted, or else it cannot be a part of aFST.
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Lemma 3.9. Suppose f is a FST. If the number of Steiner points is greater than

two, either every vertical line on the Steiner chain contains more than one Steiner

points (except possibly the first and the last vertical lines) and every horizontal line

on the Steiner chain contains no Steiner point except at the end point, or vice versa.

¶

·

Figure 3.16: A possible structure of the Steiner chain.

Proof. By Lemma3.4, a Steiner point cannot have two corner lines. Hence at

least two of the first three Steiner points (counting from either end) are collinear.

Without loss of generality, suppose the first collinearity occurs on a vertical line.

Let A be the first Steiner point (if any) not on the vertical line. ThenA is connected

to its preceding Steiner point through a corner as shown in Fig.3.16by Lemma3.6.

Let B be the Steiner point (if any) succeedingA. ThenA andB must be on the same

vertical line, for otherwise either Lemma3.8 is contradicted (ifA andB are on the

same horizontal line), or Lemma3.4 is contradicted forA has two corner lines (if

A andB are connected through a corner). If there are more Steiner points afterB,

we repeat the above argument to prove Lemma3.9.

Note that the structure of a FST is not affected by ninety degree rotation. In the

following lemmas and theorems, we assume that iff is a FST, the corresponding

Steiner chain will consist of a set of vertical lines and adjacent vertical lines are
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connected by corners. We label theith Steiner point on the chain counting from

above byAi .

Lemma 3.10.Suppose f is a FST. Every Steiner point on f must have a horizontal

node line and the node lines alternate in the left-right direction.

Proof. Note that a horizontal line not on the Steiner chain cannot contain any

Steiner points, nor can it contain more than one node sincef is a FST. There-

fore it suffices to show that there exists a horizontal line and it cannot be a corner

line.

(i) If the Steiner point is connected to its preceding Steiner point through a

corner (A in Fig. 3.16), the third line of the Steiner point cannot be a vertical line

according to Lemma3.3. Therefore, the third line must be horizontal and it cannot

be a corner line by Lemma3.4.

(ii) If the Steiner point is on the vertical line of the Steiner chain (B in Fig.3.16),

the third line must be horizontal and it cannot be a corner line by Lemma3.3.

By the corollary of Lemma3.2, two adjacent Steiner points on the same line

cannot have node lines on the same side. For the Steiner points connected through

corner, it is also easy to prove this (Lemma3.3). Hence, if f is a FST, the node line

on the Steiner chain must alternate in the left-right direction.

The proofs of the above lemmas are similar to those in [48], except that of

Lemma3.11in which flippings are required. In this chapter, a differentlemma is

proposed.

Lemma 3.11.Let Ai be the ith Steiner point on the Steiner chain of a FST. A corner

connecting Ai and Ai+1 can be transferred to either one connecting Ai−2 and Ai−1,

or one connecting Ai+2 and Ai+3, regardless of whether the place it transfers to has
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a corner of not. If the corner cannot be transferred due to obstacles, Ai+3 is the last

Steiner point or Ai is the first Steiner point on the chain (if Ai+3 or Ai exist).
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Figure 3.17: A structure of Steiner chain whenAi and Ai+1 are connected by a
corner.
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Figure 3.18: A structure of Steiner chain when the corner betweenAi+2 andAi+3
can not be flipped due to obstacles.
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Proof. From Lemma3.9 and Lemma3.10, whenAi andAi+1 are connected by a

corner, the graph must be the one given in Fig.3.17. We useai to denote the node

connected byAi .

Necessarily∣ai+2Ai+2∣ > ∣αAi+1∣, for otherwise we can shiftAi+1Ai+2 to ai+2 and

obtain an equivalent tree in whichai+2 has degree two. Now shiftAi+1Ai+2 to α and

suppose this line meetsai+2Ai+2 at γ. Flip the cornerAi+2 betweenγ andAi+3. The

corner connectingAi andAi+1 is then transferred to one connectingAi+2 andAi+3.

If the cornerAi+2 cannot be flipped due to obstacles andAi+4 exists, the graph

must be the one given in Fig.3.18, in which there are obstacles inside the bounded

rectangular region defined byAi+2 andAi+3. We useβ to denote the corner con-

nectingAi+2 andAi+3. We can shiftβAi+4 to the left until it meets an edgeeon one

of the obstacle inside the rectangular region. Similar to the proof for Lemma3.1,

e is an essential edge and has a virtual terminal on it. Therefore, the FST has an

equivalent tree that passes through a virtual terminal, a contradiction. If shifting

βAi+4 meetsai+4 first, the FST has an equivalent tree in whichai+4 has degree two,

again a contradiction. As a result, if the corner cannot be transferred due to obsta-

cles,Ai+3 is the last Steiner point on the chain if it exists. Similarly, we can transfer

the corner to one connectingAi−2 andAi−1. If the corner cannot be transferred,Ai

is the first Steiner point on the chain if it exists.

Note that ifAi+3 does not exist, the above operation eliminates the corner be-

tweenAi andAi+1.

Lemma 3.12. Suppose f is a FST and let m be the number of Steiner points on f .

There exists a f′ equivalent to f such that

(i) if m is odd, the Steiner chain of f′ is a straight line.

(ii) if m is even, all the Steiner points are on a straight lineexcept possibly the

last one.
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Proof. By pushing the corners along the direction according to Lemma3.11, there

will be at most one corner connecting the last two Steiner points. If m is odd, the

corner can be eliminated.

(a) (b) (c) (d)

Figure 3.19: Possible structures of a FST among complex obstacles. (a) Type I
structure. (b) Type II structure. (c) Type III structure. (d) Type IV structure.

To summarize, if the Steiner chain is a straight line, the horizontal node line

linked to the sequence of Steiner points must alternate in the left-right directions.

Hence, each Steiner point has exactly one horizontal node line except the first and

the last one. Similar as in [48], by putting all of the above lemmas together, we can

have the following conclusion:

Theorem 3.1.The structures of a FST among complex obstacles must be in oneof

the four forms as shown in Fig.3.19.

As we can observe from the figures, the structures of FSTs in the presence of

rectilinear obstacles are very similar to those in [26] and [48]. The first two struc-

tures are exactly the same as those in [26] and [48]. However, in the presence of
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complex obstacles, the FSTs have two additional structures. A main characteris-

tic of these two additional structures is that the last corner connecting two Steiner

points or one Steiner point and one terminal is blocked by some obstacles. The

similarities indicate that we can use the same method to construct the FSTs defined

in this chapter efficiently, making it possible to use the two-phase approach to solve

an OARSMT problem in the presence of complex rectilinear obstacles.

3.3.2 More Theoretical results

We mentioned in the previous section that the OARSMT problemcan be trans-

formed into a graph problem by using the escape graph. The escape graph is known

to be the simplest graph model that contains at least one optimal solution to the

OARSMT problem. In this section, we will introduce a new graph calledvirtual

graph that is simpler than the escape graph. Based on the theorem wepresented

in the previous section, we will show that the virtual graph is a strong connection

graph that contains at least one optimal solution.

áâ

ãä

åæ

Figure 3.20: Escape graph.
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The escape graph consists of two types of segments. The first type is the seg-

ments that extend from the terminals in the vertical and horizontal directions, and

end at an obstacle boundary or the boundary of the whole routing region. The other

type of segments is obtained by extending boundary segmentsof each obstacle un-

til an obstacle boundary or the boundary of the whole routingregion is met. The

vertices of the graph are the terminals and the segment intersection points. An ex-

ample is given in Fig.3.20where there are three terminals in the presence of three

rectilinear obstacles. Therefore, the size of the escape graph isO((m+b)2), where

m is the number of terminals andb is the number of obstacle boundary segments.

It is proven in [30] that for any OARSMT problem, there is at least one optimal

solution composed only of the escape segments in the escape graph. The impor-

tance of the escape graph is that, with this model, one can transform the geometric

OARSMT problem into a graph problem. As a result, some graph based searching

algorithms [41, 15] can also be applied to this problem. The introduction of escape

graph has also led to a set of heuristics [54, 55] for the OARSMT problem.
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Figure 3.21: Virtual graph.
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In the following, we will introduce a new graph called virtual graph based on

the virtual terminals we added to the problem. The virtual graph is composed of

two types of segments. The first type is the segments that extend from the terminals

and virtual terminals in the vertical and horizontal directions, and end at an obstacle

boundary or the boundary of the whole routing region. The second type is the

obstacle boundary segments. The vertices of the graph are the terminals, virtual

terminals and the segment intersection points. An example is shown in Fig.3.21.

Theorem 3.2. For any OARSMT problem, there is at least one optimal solution

contained in the virtual graph.

Proof. Any optimal OARSMT can be decomposed into a set of FSTs among com-

plex obstacles. By Theorem3.1, there are only two types of segments in the FSTs.

The first type is the segments that extend from either a terminal or virtual terminal

horizontally or vertically. The second type is the segmentsthat go around obsta-

cles. By the definition of the virtual graph, it can be easily verified that all FSTs

can be further decomposed into segments in the virtual graph. Therefore, there is

at least one optimal solution contained in the virtual graph.

By Theorem3.2, we can see that virtual graph is also a strong connection graph.

The size of the graph isO((m+e)2+b), wheree is the number of essential edges.

In comparison with the escape graph, the size of the virtual graph is smaller. In the

particular examples shown in Fig.3.20and3.21, the escape graph consists of 184

nodes and 319 edges while the virtual graph only consists of 104 nodes and 158

edges. The simplicity of virtual graph also benefits from theflexibility in choosing

the positions of the virtual terminals. Note that we only require one virtual terminal

on each essential edge. As shown in Fig.3.21, three virtual terminals are chosen

to be internal points of essential edges to align with real terminals or other virtual
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terminals. This can further reduce the size of the graph.

Proposing a simple graph model is of vital importance for theOARSMT prob-

lem. Since the problem is NP-complete, a simpler graph can lead to a dramatic

reduction of the solution space. Moreover, this graph modelis also promising for

the graph-based heuristics to improve their performance.

3.4 OARSMT construction

An OARSMT can be partitioned into a set of FSTs by splitting atreal terminals

or virtual terminals of degree more than one. Therefore, anyOARSMT is a union

of FSTs. As we can observe, FSTs are much easier to generate than OARSMTs.

Therefore, one possible way to construct an OARSMT is to firstconstruct its FSTs

components and then combine a subset of them.

Similar to [48], we adopt a two-phase approach to construct an OARSMT. The

first phase is to generate a set of FSTs. The second phase is to combine a subset

of FSTs generated in the first phase to construct an OARSMT. Inour early experi-

ments, we found that the FST concatenation phase usually dominates the total run

time. Therefore, we propose a pruning algorithm to further eliminate useless FSTs

resulting from the FST generation phase. This can reduce thenumber of FSTs that

needs to be considered in the second phase leading to a significant improvement on

the total run time.

3.4.1 FST generation

To grow FSTs of a RSMT, Zachariasen [61] proposed an efficient algorithm in

which some pre-processing information is applied to prune away those FSTs that

are not required in any RSMTs. In this chapter, we modify thisalgorithm for the
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generation of FSTs with blockages. Our FST generation algorithm differs from

the previous one in the following aspects. First, we extend the screening tests to

handle virtual terminals and blockages. Second, we developan efficient approach

to construct two-terminal FSTs when virtual terminals exist.

3.4.1.1 Generation of FSTs with three or more terminals

The structures described in Theorem3.1will be used to identify FSTs. To reduce

the number of resulting FSTs, we identify some necessary conditions for a FST to

be a part of an OARSMT as in [61]. Most of the conditions in [61] are applicable

to the proposed FSTs after some modifications. In the following, we will focus on

the modifications made when obstacles and virtual terminalsexist.

The bottleneck Steiner distancecan be used to eliminate useless FSTs when

obstacles exist. Let OARMST(V) be an obstacle avoiding rectilinear minimum

spanning tree of the point setV and vi , v j ∈ V be a pair of vertices. The bot-

tleneck Steiner distanceδOARMST(viv j) betweenvi and v j is equal to the length

of the longest edge on the unique path betweenvi andv j in OARMST(V). Sa-

lowe et al. [45] proposed a theorem stating that ifMST andSMT are respectively

a minimum spanning tree and a Steiner minimal tree on a set of verticesV, then

δMST(viv j) ≥ δSMT(viv j) for any vi ,v j ∈ V. It can be easily verified that the prop-

erty also holds for OARMST(V) and OARSMT(V). For a FSTf to be part of an

OARSMT, we require thatδMST(viv j) ≥ δs(viv j) for anyvi ,v j ∈ f ∩V.

The empty diamond propertyproposed in [61] states that no other points of

the RSMT can lie inL (u,v), whereuv is a (horizontal or vertical) segment and

L (u,v) is an area on the plane such that all the points in this area arecloser to

bothu andv thanu andv are to each other. However, when there are obstacles and

virtual terminals, the points which cannot lie inL (u,v) are the real terminals inV
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only.

Theempty corner rectangle propertyis also proposed in [61]. Let uw andvw

denote two perpendicular segments sharing a common endpoint w. Then, no other

points of the RSMT can lie in the interior of the smallest axis-aligned rectangle

containingu andv. However, when there are obstacles and virtual terminals inthe

routing region, we only need to consider real terminals which can be projected on

uwandvw without intersecting with any obstacles.

We also make use of theempty inner rectangle propertyproposed in [61]. A

FST can be transformed to its corner-flipped version by shifting segments and flip-

ping corners. The empty inner rectangle property states that no terminal (real or

virtual) should be located between the backbone of the origin topology and that of

the corner-flip topology.

