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Abstract of thesis entitled:
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Over the past decade, the coordinated control problems for multi-agent systems have

attracted extensive attention. Both centralized and distributed control protocols have

been developed to study such multi-agent coordinated control problems as consensus,

formation, swarming, flocking, rendezvous and so on. However, most papers employ

standard linear control techniques. The results are mainly limited to linear multi-agent

systems. In this thesis, we will study some coordinated control problems of both linear

and nonlinear multi-agent systems by some advanced nonlinear techniques.

This thesis has mainly studied two problems.

i) The leader-following rendezvous with connectivity preservation. We have studied this

problem for both single integrator and double integrator multi-agent systems by nonlinear

control laws utilizing bounded potential function. Although the model of multi-agent

system is linear, the closed-loop system is nonlinear due to the employment of nonlinear

control laws. We have developed a Lyapunov-based method to analyze the performance of

the closed-loop system, and conducted extensive simulations to evaluate the effectiveness

of our control schemes. The specific results are summarized as follows.

• We have studied the case where the leader system is a linear autonomous system and

the follower system is a multiple single-integrator system. The existing results can

only handle the case where the leader signal is a constant signal or ramp signal and

the control law is discontinuous. By introducing an exosystem, we have proposed

a distributed state feedback smooth control law. For a class of reference signals

such as step, ramp, and sinusoidal signals, our control law is able to maintain the

connectivity of the system and, at the same time, achieve asymptotic tracking of all

followers to the output of the leader system.

• We have also studied a leader-following rendezvous problem for a double integrator

multi-agent system subject to external disturbances. Both the leader signal and

disturbance signal can be a combination of step signal, ramp signal and sinusoidal

signal with arbitrary amplitudes and initial phases. Motivated by some techniques in

output regulation theory, we have developed both distributed state feedback control
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protocol and distributed output feedback control protocol which utilizes a distribut-

ed observer. Both of our control laws are able to maintain the connectivity of an

initially connected communication network, and, at the same time, achieve the ob-

jective of the asymptotic tracking of all followers to the leader regardless of external

disturbances.

It is noted that even though we have only studied the rendezvous problem, the tech-

niques of this thesis can also be used to handle other similar problems such as formation,

flocking, swarming, etc.

ii) Cooperative output regulation problem of nonlinear multi-agent systems. We have

formulated the cooperative output regulation problem for nonlinear multi-agent sys-

tems. The problem can be viewed as a generalization of the leader-following consen-

sus/synchronization problem in that the leader signals are a class of signals generated by

an exosystem, each follower subsystem can be subject to a class of external disturbances,

and individual follower subsystems and the leader system have different dynamics. We

first show that the problem can be converted into the global stabilization problem of a

class of multi-input, multi-output nonlinear systems called augmented system via a set of

distributed internal models. Then we further show that, under a set of standard assump-

tions, the augmented system can be globally stabilized by a distributed output feedback

control law. We have solved the cooperative output regulation problem of uncertain non-

linear multi-agent systems in output feedback form. The main result can be summarized

as follows: assuming the communication graph is connected, then the problem can be

solved by a distributed output feedback control law if the global robust output regulation

problem for each subsystem can be solved by an output feedback control law. We have

also applied our approach to solve a leader-following synchronization problem for a group

of Lorenz multi-agent systems.
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摘摘摘 要要要

在过去的十年间，多智能体系统的协作控制问题引起了广泛的关注。为了解决趋

同、编队、蜂拥、群聚等多智能体的协作控制问题，许多研究者提出了各种各样的集

中式和分布式控制器。但是这些结果大多是针对线性的多智能体系统的，本论文将利

用一些非线性技术去研究线性和非线性的多智能体系统的协作控制问题。

1. 有领导者的保持连接的群聚问题: 这类问题的研究主要是针对单点积分器和二重积

分器的多智能体系统。为了保持网络的原始链接，我们引入了有界的势能函数，

基于这样的势能函数，我们提出了非线性的控制器，所以尽管这样的多智能体系

统本身是线性的，但闭环系统是非性的。因此我们利用李雅普诺夫定理来分析闭

环系统的性能,并进行了大量的仿真实验来衡量我们的控制器的有效性。具体的结

果列如下:

• 我们首先研究的系统是带领导的单点积分器的多智能体系统，其中领导是由
线性自治系统生成。现有的结果只能处理领导者信号是恒定的或者是斜波信

号。而我们提出了一个分布式的状态反馈的控制器，不管领导者的信号是阶

跃，斜波还是正弦信号，我们提出的这一控制器都能保持整个系统的原始连

接，并且同时能实现各个子系统对领导者的渐近跟踪。

• 我们并进一步研究了二重积分器的多智能体系统，而且这样的系统受到外部
信号的干扰。领导者的信号和干扰信号可以是阶跃信号，斜波信号以及具有

任意振幅和初始相位的正弦信号的组合。受到一些输出调节理论的启发，我

们同时提出了分布式的全状态反馈控制器和带有分布式观测器的输出反馈控

制器。尽管存在外部干扰信号，这两种控制器都能保持整个系统的初始连

接，同时能实现各个子系统对领导者的渐近跟踪的目标。

值得注意的是尽管我们研究是多智能体系统的群聚问题，这种技术同时能用来解

决其他类似的编队、蜂拥等协作控制问题。

2. 非线性多智能体系统的合作输出调节问题: 我们首先明确地提出了什么是非线性

多智能体系统的合作输出调节问题。这个问题可以看作是有领导者的趋同问题的

一般化。这个非线性多智能体系统包含了一个领导者和各个子系统，其中领导者

的信号由一外部线性自治系统产生，而每个子系统是含有不确定参数的非线性系

统，并且这些子系统受到外部信号的干扰。首先我们引入分布式的内模，然后通

过坐标变换，得到了一个多输入多输出的增广系统，之后我们把非线性多智能体

系统的合作输出调节问题转化成了这个增广系统的全局镇定问题，最后一系列标

准的假设下，我们提出了一分布式输出反馈控制器解决了镇定问题，从而解决了

输出调节问题。具体来说，假设通信图是连接的，如果我们能解决每个子系统的
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输出调节问题，那我们提出的分布式输出反馈调节器就能解决这个多智能体系统

的合作输出调节问题。我们也把提出的这一控制器应用于洛伦兹多智能体系统的

合作输出调节问题。
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5.5 Differences of ŵi and wi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Differences of ηi and x0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 The network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 The tracking error ei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 The output yi of all agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 The state zi of all agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 The network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 The profiles of the tracking errors ei . . . . . . . . . . . . . . . . . . . . . . 97

7.3 The output yi of all agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 The state x2i of all agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 The state zi of all agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



Chapter 1

Introduction

1.1 Literature Review

Coordinated control of multi-agent systems has been receiving significant attention over

the past decade, and much effort has been made toward the consensus, flocking, swarming,

rendezvous, formation problems of multi-agent systems with both linear and nonlinear

dynamics. The coordinated control problems of multi-agent systems appear to have broad

applications in cooperative control of unmanned vehicle formations[1, 2], flocking[9, 65,

99], distributed sensor networks[4, 7], attitude alignment of clusters of satellites, and

congestion control in communication networks[51] according to surveys[58, 60] on network

communication.

The connectivity control of the communication network is always the key issue for

distributed consensus and state agreement. There are several commonly used assumptions

about the communication graph.

1. the graph is fixed and connected;

2. the graph is dynamic and assumed to be uniformly connected or uniformly jointly

connected;

3. the graph is assumed to be initially connected, and in such case, it is defined dy-

namically and state-dependent.

Consensus problem, as the basic coordinated control problem for multi-agent systems,

has been widely studied under assumptions 1 or 2. [23, 33] studied the leader-following

consensus problem of single integrator multi-agent systems while [32, 54] proposed dis-

crete and continuous update schemes for both leader-following and leaderless consensus

problems under the assumption that the union of the graphs contains a spanning tree.
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And [60, 62] further considered such consensus problem with time delays. The consensus

problem for double-integrator systems has also been studied in [53, 55] under fixed and

connected graph, while [24, 25, 52] further considered the consensus problem under the

switching graph. Besides considering single-integrator and double-integrator multi-agent

systems, [56] considered the consensus problem for harmonic oscillators and [86, 87, 88, 89]

studied the same problem for a group of special linear multi-agent systems, by which har-

monic oscillators could also be expressed. Moreover, many researchers have provided so-

lutions for consensus problem of general linear multi-agent systems. For example, [40, 74]

solved the leader-following consensus problem under fixed graph by full state feedback

control laws; [46, 63, 79, 92] proposed control laws only using the partial information of

the state of the system; and [90] provided both state feedback and output feedback control

protocols regardless the uncertainty in the multi-agent systems. [49, 76, 77] extended the

results into the switching communication networks. Furthermore, [48, 75] provided the

stability analysis of the closed-loop system under the distributed consensus algorithms.

For now, most papers focused on the consensus problem for linear multi-agent systems

and a few considered the nonlinear multi-agent systems[42, 64, 100, 105], including some

for Lagrangian multi-agent systems[6, 16, 57].

Flocking and rendezvous problems have been mainly studied under the third assump-

tion: the graph is defined dynamically and always state-dependent. There was a survey

on the connectivity control of such state-dependent graph given by [102], mainly focusing

on flocking and rendezvous problems. The flocking problem has been widely studied and

many kinds of control laws have been introduced to solve this problem. [9, 59, 84, 85]

have considered flocking without a leader in both fixed and switching networks while

[61, 65, 66, 71, 99] have considered the leader-following flocking control for multi-agent

dynamical systems. [61] analyzed the flocking behavior of a large class of agents by propos-

ing a decentralized flocking algorithm with collective potential functions introduced and

[71] further studied the same problem by removing the two critical assumptions in [61]:

all agents being informed and the virtual leader traveling at a constant velocity. Different

from control laws in [9, 61, 71], some control laws can ensure the connectivity of the ini-

tial communication network. For example, by introducing potential functions, [11, 103]

proposed an unbounded control law to solve the flocking problem under the assumption

that the communication network was initially connected, and under the same assumption

as [103], [104] further explored this problem by proposing a hybrid distributed topology

control that decided on deletion and creation of links between agents.

Different from flocking, rendezvous with connectivity preservation problem usually

requires all the agents move to the same location or track a leader, and some centralized

2



or distributed control law is proposed to ensure the the connectivity of the communication

graph. We will focus on this part in section 1.1.1.

1.1.1 Leader-following rendezvous with connectivity preservation problem

The connectivity preservation problem of single integrator multi-agent systems can be

classified into two groups: leaderless and leader-following. So far, the study of this prob-

lem is mainly focused on the leaderless case. [98] and [101] proposed centralized and

distributed control laws to control the global connectivity of the network by studying the

dynamics of Laplacian matrix and its spectral properties, respectively. Potential func-

tions have also been used to maintain the connectivity of the communication network.

[10, 13, 38, 39] used the distributed navigation-like potential function, while [15, 34, 35]

adopted the unbounded potential function. For the leader-following case, [5] considered

the rendezvous problem with connectivity preservation for both single integrator and dou-

ble integrator multi-agent systems by employing discontinuous controllers. In order to

preserve the connectivity of the network, it also proposed two different kinds of potential

functions. It is worth mentioning that some papers such as [22, 83] explored the sufficient

conditions for the maintenance of the connectivity of the communication network.

For the connectivity preservation problem of double integrator multi-agent systems,

both the leaderless and leader-following cases have been studied by [5, 73]. [73] introduced

the bounded potential function, which was also used by [17, 19]. And [17, 19] further

gave the exact value for the parameter in the potential function and made this parameter

independent of the initial conditions of the closed-loop system by introducing some closed

balls centered at the origin of the respective spaces, which also revealed the close relation of

the rendezvous problem to the semi-global stabilization problem. For the leader-following

case considered in [73], it focused on the situation that the leader was also a double

integrator and the velocity was constant. As for the case that the velocity was time-

varying, it proposed a centralized control law in the sense that the derivative of the

velocity of the leader was informed by each agent. [5] also considered the case of leader’s

velocity being time-varying and proposed a distributed control law utilizing a distributed

observer for the leader’s velocity under the assumption that the derivative of leader’s

velocity was bounded and the upper bound was known by all agents.

3



1.1.2 Cooperative output regulation problem of nonlinear multi-agent sys-

tems

The output regulation problem for nonlinear systems has been widely studied, especially

for the lower triangular systems[43, 44] and output feedback systems[36, 93, 94, 95]. The

cooperative output regulation, viewed as a generalization of the leader-following consen-

sus/synchronization problem, is to design a distributed control law to achieve the objec-

tives of asymptotic tracking and disturbance rejection in the closed-loop system. Thus,

the cooperative output regulation problem of nonlinear multi-agent systems is more chal-

lenging since the control law is limited to making use of the information of itself and its

neighbors due to the communication constraints and one has to develop techniques to

globally stabilize the multi-input, multi-output augmented nonlinear system. [45] provid-

ed a local solution for a class of nonlinear systems and [68] further studied leader-following

consensus problems of nonlinear multi-agent systems with second-order dynamics assum-

ing the leader has the same dynamic as followers’ under the Lipschitz-like condition.

After removing the Lipschitz-like condition, [81] first introduced a type of distributed

internal model to convert the cooperative global robust output regulation problem of a

class of strict feedback nonlinear uncertain multi-agent systems into a global robust sta-

bilization problem of an augmented multi-agent system in block lower triangular form.

[96, 97] solved the output regulation problem for a class of nonlinearly coupled multi-

agent systems with an input-to-state stability property by proposing an internal model

based controller. Furthermore, the same problem for a class of heterogeneous uncertain

multi-agent systems in output feedback form with unity relative degree has been studied

in [82].

1.2 Thesis Contributions

In this thesis, two kinds of problems are considered: the leader-following rendezvous with

connectivity preservation problem of linear multi-agent systems and cooperative output

regulation problem of nonlinear multi-agent systems. And the main contributions of this

thesis are summarized as follows:

1. We study the leader-following rendezvous with connectivity preservation problem

of single integrator multi-agent systems with leader having different dynamics from

followers’. The leader system can be any linear autonomous system, which can gen-

erate a large class of functions, including a combination of step functions of arbitrary

magnitudes, ramp functions of arbitrary slopes, and sinusoidal functions of arbitrary
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amplitudes and initial phases. It proposes a simple continuous distributed control

law without the information of the upper bound of the derivative of the leader signal.

It is noted that the whole closed-loop system is nonlinear due to the employment

of a nonlinear control law, thus Lyapunov-like function is introduced to analyze the

solvability of the leader-following rendezvous with connectivity preservation problem

of single integrator multi-agent systems. That is, we show that under the distributed

state feedback control law, the connectivity of the initial communication network is

maintained as well as the asymptotic tracking of all followers to the output of the

leader system is achieved. Some examples are used to illustrate the main theories.

2. We further study the leader-following rendezvous with connectivity preservation

problem of double integrator multi-agent systems where the leader system can gen-

erate a class of signals such as ramp signal and sinusoidal signals with arbitrary

amplitudes and initial phases. That is, we don’t require the leader system to be

a double integrator system and it contains double integrator system and harmonic

system as special cases. Inspired by the output regulation theory, we first solve this

problem by full information feedback control law. Then we generalize this prob-

lem by allowing the external disturbances to various followers to be different and a

distributed position feedback control law, depending neither on the velocity of the

system nor on the external disturbances, is proposed to solve this generalized prob-

lem. Both the full information control law and position feedback control law can

maintain the connectivity of an initially connected communication network, and at

the same time, achieve the objective of the asymptotic tracking of all followers to

the leader regardless of external disturbances.

3. We study the cooperative output regulation problem of nonlinear multi-agent sys-

tems in output feedback form under the assumption that the communication graph

is connected all the time. The output feedback nonlinear system with unity relative

degree is first considered and a dynamic compensator, also called internal model, is

introduced to convert cooperative global robust output regulation problem into the

global stabilization problem of a class of multi-input, multi-output augmented sys-

tems. Then we also consider the nonlinear multi-agent systems in output feedback

form with relative degree greater than unity by further introducing a distributed

observer. We can show that assuming the communication graph is connected, the

cooperative output regulation problem of nonlinear multi-agent systems in output

feedback form can be solved by a distributed output feedback control law if the

global robust output regulation problem for each subsystem can be solved by an
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output feedback control law. Our approaches are applied to solve the synchroniza-

tion problem for a group of Lorenz multi-agent systems.

1.3 Thesis Organization

The rest of the thesis is organized in the following way.

Chapter 2 reviews the the fundamental definitions, lemmas and theorems that are

useful for deriving the main results of the thesis. It includes the review of graph theory

notation, matrix theory notation, linear output regulation and nonlinear output regula-

tion.

Chapter 3 studies the problem of leader-following rendezvous with connectivity p-

reservation for single integrator multi-agent systems where the leader system can be any

linear autonomous system. A very simple continuous control law is proposed to maintain

the connectivity of the initial connected communication network, and achieve asymptotic

tracking of all the followers to the leader.

Chapters 4 considers the rendezvous problem for a double integrator multi-agent sys-

tem where the leader system can generate a class of signals such as ramp signal and

sinusoidal signals with arbitrary amplitudes and initial phases. This problem is solved by

the distributed full information state feedback control law, which can maintain connec-

tivity of the initial communication network as well as, achieve asymptotic tracking and

disturbance rejection for a class of leader systems.

Chapters 5 further proposes a position feedback control law to solve the rendezvous

problem for double integrator multi-agent systems. Additionally, the formulation of the

problem in this chapter is more general than the one in Chapter 4 in that the disturbances

to various followers can be different and the position feedback control law depends neither

on the velocity of the system nor on the external disturbances.

Chapter 6 turns to the cooperative global robust output regulation problem for a class

of nonlinear multi-agent systems in output feedback form with unity relative degree. A

distributed output feedback control law is proposed to solve such problem, and the main

theorem is applied to solve a leader-following synchronization problem for a group of

Lorenz multi-agent systems.

Chapter 7 further considers the cooperative global robust output regulation problem

for a class of nonlinear multi-agent systems in output feedback form with relative degree

greater than unity. An example is also used to illustrate the effectiveness of the distributed

output feedback control law.

Finally, some concluding remarks and future work are given in chapter 8.

6



The examples in the thesis were conducted by MATLAB. The thesis was typeset using

LATEX.

Notation

Symbol Meaning

R The set of all real number

R+ The set of all nonnegative real number

Rn The n−dimensional real Euclidean space

Rm×n The set of all m× n real matrix

||x|| The Euclidean norm of vector x

||A|| The induced norm of matrix A by the Euclidean norm

AT The transpose of a matrix A

A−1 The inverse of a matrix A

0m×n The m× n zero matrix

In The n−dimensional identity matrix

1N The N dimensional column vector with all elements 1

⊗ The Kronecker product of matrices. Some properties of Kronecker product

are useful in this thesis: (A⊗B)(C ⊗D) = (AC)⊗ (CD),

(A+B)⊗ C = A⊗ C +B ⊗ C, A⊗ (B + C) = A⊗B + A⊗ C

col(v1, v2) The compound column vector [vT1 , v
T
2 ]
T for any column vectors v1 and v2

λ(A) The spectrum of a square matrix A

C1 The class of continuously differentiable functions

K The class of strictly increasing positive definite functions f : Rn 7→ R+

K∞ The class of unbounded class K functions
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Chapter 2

Fundamentals

In this chapter, we will first present a brief overview of the graph theory notations and

matrix theory notations which can be found in [21]. Then we will summarize linear output

regulation and nonlinear output regulation [28].

2.1 Review of Graph Theory Notation

We first introduce some graph notation which can be found in [21]. A digraph G = (V , E)
consists of a finite set of nodes V = {1, ..., N} and an edge set E = {(i, j), i, j ∈ V , i ̸= j}.
A node i is called a neighbor of a node j if the edge (i, j) ∈ E . Ni denotes the subset of

V that consists of all the neighbors of the node i. If the graph G contains a sequence of

edges of the form (i1, i2), (i2, i3), · · · , (ik, ik+1), then the set {(i1, i2), (i2, i3), · · · , (ik, ik+1)}
is called a path of G from i1 to ik+1, and node ik+1 is said to be reachable from node i1.

The edge (i, j) is called undirected if (i, j) ∈ E implies (j, i) ∈ E . The graph is called

undirected if every edge in E is undirected. A graph is called connected if there exists

a node i such that any other nodes are reachable from node i. The node i is called a

root of the graph. A digraph Gs = (Vs, Es) is a subgraph of G = (V , E) if Vs ⊆ V and

Es ⊆ E ∩ (Vs × Vs).
The weighted adjacency matrix of a digraph G is a nonnegative matrix A = [aij] ∈

RN×N , where aii = 0 and aij > 0 ⇔ (j, i) ∈ E . A matrix L = [lij] ∈ RN×N with zero row

sum is said to be a Laplacian matrix of a graph G if, for i, j = 1, · · · , N, i ̸= j, lij < 0 iff

⇔ (j, i) ∈ E , and lij = lji if (j, i) is a bidirected edge of E . Clearly, L1N = 0. Moreover,

L is symmetric and positive semi-definite if and only if the graph G is undirected and

connected [21].

Given any matrix M = [mij] ∈ RN×N , one can define a graph denoted by Γ(M) =

(V , E) where V = {1, ..., N}, and E = {(i, j) | mji ̸= 0, i ̸= j, i, j = 1, · · · , N}. Clearly, if
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L is any Laplacian matrix of a graph G, then Γ(L) = G. A matrix M = [mij]N×N with

nonnegative off-diagonal elements and zero row sums is called Metzler matrix. If L is the

Laplacian of some graph G, then −L is a Metzler matrix.

Remark 2.1 It is shown in [41] that a Metzler matrix has at least one zero eigenvalue

and all the nonzero eigenvalues have negative real parts. Furthermore, a Metzler matrix

has exactly one zero eigenvalue and its null space is span{1} if and only if the associated

graph is connected. A symmetric Metzler matrix is negative semi-definite. Let M be a

symmetric Metzler matrix whose graph is connected. Let ∆ = diag{a10, · · · , aN0} where

ai0 ≥ 0 for i = 1, · · · , N . Then for any nonzero, nonnegative diagonal matrix ∆, −M+∆

is positive definite.

Then we list Gersgorin Theory from [26], which will be used to analyze the key property

of Metzler matrix.

Theorem 2.1 (Gersgorin Theory[26]) Let A = [aij] ∈ Rn×n, and let

R
′

i(A) ≡
n∑

j=1,j ̸=i

|aij|, i = 1, . . . , n,

denote the deleted absolute row sums of A. Then all eigenvalues of A are located in the

union of n discs
n∪
i=1

z ∈ C : |z − aii| ≤ R
′

i(A) ≡ G(A).

Furthermore, if a union of k of these n discs forms a connected region that is disjoint

from all of the remaining n− k discs, then there are precisely k eigenvalues of A in this

region.

2.2 Review of Linear Output Regulation

The linear output regulation problem, as one of the central topics in linear control theory

in the 1970s, aims to design a feedback control law to asymptotically track a class of

reference inputs and reject external disturbances. The following materials are mainly

extracted from Chapter 1 in [28].

Consider the linear time-invariant system described by

ẋ(t) = Ax(t) + Bu(t) + Ev(t), x(0) = x0, t ≥ 0

e(t) = Cx(t) +Du(t) + Fv(t)
(2.1)
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where x(t) ∈ Rn denotes the plant state, u(t) ∈ Rm is the plant input, e(t) ∈ Rp is the

plant output representing the tracking error, and v(t) ∈ Rq =

[
r

d

]
is the exogenous

signal representing the reference inputs and the disturbances. The exogenous signal is

generated by an exosystem of the form

v̇(t) = Sv(t), v(0) = v0, t ≥ 0 (2.2)

The reference inputs r and the disturbances d are both assumed to be generated by linear

autonomous differential equations as follows:

ṙ = A1rr, r(0) = r0

ḋ = A1dd, d(0) = d0
(2.3)

with S =

[
A1r 0

0 A1d

]
. The above autonomous equations can generate a large class of

functions, for example, a combination of step functions of arbitrary magnitudes, ramp

functions of arbitrary slopes, and sinusoidal functions of arbitrary amplitudes and initial

phases.

Thus in fact, the linear plant subject to disturbance d(t) can be modeled as follows:

ẋ = Ax+Bu+ Edd

y = Cx+Du+ Fdd

e = Cx+Du+ Fdd− r

(2.4)

with

[
E

F

]
=

[
0 Ed

−I Fd

]
.

We list some standard assumptions needed for solving the linear output regulation

problem in the sense of Definition 1.1 in [28].

Assumption 2.1 S has no eigenvalues with negative real parts.

Assumption 2.2 The pair (A,B) is stabilizable.

Assumption 2.3 The pair (
[
C F

]
,

[
A E

0 S

]
) is detectable.

2.2.1 Regulator equations

The regulator equations associated with (2.1) and (2.2) are:

XS = AX +BU + E

0 = CX +DU + F
(2.5)
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where (X,U) is a solution pair of (2.5).

To see the role of (2.5), performing on (2.1) the following coordinate transformation

x̄ = x−Xv

ū = u− Uv
(2.6)

can convert the original system into a system without external disturbances:

˙̄x = Ax̄+Bū

e = Cx̄+Dū
(2.7)

2.2.2 Linear feedback control laws

In Chapter 1.2 in [28], two kinds of linear control laws are proposed to solve the linear

output regulation problem: state feedback and dynamic measurement output feedback,

and these two classes of feedback control laws will be utilized in Chapters 3-5.

1. Static state feedback

u = Kxx+Kvv (2.8)

where Kx ∈ Rm×n and Kv ∈ Rm×q are constant matrices. Theorem 1.7 in [28] can

be used to construct Kx and Kv as follows.

