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PREFACE

The study of the generation of random variates is mainly concerned

with the uniform distribution sampling and the nonuniform distribution sampling.

The former focuses on the properties of pseudo-random number generators while

the latter on the techniques of gene rating random numbers of the required

nonuniform distribution by using the pseudo-random numbers over the interval

[0,1) (generated in the former). Though the two parts seem to have developed

in different directions, they both aim at providing efficient methods of

generating random numbers of the desired distribution that require only a small

amount of computer memory but possess good statistical properties and pass most

of the statistical tests. It would be even better if the methods can be easily

programmed.

In this thesis, only pseudo-random number generators are dealt with.

A brief description of the generators commonly in use is given in chapter 2,

In chapter 3 the Fibonacci generator is considered. As the Fibonacci generator

is not satisfactory, a new pseudo-random number generator is proposed in chapter 4.

This generator may be written

(mod 2n),

where a is an odd integer and the initial values y =0 and y is odd.

This generator is found to be efficient and proved to possess some desirable

properties. Statistical tests are applied 84 times out of which only one fails

at 5 percent significance level. The generator even passes the 'sum of N! test

and the 'runs up and down' test which are thought to be quite sensitive. The

generator can therefore generate satisfactory pseudo-random number sequences.

I am greatly indebted to my supervisor, Dr. K.N. Chan, for his valuable

advice and encouragement during my graduate study that led to the presentation

of this thesis. I should also like to thank Mr. Billy Lam for his typing of

the entire manuscript.
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CHAPTER i. INTRODUCTIONrntmamouommmmmmmtssmmmmtmmtm

In recent years, Monte Carlo and simulation methods have become a

useful tool in problem solving, especially when theoretical results are hard

or impossible to obtain. Hence an efficient procedure to generate a sequence

of random numbers is necessary. Tables of random numbers were constructed

and special physical devices were invented to produce random numbers. The

most popular method in use with the aid of a computer is to set up a subroutine

to generate a sequence of random numbers by a deterministic process. This kind

of method is called the arithmetic method.

The first arithmetic method in pseudo-random number generation was

introduced by Von Neumann in about 1 %.6 which was known as mid-square method.

Suppose we want to generate a sequence of t-digit integers. Given an initial

integer x, x. is the middle t-digit of the x., which is expressed as a

2t-digit integer, where i= 1, 2, 3?.... for example, t= 4 and= 1341.

Then x= 01798281 and hence x= 7982. The sequence will be 1341, 7982,

7123, 7371, 3316, 9958,. However, the mid-square method has been found

to be poor.

One famous arithmetic method is to use the linear recurrence generator

and will be discussed in Chapter 2. This kind of generator generates a sequence

of integers [yi by a linear recurrence relation

(mod M).



When r= 1, we have the Lehmer congruential generator which is very commonly

used. Another special case is the so called linear recurrence mod 2 method for

which M= 2. These two special cases together with the additive random

number generator are considered in section 2 of chapter 2.

In Chapter 3 we deal with an old generator- .Fibonacci generator. The

Fibonacci generator has the form

(moo.N).

Due to the strong regularities appearing in the Fibonacci pseudo-random number

sequences, no much attention has been paid to this generator. Jansson (l966)

gave a good study of the Fibonacci pseudo-random numbers and his work is very

useful in this thesis. The numbers contained in the Fibonacci pseudo-random

number sequence will be discussed in Section 2 while the serial correlation

properties in Sections 3 and 4. In these sections, it Is shown that under

certain conditions, the exact mean, variance, and serial correlation of lag s,

when s is odd, can be calculated. Moreover the computed values are all found

to be reasonably close to what we expect of a truly random sequence.

In Chapter 4, a new generator is suggested. The new generator is

strongly related to the Fibonacci generator. Hence properties of the new

generator can be studied from the Fibonacci generator. The new generator may

be written

where a is an odd integer, y= 0 and yA is odd. This generator passes



nearly all the statistical tests given in Section 2 of Chapter 4 and is thus

considered a good generator. The Lehmer congruential generator which takes

the form

is similar to the new generator. One would expect that some nice properties

would result if the constant b in the Lehmer congruential generator is replaced

by y. p. Yet, the linear recurrence generator of order 2 (i.e. r= 2) is

seldom discussed. The new generator proposed here is of this type and appears

to be efficient for most practical purposes.



CHAPTER 2. LINEAR RECURRENCE GENERATORS

Section 1: Linear recurrence generators

A pseudo-random number generator simply means an algorithm that

generates numbers x, x, x0,. in the interval [0, 1) such that the

sequence [xj behaves as if a sequence of random sample from the uniform

distribution over (0, 1). Of course, it is impossible to generate a truely

random number sequence in such a deterministic procedure and hence the prefix

pseudo is used.

Before considering pseudo-random number generators, it is convenient

to introduce the following definitions.

Definition 2.1: For a sequence Jx.], if there exist positive integers t

and r such that

for all k & t,

the sequence is said to be eventually periodic. The least such value of r is

called the period of the sequence, denoted by p(yx_.j)»

Definition 2.2: A seauence x.J is said to be periodic if it is eventually

periodic with the corresponding t value in definition 2.1 being zero.

Definition 2.3: An integer-valued sequence [x.j is said to be a b-aiy

sequence if

for all



A b-ary sequence is said to be pseudo-random if it behaves as if it is

drawn from the discrete uniform distribution on (0, 1, 2, .4., b- 1).

