
i - z-义夂卞‘ 

' I • i 4 SEP 關 ] 
| | m .…. 

H � 嶋 SYCTC^；/ 

I RAPID PROTOTYPING OF SOFTWARE 

I SPECIFICATIONS IN Z 

I 
I • 

j …. 

B Y 

W U C H U N P O N G 

A THESIS 

I SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

I FOR THE DEGREE OF MASTER OF PHILOSOPHY 

DIVISION OP INFORMATION ENGINEERING 

'[ THE CHINESE UNIVERSITY OP HONG HONG 

DECEMBER 1 9 9 3 
- _ -•" • • • . , . . • • . . . • " ?';s “* . ’ • ‘ ‘ ; ^ 



o
o
 ^

 3
 

^

 夕

 

o
r
[
 

^
 A
 ̂

M
/

 P
M
 

么
 、

 A.

 A
^

 I
f
 

/
f
o

 ?
 

A.
 ,r
 

L
-

々
 



i 

Acknowledgement 

I would like to express my sincere gratitude towards my supervisor, Dr. Ed-

mund M. K. Lai for his invaluable suggestions in this research and comments in 

preparing this thesis. 

ii 

. . . . • .. 



Abstract 

Current software tools reported in the literature for animating formal specifi-

cations written in the Z notation are incapable of handling data declared over 

infinite sets. In this thesis, we have shown that this capability is often essential 

to specifications that involve numbers. A feasible solution is to use concepts 

in delayed evaluation and constraint satisfaction to handle infinite numerical 

sets. A system called ZCLP(i2) has been developed and the implementation 

is based on the constraint logic programming language, CLP(丑).It consists of 

an editor and two translators. One translator converts Z to CLP(iZ) and the 

other converts Z to M ^ K format. The former is for execution while the latter 

uses a software called "fuzz" for printing and type checking. ZCLP(丑)is also 

capable of handling concepts of tag and object orientation. Some examples are 

presented to illustrate the .effectiveness of the ZCLP(J?). Finally, specifications 

writing experience is also given. 
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Chapter 1 

Introduction 

1.1 Formal Specification Methods 

Formal specification methods arise as a result of combining mathematics and 

computer sdience. They offer the main advantage that a specification, once it 

has been written, uniquely describes the behaviour of the system to be designed. 

Formal methods are able to provide a clear and an abstract description of a sys-

tem. This merit is contributed by the preciseness of the underlying mathematical 

language. In other words, ambiguities in natural languages will not be found in 

formal methods. 

A user can specify his ideas without concerning the implementation details. 

Hence, it facilitates the break down of system design into small blocks. Each 

block has its own specifications. These specifications can be transferred among 

people without misunderstanding. On the other hand, people will find it easy 

to modify the specifications if there is any update or modification. 
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Chapter 1 Introduction 

In addition, mathematics can help in proving the consistency among specifi-

cations. Reference [35] chapter 1 has shown a good example. It implies we can 

reduce errors in the early abstract design stage. By contrast, any changes after 

the implementation will demand great cost and manpower. This is important 

for any critical systems where no hidden bugs are tolerated. For example, we 

have the train information system described in [30] and the project of software 

and hardware specifications used by the US Department of Defense [27]. 

With the above advantages, formal methods have been gaining acceptance 

in both software and hardware design communities [4, 5，27]. But insufficient 

tools and education are still a major hindrance. This is particularly true for the 

newly developed formal specification notation Z. 

1.2 The Z notation 

The Z notation [35] is a formal specification method based on set theory. It 

was initially designed for specifications of real large-scale software systems and 

had been successfully applied to a number of industrial software development 

projects [12]. Z makes use of set theory notations to form schemas - blocks each 

defining a state or an operation. A schema typically consists of three parts: 

title, declaration and predicates. A group of schemas defines an abstract model 

which specifies the system design. 

2 



Chapter 1 Introduction 

Figure 1.1 illustrates the design flow based on formal methods. Starting 

with the user requirements, an initial specification is written. This specification 

is then verified against user requirements to ensure that there is no discrepancy 

between the two. A common verification method employed is called animation. 

This means executing the specification on a computer. Since a typical formal 

specification language, including Z, is not executable, it must first be translated 

into an executable computer language. The aim of animation is not to provide 

a n exact or detailed representation of the system specified, but rather to illus-

trate the behaviour of the system based on an execution model. 

Some animation tools for Z had been developed and reported in the litera-

ture [22, 39，7]. Among them, SuZan and EZ seem to be more complete. Both 

of them translate Z schema into Prolog clauses for execution, where the clauses 

are linked with a pre-defined Prolog library. A major shortcoming of both tools 

is that they can only handle variables declared over finite data sets. Infinite data 

sets, however, occur in many practical applications, most notably with numbers. 

They include the sets of natural numbers and integers. Any finite interval over 

the set of real numbers also consists of infinite number of real numbers if the 

precision is required to be unlimited. 

1.3 Overview of Thesis 

In this thesis, we present our Z animation system ZCLP(丑)that is capable of 

handling the infinite sets of integers and real numbers. It consists of an editor 

3 



Chapter 1 Introduction 

and two translators. The translator of Z to CLP(E) is an automatic process with 

a simple user interface for test data input. Our approach is to use concepts in 

delayed evaluation and constraint satisfaction to handle infinite numerical sets. 

The implementation is based on the constraint logic programming language, 

CLP(R) [20]. Another automatic translator converts Z to MfeX [25] format 

using a software called "fuzz" [36] for printing and type checking. ZCLP(丑)is 

also capable of handling concepts of bag and object orientation. In the following 

chapters, we shall first give a brief review of Z, Prolog, CLP(丑)’ SuZan and EZ, 

followed by detailed descriptions of our animation system as well as discussions 

on how infinite number sets are handled. Finally, the effectiveness of ZCLP(丑) 

is illustrated by examples, 

r Customer's Requirements 

_ Formal Specifications ^ 

I Rewrite 
[ ！ f Specifications 

[ Verification, i 
w ^ e.g. Animation 7" & 厂 Failed 

Passed 
‘ 

广“ “ 1 
Implementation 

s. / 

Figure 1.1: Design Flow Using Formal Methods 

4 

‘ • :、‘••::: :•• :.: .:••. : • . ‘ ‘ . -



Chapter 2 

The Specification Language Z 

2.1 Background 

Integrating mathematical techniques in software engineering is the characteristic 

of formal methods. Z is one of the instances which is based on Zermelo-Fraenkel 

set theory. It was initiated by Jean-Raymond Abrial in France and developed 

by the Programming Research Group of the Oxford University in England. Z 

has been evolved over a decade and still under researched. 

The growth of Z has been proved in the various applications of software de-

sign. Examples can be found in [12，21，28，15, 33，34] which cover the area 

of system design, communication protocols, transaction processing, behaviour 

modelling and so on. Its usage can range from high level of abstract ideas, to 

intermediate or low level of implementations. 

5 



Chapter 2 The Specification Language Z 

2.2 Structure and Characteristics 

The Z，s structure is mainly of schema boxes. A schema is a group of state-

ments bounded by lines, where the appearance enhances module visualization. t 

A typical schema consists of schema title, declaration and predicates. 

Title ： 

Declarations 

Predicates 

The "Title" is the schema's title itself. The "Declarations" is the place where 

variables of different types, schema calculus are defined(schema calculus is the 

operations on another schema and will be discussed later). The relation among 

the variables and their properties are founded in the "Predicates" part. 

We also have the axiomatic and generic schexnas. The former describes global 

variables and their constraints while the later defines some common functions 

upon objects of different types, 

Axiomatic description 

Declarations 

Predicates 

Example 

counter : N 

counter < 1000 

6 



Chapter 2 The Specification Language Z 

Generic definition 

c=i [Params] . 

Declarations � 

Predicates 

or 

Title[Params] 

Declarations 

Predicates 

Example 

� m . 

head : seq! X > X 

Vs : seqx X • head s = s(l) 

As found from the above example, the contents of the schema are constructed 

by set notations. These notations have been well defined in the set theory. The 

statement in the predicate part can be read as "for all s in the finite sequence 

of type X such, that head s is the first element of the sequence s". 

A set is a group of elements which share a common property. This property 

can be regarded as a type in Z. For example, we have the type natural number. 

Variables can be declared to be within this type. Among them, we have plenty 

7 



Chapter 2 The Specification Language Z 

of notations to work out their relationships. These notations can be classified as 

logics, sets operators, relations, functions, sequences and bags. They all belong 

to the area of discrete mathematics. The book Z notation [35] has provided a 
\ 

well reference to their definitions. 

Some notations are special and form the main feature of Z. They are the 

decorations. Variables can be specified as an input or an output property by 

appending characters “？” and ”!” respectively. A prime can also be used to iden-

tify a new state of the variable after some operations. These decorations has 

extended to the whole schema structure. Symbols A or S of a schema represent 

a changing state or not. Actually, Aschema is equivalent to schema 八 schema', 

a calling of the schema with states before and after operations. Then, all the 

variables in schema' are also decorated by prime. These notations have favoured 

Z as a state or property oriented. 

___ ASchema 

Schema 

Schema' 

产三 Schema — — 

^Schema 

No Change 

In fact, the schema decoration belongs to the class of schema calculus. 

8 



Chapter 2 The Specification Language Z 

Schema calculus defines various operators which relate schemas in a manage-

able way. It consists of the following topics: 

• Schema inclusion 

• Schema decoration 

• Schema disjunction 

• Schema conjunction 

• Schema negation 

• Schema hiding operators 

• Schema composition 

• Schema preconditions 

The explanations of each item can be found on [29]. Of which, schema in-

clusion, decoration, disjunction and conjunction are used frequently. Schema 

disjunction and conjunction are the logical "and" and "or" between schemas. 

For example, SchemaC = SchemaA A SchemaB. Schema inclusion brings an-

other schema into the declaration part of the present schema. In effect，the 

variables and constraints of the calling schema are included implicitly. Together 

with decoration, these properties will help in system design of building blocks 

of functions. 

9 



Chapter 2 The Specification Language Z 

___ Schema A 

* \ 

_ SchemaB — — 

A Schema A / * schema inclusion with changing state * / 

2.3 Object Orientation in Z 

Modern software programming is always talking about object orientation. Un-

questionably, object orientation in software engineering can benefit structuring, 

understandability, modifying and future development. Conventional Z writing, 

however, fails to specify classes of objects. A class is a collection of objects 

which share common characteristics. Class can be built on another class with 

bringing along the previous properties. The technique is called inheritance. It 

allows classes can be incremented in a proper way. Many researches have been 

conducted in extending Z to this area. All of them are trying to work out a 

good representation. A survey has shown in literature [37] that there are three 

methods of Z object orientation. 

10 



Chapter 2 The Specification Language Z 

2.3.1 Hall's style 

Hall [9] describes a writing style on standard Z for the object orientation. It 

has been implemented in a project called CASE [2]. Within this approach, an 

object has a self identity which is never changed. 

