
On Implementation and Applications of the

Adap_tive_Network - Based

Fuzzy Inference System

f Y- / i .

< U
" . v B y O n g K a i H i n G e o r g e
C 乂. i
W1 I I ^ n , I � - f LT

学 大 � \ . 二
 :
>}

I - 1 4 SEP ms • :j

. . / : : : . : I ' / .

.-'-^.X • • y,/J
... V ? ” ‘ 一 ‘ “ ‘ 7

. ’V,.- ^ .'••-‘.、、•… ..>•• ’ V . ‘ ‘JR.

A Research Project submitted in partial fulfillment of the requirement

of the Degree of Master of Science

Department of Information Engineering

The Chinese University of Hong Kong

June 1994

Acknowledgment

It is my pleasure to acknowledge my debt to the many people who

have contributed to this research project Their suggestions have

been a great help in correcting and shaping the project

The most important acknowledgment is to my supervisor, Dr. H. S.

Wang, for his continuous provision of support, help, guidance，

knowledge and care. Apart from the actual knowledge and experience

gained through the project development, his strong desire in pursuing

knowledge has also inspired me and drive me to try my best in this

piece of work.

June1994

George Ong j .

^ ^ ^ • m H H H B H H H H H r i l

：二二.-.=:: Introduction

1 Introduction

Conventionally, hard computing is concerning the precision and certainty. By

contrast, the point of departure in soft computing is the fact that precision and

certainty can be obtained with a high cost. In most cases, computation, reasoning

and decision making can exploit the tolerance for imprecision and uncertainty.

For instances, considering the case of parking an automobile. Most people can park

an automobile because its final position and orientation have not been specified

clearly. If they are specified clearly, parking an automobile will be a very difficult

task and not possible to be achieved by humans. The most important point is that

parking an automobile is an easy task to humans if imprecision is allowed, while it

is a difficult task to traditional methods (based on mathematical model) because

such methods do not exploit the tolerance for imprecision[24],

The exploitation of the tolerance for imprecision and uncertainty accounts for the

remarkable human ability to understand distorted speech, decipher sloppy

handwriting, comprehend nuances of natural language, summarize text, recognize

and classify images, drive a vehicle in dense traffic and, more generally, make

rational decisions in an environment of uncertainty and imprecision. In order to

exploit the tolerance for imprecision and uncertainty, soft computing uses the

human mind as a role model which aims at a formalization of the cognitive

processes of humans.

1-1

Introduction

In the current consumer market, more and more electronic consumer products are

designed based on the concept of fuzzy logic, such as cameras, microwave oven and

washing machines. Compare with conventional electronic products, these new

products can figure on their own what settings to use to perform their tasks

optimally, these products can manifest an impressive capability to reason, make

intelligent decisions and learn from experience. These products are referred to as

Machine Intelligence Quotient (MIQ) products. The first MIQ product was

announced by Matsushita in 1987. This was followed by the first fuzzy-logic-based

washing machine which was also designed by Matsushita in 1989.

In 1990, the number of high-MIQ consumer products employing fuzzy logic

increases drastically. By the way, neural network techniques were combined with

fuzzy logic to be employed in a wide variety of consumer products. The main

objective of applying neural network is to endorse the products with learning

capability. Such neurofuzzy products are likely to become ubiquitous in the years

ahead. Underlying this evolution results in an acceleration of employing the soft

computing, especially fuzzy logic and neural network. The objective is to design the

intelligence system which can exploit the tolerance for imprecision and uncertainty,

learn from experience, and adapt to changes in the operating conditions.

At this juncture, the principal constituents of soft computing are fuzzy logic (FL),

neural network (NN)，probabilistic reasoning (PR). In the triumvirate of FL, NN and

PR，FL is primarily concerned with imprecision, NN is concerned with learning and

PR is concerned with uncertainty. The most important point is that there are

substantial areas of overlap between FL, NN, and PR. Instead of competition, FL,

1-2

实二二 Introduction

NN and PR are complementary in general. For this reason, it will be advantageous

to employ FL, NN and PR in combination rather exclusively[24].

A case in point is the growing number of so-called neurofuzzy (NF) which

employed a combination of fuzzy logic and neural network techniques. Most NF

products are fuzzy rule-based systems in which NN techniques are used for the

purposes of learning and adaptation.

1.1 Objective

During the design of NF products, it will be more effective if a prototype can be

implemented in digital computers for simulation. Such prototype can be used to

investigate the performance and feasibility of the end products in advance.

The objective of the project is to build a C/C++ library for the prototype of

applications. Based on the library, a number of applications have been implemented

for the illustration of the usability of the library.

Among a number of neural-fuzzy models, the Adaptive Network-Based Fuzzy

Inference System (ANFIS) is selected for the implementation of the library. This is

because of the rich information and remarkable results of ANFIS.

1-3

Background

2 Background

2.1 Neural Networks

About a century ago, an American psychologist, William James, published a number

of facts which are related to the structures and functions of the brains. Since then,

many researches had been conducted on the human neurons and neural networks.

However, most of the researches were biological based.

Until 1958，Frank Rosenblatt published his famous paper which defined a neural

network structure called perceptron‘ In the paper, the perceptron was simulated on

an IBM 704 computer at the Cornell Aeronautical Laboratory. This aroused the

interests and imagination of scientists in the implementation of neural networks on

digital computers.

Nowadays, neural networks is a very hot topic in artificial intelligence as well as

soft computing, there are many kinds of neural networks that have been

implemented in computers. The implementation results show that neural networks

can solve problems which are difficult to be solved by conventional computer

systems. Because of this capability, neural networks have been applied in various

areas, such as image recognition, digital filter, functional mapping and

interpolation.

2-1

一：; Background

2.1.1 Topology

Basically, the components of neural network are nodes and links. The links are used

to connect the nodes and each of them is associated with a weight value. The nodes

are processing elements (PE), they process the incoming signals from the links and

generate an output signal which will be sent to other nodes. Figure 2.1 shows a

simple neural network with links and nodes.

Figure 2.2 shows a node and its operation on the incoming signals. During the

transmission of a signal through a link, the signal strength is multiplied by the

weight value of the link. The node sums up the signals of all the connected links,

and applies a transfer function (F) on the sum. This is not the unique operation of

nodes, here, we just describe one of the operations of nodes.

爆
Figure 2.1 : A simple neural networks model, each node is connected to another node
through a link. The arrow on the links show the directon of the signal flow.

2-2

：了 二 r Background

i l=xl*wl

J y=F(ii+i2 \ y

/iN=xN*wN

Figure 2.2 : One of the operations of a node (PE). wN is the weight associated to the link,
xN is the incoming signal.

There are two types of topology in neural networks, they are feed forward networks

and counter propagation networks. Both of them will be discussed subsequently.

2.1.1.1 Feed forward networks

. I n the feed forward networks, signals are propagated from input to output of the

neural networks. They are transmitted in one direction and will not loop back to the

previous nodes. Figure 2.3 shows an example of feed forward networks.

• I I 11 I
Input 0 u t p u t

Signals Signals

Figure 2.3 : An example of feed forward networks. There are 3 layers in the network the layer
receiving the input signals is input layer, the middle layer is hidden layer, the last layer is output
layer. Signals propagate from input layer to output layer.

2-3

一：; Background

2.1.1.2 Counter propagation networks (recurrent networks)

In the counter propagation networks, some signals may be transmitted back to the

previous nodes or itself. Figure 2.4 shows an example of counter propagation

networks. ~

• • I •
Input f Output
Signals ^ ^ A . ^ A T l ^ ^ ^ ^ Signals

—

Figure 2.4 : An example of couter propagation networks. In the middle layer, some signals propagate to
input layer and some signal recurrent to the node itself.

2.1.2 Neural Network Learning

One of the attractive features of neural networks is their learning capability. After

training with the training data, neural networks are able to dynamically change their

behaviors to produce desired outputs. There are two types of learning method in

neural networks, they are supervised learning and unsupervised learning.

Supervised learning requires a teacher to teach the neural networks, the teacher

should present a training sample to the neural networks, and tells the neural

networks the performance error. Then the neural networks will based on the error to

2-4

一：; Background

adjust the weight values of its links in order to minimize the error. Currently, most

of the neural networks applications are based on supervised learning.

