PSEIDO-RADDOM NHMBER GETERATORS

by

LEE KIM-HIMG

A. Thesis
Submit,ted to
the Graduate School of

The Chinese University of Hong Kong (Division of Mathematics)

In Partial Fulfillment
of the Requirements for the Degree of Master of Philosophy (M. Phil.)

HONG KONO

Way 1978

945833

THE CHINESE UNIVERSITY OR HONG KONG

Graduate School

The undersigned certify that we have read a thesis，entitled ＂Pseudo－Random Number Generators＂submitted to the Graduate School by Mr．Lee Kim－Hung（李俞り塗）in partial fulfillment of the requirement for the degree of Master of Philosophy in Mathematics．We recommend that it be accepted．

Dr．IV．N．Chan，Supervisor

Dr．W．I．Chan

Dr．S．Y．Lee

PREFACE

The study of the generation of random variates is mainly concerned wi.th the uniform distribution sampling and the nonuniform distribution sampling. The former focuses on the properties of pseudo-random number generators while the latter on the techniques of generating random numbers of the reouired nonuniform distribution by using the psendo-random numbers over the interval $[0,1)$ (generated in the former). Though the two parts seem to have developed in different directions, they both aim at providing efficient methods of generating random numbers of the desired distribution that require only a small amount of computer memory but possess good statistical properties and pass most of the statistical tests. It would be even better if the methods oan be easily prosramned.

In this thesis, only pseludo-random number generators are dealt with. A brief description of the generators commonly in use is given in chanter 2. In chapter 3, the Fibonacci generator is considered. As the Eibonacci generator is not satisfactory, a new pseudo-random number generator jis proposed in chapter 4. This generator may be writ.ten

$$
y_{i} \equiv \alpha y_{i-1}+y_{i-2} \quad\left(\bmod 2^{n}\right)
$$

where α is an odd integer and the initial values $y_{0}=0$ and y_{1} is add. This generator is found to be efficient and proved to possess some dosimable properties. Statistical tests are applied 8_{+}times out of which only one fails at 5 percent significance level. The generator even passes the 'sum of N' test and the 'runs up and down' test which are thought to be quite sensitive. The generator can therefore generate satisfactory pseudo-random number sequences.
J. am greatly indebted to my supervisor, Dr. H.l. Chan, for his valuable advice and encouragement durine my graduate study that led to the presentation of this thesis. I should al so like to thank 1 H . Billy lam for his typing of the entire manuscript.

PEFUDO-PANDOM INIITPR GRIGRATORS

Chapter 1: Introduction

Chapter 2: Linear recurrence generators

```
Section 1: Jinear recurrence generators
Section 2: Some well-known special cases of
Jinear recurrence penerators
```

Chapter 3: Fibonacci nseudo-random number generator
Section 1: Preliminary results
Section 2: Numbers contained in the Fibonacci sequence rodulo 2^{n} Section 3: The serial correlation $P_{x}(s)$, when $s \equiv 1$ or 5 (mod 6)

Section 4: The serial correlation $f_{x}(s)$, when $s=3(\bmod 6)$

Chapter 4: A new generator
Section 1: Fibonacci generator and a new fenerator
Section 2: Statistical tests

CHOPTER 1. TMMRODUCTION

In recent years, Honte Carlo and simulation methods have becone a useful tool in problem solving, especially when theoretical results are hard or impossible to obtain. Hence an efficient procedure to generate a sequence of random numbers is necessary. Tables of random nambers were constmacted and special physical devices were invented to produce random numbers. The most popular method in use with the aid of a computer is to set un a subroutine to generate a sequence of random numbers by a deterministic process. This kind of method is called the arithmetic method.

The first arithmetic method in psendo-random number generation was introduced by Von Newnann in about 19.6 which was known as "mid-souare" method. Suppose we want to generate a sequence of t-digit integers. Given an initial integer x_{0}, x_{i} is the midale t-digit of the x_{i-1}^{2} which is expressed as a 2t-digit integer, where $i=1,2,3, \ldots$. For example, $t=4$ and $x_{0}=1.341$. Then $x_{0}^{2}=01798281$ and hence $x_{1}=7982$. The sequence will be 1341,7982 , 7123, 7371, 3316, 9958, However, the "mid-square" method has been found tio be poor.

One famous arithmetic method is to use the linear recurrence generator and will be discussed in Chapter 2. This kind of generator generates a sequence of integers $\left\{y_{i}\right\}$ by a Iinear recurrence relation

$$
y_{i} \equiv \sum_{k=1}^{r} a_{k} y_{i-k}+b \quad(\bmod N) .
$$

When $r=1$, we have the Lehmer coneruential generator which is very commonly used. Another special case is the so called linear recurrence mod 2 method for which $M=2$. These two special cases together with the additive random number generator are considered in section 2. of chapter 2.

In Chapter 3, we deal with an old generator - Fibonacci generator. The Fibonacci generator has the form

$$
y_{i} \equiv y_{i-1}+y_{i-2} \quad(\bmod M)
$$

Due to the strong regularities apnearing in the Fibonacci psendo-random number sequences, no much attention has been paid to this generator. Jansson (1966) gave a good study of the Fibonacci pseudo-randon numbers and his work is very useful in this thesis. The numbers contained in the Fibonacci pseludo-random number sequence will be discussed in Section 2 while the serial correlation properties in Sections 3 and 4. In these sections, it is shown that under certain conditions, the exact mean, variance, and serial correlation of lag s, when s is odd, can be calculated. Moreover the computed values are anl found to be reasonably close to what, we expect of a "truly random" sequence.

In Chapter 4, a new generator is suggested. The nem gererator is strongly related to the Fibonacci generator. Hence properties of the my generator can be studied from the Fibonacci generator. The new generator may be writ.ten

$$
y_{i} \equiv \alpha y_{i-1}+y_{i-2} \quad\left(\bmod 2^{n}\right)
$$

where α is an odd integer, $y_{0}=0$ and y_{1} is odd. This generator passes
nearly all the statistical tests given in Section 2 of Chapter 4 and is thus onnsidered a good generator. The Lehmer congruential generator which takes the form

$$
y_{i} \equiv \alpha y_{i-1}+b \quad\left(\bmod 2^{n}\right)
$$

is similar to the new generator. One would expect that some nice properties would result if the constant h in the Lehmer congmential generator is replaced by y_{i-2}. Yet, the linear recurrence generator of order $2(i, e . r=2)$ is seldom discussed. The new generator proposed here is of this type and appears to be efficient for most practical mumoses.

CHAPTER 2. TTNEAR PECTPRENCE GRMERATORS

Section 1: Jinear recurrence generators

A pseudo-random number generator simply means an algorithm that generates numbers $x_{0}, x_{1}, x_{2}, \ldots$ in the interval $[0,1)$ such that the sequence $\left\{x_{i}\right\}$ behaves as if a sequence of random sample from the uniform distribution over $[0,1)$. Of course, it is imoossible to generate a "trmely random" number sequence in such a deterininistic procedure and hence the prefix "nseudo" is used.

Before considering pseudo-random number generators, it is onvenient to introduce the following definitions.

Definition 2.1: For a sequence $\left\{x_{i}\right\}$, if there exist positive integers t ani r such that

$$
x_{k}=x_{k+r} \quad \text { for al. } 1 \quad k \geqslant t \text {, }
$$

the sequence is said to be eventually periodic. The least such value of r i.s called the period of the sequence $\left\{x_{i}\right\}$, denoted by $p\left(\left\{x_{i}\right\}\right)$.

Definition 2.2: A sequence $\left\{x_{i}\right\}$ is said to be periodic if it is eventually periodic with the corresponding t value in definition 2.1 being zero.

Definition 2. 3: An integer-valued sequence $\left\{x_{i}\right\}$ is said to be a b-ary sequence if

$$
0 \leqslant x_{i} \leqslant b-1 \quad \text { for ell } i=0,1,2, \ldots
$$

A b-ary sequence is said to be pseudo-random if it behaves as if it is drawn from the discrete uniform distribution on $(0,1,2, \ldots, b-1)$.

Let $y_{0}, y_{1}, \ldots, y_{r-1}$ be non-negative integers less than a given positive integer N. A sequence $\left\{y_{i}\right\}$ can be defined by using the following linear meourrence relation

$$
\begin{equation*}
y_{i} \equiv a_{1} y_{i-1}+a_{2} y_{i-2}+\ldots+a_{r} y_{i-r}+b \quad(\bmod H), i=r, r+1, \ldots \tag{2.1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{r-1}$ and b are non-negative integers, a_{r} and r are positive integers and $a_{1}, a_{2}, \ldots, a_{r}, b<M$.

Now we have an M-ary sequence $\left\{y_{i}\right\}$ and the required pseudo-randon number sequence $\left\{x_{i}\right\}$ is usually defined by $x_{j}=\frac{y_{j}}{M}$ for $111 j=0,1,2, \ldots$. Generators of the form $(2,1)$ are called linear recurrence generators.

Of course linear recurrence generators are not the only mechanism for generating pseudo-random numbers. They are, however, the most commonly used generators. It is obvious that the psevdo-random number sequence $\left\{x_{j}\right\}$ of the linear recurrence generator (2.1) satisfies the equation

$$
\begin{equation*}
x_{i}=\left\{a_{1} x_{i-1}+a_{2} x_{i-2}+\ldots+a_{r} x_{i-r}+\frac{b}{M}\right\}_{F}, i=r, r+1, \ldots \tag{2.2}
\end{equation*}
$$

Here $\{z\}_{F}$ stands for the fractional part of z.

The following theorem is given to indicate that linear recurrence generators may provide a reasonable source of random numbers.

Theorem 2.1: If $X_{0}, X_{1}, \ldots, X_{r-1}$ are independent random variables with uniform distribution over $[0,1)$, then for any non-negative integer k the random variables $X_{k}, X_{k+1}, \ldots, X_{k+r-1}$, that are defined recursively by $(2,2)$, are independent each having the uniform distribution over $[0,1)$.

Proof: It is sufficient to show that $X_{i}, X_{2}, \ldots, X_{r}$ are independent, each having the uniforms distribution over $[0,1)$.

To prove this, it is convenient to bring forward the following equality: For any non-zero integer a and real constant c ,

$$
\begin{equation*}
\int_{0}^{1} e^{t\{a x+c\}} F d x=\frac{1}{a} \int_{c}^{a+c} e^{t\{x\}} F d x=\int_{0}^{1} e^{t x} d x \tag{2,3}
\end{equation*}
$$

$$
\begin{aligned}
& N\left(\exp \left(\sum_{i=1}^{r} t_{i} x_{i}\right)\right) \\
= & \int_{0}^{1} \ldots \int_{0}^{1} \exp \left(\sum_{i=1}^{r-1} t_{i} x_{i}+t_{r}\left\{\sum_{j=1}^{r} a_{j} x_{r-j}+\frac{b}{M}\right\}_{F}\right) d x_{0} \ldots x_{r-1} \\
= & \int_{0}^{1} \ldots \int_{0}^{r-1} \exp \left(\sum_{i=1}^{r} t_{i} x_{i}\right) \int_{0}^{1} \exp \left(t_{r}\left\{a_{r} x_{0}+\sum_{j=1}^{r-1} a_{j} x_{r-j}+\frac{b}{M}\right\}_{F}\right) d x_{0} \ldots d x_{r-1} \\
= & \int_{0}^{1} \ldots \int_{0}^{1} \exp \left(\sum_{i=1}^{r} t_{i} x_{i}\right) \int_{0}^{1} \exp \left(t_{r} x_{0}\right) d x_{0} d x_{1} \ldots d x_{r-1} \quad \text { Prom } \\
= & \prod_{i=1}^{r} M\left(t_{i}\right)
\end{aligned}
$$

where

$$
M\left(t_{i}\right)=\int_{0}^{1} \exp \left(t_{i} x\right) d x
$$

Hence the theorem follows by the use of the properties of moment generating functions.
Q.E.D.

Theorem 2.1 cannot generatee the randomess of the pseudo-random number sequences generated by the linear recurrence generators. This is mainly because the initial values $y_{0}, y_{1}, \ldots, y_{r-i}$ in (2.1) are not in general randomly selected.

Clearly every M-ary sequence $\left\{y_{i}\right\}$ that satisfies (2.1) is eventually perindic with period less than or equal to M^{r}. Theorem 2.2 gives a sufficient condition to the periodicity of the sequence $\left\{y_{i}\right\}$. The proof of the theorem jis simple and jis therefore left out.

Theorem 2.2: Every seguence $\left\{y_{i}\right\}$ (also $\left\{x_{i}\right\}$) generated by (2.1) is periodic if $\left(a_{r}, \mathbb{M}\right)=1$, i.e. a_{r} and H are relatively prime.

An elementary requirement for $(2,1)$ to provide a good source of pseudorand om momers is that the psendo-random number sequence thus generated must have long period. In deteroining the period of a sequence, the following theorems (Tansson, 1966; Knuth, 1968) are useful.

Theorem 2.3: Jet $\left\{y_{i}\right\}$ be a sequence of non-negative integers generated by (2.1), with $M=m_{1} m_{2}$ where $\left(m_{1}, m_{2}\right)=1$. Then

$$
n\left(\left\{y_{i}\right\}\right)=1 \cdot \operatorname{com}\left(p\left(\left\{y_{i}, \bmod m_{i}\right\}\right), p\left(\left\{y_{i}, \bmod m_{2}\right\}\right)\right) .
$$

(The symbol l.c.m(a, b) stands for the least common multiple of a and b.)

Theorem 2.4: Let $\left\{y_{i}\right\}$ be a sequence of non-negative integers satisfying the equation

$$
y_{i}=a_{1} y_{i-1}+a_{2} y_{i-2}+\cdots+a_{r} y_{i-r}+b,
$$

where $a_{1}, a_{2}, \ldots, a_{r}$ and b are non-negative integers. Suppose
that M is a prime integer and n is a positive jnteger such that $i^{n}>2$. Then we have, for every positive integer t,

$$
p\left(\left\{y_{i}, \bmod M^{n+t}\right\}\right)=M^{t} p\left(\left\{y_{i}, \bmod M^{n}\right\}\right)
$$

provided that $p\left(\left\{y_{i}, \bmod M^{n+1}\right\}\right) \neq p\left(\left\{y_{i}, \bmod n^{n}\right\}\right)$.

Section 2: Some well-known special cases of linear recurrence penerators.

A very commonly used generator nowadays is the Lehmer concruential generator which was suggested by D.H. Iehmer in 1951. This generator is a special case of linear recurrence generator (2.1) with $r=1$, that is

$$
\begin{equation*}
y_{i} \equiv a y_{i-1}+b \quad(\bmod M) \quad i=1,2, \ldots . \tag{2.4}
\end{equation*}
$$

(2.4) is said to be a mixed congruential generator if $b \neq 0$ ani is said to be a multiplicative generator if $b=0$. The numbers y_{i} / h are then used to form a pseudo-random number sequence.
word-length of the particular computer so that the computation in (2.4) can he carried out more efficiently.

For suitable choices of a, b, M and y_{0}, the sequences generated by (2.4) pass most of the standard statistical tests (Gorenstein, 1967; Jansson, 1.666).