Let yo, y1..... yr-1, be non-negative integers less than a given

positive integer M. A sequence (yi) can be defined by using the following

linear recurrence relation

where and b are non-negative integers., a and r are

positive integers and a., a.,.. a, b M.

Now we have an Ivl— ary sequence [y. 5 and the required pseudo-random

number sequence [x. is usuallv defined by x.= for all j- 0, 1, 2,

G-enerators of the form (2.1) are called linear recurrence generators.

Of course linear recurrence generators are not the only mechanism for

generating pseudo-random numbers. They are, however, the most commonly used

generators, it is obvious that the pseudo-random number sequence )x.( of the

linear recurrence generator (2.1) satisfies the equation

stands for the fractional part of 2.

The following theorem is given to indicate that linear recurrence

generators may provide a reasonable source of random numbers.



Theorem 2.1: If X, X„,..., X. are independent random variables with

uniform distribution over (0, l), then for any non-negative integer k the

random variables Xk1.Xk+1, X....... X.., that are defined recursively by

(2.2), are independent each having the uniform distribution over [0, 1),

Proof: It Is sufficient to show that X,, X,.,., X are independent, each

having the uniform distribution over [0, i).

To prove this, it is convenient to bring forvard the following equality:

for any non-zero integer a and real constant c,

(2.3)

Now

E(exp

where exp(tgjc)cbc.



Hence the theorem follows by the use of the properties of moment

generating functi ons.

Q.E.D.

Theorem 2.1 cannot generatee the randomness of the pseudo-random number

sequences generated by the linear recurrence generators. This is mainly because

the initial values v, y,,..., y. in (2.1) are not in general randomly selected.

Clearly every M-ary sequence {y.] that satisfies (2.1) is eventually

periodic with period less than or equal to M. Theorem 2.2 gives a sufficient

condition to the periodicity of the sequence [y i. The proof of the theorem

is simple and is therefore left out.

Theorem 2.2: Every sequence gem rated by (2.1) is periodic

and M are relatively prime.

An elementary requirement for (2.1) to provide a good source of pseudo-

randan numbers is that the pseudo-random number sequence thus generated must

have long period. In determining the period of a sequence, the following theorems

(Jansson, 1966; Knuth, 1968) are useful.

Theorem 2.3: Let [y] be a sequence of non-negative integers generated by

(2.1), with M= m m where (m,, m)- 1. Then

p(yi.j)= l.c.m (p(ly., mod m j), p(ly., mod mi).

(The symbol l.c.m (a, b) stands for the least common multiple of a and b.)



Theorem 2.4: Let [y.} Le a sequence of non-negative integers satisfying

the equation

where a, a, a and b are non-negative integers. Suppose

that M is a prime integer and n is a positive integer such that ivir 2.

Then we have, for every positive integer t,

p(y, mod M j)= k p (y, mod ivi j)

provided that p

Section 2: Some well-known special cases of linear recurrence generators.

A very commonly used generator nowadays is the Lehmer congruential

generator which was suggested by D.H. Lehmer in 1951. This generator is a

special case of linear recurrence generator (2.1) with r= 1, that is

(2.4) is said to be a mixed congruential generator if b 4 0 and is said to

be a multiplicative generator if b= 0. The numbers y.M are then used to

form a pseudo-random number sequence.

On a binary computer, M is often chosen to be 2 where n is the



word-length of the particular computer so that the computation in (2.4) can

be carried out more efficiently.

For suitable choices of a, b, M and y, the sequences generated

by (2.4) pass most of the standard statistical tests (G-orenstein, 1967;

Janssonj 1 966).

The period length of the sequence has also been extensively studied

(Fuller, 1976; Hull and Dobell, 1962;. In particular, when M= 2 and b 0,

the maximum period length 2A can be achieved if 1 (mod 4) and b is

odd. However, when Ivi= 2X and b= 0, the maximum period length will only

be 2 which is attainable when as ±3 (mod 8) and yg is odd.

Besides the long period length, a good serial correlation property is

also necessary. Exact serial correlations have been calculated (dieter and

Alirens, 1971; Jans son, 1366; Hnuth, 1968) and found to be extremely small for

most of these generators used. Hereover Dieter (l 971) l ound chat uhe exac g joint

distribution of each pair (x., x.), where s is a. given positive integer,

was close to the desired joint distribution for most of the congruential generators

that are commonly In use.

Another well-known method of generating random numbers is the linear

recurrence modulo 2 method which generates a 2-ary sequence [y.j by the

recurrence relation:

(mod 2), i



Here a. are zero or one for all i= 1, 2, .r.

The sequence [y. J has maximum period 2- 1 if-and only if its

characteristic polynomial c(x)= 1+ a x+ ax+ a»+ a_x is primitive

over GIF (2), the G-alois field with only two elements 0 and 1 (Zierler,

1939).

Tausvorthe (196f) suggested the pseudo-random numbers x. to be

where k} v and L are integers such that 0 q k 2 2- 1, L P r,

Tausworthe (1965) ad so proved some outstanding properties of this

generator when the maximum period was attained. In practice, the characteristic

polynomial c(x) is chosen to be a x°+ i and hence the generator usually

has the form

(mod 2).

The additive random number generator is again famous. It gene-rates the sequence

cdpi by the equation,

(mod M).

The numbers x.= y.M are the required pseudo-random numbers. This generator

was tested to be quite satisfactory by G-reen, Smith and Idem (1939). However,

not much theoretical results of this generator are known.