Based on the above properties, we can generate all the required FSTs by grow-

ing them recursively as in [61].

3.4.1.2 Generation of FSTs with two terminals

For those FSTs with exactly two terminals, we will constructthem by the following

method. First of all, these FSTs can be divided into two types. The first type has its

two end points both inV. The second type has at least one of its end points inU .

For the first type, we can construct them according to the following lemma

which is proposed by Fößmeieret al. [17].

Lemma 3.13. Let G= (W,E) be a graph with edges assigned mutually distinct

weights and let W′ be a subset of W. Let L be an MST of G and L′ be an MST of

G[W′], the subgraph of G induced by W′. Then every edge(u,w) in L where both

u and w are in W′ will also appear in L′.
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This lemma indicates that every two-terminal FST, in the OARSMT and with

its two end points both inV, will also appear in the OARMST ofV. In order to

generate all possible type one two-terminal FSTs, we only need to construct an

OARMST of V and include all the edges in it as candidates. In order to handle

the requirement of mutually distinct weights, we arrange the edges with the same

length by comparing their positions in the edge array. The one that has a smaller

index is assumed to be “shorter”. Note that this will not affect the optimality of the

generated OARSMT.
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Figure 3.22: The eight regions of a terminal.

For the second type, we will make use of a lemma proposed by Yao[58]. We

know that at least one of the two end points of the FST under construction is inU

and the rectangular area covered by the two end points is obstacle free (otherwise

we can flip the edge to the boundary of the obstacle to obtain anequivalent tree with

forbidden structures). For each virtual terminalu ∈U , we divide its surrounding

area into eight regionsRi for i = 1, . . .,8, as shown in Fig.3.22. In every regionRi ,

we find the pointv ∈V that has the shortest manhattan distance (duv) from u and

the rectangular area covered byu andv has no obstacle. Then, the edge connecting

u and v is a two-terminal FST candidate. In this regionRi , we also find those

pointsw ∈U with distanceduw ≤ duv and the rectangular area covered byu andw
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is obstacle free. Then, the edge connectingu andw will also be included as a FST

candidate. To verify the correctness of this approach, we assume on the contrary

that there exist a two-terminal FST in the OARSMT, but not in our candidate set.

Without loss of generality, we useu∈U andw ∈V +U to denote the two end points

of the FST. Assume thatw is in theRk region ofu. Since the FST is not in our

candidate set, there exist a terminalv ∈V in Rk such thatduv < duw. According

to [58], we havedwv< duw, but this is impossible for otherwise we can delete(u,w)
and connect either(u,v) or (w,v) to build a shorter tree. Therefore, the FST cannot

exist which proves the correctness of our approach.

Based on the above methods, we can find all necessary two-terminal FSTs.

Since the number of two-terminal FSTs is very large, some techniques are adopted

to remove redundancies. Firstly, the empty diamond property is tested for every

two-terminal FST and those that fail to satisfy the condition will be eliminated.

Secondly, according to the definition of FSTs, we will removean edge if the rect-

angular area covered by the end points is not obstacle free. Finally, the empty inner

rectangle property is checked. If the rectangular area covered by the end points is

obstacle free but contains some terminals inU , we will also remove the FST. This

technique has also been adopted by Zachariasen in [61].

3.4.2 Pruning of FSTs

We propose an efficient pruning procedure to reduce the number of FSTs needed to

construct an OARSMT. Although some pruning is also done in the FST generation

phase, these tests consider only one FST at a time. To furthereliminate useless

FSTs, a set of FSTs should be considered simultaneously. Theproposed pruning

algorithm works by growing a FSTf to larger trees and test if these larger trees

can exist in the optimal solution. We know that virtual terminals in an OARSMT
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must have degree two, three or four. Therefore, it is possible to grow a tree at a

leaf node which is a virtual terminal. The growing is done by combining FSTs at

virtual terminals. The rationale behind is that a FSTf can be eliminated if no tree

grew from f can exist in an OARSMT. The pseudocode of the pruning algorithm

is shown in Fig.3.23.

The input of the function PRUNE(f ) is a FST f . The function returns a value

trueor f alseto indicate whetherf can be eliminated or not. A queueQ is used to

store all the trees we can grow fromf during the test. Initially,Q containsf only.

The algorithm repeatedly removes a treeT from Q and tests ifT can be a part of

any OARSMT. The function PASS_TEST(T) returnstrue if T passes all the tests

used to eliminate useless trees. In this case, the function LEAST_DEGREE(T)

is used to select a virtual terminalu that is also a leaf node ofT. If there are

more than one such virtual terminals, the function returns the one that is connected

by the least number of FSTs. The algorithm then tries to growT by connecting

T with combinations of FSTs atu. All such expansions are added to the queue.

If PASS_TEST(T) returns f alse, T can be eliminated and no more expansion is

needed. The algorithm stops whenQ is empty which means that no tree grew from

f can be in an OARSMT. We can then safely eliminatef . If at some pointQ is full

or all leaf nodes ofT are real terminals, the algorithm terminates and returnsf alse.

Four tests are used in the function PASS_TEST(T) to eliminate useless trees.

In the following, we letVT ⊆V +U be the set of terminals connected byT.

The first test tries to construct a shorter tree that spans thesame set of terminals.

Lemma 3.14. T cannot be a part of any OARSMT over V, if the length of T is

larger than the length of an OARSMT over VT .

Proof. If T is part of a Steiner minimum tree, we can replaceT with the OARSMT

overVT , yielding a tree with shorter length, an absurdity.
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Algorithm 1: PRUNE(f )
Input: f
Output: trueor f alse

1: initialize a queueQ
2: push f →Q
3: while Q is not emptydo
4: popT ←Q
5: if PASS_TEST(T) then
6: if ALL_REAL(T) then
7: return f alse
8: end if
9: u = LEAST_DEGREE(T)

10: S= { fi ∶ ( fi ∈ F)∧(u ∈ fi)∧( fi ⊈ T)}
11: for all T ′ ∈ ( S

1
)∪( S

2
)∪( S

3
) do

12: pushT ∪T ′→Q
13: if Q is full then
14: return f alse
15: end if
16: end for
17: end if
18: end whileRETURNtrue

Figure 3.23: Pseudocode of the pruning algorithm

To compute an OARSMT overVT , we will include all FSTs that span exactly a

subset ofVT and pass them to the FST concatenation phase. Since the computation

of OARSMT overVT can be expensive, this test is performed only when the number

of terminals inT is less than a predefined number (this number is set to 30 in our

implementation).

The second test makes use of the bottleneck Steiner distance. Let (V +U,E,c)
be the distance graph2 of V +U , with E being the set of edges between every pair

of terminals inV +U andc ∶E→R+ being a positive length function onE. A path

P in the distance graph is an elementary path if both of its two endpoints are inV.

2A distance graph is a graph formed from a collection of pointsin the plane by con-
necting every two points by an edge, and the edge weight equals to the distance between
the two points.
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The Steiner distance ofP is the length of the longest elementary path inP. The

bottleneck Steiner distancesu,v betweenu andv is the minimum Steiner distance

over all the paths fromu to v in (V +U,E,c). Such a path is known as a bottleneck

Steiner path.

Lemma 3.15.T cannot be a part of any OARSMT over V , if the length of the tree

c(T) is larger than the length of the minimum spanning tree over VT in (V+U,E,s)
(the graph that uses distances su,v as a measure of the edge weight for every pair

of terminals).

Proof. It is proven in [15, 41] that if c(T) is larger than the length of the minimum

spanning tree overVT in (V+U,E,s), a tree shorter thanc(T) spanningVT exists in

(V +U,E,c). As a result, in such a case,T cannot be a part of any OARSMT.

The third test compares the tree distance and the bottleneckSteiner distance

between two terminals inT.

Lemma 3.16.Let u and v be two terminals in T and tu,v be the length of the longest

edge on the path between u and v in T . T cannot be a part of any OARSMT over

V , if tu,v > su,v.

Proof. Assume the contrary thatT is in a Steiner minimum tree. Remove the

longest edge on the path betweenu andv in T and the Steiner minimum tree is

divided into two components. Along the bottleneck Steiner path betweenu andv,

let P′ be an elementary path such that its two endpoints are in different components.

Note that the length ofP′ should be no larger thansu,v. Therefore, we can reconnect

the two components byP′ yielding a shorter tree, a contradiction.

Note that the second and third tests both make use of the bottleneck Steiner

distance between pairs of vertices. The bottleneck Steinerdistance between any
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pair of verticesu andv in the graph(V +U,E,c) can be obtained by determining

the Steiner distance on the path between these two vertices in the spanning tree

overV.

The fourth test exploits the lower and upper bounds on the length of a Steiner

minimum tree. To obtain the lower bound on the length of an OARSMT, one way

is to solve the linear programming relaxation of the FST concatenation problem

formulation as described in [48]. However, this approach is not practical due to

its high computational cost. An alternative is the dual ascent heuristic proposed

in [52], which is a fast heuristic that provides a lower bound for the Steiner ar-

borescence problem in a directed graph. To apply this method, we first construct

a directed graph(V +U +S,EF ,d). S is the set of all Steiner points in all FST.EF

is the set of directed edges which is generated by transferring each edge in a FST

to its two directed versions.d ∶ EF →R+ is the edge length function. It can be

easily verified that the FST concatenation problem is equivalent to finding a short-

est arborescence tree in(V +U +S,EF ,d) that rooted at a terminalz and spans all

the other terminals inV. As a result, we can use the dual ascent heuristic to com-

pute the lower bound and the associated reduced cost for eachedge. To compute

an upper bound, the maze routing based heuristic proposed in[35] is used. In the

following, let lower be the lower bound,upperbe the upper bound,r ∶EF →R+ be

the reduce cost3 function onEF , andr(u,v) be the reduced cost distance betweenu

andv in the graph. Letl1, l2, . . ., lk be the leaves ofT and
Ð→

T i be the directed version

of T rooted atl i . We user(Ti) to denote the reduced cost of
Ð→

T i .

Lemma 3.17.T cannot be a part of any OARSMT over V, if lower+mini{r(z, l i)+
3Finding a shortest arborescence tree in a graph can be formulated as an integer linear

programming. In linear programming, the reduced cost valueindicates how much the
objective function coefficient on the corresponding variable must be improved before the
value of the variable will be positive in the optimal solution.
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r(Ti)+∑ j≠i minv∈V−{z}r(l j ,v)} > upper in which z is the root node.

Proof. It is proven in [41] that lowerconstrained= lower+mini{r(z, l i) + r(Ti) +
∑ j≠i minv∈V−{z}r(l j ,v)} is a lower bound for the length of any Steiner tree with

the additional constraint that it containsT. Therefore, iflowerconstrained> upper,

T cannot be a part of any OARSMT.

If T fails any of these four tests, PASS_TEST(T) returns f alse, andT can be

eliminated.

3.4.3 FST concatenation

The second phase of the algorithm is to use the FSTs generatedin the first phase to

construct an OARSMT spanning all real terminals with the minimum total length.

In the construction of RSMTs, Warme [49] found that the FST concatenation prob-

lem is equivalent to the minimum spanning tree problem in hypergraph and formu-

lated it as an integer linear program (ILP). A branch-and-cut algorithm is used to

solve this problem. In this section, we will show that the FSTconcatenation prob-

lem in this chapter can also be formulated as an ILP and solvedby using the branch-

and-cut search. Generally, our FSTs concatenation phase differs from the previous

one in the following aspects. We modify the ILP formulation for FST concatena-

tion and the separation algorithm in [49] to handle virtual terminals. New features

are introduced to accommodate the presence of virtual terminals. We also provide

a theoretical proof to verify the correctness of the new separation algorithm.

3.4.3.1 ILP formulation

In the following, letF be the set of all FSTs found. LetV be the set of all real

terminals andU be the set of all virtual terminals. Let∣V ∣ be the number of real
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terminals,∣F ∣ be the number of FSTs inF and ∣U ∣ be the number of virtual ter-

minals. Each FSTfi ∈ F is associated with a binary variablexi indicating whether

fi is taken as a part of the OARSMT. Besides, there are binary variablesyi for

i = 1. . . ∣U ∣ indicating whether virtual terminalui ∈U is connected in the OARSMT.

We use∣ fi ∣ to denote the size offi , i.e., the number of terminals (including virtual

ones) connected byfi , and usel i to denote the length offi . The ILP formulation is

as follows.

Minimize:

∣F ∣∑
i=1

l i ×xi . (3.1)

Subject to:

∣F ∣∑
i=1

xi(∣ fi ∣−1) = ∣V ∣−1+ ∣U ∣∑
i=1

yi , (3.2)

2y j ≤ ∑
i∶u j∈ fi

xi ∀u j ∈U, (3.3)

4y j ≥ ∑
i∶u j∈ fi

xi ∀u j ∈U, (3.4)

∑
i∶ fi∈(X∶V+U−X)

xi ≥ 1

∀X ⊆V +U andV ⊈X andX∩V ≠ ∅, (3.5)

∑
i∶ fi∩X≠∅

xi(∣ fi ∩X∣−1) ≤ ∣X∩V ∣+ ∑
i∶ui∈X

yi −1

∀X ⊂V +U andX∩V ≠ ∅ and∣X∣ ≥ 2, (3.6)

∑
i∶ fi∩X≠∅

xi(∣ fi ∩X∣−1) ≤ ∑
i∶ui∈X

yi −maxi∶ui∈X(yi)
∀X ⊆U and∣X∣ ≥ 2. (3.7)

The notation(X ∶V+U −X) in (3.5) means{ fi ∈F ∶ fi∩X ≠∅∧ fi∩(V+U −X)≠
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∅}. Constraint (3.2) is thetotal degree constraint. It requires the right amount of

FSTs to construct an OARSMT. Each selected FSTfi contributes∣ fi ∣−1 edges for

the tree. Since we do not know the exact number of terminals inthe tree,∑∣U ∣i=1yi

is added to indicate the number of selected virtual terminals. Constraints (3.3)

and (3.4) bound the degree of any selected virtual terminal to be two,three, or

four. Constraints (3.5) are thecutset constraints. The constraints require that a

solution should be connected, that is, for any cut with partitionsX andV +U −X,

there must be at least one selected FST to connect them. We requireX∩V ≠ ∅ and

V ⊈ X, because we do not need to ensure the connectivity of the virtual terminals.