__ Object ,- ———— 

self : IDENTITY 

Then, a system state may be a collection of the objects. No objects in the 

system are duplicated by means of different entities. This can be ensured by a 

function relating identity and object: 

System 

objects : P Object 

idObject : IDENTITY Object 

idObject = o : objects • o.self H O 

2.3.2 Schuman and Pitt's variant 

A object state schema can be described by the structure: 

11 



Chapter 2 The Specification Language Z 

ObjectState 

declarations 

predicates 1 

initial condition predicates 

The operation schema on that object is titled by adding a dot extension. It 

also has three components. 

_ Objectstate. Operation 

parameter declarations 

precondition predicates 

postcondition predicates 

Similar to other object orientation methods, variables and constraints in the 

object state have passed implicitly into the operation schema. 

2.3.3 Object-Z 

In this approach, the outlook is an enhancement of module visualization. An 

object class schema can contain sub-schemas for its state definitions. The de-

velopment and usage can be found on reference [6, 32]. The formal structure is 

of the form: 

12 
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Chapter 2 The Specification Language Z 

___ ClassName [inherited classes] 

[local constants] 

[state schema] 

[initial state schema] 

[operation schemas] 

[history invariant] 

2.4 Execution in Z 

Another research area of extending Z is to develop tools for execution. A debate 

concerning whether execute specifications or not has been found in literature [8] 

and [10]. In summary, Hayes and Jones prefer not to execute the specifications 

with the following main reasons: 

• Executions with some data sets do not represent the general case of spec-

ifications. In other words, a good testing does not guarantee the absence 

of bugs. 

• Executable language concerns the implementation details and reduces the 

abstract level of specifications. 

• Specifications can involve equations of inverse operations. In general, it 

can not be executed directly. For example, we can define most integer 

square root R oi N in terms of square, R2 <= N < {R + 1)2. It is of 

course an indirect implication. 

13 



Chapter 2 The Specification Language Z 

• Combining clauses, negation of clauses and using quantifiers V 彐 may result 

in an infinite set. 

• It is easier to implement an efficient system regarded to an abstract spec-

ification than to follow an executable specification. The later may hinder 

the structure or the data set of the system. 

Three years later, Fuchs presented a paper to object the view. He made 

use of logic specification language(LSL), a language of Prolog's extension, to 

support his arguments. 

• Correctness is more important than the expressive power of a specification. 

Executing of specification can provide a conceptual and behavioural model. 

Then, the early feedback can reduce the discrepancies between informal 

ideas and formal languages as well as the costs of implementation. 

• The LSL, a declarative language with Horn Clause logic, is suitable for 

specification language. It is expressive and executive. It has shown that 

non-computable clauses can be expressed in LSL with slightly decreased 

in abstract level, a level of still not concerning the implementation details. 

• Specifying by inverse can be done with the generate-and-test technique. 

For the example of finding the square root, a recursive generator of natural 

number can be defined such as natural-number(R). Values of R will be 

generated and tested with the constraints. 

• The infinite set can be bounded by adding a limit into the generator. For 

example, we can define limit一natural—number�R, Limit). 

14 



Chapter 2 The Specification Language Z 

• The executable specifications can form the basis of the implementation 

provided they can describe the system completely and abstractedly. 

In fact, if the abstract level difference between non-executable and executable , 

specifications is small, it is valuable to further investigate the feasibility of exe-

cution. At least, a quick and concrete feedback will enrich the confidence of the 

specifier of what lie has written. 

The Fuchs，paper has given a great hint in the way of execution. It is the use 

of Prolog extension. One of our finding in this area is the software "Constraint 

Logic Programming C L P ( 丑 W i t h CLP(iZ), the infinite set of numbers can 

be solved without any generators or limit values. We will discuss the research 

in the following chapters. 

2.5 Animation of Z Specifications 

2.5.1 Prolog 

Prolog, programming in logic, is an executable language using logic to describe 

the relationship between condition and conclusion. The programs are so simple 

and clear that large amount of equivalent low level programming would be re-

quired. With this expressive power, Prolog has been applied successfully in the 

field of Artificial Intelligence. 

The expressive power of Prolog is mainly due to the use of the Horn clauses. 

15 



Chapter 2 The Specification Language Z 

Reference [26] has provided a good picture of Horn clauses in logic programming, 

figure 2.1. 

— N 1 . 

Mathematical Logic 

j 广 ， 

First Order Predicate Calculus f ^ 

Clausal Form 

广
ni
 . 1 
Horn Clauses v 

\ ^ 

Figure 2.1: Layers of logic programming, depicted from [26] p.86. 

Under the set of mathematical logic, first order predicate consists of "Terms" 

and "Atomic formula". Variables and constants, Xu X2l •"” Xn, are called terms. 

A function f with arguments of terms, f � X u X 2 , … i s also called a term. 

Predicate P with terms' arguments, X2j..., Xn), forms the basic atomic 

formula. Then, the first order calculus relates atomic formulas by negation, con-

junction, disjunction, implication, and equivalence with corresponding symbols 

A V 4 - <->. The calculus also, includes areas of existential and universal 

quantifiers,彐 V. 

After building up first order logic, we can define a Clausal Form of: 

B\j J&2, ^n i-^-1) ^n 

16 



Chapter 2 The Specification Language Z 

where Bn and An are the atomic formulas. We can read the clause as con-

clusions B1,B2, •••，Bn hold if conditions Alt A2j •"，An are true. If only at most 

one conclusion is found in the clause, say B or nothing, it is named the Horn 

clause. 

In Prolog, the head of the clause or conclusion, can be stated by a fact. 

For instance, “Mary is elder than peter" can be written as elder{mary, peter). 

Or, the head is a part of a rule likes elder{X, Z) : -elder{X, Y)八 elder�Y, Z). 

The symbol “： represent the function "if" where the left hand side conclusion 

holds if the right hand side condition is true. It is noted that an upper case of 

the first character of a word stands for a variable, while the lower case means a 

constant, a fact or a functor. In addition with another fact elder{john, mary), 

we can query the system whether elder (John, peter) is true or not. The answer 

is of course "yes". 

Another characteristic of Prolog is its recursive power. Let us consider the 

predicate: 

member (X, [ X | J ' ) . 

member(X, L l Y ] ) : - member(X, Y)• 

The square brackets represent a list. Symbol T separate the first and the 

remaining elements. Anonymous variable does not care any actual value. 

Then, we can ask the question of member(e, c, d, ej]). Prolog will first 

17 



Chapter 2 The Specification Language Z 

attempt the first line, e.g. member{e,[a \ Jj> If it fails, second line will be 

executed. But it is actually a retry of the first line with the remaining elements 

of the list. This recursive trial will terminate if a match element is found or the 

end of list is reached. 

On inverse, we can query member{X, [a, 6, c, d, ej}). Prolog will backtrack 

the search tree and generate answers X = a, 6, c, d, e j individually upon re-

quest. In fact, the searching technique in the rulebase is the depth-first-search. 

Details explanation and usage of Prolog can be found on [38, 1]. 

2.5.2 Translation Z into Prolog 

Up to now, no compiler or executor exists for Z language. Prolog predicates, 

however, can be directly executed. This is the reason of trying to link both lan-

guages together. Translating Z into Prolog, is an indirect means of executing Z. 

This translation is possible because both languages are based on first order logic. 

The first order logic is so simple that we can perform a one-to-one mapping 

from Z into Prolog. Logics «，八 V” can be mapped to ilnot，； ” in Prolog. 

Set operators such as x 6 5 can be interpreted as member(X,S). Similarly, 

relation x = dom R and function X 7 can be constructed as dom{R, X) or 

partial-fu,nction(X, Y). This translation is direct and simple. 

Of course, Prolog does not recognize the functors dom and 'partial-function, 

18 



Chapter 2 The Specification Language Z 

or even the member. As in Z, their meanings are pre-defined. Z specifier has al-

ready known their definitions but it is not true for the Prolog system. Therefore, 

a Prolog library is needed to store the predicates of these functions. A sample 

from the last section has constructed the definition of member. As a result, the 

library can be recalled during execution. 

Executing Z by Prolog, however, no formal proof has been given for this 

translation. We can challenge its correctness. But it is not our main goal. The 

goal is to animate or execute Z so that some rapid feedback can be obtained. A 

correct and executable Prolog predicate has reflected a good Z specification to 

a certain degree. 

2.5.3 Related Works 

Two approaches to animate Z specifications have been suggested by West and 

Eaglestone [39]. They are, namely, "formal program synthesis" and "structure 

simulation" • The former approach converts the higher order theory of Z into first 

order logic and then translates it into Prolog. West and Eaglestone have shown 

that "formal program synthesis" requires human assistance in the translation 

process and thus cannot be fully automated. On the other hand, "structure 

simulation" maintains a similar structure to that of Z. It is the idea described in 

the previous section. With this approach, Z schema statements are translated 

into Prolog predicates directly based on a pre-defined library of set operations. 

It is possible to implement an automatic one-to-one translation from Z to Pro-

log based on this model. This model has also been found in two animation 

19 



Chapter 2 The Specification Language Z 

researches, SuZan [22] and EZ [7]. 

SuZan contains a well defined library called "Mathias" [23]. This library not 

only works for Z translation, but also forms the basis of a Prolog animation tool 

for discrete mathematics which covers a number of areas including set, logic, 

vectors and matrices. Together with the library, the translation of Z into Prolog 

predicates is semi-automatic. Afterwards, reordering of predicates is sometimes 

needed to prevent unnecessary backtracks in order to improve the efficiency. Un-

folding some library's predicates may also be required to remove duplications. 

EZ is an automatic translation tool. The method is to use a look-up list 

predicate to instantiate variables from a given finite data set. After translation, 

a control system must be added to animate the model by forward chaining or 

backward chaining. It is the predicates telling the sequence of program running. 

This control system takes the advantage of Prolog's backtrack technique so that 

alternate paths can be found. 

Unfortunately, both SuZan and EZ can only handle variables declared over 

finite data sets. The reason is that variables' values are generated and tested 

with constraints. It is not practical for the infinite set such as numbers. For 

instance, a schema describing the relationship among the edges' length of a 

right-angle triangle: [24] 

20 
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Chapter 2 The Specification Language Z 

__ Pythag Traids — 

x!,i/!,/i! : N 

(a； * a;) + (y * y) 二 (厶 * 厶) . 

will be translated into the following Prolog predicates: 

posnum(l). 

posnum(N):- posnum(Nl), N i s Nl+1. 

p y t h a g t r i ( x , y , h ) : -

posinim(x) , posnum(y) , posnum(h), 

0 i s h*h - x*x 一 y*y. 

If the predicate pythagtri is executed with x = y = 17 the program will run 

into an infinite loop of fail and backtrack. The system tests a value for h which 

is incremented by one at each time. It will be a serious problem if the schemas 

contain extensive arithmetic operations. 