On the other hand, unsupervised learning does not need a teacher. Neural networks

with unsupervised learning"have self-organization capability, their learning are

based on the local information, and internal control of the signals propagation. They

can organize the training samples by itself, and discover the properties of the

samples. Currently, unsupervised learning is still in the early stage and many

researches are being conducted on the unsupervised learning algorithms.

2.2 Fuzzy Logic

One of the problems in systems design is that most of the systems are in the realm

of "humanistic system", such as linguistic, social sciences and control systems. In

these systems, hard mathematics does not seem to be very effective. In 1965, Prof.

Lotfi Zadeh of University of California at Berkeley published his famous paper -

"Fuzzy Sets".

Since then, many researches have been conducted on fuzzy logic. Nowadays, fuzzy

logic has a wide range of applications/Especially in control systems, fuzzy logic

plays an important role in providing robust systems which are difficult to be

achieved by conventional control systems.

2-5

一…二 ； Background

2.2.1 The Calculus of Fuzzy If/Then Rules

One of the important parts of fuzzy logic is the operations of fuzzy if/then rules.

Since the fuzzy if/then rules constitutes a collection of concepts and methods for

handling the knowledge which is in the form of if/then rules, this part of fuzzy logic

is referred to as the calculus of fuzzy if/then rules (CFR)[26]. The antecedents and

consequences of the if/then rules can be either fuzzy or crisp- Here is an example of

fuzzy if/then rules:

If temperature is high, then pressure is low.

Instead of comparing the pressure and temperature with the crisp values, such as

lOPa or 20K, they are compared with the linguistic terms. Each linguistic term

represents a fuzzy set which is defined by a membership function. Figure 2.5 shows

an example of three membership functions of the variable "temperature".

Lo Middle High
1 W 八

bK 200K "4U0K
Temperature

Figure 2.5 : An example of three membership functions (Low, Middle, High) ofthe variable temperture. In
fuzzy if/then rules, the membership functions can have overlapped area.

Since the antecedent part of fuzzy if/then rules composes a fuzzy comparison, the

r e s u l t of the antecedent part is in the sense of degree of match which is used to

determine the firing strength of the fuzzy if/then rules. Figure 2.6 shows an example

o f the firing strength of a fuzzy if/then rule : if temperature is high, then pressure is

2-6

在二- - 一 Background

low. In this example, the temperature matches the membership function of "high"

with a degree of 0.7，so the firing strength of the rule is 0.7.

High
1 -

0.7 - /

0 / J
OK 2 0 0 K Z 9 D K 4U0K

Temperature

Figure 2.6 :An example of the firing strength of a fuzzy if/then rule. When the reading of temperature is 290K,
based on the membership function of "high", the degree of matching of "temperature is high" is 0.7.

The matching process of the antecedent part is an imprecise matching. However,

this imprecise matching form a basic of interpolation which can minimize the

number of rules to describe the input and output relationship.

2.2.2 Fuzzy Inference System

Fuzzy inference system makes use of the fuzzy if/then rules for inference. Basically,

it contains 4 parts[13] which are shown in figure 2.7.

2-7

:r ——Background

I .. 1 .
I knowledge base !

I database rule base 1

Input i • ' ！ Ouput
(cr isp)丨 *. ' j (crisp)

i • T 1
O I Fuzzification - ——i r-—^ Defuzzification i O

I Interface Interface ,

！ i n ！

I T • I
I p. Decision-making Unit ,：,

L_ J

Figure 2.7: The block diagram of Fuzzy Inference System.

1. Knowledge Base : Composing of a rule base and database. The rule base

contains the fuzzy if/then rules. The database contains the parameters of the

membership functions of the linguistic term (fuzzy sets) in the fuzzy if/then

rules.

2. Decision-making unit : Performing the inference process on the fuzzy if/then

rules.

3. Fuzzification interface : Transforming the crisp inputs into the degree of

matching of the linguistic values.

4. Defuzzification interface : Transforming the fuzzy inference results into the

crisp outputs.

2-8

一：; Background

2.2.2.1 Inference steps

There are 4 inference steps in the fuzzy inference system. In order to understand

each step clearly, an example is used for illustration.1 Consider the system with two

rules as follows; “

Rule 1 : if pressure is high and temperature is low, then volume is small.

Rule 2 : if pressure is middle, then volume is middle.

The membership functions of pressure, temperature and volume are defined in

figure 2.8. Suppose the current reading of pressure is 70Pa, temperature is 100K.

Low Middle HigW Low Middle Highl Small Middle Largfe

OPa lOOPa UK 400K OmJ 100m3
Pressure Temperature Volume

Figure 2.8 : The membership functions of Pressure, Temperature and Volume.

Step 1 : According to the premise part of the fuzzy r u l e s , compare the input variable

with the membership function to obtain the m e m b e r s h i p value of each linguistic

term. This step is called Fuzzification. (Figure 2.9)

^The discussed fuzzy inference system is based on the model of Takagi and Sugeno's fuzzy if/then

rules. In this model, the output of each rule is a linear combination of the input variables plus a

constant term. The final output is the weighted average of each rule's output.

2-9

一：; Background

Highl Low

1
Rule l 0.3 - - 厂

 0 , 6

W a 'lOOPa OK ' 4DDK
Pressure Temperature

Middle

Rule 2 - 1 / ^ X
Q v : r � _ �

OPa lOOFa
Pressure

Figure 2.9 : According to each rule, transform the input crisp values into the
membership values (Fuzzification).

Step 2 : To each rule, combine the membership values of the premise part to obtain

the firing strength (weight) of the rule. Usually, the firing strength is the product of

all the membership values in the premise part of the rule. Therefore, the firing

strengths are 0.18 and 0.4 for rule 1 and 2 respectively.

Step 3 : Based on the linear combination of the input variables, generate the

qualified consequent of each rule. The following are the supposed linear equations

of each rule and the qualified consequent outputs.

Ride 1 ： V! = A�P + JBjT + C � - V�二 AR70) + Bj(JOO) + C卜

Rule 2 \V2= A2P + C2 厂2 = A2(70) + C2

Step 4 : Based on the firing strength of each rule to calculate the weight average of

the consequent output of each rule. This step is called Defuzzification, the output of

Defuzzification is a crisp value, it is the final output of the fuzzy inference system.

Hence, the final result of the volume is :

2-10

=二 _：_ ： Background

0.18 x ^ + 0 . 4 x 1 ^
0.18 + 0.4

2.3 Integration of Neural Networks and Fuzzy Logic

Both of neural networks and fuzzy logic are important concepts in soft computing.

They both give inexact result and work in the domain space where the boundaries

are not sharply defined. Many researchers tried to integrate these two concepts to

obtain a new model which contains the strengths of both of these two concepts.

Currently, there are two research directions of the integration of neural networks

and fuzzy logic. They are Fuzzy Neurons[7][39] and Neural Networks based Fuzzy

Inference Systems[13][16] [23] [3 7], each of them will be discussed below.

2.3.1 Fuzzy Neurons

In conventional neural networks, the data is crisp value, the operations of neurons

(nodes or processing elements) are crisp based. Consider the transfer function y

= f(x), both of variables x and y are crisp values.

Instead of processing the crisp values, fuzzy neurons process fuzzy values. The

transmitted signals and the weight values are fuzzy values. The f u z z y neurons

collect and process the incoming signals. One kind of the processing method is

applying the fuzzy operations., such as fuzzy "AND" or fuzzy "OR"，on the

incoming signals. The other kind is generating the linear combination of the

2-11

一：; Background

incoming signals and mapping the result with the membership function to get the

crisp output.

Although, it was reported that the neural networks with fuzzy neurons have fast

training rate and more robustness，however, the test cases are all toy problems, such

as XOR, etc. The research of fuzzy neurons is in the embryonic state, it is possible

to improve the learning algorithms in order to increase the expressive power of

fuzzy neural networks. On the other hand, more and more researchers put their eyes

on another stream of the researches - Neural Networks based Fuzzy Inference

Systems.

2.3.2 Neural Networks based Fuzzy Inference Systems

During the design of fuzzy logic systems, most engineers find that it is very

difficult to define the parameters of the membership function of linguistic term.

Figure 2.10 shows two membership functions of "Middle" temperature. Both of the

membership functions can be used to express the sentence "temperature is middle",

however they have different widths, different means and hence different parameters.

Which one should be used is depending on the p e r s o n a l judgment of the engineers.