Theorem 2.2 Under Assumptions 2.1 and 2.2, let the feedback gain Kx be such

that (A + BKx) is exponentially stable. Then, the linear output regulation problem

is solvable by a static state feedback control of the form

u = Kxx+Kvv

if and only if there exist two matrices X and U that satisfy the linear matrix equations

(2.5), with the feedforward gain Kv being given by

Kv = U −KxX

2. Dynamic measurement output feedback

u = Kz, ż = g1z + g2ym (2.9)

where z ∈ Rnz , ym ∈ Rpm for some positive integer pm is the measurement output,

and K ∈ Rm×nz , g1 ∈ Rnz×nz , g2 ∈ Rnz×pm are constant matrices. It is assumed that

ym takes the following form:

ym = Cmx(t) +Dmu(t) + Fmv(t)
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where Cm ∈ Rpm×n, Dm ∈ Rpm×m, and Fm ∈ Rpm×q.

Luenburger observer theory suggests a way to construct the triple (K, g1, g2).

u =
[
Kx Kv

]
z

ż =

[
A E

0 S

]
z +

[
B

0

]
u+ L(ym −

[
Cm Fm

]
z −Dmu)

(2.10)

where L ∈ R(n+q)×pm is an observer gain matrix, and

K =
[
Kx Kv

]
g1 =

[
A E

0 S

]
+

[
B

0

]
K − L(

[
Cm Fm

]
z +DmK), g2 = L

(2.11)

2.2.3 Barbalat’s Lemma

Barbalat’s Lemma[37] is an effective tool for adaptive control, and will be used to analyze

the convergence property for the rendezvous problem defined in Chapters 3-5.

Lemma 2.1 Suppose f(t) is continuously differentiable for t ≥ t0 for some t0, f(t) has

a limit as t→ ∞, and ḟ(t) is uniformly continuous. Then ḟ(t) → 0 as t→ ∞.

2.3 Review of Nonlinear Output Regulation

We will also give a brief review for nonlinear output regulation as the fundamental theories

for Chapters 6 and 7, and more details can be found in [28].

We consider the nonlinear control system in the following form:

ẋ(t) = f(x(t), u(t), v(t), w)

e(t) = h(x(t), u(t), v(t), w)

y(t) = hm(x(t), u(t), v(t), w), t ≥ 0

(2.12)

where x ∈ Rn is the plant state, u ∈ Rm the plant input, e ∈ Rp the regulated error,

f : Rn × Rm × R → Rn, h : Rn × Rm × R → Rp, w ∈ Rnw represents the unknown plant

parameter, and v ∈ Rq is the exogenous signal representing the disturbance and/or the

reference input, assumed to be generated by the following so called exosystem:

v̇(t) = a(v(t)), t ≥ 0 (2.13)

Then we list some standard assumptions for nonlinear output regulation problem.
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Assumption 2.4 There exist sufficiently smooth functions x(v, w) and u(v, w) with x(0, 0) =

0 and u(0, 0) = 0 that satisfy, for all v ∈ V and w ∈ W , the following equations

∂x(v, w)

∂v
a(v) = f(x(v, w),u(v, w), v, w)

0 = h(x(v, w),u(v, w), v, w)

(2.14)

Equations (2.14) are called regulator equations [31] associated with system (2.12) and

exosystem (2.13).

Assumption 2.5 The exosystem is linear and neutrally stable in the sense that a(v) = Sv

for some constant matrix S whose eigenvalues are all semi-simple with zero real parts.

Assumption 2.6 The solution of the regulator equations is a polynomial in v.

2.3.1 From nonlinear output regulation to stabilization

One of the most important ways to solve the global robust output regulation problem

for nonlinear systems is to first design a dynamic compensator, called internal model,

and then convert the output regulation problem of the original system into the global

stabilization problem of an augmented system. Thus let us introduce the concept of

internal model in the sense of Definition 6.1 in [28].

Definition 2.1 Under Assumption 2.4, let s be some positive integer and γ : Rs × Rp ×
Rm 7→ Rs and β : Rs × Rq 7→ Rm be two sufficiently smooth function vanishing at the

origin. An internal model candidate of the plant composed of (2.12) and (2.13) is a

dynamic compensator of the following form:

η̇ = γ (η, y, u) = γ (η, hm(x, u, v, w), u)

u = β(η, v)
(2.15)

with the property that there exists a globally defined sufficiently smooth function θ : Rq ×
Rnw 7→ Rs such that, for all v ∈ Rq and all w ∈ Rnw ,

θ̇(v, w) = γ(θ(v, w), hm(x(v, w),u(v, w), v, w),u(v, w))

u(v, w) = β(θ(v, w), v)
(2.16)

where θ̇(v, w) = ∂θ(v,w)
∂v

a(v).
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The composition of the original system and internal model constitutes the augmented

system as follows:

η̇ = γ(η, y, u)

ẋ = f(x, u, v, w)

v̇ = a(v)

e = h(x, u, v, w)

y = hm(x, u, v, w)

(2.17)

The internal model candidate is defined such that the augmented system has an output

zeroing invariant manifold M{(η, x, v)|η = θ(v, w), x = x(v, w), v ∈ Rq} under the control

u(v, w) in the sense that

∂θ(v, w)

∂v
a(v) = γ(θ(v, w), hm(x(v, w),u(v, w), v, w),u(v, w))

∂x(v, w)

∂v
a(v) = f(x(v, w),u(v, w), v, w)

0 = h(x(v, w),u(v, w), v, w)

(2.18)

Let α(η, v) = γ(η, 0, v, β(η, v)). Performing the following coordinate and input transfor-

mation on (2.17)

η̄ = η − θ(v, w)

x̄ = x− α(η, v)

ū = u− β(η, v)

(2.19)

gives a system denoted by
˙̄η = γ̄(η̄, x̄, ū, v, w)

˙̄x = f̄(η̄, x̄, ū, v, w)

e = h̄(η̄, x̄, ū, v, w)

(2.20)

which has the property that, for all trajectories v(t) of the exosystem, and all w ∈ Rnw ,

γ̄(0, 0, 0, v(t), w) = 0

f̄(0, 0, 0, v(t), w) = 0

h̄(0, 0, 0, v(t), w) = 0

(2.21)

Consider an output feedback control law of the form

ū = k (ξ)

ξ̇ = gξ(ξ, e)
(2.22)

where ξ ∈ Rnξ for some integer nξ, and k and gξ are sufficiently smooth functions vanishing

at their respective origins. If the control law (2.22) globally stabilizes the equilibrium of
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the augmented system (2.20) at the origin, then the following control law

u = β(η, v) + k(e, ξ)

η̇ = γ(η, e, v, u)

ξ̇ = gξ(η, ξ)

(2.23)

solves the robust output regulation problem for the original plant (2.12) globally.

2.3.2 Construction of internal model

As we can see in the last section, the key for the solvability of global output regulation

problem is to find a suitable internal model which can lead to a stabilizable augmented

system. Here we introduce one internal model candidate from [30]. For this purpose, we

list another assumption.

Assumption 2.7 There exist a sufficiently smooth function π : Rq×Rnw 7→ R, an integer

r and real numbers a0, · · · , ar−1 such that

drπ

dtr
= a0π + a1

dπ

dt
+ · · ·+ ar−1

dr−1π

dtr−1
(2.24)

and a sufficiently smooth function β : Rr 7→ R vanishing at the origin such that, for all

v ∈ Rq , and w ∈ Rnw ,

u(v, w) = β(π(v, w), π̇(v, w), · · · , π(r−1)(v, w)) (2.25)

Under Assumption 2.7, let

τ(v, w) =


π
dπ
dt
...

dr−1π
dtr−1

 (2.26)

and let Φ =

[
0 Ir−1

a0 a1, · · · , ar−1

]
. Then it is ready to verify that

τ̇ = Φτ, u(v, w) = β(τ) (2.27)

Let Ψ be the gradient of β at the origin and assume the pair (Ψ,Φ) is observable.

Then, for any M ∈ Rr×r and N ∈ Rr×1 such that (M,N) is controllable, the spectra of

the matrices Φ and M are disjoint, and M is Hurwitz, there exists a unique, nonsingular

matrix T ∈ Rr×r that satisfies the Sylvester equation [50]

TΦ−MT = NΨ (2.28)
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Then the following dynamic compensator

η̇ =Mη +N(u− β(T−1η) + ΨT−1η)

u = β(η)
(2.29)

is a nonlinear internal model candidate [30].

In this thesis, we will focus on a group of nonlinear control systems in output feedback

form with unity relative degree shown in Eq. (2.30) and relative degree greater than unity

shown in Eq. (2.31).

ż = f(z, y, v, w)

ẏ = b(v, w)u+ g(z, y, v, w)

e = y − q(v, w)

(2.30)

where (z, y) ∈ Rn × R is the state, u ∈ R is the input, e ∈ R is the error output,

w ∈ W ⊂ Rnw is an uncertain parameter vector with W an arbitrarily prescribed subset

of Rnw . It is assumed that all functions in (2.30) are globally defined, sufficiently smooth,

and satisfy f(0, 0, 0, w) = 0, g(0, 0, 0, w) = 0, and q(0, w) = 0 for all w ∈ W.

ż = f(z, y, v, w)

ẋs = x(s+1) + gs(z, y, v, w), s = 1, · · · , r − 1

ẋr = b(w)u+ gr(z, y, v, w)

y = x1

e = y − q(v, w)

(2.31)

where r ≥ 2, (z, x) ∈ Rn × Rr with x = col(x1, · · · , xr) ∈ Rr is the state, u ∈ R is

the input, y ∈ R is the output, e ∈ R is the regulated error, w ∈ W ⊂ Rnw is an

uncertain parameter vector with W an arbitrarily prescribed compact subset of Rnw such

that 0 ∈ W. All functions in (2.31) are supposed to be globally defined, sufficiently

smooth, and satisfy q(0, w) = 0, f(0, 0, 0, w) = 0, gs(0, 0, 0, w) = 0, s = 1, · · · , r for all

w ∈ W.

v(t) ∈ Rnv is an exogenous signal presenting both reference input and disturbance. It

is assumed that v(t) is generated by a linear system of the following form

v̇ = Sv (2.32)

For such output feedback nonlinear systems, we can design linear internal model by assum-

ing the function u(v, w) itself satisfies an equation of the form (2.24). Then β(τ) = ΨT−1τ

where Ψ = [1, 0, · · · , 0]. Then (2.29) reduces to the following linear internal model candi-

date:

η̇ =Mη +Nu, u = ΨT−1η (2.33)
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2.3.3 Some theories

We also list some important theories and techniques, which are necessary for the solvability

of the cooperative global robust output regulation problem considered in Chapters 6 and

7.

1. Lemma 7.8 in [28]

Lemma 2.2 Let f : Rm ×Rn ×Rp → R be C1 function satisfying f(0, 0, µ) = 0 for

all µ ∈ Σ with Σ being a compact subset of Rp. Then there exist smooth functions

F1 : Rm → R and F2 : Rn → R satisfying F1(0) = 0 and F2(0) = 0 such that

|f(x, y, µ)| ≤ F1(x) + F2(y), ∀x ∈ Rm, y ∈ Rn, µ ∈ Σ (2.34)

2. Changing supply rate technique

We list Theorem 2 in [69] which will be useful in Chapters 6 and 7.

Theorem 2.3 Assume that (γ, α) is a supply pair. Suppose that α̃ is a K∞ function

so that α̃(r) = O[α(r)] as r → 0+. Then there exists a γ̃ so that (γ̃, α̃) is a supply

pair.

To be specific, suppose system (2.12) satisfies the following assumption:

Assumption 2.8 There exists a C1 function V (x, t) satisfying

γ(||x||) ≤ V (x, t) ≤ γ̄(||x||)

for some class K∞ functions γ(·) and γ̄(·), such that, along the trajectory of the

system (2.12),
dV (x, t)

dt
≤ −γ(||x||) + ω(u)

for some smooth positive definite function ω(u), and some locally quadratic class K∞

function γ(·).

Then, for any sufficiently smooth function ∆(x), there exists a C1 function W (x, t)

satisfying

α(||x||) ≤ W (x, t) ≤ ᾱ(||x||)

for some class K∞ function α(·) and ᾱ(·), and

dW (x, t)

dt
≤ −∆(x)||x||2 + π(u)||u||2 (2.35)

for some smooth positive definite function π(u).
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3. Backstepping

In order to globally stabilize the augmented system, we need recursively use the

following Lemma which also can be found in [28].

Lemma 2.3 Consider the system

ż = φ(z, x, µ(t))

ẋ = ϕ(z, x, µ(t)) + ψ(µ(t))u, t ≥ t0 ≥ 0
(2.36)

in which (z, x) ∈ Rm × R, u ∈ R, µ : [t0,∞) → Σ ⊂ Rnµ is piecewise continuous

with Σ a prescribed compact set of Rnµ, φ(z, x, µ) and ϕ(z, x, µ) are C1 functions

satisfying φ(0, 0, µ) = 0, ϕ(0, 0, µ) = 0 for µ ∈ Σ ⊂ Rnµ. Suppose the following:

(a) The upper subsystem in (2.36) is RISS with respect to µ with state z and input

x, and has a known C1 gain function κ(·).

(b) For all µ ∈ Rnµ, ψ(µ) > 0.

Then, there exists a positive smooth function ρ : R → [0,∞) such that, under the

controller

u = −xρ(x) + û (2.37)

the closed-loop system (2.36) and (2.37) is RISS with respect to µ with state Z =

col(z, x) and input û, and has a known C1 RISS gain function κ̃(·).
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Chapter 3

Leader-following Rendezvous with

Connectivity Preservation of

Single-integrator Multi-agent

Systems

3.1 Introduction

Maintaining connectivity in a multi-agent system is necessary in such problems as ren-

dezvous, flocking, swarming and so on. These problems have been studied for both single-

integrator multi-agent systems [3, 5, 12, 34, 35, 101] and double-integrator multi-agent

systems [5, 17, 73]. There are two types of rendezvous problems, namely, leaderless

rendezvous problem and leader-following rendezvous problem. While the leaderless ren-

dezvous problem requires the outputs of all agents asymptotically approach a same loca-

tion, the leader-following rendezvous problem further requires the outputs of all agents

approach a given trajectory asymptotically. So far, the study of the problem of rendezvous

with connectivity preservation is mainly focused on the leaderless case [3, 12, 34, 35, 101]

with a few exceptions where the problem of leader-following rendezvous with connectivity

preservation is studied [5, 17, 73]. Reference [5] studied the leader following rendezvous

with connectivity preservation for both single-integrator and double-integrator systems

using a discontinuous control law. Reference [73] studied the leader following rendezvous

with connectivity preservation for double-integrator systems where the leader is also a

double integrator system. Reference [17] also studied the leader following rendezvous

with connectivity preservation for double-integrator systems under a class of leader sys-

tems including double-integrator and harmonic systems.
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In this chapter, we will consider the problem of leader-following rendezvous with con-

nectivity preservation of single-integrator multi-agent systems. In comparison with [5],

we employ a continuous control law, and our control law does not need to know the upper

bound of the derivative of the leader signal.

The problem formulation in this chapter is, in spirit, similar to that of [17]. However,

the approach in this chapter is different from that of [17] in that our control law here does

not contain a distributed observer, and is thus much simpler than the one in [17]. We

need to establish Lemma 3.1 to lay the foundation of the main result of this chapter.

The rest of this chapter is organized as follows. In section 3.2, we give a precise

formulation of the leader-following problem of rendezvous with connectivity preservation

for single-integrator multi-agent systems. In Section 3.3, we present our main result. An

example is presented in Section 3.4. Finally, some concluding remarks are given in Section

3.5.

3.2 Problem Formulation

Consider a group of single-integrator systems:

ẋi = ui, i = 1, · · · , N (3.1)

where xi ∈ Rn and ui ∈ Rn are the state and the input of agent i. Also consider an

autonomous linear system

ẋ0 = Sx0 (3.2)

where x0 ∈ Rn and S is a constant matrix.

The system composed of (3.1) and (3.2) can be viewed as a multi-agent system of

(N + 1) agents with (3.2) as the leader and the N subsystems of (3.1) as N follower-

s. With respect to the system composed of (3.1) and (3.2), we can define a digraph1

Ḡ(t) = (V̄ , Ē(t)) where V̄ = {0, 1, ..., N} with 0 associated with the leader system and

i = 1, · · · , N , associated with the ith subsystem of (3.1), and Ē(t) ⊆ V̄ × V̄ . The set V̄
is called the node set of Ḡ(t) and the set Ē(t) is called the edge set of Ḡ(t). We use the

notation N̄i(t) to denote the neighbor set of the node i for i = 0, 1, · · · , N . The definition

of Ē(t) associated with the system composed of (3.1) and (3.2) is as follows.

Given any r > 0 and ϵ ∈ (0, r), for any t ≥ 0, Ē(t) = {(i, j) | i, j ∈ V̄} is defined such

that

1. Ē(0) = {(i, j) | ||xi(0)−xj(0)|| < (r−ϵ), i, j = 1, · · · , N}∪{(0, j) | ||x0(0)−xj(0)|| <
(r − ϵ), j = 1, · · · , N};

1See [74] for a summary of digraph.
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2. if ||xi(t)− xj(t)|| ≥ r, then (i, j) /∈ Ē(t);

3. (i, 0) /∈ Ē(t), for i = 0, 1, · · · , N ;

4. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) /∈ Ē(t−) and ||xi(t)− xj(t)|| < (r− ϵ), then

(i, j) ∈ Ē(t);

5. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) ∈ Ē(t−) and ||xi(t) − xj(t)|| < r, then

(i, j) ∈ Ē(t).

Remark 3.1 The definition here is the same as that in [17]. If ϵ = 0, then the above

definition is similar to that given in [35]. Thus the physical interpretation of r is the

sensing radius of the distance sensor of each follower. The number ϵ is to introduce the

effect of hysteresis. It is noted that the leader does not have a control and, therefore, there

is no edge from a follower to the leader.

We will consider the following distributed state feedback control law

ui = Sxi + hi(xi − xj, j ∈ N̄i(t)), i = 1, ..., N (3.3)

where hi is a sufficiently smooth function to be specified later.

The control law (3.3) is called a distributed state feedback control law because, at any

time instant t, the control ui can take xj, j ̸= i, for feedback control if and only if the

node j is a neighbor of the node i.

Define a subgraph G(t) = (V , E(t)) of Ḡ(t) where V = {1, · · · , N}, and E(t) ⊆ V × V
is obtained from Ē(t) by removing all edges from the node 0 to the nodes in V . Clearly,

G(t) is an undirected graph. For i = 1, · · · , N , let Ni(t) = N̄i(t)∩V . It can be seen that,

for i = 1, · · · , N , Ni(t) is the neighbor set of the node i with respect to G(t).
The problem of leader-following rendezvous with connectivity preservation is described

as follows.

Definition 3.1 Given the multi-agent system composed of (3.1) and (3.2), find a control

law of the form (3.3) such that, for all initial conditions xi(0), i = 0, 1, · · · , N , that make

Ḡ(0) connected, the closed-loop system has the following properties:

1. Ḡ(t) is connected for all t ≥ 0;

2. limt→∞(xi − x0) = 0, i = 1, · · · , N .

Remark 3.2 The leader-following problem of rendezvous with connectivity preservation

defined here is similar in spirit to the leader-following problem of rendezvous with connec-

tivity preservation defined for double-integrator system in [17].
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3.3 Solvability of Problem

Like in [17, 73], we will adopt the potential function approach to design our control law.

Thus, we will first introduce a bounded potential function introduced in [73] as follows

ψ(s) =
s2

r − s+ r2

Q

, 0 ≤ s ≤ r (3.4)

where Q is some positive number. The function ψ is nonnegative and bounded over [0, r],

and its derivative dψ(s)
ds

=
s(2r−s+ 2r2

Q
)

(r−s+ r2

Q
)2

is positive for all s ∈ (0, r]. Moreover, it is shown in

[17] that the function has the property that, for any α > 0, and β ≥ 0, any ϵ ∈ (0, r), if

Q > (α(r−ϵ)
2

ϵ
+ β), then

ψ(r) = Q > αψ(r − ϵ) + β (3.5)

Now we are ready to introduce our distributed state feedback control law as follows:

ui = Sxi − γ
∑

j∈N̄i(t)

∂ψ(||xi − xj||)
∂xi

= Sxi − γ
∑

j∈N̄i(t)

wij(t)(xi − xj), i = 1, · · · , N
(3.6)

where γ is a sufficiently large positive number and

wij(t) =


2r−||xi−xj ||+ 2r2

Q

(r−||xi−xj ||+ r2

Q
)2
, (j, i) ∈ Ē(t)

0, otherwise
(3.7)

with i = 1, · · · , N , j = 0, 1, · · · , N , i ̸= j.

Let ϕ(s) =
2r−s+ 2r2

Q

(r−s+ r2

Q
)2

for 0 ≤ s ≤ r. Then 0 <
2r+ 2r2

Q

(r+ r2

Q
)2

= ϕ(0) ≤ ϕ(s) ≤ ϕ(r) =
r+ 2r2

Q

( r
2

Q
)2

over s ∈ [0, r]. Let a =
2r+ 2r2

Q

(r+ r2

Q
)2

and b =
r+ 2r2

Q

( r
2

Q
)2
. Then, for all (j, i) ∈ Ē(t), 0 < a ≤ wij(t) ≤

b.

Let x̄i = xi − x0, i = 0, 1, · · · , N . Then, in terms of x̄i, the closed-loop system is

˙̄xi = Sx̄i − γ
∑

j∈N̄i(t)

wij(t)(x̄i − x̄j), i = 1, · · · , N (3.8)

Let x̄ =
[
x̄T1 x̄T2 · · · x̄TN

]T
. Then the closed-loop system can be put in the following

compact form

˙̄x = (IN ⊗ S − γH(t)⊗ In)x̄ (3.9)

22



where H(t) =


β1(t) −w12(t) · · · −w1N(t)

−w21(t) β2(t) · · · −w2N(t)
...

...
...

...

−wN1(t) −wN2(t) · · · βN(t)

 with βi(t) =
∑N

j=0,j ̸=iwij(t), i =

1, · · · , N .

Before presenting our main result, we will establish the following Lemma.

Lemma 3.1 Assume the graph Ḡ(t) is connected for all t ≥ 0, and Ḡ(t1) ⊂ Ḡ(t2) when-
ever t2 ≥ t1 ≥ 0. Then

1. There exist constant positive definite matrices H1 and H2 such that 0 < H1 ≤ H(t) ≤
H2 for all t ≥ 0.

2. Let γ0 =
δλM (H2)
λ2m(H1)

where λM(H) and λm(H) are the largest and smallest eigenvalues of

a positive definite matrix H and δ ≥ 0. Then, for all γ > γ0, γλ
2
m(H1)−δλM(H2) > 0

and γH2(t)⊗ In − δH(t)⊗ In ≥ (γλ2m(H1)− δλM(H2))INn for all t ≥ 0.

Proof: Part 1) Let Ḡ0 = (V̄ , Ē0) be any connected graph such that Ḡ0 ⊂ Ḡ(0). Let

H1 =


δ1 −a12 · · · −a1N

−a21 δ2 · · · −a2N
...

...
...

...

−aN1 −aN2 · · · δN

 (3.10)

where

aij =

{
a, (j, i) ∈ Ē0
0, otherwise

(3.11)

and δi =
∑N

j=0,j ̸=i aij, i = 1, · · · , N , and let

H2 =


Nb −b · · · −b
−b Nb · · · −b
...

...
...

...

−b −b · · · Nb

 . (3.12)

Note that H1 = −M1 + ∆1 where M1 is a constant Metzler matrix with zero row sum

whose nonzero off-diagonal entries are equal to a, and ∆1 is a nonnegative diagonal matrix

with at least one positive diagonal entry. It can be seen that Γ(M1) = G0 where G0 is the

subgraph of Ḡ0 obtained from Ḡ0 by removing the node 0 and all edges adjacent to the

node 0. By Remark 2.1, H1 is positive definite.
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Let H −H1

=


β1 − δ1 (a12 − w12) · · · (a1N − w1N)

(a21 − w21) β2 − δ2 · · · (a2N − w2N)
...

...
...

...

(aN1 − wN1) (aN2 − wN2) · · · βN − δN


Since, for i = 1, · · · , N , (βi− δi) =

∑N
j=0,j ̸=i(wij − aij) ≥

∑N
j=1,j ̸=i(wij − aij) ≥ 0, H −H1

is positive semi-definite by Gersgorin Theorem.

Next, let H2 −H

=


Nb− β1 −(b− w12) · · · −(b− w1N)

−(b− w21) Nb− β2 · · · −(b− w2N)
...

...
...

...

−(b− wN1) −(b− wN2) · · · Nb− βN


Then, for i = 1, · · · , N , (Nb − βi) =

∑N
j=0,j ̸=i(b − wij) ≥ 0. Thus, H2 − H is positive

semi-definite by Gersgorin Theorem. Thus we have 0 < H1 ≤ H(t) ≤ H2 for all t ≥ 0.

Part 2) Let λi(t) and αi(t), i = 1, · · · , N , be the eigenvalues and the eigenvectors

of H(t), respectively. Let ei, i = 1, · · · , n, be the ith column of In. Then it can be

verified that, for i = 1, · · · , N, j = 1, · · · , n, (γH2(t) ⊗ In − δH(t) ⊗ In)(αi ⊗ ej) =

(γλ2i − δλi)(αi ⊗ ej), and (αi ⊗ ej) are linearly independent. Thus, the eigenvalues of

(γH2(t) ⊗ In − δH(t) ⊗ In) belong to the set {(γλ2i − δλi) | i = 1, · · · , N} which has a

lower bound γλ2m(H1)−δλM(H2) since H1 ≤ H(t) ≤ H2. Since, for all γ > γ0, γλ
2
m(H1)−

δλM(H2) > 0. Thus, for all γ > γ0, γH
2(t)⊗In−δH(t)⊗In ≥ (γλ2m(H1)−δλM(H2))INn.