Constraints (3.6) and (3.7) are thesubtour elimination constraintsthat are used to

eliminate cycles. In (3.6), we consider those setsX∩V ≠∅. Sinceyi tells whetherui

is selected,∣X∩V ∣+∑i∶ui∈X yi gives the exact number of selected terminals including

virtual ones inX. In (3.7), we use∑i∶ui∈X yi to indicate the number of selected

terminals inX. Since it is possible that the number of selected terminals in X

is equal to zero, we do not simply subtract one from the right hand side of the

inequality. Instead, the term maxi∶ui∈X(yi) is used to ensure that the inequality is

not binding when the number of selected terminals inX is zero.

3.4.3.2 Branch-and-cut

The ILP described in the above section is solved via a branch-and-cut framework

using lower bounds provided by the linear programming (LP) relaxation. We adopt

the algorithm proposed by Warme [49] and extend it for solving the ILP formula-

tion of our FST concatenation problem. The pseudocode of thealgorithm is shown

in Fig. 3.24. In the following, we will give a brief overview of the algorithm, in-

cluding initialization, node processing, and branching, and point out the differences

in the separation algorithm in order to deal with our formulation. The readers may
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refer to [49] for more details.

Algorithm branch-and-cut(F)
Input: F // The set of all FSTs
Output: OARSMT

1: initialization
2: add the first node to the node list
3: while node list is not emptydo
4: select a node from the node list
5: repeat
6: node processing
7: if LP feasibleand objective value< best known objec-

tive valuethen
8: if the LP solution is integral and connectedthen
9: save it as the best known integral solution

10: end if
11: separation
12: end if
13: until 1: LP infeasible,or

2: objective value≥ best known objective value,
or

3: separation found no violation
14: if case 1or case 2then
15: delete the current node
16: end if
17: if case 3then
18: if the solution is fractionalthen
19: branching
20: end if
21: if the solution is integralthen
22: delete the current node
23: end if
24: end if
25: end while
26: return the best integral solution // OARSMT

Figure 3.24: Pseudocode of the branch-and-cut algorithm.

Initialization

Since there are an exponential number of constraints according to the problem

formulation, we handle them incrementally by using some separation methods.
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A constraint pool is used to keep all the currently processing constraints of the

ILP. At the beginning of the algorithm, the constraint pool is initialized with the

total degree constraint (3.2), constraints for virtual terminals (3.3) and (3.4), all

one-terminal cutset constraints ((3.5) with ∣X∣ = 1), and all two-terminal subtour

elimination constraints ((3.6) and (3.7) with ∣X∣ = 2). Besides, an LP tableaux is

constructed to store the constraints (which is a subset of the constraints retained

in the constraint pool) being handled by the LP solver. The initial LP tableaux

consists of all the constraints in the constraint pool except the two-terminal subtour

elimination constraints.

Node processing

The objective of the node processing procedure is to computean optimal LP

solution over the current constraint pool. The process begins with solving a linear

relaxation with the constraints in the LP tableaux. If a solution exists, we will

scan the constraint pool and check for violations. All violated constraints found

will be added to the LP tableaux which is solved again in the next iteration. This

operation terminates when the LP solution satisfies all the constraints in the pool

(LP feasible) or a feasible solution does not exist (LP infeasible). If the result is

LP infeasible or the objective value of the LP solution exceeds the objective value

of the best known integral solution, the processing of this node ends and the node

will be deleted. If the objective value of the LP solution is better than that of the

best known integral solution, the integrality and connectivity of the LP solution

is checked. If the solution is both integral and connected, it is saved as the best

known integral solution. A separation procedure will then be invoked. Note that

after obtaining an optimum over the current pool, slack constraints4 will be deleted

from the LP tableaux (but are retained in the constraint pool).

4Slack values of linear constraints are available to be queried from the LP solver.
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Separation

The objective of the separation procedure is to find a set of constraints that is

not present in the constraint pool, but is violated by the current solution. These

constraints will be added to the constraint pool. There are mainly two sets of

constraints to be considered, namely the cutset constraints (3.5) and the subtour

elimination constraints (3.6) and (3.7).

The first step in the separation procedure is to find the cuts(X ∶V+U −X) with

∑i∶ fi∈(X∶V+U−X)xi = 0 that violate the cutset constraints (3.5). We first compute the

connected componentsD1,D2,D3, . . .,Dk of the solution. Since we do not need to

ensure the connectivity of the virtual terminals, we require thatDi ∩V ≠ ∅, ∀1 ≤
i ≤ k. If k > 1, there exist cutsets of zero weight. Ifk < 10, we generate cutsets

constraints for all the cuts induced by the connected components. If k ≥ 10, we

only generate the cutset constraints(Di ∶V+U −Di) for 1≤ i ≤ k. Notice that we do

not consider those cuts with 0<∑i∶ fi∈(X∶V+U−X)xi <1 because they are too expensive

to be identified while little improvement in the objective value can be made.

The second step is to find violations of the subtour elimination constraints (3.6)

and (3.7). We define the following function

f (X) = ∣X∩V ∣+ ∑
i∶ui∈X

yi − ∑
i∶ fi∩X≠∅

xi(∣ fi ∩X∣−1). (3.8)

Then finding violations of constraints (3.6) is equivalent to finding anX ⊂V +U

such thatX ≠ ∅ and f (X) < 1. Before exactly solving this problem, we first apply

problem reductions to speedup the process. In [49], the “congestion level” of a real

terminalbv j is defined as

bv j = ∑
i∶v j∈ fi

xi . (3.9)
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A real terminalv j is uncongested ifbv j ≤ 1. In this chapter, we define the

“congestion level” of a virtual terminal as

bu j = ∑
i∶u j∈ fi

xi . (3.10)

We say that a virtual terminalu j is uncongested ifbu j ≤ y j . By the definition of

“congestion level” we can have the following lemma.

Lemma 3.18. If a terminal w is uncongested and f(X ∪ {w}) < 1, then f(X) ≤
f (X∪{w}) < 1.

Proof. Let

A= { fi ∈ F ∶ ∣ fi ∩X∣ ≥ 1∧w ∈ fi} andB= { fi ∈ F ∶ ∣ fi ∩X∣ ≥ 1∧w ∉ fi}.
Then

f (X∪{w})− f (X)
=∣(X∪{w})∩V ∣+ ∑

i∶ui∈X∪{w}

yi − ∑
i∶ fi∈A
∣ fi ∩X∣xi − ∑

i∶ fi∈B
(∣ fi ∩X∣−1)xi

− ∣X∩V ∣− ∑
i∶ui∈X

yi + ∑
i∶ fi∈A
(∣ fi ∩X∣−1)xi + ∑

i∶ fi∈B
(∣ fi ∩X∣−1)xi .

If w is a real terminal, then

f (X∪{w})− f (X)
= ∣X∩V ∣+1− ∑

i∶ fi∈A
∣ fi ∩X∣xi − ∣X∩V ∣+ ∑

i∶ fi∈A
∣ fi ∩X∣xi − ∑

i∶ fi∈A
xi

= 1− ∑
i∶ fi∈A

xi ≥ 1−bw ≥ 0.
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If w is a virtual terminal and its index isk, then

f (X∪{w})− f (X)
= ∣X∩V ∣+yk− ∑

i∶ fi∈A
∣ fi ∩X∣xi − ∣X∩V ∣+ ∑

i∶ fi∈A
∣ fi ∩X∣xi − ∑

i∶ fi∈A
xi

= yk− ∑
i∶ fi∈A

xi ≥ yk−bw ≥ 0.

In conclusion, we havef (X) ≤ f (X∪{w}) < 1.
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Figure 3.25: The flow network formulation.

According to Lemma3.18, we can eliminate all uncongested terminals while

looking for violations of the subtour elimination constraints. Since subtour elim-

ination constraints are used to eliminate cycles, we can further confine our search

to within several biconnected components. We useC1,C2,C3, . . .,Ck to denote the

biconnected components in which every terminal is congested. Now, the problem

is reduced to identifying violations withinC1,C2,C3, . . .,Ck. For each component
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Ci with less than 10 terminals, we will enumerate all subsetsX of Ci checking for

violations of (3.6) and (3.7). For each remaining componentCi , we use a determin-

istic network flow method to find violations of (3.6) and (3.7). The deterministic

flow networkG= (N,A) is defined as follows. LetN = {σ}∪Y∪Z∪{τ} be the set

of nodes in the graph, whereY = { fi ∶ fi∩Ci ≠∅}, andZ = {v j ∶ v j ∈Ci}∪{u j ∶u j ∈Ci}
Let the arcs in the graph beA = A1∪A2∪A3, whereA1 = {(σ, fi)}, A2 = {( fi ,v j) ∶
v j ∈ fi}∪{( fi ,u j) ∶ u j ∈ fi}, andA3 = {(v j ,τ) ∶ v j ∈Ci}∪{(u j ,τ) ∶ u j ∈Ci}. Let the

arcsA1 have capacityxi . Let arcsA2 have infinite capacity. Let arcs(v j ,τ) ∈ A3

have capacitybv j −1, and(u j ,τ) ∈ A3 have capacitybu j −y j . The flow network is

shown in Fig.3.25. Note that different from the flow network formulation in [49],

there are nodes that represent virtual terminals in our formulation.

We define a source to terminal cut(W ∶N−W) of G such thatσ ∈W andτ ∈ (N−
W). The capacity of the cutc(W) is the sum of the capacity of all arcs(a,b) ∈ A

such thata ∈W andb ∈ (N−W). We have the following theorem.

Theorem 3.3.Let(W ∶N−W) be a source to terminal cut of G that minimize c(W).
Let Xm= {w ∶w ∈V +U ∧w ∈N−W}. Then Xm minimizes f(X).
Proof. Let W = {σ}∪ I ∪J be such a minimum cut ofG, whereI ⊆Y andJ ⊆ Z.

According to [49], I is completely determined byJ.

Let wv j = 1 if v j ∈W andwv j = 0 otherwise. Letwu j = 1 if u j ∈W andwu j = 0

otherwise. Thenc(W) can be written as

c(W) = ∑
i∶ fi∈F

⎛⎝1− ∏j ∶v j∈ fi

wv j ∏
j ∶u j∈ fi

wu j

⎞⎠xi + ∑
j ∶v j∈V
(bv j −1)wv j

+ ∑
j ∶u j∈U
(bu j −y j)wu j

= ∑
i∶ fi∈F

⎛⎝−xi ∏
j ∶v j∈ fi

wv j ∏
j ∶u j∈ fi

wu j

⎞⎠+ ∑j ∶v j∈V
(bv j −1)wv j
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+ ∑
j ∶u j∈U
(bu j −y j)wu j + ∑

i∶ fi∈F
xi .

Note that the last term in the equation does not depend onwv j or wu j , and therefore

is a constant. Now consider the functionf (X). Let zv j = 1 if v j ∈ X andzv j = 0

otherwise. Letzu j =1 if u j ∈X andzu j =0 otherwise. Let ¯zv j =1−zv j andz̄u j =1−zu j

be the complementary variables. We can rewritef (X) as

f (X)
=∣X∩V ∣+ ∑

i∶ui∈X
yi − ∑

i∶ fi∩X≠∅
xi(∣ fi ∩X∣−1)

= ∑
j ∶v j∈V

zv j + ∑
j ∶u j∈U

zu j y j

− ∑
i∶ fi∈F

⎡⎢⎢⎢⎢⎣
⎛⎝ ∑j ∶v j∈ fi

zv j + ∑
j ∶u j∈ fi

zu j

⎞⎠−1+ ∏
j ∶v j∈ fi

(1−zv j ) ∏
j ∶u j∈ fi

(1−zu j )
⎤⎥⎥⎥⎥⎦xi

= ∑
j ∶v j∈V
(1− z̄v j )+ ∑

j ∶u j∈U
(1− z̄u j )y j

− ∑
i∶ fi∈F

⎡⎢⎢⎢⎢⎣
⎛⎝ ∑j ∶v j∈ fi

(1− z̄v j )+ ∑
j ∶u j ∈ fi

(1− z̄u j )⎞⎠−1+ ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎤⎥⎥⎥⎥⎦xi

=∣V ∣− ∑
j ∶v j∈V

z̄v j + ∑
j ∶u j∈U

y j − ∑
j ∶u j∈U

z̄u j y j

− ∑
i∶ fi∈F

⎛⎝∣ fi ∣− ∑j ∶v j∈ fi

z̄v j − ∑
j ∶u j ∈ fi

z̄u j −1+ ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎞⎠xi

=∣V ∣− ∑
j ∶v j∈V

z̄v j + ∑
j ∶u j∈U

y j − ∑
j ∶u j∈U

z̄u j y j − ∑
i∶ fi∈F
(∣ fi ∣−1)xi

+ ∑
i∶ fi∈F

⎛⎝xi ∑
j ∶v j∈ fi

z̄v j

⎞⎠+ ∑i∶ fi∈F
⎛⎝xi ∑

j ∶u j∈ fi

z̄u j

⎞⎠
− ∑

i∶ fi∈F

⎛⎝xi ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎞⎠
=∣V ∣− ∑

j ∶v j∈V
z̄v j + ∑

j ∶u j∈U
y j − ∑

j ∶u j∈U
z̄u j y j − ∑

i∶ fi∈F
(∣ fi ∣−1)xi
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+ ∑
j ∶v j∈V

⎛⎝z̄v j ∑
i∶v j∈ fi

xi
⎞⎠+ ∑j ∶u j∈U

⎛⎝z̄u j ∑
i∶u j∈ fi

xi
⎞⎠− ∑i∶ fi∈F

⎛⎝xi ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎞⎠
=∣V ∣− ∑

j ∶v j∈V
z̄v j + ∑

j ∶u j∈U
y j − ∑

j ∶u j∈U
z̄u j y j − ∑

i∶ fi∈F
(∣ fi ∣−1)xi

+ ∑
j ∶v j∈V

z̄v j bv j + ∑
j ∶u j∈U

z̄u j bu j − ∑
i∶ fi∈F

⎛⎝xi ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎞⎠
= ∑

i∶ fi∈F

⎛⎝−xi ∏
j ∶v j∈ fi

z̄v j ∏
j ∶u j∈ fi

z̄u j

⎞⎠+ ∑j ∶v j∈V
z̄v j (bv j −1)

+ ∑
j ∶u j∈U

z̄u j (bu j −y j)− ∑
i∶ fi∈F
(∣ fi ∣−1)xi + ∑

j ∶u j∈U
y j + ∣V ∣.