< — — — — > < >

L ^ l LZÎ d
Temperture

figure 2.10 : Two membership functions of "Middle" temperture, however, two
functions have different mean (Ml & M2) and different width (W1 & W2).

2-12

一：; Background

2.3.2.1 Statistical Method

One of the methods is using the statistical data[5] to assist the decision making of

engineers. For instances, i f 'most people have the perception that 20°C is middle

temperature and the standard deviation is 3°C, then the membership function of

"middle" has the mean of 20°C, width of 6°C and range of 17°C to 230C.

However, this method is based on the perception of human being, it can only give a

dirty and quick result. Moreover, the parameters cannot be fine tuned by statistical

data. Hence, this method is only suitable to the fuzzy expert systems. For the

control systems, the systems involve the highly nonlinear control surfaces which are

very difficult to be interpreted by human being. Statistical method cannot give an

optimal solution and hence is not suitable for such problems.

2.3.2.2 Neural Networks method

In order to solve the problems of highly nonlinear input-output mapping, neural

networks can be made use. Neural networks have the capability of knowledge

extraction and generalization. During supervised training, neural networks can

extract the relationship between the input and output training patterns. Then, it can

generalize the knowledge, such that it still give accurate results for those data which

have not been trained, this is called function interpolation. Because of these

capabilities, neural networks can be used to tune the parameters of fuzzy logic

s y s t em, so that the optimal result can be obtained. Such kind of systems are refereed

2-13

"亡二：： Background

to as Neural Networks based Fuzzy Inference Systems or Neural Fuzzy Systems.

The main idea of Neural Fuzzy Systems will be discussed subsequently.

The first step is using the feed forward neural networks to model architecture of

fuzzy inference systems. The parameters are represented by the weight values of the

links. Figure 2.11 shows an example of incorporating the fuzzy inference system

into neural networks. The example represents the following two fuzzy rules in the

neural networks.

1. If Temperature is High and Pressure is High, then Valve Open is Large.

2. If Temperature is Low and Pressure is High, then Valve Open is Small

High

AND Large

Temperature Low

Pressure S m a 1 1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 2.11 : An example of embedding two fuzzy rules into a feed forward neural networkThere are two
membership functions for temperture (High & Low) and Valve Open (Large & Samll), one membership
function for pressure (Low). Node 6 and 7 act as afuzzy AND operator, they also act as a connection point of
permise and consequence part of the fuzzy rules.

By tracing the connection of nodes, we may find that rule 1 is represented by 1，3,

2，5, 6，8, 10. On the other hand, rule 2 is represented by 1，4, 2，5，7, 9，10. The

parameters of the membership functions are represented by the weight values of the

links between layer 2 and layer 3.

2-14

一：; Background

The second step is using the training data to train the neural networks. The objective

of the training is to adjust the parameters in "order to minimize the error. Various

training algorithm can be used, such as backpropagation learning algorithm, hybrid

learning algorithm2 . _

In laboratory, we used to apply the neural fuzzy systems in control systems and

nonlinear functions modeling in order to test the performance of the models. Many

test results show the neural fuzzy systems can give better result than neural

networks and fuzzy logic systems. Indeed, it is testified that neural network and

fuzzy inference system in their integrated form have a very tight bonding, each of

them overcome the weakness of the other. Neural network can add to the fuzzy

inference system the ability to self tune the membership functions, on the other

hand, the inputs to the whole system are fuzzified by the membership functions,

thus performing a noise filtering function for the neural network component.

hybrid Learning Algorithm is unsupervised learning algorithm + supervised learning algorithm.

2-15

ANFIS Model

3 ANFIS Model

This section introduces the architecture and learning rule of Adaptive-Network-

Based Fuzzy Inference System (ANFIS)[12][13][14]. ANFIS was proposed by Jang

from the University of California at Berkeley in 1992. ANFIS is one of the neural

networks based fuzzy inference systems. It was shown that ANFIS is functionally

equivalent to the radial basis function networks. A number of simulations have been

performed on ANFIS and all of the simulations yield remarkable results.

3.1 Adaptive Networks Architecture

As the name implied, the architecture of ANFIS is based on the adaptive network

which is the superset of all kinds of feed forward neural networks with supervised

learning. Figure 3.1 shows an example of Adaptive Networks. The example shows

that the adaptive network consisting of nodes and directional links，

I ： ^ ^： I
Figure 31 An example of adaptive network. The sequare and cicle nodes represent the nodes have
different transfer function. XI andX2 are input variables. Y1 and Y2 are output variables. Signals are
flowed as the direction of the links, i.e. one way.

1-3

"̂•-；：：：： ANFIS Model

In adaptive networks, all nodes are adaptive which means that the outputs of the

nodes are depending on the parameters associated to the nodes. As long as the

parameters are changed, the outputs of the nodes are also changed.

In order to generate the outputs, the nodes receive all input signals and perform a

particular function on the signals. The function is called the transfer function or

activation function. It can vary from nodes to nodes.

Basically, there is no constrain on the transfer function. However, if the gradient

descent learning algorithm is used on the networks, the transfer function must be

differentiable everywhere. In fact, gradient descent is the most popular learning

algorithm in adaptive networks, you may find that most transfer functions are

piecewise differentiable[l][13][15][17].

3.2 ANFIS Architecture

Similar to most neural networks based fuzzy inference systems, ANFIS embeds the

fuzzy rules into the adaptive networks, so that the adaptive networks are

functionally equivalent to the fuzzy inference systems. However, there is no weight

value a s s o c i a t e d to the links, all the parameters (weight values) are contained in the

nodes.

In order to illustrate the architecture of ANFIS, we assume the ANFIS contains 2

fuzzy rules which are shown in the following.

• •

3-2

ANFIS Model

Rule 1 : I f x is A ； and y is Bj, then f j = pjx + q}y+ rh

Rule 2 : I f x is A2 and y is B2, then f2= p2x + q^y + r2.

The fuzzy rules of ANFIS are based on the fuzzy if/then rules which was proposed

by Takagi and Sugeno's in 1"983. For this type of fuzzy if/then rules, the output of

each rule is a linear combination of input variables plus a constant. The overall

output is the weight average of the output of each rule. The weight (firing strength)

of each fuzzy rule is the product of the membership values of input variables. Figure

3.2 shows the membership.

l " X ；T . Y

八 二 … - - - … … … 截 : ： 二

丄 r ^ - x^. ^― ^
X y

_ Wj
Wj =.

二 丨 � WY 十 ^^
w2 = w2] x w22 _ W2

Wj+W2 ~

f i f 2

f2 二 P2X + q2”r2

Figure 3.2 : The upper graphs show the membership functions of input variables X and Y.

The lower part shows the procedures of inference.

3-3

去—：二：： ANFIS Model

Figure 3.3 shows the corresponding architecture of ANFIS. It shows that the

premise and consequent parameters are associated with the nodes in first and fourth

layer respectively. The nodes in the first and fourth layer are called adaptive nodes

which reflect their adaptive nature. For the other nodes, there is no parameter

associated with them and these nodes are called fixed nodes. In the following

section, each layer will be discussed in details.

Premise
八 parameters 广. .' / / Consequent

y / x v parameters

！ ！ - / ； I I I / 1
I I I / 1
I I. I I 1

layer 1 layer 2 layer 3 layer 4 layer 5

Figure 3.3 : The ANFIS model with rule 1 and rule 2. First layer nodes output the corresponding membership
value of inoming signals. M nodes output the product of incoming signals. N nodes output the normalization of
the incoming signals. L nodes output the linear combination of the incoming signals.

3.2.1 Layer One

Nodes of layer 1 are corresponding to the membership functions of the input

variables. The inputs of the nodes are the values of the input variables, the outputs

are the degree of membership of the input variables of the corresponding linguistic

t e r m s . Each node is associated with a transfer function (node function) (x) where

3-4

�一 ：：： ANFIS Model
•

Aiis the linguistic term. Therefore, juAj (x) is the membership function of At. The

output of node j is denoted by O) where 1 stands for the first layer1. Hence, for i e

{1,2} a n d y e {1 ,2 ,3 ,4} . ,

《 二 h � （3 . ”

or

O) 二 〜 ⑴ （3.2)

Oj is the membership value of the input variable to the corresponding linguistic

term. Usually, the membership functions are bell-shaped with maximum and

minimum are 1 and 0 respectively. The following functions are used to represent the

bell-shaped membership functions.