Now we present our main result.

Theorem 3.1 Given any r > 0 and ϵ ∈ (0, r), the leader-following problem of rendezvous

with connectivity preservation of the system composed of (3.1) and (3.2) is solvable by a

control protocol of the form (3.6).

Proof: Given r > 0 and ϵ ∈ (0, r), the control law is determined by two design

parameters Q and γ. Let α = N(N−1)
2

+N , β = 0, and

Qmax =
α(r − ϵ)2

ϵ
(3.13)

Pick any finite Q such that Q > Qmax.

To determine γ, note that, there are only finitely many connected graphs with N

edges (an undirected edge is counted as one edge). Denote these graphs by Ḡi, i =
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1, · · · , p, for some positive integer p. For each Ḡi, we can define a matrix H̄i in the

same way as we define H1 in (3.10). Denote the minimal eigenvalue of H̄i by λm(H̄i).

Let λm = min{λm(H̄1), · · · , λm(H̄p)}. Let γ0 = ||S||λM (H2)
λ2m

where H2 is as defined in

(3.12). For any t ≥ 0, if Ḡ(t) is connected, there exists some 1 ≤ i ≤ p such that

Ḡi ⊂ Ḡ(t). Thus, by Lemma 3.1, for all γ > γ0, γλ
2
m−||S||λM(H2) > 0, and for any t ≥ 0,

γH2(t) ⊗ In − ||S||H(t) ⊗ In ≥ (γλ2m − ||S||λM(H2))INn if Ḡ(t) is connected. Fix this γ

and let λγ = γλ2m − ||S||λM(H2) and P (t) = γH2(t)⊗ In − ||S||H(t)⊗ In.

Now we will first show that the above control law is such that the graph Ḡ(t) is

connected for all t ≥ 0. For this purpose, let

V =
1

2

N∑
i=1

∑
j∈Ni(t)

ψ(||x̄i − x̄j||) +
N∑
i=1

bi(t)ψ(||x̄i||) (3.14)

where bi(t) = 1 if (0, i) ∈ Ē(t), and bi(t) = 0 if otherwise.

We call V as an energy function for (3.9). It can be seen that for all initial conditions

xi(0), i = 0, 1, · · · , N , that make Ḡ(0) connected,

V (0) ≤ Qmax (3.15)

From (3.8), we have∑
j∈N̄i(t)

wij(t)(x̄i − x̄j) =
1

γ
(Sx̄i − ˙̄xi), i = 1, · · · , N (3.16)

Then the derivative of the energy function (3.14) along (3.9) satisfies

V̇ =
1

2

N∑
i=1

∑
j∈Ni(t)

ψ̇(||x̄i − x̄j||) +
N∑
i=1

bi(t)ψ̇(||x̄i||)

=
N∑
i=1

˙̄xTi
∑

j∈Ni(t)

wij(t)(x̄i − x̄j) +
N∑
i=1

˙̄xTi wi0(t)x̄i

=
N∑
i=1

˙̄xTi
∑

j∈N̄i(t)

wij(t)(x̄i − x̄j)

=
N∑
i=1

˙̄xTi
1

γ
(Sx̄i − ˙̄xi)

=
1

γ

N∑
i=1

˙̄xTi Sx̄i −
1

γ

N∑
i=1

˙̄xTi ˙̄xi

=
1

γ
˙̄xT (IN ⊗ S)x̄− 1

γ
˙̄xT ˙̄x

=
1

γ
x̄T (IN ⊗ S − γH(t)⊗ In)

T (IN ⊗ S)x̄
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− 1

γ
x̄T (IN ⊗ S − γH(t)⊗ In)

T (IN ⊗ S − γH(t)⊗ In)x̄

=
1

γ
x̄T (IN ⊗ STS − γH(t)⊗ S − IN ⊗ STS + γH(t)⊗ ST

+ γH ⊗ S − γ2HH ⊗ In)x̄

= −x̄T (γ(H(t)H(t)⊗ In −H(t)⊗ ST )x̄

= −x̄T (γH(t)H(t)⊗ In)x̄+
N∑
i=1

wi0x̄
T
i S

T x̄i

+
1

2

N∑
i=1

∑
j∈Ni(t)

wij(x̄i − x̄j)
TST (x̄i − x̄j)

≤ −x̄T (γH(t)H(t)⊗ In)x̄+
N∑
i=1

wi0||S||x̄Ti x̄i

+
1

2

N∑
i=1

∑
j∈Ni(t)

wij||S||(x̄i − x̄j)
T (x̄i − x̄j)

= −x̄T ((γH(t)H(t)− ||S||H(t))⊗ In)x̄

= −x̄TP (t)x̄

(3.17)

By the continuity of the solution of (3.9), there exists 0 < t1 ≤ ∞ such that Ḡ(t) = Ḡ(0)
for all t ∈ [0, t1). If t1 = ∞, then the graph is connected for all t ≥ 0. Thus, P (t) ≥ λγINn

for all t ≥ 0. Therefore, for all t ≥ 0,

V̇ (t) ≤ −λγ||x̄||2 (3.18)

Then (3.18) implies

V (t) ≤ V (0) ≤ Qmax < Q = ψ(r), ∀ t ≥ 0. (3.19)

If Ḡ(t) = Ḡ(0) does not hold for all t ≥ 0, then there must exist some finite t1 ≥ 0 such

that
Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t1) ̸= Ḡ(0)
(3.20)

We now claim Ḡ(t1) ⊃ Ḡ(0). In fact, since Ḡ(0) is connected, our choice of γ guarantees

P (t) ≥ λγINn for all 0 ≤ t < t1, therefore, (3.17) implies

V (t) ≤ V (0) ≤ Qmax < Q = ψ(r), ∀ t ∈ [0, t1) (3.21)

Assume, for some (i, j) ∈ Ē(0), (i, j) /∈ Ē(t1). Then limt→t−1
||xi − xj|| = r which implies

V (t1) ≥ Q thus contradicting (3.21). Thus, the graph will not lost edges at time t1.

Therefore, Ḡ(t1) ⊃ Ḡ(0).
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Since Ḡ(t) can only have finitely many edges, there exists a finite integer k > 0 such

that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t) = Ḡ(ti) ⊃ Ḡ(ti−1), t ∈ [ti, ti+1), i = 1, · · · , k − 1

Ḡ(t) = Ḡ(tk) ⊃ Ḡ(tk−1), t ∈ [tk,∞)

Thus, along any trajectory of the closed-loop system, we have

V̇ (t) ≤ −λγ||x̄||2, t ≥ tk (3.22)

Thus,

V (t) ≤ V (0) ≤ Qmax < Q = ψ(r), ∀ t ≥ 0. (3.23)

Therefore, for all t ≥ 0, the graph Ḡ(t) is connected.
Next, we will show limt→∞ x̄(t) = 0. Since the graph Ḡ(t) is connected for all t ≥ tk,

and H(t) is continuous and bounded for all t ≥ tk, by (3.14) and (3.22), x̄i − x̄j with

j ∈ N̄i(tk) is bounded for all t ≥ tk, and limt→∞ V (t) exists. From (3.9), ˙̄x is bounded

over t ≥ tk. Thus V̇ (t) is uniformly continuous for all t ≥ tk. Thus by Barbalat’s Lemma

[67], limt→∞ V̇ (t) = 0. Thus, (3.22) implies

lim
t→∞

λγ||x̄||2 = 0 (3.24)

Therefore, limt→∞ x̄(t) = 0, i.e., limt→∞(xi − x0) = 0, i = 1, · · · , N . The proof is thus

completed.

Remark 3.3 Since we allow our leader system to be a class of autonomous linear systems

of the form (3.2), our control law relies on the matrix S defining the leader system. This

feature is a reminiscence of the classical internal model design method which can be found

in [20, 28]. It is this feature that enables a control law to track, instead of a single

trajectory, but a class of trajectories. It is noted that knowing the information of the

matrix S is less demanding than knowing the trajectory of the leader. For example, a

sinusoidal signal Asin(ωt+ ϕ) is defined by three parameters A, ω, and ϕ. The matrix S

is solely defined by ω. By using S in the control law, we can handle a sinusoidal signal

with frequency ω, arbitrary amplitude A, and arbitrary initial phase ϕ. In the special

case where the leader signal is step function or ramp function, we simply take S = 0,

or S =

[
0 1

0 0

]
. Therefore, in these two special cases, the control law does not really

depend on any parameter of the leader signal.
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3.4 Example

Consider the multi-agent system composed of (3.1) and (3.2) in the two dimensional space

with N = 4 and S =

[
0 1

0 0

]
.

Assume the sensing range is r = 1 and ϵ = 0.1. To obtain the design parameter Q in the

potential function, using (3.5) with α = N(N−1)
2

+N = 10 gives α(r−ϵ)2
ϵ

= 81. Then taking

Q = 82 makes (3.5) satisfied. Thus the potential function is

ψ(s) =
s2

1− s+ 1
82

, 0 ≤ s ≤ r (3.25)

Choose γ = 2600 according to the method in the proof of Theorem 3.1. For the purpose

of simulation, let the initial values of various variables be

x0(0) =
[
1 2

]T
,

x1(0) =
[
1 1.3

]T
, x2(0) =

[
1.75 1.3

]T
,

x3(0) =
[
1.75 0.6

]T
, x4(0) =

[
1.75 −0.1

]T
It can be verified that these initial values are such that

Ē(0) = {(0, 1), (1, 2), (2, 3), (3, 4)} which forms a connected graph.

With these parameters, we have simulated the performance of the control law (3.6).

Some of the simulation results are shown in Figures 3.1 and 3.2. Figure 3.1 shows the

distances of the edges {(0, 1), (1, 2), (2, 3), (3, 4)} which constitute the initial edge set. It

can be seen that the network is connected. Figure 3.2 further shows that all the followers

asymptotically approach the leader.

3.5 Conclusion

In this chapter, we have considered the leader-following problem of rendezvous with con-

nectivity preservation for a multiple single-integrator system where the leader system can

be any linear autonomous system. We have proposed a distributed state feedback control

protocol that is able to maintain the connectivity of the system, and, at the same time,

achieve asymptotic tracking of all followers to the output of the leader system.
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Figure 3.1: Distances among initially connected agents
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Figure 3.2: Position difference between follower and leader
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Chapter 4

A Leader-following Rendezvous

Problem of Double Integrator

Multi-agent Systems

In this chapter, we will consider the leader-following rendezvous problem of double inte-

grator multi-agent systems, and will solve this problem by a distributed full information

state feedback control law.

4.1 Introduction

Consider a collection of double integrator systems of the following form

ẋi = Axi +Bui + Ex0

ei = Cxi + Fx0 i = 1, · · · , N
(4.1)

where, for i = 1, · · · , N , xi =

[
qi

pi

]
with qi ∈ Rn denoting the position and pi ∈ Rn

denoting the velocity, ui ∈ Rn, and ei ∈ Rne are the input, and regulated output of agent

i. x0 =

[
q0

p0

]
∈ R2n with q0, p0 ∈ Rn is some exogenous signal generated by a so-called

exosystem as follows

ẋ0 = Sx0 (4.2)

In general, various matrices in (4.1) and (4.2) can be arbitrarily given. However, in this

chapter, we assume A =

[
0 1

0 0

]
⊗ In, B =

[
0

1

]
⊗ In, E =

[
0n×2n

D

]
with D ∈ Rn×2n,
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C = I2n, F = −I2n, and S =

[
0n×n In

S1 S2

]
with S1, S2 ∈ Rn×n. It can be seen that the

first equation of (4.1) can be written as

q̈i = ui +Dx0, i = 1, · · · , N. (4.3)

Thus, when D = 0, (4.1) is a double integrator system. When S1 = S2 = 0, (4.2) is also a

double integrator system. However, in this chapter, we don’t require (4.2) to be a double

integrator system and it can be seen that system (4.2) contains double integrator system

and harmonic system as special cases.

The system composed of (4.1) and (4.2) can be viewed as a multi-agent system of

(N+1) agents with (4.2) as the leader and the N subsystems of (4.1) as N followers. With

respect to the system composed of (4.1) and (4.2), we can define a digraph Ḡ(t) = (V̄ , Ē(t))
where V̄ = {0, 1, ..., N} with 0 associated with the leader system and i = 1, · · · , N ,

associated with the ith subsystem of (4.1), and Ē(t) ⊆ V̄ × V̄ . The set V̄ is called the

node set of Ḡ(t) and the set Ē(t) is called the edge set of Ḡ(t). We use the notation N̄i(t)

to denote the neighbor set of the node i for i = 0, 1, · · · , N .

The cooperative output regulation problem of the system composed of (4.1) and (4.2)

has been extensively studied recently in several papers [29, 74, 91] where a distributed

linear control law is designed such that the overall closed-loop system is asymptotically

stable when x0 is set to zero and the error output approaches zero asymptotically. Rough-

ly, by a distributed linear control law, we mean a control law whose component ui can

only make use of the states of its neighbor subsystems. It is shown in [29, 74, 91] that the

cooperative output regulation problem of (4.1) and (4.2) is solvable only if the graph Ḡ(t)
associated with (4.1) and (4.2) is connected. In the problem formulation of [29, 74, 91],

the graph Ḡ(t) is assumed to be connected. However, in many real applications such as

rendezvous, flocking, and swarming, the graph Ḡ(t) is not given but defined dynamically.

For example, when (4.1) is a single or double integrator system, the edge set Ē(t) is de-
fined such that (i, j) ∈ Ē(t) if and only if ||qi(t)− qj(t)|| < r for some real number r > 0

[22, 35, 84, 102]. The rational of this definition is based on the assumption that each

agent is equipped with a distance sensor whose sensing radius is r. In [72] and [73], the

definition of the edge set is further modified by employing hysteresis technique.

Suppose Ḡ(0) is connected. Then the problem of designing a distributed control law

such that the graph Ḡ(t) is connected for all t ≥ 0 is called connectivity preservation

problem. If, in addition, the control law is such that, for all i = 1, · · · , N , limt→∞ ei(t) = 0,

then the problem is called leader-following rendezvous problem. A special case of the

above problem where the disturbance is absent and the leader is a known ramp signal was
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recently studied in [73]. More recently, a leader-following rendezvous problem for a class

of second order nonlinear multi-agent systems was further studied in [70]. Our problem

here is different from [70] and [73] in at least two aspects. First, the dynamics of the

leader do not have to be the same as those of the followers when the control is set to zero.

In fact, our leader system as described by the exosystem (4.2) can not only generate ramp

signal, but also sinusoidal signals with arbitrary amplitudes and initial phases. Second,

the plant is allowed to be subject to an external disturbance.

The rest of this chapter is organized as follows. In Section 4.2, we will formulate our

problem precisely. In Sections 4.3 and 4.4, we will present our main result together with

illustrative examples. Finally, we will close this chapter in Section 4.5.

4.2 Problem Formulation

To introduce our problem, we need to first define the edge set Ē(t) for the system composed

of (4.1) and (4.2) as follows.

Given any r > 0 and ϵ ∈ (0, r), for any t ≥ 0, Ē(t) = {(i, j) | i, j ∈ V̄} is defined such that

1. Ē(0) = {(i, j) | ||qi(0)− qj(0)|| < (r− ϵ), i, j = 1, · · · , N}∪{(0, j) | ||q0(0)− qj(0)|| <
(r − ϵ), j = 1, · · · , N};

2. if ||qi(t)− qj(t)|| ≥ r, then (i, j) /∈ Ē(t);

3. (i, 0) /∈ Ē(t), for i = 0, 1, · · · , N ;

4. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) /∈ Ē(t−) and ||qi(t)− qj(t)|| < (r− ϵ), then

(i, j) ∈ Ē(t).

5. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) ∈ Ē(t−) and ||qi(t) − qj(t)|| < r, then

(i, j) ∈ Ē(t).

Remark 4.1 The definition is somehow different from that in literature mainly in that

the node 0 associated with the leader as well as the edges adjacent to the node 0 is part of

the graph. It is noted that the leader does not have a control and, therefore, there is no

edge from a follower to the leader. If ϵ = 0, then the above definition is similar to that

given in [35]. Thus the physical interpretation of r is the sensing radius of the distance

sensor of each follower. The number ϵ is to introduce the effect of hysteresis.

Remark 4.2 We can define a subgraph G(t) = (V , E(t)) of Ḡ(t), where V = {1, · · · , N},
and E(t) ⊆ V ×V is obtained from Ē(t) by removing all edges between the node 0 and the

nodes in V. Clearly, G(t) is an undirected graph. For i = 1, · · · , N , let Ni(t) = N̄i(t)∩V.
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It can be seen that, for i = 1, · · · , N , Ni(t) is the neighbor set of the node i with respect

to V.

We will consider the following distributed dynamic state feedback control law

ui = hi(ηi, ηj, xi − xj, j ∈ N̄i(t))

η̇i = gi(ηi, ηj, xi − xj, j ∈ N̄i(t)), i = 1, ..., N (4.4)

where η = col(η1, · · · , ηN) with ηi ∈ R2n, and hi and gi are sufficiently smooth functions

to be specified later.

The control law (4.4) includes the static state feedback control law as a special case by

allowing the dimension of η to be zero.

The leader-following rendezvous problem is described as follows.

Definition 4.1 Given the multi-agent system composed of (4.1) and (4.2), r > 0 and

ϵ ∈ (0, r), and arbitrary positive real numbers Pi, Ni, i = 1, · · · , N , find a distributed

control law of the form (4.4) such that, for all initial conditions x0(0), qi(0), pi(0), ηi(0),

i = 1, · · · , N , that make Ḡ(0) connected, and satisfy ||pi(0) − p0(0)|| ≤ Pi, and ||ηi(0) −
x0(0)|| ≤ Ni, the closed-loop system has the following properties:

1. Ḡ(t) is connected for all t ≥ 0;

2. limt→∞(xi − x0) = 0, i = 1, · · · , N .

Remark 4.3 Two different rendezvous problems, i.e., the leaderless and leader-following

rendezvous problems have been studied in [5, 22, 35, 70, 73]. The definition given here

has generalized the leader-following rendezvous problems given in literature in at least two

aspects. First, the leader system does not have to be the same as the follower system

when the control is set to zero. In particular, the leader system can generate sinusoidal

signals with arbitrary amplitudes and initial phases. Second, the plant is allowed to be

subject to an external disturbance. In order to accomplish these generalizations, instead of

employing a static state feedback control law as in the literature, we will employ a dynamic

state feedback control law to deal with our problem.

Remark 4.4 The leader-following rendezvous problem described here is also related to the

cooperative output regulation problem studied recently in [29, 74, 91]. In fact, if, instead

of achieving properties 1) and 2), we only need to achieve property 2) while assuming

the graph Ḡ(t) is connected for all t ≥ 0, then the leader-following rendezvous problem

described here would reduce to the cooperative output regulation problem.
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Remark 4.5 The positive real numbers Pi and Ni in the above definition are to define

some closed balls in which the initial states of the system are allowed to stay. They are

introduced so that we can make use of a bounded potential function in our control law

as will be seen in the next section. With these positive real numbers given, the control

law can be made independent of the initial condition of the closed-loop system. Thus,

the definition here reveals the close relation of the rendezvous problem to the semi-global

stabilization problem.

4.3 Main Result

One of the main objectives here is to deal with the external disturbance Dx0. For this

purpose, let

X = I2n, U =
[
S1 S2

]
−D. (4.5)

Then it can be verified that performing on (4.1) the following coordinate transformation

x̄i =

[
q̄i

p̄i

]
= xi −Xx0, i = 0, 1, · · · , N

ūi = ui − Ux0, i = 1, · · · , N

(4.6)

converts system (4.1) to the following double-integrator system without disturbance

˙̄qi = p̄i, ˙̄pi = ūi, i = 1, · · · , N (4.7)

Remark 4.6 The transformation (4.6) is inspired by the output regulation theory [20].

In fact, associated with (4.1) is the following linear matrix equations

XS = AX +BU + E, 0 = CX + F (4.8)

is called regulator equations [28]. It can be verified that (4.5) is a solution pair of (4.8).

The transformation (4.6) is a standard technique for converting an output regulation prob-

lem to a stabilization problem.

Both the leaderless and the leader-following rendezvous problems for (4.7) have been

well studied in the literature. In particular, it is known that the leader-following ren-

dezvous problem can be solved by a distributed control law of the form

ūi = ki(x̄i − x̄j, j ∈ N̄i(t)), i = 1, · · · , N (4.9)

where the specific expressions for the functions ki(x̄i− x̄j, j ∈ N̄i(t)) will be given later in

(4.20). By the output regulation theory [20, 28], it can be concluded that if the control law
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(4.9) solves the leader-following rendezvous problem for (4.7), then the following control

law

ui = ki(xi − xj, j ∈ N̄i(t)) + Ux0, i = 1, · · · , N

solves the leader-following rendezvous problem for (4.1) provided that 0 ∈ N̄i(t) for i =

1, · · · , N . Nevertheless, since the state of the leader is not always available for all control

ui, motivated by [74], we will consider a control law of the following form:

ūi = ki(x̄i − x̄j, j ∈ N̄i(t)) + Uη̄i, i = 1, · · · , N

˙̄ηi = Sη̄i + γ(
N∑
j=1

aij(t)(η̄j − η̄i)− ai0(t)η̄i)
(4.10)

where γ is a sufficiently large positive number, and

aij(t) =

{
1, (j, i) ∈ Ē(t)
0, otherwise

(4.11)

with i = 1, · · · , N , j = 0, · · · , N .

If (4.10) solves the rendezvous problem of the system (4.7), then, letting ηi = η̄i + x0,

i = 1, · · · , N , shows that the following control law

ui = ki(xi − xj, j ∈ N̄i(t)) + Uηi, i = 1, · · · , N

η̇i = Sηi + γ(
N∑
j=1

aij(t)(ηj − ηi) + ai0(t)(x0 − ηi)) (4.12)

solves the rendezvous problem for (4.1). It was shown in [74] that the second equation of

(4.12) is such that limt→∞(ηi − x0) = 0 if Ḡ(t) is connected for all t ≥ 0, and therefore

can be viewed as a distributed asymptotic observer of the leader system.

Under the control law (4.10), the closed-loop system of each agent becomes

˙̄qi = p̄i, i = 1, · · · , N
˙̄pi = ūi = ki(x̄i − x̄j, j ∈ N̄i(t)) + Uη̄i

˙̄ηi = Sη̄i + γ(
N∑
j=1

aij(t)(η̄j − η̄i)− ai0(t)η̄i)

(4.13)

The functions ki(x̄i−x̄j, j ∈ N̄i(t)) in (4.9) can be expressed in terms of potential functions

as can be found in [12, 35, 73]. To be specific, here we adopt the bounded potential

function proposed in [73] as follows

ψ(s) =
s2

r − s+ r2

Q

, 0 ≤ s ≤ r (4.14)
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where Q is some positive number. The function is nonnegative and bounded over [0, r],

and its derivative dψ(s)
ds

=
s(2r−s+ 2r2

Q
)

(r−s+ r2

Q
)2

is positive for all s ∈ (0, r]. Moreover, the function

has the property that, for any α > 0, β ≥ 0, and any ϵ ∈ (0, r), there exists some Q > 0

such that

ψ(r) = Q ≥ αψ(r − ϵ) + β (4.15)

To show this property, we note that, for Q > 0, the function α (r−ϵ)2
ϵ+r2/Q

+β is monotonously

increasing with respect to Q, and has a finite upper bound α(r−ϵ)2
ϵ

+ β. Therefore, (4.15)

holds whenever Q > (α(r−ϵ)
2

ϵ
+ β).

For i = 1, · · · , N and j = 0, 1, · · · , N , let

wij(t) =


2r−||qi−qj ||+ 2r2

Q

(r−||qi−qj ||+ r2

Q
)2
, (j, i) ∈ Ē(t)

0, otherwise
(4.16)

We call the following function

V (q̄, p̄, t) =
1

2

N∑
i=1

(
∑

j∈Ni(t)

ψ(||q̄i − q̄j||) + p̄Ti p̄i) (4.17)

an energy function for system (4.7). It has been shown that the following control law

ūi = −
∑

j∈Ni(t)

(wij(t)(q̄i − q̄j) + aij(t)(p̄i − p̄j)) (4.18)

solves the leaderless rendezvous problem for system (4.7) [73].

To solve the leader-following rendezvous problem for system (4.1) and (4.2), we define

the following energy function for system (4.13).

V (q̄, p̄, η̄, t) =
1

2

N∑
i=1

(
∑

j∈Ni(t)

ψ(||q̄i − q̄j||) + 2ai0(t)ψ(||q̄i||) + p̄Ti p̄i + η̄Ti η̄i) (4.19)

Correspondingly, we define the function ki(x̄i − x̄j, j ∈ N̄i(t)) in (4.13) as follows

ki(x̄i − x̄j, j ∈ N̄i(t)) = −
∑

j∈N̄i(t)

(wij(t)(q̄i − q̄j) + aij(t)(p̄i − p̄j)) (4.20)

Before stating our main result, let us first introduce a lemma as follows.