The period Jength of the sequence has al so been extensively studied (Fuller, 1976; Hull and Dobell, 1962). In particular, when $M=2^{n}$ and $b \neq 0$, the maxionum period lenpth 2^{n} can be achieved if $a \equiv 1(\bmod 4)$ and b is odi. Ilowever, when $i n=2^{n}$ and $b=0$, the maximun neriod Jength will only be 2^{n-2} which is attainable when $a \equiv \pm 3(\bmod 8)$ and y_{0} is odd.

Besides the long period Jength, a good serial correlation property is also necessary. Exact serial correlations have been oaloulated pieter and Hrens, 1971; Jansson, 1966; Numth, 1:68) and found to be extrenely sinall for most of these generators used. Noreover Dieter (1971) found that the exact joint dis stribution of each pair $\left(x_{i}, x_{i+s}\right)$, where s is a given positive integer, was close to the desired joint distribution for most of the conmmential generators that are commonly in use.

Another well-known method of generating random numbers is the Ifnear recurrence modulo 2 method which generates a 2 -ary sequence $\left\{V_{1}\right\}$ by the reoumence rels.tion:

$$
y_{i} \equiv a_{1} y_{i-1}+a_{2} y_{i-2}+\ldots+a_{r} y_{i-r} \quad(\bmod 2), i=r, r+1, \ldots .
$$

Here ${ }_{i}$ are zero or one for all $i=1,2, \ldots, r$.

The sequence $\left\{y_{i}\right\}$ has maximum period $2^{r}-1$ if and only if its characteristic polynomial $c(x)=1+a_{1} x+a_{2} x^{2}+\ldots+a_{r} x^{r}$ is primitive over GF(2), the Galois field with only two elements 0 and 1 (Zierler, 1959).

Tausworthe (1965) suggested the pseudo-randon numbers x_{i} to be

$$
x_{i}=\sum_{t=1}^{L} 2^{-t} y_{V i+k-t}
$$

where k, v and L are integers such that $0 \leqslant k \leqslant 2^{r}-1, L \leqslant r$, $v \geqslant L$ and $\left(v, 2^{r}-1\right)=1$.

Touerorthe (1965) el se proved some outstanding proporties of this generator when the maximum period was attained. In practice, the characteristic nolynomial $c(x)$ jis chosen to be $x^{p}+x^{q}+1$ and hence the generator usumlly has the form

$$
y_{i} \equiv y_{i-q}+y_{i-p} \quad(\bmod 2)
$$

The adaitive random number generator is again fanous. It generates the sequence \{yi. $\}$ by the equation,

$$
y_{i} \equiv y_{i-1}+y_{i-r} \quad(\bmod 4)
$$

The numbers $x_{i}=y_{i} / M$ are the required pseudo-random numbers. This generator was tested to be quite satisfactory by Green, Snith and Klon (1959). Nowever, not much theoretical results of this generator are known.

A special case of the additive random number generators is the fibonacci pseudo-random number generator which takes the form $y_{i} \equiv y_{i-1}+y_{i-2}$ (rod M). Pronerties of the Fibonacci generator will be discussed in chenter 3.

CHOPMER 3. RTBONACCI PSELDO-RANDOM NUMOER GEMWRATOR

Section 1: Preliminary results

The Fibonacci pseudo-random number generator is a special kind of 7. inear recurrence generator (2.1) of chapter ? with $r=2$ and $a_{1}=a_{2}=1$, that is,

$$
\begin{equation*}
y_{i} \equiv y_{i-1}+y_{i-2} \quad(\bmod 1), i=2,3, \ldots \tag{3,1}
\end{equation*}
$$

The pseudo-random number sequence $X=\left\{x_{i}\right\}$ is then defined to be $\left\{y_{i} / M\right\}$. A senuence $\left\{y_{i}\right\}$ that satisfies (3.1) is then called a Fibonacci seguence moま M 。

Prom theorem 2.2, the semence $\left\{y_{i}\right\}$ is neriodic whatever the value of the modulus M is. For binary conputers, it is convenient to have $M=2^{n}$, where n is the number of binary places available in the computer. In this case, the maximum period length of the sequence $\left\{y_{i}\right\}$ (also of $\left\{x_{i}\right\}$) is $3 \times 2^{n-1}$, denoted by H_{n}, which is attainable when y_{0} and y_{1}, the initial volues, are not both even (Jansson, 1966). Therefore the Fibonacci generator of the following fom is esperially important:

$$
\begin{equation*}
y_{n, i} \equiv y_{n, i-1}+y_{n, i-2} \quad\left(\bmod 2^{n}\right), i=2,3, \ldots, \tag{3.2}
\end{equation*}
$$

with the initial values $y_{n, 0}$ and $y_{n, 1}$ not, both even.

It is onvenient to define the following enuivalence rel ation over a set of periodic sequences.

Definition 2.1: Given a set A of periodic sequences, two sequences in A are said to be equivalent if one is a shift of the other. The symbol $\left\{s_{i}\right\} \stackrel{A}{\sim}\left\{t_{i}\right\}$ is used to mean that $\left\{s_{i}\right\}$ and $\left\{t_{i}\right\}$ in A are equivalent.

Now let \mathcal{P}_{n} be the set of all possible sequences $\left\{y_{\mathrm{n}, \mathrm{i}}\right\}_{\text {ot }}$ that generated by $(3,2)$. It was proved by Jansson (1966, p.63) that there exist exactly 2^{n-1} equivalence classes in A_{n}. Clearly if two seģuences in A_{n} are equivalent, they have the same period, mean and serial correlation. If from each equivalence class we select, one sequence, there are 2^{n-1} different sequences, say, $\left\{w_{n, 0, i}\right\},\left\{w_{n, 1, i}\right\}, \ldots,\left\{w_{n, 2}^{n-1}-1, i\right\}$.

$$
\text { Define } \bar{w}_{n, r}=\frac{1}{H_{n}} \sum_{i=0}^{H_{n}-1} w_{n, r, i} \text { en z } E\left(\bar{w}_{n}\right)=\frac{1}{2^{n-1}} \sum_{r=0}^{2^{n-1}-1} \bar{w}_{n, r} \text {. The term }
$$ $E\left(\bar{i}_{n}\right) / 2^{n}$, denoted by $E\left(x_{n}\right)$, is actually the expectation of the Fibonacci pseudn-random numbers, $x_{n, i}\left(x_{n, i}=y_{n, i / 2} n\right)$, generated by $(3,2)$. The value of $E\left(x_{n}\right)$ can be found by simple calculation as follow.

$$
\begin{aligned}
\sum_{r=0}^{2^{n-1}-1} \bar{w}_{n, r} & =\frac{1}{H_{n}} \sum_{r=0}^{2^{n-1}-1} \sum_{i=0}^{H_{n}-1} w_{n, r, i} \\
& =\frac{1}{3 \times 2^{n-1}\left[2^{n-1} \sum_{k=0}^{2^{n-1}-1} 2 k+2^{n} \sum_{k=0}^{2^{n-1}-1}(2 k+1)\right]} \\
& =2^{2 n-2}-2^{n-1} / 3
\end{aligned}
$$

It follows that

$$
\begin{equation*}
E\left(x_{n}\right)=E\left(\bar{w}_{n}\right) / 2^{n}=\frac{1}{2}-\frac{1}{3 \times 2^{n}} \approx \frac{1}{2} \tag{3.3}
\end{equation*}
$$

Similarly, let $\overline{w_{n, r}^{2}}=\frac{1}{H_{n}} \sum_{i=0}^{H_{n}^{-1}} w_{n, r, i}^{2}, E\left(w_{n}^{2}\right)=\frac{1}{2^{n-1}} \sum_{r=0}^{2^{n-1}-1} \bar{w}_{n, r}^{2}$ and

$$
E\left(x_{n}^{2}\right)=E\left(\bar{w}_{n}^{2}\right) / 2^{2 n}
$$

Then

$$
\begin{aligned}
\sum_{r=0}^{2^{n-1}-1} \frac{w_{n, r}^{2}}{} & =\frac{1}{H_{n}} \sum_{r=0}^{2^{n-1}-1} \sum_{i=0}^{H_{n}^{-1}} w_{n, r, i}^{2} \\
& =\frac{1}{3 \times 2^{n-1}}\left[2^{n-1} \sum_{k=0}^{2^{n-1}-1}(2 k)^{2}+2^{n} \sum_{k=0}^{2^{n-1}-1}(2 k+1)^{2}\right] \\
& =2^{2 n-1}\left(2^{n}-1\right) / 3
\end{aligned}
$$

Hence

$$
\begin{equation*}
E\left(x_{n}^{2}\right)=\frac{1}{2^{2 n}} E\left(w_{n}^{2}\right)=\frac{1}{3}-\frac{1}{3 \times 2^{n}} \approx \frac{1}{3} . \tag{3.4}
\end{equation*}
$$

It is found that the values $E\left(x_{11}\right)$ and $E\left(x_{n}^{2}\right)$ are reasonably close to what we expect of a "truely random" sequence. The properties of each individual sequence will be discussed in the following sections.

Section 2: Numbers contained in the Fibonacci sequence mod 2^{n}

In order to find out the numbers contained in an individual sequence
in A_{n}, we assume, without loss of generality, that $w_{n, r, 0}=2 r$ and $w_{n, r, 1}=1$ (Jonson, 1966). Moreover for $r \geqslant 2^{n-1}$, we define $\left\{w_{n, r, i}\right\}=\left\{w_{n, r\left(\bmod 2^{n-1}\right), i}\right\}$.

Lemma 3.1, 3.2, 3.3, 3.5 and theorem 3.4 that can be found in Jonson (1966), are very useful for the Jater work.

Lemma 3.1: $w_{n, r, i}$ is even if and only if $i \equiv 0(\bmod 3)$.
Lemma 3.2: $\quad w_{n, r, i} \equiv w_{n, 0, i}+2 r w_{n, 0, i-1} \quad\left(\bmod 2^{n}\right)$.
Lemma 3. 3: $\quad w_{n, 0, i+j} \equiv w_{n, 0, i-1} w_{n, 0, j}+w_{n, 0, i} w_{n, 0, j+1} \quad\left(\bmod 2^{n}\right)$.
Theorem $3.4: w_{n, r}, \frac{H_{n}}{2}+v= \begin{cases}w_{n, r}, v & v a n \equiv 0(\bmod 3) \\ 2^{n-1}+w_{n, r, v}\left(\bmod 2^{n}\right) & \text { when } v \neq 0(\bmod 3),\end{cases}$

$$
\text { when } n \geqslant 3 \text {. }
$$

Lemma 3.5: For $n \geqslant 4$,

$$
w_{n, r}, \frac{H_{n}}{4}+6 v=w_{n, r, 6 v}+(r+1) 2^{n-1} \quad\left(\bmod 2^{n}\right)
$$

and

$$
w_{n, r}, \frac{H_{n}}{4}+6 v+3 \equiv w_{n, r, 6 v+3}+r 2^{n-1} \quad\left(\bmod 2^{n}\right)
$$

Define a integer-valued function ψ_{n} on A_{n} such that, for $211 \quad\left\{y_{n, i}\right\} \in A_{n}$,

$$
\psi_{n}\left(\left\{y_{n, i}\right\}\right)=r \quad \text { if } \quad\left\{y_{n, i}\right\} \stackrel{A_{n}}{\sim}\left\{w_{n, r, i}\right\} .
$$

Theorem 3.6 is another useful theorem of Jansson (1966). The expression of the theorem is different from the original in order to suit our requirements. The notation freq $n, r(x)$ means the frequency of x in a periodic 2^{n}-gary sequence Y over the entire period and in general freq $_{n}(x)$ is used when the sequence Y is understood.

Theorem 3.6: For any $Y=\left\{y_{n, i}\right\} \in A_{n}$, with $n \geqslant 2$, we have

$$
\text { freq }_{n, Y}(2 k+1)= \begin{cases}3 & \text { if } k \text { is even } \\ 1 & \text { if } k \text { is odd } k=0,1,2, \ldots, 2^{n-1}-1,\end{cases}
$$

if $\psi_{2}\left(\left\{y_{n, i}, \bmod 2^{2}\right\}\right)=0$. Al so we have

$$
\begin{aligned}
\text { freq }_{n, Y}(2 k+1)=1 & \text { if } k \text { is even } \\
3 & \text { if } k \text { is odd } k=0,1,2, \ldots, 2^{n-1}-1,
\end{aligned}
$$

if $\psi_{2}\left(\left\{y_{n, i}, \bmod 2^{2}\right\}\right)=1$.
Applying lemma 3.5, we have

Lemma 3.7: For $n \geqslant 4$, we have

$$
\begin{equation*}
2\left(w_{n, r}, \frac{H_{n}}{4}+3 k-w_{n, r}, 3 k\right) \equiv w_{n+1}, r, \frac{H_{n+1}}{4}+3 k-w_{n+1}, r, 3 k \quad\left(\bmod 2^{n+1}\right) . \tag{3.5}
\end{equation*}
$$

Proof: Jet $k=2 v+t$, where $t=0$ or 1 .

$$
\begin{aligned}
& \text { Suppose } t=0 \text {. Applying lemma 3.5, we have } \\
& w_{n, r, 6 v+} \frac{H_{n}}{4}-w_{n, r, 6 v} \equiv(r+1) 2^{n-1} \quad\left(\bmod 2^{n}\right) .
\end{aligned}
$$

It implies that

$$
2\left(w_{n, r}, 6 v+\frac{H_{n}}{4}-w_{n, r, 6 v}\right) \equiv(r+1) 2^{n} \quad\left(\bmod 2^{n+1}\right)
$$

From 3 emma 3.5, we have

$$
w_{n+1, r}, 6 v+\frac{H_{n+1}}{4}-w_{n+1, r, 6 v} \equiv(r+1) 2^{n} \quad\left(\bmod 2^{n+1}\right) .
$$

Therefore we have

$$
2\left(w_{n, r}, 6 v+\frac{H_{n}}{4}-w_{n, r}, 6 v\right) \equiv w_{n+1, r}, 6 v+\frac{H_{n+1}}{4}-w_{n+1, r, 6 v}\left(\bmod 2^{n+1}\right) .
$$

Hence the lemma is true when $k=2 v$. Similarly, the lemma can be proved when $k=2 v+1$ by applying lemma 3.5 .

Q.E.D.

Remark: It is obvious from lemma 3.7 that when $n \geqslant 4$, we have

$$
\begin{equation*}
w_{n, r, 3 k}+\frac{H_{n}}{4}=w_{n, r, 3 k} \text { if and only if } w_{n+1, r, 3 k+} \frac{H_{n+1}}{4}=w_{n+1, r, 3 k} \tag{3.6}
\end{equation*}
$$

Lemma 3.8: If $n \geqslant 4$, then

$$
\begin{aligned}
w_{n, 0}, \frac{H_{n}}{8} & =2^{n-2} \\
w_{n, 0}, \frac{H_{n}}{8}-1 & =1+7 \times 2^{n-3}, \\
\text { and } \quad w_{n, 0}, \frac{H_{n}}{8}+1 & =1+2^{n-3} .
\end{aligned}
$$

Proof: For $n=7, w_{7,0}, \frac{H_{7}}{8}=32, w_{7,0}, \frac{H_{7}}{8}=113$ and $w_{7,0}, \frac{H_{7}}{8}+1=17$. Hence the lemma is true when $n=7$.