= x-c. o h 1 + [(^) � (3-3)

or

= e a i

where {at ， bt , ct} is the parameter set of the membership functions, they are

referred to as the premise parameters. These functions are always used as

membership function because they reflect the perception of human being. The

changes are smooth and continuous, the gain is low at two ends and the middle, the

gain is close to linear elsewhere. Beside these functions, other piecewise

differentiable functions can also be used, such as trapezoidal or triangular-shaped

function.

/ The output 0f all nodes is denoted by O f , where L is the layer number and] is the node number in

layer L,

5-5

-二： ANFIS Model

As long as the parameters change, the shape of the membership functions also

change. This results in various forms of membership function. By adjusting the

shape of membership functions, we can change the membership values of input

variables in order to minimize the error of the outputs.

3.2.2 Layer Two

Nodes of layer 2 act as the fuzzy "AND" operator in the premise part of the fuzzy

if/then rules. The fuzzy "AND" operator performs the multiplication of the

membership values of the input variables. The output of a node in layer 2 is

where i j and k e {1,2}. The output Oj stands for the weight (firing strength) of the

• 2
corresponding rule, and it is refereed to as Wj (i.e. Wj = Oj).

Each node of layer 2 is corresponding to 1 fuzzy if/then rule, hence, by considering

the connection of these nodes, the fuzzy rules can be interpreted. For instance,

consider the first node in layer 2, it is connected by the nodes � and Bj of layer 1.

Therefore, the first node of layer 2 stands for the Rule 1,

3.2.3 Layer Three

The nodes of layer three calculate the normalized weight values (firing strength) of

the fuzzy rules. The outputs of the nodes are

’ 勿 ： 上 ， 、
 (3

-
6)

J + w 2

3-6

-二： ANFIS Model

where7 and i e {1, 2}. It is used to refer the normalized weight as w. Hence,

Wj=Ol (3 . 7)

3.2.4 Layer Four

The nodes of layer 4 calculate the crisp outputs of the fuzzy if/then rules, then

multiply the outputs by the normalized weight of the rules. Following is the

equation of the nodes outputs.

�==Afi = ++n), (3 . 8)

where i e {1，2}. {pt, qt, rt) is the parameter set of the consequent parameters.

3.2.5 Layer Five

There is only one node in layer 5’ the node calculates the sum of all input signals.

The sum is the overall output of the fuzzy inference system. The equation of the

output of the node is

y w . f . (3.9)
of = 、 二overall output.

i

We have already discussed the architecture of ANFIS. The illustrated ANFIS model

is over simple because 2 input variables with each has 2 membership functions can

yield 4 fuzzy if/then rules, while only two of them are used for the illustration.

However, based on the input - output patterns, it is very difficult to determine which

rules should be adopted or detached. Therefore, in practical implementation, all

3-7

-二： ANFIS Model

possible rules will be embedded into the ANFIS model. When all rules are

embedded into the ANFIS model, the number of fuzzy rules is equal to the product

of the number of membership function of each input variable. Figure 3.4 shows the

ANFIS with all possible rules.

Figure 3.4 : The figure shows all possible rules for ANFIS model which has 2 membership functions
of each input variable. In fact, the number of rules is the product of membership functions of all
input variables.

Figure 3.5 shows the input space which is partitioned into 4 fuzzy subspaces, each

subspace is governed by two membership functions from each input variable. The

shared area represents the fuzzy region.

Y •

B2 J 3 ； 4

8
B1 ^ _

3-8

：- ：：？ ANFIS Model

Figure 3.5 ： The fuzzy subspaces of the fuzzy rules 1 & 2. 2 rules with 2 membership functions
partition the space into 4 subspaces. The shaped area is the fuzzy region.

3.2.6 Multiple Outputs ANFIS

Up till now, the discussed ANFIS model has only one output, this is not very

practical for real applications. In many applications, the training data (input/output

pairs) are in multi-dimensions and ANFIS will not be applicable.

One of the solutions is to construct multiple ANFIS, each corresponds to one of the

dimensions of the output vector. Figure 3.6 shows an example of this solution,

assuming that the output vector has 2 dimensions, hence, 2 ANFIS models are

constructed for each dimension. Nevertheless, the error propagation in this solution

is very serious.

pr 0b(overall output is correct) = J] Pr ob(ANFIS model i gives correct output) (3.10)
i

If the output vector has 10 dimensions, then, 10 ANFIS models should be created. If

the accuracy of each ANFIS model is 90%, according to (3.10)，the accuracy of the

whole system is 35% (i.e. 0.910 « 0.35). Because of the serious error propagation,

this solution is not adopted in the project.

3-9

： - ：：？ ANFIS Model

I I i ANFIS for
I' T y I 1st output

f 仏 一 4 — 」

V 1 \ V \ 2nd output

I i I
L — — • ；— -」

Figure 3.6 : A solution for the problem of 2 dimensions output vector. 2 ANFIS models are built for
each output. Note that the parameter sets are different for each ANFIS model.

Instead, another solution is adopted. Figure 3.7 shows the enhanced ANFIS which

can support multi-dimensions output vectors. In the enhanced ANFIS, adding one

more output dimension means adding one more set of nodes in layer 4 and

connecting all nodes in layer 3 to this set. For this enhanced model, the error

propagation will not be so serious as the first solution. This is because of the update

of the premise part is based on the error of all output nodes.

3-10

：- ：：？ ANFIS Model

New nodes for ‘
the second (丨 . , . ;

output. j J

Figure 3.7 : The enhanced ANFIS model for 2 dimensional output vectors.

3.3 ANFIS Learning Algorithms

This section discusses the learning algorithms of ANFIS. In Jang's paper[13], two

learning algorithms have been proposed for ANFIS. One is gradient descent learning

and the other is hybrid learning. Each of them will be discussed in details. Besides,

an algorithm of least square estimate (LSE) will be introduced for hybrid learning.

LSE is a technique for approximating the solutions of matrix equations.

3.3.1 Gradient Descent Learning

3-11

：- ：：？ ANFIS Model

Gradient descent learning algorithm is a basic and common learning algorithm in

feed forward neural networks. It can be used to update the parameters of neural

networks in order to achieve the correct input-output mapping of the networks.

3.3.1.1 Gradient Descent Learning for Adaptive Networks

Consider an adaptive network with both adaptive nodes and fixed nodes, the

parameter set of the network is the union of all the parameters of adaptive nodes.

The following are the definitions of the variables of the network.

L - Number of layers in the network.

#(k) - Number of nodes in k-th layer.

(k’ i) - The node at /-th position of 众-th layer.

Of - The node function and output of (k, i) •

p - Number of training data.

T m p - Target output of m-Xh output node for p-Xh training data,

zr - Error of the network on p-Xh training data.

Since the output of a node depends on the incoming signals as well as the

parameters of the nodes function, we have

oN《欣…，瑜“，“
c

，…入
 (3

"
n)

where a, b, c …etc. are the parameters of the node function.

The error of 尸th training data is the sum of error of each output node. Therefore,

一 m L 2 (3 . 1 2)
"Ep 二 2 (Tm’p - Om’p)，

m二 1

t h e overall error is sum of error of each training data.

3-12

：- ：：？ ANFIS Model

E = (3.13)
p

The error rate of the output node (L,i) can be found by (3.12), it is

dEp T (3.14)
= -oh

d0^p
 l,p l'p

For the internal node (kj), the error rate can be derived by the chain rule and it is

the linear combination of the error rates of the nodes in the next layer.

dEp 二〒 dEp (3. 1 5)

where 1 < k < L - 1. Base on (3.14) and (3.15), we can find the error rate of all

nodes.

The following variables are used for finding the update rule of the parameters,

a - a parameter of the adaptive network.

S - Set of nodes where output depending on a.

Based on the chain rule, we have

dEp 一 dEp do* (3. 1 6)

da 一 0^sa dO* da .

The derivative of the overall error measure E with respect to a is

— ™ —) •

5a - d a

The update formula for the generic parameter cc is

dE (3.18)
Act = -T | - ~ , “

da ；

3-13

： - ：：？ ANFIS Model

where r\ is the learning rate which can be expressed as

k
rj = , , . . .