Lemma 4.1 Consider the following symmetric matrix

P =

[
H11 −Z
−ZT γH12 +M1

]
(4.21)

where γ ∈ R, H11 ∈ Rn1×n1and H12 ∈ Rn2×n2 are symmetric and positive definite, and

Z ∈ Rn1×n2 and M1 ∈ Rn2×n2 are any constant matrices with M1 symmetric. Then, there

exists γ0 > 0 such that P is positive definite for all γ > γ0.
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Proof: From the following identity[
A1 C1

CT
1 B1

]

=

[
I 0

CT
1 A

−1
1 I

][
A1 0

0 B1 − CT
1 A

−1
1 C1

][
I A−1

1 C1

0 I

]

where A1 and B1 are symmetric with A1 nonsingular, P is positive definite if and only

if H11 and (γH12 + M1) − ZTH−1
11 Z are positive definite. Let λ1(A1) be the minimal

eigenvalue of a symmetric matrix A1. Then P is positive definite when

γ > γ0 =
−λ1(M1 − ZTH−1

11 Z)

λ1(H12)
. (4.22)

We can now state our main result as follows.

Theorem 4.1 The leader-following rendezvous problem for system (4.7) is solvable by a

control law composed of (4.10) and (4.20) where γ is a sufficiently large positive constant.

As a result, the same problem for system composed of (4.1) and (4.2) is solvable by a

control law composed of (4.12) and (4.20).

Proof: Given r > 0, ϵ ∈ (0, r), and arbitrary positive real numbers Pi, Ni, i =

1, · · · , N , the control law is determined by two design parameters Q and γ. Let η̄ =

col(η̄1, η̄2, · · · , η̄N), q̄ = col(q̄1, q̄2, · · · , q̄N), and p̄ = col(p̄1, p̄2, · · · , p̄N). Let

Qmax =
α(r − ϵ)2

ϵ
+ β (4.23)

where α = N(N−1)
2

+N and

β =
1

2

N∑
i=1

(P 2
i +N2

i ) (4.24)

Pick any finite Q such that Q > Qmax.

To determine γ, let

P (t) =

[
H(t)⊗ In −IN ⊗ U

2

−IN ⊗ UT

2
γH(t)⊗ I2n − IN ⊗ S+ST

2

]
(4.25)
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where

H(t) =



N∑
j=0,j ̸=1

a1j(t) −a12(t) · · · −a1N(t)

−a21(t)
N∑

j=0,j ̸=2

a2j(t) · · · −a2N(t)

...
...

...
...

−aN1(t) −aN2(t) · · ·
N∑

j=0,j ̸=N

aNj(t)


where aij(t) is given by (4.11). Note that H(0) = −M+∆ whereM is a constant Metzler

matrix and ∆ = diag[a10(0) · · · , aN0(0)]. By [41], H(0) is positive definite since the graph

Ḡ(0) is connected. Since H(0) and hence P (0) are uniquely determined by Ḡ(0), and there

are only finitely many different connected Ḡ(0) with N edges, by Lemma 4.1, there is a

γ > 0 such that P (0) is positive definite for all possible connected Ḡ(0) with N edges.

Fix this γ. We now claim if Ḡ(0) ⊂ Ḡ(t) for any t ≥ 0, then P (t) ≥ P (0) > 0. In fact,

H(t) can be written as H(0)+∆H for some positive semi-definite symmetric matrix ∆H.

Thus, P (t) can be written as P (0)+∆P for some positive semi-definite symmetric matrix

∆P . Thus, our choice of γ guarantees P (t) ≥ P (0) > 0.

Now, we will first show that the above control law is such that the graph Ḡ(t) is

connected for all t ≥ 0. Let the energy function be given by (4.19). Then it can be seen

that for all initial conditions x0(0), qi(0), pi(0), ηi(0) that make Ḡ(0) connected and satisfy

||pi(0)− p0(0)|| ≤ Pi, ||ηi(0)− x0(0)|| ≤ Ni, our choice of Q is such that

V (0) = V (q̄(0), p̄(0), η̄(0), 0) ≤ Qmax (4.26)

The time derivative of the function (4.19) along the closed-loop system (4.13) is

V̇ =
N∑
i=1

∑
j∈N̄i(t)

ψ̇(||q̄i − q̄j||) + p̄T ˙̄p+ η̄T ˙̄η

=
N∑
i=1

p̄Ti
∑

j∈N̄i(t)

wij(t)(q̄i − q̄j)−
N∑
i=1

p̄Ti
∑

j∈N̄i(t)

wij(t)(q̄i − q̄j)

−
N∑
i=1

p̄Ti (
∑

j∈N̄i(t)

aij(p̄i − p̄j)) +
N∑
i=1

p̄Ti Uη̄i + η̄T (IN ⊗ S − γH(t)⊗ I2n)η̄

= −p̄T (H(t)⊗ In)p̄+ p̄T (IN ⊗ U)η̄ + η̄T (IN ⊗ S + ST

2
− γH(t)⊗ I2n)η̄

= −

[
p̄

η̄

]T
P (t)

[
p̄

η̄

]

(4.27)
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By the continuity of the solution of (4.13), there exists 0 < t1 ≤ ∞ such that Ḡ(t) = Ḡ(0)
for all t ∈ [0, t1). If t1 = ∞, then the graph is connected for all t ≥ 0. Thus, our choice

of γ guarantees P (t) = P (0) is positive definite for all t ≥ 0. Therefore, (4.26) and (4.27)

imply

V (t) ≤ V (0) ≤ Qmax < Q = ψ(r), ∀ t ≥ 0. (4.28)

If Ḡ(t) = Ḡ(0) does not hold for all t ≥ 0, then there must exist some t1 ≥ 0 such that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t1) ̸= Ḡ(0)
(4.29)

We now claim Ḡ(t1) ⊃ Ḡ(0). In fact, since Ḡ(0) is connected, our choice of γ guarantees

that P (t) = P (0) is positive definite for all 0 ≤ t < t1. Therefore, (4.26) and (4.27) imply

V (t) ≤ V (0) ≤ Qmax < Q = ψ(r), ∀ t ∈ [0, t1) (4.30)

Assume, for some (i, j) ∈ Ē(0), (i, j) /∈ Ē(t1). Then limt→t−1
||qi − qj|| = r which implies

V (t1) ≥ Q thus contradicting (4.30). Thus, the graph will not lose edges at time t1.

Therefore, Ḡ(t1) ⊃ Ḡ(0). Thus P (t1) is positive definite.

Since Ḡ(t) can only have finitely many edges, there exists a finite integer k > 0 such

that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t) = Ḡ(ti) ⊃ Ḡ(ti−1), t ∈ [ti, ti+1), i = 1, · · · , k − 1

Ḡ(t) = Ḡ(tk) ⊃ Ḡ(tk−1), t ∈ [tk,∞)

Thus, for all t ≥ tk, along any trajectory of the closed-loop system, we have

V̇ (t) = −

[
p̄

η̄

]T
P (tk)

[
p̄

η̄

]
, t ≥ tk. (4.31)

Thus,

V (t) ≤ V (0) ≤ Qmax < Q, ∀ t ≥ 0. (4.32)

Therefore, for all t ≥ 0, the graph Ḡ(t) is connected.
Next we will show that limt→∞(xi − x0) = 0. Since, for all t ≥ tk, V is positive semi-

definite and V̇ is nonincreasing, for i = 1, · · · , N , p̄i, η̄i as well as q̄i−q̄j with j ∈ N̄i(tk) are

bounded. Thus, limt→∞ V (t) exists. From (4.13), ˙̄p and ˙̄η are bounded over [tk,∞). Thus

V̇ (t) is uniformly continuous for all t ≥ tk. So, by Barbalat’s lemma [67], limt→∞ V̇ (t) = 0.

Therefore, we have limt→∞ p̄ = 0, i.e., for i = 1, · · · , N , limt→∞(pi − p0) = 0.

It remains to show that, for i = 1, · · · , N , limt→∞(qi − q0) = 0.
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From (4.13), ¨̄pi is bounded over [tk,∞). Thus ˙̄pi is uniformly continuous over [tk,∞).

By Barbalat’s lemma again, we have

lim
t→∞

˙̄pi = − lim
t→∞

∑
j∈N̄i(t)

wij(t)(q̄i − q̄j)

= − lim
t→∞

∑
j∈N̄i(t)

2r − ||q̄i − q̄j||+ 2r2

Q

(r − ||q̄i − q̄j||+ r2

Q
)2
(q̄i − q̄j)

= 0

(4.33)

Let ϕ(s) =
2r−s+ 2r2

Q

(r−s+ r2

Q
)2

for 0 ≤ s ≤ r. Then 0 <
2r+ 2r2

Q

(r+ r2

Q
)2

= ϕ(0) ≤ ϕ(s) ≤ ϕ(r) =
r+ 2r2

Q

( r
2

Q
)2

over

s ∈ [0, r]. let

H1(t) =


β1(t) −w12(t) · · · −w1N(t)

−w21(t) β2(t) · · · −w2N(t)
...

...
...

...

−wN1(t) −wN2(t) · · · βN(t)

 (4.34)

where βi(t) =
∑N

j=0,j ̸=iwij(t). It is noted that for all t ≥ tk, wij(t) is nonnegative and

bounded.

It can be seen that (4.33) can be put in the following form

lim
t→∞

(H1(t)⊗ In)q̄ = 0 (4.35)

We now show H1(t) ≥ H0 for some constant positive definite matrix H0. In fact, let

Ḡ0 = (V̄ , Ē0) be any connected graph such that Ḡ0 ⊂ Ḡ(0). Let

H0 =


δ1 −m12 · · · −m1N

−m21 δ2 · · · −m2N

...
...

...
...

−mN1 −mN2 · · · δN

 (4.36)

where

mij =

{
ϕ(0), (j, i) ∈ Ē0
0, otherwise

(4.37)

and δi =
∑N

j=0,j ̸=imij. Note that H0 = −M0+∆0 where M0 is a constant Metzler matrix

with zero row sum whose nonzero off-diagonal entries are equal to ϕ(0), and ∆0 is a

nonnegative diagonal matrix with at least one diagonal entry equaling to ϕ(0). It can be

seen that Γ(M0) = G0 where G0 is a subgraph of Ḡ0 and is obtained from Ḡ0 by removing

the node 0 and all edges incident to the node 0. By [41], H0 is positive definite. Note
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that H1 −H0 takes the following form:
β1 − δ1 −(w12 −m12) · · · −(w1N −m1N)

−(w21 −m21) β2 − δ2 · · · −(w2N −m2N)
...

...
...

...

−(wN1 −mN1) −(wN2 −mN2) · · · βN − δN


Since, for i = 1, · · · , N , (βi−δi) =

∑N
j=0,j ̸=i(wij−mij) ≥

∑N
j=1,j ̸=i(wij−mij) ≥ 0, H1−H0

is positive semi-definite by Gersgorin Theorem, i.e., (H1(t)⊗In) ≥ (H0⊗In). Thus (4.35)
implies

0 = lim
t→∞

q̄T (H1(t)⊗ In)q̄ ≥ lim
t→∞

q̄T (H0 ⊗ In)q̄ ≥ 0 (4.38)

Thus, q̄ converges to the origin asymptotically, i.e., limt→∞(qi − q0) = 0, i = 1, · · · , N .

The proof is thus completed.

4.4 Illustrative Examples

4.4.1 Example 1

Consider the system (4.1) with N = 4 and D =
[
2 3

]
⊗ I2, and the leader system

(4.2) with S =

[
0 1

−1 0

]
⊗ I2. Assume r = 8, and Pi = 22, Ni = 25, i = 1, · · · , 4.

To obtain the design parameter Q in the potential function, we first obtain β = 2218

using (4.24). Take ϵ = 0.5. Using (4.23) with α = N(N−1)
2

+N = 10 and β = 2218 gives

(α(r−ϵ)
2

ϵ
+ β) = 3343. Then taking Q = 4000 makes (4.15) satisfied. Thus the potential

function is

ψ(s) =
s2

8− s+ 64
4000

, 0 ≤ s ≤ r (4.39)

To complete the design of the control law (4.12), let γ = 150 which is such that P (0) is

positive definite.

Let the initial values of various variables be

x1(0) =
[
1 7 9 8

]T
, x2(0) =

[
1 1 1 3

]T
x3(0) =

[
5 4 6 7

]T
, x4(0) =

[
1 −5 6 4

]T
η1(0) =

[
12 9 8 6

]T
; η2(0) =

[
12 2 −5 −5

]T
η3(0) =

[
3 1 4 6

]T
; η4(0) =

[
8 2 1 6

]T
x0(0) =

[
1 12 2 6

]T
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It can be verified that these initial values are such that ||pi(0) − p0(0)|| ≤ Pi, ||ηi(0) −
x0(0)|| ≤ Ni, and Ē(0) = {(0, 1), (1, 2), (1, 3), (2, 3), (2, 4)} which forms a connected

graph. The performance of the control law (4.12) are shown in Figures 4.1 to 4.3. Figure

4.1 shows the distances of the edges {(0, 1), (1, 2), (1, 3), (2, 3), (2, 4)} which constitute

the initial edge set. It can be seen that, for all t ≥ 0, these distances are smaller than the

sensing range r = 8. Thus, the connectivity of the network is maintained. Figures 4.2 and

4.3 further show that both the position and the velocity of all the followers asymptotically

approach the position and the velocity of the leader, respectively.

0 5 10 15
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6
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Time t (sec)

di
j

 

 
d10
d12
d13
d23
d24

Figure 4.1: Distances among agents

4.4.2 Example 2

Consider the following double integrator systems with disturbance with N = 4 and n = 2

q̈i = ui +Dx0, i = 1, 2, 3, 4 (4.40)

where D =
[
2 3

]
⊗ I2, and the leader system

ẋ0 = Sx0 (4.41)

where S =

[
02×2 I2

02×2 02×2

]
.

The simulation results are shown in Figures 4.4-4.6. And the satisfactory performance is

also observed.
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Figure 4.2: Position difference between followers and the leader

4.5 Conclusion

We have designed a dynamic state feedback control law to solve the leader-following

rendezvous problem of a set of double integrator systems subject to a class of external

disturbances. This control law can not only maintain the connectivity of the network

graph, but also achieve asymptotic tracking and disturbance rejection for a class of leader

system.
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Figure 4.3: Velocity difference between followers and the leader
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Figure 4.4: Distances between initially connected agents
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Figure 4.5: Position difference between each agent and the leader
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Figure 4.6: Velocity difference between each agent and the leader
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Chapter 5

Leader-following Connectivity

Preservation Rendezvous of

Multi-agent Systems Based Only

Position Measurements

In this chapter, we will further consider the leader-following rendezvous problem of double

integrator multi-agent systems by position feedback control law, which is independent of

the velocity of the system and the external disturbances.

5.1 Introduction

Consider a collection of double integrator systems of the following form

q̈i = ui + di, i = 1, · · · , N. (5.1)

where qi ∈ Rn, ui ∈ Rn, di ∈ Rn are the position, input, and the external disturbance

of the subsystem i of (5.1). It is assumed that, for i = 1, · · · , N , di is generated by an

exosystem as follows

ẇi = Siwi, di = Diwi (5.2)

where wi ∈ Rsi , Si ∈ Rsi×si and Di ∈ Rn×si are constant matrices. Without loss of

generality, we assume the pair (Di, Si) is detectable.

Also, let q0 ∈ Rn be a reference trajectory generated by a system as follows

q̈0 = S01q0 + S02q̇0 (5.3)

where S01, S02 ∈ Rn×n are arbitrary constant matrices.
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It is noted that, when Di = 0n×si , (5.1) is a double integrator system, and when

S01 = S02 = 0n×n, (5.3) is also a double integrator system. However, we don’t require

(5.3) to be a double integrator system and it can be seen that system (5.3) contains double

integrator system and harmonic system as special cases.

Like [17], we view the system composed of (5.1) and (5.3) as a multi-agent system of

(N+1) agents with (5.3) as the leader and the N subsystems of (5.1) as N followers. With

respect to the system composed of (5.1) and (5.3), we can define a digraph Ḡ(t) = (V̄ , Ē(t))
where V̄ = {0, 1, ..., N} with 0 associated with the leader system and i = 1, · · · , N ,

associated with the ith subsystem of (5.1), and Ē(t) ⊆ V̄ × V̄ . The set V̄ is called the

node set of Ḡ(t) and the set Ē(t) is called the edge set of Ḡ(t).
The rendezvous problem with connectivity preservation of the double integrator multi-

agent system was studied recently in [5], [17], [72] and [73]. In particular, the problem

was studied in [5, 73] via full state feedback control assuming the leader system was

also a double integrator and the follower was not subject to external disturbances. The

problem was further studied in [72] via position feedback control only. Recently, the

problem in [73] was generalized in [17] to the case where the leader system can be a

linear autonomous system described in (5.3) and all follower subsystems are allowed to be

subject to a disturbance generated by (5.3). In this chapter, we will further generalize the

result of [17] in two aspects. First, we allow the disturbances to various followers to be

different. In particular, they can be different from the leader signal. Second, we will solve

the problem by a position feedback control law as described in (5.4). This control law

depends neither on the velocity of the system nor on the external disturbances, is thus

more practical and economic than the one in [17]. It is noted that since the closed-loop

system is nonlinear, the validity of the output feedback control law cannot be directly

established by the result of the state feedback control and linear observer theory. We

have to derive our result using a rigorous Lyapunov-like analysis.

The rest of this chapter is organized as follows. In Section 5.2, we will formulate

our problem precisely. In Section 5.3, we will present our main result, which will be

illustrated by an example in Section 5.4. Finally, we close this chapter in Section 5.5 with

some concluding remarks.

5.2 Problem Formulation

Let us first characterize the edge set Ē(t) introduced in [17] as follows.

Given any r > 0 and ϵ ∈ (0, r), for any t ≥ 0, Ē(t) = {(i, j) | i, j ∈ V̄} is defined such that

1. Ē(0) = {(i, j) | ||qi(0)− qj(0)|| < (r− ϵ), i, j = 1, · · · , N}∪{(0, j) | ||q0(0)− qj(0)|| <

47



(r − ϵ), j = 1, · · · , N};

2. if ||qi(t)− qj(t)|| ≥ r, then (i, j) /∈ Ē(t);

3. (i, 0) /∈ Ē(t), for i = 0, 1, · · · , N ;

4. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) /∈ Ē(t−) and ||qi(t)− qj(t)|| < (r− ϵ), then

(i, j) ∈ Ē(t).

5. for i = 0, 1, · · · , N, j = 1, · · · , N , if (i, j) ∈ Ē(t−) and ||qi(t) − qj(t)|| < r, then

(i, j) ∈ Ē(t).

As pointed out in [17], the definition of edge is somehow different from that in literature

mainly in that the node 0 associated with the leader as well as the edges adjacent to the

node 0 is part of the graph. Since the leader does not have a control, there is no edge

from a follower to the leader. If ϵ = 0, then the above definition is similar to that given in

[34, 35]. Thus the physical interpretation of r is the sensing radius of the distance sensor

of each follower. The number ϵ is to introduce the effect of hysteresis.

To describe our control law, we use the notation N̄i(t) to denote the neighbor set

of the node i for i = 0, 1, · · · , N . Define a subgraph G(t) = (V , E(t)) of Ḡ(t), where
V = {1, · · · , N}, E(t) ⊆ V × V is obtained from Ē(t) by removing all edges between the

node 0 and the nodes in V . Clearly, G(t) is an undirected graph. For i = 1, · · · , N , let

Ni(t) = N̄i(t) ∩ V . It can be seen that, for i = 1, · · · , N , Ni(t) is the neighbor set of the

node i with respect to V .
Our control law takes the the following form:

ui = hi(qi − qj, ζi, ζj, j ∈ N̄i(t)), i = 1, ..., N

ζ̇i = gi(q̇0, ζi, ζj, qi, qj, j ∈ N̄i(t))
(5.4)

where hi, gi are sufficiently smooth functions to be specified later, and ζi ∈ R(2n+si+2n) is

used to estimate col(qi, q̇i, wi, q0, q̇0).

In contrast with the control law in [17], the control law (5.4) only depends on the

position information of the neighboring subsystems. Thus it is called the distributed

position feedback control law.

The leader-following rendezvous problem with connectivity preservation is described

as follows.

Definition 5.1 Given the multi-agent system composed of (5.1), (5.2) and (5.3), r > 0

and ϵ ∈ (0, r), and arbitrary positive real numbers Pi, κi, i = 1, · · · , N , find a distributed

control law of the form (5.4) such that, for all initial conditions q0(0), q̇0(0), wi(0), qi(0),
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q̇i(0), ζi(0), i = 1, · · · , N , that make Ḡ(0) connected, and satisfy ||q̇i(0)− q̇0(0)|| ≤ Pi, and

||ζi(0)− col(qi(0), q̇i(0), wi(0), q0(0), q̇0(0))|| ≤ κi, the closed-loop system has the following

properties:

1. Ḡ(t) is connected for all t ≥ 0;

2. limt→∞(qi − q0) = 0 and limt→∞(q̇i − q̇0) = 0, i = 1, · · · , N .

Remark 5.1 If, for i = 1, · · · , N , Di = D for some matrix D, wi = col(q0, q̇0) and

yi = col(qi, q̇i), then the above problem is reduced to the problem studied in [17]. What

makes our current problem challenging and thus interesting is that our control law will be

independent of not only q̇i but also wi.

5.3 Construction of Distributed Controller

We will make use of some techniques in output regulation problem to deal with our

problem. For this purpose, we can convert our system in state space form as follows

ẋi = Axi +Bui + Eiwi

yi = Cmxi

ei = xi − x0 i = 1, · · · , N

(5.5)

where, for i = 1, · · · , N , xi =

[
qi

pi

]
with pi = q̇i, yi ∈ Rn ei ∈ R2n are the state, measure-

ment output, and regulated output of agent i, respectively. Also, let x0 =

[
q0

p0

]
∈ R2n

with p0 = q̇0. Then,

ẋ0 = S0x0 (5.6)

where S0 =

[
0n×n In

S01 S02

]
. Various matrices in (5.5) are as follows: A =

[
0 1

0 0

]
⊗ In,

B =

[
0

1

]
⊗ In, Ei =

[
0n×si

Di

]
, Cm =

[
1 0

]
⊗ In.

Remark 5.2 Let Âi =

[
A Ei

0si×2n Si

]
and Ĉmi =

[
Cm 0n×si

]
. Then, noting that

the pair (Di, Si) can always be assumed to be detectable, it can be verified that the pair

(Ĉmi, Âi) is also detectable. Thus, there exists Li =

[
Li1

Li2

]
with Li1 ∈ R2n×n and Li2 ∈

Rsi×n such that Âi + LiĈmi is Hurwitz.
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One of the main objectives here is to deal with the external disturbance Eiwi. For

this purpose, let

Xi =
[
I2n 02n×si

]
, Ui =

[
S01 S02 −Di

]
. (5.7)

Then it can be verified that performing on (5.5) the following coordinate transformation

x̄i =

[
q̄i

p̄i

]
= xi − x0, i = 0, 1, · · · , N

ūi = ui − Uivi, i = 1, · · · , N

(5.8)

with vi =

[
x0

wi

]
, i = 1, · · · , N , converts system (5.5) to the following double-integrator

system without disturbance
˙̄qi = p̄i

˙̄pi = ūi, i = 1, · · · , N
(5.9)

Remark 5.3 The transformation (5.8) is inspired by the output regulation theory [20].

In fact, associated with (5.5) are the following linear matrix equations

XiS̄i = AXi +BUi + Ēi

0 = Xi +
[
−I2n 02n×si

] (5.10)

with S̄i =

[
S0 02n×si

0si×2n Si

]
, Ēi =

[
02n×2n Ei

]
. (5.10) is called regulator equations

associated with the ith follower [28]. It can be verified that (5.7) is a solution pair of

(5.10). The transformation (5.8) is a standard technique for converting an output regu-

lation problem to a stabilization problem.

As in [17], our control law will utilize the bounded potential function ψ(·) introduced
in [73] as follows.

ψ(s) =
s2

r − s+ r2

Q

, 0 ≤ s ≤ r (5.11)

where Q is some positive number. The function is nonnegative and bounded over [0, r],

and its derivative dψ(s)
ds

=
s(2r−s+ 2r2

Q
)

(r−s+ r2

Q
)2

is positive for all s ∈ (0, r]. Moreover, the function

has the property that, for any α > 0, β ≥ 0, and any ϵ ∈ (0, r), there exists some Q > 0

such that

ψ(r) = Q ≥ αψ(r − ϵ) + β (5.12)

In fact, as pointed out in [17], (5.12) holds whenever Q > (α(r−ϵ)
2

ϵ
+ β).
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Now we can propose the dynamic distributed position feedback control law as follows:

ui = −
∑

j∈N̄i(t)

∇q̄iψ(||q̄i − q̄j||)−
∑

j∈Ni(t)

aij(t)(ξ2i − ξ2j)

− ai0(ξ2i − p0) + Uicol(ηi, ŵi) i = 1, · · · , N

ξ̇i = Aξi +Bui + Eiŵi + Li1(Cmξi − yi)

˙̂wi = Siŵi + Li2(Cmξi − yi)

η̇i = S0ηi + γ(
N∑
j=1

aij(t)(ηj − ηi)− ai0(t)(ηi − x0))

(5.13)

where, for i = 1, · · · , N , j = 0, · · · , N ,

aij(t) =

{
1, (j, i) ∈ Ē(t)
0, otherwise

(5.14)

ξi =

[
ξ1i

ξ2i

]
with ξ1i ∈ Rn and ξ2i ∈ Rn, γ is a sufficiently large positive number, and Li

is as described in Remark 5.2. Since Âi + LiĈmi is Hurwitz, there exist positive definite

matrices P̄i, i = 1, · · · , N , such that (Âi +LiĈmi)
T P̄i + P̄i(Âi +LiĈmi) = −I2n+si . It can

be seen that the control law is in the form of (5.4) with ζi = col(ξi, ŵi, ηi).