The last three terms do not depend on ¯zv j or z̄u j , and therefore are constants. By

settingz̄v j = wv j and z̄u j = wu j , we can see thatc(W) and f (X) differ only by a

constant. Therefore, minimizingc(W) is equivalent to minimizingf (X). Let (W ∶
N−W) be a source to terminal cut ofG such thatc(W) is minimized, thenXm =
{w ∶w ∈V +U ∧w ∈N−W} is a minimum off (X).

This theorem states that finding anX of Ci that violates (3.6) can be reduced

to finding a minimum cut on the flow networkG. This problem can be solved in

polynomial time. Note that although the above procedure is not exact in finding

violations of constraints (3.7), it can still provide good estimations.

Branching

If no violation can be found by separation and the node processing terminates

with a fractional solution, branching on the current node occurs. A branch vari-

ablexi (y j ) with non-integral value is selected. Two new nodes are generated by

appending the constraintsxi = 0 or xi = 1 (y j = 0 or y j = 1) to the current node. The

processing of the current node terminates. New nodes are selected for processing

until there is no node left in the node list.
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Algorithm 2: ObSteiner(V, O)
Input: V, O
Output: OARSMT

1: initialize the obstacle listOL to∅
2: while truedo
3: FST generation
4: FST pruning
5: FST concatenation
6: for all FSTs in the current solutiondo
7: for all line segments in the FSTdo
8: check if the line segment intersects with any obsta-

cles
9: if it intersects with obstaclesthen

10: add the dominating obstacle toOL
11: end if
12: end for
13: end for
14: if no overlapping obstacle existsthen
15: goto line 18
16: end if
17: end while
18: return the OARSMT

Figure 3.26: Pseudocode of ObSteiner.

3.5 Incremental construction

By using the two-phase approach, we can solve the OARSMT problem optimally.

However, considering all obstacles together may result in alarge number of virtual

terminals. In our early experiments, we found that adding all obstacles simultane-

ously would result in an explosion of FSTs. A more efficient way is to consider an

obstacle only when it is necessary. Therefore, we adopt an incremental approach

to construct an OARSMT. An obstacle list is maintained during the generation of

the OARSMT. The list is responsible for keeping track of the obstacles we need

to avoid during the construction. Initially, the OARSMT problem with an empty

list of obstacles is solved resulting in an RSMT. We then check for obstacles that
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overlap with the solution. For each FST used to build the current solution, we de-

compose it into line segments. For each line segment, we willcheck whether it

intersects with any obstacles. Among all overlapping obstacles we will choose the

dominating one. For example, for a vertical segment, we willchoose an obstacle

that has the largest width. All chosen obstacles are added tothe obstacle list. A

new iteration then starts again by solving the OARSMT problem with the obsta-

cles in the renewed list. This procedure repeats until no overlapping obstacle can

be found. This approach is effective as in most cases only a fraction of the obsta-

cles will affect the final OARSMT. The pseudocode of this OARSMT construction

framework is shown in Fig.3.26.

3.6 Experiments

We implemented ObSteiner in C based on GeoSteiner-3.1 [1]. The experiments are

conducted on a Sun Blade 2500 workstation with two 1.6GHz processors and 2GB

memory. Our program runs sequentially on a single processor. There are 21 bench-

mark circuits which are commonly used as test cases for the OARSMT problem.

IND1-IND5 are industrial test cases from Synopsys. RC01-RC11 are benchmarks

used in [59]. RT1-RT5 are randomly generated circuits used in [9]. Note that there

are overlapping obstacles in these benchmarks. We regard overlapping obstacles as

one rectilinear obstacle.

Table3.1 shows the results obtained by ObSteiner. Column “m” provides the

number of terminals in each benchmark. Column “n” provides the number of ob-

stacles in each benchmark. Column “ttotal” provides the total run time of the algo-

rithm. Column “tprune” provides the run time of the pruning procedure. Column

“ ∣OL∣” provides the number of obstacles considered in the algorithm. We can see
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that all benchmarks are solved to optimal in a reasonable amount of time. For

small benchmarks (RC01-RC05, IND1-IND5), it takes only seconds to obtain the

optimal solution. For the benchmarks with less than or equalto 500 obstacles, the

required time is in minutes. We can also observe that the total run time is closely re-

lated to the number of obstacles, and more obstacles usuallylead to more iterations

of the algorithm. In the table, we also list the average FST reduction achieved by

the FST pruning procedure and the run time over all iterations. For all benchmarks,

around 60% of the FSTs can be eliminated and the run time of thepruning proce-

dure in most cases is less than half of the total time. This cangreatly reduce the

search space of the branch-and-cut algorithm, and therefore leads to a significant

improvement in performance. The computational overhead cause by the pruning

procedure is small compared to the savings in the concatenation phase. We can

also observe from the table that the incremental construction is very effective. On

average, only 23.1% obstacles needs to be considered. This can greatly reduce the

number of additional virtual terminals and the resulting FSTs.

In order to clearly show the effectiveness of the pruning procedure and the

incremental approach, we compare the run time of ObSteiner with and without

these two techniques. Results are listed in Table3.2. Considering the incremental

approach, we can see that, without using this technique, RC06-RC11 and RT1-RT5

will not be solvable within the run time limit. Although for the small benchmarks

with 10 obstacles, the incremental approach may worsen the run time, the speedup

on large benchmarks is tremendous. Considering the pruningprocedure, although

it is not as effective as the incremental approach, a considerable speedup can still

be achieved. Without using the technique, RT5 cannot be solved within time limit.

For small benchmarks, the benefit of using pruning procedureis limited. However,

the technique can be very useful for difficult cases. This is because the parameters
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in the pruning procedure (e.g. when to stop pruning) are set according to the large

benchmarks, which may not be necessary for small cases.

To show the efficiency of ObSteiner, we compare our method with the approach

in [48]. The results are tabulated in Table3.3. We execute the algorithm in [48]

on our platform. Since [48] can only handle rectangular obstacles, we change the

benchmarks by dissecting rectilinear obstacles into several rectangular obstacles.

For completeness, we also tabulate the results of twenty additional test cases which

are used in [48]. These test cases can be divided into two categories. The test

cases in the first category are generated by taking the first few obstacles in the cor-

responding benchmarks. We use “benchmark_number” to denote them, in which

“benchmark” is the original benchmark and “number” is the number of obstacles

taken. The test cases in the second category are generated bytaking the obsta-

cles randomly. We use “benchmark_rand_number” to denote them. We run each

test case for 96 hours at most. In the table, “-” means that thesolution cannot be

achieved within the run time limit. As can be observed from the table, the run time

required for the OARSMT construction has been improved a lotby our algorithm.

Comparing with the approach in [48], ObSteiner can solve problems with up to

two thousand obstacles, while the approach in [48] can only deal with cases with

less than one hundred obstacles. For small solvable cases, our approach is 31 times

faster than the approach in [48] on average.

Table 3.4 compares the performance of some recently published heuris-

tics [6, 35, 7, 18] based on the optimal solutions provided by the proposed exact

algorithm. The results are quoted from the corresponding papers. We can see that

all four heuristics works better on small problems, obtaining optimal solutions in

several cases. The performance gradually decreases with the increasing number of

obstacles.
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(a) (b)

Figure 3.27: The OARSMTs of (a) IND1 (b) IND2.

(a) (b)

Figure 3.28: The OARSMTs of (a) IND3 (b) IND4.

Fig. 3.27-3.37shows the resulting OARSMTs generated by ObSteiner for all

the benchmarks.
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(a) (b)

Figure 3.29: The OARSMTs of (a) IND5 (b) RC01.

(a) (b)

Figure 3.30: The OARSMTs of (a) RC02 (b) RC03.
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Benchmark m n
OARSMT

ttotal (s)
FST

tprune (s) tprune
ttotal

(%)
Number of ∣OL∣ ∣OL∣

n (%)length reduction (%) iterations

RC01 10 10 25980 0.16 76.1 0.02 12.5 2 3 30.0
RC02 30 10 41350 0.52 63.8 0.18 34.6 2 3 30.0
RC03 50 10 54160 0.68 59.6 0.21 30.9 3 6 60.0
RC04 70 10 59070 0.95 72.5 0.37 38.9 2 5 50.0
RC05 100 10 74070 1.31 63.7 0.51 38.9 2 6 60.0
RC06 100 500 79714 335 60.3 180 53.7 6 89 36.0
RC07 200 500 108740 541 62.6 324 59.9 7 100 20.0
RC08 200 800 112564 24170 67.1 4549 18.8 7 161 20.1
RC09 200 1000 111005 14174 72.8 5026 35.5 7 192 19.2
RC10 500 100 164150 176 63.7 90 51.1 5 28 28.0
RC11 1000 100 230837 706 66.4 345 48.9 3 18 18.0
RT1 10 500 2146 25 72.0 10 40.0 6 33 6.6
RT2 50 500 45852 31 61.3 23 74.2 5 42 8.4
RT3 100 500 7964 840 71.6 794 94.5 5 61 12.2
RT4 100 1000 9693 34521 63.7 7939 23.0 11 197 19.7
RT5 200 2000 51313 276621 64.4 26772 9.7 13 388 19.4

IND1 10 32 604 0.11 63.3 0.02 18.2 1 0 0
IND2 10 43 9500 0.25 61.4 0.05 20.0 3 5 11.6
IND3 10 59 600 0.19 68.5 0.04 21.1 2 2 3.4
IND4 25 79 1086 0.87 55.7 0.25 28.7 4 11 13.9
IND5 33 71 1341 1.03 43.9 0.27 26.2 4 14 19.7

Average 64.5 37.1 23.1
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Table 3.2: Run time of ObSteiner with and without the pruningprocedure and the incremental approach.

Benchmark
ObSteiner ObSteiner ObSteiner

ObSteiner
w/o PN & IN w/o IN w/o PN

RC01 0.38 0.23 0.17 0.16
RC02 0.21 0.19 0.65 0.52
RC03 0.18 0.20 0.78 0.68
RC04 0.50 0.32 0.96 0.95
RC05 0.70 0.52 1.63 1.31
RC06 - - 876 335
RC07 - - 1796 541
RC08 - - 61005 24170
RC09 - - 40150 14174
RC10 - - 855 176
RC11 - - 21242 706
RT1 - - 81 25
RT2 - - 32 31
RT3 - - 478 840
RT4 - - 120552 34521
RT5 - - - 276621

IND1 29.88 20.78 0.13 0.11
IND2 23.25 18.92 0.27 0.25
IND3 8.78 6.07 0.18 0.19
IND4 133852 1089 0.96 0.87
IND5 43.59 4.24 1.20 1.03

Average 15431× 156× 3.29× 1.00×
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Table 3.3: Results of ObSteiner in comparison with the approach in [48].

Benchmark
ObSteiner Huang [48] t2

t1
Benchmark

ObSteiner Huang [48] t2
t1L1 t1 L2 t2 L1 t1 L2 t2

RC1 25980 0.16 25980 0.58 3.63× RC6_40 76946 3.20 76946 264 82.5×
RC2 41350 0.52 41350 0.55 1.06× RC7_40 105956 20 105956 179 8.95×
RC3 54160 0.68 54160 0.58 0.85× RC8_30 107833 17 107833 495 29.12×
RC4 59070 0.95 59070 1.10 1.16× RC9_30 106139 5.89 106139 174 29.54×
RC5 74070 1.31 74070 2.09 1.60× RC10_30 163050 48 163050 1463 30.48×
RC6 79714 335 - - - RT1_40 1872 0.16 1872 1.11 6.94×
RC7 108740 541 - - - RT2_30 44294 0.50 44294 45 90.00×
RC8 112564 24170 - - - RT3_30 7580 1.02 7580 179 179.49×
RC9 111005 14174 - - - RT4_30 7825 6.05 7825 63 10.41×
RC10 164150 176 - - - RT5_30 42879 10 42879 40 4.00×
RC11 230837 706 - - - RC6_rand_40 76840 3.03 76840 538 177.56×
RT1 2146 25 - - - RC7_rand_40 105358 14 105358 154 11.00×
RT2 45852 31 - - - RC8_rand_30 107811 5.55 107811 385 69.37×
RT3 7964 840 - - - RC9_rand_30 105875 4.44 105875 84 18.92×
RT4 9693 34521 - - - RC10_rand_30 162470 147 162470 733 4.99×
RT5 51313 276621 - - - RT1_rand_40 1817 0.14 1817 2.02 14.43×

IND1 604 0.11 604 0.46 4.18× RT2_rand_30 44358 0.54 44358 23 42.59×
IND2 9500 0.25 9500 3.44 13.76× RT3_rand_30 7595 1.04 7595 33 31.73×
IND3 600 0.19 600 1.31 6.89× RT4_rand_30 7681 4.23 7681 64 15.13×
IND4 1086 0.87 1086 3.15 3.62× RT5_rand_30 42821 5.26 42821 97 18.44×
IND5 1341 1.03 1341 24.73 24.01× Average 31.08×
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Table 3.4: Comparison of heuristics based on the OARSMT length.