21 
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Chapter 3 

Incorporating Real Numbers in 

Z 

Starting from the primary school, we have learned that the number system con-

sists of natural numbers N，integers Z and real numbers. Real numbers is the 

largest set. It includes rational and irrational numbers. The irrational numbers 

is a mysterious subject that many people had tried to work out its definition as 

well as the whole set of real numbers in the past. Not until the end of nineteenth 

century, Richard Dedekind and George Cantor had given an abstract definition 

in terms of rational numbers. Their full explanations can be found in [3, 31]. 

Afterwards, the rapid development in real numbers such as limit and continuity 

have proven real number is an essential concept and tool in the twentieth century. 

22 



Chapter 3 Incorporating Real Numbers in Z 

3.1 Dedekind Cut 

A Dedekind cut is a subset a of the set of rational numbers R, One characteristic 

of set a is that it does not have a minimum. For instance, we can define a cut 

based on rational number r0 as: 

a ^ {r : r e R and r > r0}. (*) 

Omitting the mathematical proof, we cannot find a minimum rational num-

ber tending to r0. Once we locate a value ra, we can find another value rb such 

that ra> rb> r0. On the other hand, the set complement of the cut a c = R-a 

has a m a x i m u m value equal to r0. If we cannot determine the maximum value, 

or a is not in the form of (*), it is an irrational cut. 

The collection of cuts, rational and irrational, forms the basis of real num-

bers. Together with the addition, multiplication, and order over the set of cuts, 

the real number system is well defined. 

3.2 Cantor's definition 

Cantor's definition starts from the Cauchy sequence. A Cauchy sequence {an} 

is a sequence satisfying the condition: 

彐n，m:Z; N,e:R 丨 n,m> N • | — |< e. 

It is not necessary that the sequence converges. For example, the irrational 

number y/2 can be represented by a Cauchy sequence: 

23 



Chapter 3 Incorporating Real Numbers in Z 

{1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414214, .... } 

If there is another sequence {6n} such that {an - bn} converges to 0，i.e. 

\ a n - K 丨< e. 

for e � 0 and n > iV, we define the two sequences are equivalent and are 

in the same class. In other words, each Cauchy sequence {an} is unique to an 

equivalence class. Similar to Dedekind cut, addition, multiplication and order 

are defined on these classes. The collection of the equivalent classes is the real 

number system. 

3.3 Practical approach 

The classical definitions of real numbers by Dedekind cut and Cantor use the ab-

stract level of set theory. The approaches are indirect because they are in terms 

of set and sequence. In fact, they are not practical in computing programs. All 

we concern is the method of computing and incorporating in Z. 

A real number can be of infinite decimal length. It is meaningless and impos-

sible to perform such an endless calculation. Instead, we can specify a precision 

value or a fixed decimal point. Any d e c i m a l numbers can be cut or added zeros 

to achieve the decimal point and participate in the arithmetics. But this pre-

cision value should be machine independent. A problem arises because we do 

not know all machines' floating point power. Moreover, it will limit our choice 
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of decimal length. 

Again, a possible solution is to use Prolog. We can interpret a real number 

as a list. Each integer, minus sign or decimal point is an element of the list. 

Addition, subtraction, multiplication and division can then be calculated in the 

way of human's thinking. Calculated result of a pair of elements is passed to the 

neighbour element, It is a basic method that places no limit on the precision 

level. So, a system of Prolog predicates called Real-math has been constructed. 

It can simulate the human's calculating procedures. For example, if we want to 

have a precision of ten decimal digits and perform the calculation 123.123456789 

/ 123.456, we can input; 

diVide([l，2，3”，l，2，3,4，5，6，7，8，9，0l, [1，2，3”,4，5,6], Quotient, Remainder) . 

The first argument in divide is added a zero to determine the accuracy. The 

system will reply: 

Remainder = [” 0，0, 0，0, 1, 1，2, 2, 7, 2] Quotient 二 [1，•，0，0, 0，0，0，6, 3] 

Incorporating real numbers into Z can be as simple as just writing down the 

type Real in schema's declaration part. From the above, mathematical opera-

tors “+ _ * /” can be translated into corresponding predicates. Unfortunately, 

we can not do it in this way if we choose the software CLP(丑)to be our target 

tool. It is because its delay mechanism is not applied to list. This property 

will be explained in the next section. After consideration, employing CLP(丑) 

in solving infinite numerical set is more important than the precision problem. 
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Chapter 4 

Constraint Logic Programming 

and CLP(R) 

4.1 Constraint Logic Programming 

In the area of logic programming, many researches have been conducted in Pro-

log's extension. This extension, however, may stray from the semantic properties 

of logic programs. Thus, it motivates Jaffar, Lassez and Maher [IT] to propose a 

"logic programming scheme". The scheme aims at using logic programming to 

reason constraints. Alternatively, the scheme is called "Constraint Logic Pro-

gramming CLP". Unlike other extensions, the scheme first defines a class of 

languages for forming a formal framework. This is achieved by using the con-

cept of the definite clauses. Also, the framework has the semantic unification 

where two terms which are not syntactically identical can be considered equal. 

Consequently, Jaffar and Lassez [18] showed that the framework defined was 

more general than the one of logic programming. 
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Chapter 4 Constraint Logic Programming and CLP(R) 

Overall, literature [18, 19，20] have shown that CLP languages contain the 

following characteristics: 

• They are soundly based. 

• They have great expressive power. 

• An efficient implementation can be constructed. 

Under CLP scheme, the domain of computation remains unspecified. We can 

have CLP(J0 where Xis the domain of the language applied. Prolog, Prolog II 

and Prolog III can be considered as the class' instances. Prolog II is a Prolog's 

extension which, can solve equations over infinite trees. And, Prolog III expands 

the domain including areas such as linear arithmetics, booleans and strings. 

Similarly, Jaffar，Michaylov, Stuckey and Yap [20] developed a system called 

CLP(丑).Unlike Prolog II，the constraint solver in CLP(丑)works implicitly to 

the users. 

4 . 2 C L P ( j R ) 

Constraint is a problem which can be solved by: 

• Imperative method. It is the simplest way where constraint is treated as 

tests or assignments. If variables are grounded, they are tested by the 

constraint. For instance, test(X):- X > 3 is executed only at X is given. If 

assignment “ = " is used, variable of one side can be determined provided 

the other side is grounded. Or, equality is checked for both given sides. 
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• Local propagation. The operation involves a delay mechanism but applies 

to local predicate. Constraints are solved if some variables can be deter-

mined with sufficient conditions. Then, a local propagation occurs to pass 

the newly grounded variables to other constraints. In this method, the 

order of constraints is important. A drawback is that constraints may fall 

into cyclic dependency [13, 20]. 

• Constraint solving method. This method treats constraints declaratively 

while the above two fail. The declarative nature can free programmers 

from considering the order of constraint collection. For example, we can 

write: 

testl(X):-X > 0. 

test2(X):- X < L 

test3(X):- X > 5. 

and then query the combined conditions; 

？- testl(X)) test2(X), test3(X), 

the answer is of course "No". 

An instance of this class is CLP(丑)• Its solver can determine the solvabil-

ity of linear constraints. Non-linear constraints are treated by the local 

propagation method. 

In CLP(i^), the R represents constraints over real arithmetic terms of un-

interpreted functors. Its solver involves a delay and wake-up mechanism where 
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non-linear constraints are delayed until the required variables are grounded to 

make the constraints linear. More insight, they are filtered by an inference en-

， gine, an engine/solver interface, an equation solver and an inequality solver. The 

strategy is that different constraints are tackled by different algorithms so that 

the solver can fulfill the requirements of: 

• having a good average behaviour. 

• adding new constraints would not resolve the previous constraints again. 

4.3 Example of CLF(R) 

A care in CLP(丑)programming is that it has type difference instead of free type 

in Prolog. If the predicates involve mathematical notations such as “>= < sm” 

，the related variables would be identified as real numbers. The real variables 

will be delayed if they are not determined yet. 

For example, Z = cos(X) will be delayed until X is grounded. 

Or, the predicate 

ele(V, I, R, P)：-

V = I*R, 

P = V*I. 

will be delayed until any two variables are grounded by other constraints. 

So, we can ask 
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？- ele(3, Current, Resistance, 4.5). 

and the system will return : 

Resistance == 2 

Current = 1.5 . 

Even the constraint is not linear, required variables are not yet determined, 

CLP(/2) will try to simplify the relation. 

For example, 

？- ele(3, Current, Resistance, Power). 

will return : 

Current = 0.333333*Power 

3 =. Current * Resistance . 

Although it is an unsolved answer, the simplified equations themselves de-

scribe a correct response. For more examples, please refer to [14]. 
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Chapter 5 

The ZCLP(R) Animat ion 

Sys tem 

5.1 Design Philosophy 

The purpose of the system is to execute Z through an indirect means by trans-

lating Z schemas into predicates of programming logic (Prolog). Under Prolog 

system, the execution of predicates can act as a validation to Z. This possibility 

has been discussed in section 3.2. 

In the design of our animation system, we considered three important as-

pects: 

A) The system should incorporate real numbers in Z. It is a necessary and 

common type definition. The problem of involving this type in the translation 

of Z into Prolog has been discussed in literature [24] and section 3.3，where the 
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infinite set and precision of real numbers are the key points. The generate-and-

test of numbers cannot be used in standard Prolog because it may result in an 

endless loop. Therefore, an extension to standard Prolog is needed. 

One of the solutions is by using constraint logic programming. Actually, this 

method is under the scheme of CLP system developed by [18]. Prolog II，Prolog 

III and CLP(丑)are the instances. Particularly, CLP(JR) is designed for real 

number calculations. Its constraint solving algorithm uses a delay mechanism 

where variables of real numbers are not evaluated until there are sufficient con-

ditions. I t i s a n o p e n software obtainable i n t h e unix network public domain. 

On summary, GLP(R) has the properties of: 

• Constraints can be declaratively expressed. 

• Non-linear constraints will be delayed and then solved when it becomes 

linear. 

As a result, system of equations can be solved or simplified by CLP(丑).We 

decided to use CLP(丑)for the animation system because of its ability to handle 

real numbers and its availability. 

B) It is worth introducing object oriented Z into the system. Literature 

[32，6，37] have shown that object class can benefit structuring, understandabil-

ity, updating and modifying in software engineering. Various methods of this 

extension in Z have been discussed in section 2.3. Among them, the HalPs style 

is the least and simplest changes to the conventional Z writing. Similar to this 

style, a schema can be treated as a property or class to be recalled in others, 
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Chapter 5 The ZCLP(R) Animation System 

type declaration. A single schema box format is still preserved. For example, 

__ Schema A — 

A1 : TypeAl 

A2 : TypeA2 

4̂1 >=： 10 / * constraint A * / 

A2 >= 20 

„ScherriaB — — 

B1 : Schema A 

B1.A1 > 30 / * constraint B ^ / 

B2.A2 = Bl.Al-^0 

Clearly, a variable in SchemaB has sub-variables of types defined in SchemaA 

and is represented by dot extension, namely B1.A1 and B1.A2 . These variables 

are constrained by SchemaB as well as SchemaA. The later is a hidden impli-

cation followed by the class definition. It is useful if there are several objects 

belonging to a common class so that the class's properties need not be redefined. 