Let ξ̄i = ξi− xi, w̄i = ŵi−wi and η̄i = ηi− x0, i = 1, · · · , N . Then, under the control

law (5.13), the closed-loop system of each agent becomes

˙̄qi = p̄i, i = 1, · · · , N
˙̄pi = −

∑
j∈N̄i(t)

∇q̄iψ(||q̄i − q̄j||)−
∑

j∈N̄i(t)

aij(t)(p̄i − p̄j)

− (
∑

j∈Ni(t)

aij(t)(ξ̄2i − ξ̄2j) + ai0ξ̄2i +Diw̄i) +
[
S01 S02

]
η̄i[

˙̄ξi
˙̄wi

]
= (Âi + LiĈmi)

[
ξ̄i

w̄i

]

˙̄ηi = S0η̄i + γ(
N∑
j=1

aij(t)(η̄j − η̄i)− ai0(t)η̄i)

(5.15)

Before establishing our main result, we note that, associated with the graph Ḡ(t),
t ≥ 0, we can define matrices

H(t) =


ā1(t) −a12(t) · · · −a1N(t)

−a21(t) ā2(t) · · · −a2N(t)
...

...
...

...

−aN1(t) −aN2(t) · · · āN(t)

 (5.16)
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where āi(t) =
∑N

j=0,j ̸=i aij(t), i = 1, · · · , N ,

P0(t) =

[
H(t)⊗ In

Λ(t)
2

ΛT (t)
2

θIι

]
(5.17)

where θ is some real number, ι = 2Nn+ s1+ · · ·+ sN , Λ(t) =
[
0Nn×Nn H(t)⊗ In D

]
with D = diag(D1, · · · , DN), and P (t) = H(t)⊗ In

Λ(t)
2

Z1

ΛT (t)
2

θIι 0ι×2Nn

ZT
1 02Nn×ι Y (t)

 (5.18)

where Z1 = −1
2
IN ⊗

[
S01 S02

]
and Y (t) = γH(t)⊗ I2n − IN ⊗ S0+ST

0

2
with γ some real

number. We have the following lemma.

Lemma 5.1 Assume the graph Ḡ(t) is connected for all t ≥ 0. Then

1. there exists positive number θ such that P0(t) is positive definite for all t ≥ 0;

2. there exists positive number γ such that P (t) is positive definite for all t ≥ 0.

Proof: Part 1). Note that, for any t ≥ 0, H(t) = −M +∆ where M is a Metzler matrix

and ∆ = diag[a10(t) · · · , aN0(t)]. By Remark 2.1, H(t) is positive definite since the graph

Ḡ(t) is connected. By Lemma 3.1 in [17], if there exists finite number θ > 0 such that,

for all t ≥ 0, θ > λM(Λ
T (t)
2

(H−1(t)⊗ In)
Λ(t)
2
) where λM(A) denotes the largest eigenvalue

of a square matrix A, then P0(t) is positive definite for all t ≥ 0.

It is noted that

ΛT (t)(H−1(t)⊗ In)Λ(t) =

 0Nn×Nn

H(t)⊗ In

DT

× (H−1(t)⊗ In)
[
0Nn×Nn H(t)⊗ In D

]

=

 0Nn×Nn 0Nn×Nn 0Nn×s

0Nn×Nn H(t)⊗ In D

0s×Nn DT DT (H−1(t)⊗ In)D


(5.19)

with s = s1 + · · ·+ sN . Thus, P0(t) is positive definite for all t ≥ 0 if, for all t ≥ 0,

θ > λM

(
1

4

[
H(t)⊗ In D

DT DT (H−1(t)⊗ In)D

])
(5.20)

Since H(t) is uniquely determined by Ḡ(t), and there are only finitely many different

connected graphs with N + 1 nodes, such a finite number θ always exists. Fix θ.
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Part 2). Let P (t) =

[
P0(t) Z

ZT Y (t)

]
where Z =

[
−1

2
IN ⊗

[
S01 S02

]
0ι×2Nn

]
. Then by

Lemma 3.1 in [17], if there exists finite real number γ such that, for all t ≥ 0,

γ >
λM(IN ⊗ S0+ST

0

2
+ ZTP−1

0 (t)Z)

λm(H(t))
(5.21)

with λm(A) denotes the smallest eigenvalue of a square matrix A, then P (t) is positive

definite for all t ≥ 0.

Since H(t) is uniquely determined by Ḡ(t), and there are only finitely many different

connected graphs with N + 1 nodes, such a finite constant always exists.

We can now state our main result as follows.

Theorem 5.1 The leader-following connectivity preservation rendezvous problem for sys-

tem composed of (5.1), (5.2) and (5.3) is solvable by the control law (5.13) where γ is a

sufficiently large positive constant.

Proof: Let η̄ = col(η̄1, η̄2, · · · , η̄N), q̄ = col(q̄1, q̄2, · · · , q̄N), p̄ = col(p̄1, p̄2, · · · , p̄N),

ξ̄ = col(ξ̄1, ξ̄2, · · · , ξ̄N), µi =

[
ξ̄i

w̄i

]
, i = 1, · · · , N , µ = col(µ1, µ2, · · · , µN). Let µ̄ =

col(ξ̄11, · · · , ξ̄1N , ξ̄21, · · · , ξ̄2N , w̄1, · · · , w̄2) = Tµ with T =

In 0n×n 0n×s1 · · · 0n×n 0n×n 0n×sN

...
...

...
...

...
...

...

0n×n 0n×n 0n×s1 · · · In 0n×n 0n×sN

0n×n In 0n×s1 · · · 0n×n 0n×n 0n×sN

...
...

...
...

...
...

...

0n×n 0n×n 0n×s1 · · · 0n×n In 0n×sN

0s1×n 0s1×n Is1 · · · 0s1×n 0s1×n 0s1×sN

...
...

...
...

...
...

...

0sN×n 0sN×n 0sN×s1 · · · 0sN×n 0sN×n IsN


It is noted that T−TT−1 = Iι.

Given r > 0, ϵ ∈ (0, r), and arbitrary positive real numbers Pi, κi, i = 1, · · · , N , the

control law is determined by two design parameters Q and γ. Let us first determine γ. By

Lemma 5.1, there are θ > 0 and γ > 0 such that P (t) is positive definite for all possible

connected Ḡ(t) with N + 1 nodes. Fix θ and γ.
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To determine Q, we introduce the following energy function for system (5.15).

V (q̄, p̄, µ, η̄, t) =
1

2

N∑
i=1

(
∑

j∈Ni(t)

ψ(||q̄i − q̄j||) + 2ai0ψ(||q̄i||) + p̄Ti p̄i + 2θµTi P̄iµi + η̄Ti η̄i)

=
1

2

N∑
i=1

(
∑

j∈Ni(t)

ψ(||q̄i − q̄j||) + 2ai0ψ(||q̄i||) + p̄Ti p̄i + η̄Ti η̄i) + θµ̄TT−T P̄ T−1µ̄

(5.22)

with P̄ = diag(P̄1, · · · , P̄N). Let

Qmax =
α(r − ϵ)2

ϵ
+ β (5.23)

where α = N(N−1)
2

+N and

β =
1

2

N∑
i=1

(P 2
i + δiκ

2
i ) (5.24)

where δi = max{1, 2θλM(P̄i)}. Then pick any Q > Qmax.

Now, we will show that the above control law is such that the graph Ḡ(t) is connected
for all t ≥ 0. Let the energy function be given by (5.22). Then it can be seen that for all

initial conditions x0(0), wi(0), qi(0), pi(0), ξi(0), ŵi(0), ηi(0) that make Ḡ(0) connected and

satisfy ||pi(0) − p0(0)|| ≤ Pi, ||col(ξi(0), ŵi(0), ηi(0)) − col(xi(0), wi(0), x0(0))|| ≤ κi, our

choice of Q is such that

V (0) = V (q̄(0), p̄(0), µ(0), η̄(0), 0) ≤ Qmax (5.25)

It can be verified that the time derivative of the function (5.22) along the closed-loop

system (5.15) satisfies

V̇ =
N∑
i=1

∑
j∈N̄i(t)

ψ̇(||q̄i − q̄j||) +
N∑
i=1

p̄Ti ˙̄pi +
N∑
i=1

θ(µ̇Ti P̄iµi + µTi P̄iµ̇i) + η̄T ˙̄η

= −
N∑
i=1

p̄Ti (
∑

j∈N̄i(t)

aij(p̄i − p̄j) +
[
S01 S02

]
η̄i)

−
N∑
i=1

p̄Ti (
∑

j∈Ni(t)

aij(t)(ξ̄2i − ξ̄2j) + ai0ξ̄2i +Diw̄i)

+ η̄T (IN ⊗ S0 − γH(t)⊗ I2n)η̄ + θ

N∑
i=1

µTi ((Âi + LiĈmi)
T P̄iµi + P̄i(Âi + LiĈmi))µi

= −p̄T (H(t)⊗ In)p̄− θµ̄TT−TT−1µ̄− p̄TΛ(t)µ̄+ p̄T (IN ⊗
[
S01 S02

]
)η̄

+ η̄T (IN ⊗ S0 + ST0
2

− γH(t)⊗ I2n)η̄
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= −

 p̄

µ̄

η̄


T

P (t)

 p̄

µ̄

η̄

 (5.26)

By using the same argument as what is used in the proof of Theorem 3.1 in [17], we

can conclude that there exists a finite integer k > 0 such that

Ḡ(t) = Ḡ(0), t ∈ [0, t1)

Ḡ(t) = Ḡ(ti) ⊃ Ḡ(ti−1), t ∈ [ti, ti+1), i = 1, · · · , k − 1

Ḡ(t) = Ḡ(tk) ⊃ Ḡ(tk−1), t ∈ [tk,∞)

Thus, for all t ≥ tk, along any trajectory of the closed-loop system, we have

V̇ (t) = −

 p̄

µ̄

η̄


T

P (tk)

 p̄

µ̄

η̄

 , t ≥ tk. (5.27)

with P (tk) positive definite.

thus

V (t) ≤ V (0) ≤ Qmax < Q, for t ≥ tk (5.28)

Therefore, for all t ≥ tk, the graph Ḡ(t) is connected.
Moreover, by using the same argument as what is used in the proof of Theorem 3.1

in [17], we can conclude also that, p̄, q̄, µ and, η̄ are bounded for all t ≥ 0, and for

i = 1, · · · , N ,

lim
t→∞

(pi − p0) = 0

lim
t→∞

(qi − q0) = 0

5.4 Example

Consider the following double integrator systems with disturbance with N = 4 and n = 2

q̈i = ui + di, i = 1, 2, 3 (5.29)

The leader system is

ẋ0 = S0x0 (5.30)

where S0 =

[
0 1

−1 0

]
⊗ I2.

All the followers are subject to different external disturbances generated by

ẇi = Siwi, di = Diwi, i = 1, 2, 3 (5.31)
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with S1 =

[
0 1

−1 0

]
, S2 = 0, S3 =

[
0 1

0 0

]
, D1 =

[
1 0

1 1

]
, D2 =

[
1

−1

]
and

D3 =

[
1 0

0 1

]
.

The values for Li, i = 1, 2, 3 can be calculated as follows:

L1 =



−11.1058 −1.5488

0.2136 −12.8942

−30.0300 −14.7458

7.6435 −47.6888

7.1842 −35.6389

33.1849 −0.4725


, L2 =


−7.5772 1.8537

1.6309 −7.9228

−15.5195 10.2289

8.9683 −17.2211

−8.0898 9.3967



L3 =



−11.2883 −2.1704

−1.3852 −9.7117

−40.5053 −17.7951

−9.6792 −27.8726

−50.2439 −40.3254

−15.1637 −22.4045


Thus, λM(P̄1) = 4.6733, λM(P̄2) = 2.5605 and λM(P̄3) = 8.3629.

Assume the sensing range is r = 8 and ϵ = 0.5. For i = 1, 2, 3, let

Pi = 14, κi = 20. (5.32)

By Eq. (5.20), we can obtain θ > 2.4016, then take θ = 2.5. Also using (5.12) with

α = N(N−1)
2

+N = 6 and β = 19010 gives (α(r−ϵ)
2

ϵ
+ β) = 19685. Then taking Q = 20000

makes (5.12) satisfied. Thus the potential function is

ψ(s) =
s2

8− s+ 64
20000

, 0 ≤ s ≤ r (5.33)

By Eq. (5.21), we obtain γ > 154.7491, and let γ = 155 such that P (t) is positive definite.

For the purpose of simulation, let the initial values of various variables be

x0(0) =
[
1 7 9 8

]T
w1(0) =

[
1 −1

]T
w2(0) = −1 w3(0) =

[
2 1

]T
x1(0) =

[
1 1 8 3

]T
x2(0) =

[
1 −6 9 7

]T
x3(0) =

[
6 −2 5 2

]T
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η1(0) =
[
8 1 4 3

]T
η2(0) =

[
1 11 −8 3

]T
η3(0) =

[
1 5 3 4

]T
ξ1(0) =

[
12 9 8 6

]T
ξ2(0) =

[
7 2 1 3

]T
ξ3(0) =

[
6 3 1 3

]T
ŵ1(0) =

[
0 1

]T
ŵ2(0) = 2 ŵ3(0) =

[
1 1

]T
(5.34)

It can be verified that these initial values are such that ||pi(0) − p0(0)|| ≤ Pi, ||ζi(0) −
col(xi(0), ηi(0), wi(0))|| ≤ κi, and Ē(0) = {(0, 1), (1, 2), (2, 3), (1, 3)} which forms a

connected graph.

With these parameters, we can simulate the performance of the control law (5.13), and

some of the simulation results are shown in Figures 5.1 to 5.6. Figure 5.1 shows the

distances of the edges {(0, 1), (1, 2), (2, 3), (1, 3)} which constitute the initial edge set.

It can be seen that, for all t ≥ 0, these distances are smaller than the sensing range r = 8.

Thus, the connectivity of the network is maintained. Figures 5.2 and 5.3 further show

that both the position and the velocity of all the followers asymptotically approach the

position and the velocity of the leader, respectively. Moreover, Figures 5.4, 5.5 and 5.6

show that the observers ξi, ηi and ŵi approach xi, x0 and wi, respectively.

0 5 10 15 20 25
0
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2

3
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5

6

7

8

Time t (sec)

di
j

 

 
d10
d12
d13
d23

Figure 5.1: Distances between initially connected agents
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−

q0

 

 
q11−q01
q12−q02
q21−q01
q22−q02
q31−q01
q32−q02

Figure 5.2: Differences of position between followers and leader

5.5 Conclusion

We have further investigated the problem of leader-following rendezvous with connectivity

preservation for a double integrator multi-agent system via the position feedback control

only. The formulation of the problem in this chapter is more general than that in the

previous chapter in that the disturbances to different followers are different and, in par-

ticular, they are different from the leader signal. Our control law is not only independent

of the velocity but also independent of the disturbance signals. Thus the result of this

chapter is more practical than that of Chapter 4.
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Figure 5.3: Differences of velocity between followers and leader
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Figure 5.4: Differences of ξi and xi
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Figure 5.5: Differences of ŵi and wi
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Figure 5.6: Differences of ηi and x0
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Chapter 6

Cooperative Global Robust Output

Regulation for Nonlinear

Multi-agent Systems in Output

Feedback Form

In this chapter, we turn to consider the cooperative global robust output regulation for

nonlinear multi-agent systems in output feedback form with unity relative degree.

6.1 Introduction

Recently, the cooperative robust output regulation problem for linear multi-agent systems

was studied in [78, 80, 90]. The problem can be viewed as a generalization of the leader-

following consensus/synchronization problem because it will not only address the issue

of asymptotic tracking but also address such issues as disturbance rejection, robustness

with respect to parameter uncertainties, etc. The same problem was also studied for a

class of nonlinear systems in [45]. However, only a local solution was given in [45]. In

this chapter, we will further consider the cooperative output regulation problem for the

following class of nonlinear systems:

żi = fi(zi, yi, v, w)

ẏi = bi(v, w)ui + gi(zi, yi, v, w)

ei = yi − q(v, w), i = 1, · · · , N

(6.1)

where, for i = 1, · · · , N , (zi, yi) ∈ Rn × R is the state, ui ∈ R is the input, ei ∈ R is

the error output, w ∈ W ⊂ Rnw is an uncertain parameter vector with W an arbitrarily

61



prescribed subset of Rnw , and v(t) ∈ Rnv is an exogenous signal presenting both reference

input and disturbance. It is assumed that v(t) is generated by a linear system of the

following form

v̇ = Sv

y0 = q(v, w)
(6.2)

It is assumed that all functions in (6.1) are globally defined, sufficiently smooth, and

satisfy fi(0, 0, 0, w) = 0, gi(0, 0, 0, w) = 0, and q(0, w) = 0 for all w ∈ W.

The system composed of (6.1) and (6.2) can be viewed as a multi-agent system of

(N + 1) agents with (6.2) as the leader and the N subsystems of (6.1) as N followers.

With respect to the system composed of (6.1) and (6.2), we can define a digraph1 Ḡ =

(V̄ , Ē) where V̄ = {0, 1, ..., N} with 0 associated with the leader system and with i,

i = 1, · · · , N , associated with the N followers, respectively, and (j, i) ∈ Ē , j = 0, 1, · · · , N
and i = 1, · · · , N , if and only if the control ui can make use of yj for feedback control.

Thus our control law is of the following form:

ui = ki(ηi, yi − yj, j ∈ N̄i), i = 1, · · · , N

η̇i = ĝi(ηi, yi − yj, j ∈ N̄i)
(6.3)

where N̄i is the neighbor set of the node i, ki and ĝi are sufficiently smooth functions

vanishing at the origin, and ηi ∈ Rnηi with nηi to be defined later. A control law of the

form (6.3) is called a distributed dynamic output feedback control law because the control

of each subsystem can only take the information of its neighbors and itself for control.

Define a subgraph G = (V , E) of Ḡ, where V = {1, · · · , N}, E ⊆ V × V is obtained

from Ē by removing all edges between the node 0 and the nodes in V . For i = 1, · · · , N ,

let Ni = N̄i(t) ∩ V . It can be seen that, for i = 1, · · · , N , Ni is the neighbor set of the

node i with respect to V .
We call the composition of (6.1) and (6.3) as the overall closed-loop system which can

be put in the following form

ẋc = fc(xc, v, w) (6.4)

where xc = col(z1, y1, η1, · · · , zN , yN , ηN) ∈ Rnc for some integer nc. Then fc is sufficiently

smooth satisfying fc(0, 0, w) = 0 for all w ∈ W. Then we can describe our problem as

follows:

Definition 6.1 Given the multi-agent system (6.1), the exosystem (6.2), the correspond-

ing digraph Ḡ, and any compact subsets V ∈ Rnv and W ∈ Rnw which contain v = 0

and w = 0, respectively, find a control law of the form (6.3) such that, for any v(0) ∈ V,
1See [74] for a summary of digraph.
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w ∈ W, the trajectory of the closed-loop system (6.4) starting from any initial state xc(0)

exists and is bounded for all t ≥ 0, and limt→∞ e(t) = 0 with e = col(e1, · · · , eN).

It can be seen that, for the special case where N = 1, the above problem is the

robust output regulation problem for output feedback systems as studied in [93]. The

current problem is more challenging and interesting than that of [93] in at least two ways.

First, the system in [93] is a single-input, single-output system. It can be converted into

a global stabilization problem of an augmented system through the employment of an

internal model. The augmented system is still a single-input, single-output system whose

stabilization problem can be handled by established techniques for global stabilization. In

contrast, for a multi-agent system, the augmented system is a multi-input, multi-output

nonlinear system and we have to develop techniques that apply to multi-input, multi-

output nonlinear systems. Second, due to the communication constraint described by

the communication graph Ḡ, we have to limit ourselves to the distributed control law as

described in (6.3) to solve the stabilization problem for the augmented system.

The rest of this chapter is organized as follows. In Section 5.2, we will present the

preliminaries for our problem. In Section 5.3, we will present our main result. In Section

5.4, we will apply our approach to solve a leader-following synchronization problem for a

group of Lorenz systems. Finally, we close this chapter in Section 5.5 with some concluding

remarks.

6.2 Preliminaries

By the general framework for handling the output regulation problem for nonlinear sys-

tems described in [30], the first step of our approach is to find an internal model for (6.1)

to form an augmented system. This step for the special case where N = 1 was conducted

in [93]. Here we will generalize the procedure in [93] to the general case with any N > 1.

For this purpose, we need to make some standard assumptions as follows:

Assumption 6.1 The exosystem is neutrally stable, i.e., all the eigenvalues of S are

semi-simple with zero real parts.

Assumption 6.2 |bi(v, w)| > 0, i = 1, · · · , N , for all v ∈ Rnv and all w ∈ Rnw .

Remark 6.1 Without loss of generality, we can assume bi(v, w) > 0, i = 1, · · · , N ,

for all v ∈ Rnv and all w ∈ Rnw . In this case, for any known compact subsets V and

W, there exist some known positive numbers bmax and bmin such that, i = 1, · · · , N ,

bmin ≤ bi(v, w) ≤ bmax for all v ∈ Rnv and all w ∈ Rnw .
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Assumption 6.3 There exist globally defined smooth functions zi : Rnv ×Rnw 7→ Rn with

zi(0, w) = 0 such that

∂zi(v, w)

∂v
Sv = fi(zi(v, w), q(v, w), v, w) (6.5)

for all (v, w) ∈ Rnv × Rnw .

Under Assumption 6.3, let yi(v, w) = q(v, w) and

ui(v, w) = b−1
i (

∂q(v, w)

∂v
Sv − gi(zi(v, w), q(v, w), v, w)) (6.6)

Then, zi(v, w), yi(v, w) and ui(v, w) are the solutions for the regulator equations associ-

ated with Eqs. (6.1) and (6.2).

Assumption 6.4 ui(v, w), i = 1, · · · , N , are polynomials in v with coefficients depending

on w.

Remark 6.2 As remarked in [93], under Assumption 6.4, there exist integers si such that

ui(v, w) satisfy, for all trajectories v(t) of the exosystem and all w ∈ W
dsiui
dtsi

= a1iui + a2i
dui
dt

+ · · ·+ asii
dsi−1ui
dtsi−1

(6.7)

where a1i, a2i, · · · , asii are real scalars such that all the roots of the polynomial Pi(λ) =

λsi − a1i − a2iλ− · · · − asiiλ
si−1 are distinct with zero real parts [28].

Let τi(v, w) = col(u, u̇, · · · ,u(si−1))

Φi =

[
0 Isi−1

a1i a2i, · · · , asii

]
(6.8)

and Γi = [1, 0, · · · , 0]1×si. Then τi(v, w), Φi and Γi satisfy the following equations:

∂τi(v, w)

∂v
Sv = Φiτi(v, w), ui(v, w) = Γiτi(v, w) (6.9)

System (6.9) can be used to generate the steady-state input ui(v, w), and thus it is called a

steady-state generator with output ui [30]. Since (Γi,Φi) is observable and the eigenvalues

of Φi have zero real parts, for any controllable pair (Mi, Ni), where Mi ∈ Rsi×si is a

Hurwitz matrix and Ni ∈ Rsi×1 is a column vector, there is a unique nonsingular matrix

Ti satisfying the Sylvester equation

TiΦi −MiTi = NiΓi (6.10)

Let θi(v, w) = Tiτi(v, w), which satisfies θ̇i = (Mi + NiΨi)θi and ui(v, w) = Ψiθi, where

Ψi = ΓiT
−1
i . Then we can define a dynamic compensator as follows [50]:

η̇i =Miηi +Niui (6.11)

which is called the internal model with output ui in the sense of Definition 3.4 in [30].
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Attaching the internal model (6.11) to (6.1) and performing the following coordinate and

input transformation:

z̄i = zi − zi(v, w), η̃i = ηi − θi(v, w)−Nib
−1
i ei

ei = yi − q(v, w), ūi = ui −Ψiηi, i = 1, · · · , N
(6.12)

give a system as follows:

˙̄zi = f̄i(z̄i, ei, µ)

˙̃ηi =Miη̃i +MiNib
−1
i ei −Nib

−1
i ḡi(z̄i, ei, µ)−Ni

∂b−1
i (v, w)

∂v
Svei

ėi = ḡi(z̄i, ei, µ) + biΨiη̃i +ΨiNiei + biūi

(6.13)

where µ = (v, w), f̄i(z̄i, ei, µ) = fi(z̄i + zi, ei + q, v, w) − fi(zi, q, v, w) and ḡi(z̄i, ei, µ) =

gi(z̄i+zi, ei+q, v, w)−gi(zi, q, v, w). It can be verified that f̄i(0, 0, µ) = 0 and ḡi(0, 0, µ) = 0

for any µ ∈ Rnv × Rnw .

As pointed out in [93], an important property of the augmented system (6.13) is that,

for all v and w, the origin is an equilibrium point of (6.13) and the output ei is identically

zero at the origin. As a result, if for any compact subsets V ⊆ Rv and W ⊆ Rnw which

contain v = 0 and w = 0, respectively, there is an output feedback control law of the form

ūi = h̄i(ei), i = 1, · · · , N (6.14)

vanishing at the origin such that, for all v(t) ∈ V ⊆ Rv and all w ∈ W ⊆ Rnw , the

equilibrium point of the closed-loop system composed of (6.13) and (6.14) is globally

asymptotically stable, then the following control law

ui = h̄i(ei) + Ψiηi

η̇i =Miηi +Niui, i = 1, · · · , N
(6.15)

solves the global output regulation problem for system (6.1).