Suppose the lemma holds when $n=\alpha$ where $\alpha \geqslant 7$, We have

$$
\left.\begin{array}{rl}
w_{\alpha+1,0}, \frac{H_{\alpha+1}}{8} & =w_{\alpha+1,0,2 \frac{H_{\alpha}}{8}} \\
& \equiv w_{\alpha+1,0,}, \frac{\alpha}{8}\left(w_{\alpha+1}, 0, \frac{H_{\alpha}}{8}-1\right.
\end{array}+w_{\alpha+1,0}, \frac{H_{\alpha}}{8}+1\right)\left(\bmod 2^{\alpha+1}\right) \text {. from lemma } 3.3 .
$$

$$
\begin{aligned}
& \equiv\left(w_{\alpha, 0,} \frac{H_{\alpha}}{8}+\beta_{1} 2^{\alpha}\right)\left(w_{\alpha, 0}, \frac{H_{\alpha}^{\alpha}-1}{}+{ }_{\alpha, 0,}^{w_{\alpha}} \frac{H_{\alpha}^{8}+1}{}+\beta_{2} 2^{\alpha}\right)\left(\bmod 2^{\alpha+1}\right) \\
& \quad \text { for some integers } \beta_{1} \text { and } \beta_{2}, \\
& \equiv\left(2^{\alpha-2}+\beta_{1} 2^{\alpha}\right)\left(1+7 \times 2^{\alpha-3}+1+2^{\alpha-3}+\beta_{2} 2^{\alpha}\right) \quad\left(\bmod 2^{\alpha+1}\right) \\
& \equiv 2^{\alpha-1} \quad\left(\bmod 2^{\alpha+1}\right) \\
& =2^{\alpha-1} .
\end{aligned}
$$

And $W_{\alpha+1}, 0, \frac{{ }^{H}{ }_{\alpha+1}}{8}-1={ }^{w}{ }_{\alpha+1}, 0, \frac{{ }^{H}{ }_{\alpha}}{8}+\frac{{ }^{H}}{8}-1$

$$
\begin{aligned}
& \equiv w_{\alpha+1,0,}^{2} \frac{H_{\alpha}^{8}-1}{}+w_{\alpha+1,0}^{2}, \frac{H_{\alpha}}{8}\left(\bmod 2^{\alpha+1}\right), \text { from lemma } 3.3 . \\
& \equiv\left(1+7 \times 2^{\alpha-3}+\beta_{1} 2^{\alpha}\right)^{2}+\left(2^{\alpha-2}+\beta_{2} 2^{\alpha}\right)^{2}\left(\bmod 2^{\alpha+1}\right) \\
& =1+7 \times 2^{\alpha-2} \quad \text { for some integers } \beta_{1} \text { and } \beta_{2}, \\
& =\quad
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
w_{\alpha+1,0}, \frac{H_{\alpha+1}}{8}+1 & =w_{\alpha+1}, 0, \frac{H_{\alpha}}{8}+1+\frac{H_{\alpha}}{8} \\
& \equiv{ }_{w_{\alpha+1}}{ }^{2}, 0, \frac{H^{\alpha}}{8}+{ }^{W_{\alpha+1}}{ }^{2}, 0, \frac{H^{\alpha}}{8}+1 \quad\left(\bmod 2^{\alpha+1}\right) \text {. from } 1 \text { emma } 3.3 . \\
& \equiv\left(2^{\alpha-2}+\beta_{1} 2^{\alpha}\right)^{2}+\left(1+2^{\alpha-3}+\beta_{2} 2^{\alpha}\right)^{2} \quad\left(\bmod 2^{\alpha+1}\right) \\
& =1+2^{\alpha-2} \quad \text { for some integers } \beta_{1} \text { and } \beta_{2}, \\
& \quad \text {. }
\end{aligned}
$$

Hence the lemma is proved by induction.

$$
\begin{align*}
& w_{n, r, 3 v+} H_{n} \equiv w_{n, 0,3 v+} H_{n}+2 r w_{n, 0,3 v+} H_{n} \quad\left(\bmod 2^{n}\right) \text {, from Lama 3.2. } \\
& \equiv w_{n, 0,3 v-1} w_{n, 0}, \frac{H_{n}}{8}+w_{n, 0,3 v}{ }^{7}{ }_{n, 0}, \frac{H_{n}}{8}+1 \\
& +2 r\left(w_{n, 0}, \frac{H_{n}}{8}-1 w_{n, 0,3 v-1}+w_{n, 0,} \frac{H_{n}}{8} w_{n, 0,3 v}\right)\left(\bmod 2^{n}\right) \\
& \text {, from } 1 \text { mana 3.3. } \\
& \equiv w_{n, 0,3 v-1}\left(w_{n, 0,} \frac{H_{n}}{8}+2 r w_{n, 0}, \frac{H_{n}}{8}-1\right) \\
& +w_{n, 0,3 v}\left(w_{n, 0,} \frac{H_{n}}{8}+1 \quad 2 r w_{\left.n, 0, \frac{H_{n}}{8}\right)}\left(\bmod 2^{n}\right) .\right. \tag{3,7}
\end{align*}
$$

When $n \geqslant 7$, it. follows from 7 emma 3.8 that

$$
\begin{align*}
& w_{n, r}, 3 v+\frac{H_{n}}{8} \equiv w_{n, 0,3 v-1}\left[2^{n-2}+2 r\left(1+7 \times 2^{n-3}\right)\right] \\
&+w_{n, 0,3 v\left[1+2^{n-3}+2 r\left(2^{n-2}\right)\right] \quad\left(\bmod 2^{n}\right)}^{\equiv} \\
& w_{n, 0,3 v}+2 r w_{n, 0,3 v-1}+w_{n, 0,3 v}\left(2^{n-3}+2^{n-1} r\right) \\
&+w_{n, 0,3 v-1}\left[2^{n-2}+2 r\left(7 \times 2^{n-3}\right)\right] \quad\left(\bmod 2^{n}\right) \\
& \equiv w_{n, r, 3 v}+2^{n-3} w_{n, 0,3 v}(1+4 r) \\
&+2^{n-2} w_{n, 0,3 v-1}(1+7 r) \quad\left(\bmod 2^{n}\right) \\
& \equiv w_{n, r}, 3 v \tag{3,8}\\
&+2^{n-3} w_{n, 0,3 v}+2^{n-2} w_{n, 0,3 v-1}(1+3 r)\left(\bmod 2^{n}\right)
\end{align*}
$$

Using the equation (3.8), we have the following 7 emma.

Lemma 3.9: When $n \geqslant 6$, we have

$$
w_{n, r, 3 v}+\frac{H_{n}}{8}=w_{n, r, 3 v} \text { if and only if } w_{n+1, r, 3 v+} \frac{H_{n+1}}{8}=w_{n+1, r, 3 v}
$$

Proof: When $n=5$, we have $w_{6,0, \frac{H_{6}}{8}}=16,{ }^{w} 6,0, \frac{H_{6}}{8}-1=25$ and

$$
{ }^{w_{6,0}}, \frac{H_{6}}{8}+1=41
$$

$\therefore \quad w_{6, r, 3 v}+\frac{H_{6}}{8}$

$$
\begin{aligned}
& \equiv w_{6,0,3 v-1}\left(w_{6,0}, \frac{H_{6}}{8}+2 r w_{6,0}, \frac{H_{6}}{8}\right)+w_{6,0,3 v}\left(w_{6}, 0, \frac{H_{6}}{8}+1+2 r w_{6,0}, \frac{H_{6}}{8}\right) \\
& \equiv\left(\bmod 2^{6}\right), \text { from }(3.7) . \\
& \equiv w_{6, r, 3 v}+8 w_{6,0,3 v}(5+4 r)+16_{6,0,3 v-1}(1+3 r) \quad\left(\bmod 2^{6}\right) \\
& \equiv w_{6, r, 3 v}+8 w_{6,0,3 v}+16_{6,0,3 v-1}(1+3 r)
\end{aligned}
$$

Hence jut follows that (3.8) is trace when $n=6$. Therefore when $n \geqslant 6$, we have

$$
\begin{align*}
& w_{n, r, 3 v}+\frac{H_{n}}{8}=w_{n, r, 3 v} \\
& \Leftrightarrow 2^{n-3} w_{n, 0,3 v}+2^{n-2} w_{n, 0,3 v-1}(1+3 r) \equiv 0 \\
& \left(\bmod 2^{n}\right) \\
& \Leftrightarrow 2^{n-2} w_{n, 0,3 v}+2^{n-1} w_{n, 0,3 v-1}(1+3 r) \equiv 0 \\
& \left(\bmod 2^{n+1}\right) \\
& \Leftrightarrow \quad 2^{n-2} w_{n+1}, 0,3 v+2^{n-1} w_{n+1}, 0,3 v-1(1+3 r) \equiv 0 \quad\left(m \circ d 2^{n+1}\right) \\
& \Leftrightarrow w_{n+1}, r, 3 v+\frac{H_{n+1}}{8}=w_{n+1, r, 3 v} \tag{3.8}\\
& \text { Q.B.D. }
\end{align*}
$$

The frequency of on dd number in a foll period can be easily found by the use of theorem 3.6. In order to find out the frequency of a given even number, the following terms are intmonced. Define

$$
\begin{aligned}
V_{n, r, 1}=\left\{v: 0 \leqslant v \leqslant 2^{n-1}-1 \text { and } w_{n, r, 3 v} \neq w_{n, r, 3 v}+\frac{H_{n}}{4}\right\}, \\
V_{n, r, 2}=\left\{v: 0 \leqslant v \leqslant 2^{n-1}-1 ; w_{n, r, 3 v}=w_{n, r, 3 v}+\frac{H_{n}}{4}\right. \\
\text { and } \left.w_{n, r, 3 v} \neq w_{n, r, 3 v+}+\frac{H_{n}}{\delta}\right\}
\end{aligned}
$$

and $V_{n, r, 3}=\left\{v: 0 \leqslant v \leqslant 2^{n-1}-1 ; w_{n, r, 3 v}=w_{n, r, 3 v}+\frac{H_{n}}{4}\right.$

$$
\text { and } w_{n, r, 3 v}=w_{\left.n, r, 3 v+\frac{H_{n}}{8}\right\} ~ . ~}
$$

The sets $V_{n, r, j}$ and $V_{n+1, r, j}$ where $j=1,2$, or 3 are related in the foll owing sense. This is an immediate consequence of theorem 3.4, lemma 3.9 and $(3,6)$.

Ir emma 3.10: For $n \geqslant 6$,

$$
V_{n+1, r, j}=\left\{v: v \in V_{n, r, j} \text { or } v-2^{n-1} \in V_{n, r, j}\right\}
$$

where $j=1,2$ or 3 .

Lemma 3.10 enables us to find out $V_{n, r, j}$, where $n \geqslant 7$, from $V_{6, r, j}$. By numerical inspection, it is found that either $V_{6, r, 2}$ or $V_{6, r, 3}$ must be empty. Moreover, when $0 \leqslant v<2^{5}, v \in V_{6, r, 1}$ if and only if $v \pm 1 \& V_{6, r, 1}$. Given that $w_{6, r, 3 v}=0$ where $0 \leqslant v<2^{5}$, we have $v \in V_{6, r, 1}$. These farts evidence the following results:

1. $V_{n, r, 2}=\phi$ if and only if $V_{n, r, 3} \neq \phi$ when $n \geqslant 6$.
2. When $0 \leqslant y<2^{n-1}, v \in V_{n, r, 1}$ if and only if $v \pm 1$ \& $V_{n, r, 1}$.
3. When $0 \leqslant v<2^{n-1}$, we have $v \in v_{n, r, 1}$ if $w_{n, r, 3 v}=0$.

The above relations are simple but useful in the following sections,

$$
\text { The notation } f_{n e q}, r, j(x) \text { is used to denote the value of }
$$

$\sum_{v \in V_{n, r}, j} \chi_{\{x\}}\left(w_{n, r, 3 v}\right)$ where $j=1,2$ or $3 . \quad\left(\chi_{\{x\}}\right.$ is the indicator function
of $\{x\}$.$) . It is obvious that$ freq $_{n, w}(2 k)=\sum_{j=1}^{3}$ freq $_{n, r, j}(2 k)$, where $w=\left\{w_{n, r, i}\right\}$. Using the se notations, we have

Lemma 3.11: For $n \geqslant 6$,

$$
\operatorname{freq}_{n+1, r, 1}(x)=\operatorname{freq}_{n+1, r, 1}\left(x+2^{n}\right)=\operatorname{freq}_{n, r, 1}(x),
$$

where $0<x \leqslant 2^{n}-2$.

Proof: Clearly we have when $0 \leqslant \gamma \leqslant 2^{n}-2$,

$$
\begin{equation*}
\operatorname{freq}_{n+1, r, 1}(x)+\operatorname{freq}_{n+1, r, 1}\left(x+2^{n}\right)=2 \operatorname{freq}_{n, r, 1}(x) . \tag{3,10}
\end{equation*}
$$

Suppose $\mathrm{v} \in \mathrm{V}_{\mathrm{n}, \mathrm{r}, 1}$. Let $\mathrm{v}^{*} \equiv \mathrm{v}+2^{\mathrm{n}-3}\left(\bmod 2^{\mathrm{n}-1}\right)$. It is obvious that $\mathrm{V}^{*} \in \mathrm{~V}_{\mathrm{n}, \mathrm{r}, 1}$. Since

$$
w_{n+1, r, 3 v} \Rightarrow w_{n+1, r}, 3 v^{*} \quad\left(\bmod 2^{n+1}\right)
$$

we have

$$
\operatorname{freq}_{n+1, r, 1}(x)=\operatorname{freq}_{n+1, r, 1}\left(x+2^{n}\right) \text {, }
$$

where $0 \leqslant x \leqslant 2^{n}-2$. From (3.10), it follows that

$$
\text { freq }_{n+1, r, 1}(x)=\text { freq }_{n+1, r, 1}\left(x+2^{n}\right)=\text { freq }_{n, r, 1}(x),
$$

where $0 \leqslant x \leqslant 2^{n}-2$.

Iemina 3.12: For $n \geqslant 6$,

$$
\operatorname{freq}_{n+1, r, 2}(x)=\operatorname{freq}_{n+1, r, 2}\left(x+2^{n}\right)=\operatorname{freq}_{n, r, 2}(x) \text {, }
$$

where $0 \leqslant x \leqslant 2^{n}-2$.