Then, the approach would result in a well organized tree structure as shown in 

figure 5.1. 

C) An automatic translation system is required. It should not be necessary 

for the specification writer to take care of the translation process or even the 

Prolog language. 
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Class A 

( A1.A2 \ 
I satisfied I 
\ constraints A J 

Class B 

/ B1 \ 
\ satisfied J 
\ constraints A & J 

N,. constraints B 

* \ \ / •• 
‘‘Class C v» / Class D \ f Class E \ 
I i r 5 ； 
• I • ； 

• » t h \ ； \ * \ / 

、、…' .•..〒.••* ‘ 、•…一、 / I » /• I » t 暮 t , * 
I ! * 

f • � 
Figure 5.1: Tree structure of object classes 

5.2 Implementation Strategy 

Since Z is still not standardized, it lacks supporting tools. Normally, most 

researchers built up their tools themselves. A useful software called Fuzz is pro-

vided by J.M. Spivey [36]. It can check Z specifications for the compliance of 

Z scope and type rules. Schemas are written in I ^ T E X format and fonts of Z 

notations are available for printing. 

The specification process starts with editing and thus an Z editor is essential. 
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After editing, the file created can be used for interpretation. Two translators are 

needed, one is the Fuzz translator for printing, type checking and one is Prolog 

translator for executing. The model of Prolog translator will be similar to the 

ones developed in [24，T, 39] and have been discussed in chapter 3. They have 

shown that the generate-and-test model is applicable to the animation of some 

simple schemas. With this model, a Prolog's library is needed for executing set 

operations. 

The whole picture can be expressed by figure 5.2. 

f Fozz \ Type ( CLP(R) \ Execution 

I system ) Checking I System J 

Latex Z P r o l o g 

Printout 丨 EDITOR Library 

( L a t e x \ 7 P r o l � g \ 
I TmnslatoJ I T r a n s l H 

Figure 5.2: The design of the system ZCLP(丑） 
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5.3 Z editor (ZEDIT) 

As [16] points out that complex structure editors may restrict users the degree 

of freedom, the design of editor is as simple as a text editor shown in figure 5.3. 

The editor is written in C language of graphics mode. Special Z schema's lines 

a n d symbols are available on screen. Once the schema key is pressed, the editor 

will enter the schema mode. Schema lines will be drawn automatically until the 

end of schema box is input. The final work is saved as an ASCII file. In the file, 

numbered markers are represented for those special Z notations. 

Z E D I T O R Verl.O by C.P.WU 93， Insert 

[Person, Real� 

_Dat̂ ase — 
Saving : Person 

Transfer . — 
Tbalancel: bag Person 
From?, To? : Person 
Amount? ； R 

Tbalance!== 

Message : Input a correct selection 

Function: <E>dit <R>ead <W>rite <P>rint <Q>mt 
<C>lpr <L>atex 

Figure 5.3: A view of the main screen of the Z Editor 
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5.4 Prolog Library for set operation (ZCLIB) 

The task of the library is to release the burden of translation. Some common 

set operations can be recalled from this library such as union and intersection. , 

Their implementations are referred to the definitions described in [35]. 

5.4.1 Basic needs for the Library 

Most functions in the library will work on list operation. However, the built-in 

functions of CLP(丑)are very limited. We have to define them by ourselves 

which are: 

1. member(X, list) 一 membership of element X in the list. 

2. append(ListA，ListB? ListAB) 一 append one list to another. 

3. delete(X, List, Result) 一 delete element X in list, 

4. lengthJist(List，N) 一 the length N of a list. 

5. findall(X, Pred, Result) - find out all elements X satisfied with the con-

straint "Pred" and then form the list "Result". 

6. setof(X, Pred, Result) - similar to findall predicate but remove any dupli-

cation of the list "Result". 

7. reverse(ListA, Alist) - reverse the ordering of a list. 
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5-4.2 Rules for the library 

Rules of guidelines have be defined in building up the library. 

Rule 1 Set of elements is represented by list in Prolog. In CLP(R), a set or 

tuple is enclosed by “ [ ” and « ] ”• For example, a set of binary relation 

(x,y) can be represented by: 

… [ [ a , 1], [b, 2], [c, 3], [d, 4]] 
where a; = { a ， 6 ， c ， 二 {1，2，3，4} 

Rule 2 The order of list must be ignored for a set definition, But Prolog/CLP (丑) 

will take care of the ordering, therefore, a predicate "equal(A, B)” will 

check the equality of the two lists. 

e q u a l ( [ ] , [ ] ) . 

e q u a l ( [ X | T X ] , B ) ： -

member (X ,B) , d e l e t e ( X ’ B , B B ) , 

e q u a l ( T X , B B ) , ! . 

Rule 3 The list must contain no duplicates for a set definition except bags 

or sequences. A predicate rm-dup is constructed to remove duplicated 

elements in the list. 

r m _ t a i l ( X , [ ] , [ ] ) . 

r m _ t a i l ( X , [ X I T a i l ] , L i s t ) : -

r m ^ t a i l ( X , T a i l , L i s t ) . 
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rm„ta i l (X,[Y|Tai l ]， [YiLis t ] ) : -

not X == Y, 

r m _ t a i l ( X , T a i l , L i s t ) . 
\ 

rm _dup ( [ ] , [ ] ) • 

rm„dup([XlTX],[X|TY]):-

rm„tail(X,TX,TT), 

rm一dup(TT,TY)• 

Rule 4 The flow mode of arguments must be maximized if possible. In de-

signing a predicate, an argument can be treated as input(i) or output(o) 

because we do not know the final usage of it. There are two strategies in 

facing with this problem, one is passive and one is active. 

For the passive mode, it is the normal Prolog writing of [Head | Tail] for 

list. Prolog will backtrack the list instantiation for the required compo-

nent. A typical example is: 

'/. i i , o i 

member(X,[XlJ) . 

member ( X , [ � Y ] ) : - member (X, Y). 

A query of member(X} [a, b, c, d]) will generate X equals to a, b, c, d 

respectively. 
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This method, however, is not very practical and efficient as huge logical 

combinations may come out. It is the case for set operations, set relations 

and mapping functions. In addition, the uses of findall and setof in Prolog 

will prohibit the reverse mode. For example, the set operation union can 

be defined as: 

union(A,B,C):- setof(X,(member(X,A); member(X,B),C)). 

Although the predicate is precise and concise, the flow mode of the argu-

ments is only (iio). 

For the active mode, the built-in function of CLP(丑)，var(?X) and non-

var(?X) are used to test the argument whether it is an unknown variable 

or has been instantiated a value. Different queries will be assigned to 

different predicates. Revisit the union example: 

•/.flow mode can be i i i , i i o , o i i , i o i 

union(A,B,C):-

nonvar(A), nonvarCB), 

se tof (X, (member(X,A); member(X,B)), CC),! , 

equal(CC,C). 

union(A,B,C):-

nonvar(C), nonvar(B)， 

difference(C,B,AA)， 

subset(BB,B), 

Tinion(AA,BB,A). 
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nnion(A,B,C):-

nonvarCC),nonvar(A), 

difference(C,A,BB), 

subset(AA,A), 

union(BB,AA,B). 

The testing results: 

1 ？- [ zc l ib] • 

*** Yes 

2 ？- union([a ,b] , [b ,c ,d] ,R)• 

R:= [a, b, c, d] 

*** Yes 

3 ？- union(R, [b,c] , [ a , b , c , d ] ) . 

R » [a, d] 

*** R e t r y ? ； ‘ 

R = [a, d, b] 

*** Retry?； 

R = [a, d, b, c] 

*** Retry?； 

R = [a, d, c] 

*** Retry?； 

*** No 
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4 ？- un ion( [a ,b ] ,R , [a ,b , c ,d ] ) . 

R = [c, d] 

*** Retry?； 

R = [c, d, a] 

*** Retry?； 

R = [c, d, a, b] 

*** Retry?； 

R = [c, d, b] 

*** Retry?； 

**本.No 

R u l e 5 Cut (!) is used very carefully to prevent unnecessary backtrack. Nor-

mally, the plai:e of cut is tested by enforcing the "Retry?” question when 

the predicate is input with different data sets. 

Rule 6 Predicates of defining number types will not generate possible numbers 

f o r solution. It is because mathematical equations can be handled by 

CLP(丑).Integers, natural numbers, and real numbers are defined by: 

%i 

integer(X):- n a t u r a l ( X ) : ~ 

nonvar(X)->floor(X,X). nonvar(X)->integer(X)； 

X>=0. 

•/•i 

realno(X):-

nonvar(X) -> real(X). 
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Here, the symbol X - > 7； ^ is read as «if X then 7 else Z”. The f u n c 

tion floor(X, XI real{X) are built-in functions of C L P � and will only be 

executed when X value is grounded. For natural numbers, if the value of 

X is unknown, X > = 0 is used. The reason is that C L P � may not solve , 

X yet and we may get the value by backtracking. Without nonvar(X), 

it will abort the execution by floor{X, X) and hence decrease the flexibility. 

With the same reason, variables of type real numbers R are only checked 

when it is grounded-

5.4.3 Limitation of the Library 

We can not expect each of the predicates has all the flow modes combination. 

The result may be an infinite set such as intersect (What, [a, 6]，[a]). The set of 

"What" can be any set provided "a” is an element and b is not. 

From the book of Z notation [35], some functions are not implemented. They 

are: 

1 . 一 + Transitive closure R+ - U伙：吣• Rk} where Rise, relation 

2. 一* Reflexive-transitive closure R* = : ̂  • Rk) 

3. F Finite sets 

4. Fx Non-empty finite sets 

5. -JH- Finite partial functions 
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6. Finite partial injections 

Items 1 and 2 may involve infinite sets and are not implemented. The re-

f i n i n g will duplicate some predicates such as partial functions, where we have 

assumed the inputs and outputs are finite list for any set functions or relations. 

5.5 Z to CLP(R) Translator (ZCGEN) 

The translator is a line interpretation process. The first scanning of the file will 

identify some basic entities such as dom, —，{,…etc. . According to the type 

of entities, appropriate translatioti format is found from the rulebase. Figure 5.4 

summarizes the flow of translation. 

There are six kinds of entities: 

1. Special words in Z. e.g. dom, ran, s u e � . 

2. Special symbols in Z. e . g . — ， ， 

3. Mathematical operators, e.g. sin, cos,... 

4. Normal words, e.g. title, variables. 

5. Schema drawing lines, e.g.「，| 

6. Punctuation, e.g. ( ) , { } [ ] ‘ ？ ！ 
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f > 
Z Editor 

，f — \ 

‘ T r a n s l a t o r ZCGEN � Library ZCLB 

Schema Scanning Basic Utilities 
n h mamber(X, List). 