Benchmark OARSMT Wirelength (X−L)
X (%)

length (L) Liu [6] (A) Li [ 35] (B) Ajwani [18] (C) Liu [7] (D) X =A X =B X =C X =D

RC01 25980 26040 25980 25980 26740 0.23 0.00 0.00 2.84
RC02 41350 41570 42010 42110 42070 0.53 1.57 1.80 1.71
RC03 54160 54620 54390 56030 54550 0.84 0.42 3.34 0.71
RC04 59070 59860 59740 59720 59390 1.32 1.12 1.09 0.54
RC05 74070 74770 74650 75000 75430 0.94 0.78 1.24 1.80
RC06 79714 81854 81607 81229 81903 2.61 2.32 1.87 2.67
RC07 108740 110851 111542 110764 111752 1.90 2.51 1.83 2.70
RC08 112564 115516 115931 116047 118349 2.56 2.90 3.00 4.89
RC09 111005 113254 113460 115593 114928 1.99 2.16 3.97 3.41
RC10 164150 166970 167620 168280 167540 1.69 2.07 2.45 2.02
RC11 230837 234875 235283 234416 234097 1.72 1.89 1.53 1.39
RT1 2146 2193 2231 2191 2259 2.14 3.81 2.05 5.00
RT2 45852 47488 47297 48156 48684 3.45 3.06 4.78 5.82
RT3 7964 8231 8187 8282 8347 3.24 2.72 3.84 4.59
RT4 9693 9893 9914 10330 10221 2.02 2.23 6.17 5.17
RT5 51313 52509 52473 54598 53745 2.28 2.21 6.02 4.53

IND1 604 604 619 604 626 0.00 2.42 0.00 3.51
IND2 9500 9600 9500 9500 9700 1.04 0.00 0.00 2.06
IND3 600 600 600 600 600 0.00 0.00 0.00 0.00
IND4 1086 1092 1096 1129 1095 0.55 0.91 3.81 0.82
IND5 1341 1374 1360 1364 1364 2.40 1.40 1.69 1.69

Average 1.59 1.74 2.40 2.76
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(a) (b)

Figure 3.31: The OARSMTs of (a) RC04 (b) RC05.

(a) (b)

Figure 3.32: The OARSMTs of (a) RC06 (b) RC07.



3.6. Experiments 93

(a) (b)

Figure 3.33: The OARSMTs of (a) RC08 (b) RC09.

(a) (b)

Figure 3.34: The OARSMTs of (a) RC10 (b) RC11.
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(a) (b)

Figure 3.35: The OARSMTs of (a) RT1 (b) RT2.

(a) (b)

Figure 3.36: The OARSMTs of (a) RT3 (b) RT4.
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Figure 3.37: The OARSMTs of RT5.
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4.1 Introduction

In this chapter, we study a variant of the OARSMT problem. In modern VLSI

designs, obstacles usually occupy a fraction of the metal layers. Therefore, routing

wires on top of obsatcles is possible. However, since buffers cannot be placed on
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(a) (b) (c)

Figure 4.1: The routes of a net with a source and two sinks in the presence of
obstacles.

top of any obstacle, one should be aware of the signal integrity issue and avoid

routing long wires on top of obstacles that may lead to complicated post-routing

electrical fixups. One way to tackle this problem is to construct an OARSMT [18,

7, 35, 36, 46, 47, 48]. However, avoiding all obstacles may result in an unnecessary

resource overhead. A smarter router should be able to avoid some of the obstacles

that cause problems, while allowing wires to cross the others.

Consider a problem of finding a rectilinear Steiner tree to connect a net with a

source and two sinks in the presence of two obstacles, as shown in Fig. 4.1. One

way is to use a RSMT as shown in Fig.4.1(a) which is the shortest possible con-

nection. However, there is a long wire crossing the left obstacle and this may cause

signal integrity problems because no buffer can be placed ontop of the obstacle.

An alternative is to find an OARSMT as shown in Fig.4.1(b). Since the tree avoids

routing over any obstacle, it may take more routing resources than necessary. In

comparison with these two solutions, a better way is to avoidone of the obstacles

that cause problem while allow wires to cross the other, as shown in Fig.4.1(c).

This solution achieves better performance with less resource overhead.

This chapter aims at solving the RSMT problem in the presenceof obstacles. In

order to keep circuit performance, we impose slew constraints on the interconnects

that are routed over obstacles. This is because slew is one ofthe most important

factors in electrical correctness. Violations to the slew constraints may result in a
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misleading timing analysis, and therefore degrade the performance and yield of the

design. Moreover, slew constraints are more prevalent thantiming constraints in

the buffer insertion step. According to [44], for the majority of the nets in a design

(around 90-95%), if the net’s slew constraint is met, the timing constraint can be

satisfied as well. Therefore, it is more important to restrict the routing on top of an

obstacle to meet the slew constraints. This problem is called the OARSMT problem

with slew constraints over obstacles. Since slew constraints are related to both wire

length and delay, this problem is more complicated than the traditional OARSMT

problem that does not consider timing. The solutions to thisproblem can guarantee

the interconnect performance and avoid post-routing electrical fixups due to slew

violations. Comparing with OARSMT, the solutions to this problem can reduce

the routing resource overhead. In this thesis, we propose anexact algorithm, called

ObSteiner with slew constraints, that is able to find an optimal solution embedded

in the extended Hanan grid. Experimental results show that the proposed algorithm

is able to reduce nearly 5% routing resources on average in comparison with the

OARSMT algorithm and is also very much faster.

The rest of this chapter is organized as follows. In Section4.2, we give a

formal formulation of the problem. In Section4.3, we present an overview of our

approach. In Section4.4, we study the structures of the trees inside obstacles in an

optimal solution. Section4.5 describes the algorithm to find the optimal solution

embedded in the extended Hanan grid. Finally, experimentalresults are provided

in Section4.6.
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Figure 4.2: Boundary terminals on a rectilinear Steiner tree.

4.2 Problem Formulation

Given a sources0, a set of sinksS, and a set of rectangular obstaclesO, a rectilinear

Steiner treeT is a tree that connects all nodes inV = {s0}∪S. We define a new type

of nodes inT calledthe boundary terminals. A boundary terminal is a node that

is on the boundary of an obstacle and has at least one of its incident lines lying

over the obstacle. An example is shown in Fig.4.2 whereA, B, andC are three

boundary terminals. Note that a line going along the boundary of an obstacle is

considered to be outside the obstacle.1 By splitting at the boundary terminals,

a treeT can be uniquely decomposed into two sets of smaller trees either lying

completely inside an obstacle or lying completely outside all obstacles. We call

them internal trees and external trees and useTI andTO to denote these two sets,

respectively. For example, the tree in Fig.4.2can be decomposed into four smaller

trees in which the tree connectingA, B andC is completely inside the obstacle and

the rest three trees are completely outside the obstacle. Weassume that buffers can

be inserted outside an obstacle. Therefore, a buffer can be inserted on a treeto ∈TO

but it cannot be inserted on a treeti ∈ TI except right at the leaf nodes (boundary

terminals). To ensure signal integrity along the wires routed over obstacles, we

impose slew constraints to the internal trees inTI.

1For abutted obstacles, we consider the the boundary betweenthem as outside obsta-
cles.
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The slew rate of a signal refers to the rising or falling time of a signal. In this

chapter, the slew rate is defined as the time it takes for a waveform to cross the 10%

point and the 90% point. The slew model proposed in [44] is employed to compute

the slew rate. We first briefly introduce this slew model. Letui be an upstream

node,u j be a downstream node in a tree andp be the path between them. Assume

a bufferb at ui but no buffer onp. The slew value atu j is given by

S(u j) =√Sb,out(ui)2+Sw(p)2. (4.1)

Sw(p) is the slew degradation along pathp given by

Sw(p) = ln9 ⋅D(p), (4.2)

whereD(p) is the Elmore delay fromui to u j . Sb,out(ui) is the output slew of buffer

b given by

Sb,out(ui) =Rb ⋅C(ui)+Kb, (4.3)

whereC(ui) is the downstream capacitance atui , Rb is the slew resistance ofb and

Kb is the intrinsic slew ofb. Slew constrained buffer insertion problem is to insert

buffers on a routing tree such that the input slew at each buffer or sink is no greater

than a constantα. In our current problem, instead of assuming a given tree, wewill

construct a slew-aware but length-optimal tree in the presence of obstacles.

Given an internal treeti ∈ TI in a rectilinear Steiner treeT, we useu0 to denote

the source ofti (i.e. a terminal that is closest tos0 in T) andUi to denote the

set of sinks onti (i.e. the remaining terminals). Without loss of generality, in the

computation of the best possible slew ofti, we assume that a buffer will be inserted

at u0 and at each nodeu ∈Ui. Note that we are not really inserting buffers there,
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but just assuming the best possible buffer locations to see if violation to the slew

constraint will still be caused. Therefore, the slew rateS(u) at each sinku ∈Ui can

be computed by (4.1). We define the slew of an internal treeti to be

Sin(ti) =maxu∈Ui{S(u)}. (4.4)

As a result, the slew of an internal tree is defined as the maximum slew taking

over the slew rates at all the sinks, and according to (4.1), this is related to the tree

capacitanceC(u0) (i.e. tree length) and the delay from the source to the sinksD(p).
Based on this definition, the slew of a general rectilinear Steiner tree is defined

as

Stree(T) =maxti∈TI{Sin(ti)}. (4.5)

whereTI is the set of internal trees after breakingT at the boundary terminals.

At this stage, we want to focus on the routing problem to reduce the required

routing resource as much as possible, while keeping the slewconstraints in mind to

avoid complicated post-routing electrical fixups. Therefore, the OARSMT problem

with slew constraints over obstacles is formulated as follows. Given a sources0, a

set of sinksS, and a set of rectangular obstaclesO, construct a rectilinear Steiner

treeT that

minimize∶ len(T), (4.6)

subject to∶ Stree(T) ≤ α. (4.7)

wherelen(T) is the length ofT andα is the slew limit2.

2It should be noted that, in our implementation according to equation (4.1), we assume
a uniform unit wire resistance and capacitance. Although different layer assignment can
lead to different unit wire resistances and capacitances, it is acceptable to assume uniform
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4.3 Overview of our approach

From the problem formulation, we can see that any optimal solution to the

OARSMT problem with slew constraints over obstacles can be uniquely decom-

posed into a set of external treesTO and a set of internal treesTI. Therefore, one

way to construct an optimal solution is to first construct itsexternal tree candidates

and internal tree candidates. This fact brings out the importance of studying the

structures of the trees inTO andTI. We will show that,in an optimal solution, the

trees inTI with slew constraints will follow some very simple forms. Byapplying

existing lemmas, we can show that the trees inTOwill also be very simple. There-

fore, we can use a two-phase algorithm to generate an optimalsolution. In the first

phase, we generate a set of candidate trees inTI and a set of candidate trees in

TO. In the second phase, we select and combine a subset of these trees to give an

optimal solution.

4.4 Internal tree structures in an optimal solution

We have shown in the previous section that a treeT can be uniquely decomposed

into two sets of smaller treesTI andTO either inside an obstacle or outside all

obstacles. For the trees inTO, we only need to concern about minimizing the total

wire length, since buffers can be inserted flexibly and the interconnect performance

can be guaranteed. We will impose slew constraints on the trees inTI. For the trees

in TI, we not only will consider the length of the tree but also handle carefully the

timing, because the slew constraint is closely related to both the tree length and

unit resistance and capacitance values by taking the worst case values. This can guarantee
the correctness of a solution no matter how layer assignmentis done. Moreover, since
obstacles usually block lower metal layers and the upper remaining layers will have similar
parasitics, this assumption will not lead to a significant degradation of solution quality.
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delay. This critical requirement makes previous approaches incapable of handling

this new problem. Note that our internal trees are differentfrom the Steiner trees

that consider source-to-sink delay [34, 22], as we only need to consider slew con-

straints for the parts that overlap with obstacles. Therefore, it is possible to change

the internal tree structure to move a part of the tree out of anobstacle to reduce

the slew. In this section, we are interested in the possible structures of the trees

in TI. We will show that, in an optimal solution, the trees inTI will follow some

very simple forms. In the figures of this section, we use a solid circle to denote a

boundary terminal and an empty circle to denote a Steiner point. For simplicity, we

will use the term terminal instead of boundary terminal in this section.

We first make the following observations about the properties of an internal tree

ti ∈ TI in an optimal solution.

1. ti connects a set of boundary terminals on an obstacle and all the connected

terminals have degree one in the tree.

2. One of the connected terminals is the source ofti and all the other terminals

are sinks.