Proof: Similar to the proof of lemma 3.11, we have for $0 \leqslant x \leqslant 2^{n}-2$,

$$
\begin{equation*}
\operatorname{freq}_{n+1, r, 2}(x)+\text { freq }_{n+1, r, 2}\left(x+2^{n}\right)=2 \text { freq }_{n, r, 2}(x) \text {. } \tag{3.11}
\end{equation*}
$$

Suppose $\mathrm{v} \in \mathrm{V}_{\mathrm{n}, \mathrm{r}, 2}$ and $\mathrm{v}^{*} \equiv \mathrm{v}+2^{\mathrm{n}-3}\left(\bmod 2^{\mathrm{n}-1}\right)$. It is not difficult to show that $\mathrm{V}^{*} \in \mathrm{~V}_{\mathrm{n}, \mathrm{r}, 2}$. For every pair v and V^{*} in $\mathrm{V}_{\mathrm{n}, \mathrm{r}, 2}$, we have

$$
w_{n+1, r, 3 v}=w_{n+1, r, 3 v+\frac{H_{n+1}}{4} \neq w_{n+1, r, 3 v^{*}}=w_{n+1, r, 3 v^{*}}+\frac{H_{n+1}}{4} \text {, }, \text {, }, ~}
$$

and

$$
w_{n+1, r, 3 v} \equiv w_{n+1, r, 3 v^{*}} \quad\left(\bmod 2^{n}\right)
$$

Hence

$$
\text { freq }_{n+1, r, 2}(x)=\operatorname{freq}_{n+1, r, 2}\left(x+2^{n}\right),
$$

where $0 \leqslant x \leqslant 2^{n}-2$. From (3.11), it follows that

$$
\operatorname{freq}_{n+1, r, 2}(x)=\text { freq }_{n+1, r, 2}\left(x+2^{n}\right)=\operatorname{freq}_{n, r, 2}(x) \text {, }
$$

where $0 \leqslant x \leqslant 2^{n}-2$.

By induction on lemma 3.11 and lemma 3.12, we obtain the following lemma.

Lemma 3.13: For $n \geqslant 6$,

$$
\operatorname{freq}_{n, r, 1,2}(x)=\text { freq }_{6, r, 1,2}(x) \text {, }
$$

where $y \equiv x\left(\right.$ mod $\left.2^{6}\right)$.
(freq $_{n, r, 1,2}(x) \quad$ stands for the expression $\left.\sum_{V \in V_{n, r, 1} \cup V_{n, r}, 2} X\{x\}\left(w_{n, r, 3 v}\right)_{0}\right)$

It j.s desirable that a "tmely random" $2^{n}-a r y$ senuenoe should have the pronerty that for any nair of integers M and N such that. $0 \leqslant M$, $N<2^{n}, M$ and N should have equal frequency of ocourring in the sequence. Jhemefore the volue

$$
\max _{0 \leqslant x<2^{n}} \operatorname{freq}_{n}(x)-\min _{0 \leqslant x<2^{n}} \operatorname{freq}_{n}(x)
$$

con be used to "mersure" the randomness of a 2^{n}-ary sequence $\left\{w_{n, r, i}\right\}$. For any Fibonacci sequence mod $2^{n},\left\{w_{r, r, i}\right\}$, it can be shown that when $n \geqslant 6$,

$$
\min _{0 \leqslant x<2^{n}} \operatorname{freq}_{n}(x)=0
$$

From the orem 3.6, we have

$$
\begin{aligned}
& \max _{0 \leqslant x<2^{n}} \operatorname{freq}_{n}(x)=3 . \\
& x \text { is odd. }
\end{aligned}
$$

From Iemma 3.13, we have

$$
\max _{0 \leqslant x<2^{n}} \operatorname{freq}_{n, r, 1,2}(x)=\max _{0 \leqslant x<2} \operatorname{freq}_{6, r, 1,2}(x) \leqslant 8
$$

However the value $\max _{0 \leqslant x<2^{n}}$ freq $_{n, x, 3}(x)$ is likely to inorease as n increases, when $V_{n, x, 3}$ is non-empty. Table 3.1 gives the values of $\max _{0 \leqslant x<2}$ freq $_{n, r}, j(x)$ for some values of n and r and tahle $3 . ?$ shows freq $n, r, j(x)$ for some values of n and x, Both tables 3.1 and 3.2 evidence that the presence of $Y n, r, 3$ will make the ralue of

$$
\max _{0 \leqslant x<2^{n}} \operatorname{freq}_{n}(x)-\min _{0 \leqslant x<2^{n}}^{\text {freq}_{n}}(x)
$$

inorease. Hence the choice of r such that $V_{n, x, 3}=\phi$ is preferred.

Table 3.1

n	6	7	8	9	10	11	12.
r	1	1	1	1	1	1	1
$\max _{0 \leqslant x<2} \operatorname{frreq}_{n, r, 3}(x)$	8	16	16	32	32.	61.	61.
Values of x that have maximum frequency	2,18	18	2,18,66,146	32.2	2,258,322,834	1282	2,1062,1282,3330
n	ϵ	7	8	9	10	11	12.
r	5	5	5	5	5	5	5
$\max _{n}$ freq $_{n, r, 3}(\mathrm{x})$	8	16	16	32.	32	6	64
meximum frequency	10,58	10	10,58,122,138	122	58,122,314, 634	314	58,314, 1082,2362
n		7	8	9	10	11	12
r		33	33	33	33	33	33
$\max _{0 \leq x 2^{n}} \text { freq }_{n, r, 3}(x)$		16	16	32	32	E_{+}	$6{ }_{+}$
maximum freouency		8.2	66,82,130,210	386	66,32?, 386,898	322	66,322,2370,3138
n			8	9	10	11	12
r			29	29	29	29	29
$\max _{0 \leqslant x<2^{n}} \text { freq }_{n, r, 3}(x)$			16	32	32	\downarrow_{+}	61.
Talues of x that have maximum frequency			4,2,58,186,234	298	2.98.746,810, 1002	1002	746,1002,1770,3050

Those 3.2
$n=1$

n	6	7	8	9	10	11	12	13	14	20
freq $_{\mathrm{n}, \mathrm{r}, 3}(2)$	8	8	16	16	32	32	64	64	128	1024

n	10	11	12	13	14	15	16
freq $_{n, r},(746)$	32	32	$6+$	64	128	256	256

From lemma 3.10 and the direct calculation of $V_{6, r, 3}$, we find that $V_{n, r, 3}=\phi$ if and only if $r \equiv 0$ or 3 (mod 4), when $n \geqslant 6$. Therefore jut seems suitable to choose r such that $r \equiv 0$ or 3 (mod 4). This suggestion coincides with the idea of Jonson (1966). Now under the condition $r \equiv 0$ or $3(\bmod 2)$, we have

$$
\operatorname{freq}_{6}(x)=\operatorname{freq}_{6}\left(x+2^{5}\right)=\operatorname{freq}_{5}(x)
$$

where $0 \leqslant x<2^{5}$. Hence we have the following result.

Theorem 3.14: For $n \geqslant 5,\left\{y_{n, i}\right\}$ is a Fibonacci sequence mod 2^{n} such that at least one of the initial values is odd. If

$$
\psi_{5}\left(\left\{y_{n, i}, \bmod 2^{5}\right\}\right)=0,3,4,7,8,11,12 \text { or } 15
$$

then

$$
\operatorname{freq}_{n}(x)=\operatorname{freq}_{5}(t)
$$

where $t \equiv x\left(\bmod 2^{5}\right), 0 \leqslant x<2^{n}$ and $\operatorname{freq}_{5}(t)$ means the frequency of t in $\left\{y_{n, i}, \bmod 2^{5}\right\}$ over the entire period.

Note that freq $(2 k+1)$ in theorem 3.14 can be calcul ate from theorem 3.6 and

$$
\begin{aligned}
f^{\prime} r e q_{5}(2 k)=\left\{\begin{array}{ll}
2 & \text { if } 2 k=0,8,16,2_{+} \\
8 & \text { if } 2 k=t_{1}, \text { where } r=\psi_{5}\left(\left\{y_{n, i}, \bmod 2^{5}\right\}\right) \\
& 0 \quad \text { otherwise. }
\end{array} .\right.
\end{aligned}
$$

The values of t_{r} are listed in the following table.

Table 3.3: Values of t_{5}

r	0	3	4	7	8	11	12	15
t_{r}	2	6	10	14	18	22	26	30

Jonson (1966) constructed a table of subperiods from which theorem 3.14 can be deduced. However the proof of the table was not given and the restriction on n was not clearly stated.

Under the conditions of theorem 3.14, the sum of $y_{n, i}$ and $y_{n, i}^{2}$ over the whole period can be calculated exactly. If $k \leqslant n,\left\{y_{k, i}\right\}$ is defined by the equation $y_{k, i} \equiv y_{n, i}\left(\bmod 2^{k}\right)$. Clearly $\left\{y_{k, i}\right\} \in A_{k}$.

Corollary 3.15: Under the conditions of theorem 3.14, we have

$$
\begin{align*}
& \sum_{i=0}^{H_{n}^{-1}} y_{n, i}=2^{n-k} \sum_{i=0}^{H_{k}^{-1}} y_{k, i}+3 \times 2^{n-2}\left(2^{n}-2^{k}\right) \tag{3,12}\\
& \sum_{i=0}^{H_{n}^{-1}} y_{n, i}^{2}=2^{n-k} \sum_{i=0}^{H_{k}^{-1}} y_{k, i}^{2}+2^{n}\left(2^{n-k}-1\right) \sum_{j=0}^{H_{k}-1} y_{k, i} \\
& +2^{n}\left(2^{n}-2^{k}\right)\left(2^{n-1}-2^{k-2}\right) \tag{3.13}
\end{align*}
$$

where $n \geqslant k \geqslant 5$.

Proof: The proof is obvious because from theorem 3.1/4, we have

$$
\sum_{i=0}^{H_{n}-1} y_{n, i}=2 \sum_{i=0}^{H_{n-1}-1} y_{n-1, i}+2^{n-1} H_{n-1}
$$

$$
\sum_{i=0}^{H_{n}-1} y_{n, i}^{2}=\sum_{i=0}^{H_{n-1}-1} y_{n-1, i}^{2}+\sum_{i=0}^{H_{n-1}-1}\left(y_{n-1, i}+2^{n-1}\right)^{2} .
$$

The values of $\sum_{i=0}^{\mathrm{H}^{-1}} y_{5, i}$ and $\sum_{i=0}^{\mathrm{H}_{5}-1} \mathrm{y}_{5, i}^{2}$ for some values of r are given in table 3.4 .

TaBle 3.4: Values of $\sum_{i=0}^{\mathrm{H}_{5}-1} y_{5, i}$ and $\sum_{i=0}^{\mathrm{H}_{5}-1} y_{5, i}{ }^{2}$ for some values of r

r	0	3	4	7	8	11	12	15
$\sum_{i=0}^{H_{5-1}} y_{5, i}$	608	672	672	736	736	800	800	864
$H_{5}-1$								
$\sum_{i=0}^{2} y_{5, i}^{2}$	12224	13504	12992	14,784	14794	17088	17600	20416

Example: Consider the Fibonacci generator $y_{10, i} \equiv y_{10, i-1}+y_{10, i-2}\left(\bmod 2^{10}\right)$. Given $y_{10,0}=38$ and $y_{10,1}=85$, it can be found that

$$
\psi_{5}\left(\left\{y_{5, i}\right\}\right)=3 .
$$

Using corollary 3.15 with $k=5$, we have

$$
\begin{aligned}
\sum_{i=0}^{H_{10}-1} y_{10, i} & =2^{10-5} \times 672+3 \times 2^{8}\left(2^{10}-2^{5}\right), \text { from table } 3.4 \\
& =783360
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=0}^{100^{-1}} \mathrm{y}_{10, i}^{2}= & 2^{10-5} \times 13504+2^{10}\left(2^{10-5}-1\right) \times 672 \quad \text {. from table } 3.4 \\
& +2^{10}\left(2^{10}-2^{5}\right)\left(2^{10-1}-2^{5-2}\right) \\
= & 53372328 .
\end{aligned}
$$

Hence the mean and variance of the oseudo-random numbers $x_{10, i}\left(x_{10, \ldots}=y_{10, i} / 2^{10}\right)$ are
and

$$
\begin{aligned}
& E\left(x_{10, i}\right)=\frac{1}{H_{10}} \sum_{i=0}^{-1} y_{10, i} / 2^{10} \\
&=78,360 /\left(3 \times 2^{19}\right) \\
&=0.498046875 \\
& H_{10^{-1}}
\end{aligned}
$$

$$
\mathrm{H}_{10^{-1}}
$$

$$
\begin{aligned}
\operatorname{var}\left(x_{10, i}\right) & =\frac{1}{H_{10}}\left[\sum_{i=0} y_{10, i}^{2} / 2^{20}-\frac{1}{H_{10}}\left(\sum_{i=0} y_{10, i} / 2^{10}\right)^{2}\right] \\
& =\frac{1}{3 \times 2^{9}}\left(\frac{533731328}{2^{20}}-\frac{783360^{2}}{3 \times 2^{29}}\right) \\
& =0.08333333 .
\end{aligned}
$$

Following directly from corollary 3.15 and table 3.4 , we obtain lower and upper bounds for $E\left(x_{n, i}\right)$ and $E\left(x_{r, i}^{2}\right)$:

Corollary 3.16: Under the conditions of theorem 3.14, we have

$$
\begin{gathered}
-\frac{5}{3} 2^{1-n} \leqslant E\left(x_{n, i}\right)-0.5 \leqslant 2^{1-n} \text { and } \\
5 \times 2^{2-2 n}-\frac{5}{3} 2^{1-n} \leqslant E\left(x_{n, i}^{2}\right)-\frac{1}{3} \leqslant 5 \times 2^{2-2 n}+2^{1-n}
\end{gathered}
$$

Now consider another Fibonacci generator

$$
y_{10, i} \equiv y_{10, i-1}+y_{10, i-2} \quad\left(\bmod 2^{10}\right)
$$

with $y_{10,0}=25$ and $y_{10,1}=28$. It is found that $\left\{y_{10, i}\right\}$ does not satisfy
the conditions of theorem $3.14\left(\psi_{5}\left(\left\{y_{5, i}\right\}\right) \geqslant 0\right.$ or $\left.3(\bmod 4)\right)$. The corresponding values are

$$
\sum_{i=0}^{\mathrm{H}_{10^{-1}}} y_{10, i}=760832 \text { and } \sum_{i=0}^{\mathrm{H}_{10}-1} y_{10, i}^{2}=508585984 .
$$

Thus

$$
\begin{aligned}
& E\left(x_{10, i}\right)=0.483723958<0.5-\frac{5}{3} 2^{-9}=0.496744792 . \\
& E\left(x_{10, i}^{2}\right)=0.315771739<\frac{1}{3}+5 \times 2^{-18}-\frac{5}{3} 2^{-9}=0.330097198 .
\end{aligned}
$$

Both $E\left(x_{10, i}\right)$ and $E\left(x_{10, i}^{2}\right)$ are less than the corresponding 1 ower bounds stated in corollary 3.16 .

Section 3: The serial correlation $P_{X}(s)$, when $s \equiv 1$ or $5(\bmod 6)$.

Sections 3 and 4. are concerned with certain serial correlation properties of the Fibonacci pseudo-random numbers. First of all, we give the definition of serial correlation of a periodic psemdo-random number sequence.