广 ^^―- � append(ListA, ListB, ListAB)-
Saving: bag Person \ % • • \ 

L 、、， � ： J 
* Translating , 

Entities Identification 一 - - . “ ~ ~ ~ " " ” 
^ L o • W « Translating Set notations deflmtion 
Database, Savmg,bag, R u l e s union(A,B,Q. Rules 
P e r s o n partial_fn(FtA,B)- L 

• / 
Prolog Predicate : : J 
databaseCSAVINGJ'ERSON):- ’ 

bag(PERSON,REO), ^ r 
bag_member(SAVINGvREO). 

^ I I 
广 : — r 

Yes (Any S c h e m a � — — ^ EXECUTION ^ — — U s e r Data 
\Translationy ^ j Input 

< 

Figure 5.4: The Flow of the Prolog Translating system ZCGEN 

5.5.1 Procedure for translation 

Step 1 Scan the schema title. 

Step 2 Scan the declaration one line�at a time. Record the variables, types and 

determine any schemas reference. Numbers and unknowns will be identi-

fied. 

Step 3 If there is a schema reference, the required predicate is searched out 
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from the database. All related arguments are passed into this predicate. 

Also, any state change, schema conjunction A and schema disjunction V 

are determined. 

Step 4 For the type definition, transform any relation in bracket and then trans-

form any special keywords into Prolog predicates such as dom, ran, etc. 

Step 5 Relate the variables with the type transformed or not. 

For example, Happy ： (X x Y) ^dom(Relat ion) 

will be translated into 

Cart-pr0d(X,Y，REO)，dom(RELATIONJREl)J 

total jn(HAPPY，REO，REl)， 

Step 6 If there are variables of type object class, the required class predicate is 

searched out from the schema database. All arguments in the object-class 

are headed by the present variables. Revisit the example in section 5.1: 

e . g . s c h e m a A ( A l , A 2 , T y p e A l , T y p e A 2 ) : -

A1 >= 1 0 , 

A2 >= 2 0 . 

s c h e m a B ( B l _ A l , B 1 . A 2 ) : -

B 1 _ A 1 >= 3 0 , 
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B1.A2 = B2_A1 - 40 , 

I schemaA(Bl_Al, B1.A2, TypeAl, TypeA2). 

X t h e l a s t p r e d i c a t e checks t h e c l a s s p r o p e r t i e s 

» 

Step 7 Repeat from step 2 until declaration end. 

f Step 8 Scan the schema predicate part and do similar transformations as in 

steps 3, 4 and 5. 

Step 9 Record this translated predicated title and arguments. 

5.5.2 Demonstration 
A file update schema described in [24] and Specification Case studies[12] p.7 is : 

_ File Update 

/,/' : Key -H> Record 

dl : P Key 

it? : Key -h> Record 

dl C d o m ( / ) A 

dl n dom(u?) 二 {} 

After processed by ZCGEN, the output is: 
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I f i l e u p d a t e ( F , F . p i , D _ i n , U . i n , KEY, RECORD):-

p a r t i a l _ f n ( F , KEY, RECORD), 

s u b s e t ( D _ i n , KEY), 

p a r t i a l . f n ( U „ i n , KEY, RECORD), 

dom(F, REO), subse t_equ(D一 in , REO), 

dom(U一in, RE1) , i n t e r s e c t ( D _ i n , R E 1 , [ ] ) ， 

d o m _ a n t i „ r e s t r ( D „ i n , F , RE2) , o v e r r i d e ( R E 2 , U__in, F _ p i ) , 

p a r t i a l ^ f n C F . p i , KEY, RECORD), 

t r u e . 

s We can find that the system ZCGEN translates the schema's semantic in a 

one-to-one mapping. Actually, the process is based on the following rules. 

5.5.3 Rules for translation 

Rule 1 Those variables involve input, output state changes and object class 

will be rewritten as: 

Original Text Translated Text 

Var' Var_pi 

Var? VarJn 

Var! Var 一 o u t 

Var.class Var_class 

Ru le 2 Words of mathematical operators such as sin, cos, ... are remained in 
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lower case spelling. Most Prolog systems have these mathematical func-

tions. 

% 

Rule 3 In schema's declaration, those translations involve Var-pi and Var一out 

will be placed at the end of the predicate. This is because methods of final 

state or output value will only be defined in schema's predicates. Placing 

them at the end will act as a further confirmation. The original positions, 

however, may force unnecessary instantiation and result in backtracking. 

It can be found that the statement «partial_in(F-pi, KEY, RECORD)” 

appeared in the previous demonstration is positioned at last. This method 

has been applied in [24] which is called "predicate promotion". 

Rule 4 The class checking of new variables is added at the end of predicate. It 

is because the new constraints may determine the values of variables. The 

final placement has the same effect of rule 3. 

Rule 5 Temporary transformation result will be stored as REO, RE1，RE3 ... 

automatically. They act as the bridge elements. 

Rule 6 If a predicate's line do not contain any set notations and schema calcu-

lus, it is normally a mathematical equation. The whole line will be copied 

and handled by C L P � . 
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Rule 7 Powerset function e.g. C : PA , will be translated into SubSet(C, 

A). Formally, the translation will be powerset(A, REO)，member(A, REO) 

where REO is the set of all subsets of A. As the concern is only the mem-

bership property, it is not necessary to generate all the subsets of A. This ‘ 

method is same as [24]. 

Ru le 8 For schema calculus, the operands of the referred schema will be passed 

into the present schema. Schema decoration consists of schemaA'，AschemaA 

and EschemaA. Symbol EschemaA will just call out the schemaA. AschemaA 

is equivalent to schemaA and schemaA' • Those variables in schemaA', 

f however, will be attached an extension of 一 p i to specify out a changing 

state. With the same reason of Rule 3，the calling of schemaA' will be 

placed at the end of predicate. Schema conjunction A will be translated 

into “，” while disjunction V is “ 

Rule 9 For generic schema, the type of the generic parameters would be deter-

mined outside the schema. 

5.5.4 Limitations of the Translator 

During translation, multiple brackets interpretation have not been implemented. 

For example, ( X Y ) Z is fine but not for {{X — — Z)- 0 n the other 

hand, only one ” = “ sign is permitted in a line due to the simplicity of program 

design. 
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Quantifier statements, \/x... • … a n d 3 ^ . • … a r e not implemented yet. 

It can be defined similar to the method found in SuZan [22] where a predicate 

j -for^all( Generator, Predicatef is built. But this method may generate numer- , 

ous data which is extremely inefficient. In West and Eaglestone[39], predicate 

"check^alLp([X | Y}) : -P(X)，checLall一P(Y). chech^Vi[]V Proposed 

but it only works for finite known Ust. If we have the case V x : Real mz^x^y, 

perhaps it is better to translate it into z 二 x ” only. On the other hand, 

literature [10] has shown that existential quantifier such as 3 x : T • x > y 

can be omitted in logic specification languages because the statement x > y ha.s 

implicitly quantified the existence of x. 

Some of the schema calculus described in [29] are not studied yet. They are: 

眷 Schema negation involves schema normalization and changing connectives. 

• Schema hiding operators involve using universal quantifier. 

• Schema composition involves passing the final state of a schema to the 

beginning state of another, 

Schema without a title such as generic constant and axiomatic description is 

not allowed. 

Generic definition 
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P= [Params] •. 

Declarations 

Predicates 

Axiomatic description 

Declarations 

Predicates 

For translation purpose, they may need a particular title generated by the 

system. 

5.6 Z to IATEX translator (ZLATEX) 

The purpose of this translator is to output Z schema in WT^X format for print-

ing and type checking with the use.of Fuzz system. For printing, the document 

should include the [fuzz] documentstyle in the heading of file and then perform 

normal LXTgK compiling. For type checking, the command "fuzz example.tex" is 

used. Details of the Fuzz system us îge can be found in the reference manual [36]. 

The translation procedure is similar to ZCGEN but now it is a one pass trans-

lator. Different entities will be identified and rewritten immediately according 

to the rulebase. The rulebase will produce the corresponding Fuzz's command 

codes. Unlike ZCGEN, it is not necessary to concern the relationships between 
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\ , entities. In other words, its nature is like a look up table. For example, the 

schema described in section 5.5.2 will be translated to 

\ beg in{schema}{F i l eUpda te> 

f , f ' : Key\pfun Record \ \ 

d? : \power Key \ \ 

u? : KeyXpfun Record 

\ w h e r e 

d? \subseteq \dom(f)\land \ \ 

d?\cap \dom(u?) = \ { \ > W 

f,=(d?\ndres f ) \ o p l u s u? 

\end{schema} 
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Chapter 6 

Examples 

Two examples will be shown, one is bags oriented and one is calculation ori-

ented. They are self contained. A common characteristic is that real numbers 

calculation is involved. 

6.1 A Simple Banking System 

6.1.1 Bags 

The system is similar to the one described in literature [11] where bag operations 

are used. 

From Z notation [35]，the definition of a bag is: 

bag X = = X 书 Ni. 

We can find that a bag is a set of ordered pair: 
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Chapter 6 Examples 

{Xi ku...,Xn A;n} or written as 
I • 

The domain of bags is the element while the range is their corresponding 

occurrences. Zero occurrence is not defined in a bag. We can say a set is a sub-
I 

set of a bag because each element only appears once. Similar to set, some bag 

operations such as bag membership E，bag union W are defined in [35]. They 

have been implemented in the library ZCLIB, 

Suppose we have a bag named "Alphabet" which contain elements [a, b, c, d, 

a，d]. Then, the library ZCLIB will output the predicate bag(Alphabet, Result) 

as: 

^ Result 二 [[a，2]，[b，l], [C,ll,[cl，2]]. 

One advantage of using bags over sets is the simplification. As mentioned in 

[11]，we have a bag operation about the final balance after the transaction from 

one person to another: 

Balance' = Balance 1±) {from? ^ -Amount?, to? ^ Amount?} 

can be represented by set 

Balance' 二 Balance � { f r o m 1 ! ̂  Balance(froml) 一 Amountl, 

tol Balance{to1) + amount1.} 

where the symbol � is defined as 
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丨, Here, symbol 匄 denotes domain anti-restriction. The above semantic is the 

^ set of R union everything of Q except those elements appeared in R's domain. 

i The Balance relation will not be well defined in set if from? 二 to?, that is , 

the case of same person. It is because we do not know the value of balance(to?) 

[ i s taken from before or after the bank(from?) 一 Amount? operation. However, 

bags can allow the summation of frequencies over the same object. 

Literature [11] has also generalized the bags that frequency of occurrence can 

be negative, as well as the usual zero. We further extend the idea to include the 

infinite set of real numbers. Hence, 

bag X = 二 X -f-> Real number 

6.1.2 Specifications 

Suppose the Bank has two simple services, manual transactions and auto-transfer-

machine. Then, we define two sets 
[Person, Real] 

Person is the set of customers and Real is the set of real numbers. The 

saving of Person will be represented by the frequency of occurrences, i.e. bag 

Person. 