3. The slew constraint is satisfied, i.e.,Stree(ti) ≤ α.

4. ti is length-optimal over all the trees connecting the same setof terminals

subject to the slew constraint.

The first property is true because the set of treesTI is obtained by splitting at the

boundary terminals. If there is a terminal of degree more than one, we will split

the tree into two smaller trees with at most one tree inTI. The second and third

properties are obviously true according to the problem formulation. The fourth

property is true because ifti is not length-optimal, we can replaceti with a shorter

tree that satisfies the slew constraint, a contradiction to the fact thatti is in an
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Figure 4.3: A SCIFST and its corresponding binary tree.

optimal solution.

Since there can be several length-optimal trees that satisfy the slew constraint,

in order to construct a tree with better timing, we further require thatti should have

the smallest slew rateStree(ti) over all length-optimal trees connecting the same set

of terminals subject to the slew constraint. That is, among all the length-optimal

trees, we always prefer the one with the smallest slew rate. This is a reasonable

requirement because it provides more flexibilities for the later buffer insertion step.

We call the internal trees satisfying the above properties slew constrained internal

full Steiner trees (SCIFSTs).

In the following, we will show that the SCIFSTs will follow some very simple

structures. The proof begins with the observation that the topology of any SCIFST

can be represented by a binary tree with the source as the root, all sinks as leaf

nodes and all Steiner points as internal nodes. An example isshown in Fig.4.3

whereA is the source. Without loss of generality, we allow edges of zero length

in the binary tree so that Steiner points with degree more than three can also be

represented. As we can see, any subtree in the binary tree corresponds to a subtree

in the SCIFST. Since any subtree in the binary tree is a combination of its left sub-

tree and right subtree, we can view a subtree in a SCIFST as a combination of two

smaller subtrees in the SCIFST. We will start with the smallest subtree in a SCIFST,
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Figure 4.4: (a) Shifting (b) Flipping.

and show that these subtrees will just have some very limitedstructures. We then

consider larger subtrees as combinations of these small subtrees and show that all

subtrees in a SCIFST will be very simple, and thus leading to simple structures of

the resulting SCIFSTs. In the following figures, we use an empty square to denote

the root node of a subtree.

Before the proof, we introduce two operations:shiftingandflipping on a tree,

as shown in Fig.4.4. Shifting a line means moving a line between two parallel

lines to a new position. Flipping an edge with two perpendicular lines meeting

at a corner means moving these two lines to flip the corner to the opposite side

diagonally. Note that these two operations will not change the length of the tree.

In the following, shifting a line towards the source in a treemeans shifting the line

to a position that is closer to the source by counting the distance in the tree (not

geometric distance).

Lemma 4.1. Shifting a line towards the source in a tree t will not increase the slew

rate at any sink of t.

Proof. Consider Fig.4.4(a) and assume without loss of generality thatA is closest

to the source of the tree. Letl1 be the length ofAB andCD, l2 be the length of

EF, d be the distance betweenA andE, andc(B), c(C), c(D) be the downstream

capacitance ofB, C, D, respectively. Note that the slew rates at the sinks are related
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to both the tree length and delay (equation (4.1)). Since shifting will not change

the length of a tree, we focus on the delay. The delay fromA to B, C andD can be

given as

D(A→B) = dr0[(2l1+ l2−d)c0+c(B)+c(C)+c(D)]
+0.5d2c0r0+(l1−d)r0c(B)+0.5(l1−d)2c0r0

= dr0[(l1+ l2)c0+c(C)+c(D)]+ l1r0c(B)+0.5l2
1c0r0, (4.8)

D(A→D) = dr0[(2l1+ l2−d)c0+c(B)+c(C)+c(D)]
+0.5d2c0r0+(l1−d)r0c(D)+0.5(l1−d)2c0r0

+ l2r0(l1c0+c(C)+c(D))+0.5r0c0l2
2

= dr0[(l1+ l2)c0+c(B)+c(C)]+ l1r0c(D)+0.5l2
1c0r0

+ l2r0(l1c0+c(C)+c(D))+0.5r0c0l2
2, (4.9)

D(A→C) = dr0[(2l1+ l2−d)c0+c(B)+c(C)+c(D)]
+0.5d2c0r0+ l2r0(l1c0+c(C)+c(D))+0.5r0c0l2

2

+dr0c(C)+0.5d2c0r0

= dr0[(2l1+ l2)c0+c(B)+c(C)+c(D)]
+ l2r0(l1c0+c(C)+c(D))+0.5r0c0l2

2+dr0c(C), (4.10)

wherec0 andr0 are the unit wire capacitance and resistance, respectively. As we

can see, (4.8), (4.9), and (4.10) are all strictly increasing function with respect to

d. If we shift EF up (i.e. towards the source),d will decrease and thus the delays

from A to B, C andD will all decrease. Therefore, the delays of all downstream

sinks ofA will also decrease. Since the tree length is not changed, thedelays of the

sinks that are not downstream ofA will be the same. As a result, the slew rates at

all downstream sinks ofA will be reduced and the slew rates of all the other sinks
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9 :
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Figure 4.5: An invalid structure in a SCIFST.

that are not downstream ofA will remain unchanged.

According to Lemma4.1, shifting a line in a tree towards the source will reduce

the slew rates at some sinks while keeping the slew rates of the remaining sinks

unchanged. Note that the slew of an internal tree is defined asthe maximum slew

taking over the slew rates at all its sinks (equation (4.5)). Therefore, shifting a line

towards the source may or may not reduce the slew of the tree. Without loss of

generality, we further require that all lines (that can be shifted) have been shifted to

a position that is closest to the source in a SCIFST. Note thatthis will not change

the optimality of the resulting solution.

Lemma 4.2. A subtree in a SCIFST will not contain the structure as shown in

Fig. 4.5where B is a Steiner point and R is the root of the subtree.

Proof. Since the root node is to be connected to the source (i.e. the root node is

a point in the subtree that is closest to the source of the SCIFST), by Lemma4.1,

we can shiftBC up (i.e. towards the source) to reduce the slew rates at downstream

sinks, an absurdity. As a result, the structure cannot exist.

Lemma 4.3. In a SCIFST, a terminal must be connected to a Steiner point or

another terminal by a straight line that is perpendicular tothe boundary on which

the terminal is located.

Proof. Assume the contrary that in a SCIFSTt, a terminalA is connected to a

Steiner pointB (or another terminal) through a cornerC, as shown in Fig.4.6. We
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Figure 4.6: The structure when a terminal connected to a Steiner point through a
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Figure 4.7: Possible structures of a subtree of two terminals in a SCIFST.

can flip AB and move the corner fromC to C′. Now t becomes a new treet ′ that

consists of an external tree (AC′) and an internal treet1. Note thatC′ now is also

a boundary terminal and we can insert a buffer there. According to equation (4.5),

slew Stree(t ′) of t ′ is equal toSin(t1) which is smaller than the slewStree(t) of t

(assuming that buffers will be inserted at the boundary terminals). This violates

the last property of SCIFST that the slew rate is the minimum possible one. As a

result, the statement is true.

Lemma 4.4. In a SCIFST, a subtree of two terminals must be one of the treesas

shown in Fig.4.7.

Proof. Note that the root node of a subtree in a SCIFSTt must be an internal

node inside the blockage to be connected to the source. By Lemma4.3, if the two

terminals are both located on a horizontal or a vertical boundary of the obstacle,

they must have the samex-coordinate ory-coordinate and the tree structure must

be the one as shown in Fig.4.7(b). If the two terminals are located on a horizontal
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Figure 4.8: Possible structures of a subtree of three terminals in a SCIFST.
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Figure 4.9: Invalid structures when Fig.4.7(a) is combined with a terminal.

and a vertical boundary of the obstacle, according to Lemma4.3, they must be

connected by the root node of the subtree as shown in Fig.4.7(a).

Corollary 4.1. In a SCIFST, any subtree must be connecting terminals located on

at least two different boundaries of the obstacle.

Proof. Consider a subtree connecting two terminals. By Lemma4.4, it must be

one of the trees as shown in Fig.4.7. Therefore, it connects two terminals located

on two different boundaries of the obstacle. Since any subtree of more than two

terminals must contain at least one subtree of two terminals, the statement is true.

Lemma 4.5. In a SCIFST, a subtree of three terminals must be one of the trees as

shown in Fig.4.8.

Proof. A subtree of three terminals must be a combination of a subtree of two

terminals (as shown in Fig.4.7) with another terminal.
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Figure 4.10: Invalid structures when Fig.4.7(b) is combined with a terminal.

(1) Consider the case when Fig.4.7(a) is combined with a terminal. By

Lemma4.2 and Lemma4.3, the combined tree must be one of the subtrees as

shown in Fig.4.9or Fig.4.8. For Fig.4.9, we can deleteDR, connectAC and flip

AB to the boundary of the obstacle. The SCIFSTt becomes another treet ′ that

consists of one smaller internalt1 and two external trees connectingAC andAB re-

spectively. First of all, the length oft ′ will not be longer than the original SCIFST.

Besides, the slew oft ′ is smaller than the slew oft, an absurdity. Therefore, the

only possible structures are shown in Fig.4.8. Note that in Fig.4.8(a), the root

node can be anywhere onAC except atA andC, and in Fig.4.8(b) the root can be

anywhere onRCexcept atC.

(2) Consider the case when Fig.4.7(b) is combined with a terminal. By

Lemma4.2and Lemma4.3, the combined tree must be one of the trees as shown

in Fig.4.10. We first consider Fig.4.10(a). If ARis longer thanRD, we can remove

ARand connectAC to obtain a shorter tree with smaller slew, an absurdity. IfAR

is not longer thanRD, we can removeRD and connectAC. The original SCIFST

t becomes a new treet ′ that consists of two smaller internal treest1, t2 that are

connected by an external treeAC. The total wire length of the new tree will remain

unchanged. Int ′, for the internal treet1 connecting sinkA, we can easily verify

that the slew rates at all sinks will be reduced. For the internal treet2 connecting
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C andB, C will become the source oft2. SinceAR is not longer thanRD, CD will

not be longer thanRD implying that the delay fromC to B will be smaller than the

delay fromR to B in t. Therefore, the slew rate at sinkB will also be reduced. As a

result,Stree(t ′) =max{Sin(t1),Sin(t2)} will be smaller thanStree(t) and Fig.4.10(a)

is not a valid subtree in a SCIFST. Consider Fig.4.10(b). Rcannot be connected to

the source through a line going up, or otherwise we can shiftRD up (i.e. towards

to source) to reduce the slew rates at downstream sinks.R cannot be connected to

the source through a line going down either, or otherwise we can shiftRD down

to reduce the slew rates at downstream sinks. Therefore, Fig. 4.10(b) is also not

a valid subtree in a SCIFST. Note that in Fig.4.10(b), if the root node is right at

D, we can consider the tree as a combination of Fig.4.7(a) with another terminal

instead and all such redundant cases will not be discussed inthe proofs.

As a result, a subtree of three terminals can only be one of thetrees as shown

in Fig. 4.8.

Corollary 4.2. In a SCIFST, a subtree of three terminals must be connecting three

terminals on three different boundaries of the obstacle.

Lemma 4.6. In a SCIFST, a subtree of four terminals must be one of the trees as

shown in Fig.4.11.

Proof. A subtree of four terminals can be a combination of two subtrees of two

terminals or a combination of a subtree of three terminals with another terminal.

(1) Considering a subtree of four terminals as a combinationof two subtrees of

two terminals, by Lemma4.2 and Lemma4.4, the combined tree must be one of

the trees as shown in Fig.4.12or Fig.4.11(a)-(c). Consider Fig.4.12(a). R cannot

be connected to the source through a line going down, or otherwise we can shift

RF down (i.e. towards to source) to reduce the slew, an absurdity. Similarly, R
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Figure 4.11: Possible structures of a subtree of four terminals in a SCIFST.
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Figure 4.12: Invalid structures when two subtrees of two terminals are combined.

cannot be connected to the source through a line going up or left (if we flip RE).

Therefore, Fig.4.12(a) is invalid. For similar reason, in Fig.4.12(b), R cannot be

connected to the source through a line going up or down, and thus Fig.4.12(b) is

invalid. In Fig.4.12(c), R cannot be connected to the source through a line going

up, down, or left (if we flipRF), and thus Fig.4.12(c) is invalid. As a result, if a

subtree of four terminals is a combination of two subtrees oftwo terminals, it must

be in the form as shown in Fig.4.11(a)-(c). Note that in Fig.4.11(a), the root node

can be anywhere onEF except right at pointE andF, or otherwise we can delete

EF and connectBC to reduce the slew. For similar reason, in Fig.4.11(a)-(b), the



114 Chapter 4. ObSteiner with slew constraints

�

�

 

¡

¢
£

¤

(a)

¥

¦

§
¨

©
ª

«

(b)

Figure 4.13: The subtree structures when Fig.4.8(a) is combined with a terminal.
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Figure 4.14: Invalid subtree structures when Fig.4.8(b) is combined with a termi-
nal.

root can be anywhere onEF except the points that have the samex-coordinate as

E or F.

(2) Consider a subtree of four terminals as a combination of asubtree of three

terminals with another terminal.

Firstly, we consider the subtree of three terminals as shownin Fig. 4.8(a). R

cannot be connected to the source through a line going left, or otherwise we can

shift RD left to reduce the slew. Therefore, by Lemma4.2 and Lemma4.3, the

combined tree must be in the form as shown in Fig.4.13. Fig.4.13(a) is invalid and

the reason is the same as why Fig.4.10(a) is invalid. Fig.4.13(b) is invalid because

R cannot be connected to the source through a line going up or down. Therefore,

Fig. 4.8(a) cannot be combined to form a subtree of four terminals in aSCIFST.