A special case of the additive random number generators is the Fibonacci

pseudo-random number generator which takes the form y. s y.+ y. (mod M) 8

Properties of the Fibonacci generator will be discussed in chapter 3°



CHAPTER 3. FIBONACCI PSEUDO-RANDOM NUMBER GENERATOR

Section 1: Preliminary results

The Fibonacci pseudo-random number generator is a special kind of

linear recurrence generator (2. 1) of chapter 2 with r= 2 and= a0= 1,

that is,

(mod Ivl), i= 2, 3 (3.1)

The pseudo-random number sequence X= [x.] is then defined to be [yM].

A sequence [y.] that satisfies (3.1) is then called a Fibonacci sequence

mod M.

From theorem 2.2, the sequence [y.] is periodic whatever the value

of the modulus M is. For binary computers, it is convenient to have M= 2,

where n is the number of binary places available in the computer. In this

case, the maximum period length of the sequence )y. (also of Jx.j) is

3x2, denoted by H, which is attainable when v and y,, the

initial values, are not both even (Jansson, 1966), Therefore the Fibonacci

generator of the following form is especially important:

(mod a;, a

with the initial values y and y. not both even,

It is convenient to define the following equivalence relation over a

set of periodic sequences.



Definition 3.1: Given a set A of periodic sequences, two sequences in A

are said to be equivalent if one is a shift of the other. The symbol

[ s.]~ [t.j is used to mean that [s.j and [t.j in A are equivalent,

Now let A be the set of all possible sequences Sy. j that are

generated by (3.2;. It was proved by Jansson (1966, p.63) that there exist

exactly 2' equivalence classes in A. Clearly if two sequences in A

are equivalent, they have the same period, mean and serial correlation. If

from each equivalence class Twe select one sequence, there are 2 different

sequences, say, Sw.], Sw..],.! w nn~1. i.

De fine and The term

denoted by is actually the expectation of the Fibonacci

pseudo-random numbers, generated by (3.2). The value

of can be found by simple calculation as follow.

It follows that



Similarly, let

and

Then

Hence

(3.4)

It is found that the values E (x) and E (x') are reasonablv close

to what we expect of a truely random sequence. The properties of each

individual sequence will he discussed in the following sections.

Section 2: Numbers contained in the Fibonacci sequence mod 2 A

in order to find out the numbers contained in an individual sequence

, we assume, without loss of generality, that w= 2r and

= 1 (Jansson, 196b). Moreover for r 5 2, we define



Lemma 3.1, 3.2, 3.3, 35 and theorem 3.4 that can be found in Jans son

(1 $66), are very useful for the later work.

Lemma 3.1: is even if and only if i= 0 (mod 3).

Lemma 3.2: (mod 2).

Lemma 3.3:

Theorem 3.4: whe n

when

when n 3»

Lemma 5.5: For

and

(mod 2 j,

(mod.

Define a integer-valued function ip on A such that, for all

11

Theorem 3.6 is another useful theorem of Jans son (1966). The expression

of the theorem is different from the original in order to suit our requirements.

The notation freq, (x) means the frequency of x in a periodic 2-ary

sequence Y over the entire period and in general frea (x; is used when

the sequence Y is understood.



Theorem J .6: For any with n£ 2, we have

freqn,Y (2k+
3 if k is even

1 if k is odd. k= 0, 1, 2,

Also we have

1 if k is even

3 if k is odd. k= 0, 1, 2,

Applying lemma 3»3 we have

Lemma 3.7» for n£ A, we have

(3.5)

Proof: Let k= 2v+ t, where t= 0 or 1.

Suppose t= 0. Applying lemma 3-3 we have

It implies that

From lemma 3.3 we have



Therefore we have

Hence the lemma is true when k= 2v e Similarly, the lemma can he proved

when k= 2v a 1 by applying lemma 3-5•

Q.E.D

Remark: It is obvious from lemma 3.7 that when n£ 4, we have

Lemma 5.8: If n£ 4, then

and

Proof: For n= 7

Hence the lemma is true when n= 7.

Suppose the lemma holds when n= a where a£ 7• We have



for some integers

(mod. 23'1)

And

for some integers

Similarly, we have

from lemma 3.3.

for some integers 3, and S',

Hence the lemma is proved by induction.

Q R h

From lemma 3.2 and 3.3, we have



When n 7 it follows from lemma 38 that

(3,7)

(3.8)

Using the equation (38) we have the following lemma.

Lemma 39: When n£ o, we have

Proof; When n= 6, we have



Hence it follows that (38) is true when n= 6 a Therefore when

n t 6, we have

(mod d.)

(mod 2n+1)

(mod 2n+1)

from (38)

0 E D

The frequency of an odd number in a fail period can 'be easily found

by the use of theorem 38. In order to find out the frequency of a given

even number, the following terms are introduced. Define



The sets V. and Y,. where j= 1. 2, or 3 are related in the

following sense. This is an immediate consequence of theorem 3.4? lemma 3.9

and (3.6).

Lemma 3 .1Q: Lor n£ 6,

where j= 1, 2 or 3.

Lemma 3d0 enables us to find out V. a where n£, from V.

By numerical inspection, it is found that either Vt or Tr t, must be

empty. Moreover, when 0v2~,vfV-. if and only if v± 1 Vr.

G-iven that w-, =0 where 0 i v 2V, we have v e V. These

facts evidence the foil awing results:

(3.9)

The above relations are simple but useful in the following sections.