Definition 3.2: Let $x=\left\{x_{i}\right\}$ be a periodic oseudorandom number senuence with period H. The serial correlation of lags, say $p_{X}(s)$, is defined as

$$
P_{x}(s)=\left\{\frac{1}{H} \sum_{i=0}^{H-1} x_{i} x_{i+s}-\frac{1}{H^{2}}\left(\sum_{i=0}^{H-1} x_{i}\right)^{2}\right\} /\left\{\frac{1}{H} \sum_{i=0}^{H-1} x_{i}{ }^{2}-\frac{1}{H^{2}}\left(\sum_{i=0}^{H-1} x_{i}\right)^{2}\right\} .
$$

Let $\left\{y_{n, i}\right\}$ be ir A_{n} such that the conditions of theorem 3.14. are satisfied. The sequence $\left\{y_{k, j}\right\}$ where $k \leqslant n$ is defined by equation
$y_{k, i} \equiv y_{n, i}\left(\bmod 2^{k}\right)$. In studying the serial correlation of $x=\left\{x_{n, i}\right\}$ $\left(\left\{x_{n, i}\right\}=\left\{y_{n, i} / 2^{n}\right\}\right)$, the main difficulty is that of finding out the $\mathrm{H}_{\mathrm{n}}{ }^{-1}$
value of $\sum_{i=0} y_{n, i} y_{n, i+s}$. In this section, we consider $f_{x}(s)$ only for $s \equiv 1$ or $5(\bmod 6)$ and $n \geqslant 7$. Since $s \neq 0(\bmod 3), y_{n-1, i}$ and $Y_{n-1, i+s}$ cannot be both even; we are left with the three equally likely cases:

$$
\begin{array}{ll}
\text { case I: } & \text { Both } y_{r_{1-1}, i} \text { and } y_{n-1, i+s} \text { are odd. } \\
\text { case II: } & y_{n-1, i} \text { is odd and } y_{n-1, i+s} \text { is even. } \\
\text { case III: } & y_{n_{n-1}, i} \text { is even and. } y_{n-1, i+s} \text { is odd. }
\end{array}
$$

Now we consider the three cases individually.

Case I: Assume $y_{n-1, i}$ and $y_{n-1, i+s}$ are od, where $0 \leqslant i<H_{n-1}$. Then $Y_{n, i}$ and $y_{n, i+s}$ must belong to one of the following suheases:

$$
\begin{array}{ll}
\text { case Ia) } & y_{n, i}-y_{n-1, i}=y_{n, i+s}-y_{n-1, i+s} \\
\text { case Ib) } & y_{n, i}-y_{n-1, i} \neq y_{n, i+s}-y_{n-1, i+s} \tag{3.15}
\end{array}
$$

Tn case Ia),

$$
\begin{align*}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{H_{n}}{2} y_{n, i}+\frac{H_{n}}{2}+s \\
= & y_{n-1, i} y_{n-1, i+s}+\left(y_{n-1, i}+2^{n-1}\right)\left(y_{n-1, i+s}+2^{n-1}\right) \\
= & 2 y_{n-1, i} y_{n-1, i+s}+\left(y_{n-1, i}+y_{n-1, i+s}\right) 2^{n-1}+2^{2 n-2} . \tag{3.16}
\end{align*}
$$

Tn case Tb),

$$
y_{n, i} y_{n, i+s}+y_{n, i+} \frac{H_{n}}{2} y_{n, i}+\frac{H_{n}}{2}+s
$$

$$
\begin{align*}
& =y_{n-1, i}\left(y_{n-1, i+s}+2^{n-1}\right)+y_{n-1, i+s}\left(y_{n-1, i}+2^{n-1}\right) \\
& =2 y_{n-1, i} y_{n-1, i+s}+\left(y_{n-1, i}+y_{n-1, i+s}\right) 2^{n-1} \tag{3.17}
\end{align*}
$$

The only difference between (3.16) and (3.17) is the term $2^{2 n-2}$. The problem is then to find out how many j 's, $0 \leqslant i<H_{n-1}$ are such that $y_{n-1, i}$ and $y_{n-1, i+s}$ are odd and that (3.14.) is satisfied. To do this, the following lemmas are necessary.

Lemma 3.17: Let $\left\{y_{n, i}\right\}$ be a Fibonacci sequence mod. 2^{n} with initial values $y_{n, 0}=0$ and. $y_{n, 1}$ being odd. Then for any non-negative integer t,

$$
y_{n, \frac{n}{2}-t} \equiv(-1)^{t-1} y_{n, t}+\alpha_{t} 2^{n-1} \quad\left(\bmod 2^{n}\right)
$$

where

$$
\begin{array}{ll}
\alpha_{t}=\int & \text { if } t \equiv 0 \quad(\bmod 3) \\
1 & \text { if } t \neq 0 \quad(\bmod 3)
\end{array}
$$

Proof: From theorem 3.4,

$$
\begin{gathered}
-y_{n, \frac{H_{n}^{2}}{2}} \equiv 0 \equiv y_{n, 0} \quad\left(\bmod 2^{n}\right) \quad \\
y_{n, \frac{H_{n-1}}{2}} \equiv-y_{n, \frac{H_{n}^{2}}{2}}+y_{n, \frac{H_{n+1}^{2}}{} \equiv y_{n, \frac{H_{n}}{2}+1} \equiv y_{n, 1}+2^{n-1} \quad\left(\bmod 2^{n}\right) .} .
\end{gathered}
$$

It follows that

$$
\begin{align*}
-y_{n}, \frac{H_{n-2}^{2}}{} \equiv y_{n}, \frac{H_{n}^{2}-1}{}-y_{n}, \frac{H_{n}^{2}}{} \equiv y_{n, 0}+y_{n, 1}+2^{n-1} \equiv y_{n, 2}+2^{n-1} \quad \text { (mod 2 2 }
\end{align*}
$$

Clearly we have

$$
\left(\bmod 2^{n}\right)
$$

where

$$
\begin{aligned}
& (-1)^{t-1} y_{n, \frac{H_{n}}{2}-t} \equiv y_{n, t}+\alpha_{t} 2^{n-1} \\
& \alpha_{t}= \begin{cases}0 & \text { if } t \equiv 0 \quad(\bmod 3) \\
1 & \text { if } t \neq 0 \quad(\bmod 3)\end{cases}
\end{aligned}
$$

The next lemma follows easily from lema 3.1?.

Lemma 3.18: Let $\left\{y_{n, i}\right\}$ be a Fibonacci sequence mod 2^{n} with injtial values $y_{n, 0}=0$ and $y_{n, 1}$ being odd. For any non-negative integer t such that t = $0(\bmod 3)$, we have

By numerical inspection, it is not diffioult to see that for all $n \geqslant 5$, $\psi_{5}\left(\left\{y_{5, i}\right\}\right)=0,3,4,7,8,11,12$ or 15 if and oniy if there exists an integer t such that $y_{n, t}=0$. Without loss of generality, we may therefore assume that $y_{n, 0}=0$ and $y_{n, 1}$ is odd. From lemme 3.18, we have for t 事 0 (modi 3),

$$
y_{n, t}-y_{n-1, t}=y_{n, t+s}-y_{n-1, t+s}
$$

if and only if

$$
y_{n}, \frac{H_{n}}{2}-t-y_{n-1}, \frac{H_{n}}{2}-t \Rightarrow y_{n}, \frac{H_{n}}{2}-t-s-y_{n-1}, \frac{H_{n}}{2}-t-s
$$

It shows that case I a) and case $I b$) have equal frequency of oocuming. We thus hove

$$
\begin{align*}
& \sum_{i=0}^{H_{n}-1} y_{n, i} y_{n, i+s}=2 \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} y_{n-1, i+s}+2^{n-1} \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} \\
& y_{n, i} \text { and } y_{n, i+s} \quad y_{n-1, i} \text { and } \\
& \text { are both ada } \\
& y_{n-1, i+3} \text { are } \\
& \text { both ode } \\
& +\frac{2^{2 n-2}}{6} H_{n-1} \tag{3,18}
\end{align*}
$$

Case II: Suppose $y_{r-1, i}$ is mad and $y_{n=1, i+s}$ is even, We have again typo submerses:

$$
\begin{array}{ll}
\text { case TIa) } & y_{n, i+s}=y_{n-1, i+s} \\
\text { case Tb) } & y_{n, i+s}=y_{n-1, i+s}+2^{n-1} .
\end{array}
$$

In case TIa),

$$
\begin{align*}
& y_{n, i} y_{n, i+s}+y_{n, i+} \frac{H_{n}}{2} y_{n, i+s}+\frac{H_{n}}{2} \\
= & y_{n-1, i} y_{n-1, i+s}+y_{n-1, i+s}\left(y_{n-1, i}+2^{n-1}\right) \\
= & 2 y_{n-1, i} y_{n-1, i+s}+2^{n-1} y_{n-1, i+s} \tag{3.19}
\end{align*}
$$

In case TIJ),

$$
\begin{align*}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{i_{n}}{2} y_{n, i+s}+\frac{H_{n}}{2} \\
= & y_{n-1, i}\left(y_{n-1, i+s}+2^{n-1}\right)+\left(y_{n-1, i}+2^{n-1}\right)\left(y_{n-1, i+s}+2^{n-1}\right) \\
= & 2 y_{n-1, i} y_{n-1, i+s}+\left(2 y_{n-1, i}+y_{n-1, i+s}\right) 2^{n-1}+2^{2 n-2} . \tag{3.20}
\end{align*}
$$

on the other hand, from theorem 3.14 we have

$$
\operatorname{freq}_{n}(x)=\operatorname{freq}_{n}\left(x+2^{n-1}\right)
$$

where $0 \leqslant x<2^{n-1}$. It implies that the frequencies of case ILa) and case Tb) to occur are equal.
where $F_{n-1, s, 1}=\left\{i: 0 \leqslant i<H_{n-1}, Y_{n-1, i}\right.$ is odd, $y_{n-1, i+s}$ is even and

$$
\left.y_{n, i+s} \geqslant 2^{n-1}\right\}
$$

Case IIT: Let $y_{n-1, i}$ be even and $y_{n-1, i+s}$ be odd, Similar to case II, we have

$$
\begin{aligned}
& \sum_{i=0}^{H_{n}^{-1}} y_{n, i} y_{n, i+s}=2 \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} y_{n-1, i+s}+2^{n-1} \sum_{i=0}^{y_{n-1}} y_{i \equiv 0(\bmod 3)}^{y_{n-1, i}} y_{n-i} \text { is even even } \\
& y_{n, j+s} \text { is odd } \\
& y_{n-1, i+s} \text { is odd }
\end{aligned}
$$

$$
\begin{equation*}
+2^{n} \sum_{i \in F_{n-1, s, 2}} y_{n-1, i}+\frac{2^{2 n-2}}{6} H_{n-1} \tag{3,22}
\end{equation*}
$$

where $F_{n-1, s, 2}=\left\{i: 0 \leqslant i<H_{n-1}, y_{n-1, i}\right.$ is even, $y_{n-1, i+s}$ is odd and

$$
\left.y_{n, i} \geqslant 2^{n-1}\right\}
$$

$$
\begin{align*}
& \therefore \quad \sum_{i=0}^{H_{n}-1} y_{n, i} y_{n, i+s}=2 \sum_{i=0}^{H_{n-1}-1} \quad y_{n-1, i} y_{n-1, i+s}+2^{n-1} \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} \\
& y_{n, i} \text { is odd } \quad y_{n-1}, i \text { is odd } \quad i \equiv 0(\bmod 3) \\
& y_{n, j+s} \text { jus even } \quad y_{n-1, i+s} \text { is even } \\
& +2^{n} \sum_{i \in F_{n-1, s, 1}} y_{n-1, i}+\frac{2^{2 n-2}}{6} H_{n-1}, \tag{3,21}
\end{align*}
$$

Combining (3.18), (3.21) and (3.22), we obtain the following equation:

$$
\begin{align*}
\sum_{i=0}^{H_{n}-1} y_{n, i} y_{n, i+s}= & 2 \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} y_{n-1, i+s}+2^{n-1} \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i}+2^{n-1} \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} \\
& +2^{n} \sum_{i \in F_{n-1, s, 1} \cup F_{n-1, s, 2}}^{\left.y_{n-1, i}+3\right)} \tag{3,23}
\end{align*}
$$

$$
\mathrm{H}_{\mathrm{n}}{ }^{-1} \quad \mathrm{H}_{\mathrm{n}-1}^{-1}
$$

(3.23) as a recurrence relation between $\sum_{i=0} y_{n, i} y_{n, i+s}$ and $\sum_{i=0} y_{n-1, i} y_{n-1, i+s}$. Define

$$
\begin{aligned}
& G_{n-1, s, 1}=\left\{i: 0 \leqslant i \leqslant H_{n-1}, y_{n, i} \geqslant 2^{n-1} \text { and } i \equiv 0(\bmod 3)\right\}, \\
& G_{n-1, s, 2}=\left\{i: 0 \leqslant i<H_{n-1}, y_{n, i}<2^{n-1} \text { and } i \equiv 0(\bmod 3)\right\}, \\
& Q_{n-1, s, 1}=\sum_{i \in G_{n-1, s, 1}}\left(y_{n-1, i-s}+y_{n-1, i+s}\right)
\end{aligned}
$$

and

$$
Q_{n-1, s, 2}=\sum_{i \in G_{n-1, s, 2}}\left(y_{n-1, i-s}+y_{n-1, i+s}\right)
$$

It is obvious that

$$
\begin{equation*}
\sum_{i \in F_{n-1, s, 1} \cup F_{n-1, s, 2}} y_{n-1, i}=Q_{n-1, s, 1} \tag{3,24}
\end{equation*}
$$

and

$$
H_{n-1}-1
$$

$$
\begin{equation*}
Q_{n-1, s, 1}+Q_{n-1, s, 2}=\sum_{\substack{i=0 \\ i \neq 0(\bmod 3)}} y_{n-1, i} . \tag{3,25}
\end{equation*}
$$

We shall evaluate the difference of $Q_{n-1, s, 1}$ and $Q_{n-1, s, 2}$ first and then make use of (3.25) to find out the value of $Q_{n-i, s, 1}$. To do this, the following eguality, which can be derived by similar method as that in the proof of Jemma 3.17, is useful.

$$
\begin{equation*}
y_{n-1}, \frac{H_{n-t}^{2}}{2} \equiv(-1)^{t-1} y_{n-1, t} \quad\left(\bmod 2^{n-1}\right) \tag{3.26}
\end{equation*}
$$

Now divide all the possible i 's such that $i \equiv 0(\bmod 3)$ and $0 \leqslant i<H_{n-1}$, into the following three cases.

Case 1: Sunpose i is even and $i \neq 0, \frac{H_{n}}{4}$. Wrom lemma 3.17,

$$
y_{n, \frac{n}{2}-i}=2^{n}-y_{n, i} .
$$

Hence one and only one of $y_{n, i}$ and $y_{n}, \frac{H_{n}}{2}-i$ is less than 2^{n-1}, ine. sither
i or $\frac{H_{n}}{2}-i$ belongs to $G_{n-1, s, 1}$. Applying (3.26), we hove

$$
y_{n-1}, \frac{H_{n}^{2}}{2}-i-s+y_{n-1}, \frac{H_{n}^{2}}{2}-i+s=y_{n-1, i+s}+y_{n-1, i-s} .
$$

Themefore, no matter which one is in $G_{n-1, s, 1}$, the difference of $Q_{n-1, s, 1}$ and $Q_{n-1, s, 2}$ is not affected.

Case 2: Sunpose i is odd. Clearly i can be expressed as $i^{*}, H_{n-1}-i^{*}$, $H_{n-1}-i^{*}-\frac{H_{n-1}}{4}$ or $i^{*}+\frac{H_{n-1}}{4}$ where $0 \leqslant i^{*}<\frac{H_{n-1}}{4}$. From 2emma 3.17 again, we have

$$
y_{n, \frac{n_{n}^{2}}{}-i^{*}}=y_{n, i}
$$

and.