__ Database 

Saving : bag Person 
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|f transfer[Person] 

Tbalancel : bag Person 

From?, To? : Person 

Amountl : Real 

Tbalance\ = {{Froml ^ -Amountl), (to? h-> Amountl)} 

atm[Person] — 

Abalancel : bag Person 

Namel : Person 

Withdraw! : Real 

Abalancel 二 {(i\Tame? H - Withdraw?)} 

__ balance — ‘ 

ADatabase 

transfer[Person] 

atm[Person] 

changesl : bag Person 

changes�. = Tbalancel l+l Abalancel 

Saving' = Saving l+l changesl 

Let the set Person has three members peter, mary, john with saving 2000, 

3000, 400 respectively. We would like to know the final balance if peter transfers 

1234.5 dollars to john and mary withdraws 680.5 dollars from atm, 
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f After the automatic translation by ZCGEN, the Prolog predicates are: 

d a t a b a s e ( S A V I N G , P E R S O N ) : -

b a g ( P E R S O N , R E O ) , b a g 一 m e m b e r ( S A V I N G , R E O ) , 

t r u e . 

丨 t r a n s f e r ( T B A L A N C E . o u t , FROM.in, T O - i n , AMOUNT.in, PERSON)：-

b a g ( P E R S O N , R E 1 ) , m e m b e r ( F R O M . i n , P E R S O N ) , m e m b e r ( T O ^ i n , P E R S O N ) , 

realno(AMOUNT_in), 

m a p l e t ( F R O M . i n , - A M O U N T . i n , R E 2 ) , m a p l e t ( T O . i n , A M O U N T . i n , R E 3 ) , 

e q u a l ( T B A L A N C E L o u t , [ R E 2 , R E 3 ] ) ， 

b a g 一 m e m b e r ( T B A L A N C E _ o \ r t , R E 1 ) , 

t r u e . 

a t m ( A B A L A N C E . o u t , N A M E _ i n , W I T H D R A W . i n , P E R S O N ) : -

b a g ( P E R S O N , R E 4 ) , m e m b e r ( N A M E _ i n , P E R S O N ) , 

r e a l n o ( W I T H D R A W 一 i n ) , 

maplet(NAME_in, -WITHDRAW.in-, RE5) , e q u a l (ABALANCE.out, [RE5]) , 

b a g . m e m b e r ( A B A L A N C E . o u t , R E 4 ) ' , 

t r u e . 

b a l a n c e ( C H A N G E S . o u t , S A V I N G , P E R S O N , S A V I N G . p i , T B A L A N C E . o u t , F R 0 M _ i n , 

T C L i n , A M O U N T . i n , A B A L A N C E . o u t , NAME一 in , W I T H D R A W _ i n ) : -

d a t a b a s e ( S A V 工 N G , P E R S O N ) , 

t r a n s f e r ( T B A L A N C E . o u t , F R O M . i n , T O . i n , A M 0 U N T _ i n , P E R S O N ) , 

a t m ( A B A L A N C E . o u t , N A M E . i n , W I T H D R A W . i n , P E R S O N ) , 
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bag(PERSON, RE6), bag.union(TBALANCE„out , ABALANCE.out, C H A N G E S ) , 

bag_union(SAVING, CHANGES_out, SAVING_pi), 

database(SAVING.pi , PERSON), 

bag一member (CHANGES-OIRT，RE6), 

t r u e . 

go 
SAVING = [ [ p e t e r , 2 0 0 0 ] , [mary ,3000] , [ j o h n , 4 0 0 ] ] , 

PERSON = [ p e t e r , mary, j o h n ] , 

FROM^in = p e t e r , 

TO^in = j o h n , 

AMOUNT.in = 1 2 3 4 . 5 6 , 

NAME_in = mary, 

WITHDRAW一in = 6 8 0 . 5 , 

balance(CHANGES.out, SAVING, PERSON, SAVING_pi, TBALANCE.out, FROM一in, 

TCLin, AMOUNT一in, ABALANCE一out, NAME.in, WITHDRAW.in), 

wri teC'The answer of CHANGES一out i s ; ) , 

w r i t eln(CHANGES.out), 

write(，The answer of SAVING__pi i s O , 

wr i te ln (SAVING.pi ) , 

w r i t e ( ' T h e answer of TBALANCE.out i s O , 

w r i t eln(TBALANCE.out)? 

w r i t e ( ' T h e answer of ABALANCE一out i s ，）， 

w r i t eln(ABALANCE.out), 

t r u e . 
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The data inside the go:- predicate is input by user. Afterwards, the running 

process and result will be: 

CLP(R) Ve r s ion 1 . 2 

(c ) Copyr igh t I n t e r n a t i o n a l Bus ines s Machines C o r p o r a t i o n 

1989 (1991, 1992) A l l R i g h t s Reserved 

1 ？- [ z c l i b ] . 

本*本YGS 

2 ？- [ b a n k . p ] • 

*** Yes 

3 ? - go , , 

The answer of CHANGES.out i s [ [ p e t e r , - 1 2 3 4 . 5 6 ] , [ j o h n , 1 2 3 4 . 5 6 ] , 

[mary, - 6 8 0 . 5 ] ] 

The answer of SAVING.pi i s [ [ p e t e r , 7 6 5 . 4 4 ] , [mary, 2 3 1 9 . 5 ] , 

[ j o h n , 1634 .56] ] 

The answer of TBALANCE.out i s [ [ p e t e r , - 1 2 3 4 . 5 6 ] , Cjohn, 1234 .56] ] 

The answer of ABALANCE_out i s [ [mary, - 6 8 0 , 5 ] ] 

*** R e t r y ? y 
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*** No 

_ ！ 

4 ? -

From the above, line 1 is loading the library ZCLIB and line 2 is loading the 

translated predicates of the bank system. Line 3 is the execution results. 

6.2 A Graphics Example 

We are going to specify a drawing of trolley on the X-Y plane. The trolley 

consists of a body and two wheels as shown in figure 6.1. The approach is to 

use object class definition. 

h L H 

I " I T 
Front Rear H 

1
〇：6

1
丄 

I — I I — I 
1/4 L 1/4 L 

Figure 6.1: A Trolley 
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6.2.1 Defining a Rectangle 

The body is a rectangle which belongs to the class of quadrilateral. The class :i 
of quadrilateral consists of four vectors. In figure 6.2, each vector has its own , 

magnitude and angle. Since the vectors must end in a loop, the summation of 

their x-y components should be zero. 

P 
Figure 6.2: Defining a quadrilateral in the vector space 

Hence we have the equation: 

Rl*cos(Al) + R2*cos(A2) + R3*cos(A3) + R4*cos(A4) == 0 

Rl*sin(Al) + R2*sin(A2) + R3*sin(A3) + R4*sin(A4) = 0 

Then, the rectangle is a quadrilateral whose opposite sides are equal in length 

and one angle is a right angle. 

R1 = R3, R2 = R4, A2-A1= tt / 2 
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6.2,2 Drawing a Rectangle 

When we want to draw a rectangle on a x-y plane, it may involve the rotation 

and movement• It is easy to rotate the rectangle in vector space by adding each-

angle with the amount to be rotated. On the other hand, the moving process 

will need an initial coordinate. Suppose the corner (XI，Yl) is situated at the 

origin (0,0) and lying horizontaL The remaining corners are constrained by the 

lengths and angles. Then, the moving results will be calculated by adding the 

new positions {XV, Yl，）to each comer. Figure 6.3 shows the rotation and 

movement process. 

Y Y Y 

Rotate / V Move > ^ 

( X 4 , Y 4 _ _ (X3，Y3) / / 
R 4 R2 X y ^ � � a n g l e ? (X1,，Y1’1\ 

(XUYlj [ 0 ^ Y 2 ) X \ / / — — ^ X ~ A X 
(0,0) I R1 I 

Figure 6.3: Drawing a rectangle with rotation and movement 

6.2.3 Defining a Circle 

A circle is characterized by center of coordinates, radius and circumference. We 

have the relation: 

Circumference > = 0, Circumference == 2 * 7r * Radius. 

About the center, rotation is meaningless while translation is just done by 

changing its coordinate. -
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丨 6,2.4 Specifications 

Let the trolley's body is of size 15 x 7 units, lying horizontally with corner 1 at 

the origin. Circumference of front wheel is 15 and rear wheel is 24 units. We are 

interested in the final coordinates if we rotate the trolley TT/2 counter-clockwise 

and moving corner 1 to point (7, 15) as shown in figure 6.4. 

The drawing of wheels are related to the final position of the body. It is not 

necessary to perform moving from the origin as done in the case of body. 

L 一 J � p 
(X3,Y3) i f � 丨 ( X 1 ' Y 1 ) 

(X4,Y4) (15,7) I 、 十 ’ （ 7 ， 1 5 ) 

o a . Y l ) n ^^丨 (X2，Y2)‘ � r _ l l _ A i — — - X — J ^ X 
_ U KJ M _ 

Figure 6.4: Drawing a Trolley 
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We define the type 

[Real] 

representing real number. 

SystemError — — 

Errlimit : Real _______ 

Quad — — “"“""""‘ 

丑1, R% 丑3，M, Al, A2, A3, A4 : Real 

Rl * ms(Al) + R2 * cos{A2) + M * cos(AZ) + M * cos{A4：) = 0 

Rl * sin(Al) + R2 * sin{A2) + RZ * sin{A3) + M * 二 0 

___ Circle — ‘ * ‘ 

CenterX, CenterYf Radius, Circum : Real 

Circum >= 0 

Circum 二 2 * 3 .1416 * Radius 

___ Rectangle — 

SystemError 

Red : Quad 

Rect.Rl 一 Rect.RS <= Errlimit 

Rect.R2 一 Rect.JM <= Errlimit 

Rect.A2 一 Rect.Al 一 1 .5708 < = Errlimit 
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__ Rotrec 

A Rectangle 
I i 

rotanglel : Real 

Errlimit' 二 Errlimit 

Rect.AV 二 丑eci.Al + rotanglel, Rect.RY 二 丑ect.in 

Rect.A2'=丑ect.^42 + rotanglel, RecLR2' == Rect.R2 

Red.A3' = Rect.AV + rotanglel, Rect.R3' 二 丑ect•丑3 

Rect.AV 二 Rect.AA： + rotanglel} Rect.M = Rect.RA 

__ Drawrect — — 

Rotrect 

X1,X2,X3,X4：, 71 , 72, 73, F4 : Real 

TranXl, TranYl : Real 

XI 二 TranXl, Y1 = TranYl 

X2 = X I + Rect.RV 拳 cos{Rect.AY\ 7 2 = 7 1 + Rect.Rl' * sin(Rect.Al') 

X3 二 X2 + Rect.R2' * cos(Rect.A2'), 7 3 = F2 + Rect.R2' * sin{Rect.A2') 