However, due to the communication constraints, the control law of (6.14) is not ad-

missible. Thus we can only use a distributed control law of the form (6.3). To find such

a control law, let Ā = [cij]
N
i,j=0 be any weighted adjacency matrix of Ḡ. For i = 1, · · · , N ,

let

evi =
N∑
j=0

cij(yi − yj) (6.16)

Since yi(v, w) = yj(v, w) for any i ̸= j, we have evi =
∑N

j=0 cij(ei − ej) where e0 = 0.

Then we will consider a class of output feedback controllers as follows

ūi = ki(evi), i = 1, · · · , N (6.17)
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where ki(.) is a globally defined sufficiently smooth function that vanishes at the origin.

Clearly, if the augmented system (6.13) can be globally stabilized by the control law

(6.17), then the output regulation problem of the original system will be solved by the

following distributed control law:

ui = ki(evi) + Ψiηi

η̇i =Miηi +Niui, i = 1, · · · , N
(6.18)

For convenience, let Zi = col(z̄i, η̃i) and Fi(Zi, ei, µ) = col(f̄i(z̄i, ei, µ),Miη̃i+MiNib
−1
i ei−

Nib
−1
i ḡi(z̄i, ei, µ) − Ni

∂b−1
i (v,w)

∂v
Svei). Then the system (6.13) can be put in the following

more compact form:

Żi = Fi(Zi, ei, µ)

ėi = ḡi(z̄i, ei, µ) + biΨiη̃i +ΨiNiei + biūi
(6.19)

6.3 Construction of Distributed Controller

In this section, we will focus on globally stabilizing the augmented system (6.13) by a

control law of the form (6.17). For this purpose, we need two more assumptions as follows

Assumption 6.5 For any compact subset Ω ⊂ Rnv × Rnw , there exists a C1 function

Vz̄i satisfying αi(||z̄i||) ≤ Vz̄i(z̄i) ≤ αi(||z̄i||), for some class K∞ functions αi(.) and αi(.)

such that, for any µ ∈ Ω along the trajectory of the subsystem ˙̄zi = f̄i(z̄i, ei, µ), V̇z̄i ≤
−αi(||z̄i||) + γi(ei), where αi(.) is some known class K∞ function satisfying

lims→0+ sup(α−1
i (s2)/s) <∞, and γi(.) is some known smooth positive definite function.

Remark 6.3 This assumption is quite standard in the literature of the global robust stabi-

lization and output regulation [36], [93]. It guarantees that the subsystem ˙̄zi = f̄i(z̄i, ei, µ)

is input-to-state stable [69]. Under this assumption, by Lemma 3.1 in [93], there exists a

C1 function Vi(Zi) satisfying α2i(||Zi||) ≤ Vi(Zi) ≤ α2i(||Zi||) for some class K∞ functions

α2i(.) and α2i(.), such that, for all µ ∈ Ω, along the trajectory of Zi−subsystem in (6.19),

V̇i(Zi) ≤ −||Zi||2 + πi(ei) (6.20)

for some known smooth positive definite function πi(ei).

Assumption 6.6 Every node i = 1, · · · , N is reachable from the node 0 in the digraph

Ḡ, and G is an undirected graph.
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Remark 6.4 Let ∆ be an N×N nonnegative diagonal matrix whose ith diagonal element

is ci0, i = 1, · · · , N . Then L̄ ,
[

0 01×N

−∆1N H

]
, where H = [hij]

N
i,j=1 with hii =

∑N
i=0 cij

and hij = −cij, 0m×n denoting the zero matrix in Rm×n, is a Laplacian of Ḡ. So H1N =

∆1N , where 1N denotes an N × 1 column vector whose elements are all 1. Moreover, by

Lemma 4 in [27], all the eigenvalues of H have positive real parts if and only if Assumption

6.6 is satisfied. Since G is an undirected graph, H is also symmetric.

Lemma 6.1 Under Assumptions 6.1-6.4, 6.5 and 6.6, the global stabilization problem of

system (6.13) can be solved by the distributed output feedback control law of the form

ūi = −ρi(evi)evi, i = 1, · · · , N (6.21)

where ρi(.), i = 1, · · · , N , are some sufficiently smooth positive definite functions to be

specified in the proof of this Lemma.

Proof: By the changing supply rate technique [69], given any smooth function ϑ̄i(Zi) > 0,

there exists a C1 function V̄i(Zi) satisfying α3i(||Zi||) ≤ V̄i(Zi) ≤ α3i(||Zi||) for some class

K∞ functions α3i(.) and α3i(.), such that, for all µ ∈ Ω, along the trajectory of Zi-

subsystem of (6.19),

˙̄Vi(Zi) ≤ −ϑ̄i(Zi)||Zi||2 + π̄i(ei)|ei|2 (6.22)

where π̄i(.), i = 1, · · · , N , are some known smooth positive definite functions.

Next, let

g̃i(Zi, ei, µ) = ḡi(z̄i, ei, µ) + biΨiη̃i +ΨiNiei

g̃(Z, e, µ) = col(g̃1(Z1, e1, µ), · · · , g̃N(ZN , eN , µ))

Since g̃i(Zi, ei, µ), i = 1, · · · , N , are all smooth and satisfy g̃i(0, 0, µ) = 0, by Lemma 7.8

of [28] again, there exist some smooth functions δi(Z) ≥ 1 and χi(ei) ≥ 1, such that, for

all Zi ∈ Rn+si , ei ∈ R and µ ∈ Ω,

|g̃i(Zi, ei, µ)|2 ≤ δi(Zi)||Zi||2 + χi(ei)e
2
i (6.23)
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Let ev = col(ev1, · · · , evN). Then e = H−1ev. Let Ve =
1
2
eTHe. Then the derivative of Ve

along the subsystems ėi = g̃i(Zi, ev, µ)− biρi(evi)evi, i = 1, · · · , N , satisfies

V̇e = eTHė = eTv ė =
N∑
i=1

eviėi

=
N∑
i=1

−biρi(evi)e2vi + eTHg̃(Z, e, µ)

≤
N∑
i=1

−biρi(evi)e2vi +
||H||2

2ϵ
e2 +

ϵ

2
||g̃(Z, e, µ)||2

≤
N∑
i=1

−biρi(evi)e2vi +
ϵ

2

N∑
i=1

δi(Zi)||Zi||2 +
N∑
i=1

(
||H||2

2ϵ
+
ϵ

2
χi(ei))e

2
i

(6.24)

with ϵ > 0. Let VZ(Z) =
∑N

i=1 V̄i(Zi) where Z = col(Z1, · · · , ZN). Finally, let U(Z, e) =
VZ + Ve. Then the derivative of U along the trajectory of the closed-loop system satisfies

U̇ = −
N∑
i=1

biρi(evi)e
2
vi −

N∑
i=1

(ϑ̄i(Zi)−
ϵ

2
δi(Zi))||Zi||2 + ρ̄(e) (6.25)

with ρ̄(e) =
∑N

i=1(
||H||2
2ϵ

+ ϵ
2
χi(ei) + π̄i(ei))e

2
i .

By Lemma 7.8 of [28], there exist known smooth positive definite functions ρ̃i(evi), i =

1, · · · , N , such that ρ̄(e) = ρ̄(H−1ev) ≤
∑N

i=1 ρ̃i(evi)e
2
vi.

Let ρi(evi) ≥ b−1
min(ρ̃i(evi) + ι1) and ϑ̄i(Zi) ≥ ϵ

2
δi(Zi) + ι2 with ι1, ι2 > 0. Then U̇ ≤

−ι1||Z||2 − ι2||ev||2. Thus under the output feedback control law (6.21), the equilibrium

of the closed-loop system is uniformly globally asymptotically stable. Thus the proof is

completed.

Lemma 6.1 leads to our main result as follows.

Theorem 6.1 Under Assumptions 6.1-6.4, 6.5 and 6.6, the cooperative global robust out-

put regulation problem of system (6.1) can be solved by the distributed output feedback

control law of the form

ui = −ρi(evi)evi +Ψiηi, i = 1, · · · , N

η̇i =Miηi +Niui
(6.26)

68



6.4 Application to Lorenz Multi-agent Systems

Consider the following multi-agent system:

ẋ1i = −L1ix1i + L1ix2i

ẋ2i = biui + L3ix1i − x2i − x1ix3i

ẋ3i = L2ix3i + x1ix2i

ei = x2i − v1, i = 1, · · · , N

(6.27)

where bi = 1, i = 1, · · · , N . The exosystem is[
v̇1

v̇2

]
= S

[
v1

v2

]
=

[
0 ω

−ω 0

][
v1

v2

]
(6.28)

with ω = 1. For each i, system (6.28) is called controlled Lorenz system [8], [93].

By letting (z1i, z2i, yi) = (x1i, x3i, x2i), we can put the system (6.27) in the standard

form (6.1) as follows:

ż1i = −L1iz1i + L1iyi

ż2i = L2iz2i + z1iyi

ẏi = biui + L3iz1i − yi − z1iz2i

ei = yi − v1

(6.29)

For the special case where N = 1, the output regulation problem for this system

was studied by a decentralized control law in [93]. Here we assume N = 3 and the

interconnection among various subsystems is determined by Figure 6.1. We will design a

0

2

1

3

Figure 6.1: The network topology

distributed control law to solve our problem. To make our problem more interesting, as

in [93], we allow the parameter vector Li = (L1i, L2i, L3i) to undergo some perturbation.

To be more specific, let the normal value of Li be (10,−8
3
, 28), i = 1, 2, 3. Then Li =

(10,−8
3
, 28) + (w1i, w2i, w3i) where (w1i, w2i, w3i) represents the uncertainty of Li for i =

1, 2, 3. Let wi = col(w1i, w2i, w3i), i = 1, 2, 3, and w = col(w1, w2, w3). Define W =

{w|w ∈ R9, ||wi|| ≤ 1, i = 1, 2, 3}, and V = {v(t)|||v(t)|| ≤ 1}.
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Using the result of [93], it can be directly inferred that, for each i = 1, 2, 3, the

composite system (6.28) and (6.29) satisfies Assumptions 6.1-6.4. In fact, for the sake of

self-containment, we can get yi(v, w) = v1 from the last equation of (6.29). Substituting

yi(v, w) into the equations of (6.29) yields

z1i(v, w) = r11iv1 + r12iv2

z2i(v, w) = r21iv
2
1 + r22iv

2
2 + r23iv1v2

ui(v, w) = r31iv1 + r32iv2 + r33iv
3
1 + r34iv

3
2 + r35iv

2
1v2 + r36iv1v

2
2

(6.30)

with

r11i(w) =
L2

1i

ω2 + L2
1i

, r12i(w) = − L1iω

ω2 + L2
1i

r21i(w) = −ωr23i + r11i
L2i

, r22i(w) =
ωr23i
L2i

r23i(w) = −r12iL2i + 2ωr11i
L2
2i + 4ω2

r31i(w) = −b−1
i (L3ir11i − 1), r32i(w) = b−1

i (ω − L3ir12i)

r33i(w) = b−1
i r11ir21i, r34i(w) = b−1

i r12ir22i

r35i(w) = b−1
i (r12ir21i + r11ir23i)

r36i(w) = b−1
i (r11ir22i + r12ir23i)

(6.31)

It can be further verified that

d4ui(v, w)

dt4
+ 9ω4ui(v, w) + 10ω2d

2ui(v, w)

dt2
= 0 (6.32)

From Figure 6.1, we can directly see the satisfaction of Assumption 6.6. We only need

to further verify Assumption 6.5. For this purpose, note that either from (6.32) or from

[93], we can obtain the steady-state generator (6.9) as follows

τi(v, w) = col(ui, u̇i,u
(2)
i ,u

(3)
i ) (6.33)

Φi =


0 1 0 0

0 0 1 0

0 0 0 1

−9ω4 0 −10ω2 0

 , Γi =


1

0

0

0


T

(6.34)

which leads to the internal model (6.11) with

Mi =


0 1 0 0

0 0 1 0

0 0 0 1

−4 −12 −13 −6

, Ni =


0

0

0

1

.
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Solving the Sylvester equation TiΦi −MiTi = NiΓi gives Ψi = ΓiT
−1
i = [4− 9ω4, 12, 13−

10ω2, 6].

Performing the coordinate transformation (6.12) yields the augmented system (6.13) as

follows:
˙̄z1i = −L1iz̄1i + L1iei

˙̄z2i = L2iz̄2i + (z̄1i + z1i)(ei + v1)− z1iv1

˙̃ηi =Miη̃i +MiNib
−1
i ei −Nib

−1
i ḡi(z̄1i, z̄1i, ei, µ)

ėi = ḡi(z̄1i, z̄1i, ei, µ) + biΨiη̃i +ΨiNiei + biūi

(6.35)

with ḡi(z̄1i, z̄2i, ei, µ) = L3iz̄1i − ei − z̄1iz̄2i − z1iz̄2i − z̄1iz2i.

For the (z̄1i, z̄2i)−subsystem in (6.35), let

Vz̄i =
h1
2
z̄21i +

h1
4
z̄41i +

h1
8
z̄81i +

h2
2
z̄22i +

h2
4
z̄42i (6.36)

The time derivative of (z̄1i, z̄2i)−subsystem is given by

V̇z̄i = h1z̄1i ˙̄z1i + h1z̄
3
1i
˙̄z1i + h1z̄

7
1i
˙̄z1i + h2z̄2i ˙̄z2i + h2z̄

3
2i
˙̄z2i

= −h1L1iz̄
2
1i + h1L1iz̄1iei − h1L1iz̄

4
1i + h1L1iz̄

3
1iei

− h1L1iz̄
8
1i + h1L1iz̄

7
1iei + L2ih2z̄

2
2i + h2z̄1iz̄2iei

+ h2z̄2iz1iei + h2z̄2iz̄1iv1 + L2ih2z̄
4
2i + h2z̄1iz̄

3
2iei

+ h2z̄
3
2iz1iei + h2z̄

3
2iz̄1iv1

(6.37)

By completing the square in (6.37), we can further obtain

V̇z̄i ≤ −l1iz̄21i − l2iz̄
4
1i − l3iz̄

8
1i − l4iz̄

2
2i − l5iz̄

4
2i + l6ie

2
i + l7ie

4
i + l8ie

8
i (6.38)

where

l1i = h1L1i −
0.01

2
− v21h

2
2

2
, l2i = h1L1i − 1− h42v

4
1

4

l3i = h1L1i − 1, l4i = −L2ih2 −
3

2

l5i = −h2L2i −
9

4
, l6i =

h21L
2
1i

0.02
+
h22z

2
1i

2

l7i =
h41L

4
1i

4
+
h42
4

+
h42z

4
1i

4
, l8i =

h81L
8
1i

8
+
h82
8

(6.39)

It can be seen that for proper h1 > 0 and h2 > 0, l1i, · · · , l8i > 0. Thus Assumption 6.5 is

also satisfied. By Theorem 6.1, there exists a distributed output feedback control law of

the form (6.26) to solve the cooperative robust output regulation problem for this system.

In fact, using the approach detailed in the proof of Lemma 6.1, we can first construct a

control law of the form (6.21) with ρi(evi) = 4.187× 104e6vi+4714e2vi+1778 that globally
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stabilizes the augmented system (6.35). Then, a control law of the form (6.26) will solve

the cooperative output regulation problem for this example.

The performance of this control law is evaluated by computer simulation with the

following initial conditions of the closed-loop system

[z1(0), y1(0)] =
[
0 2 0.5

]T
[z2(0), y2(0)] =

[
1 2 1.5

]T
[z3(0), y3(0)] =

[
1 2 0.8

]T
v(0) =

[
1 0

]T
, η1(0) =

[
0 0 0 0

]T
η2(0) =

[
0 0 6 0

]T
, η3(0) =

[
0 6 0 6

]T
and the following values of the uncertain parameters wi = col(0.1i, 0.1i, 0.1i), i = 1, 2, 3.

Figures 6.2-6.4 show the tracking error and state of each follower, respectively. It can be

seen that the tracking errors of all subsystems approach the origin asymptotically.
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Figure 6.2: The tracking error ei

6.5 Conclusion

In this chapter, we have studied the global robust output regulation problem for a class of

nonlinear multi-agent systems in output feedback from with unity relative degree. We have
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Figure 6.3: The output yi of all agents

applied a distributed internal model to convert the problem into the global stabilization

problem of an augmented system. Then we have further globally stabilized the augmented

system via a distributed output feedback control law, thus leading to the solution of the

the global robust output regulation problem of the original system.

Our problem is a generalization of the leader-following problem in several ways. In

particular, by introducing an exosystem, we alow the leader system to have different

dynamics as the follower system. As a result, our control law can handle a class of reference

inputs and a class of disturbances generated the exosystem as apposed to the leader-

following consensus problem where the leader system usually has the same dynamics as

the follower system.
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Chapter 7

Cooperative Global Output

Regulation for a Class of Nonlinear

Multi-agent Systems

7.1 Introduction

Consider a collection of nonlinear systems of the following form

żi = fi(zi, yi, v, w)

ẋsi = x(s+1)i + gsi(zi, yi, v, w), s = 1, · · · , r − 1

ẋri = bi(w)ui + gri(zi, yi, v, w)

yi = x1i

ei = yi − q(v, w)

(7.1)

where r ≥ 2 is an integer, for i = 1, · · · , N , (zi, xi) ∈ Rni×Rr with xi = col(x1i, · · · , xri) ∈
Rr is the state, ui ∈ R is the input, yi ∈ R is the output, ei ∈ R is the regulated error,

w ∈ Rnw is an uncertain parameter vector, and v(t) ∈ Rnv is an exogenous signal generated

by a linear system of the following form

v̇ = Sv (7.2)

All functions in (7.1) are supposed to be globally defined, sufficiently smooth, and satisfy

bi(w) > 0, q(0, w) = 0, fi(0, 0, 0, w) = 0, gsi(0, 0, 0, w) = 0, i = 1, · · · , N , s = 1, · · · , r for

all w ∈ Rnw .

The system composed of (7.1) and (7.2) can be viewed as a multi-agent system of

(N+1) agents with (7.2) as the leader and the N subsystems of (7.1) as N followers. With
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respect to the system composed of (7.1) and (7.2), we can define a digraph1 Ḡ = (V̄ , Ē)
where V̄ = {0, 1, ..., N} with 0 associated with the leader system and i = 1, · · · , N ,

associated with the N followers, respectively, and (j, i) ∈ Ē , j = 0, 1, · · · , N and i =

1, · · · , N , if and only if the control ui can make use of yi − yj for feedback control. Thus

our control law is of the following form:

ui = hi(ζ̄i, yi − yj, j ∈ N̄i), i = 1, · · · , N
˙̄ζi = gi(ζ̄i, yi − yj, j ∈ N̄i)

(7.3)

where y0 = q(v, w) is the output of the leader system, N̄i is the neighbor set of the node

i, hi and gi are sufficiently smooth functions vanishing at the origin, and ζ̄i ∈ Rnζ̄i with

nζ̄i to be defined later. A control law of the form (7.3) is called a distributed dynamic

output feedback control law because the control of each subsystem can only access the

output of itself and its neighbors.

We call the composition of (7.1) and (7.3) as the closed-loop system which can be put

in the following form

ẋc = fc(xc, v, w)

e = col(e1, · · · , eN)
(7.4)

where xc = col(z1, x1, ζ̄1, · · · , zN , xN , ζ̄N) ∈ Rnc for some integer nc, and fc is sufficiently

smooth satisfying fc(0, 0, w) = 0 for all w ∈ W. Then we can describe our problem as

follows:

Definition 7.1 Given the plant (7.1), the exosystem (7.2), the corresponding digraph Ḡ,
and any compact subsets V ∈ Rnv and W ∈ Rnw containing the origins of the respective

Euclidian spaces, find a control law of the form (7.3) such that, for any v(0) ∈ V, w ∈ W,

the trajectory of the closed-loop system (7.4) starting from any initial state xc(0) exists

and is bounded for all t ≥ 0, and limt→∞ e(t) = 0.

For each i = 1, · · · , N , (7.1) is in the familiar output feedback form with the relative

degree r. The control of such systems has been well studied in the literature. In particular,

the global stabilization problem of such systems was studied in [36], and the global robust

output regulation problem of such systems was studied in [14, 93, 94]. If, for each i =

1, · · · , N , 0 ∈ N̄i, that is, the output of the leader system can be used by the control ui of

each subsystem of (7.1), then the control law (7.3) reduces to the following special form

ui = hi(ζ̄i, ei), i = 1, · · · , N
˙̄ζi = gi(ζ̄i, ei)

(7.5)

1See [74] for a summary of digraph.
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We call (7.5) a purely decentralized control law. It can be seen that, for such a special

case, applying the approach of [94] to each subsystem of (7.1) will solve the problem by the

purely decentralized control law (7.5). However, what makes our problem interesting is

that we can solve the problem by only requiring the digraph Ḡ satisfies certain connectivity

condition (see Assumption 3.2 for the precise statement). This much relaxed condition on

the digraph Ḡ entails the employment of a distributed observer. As a result, our problem is

more technically challenging than the problem in [94] in that we need to globally stabilize

an extended augmented system which is a coupled multi-input nonlinear uncertain system.

It should be noted that the cooperative output regulation problem of the plant (7.1) for

the special case where r = 1 was handled recently by us in [18]. However, for this special

case, there is no need to employ an observer. We only need to globally stabilize an

augmented system which is a decoupled multi-input system.

The rest of this chapter is organized as follows. In Section 7.2, we will present the

preliminaries for our problem. In Section 7.3, we will present our main result. In Section

7.4, we will apply our approach to solve a leader-following synchronization problem for

a group of Lorenz multi-agent systems. Finally, we will close this chapter in Section 7.5

with some concluding remarks.

7.2 Preliminaries

By the general framework for handling the output regulation problem for nonlinear sys-

tems described in [30], the first step of our approach is to find an appropriate internal

model for (7.1) to form an augmented system. For this purpose, we need to make some

standard assumptions as follows:

Assumption 7.1 The exosystem is neutrally stable, i.e., all the eigenvalues of S are

semi-simple with zero real parts.

Under Assumption 7.1, the exosystem can generate a combination of a step function

of arbitrary amplitude and finitely many sinusoidal functions of arbitrary amplitudes and

initial phases.

Assumption 7.2 There exist globally defined smooth functions zi(v, w) : Rnv × Rnw 7→
Rni with zi(0, w) = 0, i = 1, · · · , N , such that, for all (v, w) ∈ Rnv × Rnw ,

∂zi(v, w)

∂v
Sv = fi(zi(v, w), q(v, w), v, w) (7.6)

The above assumption is used to guarantee the solvability of the regulator equations which

is a necessary condition for that of the output regulation problem. Under Assumption
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7.2, let

xi(v, w) = col(x1i(v, w), · · · ,xri(v, w)) (7.7)

with x1i(v, w) = q(v, w) and for s = 2, · · · , r, i = 1, · · · , N ,

xsi(v, w) = LSvx(s−1)i(v, w)− g(s−1)i(zi(v, w), q(v, w), v, w)

ui(v, w) = b−1
i [LSvxri(v, w)− gri(zi(v, w), q(v, w), v, w)]

(7.8)

where LSvxji(v, w) =
∂xji(v,w)

∂v
Sv, j = 1, · · · , r, i = 1, · · · , N . Then the solution of the

regulator equations associated with system (7.1) and exosystem (7.2) is given by zi(v, w),

xi(v, w) and ui(v, w), i = 1, · · · , N [31].

Assumption 7.3 The functions ui(v, w), i = 1, · · · , N , are polynomials in v with coeffi-

cients depending on w.

Remark 7.1 Under Assumption 7.3, there exist integers si, i = 1, · · · , N , such that

ui(v, w) satisfy, for all trajectories v(t) of the exosystem and all w ∈ Rnw

dsiui
dtsi

= a1iui + a2i
dui
dt

+ · · ·+ asii
d(si−1)ui
dt(si−1)

(7.9)

where a1i, a2i, · · · , asii are real scalars such that all the roots of the polynomial Pi(λ) =

λsi − a1i − a2iλ − · · · − asiiλ
si−1 are distinct with zero real parts [28]. Moreover, for

any controllable pair (Mi, Ni), where Mi ∈ Rsi×si is a Hurwitz matrix and Ni ∈ Rsi×1

is a column vector, there is a row vector Ψi ∈ R1×si such that the following dynamic

compensator

η̇i =Miηi +Niui, ui = Ψiηi, i = 1, · · · , N (7.10)

is the internal model of (7.1) and (7.2) [30, 50]. It is noted that Assumption 7.3 can be

relaxed if one resorts to nonlinear internal models as given in [28, 30].