/ dE
J Z a (‘) 2 (3.19)

k is called the step size, it controls the transition length of the parameters

(movement of parameters in the parameter space) during the gradient decent

learning, If k is small, the transition of the parameters will be close to the gradient

of the error surface, the learning time and the convergence time will be longer. If k

is large, the transition of the parameters will be far from the gradient of the error

surface, at the beginning of training, the convergence rate is high. Nevertheless, as

long as the parameters are close to the optimum, they will oscillate around the

optimum. Figure 3.8 shows the learning path of large k and small k. In order to

make the learning rate to be faster and maintain the stability of the networks, an

adaptive step size will be used. The adaptive step size will be discussed later.

Error | i E r r o r I I

: . . V ~ n \ A j

Error Surface ^ ^ ^ ^

L Parameter — ^ m e i e r

(A) Small Step Size (k) (A) Large Step Size (k)

Figure 3.8 ： The figure shows the transition paths of small step size (A), and large step size (B). In this
example, the error is depending on one parameter only.

There are two learning paradigms for gradient descent learning. One is the batch

learning in which the update of parameters is performed after all training data are

3-14

-二： ANFIS Model

presented to the network. For the batch learning, the update is according to the

equation (3.17). The other is the pattern learning in which the update of parameters

is performed after each training data is presented to the network. For the pattern

learning, the update is according to the equation (3.16).

3.3.1.2 Gradient Descent Learning for ANFIS

In order to show how to update the parameters in ANFIS, consider the following

generic model.

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

Figure 3.9 : Generic ANFIS Model.

The following are the definitions of variables for the generic model:

3-15

-二： ANFIS Model

- z-th input variable.

n - Total number of inputs.

3 - Number of training patterns.

m - Total number of rules.

Sj - Set of membership functions associating to rule j.

O - Target output value.

The following are the equations of the outputs from each layer.

Layer 0 : Suppose is the output of the node as well as the node function,

then we have = (at, bif cjt p), where p is the p-t\i training data.

Layer 1 : Output is Rf = f j M ik -
Hxk^j ‘

Rf
Layer 2 : Output is Nf = .

‘ I A P

Layer 3 : Output is g； = N f f c o + c ^ + c ^ + ^ + c ^) , where c, are fixed in

forward pass.

m
Layer 4 : Output is

3-16

：- ：：？ ANFIS Model

Suppose the error of training data p is Ep where Ep = ((y -yp)2. Then the total error

3 3
for the whole training data set is E = = Y/Op-yp)2.

p-i p-i -

Consider the parameter at the_A:-th membership function of z'-th input variable : ai]c.

The error rate of the parameter is Aaik = .
‘ — k

The close form of Aaik is shown in the following :

P=1 aai,k P=1 aai,k P=1 �ai,k n 2 0)

da丨’ k J dai’k, (3.22)

where Cj 二 [c0J.〜…；j and Xp = [7 xf…（.

f \ 一

daik dRf fRP daa 13 ^ rVrS Jr8aiik
h) (3.23)

_ 石 n ^ (
dRf = Mx,k^j = Mx,k.eSj 讓 #

； ^ K , , �
 (}

v /

�HM^AdMP
L e t � p 二 ^ and putting this into (3.23)，we have

J'x"k Mp
Xhk daik i

V) ' \

3-17

：- ：：？ ANFIS Model

s m (3.25)
substitute (3.25) into (3.22), we have

S (3 26)
substitute (3.26) into (3.21), we have

oai,k j=i 1 vl/iJ/ 1 v (3 27)

substitute (3.27) into (3.20), we have

P=i j=i •/»�/ 1 VI/»J/ 1 v (3.28)

Base on section 3.3.1.1 and (3.28), the update rule of parameter aik is

…k(t +1) 二 a i k ⑴ - 球 � � , w h e r e r\ is the learning rate.

3.3.2 Least Squares Estimate (LSE)

Before the hybrid learning algorithm is discussed, we discuss the Least Squares

Estimate (LSE) first. LSE is a technique which can approximate the solution of a

matrix equation.

Assume that the adaptive network has one output node, the output of the output

node is

output = F(I ’S), (3.29)

3-18

：- ：：？ ANFIS Model

to

where I is the set of input variables and S is the set of parameters. If there is a

function H, such that the composite function (HoF) is linear in S2, where S2 is the

set of some of the parameters in S. Suppose S can be decomposed into 2 sets, we

have

一 S =而㊉馬. (3.30)

Suppose the parameters in 力 are fixed, then we have

H(output) = HoF(?，S2). (3.31)

If we have 3 sets of training data, we can plug the training data into (3.31) and get

the following matrix equation

AX=B. (3.32)

Suppose = then the dimension of A, X and B are 3xM, Mxl and 3x1

respectively. For each training data Ah A, = [al
} al

2 al
M] where a) is the instant

value of one of the input variables (suppose it is xf) at /-th training data, where

xf e f . For all training data, A二 ⑷冯…A�’ where t stands for the transpose. B

is the column v e c t o r of the target output. Suppose bl is the target output of training

data I, then B-/^ b2 … 知 / . X is also a column vector such that X二 [PiP2 …

where eS2.

Since the number of training data (3) is usually greater than the number of linear

parameters (M), equation (3.32) is overdetermined problem. In general, there is no

exact solution for (3 .32) . ,

3-19

-二： ANFIS Model

Instead，Least Squares Estimate (LSE) is used to find the approximate solution ofX,

the main idea of LSE is to minimize the square error \ A X - B ^ . The approximate

solution is denoted by X* and the most popular formula for X* uses the pseudo-

inverse of X :

X ^ C A U j ^ A ' B , (3-33)

where (A1 A)'1 A1 is the pseudo-inverse of A if At is non-singular.

In equation (3.33), X* is expressed in a close form equation, however, it is

computational expensive for determining the inverse of matrices. Moreover, when

A1 is singular, X* becomes ill-defined. Therefore, instead of solving X* directly, we

use the sequential formulas to solve X*. Let i-th row vector of matrix A in (3.32) be

a\ and the /-th element of B be bj, then X can be calculated using the iteratively

sequential formulas :

X…=Xi+ Si+Jai+] (bf+1 - aUjX,) (3-34)

si+1 = s 「 ’ 、 二 o d (3. 3 5)

1 +

S t is used to be called as covariance matrix and the least squares estimate X* is

equal to The initial conditions for equation (3.34) and (3.35) are X0 = 0 and S0

獵 Y/，where y is a positive large number and I is the identity matrix of dimension M

xM.

When dealing with the multiple output networks (multiple output ANFIS in section

3 2.6), the LSE is still applied, but b\ is a row vector which is the z-th row of matrix

B. «

3-20

：- ：：？ ANFIS Model

Up till now, our discussion is based on the batch learning. For pattern learning, the

parameters have to be updated by Ep instead of E. Actually, this is not the

appropriate procedure to minimize E, however, the result can be approximated by

setting a small learning rate.

In order to account for the time-varying characteristic of the incoming data for the

sequential least formulas, we need to reduce the effect of old training data when

new training data is presented to the network. The solution is to modify the original

sequential least formulas to its weighted version such that the recent data have

larger weight than the past data. For the weighted version, we introduce a forgetting

factor (X) into the original equations (3.34) and (3.35) which become

Xi+1 二 X ^ S ^ H a h X i) (3.36)

i f a
((3 - 3 7)

Si+1 丄 械 产 & , i-0’l，…’
AA 1 + ai+iSiai+i J

where X is a value between 0 and 1. For smaller X, the effect of the old data will be

reduced rapidly. Nevertheless, if X is too small, it may cause the instability of the

system.

3.3.3 Hybrid Learning Algorithm

3.3.3.1 Hybrid Learning Algorithm in Adaptive Networks

The hybrid learning a l g o r i t h m is based on both the gradient descent learning and

least squares estimate. The reason of introducing the LSE is that the gradient

descent learning is generally slow and easy to be trapped by local minima.

3-21

：- ：：？ ANFIS Model

For hybrid learning, each training epoch is composed of forward pass and backward

pass. In the forward pass, training data are supplied in order to construct the

matrices A and B in equation (3.32). Then, matrix X is calculated by using the

sequential least square formulas in (3.34) (3.35) or (3.36) (3.37). Once X can be

found, the parameters in S2~ are found. In the backward pass, the signals are

propagated to the output node based on the parameters of S2 which were found in

the forward pass. The output error can be found by subtracting the output value by

the target value. The error can be used to update the parameters of Sj by using the

gradient descent learning.

By fixing the parameters in Sj, LSE is able to find the parameters in S2 such that

they are guaranteed to be the global minimum in S2 parameter space. Therefore,

hybrid learning makes use of LSE to reduce the parameters searching space firstly,

then applies the gradient descent learning. This approach can substantially reduce

the convergence time of the network training.