X4 二 JO + Rect.RV * cosiRect.AS'l 7 4 = 7 3 + Rect.R3' * siniRect.A^) 
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Trolley 

Body : Drawrect 
‘'I 

Fwheel, Rwheel : Circle 

Fwheel. Circum 均 15 

Rwheel. Circum 二 24 

Fwheel.CenterX = Body.XI + {Body.X2 - Body.XV^ 

Fwheel.CenterY = Body.Yl + {Body. Y2 - Body.Yl)/4： 

Rwheel.CenterX = Body.XI + {Body.X2 - Body.XI) * 3/4 

Rwheel. CenterY = Body. Yl + {Body. Y2 - Body.Yl) * 3/^ 

After the automatic Prolog translation by ZCGEN, the predicates are : 

systenLerror(ERRLIMIT):-

realno(ERRL工MIT) , 

t r u e . 

q u a d ( R l , R2, R3, R4, Al , A2, A3, A4)：-

r e a l n o ( R l ) , r e a l n o ( R 2 ) , r e a l n o ( R 3 ) , r e a l n o ( R 4 ) , r e a l n o ( A l ) , 

r e a l n o ( A 2 ) , rea lno(A3)， r e a l n o ( A 4 ) , 

Rl*cos(Al)+E2*cos(A2)+R3*cos(A3)+R4*cos(A4)=0, 

Rl*sin(Al)+R2*sin(A2)+R3*sin(A3)+R4*sin(A4)=0, 

t r u e . 
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circle(CENTERX, CENTERY, RADIUS, CIRCUM):-

realno(CENTERX), realno(CENTERY)， realno(RADIUS), 

� r ea lno (CIRCUM), 

CIRCUM>=0, 

CIRCUM=2*3•1416*RADIUS, 

t r u e . 

rectangle(ERRLIMIT, RECT.R1, RECT.R2, RECT_R3, RECT.R4, RECT.A1, 

RECT_A2, RECTJ13, RECT.A4)：-

sys t emerror(ERRLIMIT), 

RECT.Rl -RECT_R3<=ERRLIMIT, 

RECT_R2 -RECT«R4<=ERRLIMIT, 

RECT_A2 -RECT_Ai -1.5708<=ERRLIMIT, 
quad(RECT.Rl, RECT.R2, RECT—R3, RECT.R4, RECTJU, RECT_A2, RECT_A3, 

RECT.A4), 

t r u e . 

rotrect(ROTANGLE.in, ERRLIMIT, RECT.R1, RECTJ12, RECT_R3, RECT_R4， 

RECT.A1, RECT-A2, RECT_A3., RECT.A4, ERRLIMIT一pi, RECTJll一pi, 

RECT_R2_pi, RECT.R3.pi, RECT.R4.pi, RECT—Al_pi, RECT_A2_Pi, 

RECT_A3一pi, RECT.A4_pi):-

rectangle(ERRLIMIT, RECT.R1, RECT_R2， RECT—R3, RECT_R4， RECT_A1, 

RECT_A2, RECT_A3, RECT.A4), 

realno(ROTANGLE_in), 

ERRLIMIT-pi=ERRLIMIT, 
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RECT.Al.pi=RECT.Al+ROTANGLE.iii,RECT.Rl-pi=:RECT_Rl， 

： R E C T _ A 2 . p i = R E C T . A 2 + R 0 T A N G L E . i n , R E C T _ R 2 _ p i - R E C T _ R 2 , 

RECT_A3_pi=RECT_A3+R0TANGLE_in,RECT一R3_pi=RECT_R3， 

RECT_A4„p i=RECT_A4+R0TANGLE_i i i , R E C T _ R 4 „ p i = R E C T _ R 4 , 

rectangleCERRLIMIT.pl, RECT_Rl_pi, RECT„R2.pi, RECTJl3_pi, 

RECT34_pi , RECT一Al_pi, RECT_A2_pi, RECT_A3一pi, RECT_A4_pi), 

t r u e • 

d r a w r e c t ( X l , X2, X3, X4, Y l , Y2, Y3, Y4, TRANX商in, TRANY一in, 

ROTANGLE„in, ERRLIMIT, RECTJU, RECT—R2, RECTJ13, RECT_R4, RECT一Al, 

R ECT.A2, RECT.A3, REGT.A4, ERRLIMIT.pi, RECTJll一pi, RECTJ12一pi, 

RECT_R3_pi, RECT.R4_pi, RECT.Al .p i , RECT_A2„pi, RECT_A3.pi, 

RECT—A4_pi):_ 

rotrect(ROTANGLE„in, ERRLIMIT, RECT-Rl, RECT—R2, RECT—R3, RECT_R4, 

RECT.Al, RECT.A2, RECT_A3, RECT.A4, ERRLIMIT.pi, RECT—R1一pi, 

RECT.R2_pi, RECT.R3.pi, RECT.R4_pi, RECTJU_pi, RECT_A2_pi, 

RECT一A3_pi, RECT_A4一pi), 

r e a l n o ( X l ) , r e a l n o ( X 2 ) , r e a i n o ( X 3 ) , r e a l n o ( X 4 ) , r e a l n o ( Y l ) , 

r e a l n o ( Y 2 ) , r e a l n o ( Y 3 ) , r e a l n o ( Y 4 ) , realno(TRANX_in), 

realno(TRANY_in), 

Xl=TRANX_in,Y1=TRANY一in, 

X2=Xl+RECT_Rl_pi*coS (RECT—A1 一 p i ) , Y 2 » Y 1 + R E C T J l l - p i * s i i i ( R E C T _ A l _ p i ) , 

X3=X2+RECT_R2_pi*Cos(RECT_A2_pi),Y3=Y2+RECT-R2_pi*Sin(RECT_A2_pi), 

X 4 = X 3 + R E C T . R 3 „ p i * c o s ( R E C T . A 3 „ p i ) , Y 4 = Y 3 + E E C T _ R 3 . p i * s i n ( R E C T . A 3 „ p i ) , 

t r u e . 
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！. Chapter 6 Examples 

t r u e . 

go 

BODY一TRANX_in = 7 , 

BODY一TRANY_in = 1 5 ， 

BODY.ROTANGLE_in = 1 .5708 , 

BODY.ERRLIMIT = 0 . 0 0 1 , 

BODY-RECT一R1 = 15’ 

BODY 一 RECTJ12 = 7 , 

BODYJIECT 一 A1 = 0 , 

B0DY_RECT_A2 = 1 . 5 7 0 8 , 

B0DY_RECT_A3 = 3 . 1 4 1 6 , 

BODYJIECT一A4 = - 1 . 5 7 0 8 , 

t ro l l ey(B0DY.X1, BODYJC2, B0DYJC3, B0DY_X4, B0DY_Y1, B0DY.Y2, BODY一Y3, 

BQDY.Y4, BODY.TRANX.in, BODY^TRANY.in, B0DYJU3TANGLE_in, 

BODY.ERRLIMIT, B0DY3ECT.R1, BQDY_RECT_R2, B0DY.RECT.R3, B0DY_RECT_R4, 

BQDY.RECT.Al, B0DY.RECT_A2, BODYJIECT—A3, BODYJIECT一A4, 

BODY一ERRLIMIT一pi, BODY—RECTJll一pi, B0DY_RECT_R2_pi, B0DY_RECT_R3一pi， 

B0DYJlECTJl4-pi, BODYJIECT-Al_pi，B0DY__RECT-A2_pi, B0DY_RECTJl3_pi， 

B0DY.RECT.A4.pi, FWHEEL.CENTERX, FWHEEL.CENTERY, FWHEELJIADIUS, 

FWHEEL.CIRCUM, RWHEEL.CENTERX, RWHEEL.CENTERY, RWHEEL.RADIUS, 

RWHEEL.CIRCUM), 

wr i teC 'Tl ie answer of B0DY_X1 i s 0 , 

wr i te ln(BODY.Xl) , 

w r i t e ( ' T h e answer of B0DY_X2 i s O , 
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writeln(BODY一X2), 

w r i t e ( ' T h e answer of B0DYJC3 i s 0 , 

wr i te ln(B0DYJC3) , 

w r i t e ( ' H i e answer of BODY一X4 i s ，）， 

writeln(B0DY_X4), 

w r i t e ( ' T h e answer of B0DY_Y1 i s O , 

writeln(BODY_Yl), 

w r i t e ( ' T h e answer of BODY一Y2 i s O , 

wr i te ln(B0DY.Y2) , 

w r i t e ( ' T h e answer of BODY一Y3 i s O , 

wri teln(B0DY_Y3), 

w r i t e ( ' T h e answer of B0DY_Y4 i s O , 

writeln(B0DY_Y4), 

wri teC^The answer of B0DY_RECTJ13 i s O , 

writeln(B0DY_RECT_R3), 

w r i t e C ' T h e answer of B0DY_RECT„R4 i s 0 , 

writeln(B0DY_RECT-R4), 

w r i t e ( ' T h e answer of BODY_ERRLIMIT_pi i s 0 , 

writeln(BODY一ERRLIMIT一pi), 

w r i t e C ' T h e answer of BODY_RECT一Rl_pi i s , ) , 

writeln(BODYJlECTJU 一 p i ) , -

w r i t e ( ' T h e answer of B0DY_RECT_R2一pi i s , ) , 

writeln(B0DY„RECT_R2_pi), 

w r i t e ( ' T h e answer of B0DY_RECT_R3_pi i s 0 , 

writeln(BODYJIECTJ13一pi), 
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w r i t e C ' T h e answer of BODY一RECT一R4__pi is，）， 

writeln(BQDY_RECT34_pi), 

w r i t e C ' T h e answer of BODY一RECT一A1一pi i s O , 

wri"teln(BODY一RECT_Al__pi)， 

wri teC 'T l ie answer of BODYJIECT一A2一pi i s , ) , 

wri"fceln(B0DY_RECT__A2_pi), 

w r i t e ( J T h e answer of B0DY_RECT_A3.pi i s , ) , 

writeln(B0DY_RECT_A3„pi), 

w r i t e C ' T h e answer of BODY一RECT_A4_pi i s ，）， 

writeln(B0DY_RECT„A4-pi), 

w r i t e ( ' T h e answer of FWHEEL.CENTERX i s J ) , 

writ eln(FWHEEL.CENTERX), 

wr i te ( 'The answer of FWHEEL̂ CENTERY i s 0 , 

writeln(FWHEEL.CENTERY), 

w r i t e ( ' T h e answer of FWHEEL^RADIUS i s 0 , 

writeln(FWHEEL_RADIUS), 

w r i t e ( ' T h e answer of FWHEEL_CIRCUM i s 0 , 

writeln(FWHEEL_CIRCUM), 

w r i t e C ' T h e answer of RWHEEL.CENTERX i s 0 , 

writeln(RWHEEL^CENTERX), 
w r i t e ( , T h e answer of RWHEEL.CENTERY i s , ) , 

writ eln(RWHEEL^CENTERY), 

w r i t e ( 'The answer of RWHEEL一RADIUS i s 0 , 

w r i t eln(RWHEEL.RADIUS), 

w r i t e ( ' T h e answer of RWHEEL__CIRCUM i s ' ) , 
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w r i t eln(RWHEEL_CIRCUH), 

t r u e . 