The composition of the internal model (7.10) and plant (7.1) is called augmented sys-

tem. Let τi(v, w) = col(ui, u̇i, · · · ,u(si−1)
i ), i = 1, · · · , N . Then, there exists a nonsingular

matrix Ti ∈ Rsi×si such that, under the following coordinate and input transformation,

z̄i = zi − zi(v, w), x̄i = xi − xi(v, w)

η̄i = ηi − Tiτi(v, w), ūi = ui −Ψiηi, i = 1, · · · , N
(7.11)
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the augmented system takes the following form [94]:

˙̄zi = żi − żi(v, w) = fi(z̄i + zi, x̄1i + q, v, w)− fi(zi, q, v, w)

= f̄i(z̄i, x̄1i, v, w)

˙̄ηi = η̇i − Tiτ̇i(v, w) =Miηi +Niui − (Mi +NiΨi)Tiτi(v, w)

=Miη̄i +Niui −NiΨiTiτi(v, w)

=Miη̄i +Niūi +NiΨiηi −NiΨiTiτi(v, w)

= (Mi +NiΨi)η̄i +Niūi

˙̄xsi = ẋsi − ẋsi(v, w) = x(s+1)i + gsi(zi, yi, v, w)− x(s+1)i(v, w)− gsi(zi, q, v, w)

= x̄(s+1)i + ḡsi(z̄i, x̄1i, v, w), s = 1, · · · , r − 1

˙̄xri = ẋri − ẋri(v, w) = biui + gri(zi, yi, v, w)− biui(v, w)− gri(zi, q, v, w)

= biūi + biΨiηi − biΨiTiτi(v, w) + ḡri(z̄i, x̄1i, v, w)

= biūi + biΨiη̄i + ḡri(z̄i, x̄1i, v, w)

(7.12)

where, for i = 1, · · · , N , s = 1, · · · , r,

f̄i(z̄i, x̄1i, v, w) = fi(z̄i + zi, x̄1i + q, v, w)− fi(zi, q, v, w)

ḡsi(z̄i, x̄1i, v, w) = gsi(z̄i + zi, x̄1i + q, v, w)− gsi(zi, q, v, w)
(7.13)

with the following property, for any (v, w) ∈ Rnv × Rnw ,

f̄i(0, 0, v, w) = 0, ḡsi(0, 0, v, w) = 0 (7.14)

Since the augmented system (7.12) is not in the output feedback form as displayed in

(7.1), like in [94], we perform on (7.12) the following coordinate transformation

η̃i = η̄i − crix̄ri − · · · − c1ix̄1i, i = 1, · · · , N (7.15)

where cri = b−1
i Ni, c(j−1)i =Micji for j = 2, · · · , r, i = 1, · · · , N . As a result, we have

˙̃ηi = ˙̄ηi − cri ˙̄xri − · · · − c1i ˙̄x1i

= (Mi +NiΨi)η̄i +Niūi − cri(biūi + biΨiη̄i

+ ḡri(z̄i, x̄1i, v, w))− · · · − c1i(x̄2i + ḡ1i(z̄i, x̄1i, v, w))

=Miη̃i +Micrix̄ri + · · ·+Mic1ix̄1i +NiΨiη̄i +Niūi

− cribiūi −
r∑
j=1

cjiḡji(z̄i, x̄1i, v, w)− cribiΨiη̄i − c(r−1)ix̄ri − · · · − c1ix̄2i

=Miη̃i +Mic1ix̄1i −
r∑
j=1

cjiḡji(z̄i, x̄1i, v, w)
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+Micrix̄ri + · · ·+Mic1ix̄1i −Micrix̄ri − · · · −Mic1ix̄1i

=Miη̃i +Mic1ix̄1i −
r∑
j=1

cjiḡji(z̄i, x̄1i, v, w)

˙̄xsi = x̄(s+1)i + ḡsi(z̄i, x̄1i, v, w), s = 1, · · · , r − 1

˙̄xri = biūi + ḡri(z̄i, x̄1i, v, w) + biΨiη̃i + biΨi(crix̄ri + · · ·+ c1ix̄1i)

(7.16)

Then

˙̃ηi =Miη̃i +Mic1ix̄1i −
r∑
j=1

cjiḡji(z̄i, x̄1i, v, w)

˙̄xi = Aix̄i + biBΨiη̃i + ḡi(z̄i, x̄1i, v, w) + biBūi

(7.17)

where ḡi(z̄i, x̄1i, v, w) = col(ḡ1i(z̄i, x̄1i, v, w), · · · , ḡri(z̄i, x̄1i, v, w)),

Ai =

[
0 Ir−1

dri d(r−1)i, · · · , d1i

]
, B = col(0, · · · , 0︸ ︷︷ ︸

r−1

, 1)

and dji = biΨic(r+1−j)i, for j = 1, · · · , r, i = 1, · · · , N . Finally, like in [94], performing

another coordinate transformation on x̄i−subsystem: ξi = b−1
i Usix̄i,

where Usi =



1 0 · · · 0 0

−d1i 1 · · · 0 0
...

...
. . .

...
...

−d(r−2)i −d(r−3)i · · · 1 0

−d(r−1)i −d(r−2)i · · · −d1i 1


gives

˙̄zi = f̄i(z̄i, x̄1i, v, w), i = 1, · · · , N

˙̃ηi =Miη̃i +Mic1ix̄1i −
r∑
j=1

cjiḡji(z̄i, x̄1i, v, w)

ξ̇i = b−1
i Usi(Aix̄i + biBΨiη̃i + ḡi(z̄i, x̄1i, v, w) + biBūi)

= UsiAiU
−1
si ξi + UsiBΨiη̃i + b−1

i Usiḡi + UsiBūi

=

[
d[(r−1)i] Ir−1

dri 0

]
ξi +BΨiη̃i +Būi

+



b−1
i ḡ1i

b−1
i (−d1iḡ1i + ḡ2i)

...

b−1
i (−d(r−2)iḡ1i − · · · − d1iḡ(r−2)i + ḡ(r−1)i)

b−1
i (−d(r−1)iḡ1i − · · · − d1iḡ(r−1)i + ḡri)


= Acξi +BΨiη̃i +Gi(z̄i, x̄1i, v, w) + Būi

(7.18)
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where Ac =

[
0 Ir−1

0 0

]
and for j = 1, · · · , r, i = 1, · · · , N ,

Gi(z̄i, x̄1i, v, w) = col(G1i(z̄i, x̄1i, v, w), · · · , Gri(z̄i, x̄1i, v, w))

G1i(z̄i, x̄1i, v, w) = b−1
i (d1ix̄1i + ḡ1i(z̄i, x̄1i, v, w))

Gji(z̄i, x̄1i, v, w) = b−1
i (djix̄1i −

j−1∑
s=1

d(j−s)iḡsi(z̄i, x̄1i, v, w) + ḡji(z̄i, x̄1i, v, w))

(7.19)

It is noted that UsiB = B and UsiAiU
−1
si =

[
d[(r−1)i] Ir−1

dri 0

]
where

d[(r−1)i] = col(d1i, · · · , d(r−1)i).

As shown in [94], under Assumption 7.4 as given in the next section, for each i =

1, · · · , N , for any compact subsets V ⊆ Rv and W ⊆ Rnw with 0 ∈ V and 0 ∈ W, there is

an output feedback control law of the form

ūi = hKi(ξ̂i, ei),
˙̂
ξi = mKi(ξ̂i, ei), i = 1, · · · , N (7.20)

vanishing at the origin such that, for all v(t) ∈ V ⊆ Rv and all w ∈ W ⊆ Rnw , the

equilibrium point of the closed-loop system composed of (7.18) and (7.20) is globally

asymptotically stable. As a result, the following control law

ui = hKi(ξ̂i, ei) + Ψiηi, i = 1, · · · , N
˙̂
ξi = mKi(ξ̂i, ηi, ei)

η̇i =Miηi +Niui

(7.21)

solves the global output regulation problem for system (7.1) and (7.2).

Nevertheless, as mentioned in the introduction, due to the communication constraints,

the control law (7.20) is not admissible. Thus we can only use a distributed control law of

the form (7.3). To find such a control law, let Ā = [mij]
N
i,j=0 be any weighted adjacency

matrix of Ḡ. For i = 1, · · · , N , let

evi =
N∑
j=0

mij(yi − yj) (7.22)

Then we will consider a class of output feedback controllers as follows

ūi = h̄i(ξ̂i, evi),
˙̂
ξi = m̄i(ξ̂i, evi), i = 1, · · · , N (7.23)

where h̄i and m̄i are globally defined sufficiently smooth functions that vanish at the

origin. If the augmented system (7.18) can be globally stabilized by a control law of the
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form (7.23), then the global robust output regulation problem for system (7.1) and (7.2)

is solved by the following distributed output feedback control law:

ui = h̄i(ξ̂i, evi) + Ψiηi, i = 1, · · · , N
˙̂
ξi = m̄i(ξ̂i, ηi, evi)

η̇i =Miηi +Niui

(7.24)

7.3 Solvability of Problem

In this section, we will focus on globally stabilizing the augmented system (7.18) by a

control law of the form (7.23). For this purpose, let us first propose a distributed observer

for the variables ξi, i = 1, · · · , N , as follows:

˙̂
ξi = Acξ̂i + λ(evi − ξ̂1i) +Būi, i = 1, · · · , N (7.25)

where λ = col(λ1, · · · , λr) is chosen such that the matrix A0 =

[
−λ[r−1] Ir−1

−λr 0

]
is

Hurwitz. System (7.25) is called a distributed observer because it depends on evi instead

of ei. It can be verified that the observation error ξ̃i = ξi − ξ̂i, i = 1, · · · , N , satisfies

˙̃ξi = ξ̇i − ˙̂
ξi

= Acξi +BΨiη̃i +Gi(z̄i, x̄1i, v, w) +Būi − Acξ̂i − λ(evi − ξ̂1i)−Būi

= Acξ̃i +BΨiη̃i +Gi(z̄i, x̄1i, v, w)− λ(evi − ξ1i + ξ̃1i)

= (Acξ̃i − λξ̃1i) +BΨiη̃i +Gi(z̄i, x̄1i, v, w) + λ(b−1
i x̄1i − evi)

= A0ξ̃i + λ(b−1
i ei − evi) +BΨiη̃i +Gi(z̄i, x̄1i, v, w)

(7.26)

Attaching (7.26) to (7.18) and replacing the state variable vector ξi by (ei, ξ̂2i, · · · , ξ̂ri)
gives the following system

˙̄zi = f̄i(z̄i, ei, v, w)

˙̃ηi =Miη̃i +Mic1iei −
r∑
j=1

cjiḡji(z̄i, ei, v, w)

˙̃ξi = A0ξ̃i + λ(b−1
i ei − evi) +BΨiη̃i +Gi(z̄i, ei, v, w)

ėi = biξ̇1i = bi(ξ2i +G1i(z̄i, ei, v, w))

= biξ̃2i + biξ̂2i + biG1i(z̄i, ei, v, w)

˙̂
ξsi = ξ̂(s+1)i + λs(evi − ξ̂1i), s = 2, · · · , r − 1

˙̂
ξri = ūi + λr(evi − ξ̂1i), i = 1, · · · , N

(7.27)
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Due to the employment of the distributed observer (7.25), system (7.27) is a cou-

pled multi-input system. The problem of the global stabilization of a system of the form

(7.27) has never been encountered before. Nevertheless, it is still possible to treat sys-

tem (7.27) as a block lower triangular system. For this purpose, let z̄ = col(z̄1, · · · , z̄N),
η̃ = col(η̃1, · · · , η̃N), ξ̃ = col(ξ̃1, · · · , ξ̃N), ξ̂s = col(ξ̂s1, · · · , ξ̂sN), s = 2, · · · , r, M =

diag(M1, · · · ,MN), Ā0 = diag(A0, · · · , A0), Ψ̄ = diag(BΨ1, · · · , BΨN), b = diag(b1, · · · , bN),
ξ̄1 = col(ξ̃11, · · · , ξ̃1N), ev = col(ev1, · · · , evN), and ū = col(ū1, · · · , ūN). Then (7.27) can

be put into the following compact from:

˙̄z = f̄(z̄, e, v, w)

˙̃η =Mη̃ + fη(z̄, e, v, w)

˙̃ξ = Ā0ξ̃ + Ψ̄η̃ + fξ(z̄, e, v, w)

ė = bξ̂2 + J1(z̄, ξ̃, e, v, w)

˙̂
ξs = ξ̂s+1 + Js(ξ̃, e, ξ̂2, · · · , ξ̂s, v, w), s = 2, · · · , r − 1

˙̂
ξr = ū+ Jr(ξ̃, e, ξ̂2, · · · , ξ̂r, v, w)

(7.28)

where, for i = 1, · · · , N , s = 2, · · · , r,

f̄(z̄, e, v, w) = col(f̄1(z̄1, e1, v, w), · · · , f̄N(z̄N , eN , v, w))

fη(z̄, e, v, w) =


M1c11e1 −

∑r
j=1 cj1ḡj1(z̄1, e1, v, w)

...

MNc1NeN −
∑r

j=1 cjN ḡjN(z̄N , eN , v, w)



fξ(z̄, e, v, w) =


λ(b−1

1 e1 − ev1) +G1(z̄1, e1, v, w)
...

λ(b−1
N eN − evN) +GN(z̄N , eN , v, w)


J1(z̄, ξ̃, e, v, w) = col(J11, · · · , J1N)

J1i(z̄, ξ̃, e, v, w) = biξ̃2i + biG1i(z̄i, ei, v, w)

Js(ξ̃, e, ξ̂2, · · · , ξ̂s, v, w) = λs(ev − b−1e+ ξ̄1)

(7.29)

It can be seen that if (7.27) can be globally stabilized by a control law of the form

(7.23), then the output regulation problem of the original system (7.1) will be solved

by the distributed control law (7.24). For this purpose, we need some assumptions and

lemmas.

Assumption 7.4 For any compact subset Ω ⊂ Rnv × W, there exists a C1 function

Vz̄i satisfying ιi(||z̄i||) ≤ Vz̄i(z̄i) ≤ ιi(||z̄i||), for some class K∞ functions ιi(·) and ιi(·)
such that, for any (v, w) ∈ Ω along the trajectory of the subsystem ˙̄zi = f̄i(z̄i, ei, v, w),
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V̇z̄i ≤ −αi(||z̄i||) + γi(ei), where αi(·) is some known class K∞ function satisfying

lims→0+ sup(α−1
i (s2)/s) <∞, and γi(·) is some known smooth positive definite function.

Remark 7.2 The (z̄, η̃, ξ̃)−subsystem in (7.28) can be put as follows:

˙̄z = f̄(z̄, e, v, w)[
˙̃η
˙̃ξ

]
=

[
M 0

Ψ̄ Ā0

][
η̃

ξ̃

]
+

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]
(7.30)

Let Vz̄ =
∑N

i=1 Vz̄i. Under Assumption 7.4, Vz̄ satisfies ι(||z̄||) ≤ Vz̄(z̄) ≤ ι(||z̄||) for some

class K∞ functions ι(·) and ι(·), and

V̇z̄ ≤
N∑
i=1

(−αi(||z̄i||) + γi(ei)) ≤ −α(||z̄||) + γ(e)

for some known class K∞ function α(·) satisfying lims→0+ sup(α−1(s2)/s) <∞, and some

known smooth positive definite function γ(·).
By changing supply rate technique[69], given any smooth function ∆1(z̄), there exists

a C1 function V̄z̄ satisfying ϖ(||z̄||) ≤ V̄z̄(z̄) ≤ ϖ(||z̄i||), for some class K∞ functions

ϖ(·) and ϖ(·) such that, for any (v, w) ∈ Ω along the trajectory of the subsystem ˙̄z =

f̄(z̄, e, v, w), ˙̄Vz̄ ≤ −∆1(z̄)||z̄||2 +∆2(e)||e||2, for some known smooth function ∆2(e) ≥ 1.[
M 0

Ψ̄ Ā0

]
is Hurwitz since M and Ā0 are both Hurwitz, thus there exists P̄ such that[

M 0

Ψ̄ Ā0

]T
P̄ + P̄

[
M 0

Ψ̄ Ā0

]
≤ −2I. Let z̃ =

[
η̃

ξ̃

]
and VZ(z̄, η̃, ξ̃) = V̄z̄ + z̃T P̄ z̃.

Then

V̇Z(z̄, z̃) =
˙̄Vz̄ + ˙̃zT P̄ z̃ + z̃T P̄ ˙̃z

= ˙̄Vz̄ + z̃T (

[
M 0

Ψ̄ Ā0

]T
P̄ + P̄

[
M 0

Ψ̄ Ā0

]
)z̃ + 2z̃T P̄

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]

≤ −∆1(z̄)||z̄||2 +∆2(e)||e||2 − 2||z̃||2 + ||z̃||2 + ||P̄

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]
||2

(7.31)

Since fη(z̄, e, v, w) and fξ(z̄, e, v, w) are both sufficiently smooth with fη(0, 0, v, w) = 0

and fξ(0, 0, v, w) = 0, by Lemma 7.8 of [28], there exist some known smooth functions

δ1(z̄) ≥ 1 and δ2(e) ≥ 1, such that for all z̄ ∈ Rn1+···+nN , e ∈ RN and (v, w) ∈ Ω,

||

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]
||2 ≤ δ1(z̄)||z̄||2 + δ2(e)||e||2
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Then,

V̇Z(z̄, z̃) ≤ −∆1(z̄)||z̄||2 +∆2(e)||e||2 − ||z̃||2 + ||P̄ ||2δ1(z̄)||z̄||2 + ||P̄ ||2δ2(e)||e||2

= −(∆1(z̄)− ||P̄ ||2δ1(z̄))||z̄||2 − ||z̃||2 + (∆2(e) + ||P̄ ||2δ2(e))||e||2
(7.32)

Letting ∆1(z̄) ≥ ||P̄ ||2δ1(z̄) + 1 and π(e) = ∆2(e) + ||P̄ ||2δ2(e) gives

V̇Z(z̄, η̃, ξ̃) ≤ −||z̄||2 − ||η̃||2 − ||ξ̃||2 + π(e) (7.33)

To introduce the next assumption, define a subgraph G = (V , E) of Ḡ where V =

{1, · · · , N}, and E ⊆ V × V is obtained from Ē by removing all edges between the node

0 and the nodes in V .

Assumption 7.5 Every node i = 1, · · · , N is reachable from the node 0 in the digraph

Ḡ, and G is an undirected graph.

Remark 7.3 Let H = [hij]
N
i,j=1 with hii =

∑N
i=0mij and hij = −mij. Then it can be

seen that ev = He. Moreover, by Lemma 4 in [27], all the eigenvalues of H have positive

real parts if and only if Assumption 7.5 is satisfied. Since G is an undirected graph, H is

symmetric positive definite.

Before introducing our main result, we need to establish one more lemma.

Lemma 7.1 Consider the following system

ζ̇ = F̄ (ζ, φ, µ(t))

φ̇ = J̄(ζ, φ, µ(t)) + b(µ(t))u
(7.34)

where ζ ∈ Rn0, φ = col(φ1, · · · , φN) ∈ RN , u = col(u1, · · · , uN) ∈ RN , µ(t) ∈ Ω ⊆ Rnµ

with Ω being some compact subset, F̄ (ζ, φ, µ(t)) and J̄(ζ, φ, µ(t)) are sufficiently smooth

with F̄ (0, 0, µ(t)) = 0 and J̄(0, 0, µ(t)) = 0 for all µ(t) ∈ Ω. b(µ(t)) ∈ RN×N is a

diagonal matrix with the ith diagonal element bi(·) a continuous function of µ satisfying

bi(µ(t)) > 0 for all µ(t) ∈ Ω. Assume that there exists a C1 function Ū0(ζ) satisfying

α0(||ζ||) ≤ Ū0(ζ) ≤ α0(||ζ||) for some K∞ functions α0(·) and α0(·), such that, for all

µ(t) ∈ Ω, along the trajectory ζ̇ = F̄ (ζ, φ, µ(t)),

˙̄U0(ζ) ≤ −α0(||ζ||) + γ0(φ) (7.35)

where α0(·) is some class K∞ function with lims→0+ sup(α−1
0 (s2)/s) < +∞, and γ0(·) is

some known smooth positive definition function.
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Let φv = Pφ where φv = col(φv1, · · · , φvN) ∈ RN and P ∈ RN×N is a positive definite

and symmetric matrix. Then there exists a controller of the form

ui = −ρ1i(φvi)φvi + νi, i = 1, · · · , N (7.36)

where ρ1i(·), 1 = 1, · · · , N are positive smooth functions, νi ∈ R, and a C1 function

Ū1(ζ, φ) satisfying

β
0
(||(ζ, φ)||) ≤ Ū1(ζ, φ) ≤ β0(||(ζ, φ)||) (7.37)

for some class K∞ functions β
0
(·) and β0(·), such that, for all µ(t) ∈ Ω, along the trajec-

tory of (7.34) and (7.36),

˙̄U1(ζ, φ) ≤ −||ζ||2 − a||φ||2 +
N∑
i=1

ν2i , for some a > 0 (7.38)

Proof: By the changing supply rate technique [69], given any smooth function ϑ(ζ) >

0, there exists a C1 function Vζ(ζ) satisfying α4(||ζ||) ≤ Vζ(ζ) ≤ α4(||ζ||) for some classK∞

functions α4(·) and α4(·), such that, for all µ(t) ∈ Ω, along the trajectory of ζ−subsystem

in (7.34),

V̇ζ(ζ) ≤ −ϑ(ζ)||ζ||2 + ϱ(φ)||φ||2 (7.39)

where ϱ(·) is some known smooth positive definite function.

Since φ = P−1φv, then

V̇ζ(ζ) ≤ −ϑ(ζ)||ζ||2 + ϱ(P−1φv)||P−1φv||2

≤ −ϑ(ζ)||ζ||2 + ϱ̃(φv)||φv||2
(7.40)

where ϱ̃(·) is some known smooth positive definite function.

By Lemma 7.8 in [28], there exist known smooth definite positive functions ϱ̄i(φvi),

i = 1, · · · , N , such that ϱ̃(φv)||φv||2 ≤
∑N

i=1 ϱ̄i(φvi)|φvi|2. Then

V̇ζ(ζ) ≤ −ϑ(ζ)||ζ||2 +
N∑
i=1

ϱ̄i(φvi)|φvi|2 (7.41)

Since bi(µ(t)) > 0 for all µ(t) ∈ Ω, there exist bmin and bmax such that 0 < bmin ≤
bi(µ(t)) ≤ bmax < +∞ for all µ(t) ∈ Ω.

Let J̄(ζ, φ, µ(t)) =


J̄1(ζ, φ, µ(t))

...

J̄N(ζ, φ, µ(t))

. Since J̄i(ζ, φ, µ(t)), i = 1, · · · , N , are all s-

mooth and satisfy J̄i(0, 0, µ(t)) = 0 for all µ(t) ∈ Ω, by Lemma 7.8 in [28], there exist
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some smooth functions ϖi(ζ) ≥ 1 and σji(φvj) ≥ 1, j = 1, · · · , N , such that for any

ζ ∈ Rn0 , φvi ∈ R and µ(t) ∈ Ω,

|J̄i(ζ, φ, µ(t))| = |J̄i(ζ, P−1φv, µ(t))|

≤ ϖi(ζ)||ζ||+
N∑
j=1

σji(φvj)|φvj|

Thus,

|φvi||J̄i(ζ, φ, µ(t))| ≤ |φvi|(ϖi(ζ)||ζ||+
N∑
j=1

σji(φvj)|φvj|)

≤ (
1

4
|φvi|2 +ϖ2

i (ζ)||ζ||2) +
N∑
j=1

(
1

4
|φvi|2 + σ2

ji(φvj)|φvj|2)

=
1 +N

4
|φvi|2 +ϖ2

i (ζ)||ζ||2 +
N∑
j=1

σ2
ji(φvj)|φvj|2

(7.42)

Let Vφ = 1
2
φTv P

−1φv. Then the derivative of Vφ along the subsystem φ̇i = J̄i(ζ, φ, µ(t))+

bi(νi − ρ1i(φvi)φvi) satisfies

V̇φ = φTv P
−1φ̇v = φTv φ̇ =

N∑
i=1

φviφ̇i

=
N∑
i=1

−biρ1i(φvi)φ2
vi +

N∑
i=1

biφviνi +
N∑
i=1

φviJ̄i(ζ, φ, µ(t))

≤
N∑
i=1

−(bminρ1i(φvi)−
b2max
4

)|φvi|2 +
N∑
i=1

|νi|2 +
N∑
i=1

|φvi||J̄i(ζ, φ, µ(t))|

(7.43)

Thus

V̇φ =
N∑
i=1

−(bminρ1i(φvi)−
b2max
4

− 1 +N

4
−

N∑
j=1

σ2
ij(φvi))|φvi|2

+
N∑
i=1

ϖ2
i (ζ)||ζ||2 +

N∑
i=1

|νi|2
(7.44)

Let Ū1 = Vζ + Vφ. Then the derivative of the trajectory of (ζ, φ)−system satisfies

˙̄U1 ≤
N∑
i=1

−(bminρ1i(φvi)−
b2max
4

− 1 +N

4
−

N∑
j=1

σ2
ij(φvi)

− ϱ̄i(φvi))|φvi|2 − (ϑ(ζ)−
N∑
i=1

ϖ2
i (ζ))||ζ||2 +

N∑
i=1

|νi|2
(7.45)
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Let ϑ(ζ) ≥
∑N

i=1ϖ
2
i (ζ) + 1 and ρ1i(φvi) ≥ b−1

min(
b2max

4
+ 5+N

4
+
∑N

j=1 σ
2
ij(φvi) + ϱ̄i(φvi)).

Then

˙̄U1 ≤ −||ζ||2 − ||φv||2 +
N∑
i=1

|νi|2

≤ −||ζ||2 − ||Pφ||2 +
N∑
i=1

|νi|2

≤ −||ζ||2 − λ2m(P )||φ||2 +
N∑
i=1

|νi|2

(7.46)

with λm(P ) > 0 denoting the smallest eigenvalue of P .