Since $i . \% / 3$ must be odd and $y_{n, 0}=0$, it can easily be proved that

$$
y_{n, i *} \neq y_{n, i *}+H_{n} / 8
$$

ana

$$
y_{n, i^{*}} \equiv y_{n, i^{*}+H_{n} / 8} \quad\left(\bmod 2^{n-1}\right) \quad \text { from }(3.9)
$$

So, either $H_{n} / 2-i^{*}$ and i^{*} or $H_{n} / 2-i^{*}-H_{n} / 8$ and $i^{*}+H_{n} / 8$ belong to $G_{n-1, s, i}$. From (3.26), we get

$$
\begin{aligned}
& y_{n-1}, \frac{H_{n}}{2}-i^{*}+s+y_{n-1}, \frac{H_{n}}{2}-i^{*}-s+y_{n-1, i^{*}-s}+y_{n-1, i *}+s \\
= & y_{n-1}, \frac{H_{n}}{2}-i^{*}-\frac{H_{n}}{8}+s+y_{n-1}, \frac{H_{n}}{2}-i^{*}-\frac{H_{n}}{8}-s+y_{n-1, i^{*}}+\frac{H_{n}}{8}+s+y_{n-1, i^{*}}+\frac{H_{n-}}{8} .
\end{aligned}
$$

Hence the difference of $Q_{n-1, s, 1}$ and $Q_{n-1, s, 2}$ is not affected in this case.

Cere 3: Assume $i=0$ or $i=H_{n} / L$. Clearly $y_{n-1,0}=y_{n, 0}=0$, $y_{n-1, H_{n} / 4}=y_{n-1,0}=0$ and $y_{n, H_{n} / 4}=2^{n-1}$. It implies that $0 \in G_{n-1, s, 2}$ and $H_{n} / 4 \in G_{n-2, s, 1}$. From (3.26), we have

$$
y_{n-1, s}=y_{n-1, H_{n-1}-s}
$$

ama

$$
\begin{gathered}
y_{n-1, H_{n} / 4+s}=y_{n-1, H_{n} / 4-s} \cdot \\
\therefore \quad\left|y_{n-1, s}+y_{n-1, H_{n-1}-s}-y_{n-1}, \frac{H_{n}}{4}+s-y_{n-1}, \frac{H_{n}-s}{4}\right|=2^{n-1} .
\end{gathered}
$$

Let $y_{n, s}=\sum_{i=0}^{n-1} \beta_{s, i} 2^{i}$ where $\beta_{s, i}=0$ or 1 . Obviously,

$$
\begin{aligned}
& y_{n-1, s}+y_{n-1, H_{n-1}-s}-y_{n-1, H_{n} / 4+s}-y_{n-1, H_{n} / 4-s}=2^{n-1} \\
\Leftrightarrow & y_{n-1, s}>y_{n-1, H_{n} / 4+s} \\
\Leftrightarrow & \beta_{s, n-2}=1
\end{aligned}
$$

From the above three cases and (3.25), we have

$$
\begin{equation*}
Q_{n-1, s, 1}=R_{n-1, s}+\left(1-\beta_{s, n-2}\right) 2^{n-1} \tag{3.27}
\end{equation*}
$$

$$
H_{n-1}-1
$$

Where $R_{n-1, s}=\left(\sum_{\substack{i=0 \\ i \neq 0 \\(\bmod 3)}} y_{n-1, i}-2^{n-1}\right) / 2$.
Define $E_{n, s}=\sum_{i=0}^{H_{n}^{-1}} y_{n, i} y_{n, i+s}, T_{n}=\sum_{i=0}^{H_{n}^{-1}} y_{n, i}$ and $T_{n}^{*}=\sum_{i=0}^{H_{n}^{-1}(\bmod 3)} y_{n, i}$.
Now $(3,23)$ sen be expressed as

$$
E_{n, s}=2 E_{n-1, s}+2^{n-1} T_{n-1}+2^{n-1} T_{n-1}^{*}+2^{n} Q_{n-1, s, 1}+3 \times 2^{3 n-5}
$$

From (3.27), we get

$$
\begin{aligned}
E_{n, s}= & 2 E_{n-1, s}+2^{n-1} T_{n-1}+2^{n-1} T_{n-1}^{*}+2^{n_{R-1}}{ }_{n-s}+\left(1-\beta_{s, n-2}\right) 2^{2 n-1}+3 \times 2^{3 n-5} \\
= & 2 E_{n-1, s}+2^{n-1} T_{n-1}+2^{n-1} T_{n-1}^{*}+2^{n-1}\left(T T_{n-1}-T_{n-1}^{*}-2^{n-1}\right)+ \\
& \left(1-\beta_{s, n-2}\right) 2^{2 n-1}+3 \times 2^{3 n-5} \\
= & 2 E_{n-1, s}+2^{n_{T}}{ }_{n-1}-\beta_{s, n-2} 2^{2 n-1}+3 \times 2^{3 n-5}+2^{2 n-2} .
\end{aligned}
$$

Inductively, we have when $n \geqslant 7$,

$$
\begin{align*}
E_{n, s}= & 2^{n-6} E_{6, s}+2^{n} \sum_{k=6}^{n-1} T_{k}-\sum_{k=6}^{n-1} T_{k}-\sum_{k=0}^{n-7} \beta_{s, n-2-k} 2^{2 n-1-k} \\
& +3 \sum_{k=0}^{n-7} 2^{3 n-5-2 k}+\sum_{k=0}^{n-7} 2^{2 n-2-k} \tag{3.28}
\end{align*}
$$

By corollary 3.15, T_{n} can be calculated by

$$
T_{n}=2^{n-6} T_{6}+3 \times 2^{n-2}\left(2^{n}-2^{6}\right) \text { when } n \geqslant 6
$$

Substituting it to (3.28), we obtain

$$
\begin{aligned}
E_{n, s}= & 2^{n-6} E_{6, s}+2^{n} \sum_{k=6}^{n-1}\left[2^{k-6_{T}} 6+3 \times 2^{k-2}\left(2^{k}-2^{6}\right)\right]-\sum_{k=0}^{n-7} \beta_{s, n-2-k} 2^{2 n-1-k} \\
& +3 \sum_{k=0}^{n-7} 2^{3 n-5-2 k}+\sum_{k=0}^{n-7} 2^{2 n-2-k} \\
= & 2^{n-6} E_{6, s}+2^{n_{T}}\left(2^{n-6}-1\right)+3 \times 2^{n}\left(2^{2 n-2}-2^{10}\right) / 3-3 \times 2^{n+6}\left(2^{n-2}-2^{4}\right) \\
& -\sum_{k=0}^{n-7} \beta_{s, n-2-k} 2^{2 n-1-k}+\left(2^{3 n-3}-2^{n+9}\right)+2^{2 n-1}-2^{n+5} \\
= & 2^{n-6} E_{6, s}+2^{n}\left(2^{n-6}-1\right) T T_{6}-\left(\sum_{k=5}^{n-2} \beta_{s, k} 2^{k}\right) 2^{n+1}+47 \times 2^{n+5} \\
& -95 \times 2^{2 n-1}+3 \times 2^{3 n-3} \cdot
\end{aligned}
$$

Since $\sum_{k=5}^{n-2} \beta_{s, k} 2^{k}=y_{n-1, s}-y_{5,3}$, we have the following theorem.

Theorem 3.12: Let $\left\{y_{n, i}\right.$ \} be 2. Fibonacci sequence mod 2^{n} with initial values
$y_{n, 0}=0$ and $v_{n, i}$ being odd. Then for $n \geqslant 7$ and $s \equiv 1$ or 5 (mod 6), we have

$$
\begin{aligned}
E_{n, s}= & 2^{n-6} E_{6, s}+2^{n}\left(2^{n-6}-1\right) T_{6}-2^{n+1}\left(y_{n-1, s}-y_{5, s}\right) \\
& +47 \times 2^{n+5}-95 \times 2^{2 n-1}+3 \times 2^{3 n-3}
\end{aligned}
$$

Under the conditions of theorem 3.19, we can calculate the exact serial correlation $P_{x}(s)$ when $s \equiv 1$ or $5(\bmod 6)$. An example is given below.

Example: Consider the Fibonacci generator $y_{11, i}=y_{11, i-1}+y_{11, i-2}\left(\bmod 2^{11}\right)$. $y_{11,0}=0$ and $y_{11,1}=1443$. Now $y_{6,1}=35$. The values of $E_{6,1}$ and T_{6} can be obtained from table 3.5 in section four. We have

$$
F_{6,1}=87680 \text { and } T_{6}=2880 .
$$

$y_{10,1}-y_{5,1}=416$. From theorem 3.19 with $s=1$, we get

$$
\begin{aligned}
E_{11,1}= & 2^{5} E_{6,1}+2^{11}\left(2^{5}-1\right) T_{6}-2^{12} \times 416+47 \times 2^{16}-95 \times 2^{21}+3 \times 2^{30} \\
= & 2^{5} \times 87680+2^{11}\left(2^{5}-1\right) \times 2880-2^{12} \times 416+47 \times 2^{16}-95 \times 2^{21} \\
& +3 \times 2^{30} \\
= & 3209023488 .
\end{aligned}
$$

$\sum_{i=0} y_{11, i}$ by corollary 3.15 as follows

$$
\sum_{i=0}^{\mathrm{H}_{11}^{-1}} y_{11, i}^{2}=2^{11-5} \sum_{i=0}^{\mathrm{H}_{5}^{-1}} y_{5, i}^{2}+2^{11}\left(2^{6}-1\right) \sum_{i=0}^{\mathrm{H}^{-1}} y_{5, i}+2^{11}\left(2^{11}-2^{5}\right)\left(2^{10}-2^{3}\right)
$$

$$
\begin{aligned}
& =2^{6} \times 13504+2^{11} \times 63 \times 672+2^{11}\left(2^{11}-2^{5}\right)\left(2^{10}-2^{3}\right) \\
& =4.282396672
\end{aligned}
$$

$$
\sum_{i=0}^{\mathrm{H}_{11^{-1}}} y_{11, i}=2^{11-5} \sum_{i=0}^{\mathrm{H}_{5}-1} y_{5, i}+3 \times 2^{9}\left(2^{11}-2^{5}\right)
$$

$$
=2^{6} \times 672+3 \times 2^{9} \times 2016
$$

$$
=3139584 .
$$

Hence for the nseudo-random number sequence $x=\left\{x_{11, i}\right\},\left(x_{11, i}=y_{11, i} / 2^{11}\right)$,

$$
\begin{aligned}
P_{x}(1) & =\left(\frac{1}{H_{11}} \frac{E_{11,1}}{2^{22}}-\frac{1}{H_{11}^{2}} \frac{3139584^{2}}{2^{22}}\right) /\left(\frac{1}{H_{11}} \frac{4282396672}{2^{22}}-\frac{1}{H_{11}^{2}} \frac{3139584^{2}}{2^{22}}\right) \\
& =(0.249053001-0.219024391) /(0.332357725-0.24,9024391) \\
& =0.00034332 .
\end{aligned}
$$

Section 4: The serial correlation $P_{X}(s)$, when $s \equiv 3$ (mod 6)

This section is a continuation of the previous section. Suppose we have a secuence $\left\{y_{r_{1}, i}\right\}$ in A_{n} such that the initial values $y_{n, 0}=0$ and $y_{n, 1}$ is odd. The pseudo-random number sequence $x=\left\{x_{n, i}\right\}$ is defined as before. We want to determine the serial correlation $P_{x}(s)$ when $s \equiv 3$ (mod 6) and $n \geqslant 7$. Now we have only two cases:

I') $y_{n-1, i}$ and $y_{n-1, i+s}$ are odd.
II') $y_{n-1, i}$ and $y_{n-1, i+s}$ are even.

These two oses are discussed as follows.

Case I': Assume $y_{n-1,1}$ and $y_{n-1, i+s}$ are odd, where $0 \leqslant i<H_{n-1}$. Following the steps as that in Case I of section 3, we have
$\mathrm{H}_{\mathrm{n}}{ }^{-1}$
$H_{n-1}{ }^{-1}$
$H_{n-1}{ }^{-1}$
$\sum_{i=0} y_{n, i} y_{n, i+s}=2 \sum_{i=0} y_{n-1, i} y_{n-1, i+s}+2^{n} \sum_{i=0} y_{n-1, i}+\frac{2^{2 n-1}}{6} H_{n-1}$

Case II': Assume $y_{n-1, i}$ and $y_{n-1, i+s}$ are even, where $0 \leqslant i<H_{n-1}$. ($y_{n, i}, y_{n, i+s}$) must belong to one of the four subbases:

$$
\begin{array}{ll}
\text { Case Ja' }) & \left(y_{n, i}, y_{n, i+s}\right)=\left(y_{n-1, i}, y_{n-1, i+s}\right) \\
\text { Case IIi' }) & \left(y_{n, i}, y_{n, i+s}\right)=\left(y_{n-1, i}+2^{n-1}, y_{n-1, i+s}+2^{n-1}\right) \\
\text { Case TIc' }) & \left(y_{n, i}, y_{n, i+s}\right)=\left(y_{n-1, i}, y_{n-1, i+s}+2^{n-1}\right) \\
\text { Case IT.' }) & \left(y_{n, i}, y_{n, i+s}\right)=\left(y_{n-1, i}+2^{n-1}, y_{n-1, i+s}\right) .
\end{array}
$$

From Lemma 3,17,

$$
y_{n}, \frac{H_{n}^{2}}{}-i \equiv(-1)^{t-1} y_{n, i} \quad\left(\bmod 2^{n}\right)
$$

Suppose $y_{n, i} \neq 0$ or 2^{n-1}. Then

$$
y_{n, \frac{n}{2}-i}^{H_{n}}= \begin{cases}y_{n, i} & \text { if } i \text { is odd } \\ 2^{n}-y_{n, i} & \text { jiff } i \text { is even }\end{cases}
$$

Therefore

$$
y_{n-1}, \frac{H_{n}-i}{2}= \begin{cases}y_{n-1, i} & \text { if } i \text { is odd } \\ 2^{n-1}-y_{n-1, i} & \text { j.f } i \text { is sven }\end{cases}
$$

It follows that

$$
\begin{aligned}
& y_{n}, \frac{H_{n}^{2}-i}{}-y_{n-1}, \frac{H_{n}^{2}-i}{}=\left\{y_{n, i}-y_{n-1, i} \quad \text { iff } i\right. \text { is odd } \\
& 2^{n-1}-y_{n, i}+y_{n-1, i} \text { iff i is even }(3.30)
\end{aligned}
$$

When $0 \leqslant i<H_{n-1}$, it is found that $y_{n, i}=0$ if and nnly if $i=0$ and that $y_{n, i}=2^{n-1}$ if and only if $i=H_{n} / 4$. From (3.9) and 1 erma 3.17, we get

$$
\begin{equation*}
y_{n, s}=y_{n, \frac{H_{n}}{2}-s}=y_{n}, \frac{H_{n}}{4}-s=y_{n}, \frac{H_{n}}{4}+s . \tag{3.31}
\end{equation*}
$$

By (3,30) and (3.31), we have, similar to the case I. in section three,

$$
f^{\prime r e q}\left(I I a^{\prime}\right)+\text { freq }\left(I I b^{\prime}\right)=\text { freq }\left(I c^{\prime}\right)+\text { freq }\left(I I \alpha^{\prime}\right),
$$

where freq(IIe') means the freouency of the cocurrence of case ITer ${ }^{2}$) where $\mathrm{e}=\mathrm{a}, \mathrm{b}, \mathrm{c}$ or d .