1. V_= d if and only if V, V 1 when n£ 6.

2. When 0 v 2n', v c V. if and only if v± 1 V

3. When C v 211', we have v e V if w= 0 8

The notation freq. (x) is used to denote the value of

is the indicator function



of Sxl). It is obvious that freq (2k)

Lemma 3-1• or n£ 6

where G x 2n- 2„

Proof: Clearly we have when 0 x 2- 2

we have

where 0 x 2- 2. From (3.10), it follows that

where 0 x 2- 2

Q.E.D.

Lemma 3.12: For n£ 6,

(3.10)

It is obvious that



where 0 x 2n- 2

Proof: Similar to the proof of lemma 3.11, we have for 0 b x 2- 2,

Suppose

show that

and
(mod 2n)

H e nc e

(3.11)

where Q x 2n- 2 8 Prom (3.11) it follows that

where 0 x 2n- 2»

Q«£ O J 6

By induction on lemma 3.11 and lemma 3.12, we obtain the following lemma.

Lemma 3.13- for n£ 6,

where y s x (mod 2).



stands for the expression

It is desirable that a truely random 2 ~ary seouence should have

the property that for any pair of integers M and N such that 0 0 M

N 2J'', M and N should have equal frequency of occurring in the sequence,

Therefore the value

can be used to measure the randomness of a 2X-ary sequence w. i, For

ary Fibonacci sequence mod 2, [w .j, it can be shown that when n£ 6,

From theorem 5.6, we have

From lemma 3«13 we have

however the value max freq, (x) is likely to increase as n increases,

0x2n

when V ..is non-empty. Table 3.1 gives the values of max, free_ (x)

for some values of n and r and table 3.2 shows freq _(x) for some values

of n and x. Both tables 3.1 and 3.2 evidence that the presence of V

will make the value of



increase. Hence the choice of r such that V,= 4 is preferred.

Table 3.1

Values of x that have

m aximum f r e q ue nc y

6

1

8

12,18

! 7

1

16

18

8

1

16

1

2,18,66,14-6 I

9

1i!

| '7 r
i 3

i 322

10

1

32

2,238,322,834

11

1

64

1282

12

1

64

2,1062,1282,3330

Values of x that have

maximum frequency

r
O

5

8

1

110,38

7

3

16

10

8

r~
0

16

10,38,122,138

9

3

32

122

10

r
3

32

38,122,314,634

11

r~

64

314

12

r-y

OU-

38,314,1082,2362

Values of x that have

maximum frequency

7

33

16

82

8

33

16

9

33

32

10

- -7

39

11

33

64

12

33

64

66,82,130, 210 386 66,322,386,898 322 166,322,2370,313s

Values of x that have

maximum frequency

8

20

16

9

29

30

d 0

9 Q

32

11

29

64

12

29

64

42,53,186,2341298 298,746(810,1002 b 002 746,1002,1770,3050



Table 32

r= 1

f-W,3(2)

6

8

7

8

8

16

9

16

10

32

11

7 0

12

84

13

64

14

128

20

1024

n

freq, (746)
n, r, 3

10

32

11

32

12

64

13

64

14

128

15

256

16

256

From lemma 3.10 and the direct calculation of V 7, we find that
6, r j 3

V 7= fi if and only if r e 0 or 3 (mod 4), when n 5= 6. Therefore it

seems suitable to choose r such that r s 0 or 3 (mod 4). This suggestion

coincides with the idea of Jansson (l 966). Now under the condition r= 0 or

3 (mod 4)) we have

5
where 0$ x 2. Hence we have the following result.

Theorem 3.14: Nor n£ 5, ).Y .5 is a Fibonacci sequence mod 2 such that
n 1

at least one of the initial values is odd. If

mod 2J])= 0, 33 4, 8, 11, 12 or 13
0 n, 1,

then

freqn(x)= freq. (t)

where t= x (mod 2J), 0 x 2 and freqF (t) means the frequency of t

in iy.. mod 2 i over the entire period.
c n,i

Note that freq (2k 4- i) in theorem 3.14 can be calculated from theorem 3.6 and



freq_ (2k)=.' 2 if 2k= 0, 8, 16. 24

8 if 2k= t where r= tp, ([y., mod 2 J)

0 otherwise

The values of t are listed in the following table,

Table 3«3'« Values of t
X

r

t
r

0

2

3

6

4

10

7

14

8

18

11

22

A 9i

26

13

30

Jansson (1966) constructed a table of subperiods from which theorem 3-14 can

be deduced. However the proof of the table was not given and the restriction

on n was not clearly stated.

Under the conditions of theorem 3.14, the sum of v. and y. over

the whole period can be calculated exactly. If k t n, [y. j is defined by

the equation y. e y. (mod 24. Clearly [y. j e A1.

Corollarv 3.1b: Under the conditions of theorem 3.14, we have

(3.12)

(3.13)

where n£ k£ 3•



Proof: The proof is obvious because from theorem 314 we have

and

Q.E.D.

The values of

table 3.4.

for some values of r axe given in

Table 3.4: Values of for some values of r

r 0

6 08

12224

3

672

13304

»
4

672

12992

7

736

14784

8

736

14 784

11

800

17088

12

800

17600

18

864

2O416

10

Example: Consider the Fibonacci generator y~ s y._, 4- y0 Q (mod 2 w),

G-iven q- 38 and~ ®8 t it can be found that

Using corollary 3.15 with k= 5? we have

= 783360



10- 10 10-0

.= 21 J X 13504+ 2 (2 J- 1) X 672, from table 3.4

+ 210(210~25)(210-1 -25~2)

= 533731328.