Secondly, we consider the subtree of three terminals as shown in Fig.4.8(b). R
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cannot be connected to the source through a line going left (similar to Fig.4.8(a))

or up (or we can shiftRE up), and therefore, by Lemma4.2 and Lemma4.3 the

combined tree must be as shown in Fig.4.14or Fig.4.11(d)-(f). For the same rea-

sons as Fig.4.13(a) and Fig.4.13(b), Fig.4.14(a) and Fig.4.14(b) are both invalid.

As a result, if a subtree of four terminals is a combination ofa subtree of three

terminals with another terminal, it must be in the form as shown in Fig.4.11(d)-(f).

Note that in Fig.4.11(d), the root node can be anywhere onFC except atC andF .

In Fig. 4.11(e)-(f), the root can only be atR, or otherwise we can flipRF and shift

EF up (i.e. towards the source).

Corollary 4.3. In a SCIFST, a subtree of four terminals must be connecting four

terminals on at least three different boundaries of the obstacle.

Corollary 4.4. In a SCIFST, a subtree of more than two terminals must be con-

necting terminals located on at least three different boundaries of the obstacle.

Proof. By Corollary 4.2 and Corollary4.3, a subtree of three or four terminals

must be connecting terminals located on at least three different boundaries of the

obstacle. Moreover, a subtree of five terminals must be connecting five terminals

located on at least three different boundaries, since it must contain at least one

subtree of three or four terminals. We assume that up to a subtree ofn terminals,

the statement is still true. Since a subtree ofn+1 terminals must contain at least

one subtree of more than two terminals, its terminals must located on at least three

different boundaries of the obstacle. Therefore, by induction, the statement is true.

Lemma 4.7. In a SCIFST, a subtree of five terminals must be one of the treesas

shown in Fig.4.15.
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Figure 4.15: Possible structures of a subtree of five terminals in a SCIFST.

Proof. A subtree of five terminals can be a combination of a subtree oftwo termi-

nals with a subtree of three terminals or a combination of a subtree of four terminals

with another terminal.

(1) Consider a subtree of five terminals as a combination of a subtree of three

terminals as shown in Fig.4.8 with a subtree of two terminals. Fig.4.8(a) cannot

be combined with any subtree of two terminals as shown in Fig.4.7. The reason is

the same as why Fig.4.7(b) cannot be combined with any subtree of two terminals.

Fig. 4.8(b) cannot be combined with Fig.4.7(b) to form a subtree of five terminals,

and the reason is the same as why Fig.4.7(a) cannot be combined with Fig.4.7(b).

Therefore, the only possible case is when Fig.4.8(b) is combined with Fig.4.7(a).

By Lemma4.2, the combined tree must be in the form as shown in Fig.4.17or

Fig.4.15(a)-(b). Fig.4.17(a) is invalid becauseRcannot be connected to the source

through a line going up, down, or right (if we flipRG). Similarly, Fig.4.17(b) is

invalid as well. As a result, if a subtree of five terminals is acombination of a
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Figure 4.16: Possible structures of a subtree of more than five terminals in a
SCIFST.

subtree of three terminals with a subtree of two terminals, the combined tree must

be in the form as shown in Fig.4.15(a)-(b). Note that in Fig.4.15(a)-(b), the root

node can be anywhere onGH except the points that have the samex-coordinate as

G or H, or otherwise we can delete eitherGRor RH and connectCD to reduce the
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Figure 4.17: Invalid subtree structures when Fig.4.8(b) is combined with
Fig. 4.7(a).
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Figure 4.18: Invalid subtree structures when Fig.4.11(a) is combined with a termi-
nal.
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Figure 4.19: A subtree structure that can be obtained from Fig. 4.18(b).

slew.

(2) Consider a subtree of five terminals as a combination of a subtree of four

terminals as shown in Fig.4.11with another terminal.

Firstly, we consider Fig.4.11(a). SinceR cannot be connected to the source by

a line going down, by Lemma4.2, the combined tree must be in the form as shown

in Fig. 4.18. Fig. 4.18(a) is invalid becauseR cannot be connected to the source

through a line going left or right. For Fig.4.18(b), we can deleteRG, HG, FG, and

connectED, BC to change the subtree to Fig.4.19with equal length and reduce the
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Figure 4.20: The subtree structure when Fig.4.11(d) is combined with a terminal.

�

�

�

�

�

�

�

�

�

(a)

�

�

�

�

�

�

�
� �

(b)

Figure 4.21: Invalid subtree structures when Fig.4.11(e) or Fig.4.11(f) is com-
bined with a terminal.

slew of the tree, an absurdity. Therefore, Fig.4.11(a) cannot be combined to form

a subtree of five terminals, and neither do Fig.4.11(b) and Fig.4.11(c) for similar

reasons.

Secondly, we consider when Fig.4.11(d) is combined with a terminal.R

cannot be connected to the source through a line going down, and therefore, by

Lemma4.2, the combined tree must be in the form as shown in Fig.4.20. How-

ever, the combined tree is invalid becauseR cannot be connected to the source

through a line going left or right.

Thirdly, we consider when Fig.4.11(e) is combined with a terminal. This case

is similar to the case when Fig.4.8(b) is combined with a terminal. SinceRcannot

be connected to the source through a line going down, by Lemma4.2, the combined

tree must be in the form as shown in Fig.4.21(a) or Fig.4.15(c)-(d). However,

Fig.4.21(a) is invalid for we can deleteHRand connectDE (similar to Fig4.14(a)).

Therefore, the only possible cases are Fig.4.15(c)-(d). Note that in Fig.4.15(c) the
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root node can only be atR, and in Fig.4.15(d) the root node can be anywhere on

HE expect atH andE.

Finally, we consider when Fig.4.11(f) is combined with a terminal. This case

is similar to the case we discussed above. The combined tree must be in the form as

shown in Fig.4.21(b) or Fig.4.15(e)-(f). However, Fig.4.21(b) is invalid. There-

fore, the only possible cases are Fig.4.15(e)-(f). Note that in Fig.4.15(e) the root

node can only be atR and in Fig.4.15(f), the root node can be anywhere onHE

expect atH andE.

Lemma 4.8. In a SCIFST, a subtree of more than five terminals must be one ofthe

trees as shown in Fig.4.22.

Proof. Without loss of generality, we can generalize Fig.4.8(b), Fig.4.11(e), and

Fig. 4.15(c) as Fig.4.22(a) that consists of a single line and alternating incident

segments connecting to the terminals. We call this line a Steiner chain. We can

also generalize Fig.4.11(f) and Fig.4.15(e) as Fig.4.22(e). The only difference

between Fig.4.22(a) and (b) is that in the Steiner chain in Fig.4.22(b), the first two

Steiner points are connected by a corner.

To prove this lemma, we first prove that some of the subtrees cannot be grown

to larger subtrees. Consider Fig.4.11(d). We have already shown that Fig.4.11(d)

cannot be combined with a terminal. By Corollary4.4, Fig. 4.11(d) can only be

combined with a subtree of two terminals as shown in Fig4.7(a), or otherwise there

will be intersection. The combined tree must be in the form asshown in Fig.4.23

which is invalid forR cannot be connected to the source by a line going left, right,

or up. Therefore, Fig.4.11(d) cannot be combined to form a larger subtree. For

similar reason, Fig.4.15(a), Fig.4.15(b), Fig. 4.15(d) and Fig.4.15(f) cannot be

grown to a larger subtree either.
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Figure 4.22: Possible structures of a subtree of more than five terminals in a
SCIFST.

Secondly, we eliminate some impossible combinations. Consider Fig.4.11(c).

If Fig. 4.11(c) is combined with a subtree of two terminals, by Lemma4.2, the

combined tree must be in the form as shown in Fig.4.24(a) or (b). Fig.4.24(a)

is invalid for R cannot be connected to the source through a line going left or
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Figure 4.23: The subtree structure when Fig.4.11(d) is combined with Fig4.7(a).
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Figure 4.24: The subtree structures when Fig.4.11(c) is combined with another
subtree.

right. Fig.4.24(b) is invalid forRcannot be connected to the source through a line

going left, right, or up. For similar reason Fig.4.11(c) cannot be combined with

Fig. 4.8(a) either. If two subtrees as shown in Fig.4.11(c) are combined together,

the combined tree will be in the form as shown in Fig.4.24(c). The combined

tree is invalid forR cannot be connected to the source through a line going left

or right. For similar reason, Fig.4.11(c) cannot be combined with Fig.4.11(a)

or Fig. 4.11(b). Consider a combination of Fig.4.11(c) with Fig. 4.22(a). The

combined tree must be as shown in Fig4.24(d). However, this subtree is invalid for

Rcannot be connected to the source through a line going up or down. For the same
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reason, Fig.4.11(c) cannot be combined with Fig.4.22(e). Therefore, Fig.4.11(c)

cannot be combined with all the subtrees we have enumerated before. Fig.4.11(a)

and Fig.4.11(b) can be discussed in the same way and they cannot be combined

with all the subtrees we have enumerated either.

Thirdly, we will show that the possible combinations will lead to subtrees as

shown in Fig.4.22among which only Fig.4.22(a) and Fig.4.22(e) can be com-

bined to form larger subtrees. Note that the remaining ways to form a subtree

of more than five terminals are: (1) to combine Fig.4.22(a) or Fig.4.22(e) with

Fig. 4.7(a), Fig.4.7(b), Fig.4.8(a), or a terminal, (2) to combined two Fig.4.22(a),

two Fig.4.22(b), or Fig.4.22(a) with Fig.4.22(e).

The case when Fig.4.22(a) is combined with Fig.4.7(a), Fig.4.7(b), Fig.4.8(a),

or a terminal is similar to the case when Fig.4.8(b) is combined with one of

these subtrees. For the same reasons as discussed in Lemma4.6 and Lemma4.7,

the combined tree must be in the form as shown in Fig.4.22(a)-(d). Note that

if Fig. 4.22(a) is combined with a terminal, one of the resulting subtrees can be

generalized as Fig.4.22(a) itself. Moreover, for the same reason as Fig.4.11(d),

Fig. 4.22(b)-(d) cannot be combined to form a larger subtree. The casewhen

Fig. 4.22(e) is combined with Fig.4.7(a), Fig. 4.7(b), or Fig.4.8(a) can be dis-

cussed similarly. The combined tree must be in the form as shown in Fig.4.22(e)-

(g), among which only Fig.4.22(e) can be combined to form a larger subtree.

Consider when two subtrees as shown in Fig.4.22(a) are combined together.

The combined tree must be in the form as shown in Fig.4.25(a) or Fig.4.22(h).

Fig. 4.25(a) is invalid forR cannot be connected to the source through a line go-

ing up or down. Therefore, the only possible subtree is Fig.4.22(h). We then

prove that Fig.4.22(h) cannot be combined to form a larger subtree. By Corol-

lary 4.1, it can only be combined with a terminal. SinceR cannot be connected to
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Figure 4.25: The case when two subtrees as shown in Fig.4.22(a) are combined
together.
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Figure 4.26: Possible structures of SCIFSTs.

the source through a line going down, the combined tree must be in the form as

shown in Fig.4.25(b). However, this tree is invalid forR cannot be connected to

the source. The case when two Fig.4.22(e) are combined together and the case

when Fig.4.22(a) are combined with Fig.4.22(e) can be discussed similarly. The

resulting trees will be in the form as shown in Fig.4.22(i)-(j). Moreover, both trees

cannot be grown to larger subtrees.

Finally, since all possible combinations of subtrees, thatcan be grown to larger

subtree, can all be generalized as Fig.4.22(a) or Fig.4.22(e), we can conclude that

a subtree of more than five terminals must be in the form as shown in Fig.4.22.



4.4. Internal tree structures in an optimal solution 125

Theorem 4.1.A SCIFST must have one of the structures as shown in Fig.4.26.

Proof. Firstly, consider a SCIFST connecting the source with one sink only. By

Lemma4.3, the SCIFST must be in the form as shown in Fig.4.26(a). For the

rest SCIFSTs, they can be constructed by connecting a subtree as deduced by the

above lemmas to the source. By Lemma4.3, to form a SCIFST, a subtree should be

connected to the source directly by a straight line. Consider a SCIFST connecting

the source with two sinks. By Lemma4.4, the final SCIFST (connecting the root

of a 2-terminal subtree to the source) must be in the form as shown in Fig.4.26(b).

Consider a SCIFST connecting the source with three sinks. IfFig. 4.8(a) is con-

nected to the source and the root node is atD, the resulting SCIFST will be in the

form as shown in Fig.4.26(c). If the root node is not atD, since the root cannot be

connected to the source through a line going left, the subtree can only be connected

to the source on the right boundary. The resulting SCIFST canbe generalized as

the form shown in Fig.4.26(e). Similarly, if Fig.4.8(b) is connected to the source,

the resulting SCIFSTs can either be generalized as Fig.4.26(d) or Fig.4.26(e). Fi-

nally, we can follow the same way to analyze the rest cases andfind that a complete

SCIFST must be in one of the structures as shown in Fig4.26. For example, sub-

trees Fig.4.11(a)(d)(e), Fig.4.15(b)(c)(d), and Fig.4.22(a)(b)(c)(h) will all lead to

the SCIFST as shown in4.26(e).

Theorem 1 shows that the SCIFSTs (internal trees in an optimal solution) will

follow some simple structures. This result leads to a two-phase algorithm presented

in the next section.
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4.5 Algorithm

We have shown in the previous section that, in an optimal solution of the OARSMT

problem with slew constraints over obstacles, the trees inTI will follow some very

simple structures. Now, we consider the external trees inTO in an optimal solution.