By theorem 3.14, we know that

```
freg(IIa`) + freg(IIc`) = freq(IIb*) + freq(TII`)
```

ana

```
freq(IIa') + freq(IId') = freq(IIb') + freq(IIc').
```

Thus me have

```
freg(IIa') = freq(IIb') = freq(IIc') = freq(IId').
```

In case IIa') ,

$$
\begin{aligned}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{H_{n}}{2} y_{n}, \frac{H_{n}}{2}+i+s \\
= & 2 y_{n-1, i} y_{n-1, i+s} .
\end{aligned}
$$

In case Tb'),

$$
\begin{aligned}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{H_{n}}{2} y_{n}, \frac{H_{n}}{2}+i+s \\
= & 2\left[y_{n-1, i} y_{n-1, i+s}+\left(y_{n-1, i}+y_{n-1, i+s}\right)+2^{n-1}+2^{2 n-2}\right]
\end{aligned}
$$

In case IT .c'),

$$
\begin{aligned}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{H_{n}}{2} y_{n}, \frac{H_{n}}{2}+i+s \\
= & 2\left(y_{n-1, i} y_{n-1, i+s}+2^{n-1} y_{n-1, i}\right),
\end{aligned}
$$

and in case TIa')

$$
\begin{aligned}
& y_{n, i} y_{n, i+s}+y_{n, i}+\frac{H_{n}}{2} y_{n}, \frac{H_{n}+i+s}{2} \\
= & 2\left(y_{n-1, i} y_{n-1, i+s}+2^{n-1} y_{n-1, i+s}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \sum_{i=0}^{H_{n}-1} y_{n, i} y_{n, i+s}= 2 \sum_{i=0}^{H_{n-1}^{-1}} y_{n-1, i} y_{n-1, i+s}+2^{n} \sum_{i=0}^{\sum_{n-1}^{n}(\bmod 3)}\left(y_{n-1, i+s}+y_{n-1, i-s}\right) \\
& i \equiv 0(\bmod 3) \\
& y_{n, i} \geqslant 2^{n-1} \\
&+2^{2 n-1} H_{n-1} / 12 \tag{3.32}
\end{align*}
$$

Decal the definitions of $G_{n-1, s, 1}, G_{n-1, s, 2}, Q_{n-1, s, 1}$ and $Q_{n-1, s, 2}$.

$$
\begin{aligned}
& G_{n-1, s, 1}=\left\{i: 0 \leqslant i<H_{n-1}, y_{n, i} \geqslant 2^{n-1} \text { and } i \equiv 0(\bmod 3)\right\} . \\
& G_{n-1, s, 2}=\left\{i: 0 \leqslant i<H_{n-1}, y_{n, i}<2^{n-1} \text { and } i \equiv 0(\bmod 3)\right\} .
\end{aligned}
$$

$$
Q_{n-1, s, 1}=\sum_{i \in G_{n-1, s, 1}}\left(y_{n-1, i-s}+y_{n-1, i+s}\right) .
$$

$$
Q_{n-1, s, 2}=\sum_{i \in G_{n-1, s, 2}}\left(y_{n-1, i-s}+y_{n-1, i+s}\right)
$$

Clearly

$$
\begin{aligned}
& \sum_{\substack{i=0 \\
i \equiv 0(\bmod 3)}}^{H_{n-1}^{-1}}\left(y_{n-1, i+s}+y_{n-1, i-s}\right)=q_{n-1, s, 1} \\
& y_{n, i} \geqslant 2^{n-1}
\end{aligned}
$$

and

$$
\begin{equation*}
Q_{n-1, s, 1}+Q_{n-1, s, 2}=2 \sum_{\substack{i=0 \\ i \equiv 0(\bmod 3)}}^{H_{n-1}^{n-1}} y_{n-1, i} . \tag{3.34}
\end{equation*}
$$

We now find the difference of $Q_{n-1, s, 1}$ and $Q_{n-1, s, 2}$. Similar to section 3 , we can prove that the difference of $Q_{n-1,3,1}$ and $Q_{n-1, s, 2}$ is not affected by the value of i when $i \neq \mathrm{s}$ or $i \neq H_{n} / 8-s\left(\bmod H_{n} / 8\right)$. We know that

$$
\begin{gathered}
y_{n-1, H_{n}} / 2+y_{n-1, H_{n}} / 2-2 s+y_{n-1,0}+y_{n-1,2 s}=2^{n-1}, \\
y_{n-1, H_{n}} / 2-H_{n} / 8+y_{n-1, H_{n}} / 2-H_{n} / 8-2 s+y_{n-1, H_{n} / 8+2 s}+y_{n-1, H} / 8=2^{n}, \\
y_{n-1}, H_{n} / 2-H_{n} / 8+2 s+y_{n-1, H_{n}} / 2-H_{n} / 8+y_{n-1, H_{n} / 8-2 s}+y_{n-1, H_{n} / 8}=2^{n},
\end{gathered}
$$

and

$$
y_{n-1, H_{n} / 2-H_{n} / 4+2 s}+y_{n-1, H_{n} / 2-H_{n} / 4}+y_{n-1, H_{n} / 4}+y_{n-1, H_{n} / 4-2 s}=2^{n-1}
$$

From (3.31), we have

$$
y_{n, s}=y_{n, H_{n} / 2-s}=y_{n, H_{n} / 4-s}=y_{n, H} / 4+s
$$

Similarly, we get

$$
y_{n, H_{n}} / 8+s=y_{n, H_{n} / 2-H_{n} / 8-s}=y_{n, H_{n} / 8-s}=y_{n, H_{n}} / 2-H_{n} / 8+s
$$

Moreover from (3.9),

$$
y_{n, s} \Rightarrow y_{n, H_{n}} / 8+s
$$

Thus $\mathrm{s}, \mathrm{H}_{\mathrm{n}} / 2-\mathrm{s}, \mathrm{H}_{\mathrm{n}} / 4-\mathrm{s}$ and $\mathrm{H}_{\mathrm{n}} / 4+\mathrm{s}$ belong to the same $\mathrm{G}_{\mathrm{n}-1, \mathrm{~s}, \mathrm{j}}$, where $j=1$ or 2 , and $H_{n} / 8+s, H_{n} / 2-H_{n} / 8-s, H_{n} / 8-s$ and $H_{n} / 2-H_{n} / 8+s$ bolong to the other.

$$
\text { Let } y_{n, s}=\sum_{i=0}^{n-1} \beta_{s, i} 2^{i} \text { where } \beta_{s, i}=0 \text { or } 1 \text {. From the ebove }
$$

information, we have, similar to section 3,

$$
\begin{equation*}
Q_{n-1, s, 1}=T_{n-1}^{*}+\left(1-2 \beta_{s, n-1}\right) 2^{n-1} \tag{3.35}
\end{equation*}
$$

where

$$
\mathrm{T}_{\mathrm{n}-1}^{*}=\sum_{\substack{i=0 \\ i \equiv 0(\bmod 3)}}^{H_{n-1}^{-1}} y_{n-1, i} .
$$

Using the symbols introduced in section 3, we add (3.29) to (3.32) giving the following equation :

$$
\begin{aligned}
E_{n, s}= & 2 E_{n-1, s}+2^{n}\left(T_{n-1}-T_{n-1}^{*}\right)+\frac{2^{2 n-1}}{6} H_{n-1}+2^{n_{Q}}{ }_{n-1, s, 1}+\frac{2^{2 n-1}}{12} H_{n-1} \\
= & 2 E_{n-1, s}+2^{n}\left(T_{n-1}-T_{n-1}^{*}\right)+\frac{2^{2 n-2}}{3} H_{n-1}+2^{n} T_{n-1}^{*}+\left(1-2 \beta_{s, n-1}\right) 2^{2 n-1} \\
& +\frac{2^{2 n-2}}{6} H_{n-1} \quad \quad \text { from } \\
= & 2 E_{n-1, s}+2^{n} T_{n-1}-2^{2 n} \beta_{s, n-1}+3 \times 2^{3 n-5}+2^{2 n-1} \quad .
\end{aligned}
$$

$$
\begin{aligned}
E_{n, s}= & 2^{n-6} E_{6, s}+2^{n} \sum_{k=6}^{n-1} T_{k}-\sum_{k=0}^{n-7} \beta_{s, n-1-k^{2 n-k}}+3 \sum_{k=0}^{n-7} 2^{3 n-5-2 k}+\sum_{k=0}^{n-7} 2^{2 n-1-k} \\
= & 2^{n-6} E_{6, s}+2^{n} \sum_{k=6}^{n-1}\left[2^{k-6} T_{6}+3 \times 2^{k-2}\left(2^{k}-2^{6}\right)\right]-\sum_{k=0}^{n-7} \beta_{s, n-1-k} 2^{2 n-k} \\
& +3 \sum_{k=0}^{n-7} 2^{3 n-5-2 k}+\sum_{k=0}^{n-7} 2^{2 n-1-k} \quad \text { from corollary } 3.15, \\
= & 2^{n-6} E_{6, s}+2^{n}\left(2^{n-6}-1\right) T_{6}-\sum_{k=0}^{n-7} \beta_{s, n-1-k} 2^{2 n-k}+23 \times 2^{n+6} \\
& -47 \times 2^{2 n}+3 \times 2^{3 n-3} \\
= & 2^{n-6} E_{6, s}+2^{n}\left(2^{n-6}-1\right) T_{6}-2^{n+1}\left(y_{n, s}-y_{6, s}\right)+23 \times 2^{n+6} \\
& -47 \times 2^{2 n}+3 \times 2^{3 n-3} .
\end{aligned}
$$

Theorem 3:20: Let $\left\{y_{n, i}\right\}$ be a Fibonacci sequence mod 2^{n} with initial values $y_{n, 0}=0$ and $y_{n, 1}$ being odd. For $n \geqslant 7$ and $s \equiv 3$ (mod 6), we have $E_{n, s}=2^{r--6} E_{6, s}+2^{n}\left(2^{n-6}-1\right) T_{6}-2^{n+i}\left(y_{n, s}-y_{6, s}\right)+23 \times 2^{n+6}$ $-47 \times 2^{2 n}+3 \times 2^{3 n-3}$

Theorems 3.19 and 3.20 express the value of $E_{n, s}$ in terms of $n, s, y_{n, s}, T_{6}$ and $E_{6, s}$. The values of T_{6} and $F_{6, s}$ for some values of s are listed in table 3.5.

$\underbrace{}_{6,0}$ and $y_{6,1}$ are the initial values end $r=\psi_{6}\left(\left\{_{6, i}\right\}\right)_{0})$

Example: Consider the Fibonacci generator $y_{11, i} \equiv y_{11, i-1}+y_{1, i-2}\left(\bmod 2^{11}\right)$, $y_{11,0}=0$ and $y_{11,1}=1443$. As $y_{6,1}=35$, we have from table $3.5, T_{6}=2880$ and $E_{6,3}=89344$. Apply theorem 3.20 with $s=3$. Clearly $y_{11,3}=8,38$ and $y_{11,3}-y_{6,3}=832$. Therefore

$$
\begin{aligned}
\mathrm{E}_{11,3}= & 2^{5} \times 89344+2^{11}\left(2^{5}-1\right) \times 2880-2^{12} \times 832+23 \times 2^{17} \\
& -47 \times 2^{22}+3 \times 2^{30} \\
= & 32094.416
\end{aligned}
$$

Thus

$$
\begin{aligned}
P_{x}(3) & =\left(\frac{1}{H_{11}} \frac{E_{11,3}}{2^{22}}-\frac{1}{H_{11}^{2}} \frac{313958_{4}^{2}}{2^{22}}\right) /\left(\frac{1}{H_{11}} \frac{4282396672}{2^{22}}-\frac{1}{H_{11}^{2}} \frac{3139584^{2}}{2^{22}}\right) \\
& =0.00069809 .
\end{aligned}
$$

(The values 3139584 and 4282396672 copy directly from the example in section three.)

Under the conditions of Theorem 3.19, we can of course express $E\left(x_{n, i} x_{n, i+s}\right)$ as a function of $E\left(x_{6, j}, x_{6, i+s}\right)$ and $E\left(x_{6, i}\right)$ by using Theorems 3.19 and 3.20. The next corollary shows this.

Corollary 3.21: Let $\left\{y_{r_{1}, i}\right\}$ be a Fibonacci sequence mod 2^{n} with initial values $y_{n, 0}=0$ and $y_{n, 1}$ being odd. Take $\left\{y_{k, i}\right\}=\left\{y_{n, i}\left(\bmod .2^{k}\right)\right\}$ for $=11$ $k<n$ and $\left\{x_{j, i}\right\}=\left\{y_{j, i} / 2^{j}\right\}$ for all $0 \leq j \leq n$. Then when $n \geqslant 7$, we have
$\left.E\left(x_{n, i} x_{n, i+s}\right)=2^{12-2 n_{E}\left(x_{6, i}\right.} x_{6, i+s}\right)+2^{12-2 n}\left(2^{n-6}-1\right) E\left(x_{6, i}\right)$

$$
\begin{equation*}
-2^{2-2 n}\left(y_{n-1, s}-y_{5, s}\right) / 3+47 \times 2^{6-2 n} / 3-95 \times 2^{-n} / 3+0.25 \tag{3.36}
\end{equation*}
$$

if $s=1$ or $5(\bmod 6)$.

> If $s \equiv 3$ (nod 6$)$
> $\left.E\left(x_{n, i} x_{n, i+s}\right)=2^{12-2 n_{E}\left(x_{6, i}\right.} x_{6, i+s}\right)+2^{12-2 n}\left(2^{n-6}-1\right) E\left(x_{6, i}\right)$

$$
\begin{equation*}
-2^{2-2 n}\left(y_{n, s}-y_{6, s}\right) / 3+23 \times 2^{7-2 n} / 3-47 \times 2^{1-n} / 3+0.25 \tag{3.37}
\end{equation*}
$$

Since n is usually greater than 30 , from corollary $3.21, E\left(x_{n, i} x_{n, i+s}\right)$ when s is od is close to 0.25 as what we desire. It follows that the exact serial correlation $P_{x}(s)$ when s is odd is very small if the conditions of corollary 3.21 are satisfied.

CHAPPER L A NEW GENARATOR

Section 1: Fibonacci generator and a new generator

It appears, in view of the satisfactory properties of the mean, variance and serial correlation, $P_{\chi}(s)$, for odd integer s, that the Fibonacci pseudo-random number sequences are acceptable. However, there exists strong relation between $x_{n, i}, x_{n, i+1}$ and $x_{n, i+2}$. Indeed all the points $\left(x_{n, i}, x_{n, i+1}, x_{n, i+2}\right), i=0,1,2, \ldots$ fall on two hyperplanes:

$$
x_{n, i+2}=x_{n, i+1}+x_{n, i}
$$

and

$$
x_{n, i+2}=x_{n, i+1}+x_{n, i}-1
$$

Thus the direct use of the Fibonaci pseudo-random numbers is dangerous. One reasonable application of the generator is given by Gebharatt (196?). He used the idea of composite generators. Of course nothing can prevent one from combining a Fibonacci generator and another generator, and one hopes to generate a "more random" sequence in this way. However theoretical analysis of this type of sequences is difficult. In what follows, we shall modify the Fibonacci generator in another way to yield a new generator.