Hence the mean and variance of the pseudo-random numbers x, (x. n,= y. 2 J
f U 1 1 0 jl 1 U 2 1

are

and

= 763360 (3 x 219)

= 0.498046875

- 0.083333333

Pollowing directly from corollary 3.15 and table 3.4 we obtain lower

and upper bounds for E (x.) and E(x.):
n,i n,i

Corollary 3. 16: Under the conditions of theorem 3.14, we have

Nov consider another Fibonacci generator

(mod 2)

with yi0 0= 25 and yi0 1= 280 It is found that [yl0 J dees not satisfy



the conditions of theorem 314( r(iyr• j) or 3 (mod 4))® t'he

correspending values are

= 760832 and = 508585984

Thus

E(x..)= 0.483723958 0.5-| 2 9= 0.496744792.

E(x5.)= 0.315771739{+ 5 x 2~18-| 2_;i= 0.330097198

Both E(xJ1..) and S(x,A.) are less than the corresponding lower bounds

stated in corollary 3.16.

Section$: The serial correlation p„ (s), when s s 1 or 5 (mod 6),

Sections 3 and 4 are concerned with certain serial, correlation properties

of the Fibonacci pseudo-random numbers. First of all, we give the definition

of serial correlation of a periodic pseudo-random number sequence.

Definition 3.2: Let x- (x.j be a periodic pseudo-random number sequence

with period H. The serial correlation of lag s, say p, (s), is defined

as

Let j y.( be in A such that the conditions of theorem S.14 are

n, i n

satisfied. The sequence jy.] where k n is defined by equation
iV y IL



y,_- yR (mod 2) In studying the serial correlation of x= {x j

([x j= [y. 2nj), the main difficulty is that of finding out the
n. x n, x

value of v. y .In this section, we consider p (s) only for
n,i n, 1+ s1=0

s s i or 5 (mod 6) and n 7. Since s H 0 (mod 3) y, and
n-1 j,i

y,. cannot be both even; we are left with the three equally likely cases:
n-1 ,i-i-s'

ca.se 1: Both y,. and. y,. are odd.
n-1 ,1 •'n-lji+s

case II: y,. is odd and y.. is even.
n-1 ,i n-1 31+ s

case III: y.. Is even and y.. is aid.
n-1 ,1 n-1ji+s

Nov we consider the three cases individually«

Case I: Assume y.. and y,. are odd where 0 i H. Then
—— n-1 ,1 n-1 ,i+s' n-1

y. and y. must belong to one of the following subcases:
n,i n,i+s

case la) y.™ y..~ y.~ y,,.
n 51 n-1 ,1 n 1+ s n-1 ,11 s

case lb) y.- y„. y.- y,.
n5i n-1 ,i iiji-fs n-1 3 i-f s

(V A})

1315)

In case la)

(3.1 6)

In case lb)



(3.17)

2n—2
The only difference between (3.16) and (3.17) is the term 2'. The

problem is then to find out how many is, 0$ i H. are such that y,.
n-1 n-1,r

and y,. are odd and that (3.14) is satisfied. To do this, the following
J n-1, s o

lemmas are necessary-.

Lemma 3.1(• Let [y .j be a Fibonacci sequence mod 2 with initial values
n5r

y =0 and. y being odd. Then for any non-negative integer t,
n p o xi

where 0

1

if t s 0 (mod 3)

if t y (mod 3)

Proof: From theorem 3.4-2

It follows that

30
(mod 2),

(mod 2n)

(mod 2n)



Clearly we have

(mod 2)

where

Q.E.D.

The next lemma foil aw s easily from lemma 3• 17•

Lemma 318: Let [y. j be a Fibonacci sequence mod 2 with initial values

y =0 and y being odd. For any non-negative integer t such that
n,o nj. i

t H 0 (mod 5), we have

if t is odd

if t is even

By numerical inspection, it is not difficult to see that for all n£ 5,

ip ({yr. j)- 0, 3; 4? 7 5 8. 11, 12 or 15 if and only if there exists an
D J) 1

integer t such that y= 0. Without loss of generality, we may therefore
n, t

assume that y= 0 and y is odd. From lemma 3.18, we have for t 4 0
n,o A

(mod 3),

if and only if

It shows that case la) and case lb) have equal frequency of occurring. We

thus have



y. and y
Jn,i Jn,i+s

are both odd

y y
n,i n,i+:

y.. and
n-1

y.. are
n-1,i+s

both odd

y y 4-2
n-1 ,1 n-1 ,i+s

(3.18)

Case II: Suppose y,. is odd and y,. is even. We have again two
11 1 n— 1, a n-1, s

subcases:

case Ila)

case lib)

In case Ila).

(3.19)

In case lib),

On the other hand, from theorem 3.14 we have

freq (x)= frecLn (x+')



n-1
where 0 x 2» It implies that the frequencies of case Ila) and

case lib) to occur are equal.

y. i s o dd
J n,i

n,i+s is even

y'. is odd
' n~1, i

y,. is even
Jn-1,1+s

is 0 (mod 3J

(3.21)

where

Case III: Let y,. be even and y,. be odds Similar to case II,

we have

y. Is even
n,i

y is odd
n, i+ s

y is even
n-1 ji
y.. is odd

n-1 3i+s

.s 0 (mod 3)

(3.22)

where F= [i: 0$ i H, y is even, y, is odd and

y• 2nf
n,i J



Combining (3.18), (3.21) and (3 .22), we obtain the following equation:

(3.23)

We must find out the value of before making use of

(3.23) as a recurrence relation between

Define

and

It is obvious that

(3.24)

and

(3.25)



We shall evaluate the difference of Q. and Q. n first and then
n-1,3,1 n~1,s52

make use of (325) to find out the value of Q To do this, the
n-1 y s 1

following equality, which can be derived by similar method as that in the

proof of lemma 317? is useful.