We can further divide the trees inTO into smaller trees by splitting at sinks and

the source with degree more than one. Then, a treeto ∈ TO will have the following

properties.

1. to connects a set of nodes inV and boundary terminals, and all the connected

nodes have degree one in the tree.

2. One of the connected nodes in the tree is a source and all theother nodes are

sinks.

3. to is length-optimal over all the trees connecting the same setof nodes.

By applying the lemmas proposed in [48], it can be shown that the trees with the

above properties will also follow some simple structures asshown in Fig.4.27. In

this chapter, we call these trees external full Steiner trees (EFSTs). Therefore, one

way to construct an optimal OARSMT with slew constraints over obstacles is to

first construct a set of candidate SCIFSTs inTI according to Fig.4.26and a set

of candidate EFSTs inTO according to Fig.4.27, and then select and combine a

subset of them.

However, this process is still difficult to realize, becausethe locations of the

boundary terminals are not fixed. Therefore, in this chapter, we aim at providing

an optimal solution that is embedded in the extended Hanan grid. Considering a

set of nodesV = S∪{s0} and a set of rectangular obstaclesO, the extended Hanan

grid is a grid graph formed by constructing vertical and horizontal lines through

each node inV and each corner of the obstacles. By restricting the solution to the
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(a) (b) (c)

(d) (e)

Figure 4.27: Possible structures of EFSTs.

extended Hanan grid, the boundary terminals are the grid intersection points on the

boundaries of the obstacles. We use a setB to denote these boundary terminals. In

this way, we can realize a two-phase algorithm to construct an optimal solution as

follows.

4.5.1 EFST and SCIFST generation

The first phase is to generate a set of EFSTs and a set of SCIFSTs.

We first consider the construction of EFSTs. Note that EFSTs are very similar

to the full Steiner trees (FSTs) defined in the RSMT problem [61]. However, there

are two critical differences. Firstly, EFSTs are trees thatconnect the nodes in

V ∪B, while FSTs are trees that connect the nodes inV only. Secondly, EFSTs

are directed, while FSTs are not. The reason we need direction is that, in the

computation of slew rate, we need to calculate the delay of a tree and we must

have the source and sink information. A feasible internal tree (over obstacle) with
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a specific terminal as the source may fail to meet the slew constraint if the source

is changed to another terminal. Therefore, in order to ensure a feasible solution,

we need to keep the source/sink information and the signal flow directions in both

EFSTs and SCIFSTs. In general, we can modify the algorithm described in [61]

to generate EFSTs. However, we need to apply different screening tests to prune

useless trees taking into consideration the direction information.

We then consider the construction of SCIFSTs. Since each SCIFST is com-

pletely within an obstacle, for each obstacle inO, we will generate a set of SCIF-

STs that connect its boundary terminals. It can be observed that the structures of

SCIFSTs are very similar to the structures of EFSTs. The onlydifferent structure

is Fig.4.26(f). Therefore, we can make use the algorithm that generatesEFSTs to

construct the SCIFSTs as shown in Fig.4.26(a)-(e). For each of the generated trees,

we will check if the slew constraint can be met. All SCIFSTs that satisfy the slew

constraint will be save as candidates inTI. We can also see that a tree with structure

Fig. 4.26(f) can actually be obtained from another tree with structure Fig.4.26(d)

or Fig. 4.26(e), by moving a part of the Steiner chain towards the source.Note

that this operation will increase the tree length but may reduce the slew of the

tree. Therefore, for each of the generated SCIFSTs with structure Fig.4.26(d) or

Fig. 4.26(e), if the slew constraint cannot be satisfied and the tree structure can be

changed to that in Fig.4.26(f), we will try to move the Steiner chain towards the

source to meet the constraint. Note that in this operation, we only need to consider

the Hanan grid lines, and thus it can be done efficiently. Finally, all the internal

trees that fail to satisfy the slew constraint will be discarded.

It should be noted that during the construction of external and internal trees, the

algorithm will try all combinations of terminals to generate all possible candidates.

However, we adopt some very efficient pruning techniques to eliminate useless
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trees. Therefore, the run time in this stage is not significant and the resulting set of

candidate trees are kept in a reasonable size.

Moreover, the proposed algorithm can be easily extended to handle routing

obstacles that blocks all routing resources. For each routing obstacle we can simply

eliminate all associated SCIFSTs forcing the algorithm to avoid the obstacle.

4.5.2 Concatenation

Let E = {e0,e1,e2, . . .} be the set of directed trees we generated in the first phase.

The second phase of the algorithm is to select a subset ofE to form an optimal

solution to the problem. That is, to find a set of directed trees with minimum total

length such that there is a path from the sources0 to every sinks ∈ S. We use

a binary variablexi to indicate whether a treeei ∈ E is selected as a part of the

solution and a binary variableyi to indicate whether a boundary terminalbi ∈ B is

selected as a part of the solution. LetW ⊂V∪B be a set of nodes. We defineδ−(W)
to be the set of trees inE that have their source inW and at least one sink inW.

Similarly, δ+(W) is defined as the set of trees inE that have their source inW and

at least one sink inW. Then, the EFST an SCIFST concatenation problem can be

formulated as an integer linear program (ILP) as follows.

Minimize:

∑
i∶ei∈E

len(ei)×xi . (4.11)

Subject to:

∑
i∶ei∈δ−({s})

xi = 1 ∀s∈S, (4.12)
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∑
i∶ei∈δ−({b j})

xi ≥ xk ∀b j ∈B ∀ek ∈ δ+({b j}), (4.13)

y j ≥ xi ∀b j ∈B ∀ei ∈E s.t. b j ∈ ei (4.14)

∑
i∶ei∈δ−(W)

xi ≥ 1

∀W ⊂V ∪B∧s0 ∈W∧W∩V ≠∅ (4.15)

∑
i∶ei∩X≠∅

xi(∣ei ∩X∣−1) ≤ ∣X∩V ∣+ ∑
i∶bi∈X

yi −1

∀X ⊂V ∪B∧X∩V ≠∅∧ ∣X∣ ≥ 2, (4.16)

∑
i∶ei∩X≠∅

xi(∣ei ∩X∣−1) ≤ ∑
i∶bi∈X

yi −maxi∶vi∈X(yi)
∀X ⊆B∧ ∣X∣ ≥ 2. (4.17)

Constraints (4.12) require that the flow in of a sink must be one. Con-

straints (4.13) ensure that there is no boundary terminal that only has flow out but

no flow in. Constraints (4.14) ensure that if a tree is selected, all the boundary ter-

minals it connects are selected as well. Constraints (4.15) are the cutset constraints

that guarantee, for any partitionW andW with the sources0 in W and at least one

sink inW, there must be at least one selected tree crossing them with the right di-

rection. Constraints (4.16) and (4.17) are the subtour elimination constraints that

eliminate cycles.

This ILP can be solved by a branch-and-bound framework. We use the algo-

rithm proposed in [49], which is the FST concatenation algorithm for the RSMT

problem, and extend it to solve the ILP formulated in this chapter.
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4.5.3 Incremental construction

Given a source, a set of sinks, and a set of rectangular obstacles, if we include

all the obstacles in the algorithm, an optimal solution can be obtained by running

the two-phase algorithm once. However, this is usually inefficient for two reasons.

Firstly, among all the obstacles, only a fraction of them will overlap with the routing

tree. Secondly, among all the obstacles that overlap with the tree, only a fraction

of them may cause slew problems. Therefore, we adopt an iterative approach. In

the first iteration, we construct a solution without considering any of the obstacles.

Then, we check if there is a part of the tree that is over an obstacle and the slew

constraint is violated. If the constraint is violated, all the corresponding obstacles

will be included in the algorithm and a new iteration will be launched. This process

iterates until no slew violation is found.

4.6 Experiments

We implemented ObSteiner with slew constraints based on theGeosteiner-3.1 [1]

and all the tests are conducted on a Sun Blade 2500 workstation with two 1.6GHz

processors and 2GB memory. Note that although a dual processor machine is used,

our algorithm runs sequentially on only one processor. We employ a set of 21

test cases, RC1-RC11, RT1-RT5, IND1-IND5, which are commonly used for the

OARSMT problem. The technology parameters are set according to those used

in [44]. For the slew constraintα, we set it according to the size of the rout-

ing region of each benchmark. We letα = 0.3ns for the larger benchmarks (i.e.

IND2, RC01-RC11). andα = 0.2ns for the remaining smaller benchmarks. For

comparison, we run the executable of an optimal algorithm for the OARSMT [46]

problem on our platform. We choose [46] for comparison because it provides op-
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Table 4.1: Results of our approach in comparison with the approach in [46].

Bench
m k

ObSteiner [46] L2−L1
L2

(%) t2
t1

(x)
mark ∣E∣ L1 t1(s) L2 t2(s)

IND1 10 32 61 604 1 604 1 0 1
IND2 10 43 31 9100 1 9500 1 4.21 1
IND3 10 50 37 587 1 600 1 2.17 1
IND4 25 79 315 1078 1 1086 1 0.74 1
IND5 33 71 231 1295 1 1341 1 3.43 1

RC1 10 10 43 25290 1 25980 1 2.66 1
RC2 30 10 357 41060 1 41350 1 0.70 1
RC3 50 10 492 52540 1 54160 1 2.99 1
RC4 70 10 800 56570 2 59070 1 4.23 0.5
RC5 100 10 991 72090 1 74070 1 2.67 1
RC6 100 500 1686 76680 3 79714 369 3.81 123
RC7 200 500 5573 105290 109 108740 629 3.17 5.8
RC8 200 800 4716 107846 66 112564 25027 4.19 379.2
RC9 200 1000 3632 105911 87 111005 18849 4.59 216.7
RC10 500 100 7892 161920 107 164150 149 1.36 1.4
RC11 1000 100 15309 229971 2011 230837 778 0.38 0.4

RT1 10 500 33 1817 1 2146 22 15.33 22
RT2 50 500 649 44217 2 45852 35 3.57 17.5
RT3 100 500 1230 7579 1 7964 774 4.83 774
RT4 100 1000 1582 7634 3 9693 42418 21.24 14139.3
RT5 200 2000 3686 42706 105 51313 289363 16.77 2755.8

Avg 4.91 878.3

timal OARSMTs that give the lower bounds of the wire lengths we can achieve

by avoiding all obstacles. In this way, we can clearly see thebenefits of allowing

some wires to be routed over obstacles. Moreover, since bothalgorithms aim at

achieving the optimal solutions, it is reasonable to compare the run time of them.

The results of the experiments are illustrated in Table4.1. Column “m” pro-

vides the number of sinks and the source in the benchmark. Column “k” provides

the number of obstacles in the benchmark. Column “∣E∣” provides the number of

candidate trees generated in the first phase. Columns “L1” and “L2” provide the

wire lengths of the solution. Columns “t1” and “t2” provide the run times of the
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two algorithms in seconds, respectively.

We can observe from the table that by using our algorithm, theresulting

OARSMTs with slew constraints over obstacles can save nearly 5% routing re-

sources on average in comparison with the optimal OARSMT generated by [46].

In particular, our algorithm is more efficient for the benchmarks that contain a

smaller number of terminals but a larger number of obstacles. For those bench-

marks, our solutions can save more than 10% of the routing resources. Since the

majority of the nets in a design will not have a large number ofterminals, the solu-

tions provided by us will thus be very applicable in practice. We also observe that

our algorithm runs much faster in most of the cases. On average, our algorithm

can achieve over 800 times speedup. When there are only a few obstacles in the

routing region, the running time of the two algorithms are similar. However, as

the number of obstacles increases, our algorithm will be more and more efficient

than [46]. The main reason is that when there are a large number of obstacles, an

OARSMT algorithm will try to avoid every obstacle even if it does not cause prob-

lems, while our algorithm will only focus on the problematicones which may be

a small fraction. It should also be mentioned that the secondphase (concatenation

phase) of our algorithm dominates the total run time. On average, over 90% of the

run time is spent in the second phase.





CHAPTER 5

Conclusion

In this thesis, we study the RSMT problem in the presence of obstacles. The RSMT

problem has been of both theoretical and practical interests for nearly half a cen-

tury. Substantial efforts have been made to develop efficient algorithms, prove

performance bound of approximations, and solve the problemexactly. Being a

premier application of the RSMT problem, the increasing demand on the design

automation of VLSI has greatly promoted the research development of the prob-

lem.

In modern VLSI designs, there can be obstacles such as macro cells, IP blocks,

and pre-routed nets. How to adapt to these obstacles is becoming a new challenge

of the RSMT problem. Previous research works on this problemhave been focused

heuristic methods. The state-of-the-art exact algorithm can only handle less than

one hundred rectangular obstacles. However, the hard IP count per chip can easily

be thousands in the recent future. In order to deal with thesenew requirements, we

present efficient exact algorithms for the RSMT problem in the presence of obsta-

cles. For the obstacles that block all routing layers, an exact OARSMT algorithm is

developed. For the obstacles that block a fraction of the routing layers, we propose

the OARSMT with slew constraints over obstacles and solve itoptimally. A combi-

nation of these researches provides a powerful tool for solving the RSMT problem

in the presence of obstacles. With our optimal methods, we can easily compare the

performance of different approaches and see how far a heuristic solution is away
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from the optimum. The works presented in this dissertation give key insights into

this difficult problem.

As the process technology advances, the number of nets in a design can easily

be tens of millions and is still growing. Highly efficient RSMT algorithms are still

in great demand. Besides minimizing the wire length, futureresearch on RSMT

should also be adapted to the new requirements of VLSI design, such as timing

constraints, signal integrity, and the manufacturabilityissues.
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