Let $\left\{y_{n, i}\right\}$ be a Fibonacci sequence mod 2^{n} with initial velues $y_{n, 0}$ and $y_{n, 1}$ that are not both even. To remove the regnlarities in $\left\{y_{n, i}\right\}$, one can use just a subsequence of $\left\{y_{n, i}\right\}$. A simple choice is the subsemence $\left\{y_{n, p i}\right\}_{i=0,1,2, \ldots}$, for some integer o. Obviously, this subsequence has a
maximum period length $3 \times 2^{n-1}$ if and only if $\left(H_{n}, p\right)=1$, i.e. $(6, p)=1$. When $(6, p)=1$, the subsequence $\left\{y_{n, p i}\right\}$ shares the same period, mean and variance with $\left\{y_{n, i}\right\}$. Let, $x_{p}=\left\{x_{n, p i}\right\}$ and $x=\left\{x_{n, i}\right\}$. Clearly $P_{X_{p}}(s)=p_{X}(p s)$. Hence, in view of the properties of x, x_{p} should possess some properties of a good pseudo-random number sequence. Of course, it is time-consuming to generate x_{p} from x. Direct method is thus necessary.

Denote by $\left\{u_{i}\right\}$ the Fibonacci sequence that satisfies

$$
u_{i}=u_{i-1}+u_{i-2}
$$

with initial values $u_{0}=0$ and $u_{1}=1$. Suppose $\left\{y_{n, i}\right\}$ is a Fibonacci sequence mod 2^{n}. It is obvious that

$$
\begin{equation*}
y_{n, i} \equiv u_{i} y_{n, 1}+u_{i-1} y_{n, 0} \quad\left(\bmod 2^{n}\right) \tag{4.1}
\end{equation*}
$$

Lemma 1. 1: With $\left\{u_{i}\right\}$ and $\left\{y_{n, i}\right\}$ as defined above, we have

$$
\begin{equation*}
y_{n, i p} \equiv\left(u_{p+1}+u_{p-1}\right) y_{n,(i-1) p}+(-1)^{p+1} y_{n,(i-2) p} \quad\left(\bmod 2^{n}\right) \tag{4.02}
\end{equation*}
$$

Proof: From (4.1), it is easily seen that

$$
y_{n, i p}=u_{2 p} y_{n,(i-2) p+1}+u_{2 p-1} y_{n,(i-2) p} \quad\left(\bmod 2^{n}\right)
$$

end

$$
y_{n,(i-1) p} \equiv u_{p} y_{n,(i-2) p+1}+u_{p-1} y_{n,(i-2) p} \quad\left(\bmod \cdot 2^{n}\right)
$$

Moreover jet iss well --known that

$$
u_{2 p}=u_{p}\left(u_{p+1}+u_{p-1}\right)
$$

$$
u_{2 p-1}=u_{p}^{2}+u_{p-1}^{2}
$$

and

$$
u_{p}^{2}-u_{p-1} u_{p+1}=(-1)^{p+1}
$$

Thus,
$y_{n, i p}-\left(u_{p+1}+u_{p-1}\right) y_{n,(i-1) p} \equiv u_{2 p} y_{n,(i-2) p+1}+u_{2 p-1} y_{n,(i-2) p}-u_{p}\left(u_{p+1}+u_{p-1}\right) \times$

$$
\begin{aligned}
& y_{n,(i-2) p+1}-u_{p-1}\left(u_{p+1}+u_{p-1}\right) y_{n,(i-2) p} \\
= & \left(\bmod 2^{n}\right) \\
= & \left.u_{p}^{2}-u_{p-1} u_{p+1}\right) y_{n,(i-2) p} \\
= & (-1)^{p+1} y_{n,(i-2) p}
\end{aligned}
$$

$\therefore y_{n, i p} \equiv\left(u_{p+1}+u_{p-1}\right) y_{n,(i-1) p}+(-1)^{p+1} y_{n,(i-2) p} \quad\left(\bmod 2^{n}\right)$.

Equation (4, 2) can be used to generate x_{p} directly. The following theorem is useful in introducing a new generator.

Theorem $4, ?$: Let $\left\{v_{n, i}\right\}$ be a sequence of integers produced by the recurrence relation

$$
v_{n, i} \equiv \alpha v_{n, i-1}+v_{n, i-2} \quad\left(\bmod 2^{n}\right)
$$

Then α is an odd integer if and only if there exist a positive integer p, which is relatively prime to 6 , and non-ne gative integers $y_{0,0}$ and $y_{n, 1}$ such that

$$
\left\{v_{n, i}\right\}=\left\{y_{n, p i}\right\}
$$

Proof: By the use of (4.2), to prove the necessity, it t is sufficient to show
that for any odd integer α and positive integer n, there exists an odd integer p such that $(6, p)=1$ and $\alpha \equiv u_{p+1}+u_{p-1}\left(\bmod 2^{n}\right)$.

We prove this statement by induction.

When $n=1$, then $p=1$. When $n=2$, we have $p=1$ if $\alpha \equiv 1$ (mod 4) and $p=5$ if $\alpha \equiv 3(\bmod 4)$.

Suppose the statement is true when $n=k \geqslant 2$. Then for any odd integer α, there exists a positive integer p such that $(6, p)=1$ and

$$
\alpha \equiv u_{p+1}+u_{p-1} \quad\left(\bmod 2^{k}\right)
$$

It implies that

$$
\alpha \equiv u_{p+1}+u_{p-1} \quad\left(\bmod 2^{k+1}\right)
$$

or

$$
\begin{equation*}
\alpha \equiv u_{p+1}+u_{p-1}+2^{k} \quad\left(\bmod 2^{k+1}\right) \tag{2,3}
\end{equation*}
$$

As $(6, p)=1$, we have

$$
u_{\left(p+H_{k+1} / 2\right)+1}+u_{\left(p+H_{k+1} / 2\right)-1} \equiv u_{p+1}+u_{p-1}+2^{k} \quad\left(\bmod 2^{k+1}\right) .
$$

Thus from (4.3),

$$
\alpha \equiv u_{a+1}+u_{a-1} \quad\left(\bmod 2^{k+1}\right)
$$

where

$$
a=p \text { or } p+H_{k+1} / 2 \text {. }
$$

Hence the statement is proved by induction since $\left(6, p+H_{k+1} / 2\right)=(6, p)$. when $k \geqslant 2$. The proof of sufficiency follows immediately from (4.2).

Theorem 4.2 suggests that we adopt the following new generator

$$
v_{n, i} \equiv \alpha v_{n, i-1}+v_{n, i-2} \quad\left(\bmod 2^{n}\right)
$$

where α is an odd integer. The pseudo-random number sequence $z=\left\{z_{n, i}\right\}$ is then defined by $z_{n, i}=v_{n, i} / 2^{n}$. From theorem 4 , 2 , we have $z=X_{p}$ for some positive integer p. Therefore there is relation between Z and X $\left(X=\left\{x_{n, i}\right\}\right)$. In order to apply the theorems in sections 2, 3 and 4 of Chapter 3 to the sequence Z, we assume $v_{n, 0}=0$ and $v_{r i, 1}$ is od. From the properties of X, we have the following equalities:

$$
\begin{align*}
& E\left(z_{n, i}\right)= 0.5+E\left(z_{k, i}\right) / H_{n}-2^{k-n-1} \\
& \text { when } n \geqslant k \geqslant 5 . \tag{4,5}\\
& E\left(z_{n, i}^{2}\right)= \frac{1}{3}+\left[E\left(z_{k, i}^{2}\right)+\left(2^{n-k}-1\right) E\left(z_{k, i}\right)\right] /\left(2^{n-k_{n}}\right) \\
&-\left(3-2^{k-n}\right) /\left(3 \times 2^{n-k+1}\right) \text { when } n \geqslant k \geqslant 5 . \tag{2,6}\\
& E\left(z_{n, i} z_{n, i+s}\right)= 0.25+2^{12-2 n^{n}\left[E\left(z_{6, i} z_{6, i+s}\right)+\left(2^{n-6}-1\right) E\left(z_{6, i}\right)\right]} \\
&-\left[2^{2-2 n}\left(v_{n-1, s}-v_{5, s}\right)-47 \times 2^{6-2 n}+95 \times 2^{-n}\right] / 3 \\
& E\left(z_{n, i} z_{n, i+s}\right)= 0.25+2^{\left.\left.12-2 n_{\left[E \left(z_{6, i}\right.\right.} z_{6, i+s}\right)+\left(2^{n-6}-1\right) E\left(z_{6, i}\right)\right]} \tag{r}\\
&-\left[2^{2-2 n}\left(v_{n, s}-v_{6, s}\right)-23 \times 2^{7-2 n}+47 \times 2^{1-n}\right] / 3
\end{align*}
$$

Here $\mathrm{v}_{\mathrm{k}, \mathrm{i}} \equiv \mathrm{v}_{\mathrm{n}, \mathrm{i}}\left(\bmod 2^{\mathrm{k}}\right)$, when $\mathrm{k}<\mathrm{n}$.
computed by using equations (4.5) - (4.8). The values are close to what we expect of a "truely random" sequence.

Instead of choosing p such that $\left\{v_{n, i}\right\}=\left\{y_{n, p i}\right\}$, it seems more inviting to select a "good" α. The use of $\alpha=2^{\beta}+1$, where β is a positive integer, is attractive because multiplication of such an α jis simply a shift and add when the sequence is generated in a binary computer.

Seotion 2: Statistioal tests

Seven statistical tests are applied to the new generator (4,1), with $n=32$ and $\alpha=2^{\beta}+1$, where $\beta=7,17$ and 22 . Moreover we require that $v_{n, 0}=0$ and $v_{n, \text { ? }}$ is odd. The tests include the 'frequency' test and 'serial' test which are elementary. The remaining five tests are 'sum of N ' test when $N=2$ and 3, 'hax of $N N^{\prime}$ and 'Min of N^{\prime} test when $N=2,3$, + and 5 , 'runs up and down' test and the 'poker' test. Sime the tests are quite standard, the descriptions of them are left out here and deteils can be found in Downham and. Roberts (1967), Knuth (1968) and Lewis (1975). The 'poker' test is the one suggested by Knuth (1968). Each test is applied to the same pseudo-random number sequence and hence the test results are not indeperdent. The results together with the degrees of freedom of X^{2} and the numbers from the sequence tested are listed in table 4.1. All the calculations are carried out on the Hewlett-Packard 9830A Calculator in the Department of Natherstics.

The test results are satisfactory. All the tests, except one, are passed at 5 percent significance level. Thus the new gererator is accentable.

Statistical tests have also been applied to the rew generator for the case $\alpha=11$. The results are, however, not satisfactory. Hence the value of α should not be too small or too large in comparision with 2^{n}. It is still an open problem as to which value of the odत integer α ismost appropriate.

Table 4.1

Test		Degrees of freedom	Numbers from the sequence tested	$\beta=7$		$\beta=17$		$\hat{\beta}=22$		
		run 1		run?	sun 1	run 2	$\operatorname{man} 1$	\min ?		
Frequency test			12?	10000	0.6664	0.1251	0.1587	0.8264	0.5160	0.7764
Serial test of$\left(z_{n, i}\right.$,$\left.z_{n, i+1}\right)$		255	2×5000	0.7995	0.5948	0.6217	0.0016	0.1251	0.8980	
Sum of N test	$N=$?	127	2×5000	0.8508	0.5517	0.8770	0,0618	0.7157	0.5359	
	$N=3$	127	3×5000	0.6179	0.8438	0,9278	0.6103	0.8980	0,6255	
Max, of N test	$\mathrm{H}=2$	99	2×2000	0.8023	0.1271	0.3745	0.1849	0.0901	0.8413	
	$N=3$	99	3×2000	0.6064	0.5359	0.5517	0.2514	0. $2 \% .6$	0.7910	
	$N=4$	99	4×2000	0.1635	0.5199	0.8554	0.1736	0.3050	0.7881	
	$\mathrm{N}=5$	99	5×2000	0.9916	0.9726	0.8577	0.1112	0.7224	0.1 .013	
Uin. of N test	$N=2$	99	2×2000	0.4483	0.4721	0.4 .090	0.3156	0.54 .38	0.2228	
	$\mathrm{N}=3$	99	3×2000	0.8830	0.6985	0.5160	0.5359	0.8907	0,8212	
	$N=4$	99	4×2000	0.3085	0.7967	0.31 .83	0.8340	0.8106	0.24 .83	
	$N=5$	99	5×2000	0.7088	0.2346	0.2709	0.3121	0.7357	0.3015	
Runs up and down test		5	10000	(0.10,0.20)	(0.30,0.50)	(0.05,0.10)	(0.50,0.70)	$(0.50,0.70)$	$(0.80,0.90)$	
Poker test		3	5×2000	(0.10,0.20)	$(0.995,1)$	$(0.05,0.10)$	(0.20,0.30)	(0.10,0,20)	(0.30,0.50)	

(The tabulated value is the probability that the appropriate Chi-squaxe variate will exceed the computed value. (a, b) in the last two rows indicates the interval in which the probability falls. The only value that calls for rejection at significance level 0.05 is starred.)

REFERENCES:

1. Dieter U. (1971), Pseudo-Random Numbers: The Exact Distribution of Pairs, Wath Computation 25, 855-883.
2. Dieter U. and Ahrens J. (1971), An Exact Determination of Serial Correlations of. Pseudo-Random Numbers, Numerische Mathematik 17 (2), 101-123.
3. Downam D.Y. and Roberts F.D.K. (1967), Multiplicative Congruential Pseudo-Random Number Generators, Computer J. 10, 74-77.
4. Fuller A.T. (1976), The period of Pseudo-Random Numbers generated by Lehmer's Congruential liethod, Computer J. 19, 2, 173-177.
5. Gebhardt F. (1967), Generating Pseudo-Random Numbers by shuffing a Fibonacci sequence, Math. Computation 21; 708-709.
6. Gorenstein S. (1967), Testing a Random Number Generator, Comm. Achy 10, 2, 111-118.
7. Green B.F., Smith J.E. and Klem L. (1959), Empirical Tests of an Additive Random Number Generator, J。ACN. 6, 527-537.
8. Hull T.E. and Dobell A.R. (1962), Random Number Generators, SIAM Rev. 4, 230-254.
9. Jansson B. (1966), Random Number Generators, Stockholm: Almgvist and Wiksell.
10. Knuth D.E. (1968), The Art of Computer Programming, vol 2: Seminumerical Algorithms, Addison Wesley Publishing Company.
11. Lehmer D.H. (1951), Mathematical methods in large scale computing units, Annals Comp. Lab. Harvard Univ. 26, 141-146.
12. Lewis T.G. (1975), Distribution Sampling for Computer Simulation, Lexington Books.
13. Tauswor the R.C. (1965), Random Numbers generated by Iinear Recurmence Modulo Two, Math. Computation 19, 201-209.
14. Zierler N. (1959), Linear Recurring Sequences, J. SIAM 7, 1, 31-48.