(mod 2). (3.26)

Now divide all the possible is such that i= 0 (mod 3) and 0$ i,

into the following three cases.

Case 1: Suppose i is even and from 1 ennaa 3 17,

Hence one and only one of is less than i.e. either

belongs to Applying (3.26), we have

Therefore, no matter which one is in the difference of

and Q_ is not affected.
n-1 ,s,2

Case 2: Suppose i is odd. Clearly i can be expressed as

again, we have

From lemma 3.'17



Since i3 must be odd and y= 0, it can easily be proved that

and

So either H 2- i and i or H 2- i- H 8 and i+ H 8

belong to G-. From (3•26), we get

Hence the difference of C J, and Q„ is not affected in this case,
n-1,s,1 n-1,s,2

Case 3: Assume i= 0 or i= H 4. Clearly y.= v= 0.

and



From the above three cases and (32.5; we have

(3.27)

where

Define

Now (3.23) can be expressed as

Obviously?

From (3.2), we get



Inductively, we have when n£ 7

(3.28)

By corollary 3.15, T can be calculated by

'when n 6 4

Substituting it to (3,28), we obtain

Since
= Y._- yr_, we have the following theorem.

II i j o p, b

Theorem 3.19: Let jly J be a Fibonacci sequence mod 2n with initial valuesI i y-L.



V= 0 and y, being odd. Then for n£ 7 and s s 1 or 5 (mod 6),
n,o n,±

we have

Under the conditions of theorem 319, we can calculate the exact serial

correlation p (s) when s s 1 or 5 (mod 6). An example is given below.

Example: Consider the Fibonacci generator

can be obtained from table 3.5 in section four. We have

E,,= 87680
0,1

and Tr= 2880

, 930
+ j x 2

= 3209023488

Since ([y.})= 3 we can compute the values of
0 J} m

and

by corollary 3.15 as follows



= 4282396672

= 3139584

Hence for the pseudo-random number sequence

= (0.249053001~ 0.249024391) (O.332357725~ 0.249024391)

= 0.00034332.

Section L: The serial correlation p_ (s), when s s 3 (mod 6)

This section is a continuation of the previous section. Suppose we

have a sequence y .1 in A such that the initial values y =0 and

y. is odd. The pseudo-random number sequence x= jx. i is defined as

before. We want to determine the serial correlation p (s) when s s 3

(mod 6) and n 3 7. Now we have only two cases:

These two cases are discussed as follows.

are aid.

are even.



Case If: Assume y.. and y,. are odd, where 0 i H,

Following the steps as that in Case I of section 3 we have

Case II!: Assume y„. and y. are even, where 0 i H

(y., y.) must belong to one of the four subcases:

Case IIa{)

Case lib')

Case lie')

Case IId!)

From lemma 3•17

(mod 2n)

Suppose Then

if i is odd

if i is even

Therefore

if i is odd

if i is even



if i is odd

if i is even (3.30)

When 0 i H., it is found, that y.= 0 if and only if i- 0

and that y= 2 if and only if i= H 4. from (3® 9) and lemma
n,i- n

3.17, we get

(3,31)

By (3®3d) and (3.31), we have, similar to the case 1 in section three,

freq(lla!)+ freq(llb')= freq(llc')+ freq(lld').

where freq(lie) means the frequency of the occurrence of case lie8) where

e= a, b, c or d.

By theorem 3.14, we know that

freq(lla')+ freq(llo')= freq(lIV)+ free, (lid1)

and

freq(lla')+ freq(lld')- freq(llb')+ freq(llc')

Thus we have

freq(lla')= freq(llb')- freq(IIc')= freq(lld')

In case Ila') f



In case lib')?

In case lie')f

and in case lld{)

Hence

(3.32)

Recall the definitions of G-, G-,, Q and Q
n-1, s j1 n-1 ,s,2 n-1,s,1 n-1,s}2

and i s 0 (mod 3)].

and I s 0 (mod 3)5



Clearly

(3.33)

and

(3.34)

We now find the difference of Q. and Q_„ Similar to section 3«
n-1n-1,s,2'

we can prove that the difference of Q„ and Q( is not affected
n-1,s,1 n-1,s,2

by the value of i when i V s or i H J'6- s (mod h 8)» We know

th at

and

From (3.31)? we have

Similarly, we get



Moreover from (3.9),

Thus belong to the same

where

belong to the other.

Let wh ere or 1, From the above

information, we have, similar to section h

(3.35)

where

Using the symbols introduced in section 3, we add (3.29) to (3.32) giving the

following equation:

from (3.35)

It follows that



r) II
Theorem 3.2u: Let [y. j be a Fibonacci sequence mod 2 with initial values

y =0 and y being odd. For n£ 7 and s s 3 (mod 6), we have

n =2 u,, +2(2- 1)i- 2 r~ y)+ 23 x 2

n, s_ b 5 s o iijS 6, s

2n 03n-3
— 4 x 2 +3x2

Theorems 319 and 3.20 express the value of L in terms of n, s, v. T-
n,s J Jn,35 b

and ih. The values of Tr and for some values of s are listed in
o jS o bs

table 3.3.