3.3.3.2 Hybrid Learning Algorithm in ANFIS

Clearly，ANFIS is an adaptive networks. Therefore, the hybrid learning algorithm

can be applied to ANFIS. This section mainly discuss how to define the parameters

in Sj and 力.

From figure 3.2，it is observed that given the values of the premise parameters, the

overall output can be expressed as a linear combinations of the consequent

parameters. The output in figure 3.2 can be expressed as � 1

3-22

：- ：：？ ANFIS Model

Hence, the linear parameters are the consequent parameters and we have

S = set of total parameters,

AS； = set of premise parameters,

S2 - set of consequent parameters.

The function H is the identity function and F is the function of fuzzy inference

system of the ANFIS.

In the ANFIS with hybrid learning algorithm, during the forward pass, signals go

forward till layer 4 and the consequent parameters are identified by LSE. In the

backward pass, the errors propagate backward and the premise parameters are

updated by the gradient descent algorithm. Table 3.1 shows the activities in each

pass.

“ I Forward pass Backward pass

Premise parameters fixed gradient descent

Consequent least squares estimate fixed

parameters

Signals ‘ node outputs error rates

Table 3.1 : Hybrid learning activities of ANFIS for each pass.

However, it should be noted that the computational complexity of LSE is very high.

In some situations, such as the large number of training data, LSE may not be

applicable. Jang has introduced 4 training modes which are shown in Table 3,2.

3-23

-二： ANFIS Model

Training modes Description ‘ ~

Gradient descent only All parameters are trained by gradient descent learning algorithm.

Gradient descent and LSE is applied at the first training epoch to give the initial values of the

one pass LSE consequent parameters, then, the gradient descent is applied to all the

parameters.

Gradient descent and Hybrid learning algorithm. 一 — —

LSE

Sequential LSE only Applying LSE to update all the parameters of ANFIS. “

Table 3.2 : Four training modes of ANFIS.

The selection of using which of the training modes is depending on the computation

complexity of the problem and the resulting performance.

3-24

(： ： A N F I S Library

4 ANFIS Library

As mentioned before, the objective of the project is to construct an ANFIS library.

This section discusses the structure and use of the library.

4.1 Library Structure

The library is built by using C++ in order to support the new programming approach

-Object-Oriented Programming (OOP). In general, all OOP languages compose of

three parts in common : objects, polymorphism and inheritance[10].

An object is a logical entity that contains both data and code that manipulates that

data. Within an object, some of the code and data may be private to the object and

inaccessible to any thing outside the object. In this way, an object provides a

significant level of protection against some other, unrelated part of the program

accidentally modifying or incorrectly using the private parts of the object. This

linkage of code and data is often referred to as encapsulation.

Polymorphism is characterized by the phase "one interface, multiple methods". This

means that one name can be used for several related but slightly different purposes.

In essence, polymorphism allows one interface to be used with a general class of

actions. The specific action selected is determined by the type of data involved.

-V jt

Inheritance is the process by which one object can acquire the properties of another
M

object. This is important because it supports the concept of classification. If you

4-1

一亡 二. ANFIS Library

think about it, most knowledge is made manageable by hierarchical classifications.

Through the feature of inheritance, an object need only define those qualities that

make it unique within its class and it is possible for one object to be a specific

instance of other objects.

Based on the OOP, large scale systems can be constructed more easily, moreover,

the maintenance cost of the systems can be reduced.

4.1.1 System Modules

The ANFIS library contains the following system modules.

Module Name Description

a n f i s . h Contains the header information of the ANFIS library,

a n f i s . c c C o n t a i n s the constructors and destructors of the object

"anfis一model，，which is the main body ANFIS model, it

also contains the procedures to establish the architecture of

the adaptive network,

b a c k w a r d , c c Contains the procedures of the backward pass of the training

phase.

b u i l d , c c “ Contains the procedures of building each layer and its nodes

of the ANFIS model.

. f i l e i o . c c 一 Contains the procedures of reading the input training data

file and writing the output file,

f o r w a r d , c c Contains the procedures of the forward pass of the training

4-2

�〔.::：: ANFIS Library

phase.

k a l m a n . c c Contains the procedures of calculating the LSE of the

network parameters,

l a y e r s . c c Contains the destructors of the object " l a y e r " ,

m a t r i c s . c c Contains the procedures of matrices and vectors operations,

n o d e . c c Contains the constructors and destructors of the object

"node" .

p a r m . c c Contains the procedures of initialization and update of the

network parameters,

t r a i n . c c Contains the training procedures of the ANFIS model.

4.1.2 Class Objects

The ANFIS library contains the following class objects.

Class Object Description

a n f i s 一 m o d e l This is the main body of the ANFIS library. Programmers

only need to declare a class of anfis—model， they can

train and evaluate the network.

m a t r i x This is the class of matrices, it is used to declare the input

parameters of training and evaluating procedures of

a n f i s 一 m o d e l . Each element of m a t r i x class has the data

type " d o u b l e " .

v e c The is the class of vectors, it is .used to declare the input

parameters of the procedures for setting the parameters of

4-3

ANFIS Library ;

. . “ . . ' - . . I • M i i • • ； I I !
membership functions of a n f i s一model . Each element of

. ‘ … ；• j

v e c class has the data type " d o u b l e ”

.1.3 Class Functions 丨 ., • . ' ' i \ ‘' • . . .
 1

 ； j i
j

�he prototypes of a n f i s一m o d e l，m a t r i x and v e c class declaration are as
‘ ‘ ： _ j- ‘.! j

. ‘ . • . . ： ‘ . • • ‘ ‘ “ • ^ ‘ - . j ；； I (•
ollows: 1 i

anf i s 一m o d e l var_name (int input 一 n o d e s , in t output—nodes); •;；；-

matrix var一name(int nura_of_columns, int num_of_rows);

v e c v a r _ n a m e (i n t num_of一e lemen t s) . ;

： •'•
：：：
-'>

；：
--' ：̂

 ：
' ‘‘ '

：
>
：
 '

：；：
 ： ；'：|!|

rhe value of the elements of m a t r i x and v e c can be specified directly as follows : ; j

m a t r i x一 v a r i a b l e [c o l] [r o w] = d a t a一 i t e m ;

v e c _ v a r i a b l e [i d x] = d a t a _ i t e m ;

Since m a t r i x and v e c are used to declare the input parameters of the procedures, .

there is no associated class functions for programmers. In this section, we only list

the class functions of a n f i s—model as follows :

..."丨I .

Class functions of anf is del Description ~ _ " " [

•int is_modei,creat:e(i； Return 1 is the ANFIS model is createa, 丨丨丨

— . ；！!
otherwise, return 0. ！；丨

i n t g e t _ i n p u t _ V a r j顏…; ；““— Return the number ot mpui vanabic, ；,： |
一 I ；!

(input nodes). j|
- — — ^ ~ " " " *

4-4 Li；：：:
^ , j

V

�‘=:二-.-二二： Applications

5 Applications

This section presents the performance of ANFIS in various applications. In all

applications, ANFIS is trained by the input-output training pair and no expert is

consulted for the fuzzy rules. Since no expert is consulted, we do not know which

fuzzy rule should be adopted and all possible rules are embedded in ANFIS for all

applications.

For the input range and the number of membership functions of each input variable

is fixed, the initial values of the premise parameters are set so that the memberships

functions are equally spaced along the input range. Moreover, the membership

functions have to satisfy the e-completeness[13] with s=0.5. "s-completeness with s

=0.5" means that for any input jc within the input range, there exist a membership

function such that j j ^ (x) > 0 . 5 . In this manner, the fuzzy inference system can

provide smooth transition and sufficient overlapping from one linguistic label to

a n o t he r . Figure 5.1 shows an initial setting of membership functions for the number

of membership functions is 4 and input range is [0,12].

： 7 �、 一 J7,

� / X 厂 � . X
\ / N / � / ,

、、 / \ - / . • . . \ /
\ / \ / 、 /

o.5 \丄 — 厶 / \ / \ / \ / � / \ / \ / \ I
/ N

 v / \ / \
/ \ � / � ‘ \

/ �� / ��� Z \
^ ^ � d

Input Variables

Figure 5 J ： The initial membership functions with s-completeness^O.5.