Under the CLP(i^) system, the running process is: 

CLP(R) Vers ion 1 .2 

( c ) Copyr ight I n t e r n a t i o n a l Bus iness Machines Corpo ra t i on 

1989 (1991, 1992) A l l R igh t s Reserved 

1 ？- [ z c l i b ] . 

*** Yes 

2 ？- [ t r o l l _ p ] . 

本本本YGS 

3 ? - go . 

The answer of BODY一XI i s 7 

The answer of BODY一X2 i s 6.99994 

The answer of B0DY_X3 i s -5 .50979e-05 

The answer of B0DY_X4 i s 0.000110196 
The answer of B0DY_Y1 i s 15 

The answer of.B0DY_Y2 i s 30 
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The answer of B0DY.Y3 i s 29 .9999 

The answer of BODY一Y4 i s 15 

The answer of B0DY_RECT„R3 i s 14.9999 

The answer of B0DY_RECTJ14 i s 6 .99989 

The answer of BODY_ERRLIMIT„pi i s 0 . 001 

The answer of B0DY_RECT„Rl_pi i s 15 

The answer of B0DY_RECT_R2_pi i s 7 

The answer of B0DY.RECT_R3.pi i s 14.9999 

The answer of BODY_RECT_R4_pi i s 6 .99989 

The answer of B0DY_RECT_Al„pi i s 1 .5708 

The answer of B0DY_RECT-A2一pi i s 3 .1416 

The answer of B0DY_RECT_A3.pi i s 4 .7124 

The answer of B0DY_RECT_A4.pl i s 0 

The answer of FWHEEL.CENTERX i s 6.99999 

The answer of FWHEEL.CENTERY i s 18.75 

The answer of FWHEEL_RADIUS i s 2 .38732 

The answer of FWHEEL.CIRCUM i s IB 

The answer of RWHEEL.CENTERX i s 6.99996 

The answer of RWHEEL_CENTERY i s 26 .25 

The answer of RWHEEL一RADIUS i s 3 .81971 

The answer of RWHEEL一CIRCUM i s 24 

本本* Yes 

We find that the results agree with our expectation. 
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Body Expected: Calculated 

(XI, Yl) = (7, 15) ( 7 ' 1 5 ) 

(X2, Y2) 二（7, 30) (6.99994, 30) 

(X3, Y3) - (0, 30) (-5.50979e-05, 29.9999) 

(X4, Y4) 二（0，15) (0.000110196, 15) 

Wheels Expected : 

(FWJK, FW一Y) = (7, 18.75) (6.99999, 18.75) 

(RW_X, RW—Y) = (7, 26.25) (6.99996，26.25) 

FW radius = 2.387324146 2.38732 

RW radius = 3.819718634 3.81971 

6.3 Specifications Writing Experience 

The examples raised in the last section involve the following characteristics: 

• Bags operation 

• Schema Inclusion 

• Schema decoration or changing state 

• Object class type 

• Real numbers calculation 

The schemas' writing approach is in an expanding order. The basic and sim-

plest schema is placed at the beginning while the final executing control schema 
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is placed at last. The reason is for the Prolog execution which is a depth first 

search algorithm. 

It is found that all the examples fail the type checking by the Fuzz system. 

The main reason is the lack of real numbers definition in conventional Z. Al-

though we define the set [Real], Fuzz does not realize the nature of real numbers. 

It will treat it as a normal set. Therefore, the variable "-Amount?" would be 

classified as an undefined type. In addition, F 應 does not have the knowledge 

of m a t h e m a t i c a l functions (sin, cos,…). 

Nevertheless, a correct execution result is a strong evidence of right specifi-

cations. Experience has shown that any typing mistakes or wrong equations in 

the schema would produce an unpredicatable response. This feedback is quick 

and solid. 

Furthermore, it is found interesting to define a system error in the drawing 

example. Without this schema, CLF(R) would response "No" during execution 

even the specification is absolutely correct. It is because there is rounding error 

of the CLP(丑)• Results of calculation may not agree or equal to the expected 

value. The precision of the present system is about six decimal digits. 

Inspecting the Prolog predicates, the arguments of predicates are increasing. 

They are the schema inclusion, decoration, object class bringing their arguments 

to the present predicate. On the other view, it is tedious to input or investigate 
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such long predicates. Thus, we can say that the Z schema can act as a docu-

mentation of the related Prolog predicates. 

78 

• , • . . . , •••• • • * 

. / . . . . ， - ， • ( , . . 



Chapter 7 

Conclusion 

7.1 Contributions 

In this thesis, we have presented a system called Z C L P � that can execute Z 

by translating Z schemas into executable Prolog predicates. The system can 

handle the real numbers type which is undefined in conventional Z. To the best 

of our knowledge, this is the first attempt to extend the animation of Z into the 

area of continuous mathematics. It is feasible because we have used the CLP(i2) 

system where real number calculations are handled by delayed evaluation and 

constraint satisfaction. Unlike standard Prolog, users do not need to take care 

of the numbers1 generation for constraints satisfaction which may be an infinite 

process. 

ZCLP(丑)has the following characteristics: 

1. The translation is simple because both languages are based on first order 
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logic. We can perform a one-to-one mapping of the semantics. We can 

say Logic Programming and Z are more or less at the same abstract level. 

Although there is no formal proof of the correctness of this translation, an 

animation result can really feedback a behavioural model. , 

2 . The translation is rapid and solid. On average, the translation process 

only takes a few seconds on a 486 based computer. The translated file 

is then loaded into a DEC workstation. Together with CLP(丑）and the 

library ZCLIB, the animating process takes less than a second. Such rapid 

feedback can also achieve correct specifications which are assumed by com-

paring the results with manual checking. Numerical agreement will further 

enrich the specifier's confidence. 

3. The translation requires data refinement. From the examples, we have 

found the specifications are from simple to complex. It is because Prolog 

is of depth first search, it is convenient to write down the basis schemas 

first and then perform the schema calculus or object orientation. In addi-

tion, a control schema is needed to start the whole animation. Normally, it 

is placed last so that the called schemas have been translated and recorded 

by Prolog. 

Overall, ZCLP(E) consists of four subsystems, namely: 

• ZEDIT - Z editor. .. 
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• ZCGEN - Prolog translator. 

« ZCLIB - Set notations' functions library. 

• ZLATEX - LJ^feX translator. 

T h e ZEDIT is an user friendly editor which can generate set notations and 

schema lines on screen. 

Example in the demonstration section of chapter 5 has shown that the ZC-

GEN system can do the same translation result as appeared in literature [24]. 

Besides, chapter 6 has shown the system ZCLP(丑)is capable handling real 

number calculation, schema inclusion, schema decoration, concepts of bags and 

simple object oriented. These powers are very useful in the current development 

of Z . They axe never been integrated into a single system among the pervious 

literatures. Therefore, we can say ZCLP(用 is a more completed translating 

system than before. 

The library ZCLIB is built to translate the set notations' functions in Z. 

Efforts have been paid in trying to build all the notations appeared in [35], A 

major problem is about the flow modes of the predicate's arguments. In general, 

they can be used as both input and output modes. It is considered in chapter 5 

where methods of solution are suggested. The result also reduces the execution 

time. Table 7.1 shows out the summary of the translatable notations. 

Another translator Z to WT^. has also been developed. It can translate Z 
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Chapter 7 Conclusion 

I Basic expression J . 

I E N ^ Z 

min rnax succ Real 

Sets � f 

I I u 5 门 
0 

[ Relations — 
r r ^ d ^ ^ 

“ “ Functions 
^ ^ ^ 

一 ^ J 
Sequences 

[ r
q ^/1 rev head last 

tail front ^ squash P ^ x suffix 
in disjoint partition 

B a g S 

f bag count items W U 

� bags multiplication 

distributed bag addition ' 

Table 7.1： Summary of set notations recognized by system ZCLP(丑） 
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schemas into MfeK format with the command codes recognized by the Fuzz sys-

tem, through which, we can do the printing and type checking. Unfortunately, 

the type checking is not available for real numbers because it is undefined in 

conventional Z. 

7.2 Difficulties 

The main difficulty of the research is the Z language itself. It is a new formal 

method language and it has not been standardized yet. New writing style (in 

c a Se of object oriented) or notations are proposed from time to time. In addi-

tion, there is a lack of supporting tools. In this thesis, it is found the tools are 

built from the beginning of editor. 

As Z uses set theory and notations to express the specifications, variations 

of this abstract writing causes difficulty for the translator to interpret. For ex-

ample, we can write a predicate in one line such as 

(A E B) A (B C C) 

or in two lines 

A e B ， 

B C C . 

Therefore, we have the limitations in writing as described in chapter 5. In 

other words, more intelligent translator is needed. Also, it is very difficult to 
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write a good specifications. The difficulty is increased when we consider the 

possibility of translating into Prolog. It is restricted by ZCGEN and ZCLIB. 

Follower of this research must be familiar with Prolog. It is a language that 

careful logical thinking is needed when we use the techniques of backtracking. 

It is a powerful language, however} with a disadvantage that the documentation 

is very bad. Others will find it very difficult to follow or appreciate one's Prolog 

program. 

The CLP(丑),a special extension of Prolog, uses concepts of delayed evalu-

ation and constraint satisfaction to solve the real numbers calculation. It is a 

newly developed software that the built in functions are limited. Unlike other 

Prolog, we have to create these functions by ourselves. 

In building up the library, time is consuming in testing and rewriting for the 

general cases of the predicates in order to maximize the flow modes. 

7.3 Further Works 

U p to now, the system involves operations on workstation and PC. For consis-

tency, a pure PC system or a pure workstation system is needed. The present 

m e thod is based on workstation. A window is opened to simulate a PC DOS 

environment on the DEC workstation, and a window is opened to operate the 

CLP(丑）system. 
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There are still some further works needed for the system ZCLP(丑).First, a 

more user friendly editor is needed. Its operations can be mouse driven. Sec-

ond, section 5.5.4 has described some limitations of the translator ZCGEN. For 

example, we have to interpret some complex predicates or to include the uni-

versal quantifier statement. These can be improved. Third, an intelligent user 

interface is needed for data input. It can check any syntax or type errors. 

In section 3.3，we have mentioned that real number calculations should be 

free of precision problem. One solution is to use lists to represent numbers. We 

c a n then perform arithmetic by list operations. The system CLP⑷，however, 

does not apply its delayed evaluation to strings of list. The accuracy of present 

model is machine dependent. Therefore, it is valuable to develop a system sim-

ilar to CLP(JR) but with real numbers implemented as lists. 
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