Table 3.5

r

0

3

4

—7

8

11

12

15

1c

19

20

23

24

27

28

31

0

0

1

33

o

0

19

51

0

0

21

53

0

0

23

55

0

0

25

57

o

0

11

43

0

0

13

45

0

0

15

47

0

0

17

49

o

0
3

35

0

0
5

57

0

o

7

39

0

0

c

41

0

0
27

59

0

0

29

61

0

0

31

63

y6,0 y6,l
T,

D

2752

2880

2880

3008

3008

3136

3136

3264

2752

2880

288C

3008

3008

3136

3136

3264

E6,1

7 9747

85632

85376

93312

93056

103040

1 097ft A

110720

77696

87680

8742L

95360

95104

100992

100736

1G8672

E6,3

Ml fif) 1

85248

84736

92416

91 909,

103880

103168

11084.8

77568

89344

88832

96512

96000

9958A

99072

10875?

£V-
6,3

79232

8a 098

86912

93824

92544

101504

104320

111232

77184

8 6144

8a 88a

95872

94592

103552

102272

109184

E6,7

78208

85120

85888

94848

95616

A 0913 98

103998

112256

76160

8 7168

87936

92800

93568

10048 0

101248

110208

69

77588

8 9344

88832

96512

96000

99584

99072

106752

81664

85248

847 36

92416

91 904

1O368O

103168

110848

(w~ and. are the initial values and r= 5 M )v-().)
6,0 6,1 6tJ6,i



1 1
Example: Consider the Fibonacci generator yAA. s yA A. A+ yAA. 0 (mod 2)?

y= 0 and y= 1443. 4s y,,= 33 we have from table 33, 14-= 2880

and E,:- 89344. Apply theorem 3.20 with s- 3. Clearly y,.= 838 and

y- yr- 832. Therefore
1' 3 o,3

i 7 922 7 930
- 4 x 2 +3x2

= 3209404416,

Thus

= 0.00069809-

(The values 3139384 and 428239662 copy directly from the example in section three.)

Under the conditions of Theorem 3-19? we can of course express

E(x x) as a function of E (xr. x..) and E (xr.) by using
n,i n,i+s 6?a 6,1+s x 6,iy

Theorems 3.19 and 3.20, The next corollary shows this.

Corollary 3.21: Let )y. i be a Fibonacci sequence mod 2 'with initial

values y =0 and y being odd. Take [y;. j= [y. (mod 2) j for all
n j o n, 1 x, 1 n, 1

k n and [x.. j= [y,. 2} for all 0$ j n. Then when n£ 7, we

have

if s e 1 or 5 (mod 6).



If s= 3 (mod 6),

Since n is usually greater than 3, from corollary 321, E (x. x.)
n,i n,i+s

when s is odd is close to 025 as what we desire. It follows that the exact

serial correlation p (s) when s is odd is very small if the conditions of

corollary 3.21 are satisfied.



CHAPTER 4. A NEW G-EITERATOR

gpp.ti nri 1! Fibonacci generator and. a new generator

It appears, in view of the satisfactory properties of the mean,

variance and serial correlation, p,.(s), for odd integer s, that the

Fibonacci pseudo-random number sequences are acceptable. However, there exists

strong relation between and Indeed all the points

i= 0, 1,2, ,fall on two hyperplanes:

and

Thus the direct use of the Fibonacci pseudo-random numbers is dangerous. One

reasonable application of the generator is given by G-ebhardt (196?). He used

the idea of composite generators. Of course nothing can prevent one from

combining a Fibonacci generator and another generator,and one hopes to generate

a more random sequence in this way. However theoretical analysis of this

type of sequences is difficult. In what follows, we shall modify the Fibonacci

generator in another way to yield a new generator.

, N Yi
Let }y A be a Fibonacci seauence mod 2 with initial values y

and y. that are not both even. To remove the regularities in y.(,

one can use just a subsequence of [y. j. A simple choice is the subsequence

[y,] r,, o, for some integer p. Obviously, this subsequence has a



maximum period length 3 x 2 if and only if (H, pj= 1, i.e. (6, pj= 1.

When (6, p)= 1, the subsequence )y. j shares the same period, mean and

variance with iy. i. Let x= x. i and x= Sx. j• Clearly
n,i p n,px' n,i

p.. (s)= p (ps) Hence, in view of the properties of x, x should possess

p

some properties of a good pseudo-random number sequence. Of course, it is

time-consuming to generate x_ from x» Direct method is thus necessary.
P

Denote by ,u. j the Fibonacci sequence that satisfies

with initial values u= 0 and u= 1. Suppose [y. is a Fibonacci

sequence mod 2n. It is obvious that

(4,1)(mod 2n).

Lemma 4.1: With )u. I and y. as defined above, we have

( q X'

Proof; From (4.1;, it is easily seen that

(mod 2n)

and

(rnocL 2;

Moreover it is well-known that



and

Thus,

(mod 2n)

(mod 2n)

(mod 2n).

(mod 2n).

Q.E.D.

Equation (4.2) can be used to generate x directly. The following; theorem is

useful in introducing a new generator.

'Theorem 4.2: Let )v.( be a sequence of integers produced by the recurrence

relation

(mod 2n) e

Then a is an odd integer if and only if there exist a positive integer p,

which is relatively prime to 6, and non-negative integers y and y such
HjO ns 1

that

Proof: By the use of (4.2), to prove the necessity, it is sufficient to show



that for any odd integer a and positive integer n, there exists an odd

XI
integer p such that (6, p)= 1 and a= u+ u (mod 2).