5-1

-n:--:. Applications

As discussed before, the step size should be changed adaptively, the heuristic

rules[13] are as follows :

1. If the error measure undergoes 4 consecutive reductions, increase k by 10%.

2. If the error measure undergoes 2 consecutive combinations of 1 increase and 1

reduction, decrease ^by"10%.

Although the selection of 10% is rather arbitrarily, the results are quite satisfactory.

Moreover, the initial value of k is not very critical as long as it is not too big.

Besides that, other adaptive learning rate can also be used as the step size to control

the learning speed. Figure 5.2 shows the error measure w.r.t. the training epochs.

小

V
error A.

measure \ •

Training epochs

Figure 5.2 : The figure shows the action of the heuristic rules of step size. At point A, rule 1 is used to
increase the step size after 4 downs. At point B, rule 2 is used to decrease step size afier 2 combinations of I

up and 1 down.

5.1 Logical Operators

The first application is using ANFIS to model the logical operators : XOR，OR,

AND.

5-2

-n:--:. Applications

5.1.1 Architecture

In this application, the ANFIS contains 2 input variables, 1 output variable and 2

membership functions for each input variable. Based on this architecture, 4 possible

rules can be defined, they are

1. I f x is A j and y is Bj then z 二 pjx + + D,

2. If x is A� andy is B2 then z = p2x + q2y + r2,

3. I f x is A2 andy is B1 then z = p3x + +

4. I f x is A2 and y is B2 then z - p4x + q4y + r4 •

Ap A2, Bj, B2 are defined by the membership functions \xA] (x), (x),[iBi (y),\^B2 (y)

where

1
u a (x)= —

1 + [(
 a i / J (5-1)

X-C, -y h

_ �) � (5.2)

力 " 〒 ” (5-3)

1

Table 5.1 shows the consequence and premise parameters of each rule.

Consequence Parameters I Premise Parameters

I a l , b l , c l , a3, b3, c3 p i , ql5 rl

• y " a l , b l , c l , a4, b4，c4 p2, q2，r2

1 a2, b2，c2, a3, b3，c3 P3，Q3， r3

5-3

-n:--:. Applications

a2’ b2，c2, a4, b4，c4 p4，q4, r4 一

Table 5.1 : Consequence and Premise parameters of ANFIS as logical operators.

After the ANFIS is trained, the values of the parameters are shown in table 5.2.

Parameters Values Parameters Values Parameters Values

~al 0.433637 bl 2.01019 cl -0.0448426

a2 0.43755 b2 2.01062 c2 1.0338

a3 0.433637 b3 2.01019 c3 -0.0448426

a4 0.43755 b4 2.01062 c4 1.0338

pi 0.0349429 ql 0.0349429 rl -0.0323391

p2 -0.0100705 q2 0.530827 r2 0.529259

p3 0.530827 q3 -0.0100705 q3 0.529259

p4 -0.0307884 q4 -0.0307884 r4 0.00209854

Table 5.2 : Values of consequence and premise parameters.

Figure 5.3 shows the output functions of each rule and the membership functions of

^ 乂2，Bj, B2 . We found that there is almost no change on the membership

functions with their initial setting. This can be explained by the few training epochs

of ANFIS, the update of the premise parameters is very small within the few

training epochs.

5-4

�‘=:二-.-二二： Applications

y x O ^ T ^
(a) Output function of rule 1. (b) Output function of rule 2.

0 0

(c) Output function of rule 3 • (d) Output function of rule 4.

。 + ; 「 、 、 ， , . ： 丨 、 、 ’ . /]

l x J Q (J
——40——60 ^ 100 i io °0 20 40 80 100~~120 u c x input (x10e-2) P . ,, v

(e) Membership functions of variable X. (0 Membership fimctt 咖 ofvanable Y.

Figure 5.3 : (a) - (d) are the output equations of the consequence part of the fuzzy rules 1 - 4. (e)

and (j) are the membership functions of input variables X and Y.

5.1.2 Training Data

The training data are the corresponding input/output values of the logical operators.

Table 5.3, 5.4, 5.5 show the training data of the XOR，OR，AND respectively.

5-5

�‘=:二-.-二二： Applications

Training set Input 1 Input 2 Output

1 1 1 - 0

~2 1 0 1

"1 ‘ 0 I 1

—4 0 0 0

Table 5.3 : Training data of XOR.

Training set Input 1 Input 2 Output

1 = 1 " T " 1 “

"2 1 0 0

1 0 " T ~ 0

0 0 0

Table 5.4 : Training data of AND, �

Training set || Input 1 Input 2 Output

i i i i

~ . 1 o 1

"1 0 1 : ~

丁 o 0 ~ ~ o ^

“ Table 5.5 : Training data of OR.

5.1.3 Results and Discussions

F o r the modeling of l o g i c a l operators, ANFIS gives the remarkable results. Only

one training epoch is needed to delivery nearly z e r o error. Moreover, ANFIS still

g i v e a correct output under the noise environment. The maximum noise level is 30% j

deviation from the original values of 0 or 1.

5-6

-n:--:. Applications

The membership functions of ANFIS can account for the noise toleration capability.

Since the membership functions transfer the crisp inputs to the values of degree of

matching, within certain range of deviation, the inputs still fall into the same fuzzy

subspace, hence, ANFIS stilfgive a correct output.

In fact, neural networks are usually used to model the logical operators. In this

application, we found that ANFIS can also work as neural networks. Moreover, it

gives a better result in the aspects of training time and noise toleration.

The LSE can account for this better result. When ANFIS is trained by the hybrid

learning, it only need 1 training pass to achieve the RMS error less than 10"5 for the

cases of XOR，AND and OR. However, when ANFIS is trained by gradient descent

with adaptive step size and momentum. It requires 110 training epochs for XOR

case, 98 training epochs for OR case and 102 training epochs for AND case.

Base on the gradient descent learning, we construct a neural network to simulate the

logical operator AND, XOR and OR. The neural network has 3 layers，2 nodes in

input layer, 5 nodes in the hidden layer, 1 node in output layer. The neural network

is trained by backpropagation algorithm with adaptive learning rate and momentum.

The neural network needs 86, 129，91 training epochs for AND, OR, XOR

respectively. This result shows that with the gradient descent learning for modeling

of logical operators, ANFIS is not necessary better than neural network and the

remarkable result from ANFIS can be explained by the LSE in hybrid learning

algorithm. The error curve of both ANFIS and neural network, in the XOR case is

shown in figure 5.4.

5-7

�‘=:二-.-二二： Applications

： 门 丨 n
l4\ - !：：| .

o i . . .
nl I I I , . . I o' 1— ：：德 u -J ‘ 1 1
U0 10 20 30 40 50 60 70 80 90 0 2Q 40 60 ^ 80. 100u 120 140 160 180

Training epoch Training epochs
(a) (b)

Figure 5.4 : (a) is the error curve for neural network training, (b) is the error curve for ANFIS with
gradient descent training.

We have also try to increase the number of fuzzy terms (membership functions) for

each input variables. When the number of fuzzy terms is 4，ANFIS still need 108

training epochs for XOR. The result shows that further increase the number of

membership functions does not improve the performance. This can be explained by

the fact that the optimal number of membership function is reached，further increase

the number of membership only increase the computations, but not improve the
performance.

5.2 Modeling of Nonlinear Function

The second application is the modeling the 5mc function which is highly nonlinear

in three-dimensional space. The sine function is

�sin(x) sin(y) (5.5)
z = sinc(x,y) -— x •

i y

5-8

�‘=:二-.-二二： Applications

5.2.1 Architecture

Based on (5.5)，the ANFIS has 2 input variables and 1 output variable. Since the

sine function is highly nonlinear, more membership functions are needed to give an

accuracy result, provided the optimal number of membership functions is not

reached. This can be explained by the functional equivalence between radial basis

function networks and fuzzy inference systems. In radial basis function networks,

the number of basis functions reflects the complexity of the mapping to be learned,

the more the basis functions, the more complex the mapping[8][30]. Therefore,

instead of using 2 membership functions for each input variable, we use 4

membership functions for each input variable.

5.2.2 Training Data

The range of the input variables is -10 to 10, the even values of the input variables

are selected to be the training data. Based on this selection method, the training data

can be evenly distributed in the input space. The output is calculated by the sine

function directly. Table 5.6 shows part of the training data.