Lemma 7.2 Under Assumptions 7.1 to 7.3, 7.4 and 7.5, the global stabilization problem

of system (7.28) can be solved by the distributed output feedback control law of the form

ūi = αri(ξ̌ri), i = 1, · · · , N (7.47)

where αri(·) is recursively defined by

ξ̌2i = ξ̂2i + ρ1i(evi)evi, i = 1, · · · , N

αsi(ξ̌si) = −ρsi(ξ̌si)ξ̌si, s = 2, · · · , r

ξ̌(s+1)i = ξ̂(s+1)i − αsi(ξ̌si), s = 2, · · · , r − 1

(7.48)

Proof: Let Z = col(z̄, η̃, ξ̃). Then the (Z, e)−subsystem in (7.28) can be put into the

compact form

Ż = F (Z, e, v, w)

ė = bξ̂2 + J1(Z, e, v, w)
(7.49)

with F (Z, e, v, w) =

 f̄(z̄, e, v, w)

Mη̃ + fη(z̄, e, v, w)

Ā0ξ̃ + Ψ̄η̃ + fξ(z̄, e, v, w)

. Then (7.33) implies that

V̇Z ≤ −||Z||2 + π(e) (7.50)

for some known smooth positive definite function π(e).

It is noted that (7.49) is in the form of (7.34) with ζ = Z, φ = e, φv = ev and u = ξ̂2,

and Z−subsystem satisfies the condition (7.35). Then, by Lemma 7.1, with P = H, there

exists

ξ̂2i = −ρ1i(evi)evi + ξ̌2i, i = 1, · · · , N (7.51)
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and a C1 function U1(Z, e) satisfying β
1
(||(Z, e)||) ≤ U1(Z, e) ≤ β1(||(Z, e)||) for some

class K∞ functions β
1
(·) and β1(·), such that, for all (v, w) ∈ Ω, along the trajectory of

(7.49) and (7.51),

U̇1(Z, e) ≤ −||Z||2 − a||e||2 +
N∑
i=1

ξ̌22i (7.52)

Let Ze = col(Z, e). Then the system (7.28) can be put in the compact form as follows:

Że = Fe(Ze, ξ̂2, v, w)

˙̂
ξs = ξ̂s+1 + Js(Ze, ξ̂2, · · · , ξ̂s, v, w), s = 2, · · · , r − 1

˙̂
ξr = ū+ Jr(Ze, ξ̂2, · · · , ξ̂r, v, w)

(7.53)

with Fe(Ze, ξ̂2, v, w) =

[
F (Z, e, v, w)

bξ̂2 + J1(Z, e, v, w)

]
.

Let X1 = Ze, Xs = col(Xs−1, ξ̌s), s = 2, · · · , r, and bm = min{1, a} > 0. Then (7.52)

implies that

U̇1(Ze) ≤ −bm||Ze||2 +
N∑
i=1

ξ̌22i (7.54)

It is noted that theXs−subsystem, s = 2, · · · , r, also has the form of (7.34) with ζ = Xs−1,

φ = ξ̌s, P = IN×N and b(µ(t)) = IN×N , and Xs−1−subsystem satisfies the condition

(7.35). Recursively applying Lemma 7.1 to the Xs−subsystem shows the existence of

smooth functions ρsi(ξ̌si) and C1 functions Us(Xs) satisfying β
s
(||Xs||) ≤ Us(Xs) ≤

βs(||Xs||) for some class K∞ functions β
s
(·) and βs(·), such that, under the following

virtual control law

ξ̂(s+1)i = ξ̌(s+1)i − ρsi(ξ̌si)ξ̌si, s = 2, · · · , r − 1, i = 1, · · · , N (7.55)

Us(Xs) satisfies, for all (v, w) ∈ Ω,

U̇s ≤ −||Xs||2 + ||ξ̌s+1||2 (7.56)

Letting ξ̌(r+1)i = 0, i = 1, · · · , N , in (7.56) yields U̇r ≤ −||Xr||2. That is, under the

output feedback control law (7.47), the equilibrium of the closed-loop system is uniformly

globally robustly asymptotically stable.

Thus we can get our main result as follows.

Theorem 7.1 Under Assumptions 7.1 to 7.3, 7.4 and 7.5, the cooperative global robust

output regulation problem of system (7.1) and (7.2) can be solved by the distributed output
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feedback control law of the form

ui = αri(ξ̌ri) + Ψiηi, i = 1, · · · , N
˙̂
ξi = Acξ̂i + λ(evi − ξ̂1i) +B(ui −Ψiηi)

η̇i =Miηi +Niui

(7.57)

Remark 7.4 The main technical challenge of this section is that we need to globally

stabilize a coupled multi-input system (7.27) by a distributed control law of the form (7.23).

It is noted that the global stabilization problem of a system of the form (7.27) has not even

been studied by a centralized control law before. By establishing Lemmas 7.1 and 7.2 here,

we have managed to overcome the difficulty in globally stabilizing the coupled multi-input

system (7.27) by a distributed control law (7.57).

7.4 Application to Hyper-Chaotic Lorenz Multi-agent Systems

Consider a group of Hyper-chaotic Lorenz systems taken from [94]:

ż1i = a11iz1i + a12ix1i

ż2i = a3iz2i + z1ix1i

ẋ1i = x2i + a21iz1i + a22ix1i − z1iz2i

ẋ2i = biui + a4iz1i

ei = x1i − v1, i = 1, · · · , 5.

(7.58)

The exosystem is in the form (7.2) with S =

[
0 1

−1 0

]
. The interconnection among var-

ious subsystems is determined by Figure 7.1. To make our problem more interesting, as in

Figure 7.1: The network topology
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[94], we allow the parameters (a11i, a12i, a21i, a22i, a3i, a4i) and bi to undergo some pertur-

bation. To be more specific, let (a11i, a12i, a21i, a22i, a3i, a4i) = (ā11, ā12, ā21, ā22, ā3, ā4) +

(0.5w1i, 0.5w2i, 0.5w3i, 0.1w4i, 0.1w5i, 0.1w6i) and bi = (0.5 + w7i)
2 ∗ (0.5 + 0.1 ∗ i), i =

1, · · · , 5, where (ā11, ā12, ā21, ā22, ā3, ā4) = (−10, 10, 28,−1,−8/3,−1) represents the nor-

mal value of (a11i, a12i, a21i, a22i, a3i, a4i) and wij ∈ [0, 1] for j = 1, · · · , 7, i = 1, · · · , 5,
represents the uncertainty.

From Figure 7.1, Assumption 7.5 is satisfied. It was shown in [94] that, for each

i = 1, · · · , 5, system (7.58) and the exosystem satisfy Assumptions 7.1 to 7.3 and 7.4. In

particular, the solution of the regulator equations of (7.58) is

x1i(v, w) = v1, z1i(v, w) = r11iv1 + r12iv2

z2i(v, w) = r21iv
2
1 + r22iv1v2 + r23iv

2
2

x2i(v, w) = r31iv1 + r32iv2 + r33iv
3
1 + r34iv

2
1v2 + r35iv1v

2
2 + r36iv

3
2

ui(v, w) = r41iv1 + r42iv2 + r43iv
3
1 + r44iv

2
1v2 + r45iv1v

2
2 + r46iv

3
2

(7.59)

where

r11i = − a11ia12i
1 + a211i

, r12i = − a12i
1 + a211i

r21i = −r11i + r22i
a3i

, r22i = −r12ia3i + 2r11i
4 + a23i

, r23i =
r22i
a3i

r31i = −(a21ir11i + a22i), r32i = 1− a21ir12i

r33i = r11ir21i, r34i = r11ir22i + r12ir21i

r35i = r11ir23i + r12ir22i, r36i = r12ir23i

r41i = −b−1
i r32i, r42i = b−1

i r31i, r43i = −b−1
i r34i

r44i = b−1
i (3r33i − 2r35i), r45i = b−1

i (2r34i − 3r36i), r46i = b−1
i r35i

It can be further verified that, for i = 1, · · · , 5, d4ui(v,w)
dt4

+ 9ui(v, w) + 10d
2ui(v,w)
dt2

= 0.

Thus, si = 4 for i = 1, · · · , 5.
Let

Mi =


0 1 0 0

0 0 1 0

0 0 0 1

−m1 −m2 −m3 −m4

 , Ni = col(0, 0, 0, 1)

where the parameters (m1,m2,m3,m4) are chosen such that Mi is Hurwitz. Also, it was

shown that with (m1,m2,m3,m4) = (4, 12, 13, 6), we have Ψi = [−5, 12, 3, 6]. Thus, we

can obtain a distributed internal model of the form (7.10). Performing the coordinate

91



and input transformation (7.11) gives the augmented system as follows:

˙̄z1i = a11iz̄1i + a12ix̄1i

˙̄z2i = a3iz̄2i + (z̄1i + z1i)(x̄1i + v1)− z1iv1

˙̄ηi = (Mi +NiΨi)η̄i +Niūi

˙̄x1i = x̄2i + ḡ1i(z̄i, x̄1i, v, w)

˙̄x2i = biūi + biΨiη̄i + a4iz̄1i

(7.60)

with ḡ1i(z̄1i, z̄2i, x̄1i, v, w) = a21iz̄1i + a22ix̄1i − z̄1iz̄2i − z1iz̄2i − z̄1iz2i.

Let η̃i = η̄i − c2ix̄ri − c1ix̄1i with c2i = b−1
i Ni, c1i = b−1

i MiNi for i = 1, · · · , 5, and

ξi = b−1
i Usix̄i with Usi =

[
1 0

−d1i 1

]
. Then,

˙̄z1i = a11iz̄1i + a12ix̄1i

˙̄z2i = a3iz̄2i + (z̄1i + z1i)(x̄1i + v1)− z1iv1

˙̃ηi =Miη̃i +Mic1ix̄1i − c1iḡ1i(z̄1i, z̄2i, x̄1i, v, w)− c2ia4iz̄1i

ξ̇i = Acξi +BΨiη̃i +Gi(z̄i, x̄1i, v, w) +Būi

(7.61)

where Ac =

[
0 Ir−1

0 0

]
and for i = 1, · · · , 5,

Gi(z̄i, x̄1i, v, w) =

[
b−1
i (d1ix̄1i + ḡ1i)

b−1
i (d2ix̄1i − d1iḡ1i + a4iz̄1i)

]
(7.62)

The distributed observer for ξi is

˙̂
ξi = Acξ̂i + λ(evi − ξ̂1i) +Būi, i = 1, · · · , 5 (7.63)

Then
˙̄z1i = a11iz̄1i + a12ix̄1i

˙̄z2i = a3iz̄2i + (z̄1i + z1i)(x̄1i + v1)− z1iv1

˙̃ηi =Miη̃i +Mic1ix̄1i − c1iḡ1i(z̄1i, z̄2i, x̄1i, v, w)− c2ia4iz̄1i

˙̃ξi = A0ξ̃i + λ(b−1
i ei − evi) + BΨiη̃i +Gi(z̄i, ei, v, w)

ėi = biξ̃2i + biξ̂2i + d1ix̄1i + ḡ1i

ξ̂2i = ūi + λ2(evi − ξ̂1i)

(7.64)

where A0 =

[
−λ1 1

−λ2 0

]
, with λ = [λ1, λ2] = [2, 3], is Hurwitz.
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For the (z̄1i, z̄2i)−subsystem in (7.64), let

Vz̄i =
h1
2
z̄21i +

h1
4
z̄41i +

h1
8
z̄81i +

h2
2
z̄22i +

h2
4
z̄42i (7.65)

The time derivative of (z̄1i, z̄2i)−subsystem is given by

V̇z̄i = h1z̄1i ˙̄z1i + h1z̄
3
1i
˙̄z1i + h1z̄

7
1i
˙̄z1i + h2z̄2i ˙̄z2i + h2z̄

3
2i
˙̄z2i

= h1a11iz̄
2
1i + h1a12iz̄1iei + h1a11iz̄

4
1i + h1a12iz̄

3
1iei

+ h1a11iz̄
8
1i + h1a12iz̄

7
1iei + a3ih2z̄

2
2i + h2z̄1iz̄2iei

+ h2z̄2iz1iei + h2z̄2iz̄1iv1 + a3ih2z̄
4
2i + h2z̄1iz̄

3
2iei + h2z̄

3
2iz1iei + h2z̄

3
2iz̄1iv1

(7.66)

Using the following inequalities in (7.66)

h1a12iz̄1iei ≤
0.01

2
z̄21i +

h21a
2
12i

0.02
e2i

h1a12iz̄
3
1iei ≤

3

4
z̄41i +

h41a
4
12i

4
e4i

h1a12iz̄
7
1iei ≤

7

8
z̄81i +

h81a
8
12i

8
e8i

h2z̄1iz̄2iei ≤
1

2
z̄22i +

h22
2
z̄21ie

2
i ≤

1

2
z̄22i +

1

4
z̄41i +

h42
4
e4i

h2z̄2iz1iei ≤
1

2
z̄22i +

h22z
2
1i

2
e2i

h2z̄2iz̄1iv1 ≤
v21h

2
2

2
z̄21i +

1

2
z̄22i

h2z̄1iz̄
3
2iei ≤

3

4
z̄42i +

h42
4
z̄41ie

4
i ≤

3

4
z̄42i +

1

8
z̄81i +

h82
8
e8i

h2z̄
3
2iz1iei ≤

3

4
z̄42i +

h42z
4
1i

4
e4i

h2z̄
3
2iz̄1iv1 ≤

3

4
z̄42i +

h42v
4
1

4
z̄41i

(7.67)

gives

V̇z̄i ≤ −(−h1a11i −
0.01

2
− v21h

2
2

2
)z̄21i − (−h1a11i − 1)z̄81i

− (−h1a11i − 1− h42v
4
1

4
)z̄41i + (a3ih2 +

3

2
)z̄22i + (h2a3i +

9

4
)z̄42i + (

h21a
2
12i

0.02
+
h22z

2
1i

2
)e2i

+ (
h41a

4
12i

4
+
h42
4

+
h42z

4
1i

4
)e4i + (

h81a
8
12i

8
+
h82
8
)e8i

≤ −l1iz̄21i − l2iz̄
4
1i − l3iz̄

8
1i − l4iz̄

2
2i − l5iz̄

4
2i + l6ie

2
i + l7ie

4
i + l8ie

8
i

(7.68)
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where

l1i = −h1a11i −
0.01

2
− v21h

2
2

2
, l2i = −h1a11i − 1− h42v

4
1

4

l3i = −h1a11i − 1, l4i = −a3ih2 −
3

2

l5i = −h2a3i −
9

4
, l6i =

h21a
2
12i

0.02
+
h22z

2
1i

2

l7i =
h41a

4
12i

4
+
h42
4

+
h42z

4
1i

4
, l8i =

h81a
8
12i

8
+
h82
8

(7.69)

Let VZ = V (z̄, η̃, ξ̃) + z̃T P̄ z̃. And it can be verified that

||

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]
||2 ≤

5∑
i=1

||Mic1ix̄1i − c1iḡ1i − c2ia4iz̄1i||2 +
5∑
i=1

(λ1(b
−1
i ei − evi)

+ b−1
i (d1iei + ḡ1i))

2 +
5∑
i=1

(λ2(b
−1
i ei − evi) + b−1

i (d2iei − d1iḡ1i + a4iz̄1i))
2

And

||Mic1ix̄1i − c1iḡ1i − c2ia4iz̄1i||2

≤ 3||Mic1iei||2 + 3||c2ia4iz̄1i||2 + 3||c1iḡ1i||2

≤ 3||Mic1iei||2 + 3||c2ia4iz̄1i||2 + 3||c1i||2(a21iz̄1i + a22iei − z̄1iz̄2i − z1iz̄2i − z̄1iz2i)
2

≤ 3||Mic1iei||2 + 3||c2ia4iz̄1i||2 + 15||c1i||2(a221iz̄21i + a222ie
2
i +

1

2
z̄41i +

1

2
z̄42i + z21iz̄

2
2i + z̄21iz

2
2i)

= (3||Mic1i||2 + 15||c1i||2a222i)e2i + 15||c1i||2z21iz̄22i

+ (3||c2ia4i||2 + 15||c1i||2(a221i + z22i))z̄
2
1i +

15

2
||c1i||2z̄41i +

15

2
||c1i||2z̄42i

(7.70)
5∑
i=1

(λ1(b
−1
i ei − evi) + b−1

i (d1iei + ḡ1i))
2

≤
5∑
i=1

4|λ1b−1
i |2e2i + 4λ21e

2
vi + 4|b−1

i d1i|2e2i + 4|b−1
i |2|ḡ1i|2

≤
5∑
i=1

(4|λ1b−1
i |2 + 4|b−1

i d1i|2)ei + 4λ21||ev||2

+
5∑
i=1

4|b−1
i |2(a21iz̄1i + a22iei − z̄1iz̄2i − z1iz̄2i − z̄1iz2i)

2

≤
5∑
i=1

(4|λ1b−1
i |2 + 4|b−1

i d1i|2)ei + 4λ21||H||2
5∑
i=1

e2i

+
5∑
i=1

20|b−1
i |2(a221iz̄21i + a222ie

2
i +

1

2
z̄41i +

1

2
z̄42i + z21iz̄

2
2i + z̄21iz

2
2i)
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=
5∑
i=1

(4|λ1b−1
i |2 + 4|b−1

i d1i|2 + 4λ21||H||2 + 20|b−1
i |2a222i)e2i

+
5∑
i=1

20|b−1
i |2((a221i + z22i)z̄

2
1i +

1

2
z̄41i +

1

2
z̄42i + z21iz̄

2
2i)

(7.71)

5∑
i=1

(λ2(b
−1
i ei − evi) + b−1

i (d2iei − d1iḡ1i + a4iz̄1i))
2

≤
5∑
i=1

5|λ2b−1
i |2e2i + 5λ22e

2
vi + 5|b−1

i d2i|2e2i + 5|b−1
i d1i|2|ḡ1i|2 + 5|b−1

i a4i|2z̄21i

≤
5∑
i=1

(5|λ2b−1
i |2 + 5|b−1

i d2i|2)ei + 5λ22||H||2e2

+
5∑
i=1

25|b−1
i d1i|2(a221iz̄21i + a222ie

2
i +

1

2
z̄41i +

1

2
z̄42i + z21iz̄

2
2i + z̄21iz

2
2i) + 5|b−1

i a4i|2z̄21i

≤
5∑
i=1

(5|λ2b−1
i |2 + 5|b−1

i d2i|2 + 5λ22||H||2 + 25|b−1
i d1i|2a222i)e2i

+
5∑
i=1

(25|b−1
i d1i|2(a221i + z22i) + 5|b−1

i a4i|2)z̄21i +
5∑
i=1

25|b−1
i d1i|2(

1

2
z̄41i +

1

2
z̄42i + z21iz̄

2
2i)

(7.72)

Then

||

[
fη(z̄, e, v, w)

fξ(z̄, e, v, w)

]
||2 ≤

5∑
i=1

(3||Mic1i||2 + 15||c1i||2a222i + 4|λ1b−1
i |2 + 4|b−1

i d1i|2 + 4λ21||H||2

+ 20|b−1
i |2a222i + 5|λ2b−1

i |2 + 5|b−1
i d2i|2 + 5λ22||H||2 + 25|b−1

i d1i|2a222i)e2i

+
5∑
i=1

(3||c2ia4i||2 + 15||c1i||2(a221i + z22i) + 20|b−1
i |2(a221i + z22i)

+ 25|b−1
i d1i|2(a221i + z22i) + 5|b−1

i a4i|2)z̄21i +
5∑
i=1

(
15

2
||c1i||2 + 10|b−1

i |2 + 25

2
|b−1
i d1i|2)z̄41i

+
5∑
i=1

(15||c1i||2z21i + 20|b−1
i |2z21i + 25|b−1

i d1i|2z21i)z̄22i

+
5∑
i=1

(
15

2
||c1i||2 + 10|b−1

i |2 + 25

2
|b−1
i d1i|2)z̄42i

=
5∑
i=1

δ3ie
2
i + δ4iz̄

2
1i + δ5iz̄

4
1i + δ6iz̄

2
2i + δ7iz̄

4
2i
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with

δ3i = 3||Mic1i||2 + 15||c1i||2a222i + 4|λ1b−1
i |2 + 4|b−1

i d1i|2

+ 4λ21||H||2 + 20|b−1
i |2a222i + 5|λ2b−1

i |2 + 5|b−1
i d2i|2 + 5λ22||H||2 + 25|b−1

i d1i|2a222i
δ4i = 3||c2ia4i||2 + 15||c1i||2(a221i + z22i) + 20|b−1

i |2(a221i + z22i) + 25|b−1
i d1i|2(a221i + z22i)

+ 5|b−1
i a4i|2

δ5i =
15

2
||c1i||2 + 10|b−1

i |2 + 25

2
|b−1
i d1i|2

δ6i = 15||c1i||2z21i + 20|b−1
i |2z21i + 25|b−1

i d1i|2z21i

δ7i =
15

2
||c1i||2 + 10|b−1

i |2 + 25

2
|b−1
i d1i|2

Then

V̇Z ≤ −(l1i − ||P̄ ||2δ4i)z̄21i − (l2i − ||P̄ ||2δ5i)z̄41i − l3iz̄
8
1i − (l4i − ||P̄ ||2δ6i)z̄22i

− (l5i − ||P̄ ||2δ7i)z̄42i − ||z̃||2 + (l6i + ||P̄ ||2δ3i)e2i + l7ie
4
i + l8ie

8
i

(7.73)

Finally, by the procedure of Section III, we can design a control law as follows:

ξ̌2i = ξ̂2i + ρ1i(evi)evi, i = 1, · · · , 5

α2i(ξ̌2i) = −500(ξ̌62i + 1)ξ̌2i

ui = α2i(ξ̌2i) + Ψiηi

˙̂
ξi = Acξ̂i + λ(evi − ξ̂1i) +B(ui −Ψiηi)

η̇i =Miηi +Niui

(7.74)

where ρ1i(evi) = 500(e6vi + 1).

The simulation is conducted with the following initial values of various variables:

v(0) =
[
1 0

]T
,

[z1(0), x1(0)] =
[
−0.1 2 1 0

]T
, ξ̂1(0) =

[
7 1

]T
,

[z2(0), x2(0)] =
[
1 3 1 0

]T
, ξ̂2(0) =

[
7 −1

]T
,

[z3(0), x3(0)] =
[
1 2 1 0

]T
, ξ̂3(0) =

[
0 0

]T
,

[z4(0), x4(0)] =
[
1 2 1 0

]T
, ξ̂4(0) =

[
0 0

]T
,

[z5(0), x5(0)] =
[
−1 2 1 0

]T
, ξ̂5(0) =

[
0 0

]T
,

η1(0) =
[
0 0 0 8

]T
, η2(0) =

[
−1 0 2 2

]T
,

η3(0) =
[
0 0 2 2

]T
, η4(0) =

[
−1 4 −2 −2

]T
,

η5(0) =
[
−1 3 −2 0

]T
.

96



The simulation results are shown in Figures 7.2-7.5 and satisfactory tracking performance

can be observed.
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Figure 7.2: The profiles of the tracking errors ei

7.5 Concluding Remarks

In this chapter we have considered the cooperative global robust output regulation prob-

lem for a class of nonlinear multi-agent systems in output feedback form with relative

degree greater than unity. We have introduced a distributed internal model and a dis-

tributed observer to convert our problem into the global stabilization problem of a coupled

multi-input multi-output system. By solving this stabilization problem by a distributed

control law, we have successfully solved our original problem.
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Figure 7.3: The output yi of all agents
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Figure 7.4: The state x2i of all agents
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this chapter, we will summarize the main results in this thesis, which can be divided

into two parts.

The first part is about the leader-following rendezvous with connectivity preservation

problem.

1. We have considered the leader-following problem of rendezvous with connectivity

preservation for a multiple single-integrator system where the leader system can

be any linear autonomous system. We have proposed a very simple continuous dis-

tributed state feedback control protocol, independent of the information of the upper

bound of the leader’s signal. Our control law is able to maintain the connectivity

of the system, and, at the same time, achieve asymptotic tracking of all followers to

the output of the leader system.

2. we have also designed both dynamic state feedback control law and position feed-

back control law to solve the leader-following rendezvous problem of a set of double

integrator systems subject to a class of external disturbances. The leader system

can have different dynamics from the followers’, which can not only generate a ram-

p signal, but also sinusoidal signals with arbitrary amplitudes and initial phases.

Furthermore, we allow all the followers to be subject to external disturbances. In

particular, in chapter 5, we even allow the external disturbances to various followers

to be different. Both of these two protocols can maintain the connectivity of the

network graph as well as achieve asymptotic tracking for a class of leader system.

The second part is about the cooperative output regulation problem of nonlinear multi-

agent systems.
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1. The global robust output regulation problem for a class of nonlinear multi-agent

systems in output feedback form with unity relative degree has been studied. First,

a distributed internal model is applied to convert the output regulation problem

into the global stabilization problem of an augmented system. Then the augmented

system is further globally stabilized via a distributed output feedback control law,

which leads to the solution of the global robust output regulation problem of the

original system.

2. The global robust output regulation problem for a class of nonlinear multi-agent

systems in output feedback form with relative degree greater than unity has been

further studied. Similar to the cooperative output regulation problem of nonlinear

multi-agent systems in output feedback form with unity relative degree, we first

design a distributed internal model to convert the problem into the global stabiliza-

tion problem of an augmented system. However, instead of globally stabilizing a

decoupled multi-input augmented system, we have to further design a distributed

observer and develop techniques to globally stabilize a coupled multi-input nonlinear

uncertain system. It is interesting to note that our main result can be summarized

as follows: under the assumption that the communication graph is connected, then

the cooperative output regulation problem of a multi-agent system can be solved

by a distributed output feedback control law if the global robust output regulation

problem for each subsystem of the multi-agent system can be solved by an output

feedback control law.

8.2 Future Work

In the near future, we will further consider the connectivity preservation problem for

nonlinear multi-agent systems, for example, Lagrange multi-agent systems and nonlinear

multi-agent systems in the form of (7.1).

We will apply the methods for solving connectivity preservation problem of linear

multi-agent systems to other coordinated control problems, such as flocking, swarming,

formation and so on.
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