P+1 p—i

We prove this statement by induction.

When n= 1, then p= 1. When n= 2, we have p= 1 if a 5 1

(mod 4) and p= 5 if a 5 3 (mod 4).

Suppose the statement is true when n= k£ 2 Then for any odd

integer a, there exists a positive integer p such that (6, p)= 1 and

(mod. 2)

It implies that

3 1X
(mod 2)

(mod 2k+1)

(4.3)or

As (6, p)= 1 j we have

Thus from (43)

where a= p or

k+1
(mod 2) 3

Hence the statement is proved by induction since (6. p+ H, 2)= (6,

when k£ 2. The proof of sufficiency follows immediately from (4,2).



Q.E0D.

Theorem 4.2 suggests that we adopt the following new generator

(mod 2),

where a is an odd integer. The pseudo-random number sequence Z= iz. j
n5 2.

is then defined by z.- v. 2. From theorem 42. we have Z= X for

some positive integer p, Therefore there is relation between Z and X

(X=[ x.}). In order to apply the Hi ear ems in sections 2, 3 end 4 of

Chapter 3 to the sequence Z, we assume v =0 and v, is odd. From

the properties of X, we have the following equalities:

(4.5)when n k 3.

(4.6). when n k£ 5.

when s= 1 or 5 (mod 6) (4.7)

when s s 3 (mod 6) (4.8)

Here , when k n.

The mean, variance and serial correlation of odd lag of Z can be



computed by using equations (4»5)~ (4.8). The values are close to what we

expect of a truely random'' sequence.

Instead of choosing p such that [v. J= [y. j, it seems more

inviting to select a good a. The use of a= 2H+ 1, where p! is a

positive integer, is attractive because multiplication of such an oc is simply

a shift and add when the sequence is generated in a binary computer,

S p r -H nn 9• g 1: p hi q ripe 1+. p q+; q

Seven statistical tests are applied to the new generator (44) with

n= 32 and a= 2r+ 1, where {3=, 17 and 22, Moreover we require that

v =0 and v is odd. The tests include the 'frequency' test and 'serial'

test which are elementary. The remaining five tests are 'sum of N' test when

N- 2 and 3? 'Max of N' and 'Min of N test when N= 2, 3? 4 and$, 5 runs up

and down' test and the 'poker' test. Since the tests are quite standard, the

descriptions of them are left out here and details can be found in Downham and

Roberts (1967), Knuth (1968) and Lewis (1975). The 'poker' test is the one

suggested by Knuth (1968), Each test is applied to the same pseudo-random

number sequence and hence the test results are not independent. The results

together with the degrees of freedom of and the numbers from the sequence

tested are listed in table 4.1. All the calculations are carried out on the

Hewlett-Packard 98 3OA Calculator in the Department of Mathematics.

The test results are satisfactory, All the tests, except one, are

passed at 5 percent significance level. Thus the new ge re rat or is acceptable.



Statistical tests have also been applied to the new generator for the case

a= 11. The results are, however, not satisfactory. Hence the value of

a should not be too small or too large in comparision with 2. It is

std.ll an open problem as to which value of the odd integer a is most

appropriate.



Table 4„1

T p t
Degrees

of

freedom

Numbers

from the

sequence

B= 7

run 1

B- 17

run 2 run 1 run 2

,0_ o 9
t

run 1 run 2

frequency test
-1 97 1 0000 o0 6664 0.1251 0,1587 0.8264. 0, 516 0 0,7764

Serial test of

(z., z..)
255 2x5000 0,7995 0.5 94-8 0,6217 0 s 001 6'v 0,1251 0.3980

Sum of

N test.

N= 2 127 2x5000 0,0508 0.5517 0, 877 0 0,0618 0.7157 0.5359

t. r -y
127 3x5000 0.6179 0.8438 0.9278 0.6103 0,8980 0.6255

t r o QQ 2x2000 0,8023 0,1271 0,345 0,1949 0.0901 0.8413

Max. of

N test

! !

I i~~ 4 QQ 3x2000 0,6064 0.5359 0.5517 0,2514 u. a 9d-o 0,7910

N= 4 99 4x2000 0.1635 0.5199 .o5p4 0,1736 0.3050 0.7881

N s 5 99 5x2000 0,9916 0.9726 0,8577 0.1112 0.7224 0.4013

f

n nV

TJ 4- q c 4

T-T O 99 2x2000 0 4+483 0.4721 0.4090 0.3156 0.5438 0.3228

N= 3 99 3x2000 0.88 50 0,6983 0.5160 0.5359 0.8907 C.8212

N= 4 99 4x2000 0.3085 0.7967 0.3483 0.8340 0.8106 0.24.83

N= 5 99 5x2000 0,708b 0.2946 0.2709 0.3121 0.7357 0.3015

Runs up and down
4- o o4- 5 1000c (0.10,0,20) (0.30,0.50) (0.05,0.10) (0.50,0.70) 1 (0.50,0.70; (0.80,0. 90)

Pnkpr 3 5x2000 (c.10,0.20; (0.995,1) ! (0.05,0.10; (0.20,0.30) | (0.1 0?0.20) (0.30,0.50;

(The tabulated value 13 the probability that the appropriate Chi-square variate will exceed the

computed value. (a, b) in the last two rows indicates the interval in which the probability

falls. The only value that calls for rejection at significance level U.05 is starred.)
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