Training ^ y z

Set

=7= ！To ^ T l O 0.00296

2 .8 -10 -0.00673

3 -6 -10 0.00253

1 2 0 8 10 -0.00673

5-9

�‘=:二-.-二二： Applications

121 10 10 0.00296

Table 5.6 ： Part of training data for sine function modeling.

With this architecture, there are maximum 16 possible rules and 72 parameters

which are composed of 24 premise parameters and 48 consequence parameters.

5.2.3 Results and Discussions

With the hybrid learning algorithm, ANFIS can simulate the sine function within

150 training epochs, this remarkable result is achieved by adding the momentum to

the gradient descent pass, so that ANFIS can escape from the local minimum. In this

application, we can visualize how ANFIS perform its update on membership

functions in its training, and also the power of using momentum in such kind of

complicated problems. The training of ANFIS in this application can be classified in

the following stages :

Stage 1 : At the beginning of the training, because of the higher amplitude of

the sine function around the origin, the RMS error is mainly

contributed by that region (figure 5.6a). ANFIS shifts the centers of

two membership functions to the origin to reduce the RMS error

(figure 5.6b). As long as the centers of two membership functions

shifting to origin, the firing strengths of the fuzzy rules with input

variables around the origin will be higher. Base on (3.9), we found

that if the firing strengths of the rules are higher, the effect of the

corresponding outputs will be greater to the whole system. Hence, the

5-10

�‘=:二-.-二二： Applications

RMS error from the region of origin can be reduced, this also

accounts for the rapid drop of RMS error at the beginning of training.

Stage 2 : After two membership functions overlap each other and are centered

at origin. The一 RMS error is mainly due to the error from the side

regions. Start from training epoch 15.5 on (figure 5.6b), ANFIS

spends all of its effort to approximate regions that contributes most

of the error and forgets other regions.

Stage 3 : As the training continue, the error will be mainly contributed by the

side regions, and ANFIS will be trapped by a local minimum. With

the momentum added, ANFIS can escape from the local minimum

with the tradeoff of an increased RMS error (figure 5.6c).

Stage 4 •• After escape from the local minimum, the distortion of the central

region will be recovered in the subsequent training epochs (figure

5.6d). After 40 training epochs, the approximated surface is already

very similar to that of the original one (figure 5.6e). The model will

keep on refining the surface and after 150 training epochs, ANFIS

gives the result of RMS error less than 0.0005 (figure 5.6f). The

result is difficult to be achieved by neural networks even the

networks are trained for a number of hours. Figure 5.5 shows the

surface of the original continuous sine function.

5-11

s
j
n
c
(
x
y
)

D

9

.

0

-

o

-

 o

 c

 T

 0
5

 o

 9

 I

g

-

0

 ̂

n

Q p

 ̂

一

1

L

f

」

⑶

"

s

^
 ⑷

k

,
 /

 •

•
•

y

/

v

s

o

•

:

\

 ,、
§

.

一

\

\

>

i

u

M

n

l

t

!

二

\

 _

 。
\ r

“
：
(

 “

.

.

 t
、

\
 乂
，

 。
.
.

/

 ̂

 5

 "

I
r

 7
0

 o

 c
v

9

9

”

;;

0
 u

：二： Applications

Figure 5.5 : The figure shows the surface of sine function at different sampling step (ss). (a) ss =

0.5, (b) = 1, (c) = 2.

Figure 5.6 shows the memberships functions and reconstructed surface of ANFIS at

different training epochs and the RMS error w.r.t training epochs.

OeNwahlp Functlcne for Input Variable X —f— ?

0 8 \ / \ \ / Z = ANFIS<X,Y)—
• \ / w •••'�. /

06 Y v v 1

M 今 /\ ：丨•

：„XX A
Z 一 : 、

 1 0
 "

1 0

-10 -s ^ 5 10
a, Training epoch = 0.5

He*«wr8hip functlorw for Input Variaoie X

画 ^
0 6 rl ^ h ^ S ^ 1

�

y �’�.��-......
°-10 -s" ？ 5 “

b, Training epoch = 15.5

llMfurailp function far Input VaftabU X
Af f/‘ : �.V' z = fiNFIS(X,Y)—

0.B \ / fK
o.s I ; / \ \ Z

. “ / / \ ; / \ \ 0.4,

： ： / M a X
. . z J 、 、 - _

5 f “ 3 r°

b, Training epoch = 19.5

5-13

：―：： Applications

A "owberahip Function® for Input Varl̂ le X

I \ � > : — — i
0.8 \ / / \, \ • 1 = flNFIS<X,Y> —
0.6 A / ！ A \ Z
�.‘ / \ \ m , �

。 ： — — — —

.v.-- Vt-：- -----
-10 -5 0 S 10

d, Training epoch 23.5

Hewberahlp Functlcns For inpuc v«*labta X

X / ： \ / ��� Z : ANFISXY�一
°.8 / \ 7 ； S . \ z ..
°.s / y ： !\ \

 1

fle^ar l̂p Functions for Input Variable Y

, y f , I
: : A丨 V � �

 x
 ^ s ^ r ^ ^

" • r ^ ~^ ？ B «
e, Training epoch 40.5

m«)er!*ilp Fuocttga for Input VaHabl« »
>v'"f 丨 / \ • Z = ftNFIS<X,Y> —

/ \ / : y \ i \ \ : \ z
0.6 ‘‘ / \ : ! \ 。.‘

� ‘ 2 . -y V ^ 10 -io
^ ？

 5
 “

f,Training epoch 150.5

\ 4
I
1

‘ 、 I

5-14

�‘=:二-.-二二： Applications

^ Error RHS Error on f̂FIS p̂llĉ tlm 2

i l l
0 20 40 SO 80 100 120 140 ^

Epoch« Y
lô -qo

Figure 5.6 : The figure shows the membership functions of each variables and the reconstructed
surface of ANFIS at different training epochs. The last two graphs are . the error curve and original
surface of sine function for training.

When the momentum is removed from the hybrid learning, we found that ANFIS is

not able to escape from the deepen local minimum and yields in a worse result.

Figure 5.7 shows the error rate and reconstructed surface of ANFIS (without

momentum) after 150 training epochs. We can see that the reconstructed surface is

worse than that in figure 5.6. Thus, we can conclude that momentum can be used to

assist the ANFIS training to escape from local minima.

%…….M……ii)…….……1M..…ii.…f X
 Y

RMS error vs training epochs Evaluated ANHS surface

F i g u r e 5.7 ； The error curve and evaluated surface of ANFIS training without momentum.

When ANFIS is trained with gradient descent, training takes longer time. This can

be e x p l a i n e d by the size of searching space. In gradient descent learning, the

consequent parameters are also tuned by gradient descent, hence, the searching

space is very large and more time (training epochs) is needed. It should be noted

that，the searching space increased exponentially with respect to the parameters

5-15

Applications

increasing. Although, ANFIS takes more time in gradient descent training scheme,

it still give a better result than neural network. Figure 5.8 shows the final

reconstructed surface of ANFIS and neural network after 10000 training epochs.

The RMS error of ANFIS is 0.0015 and that of neural network is 0.0022. Similar as

the ANFIS, the neural network is trained with momentum and adaptive learning

rate.

(a) (b)

Figure 5.8 : Reconstructed surface of sine function, (a) From ANFIS trained with gradient descent
only, (b) From Backpropagation Neural Networks

5.3 Chaotic Time Series

In the above application, we have shown that ANFIS is able to model a highly non-

linear function. This application aims to demonstrate the predictive capability of

ANFIS which was used to predict the future values of chaotic time series.

The chaotic time series is a benchmark problem[13] because it's period is non-fixed,

moreover，the change of initial parameters can modify the behaviors of the series. In

this application, the time'series is based on the chaotic Mackey-Glass differential

delay equation defined below :

5-16

Applications

1 + x - r)

To find the solution of equation (5.6), we apply the Runge-Kutta method to find the

numerical solution to the equation[13]. ，

The objective of this application is using the past N data values up to the point t to

predict the future value at point t+D. In this application, we use 4 past data values

to predict to future value. We will discuss the training data in the subsequent

section.

5.3.1 Architecture

As mentioned before, we use 4 past data values for prediction, that means we have

to use 4 input variables. Each input variable was assigned with 2 membership

functions arbitrarily. There are totally 16 rules in the system and 104 training

parameters, of which 24 are premise parameters and 80 are consequent parameters.

5.3.2 Training Data

Suppose the current time stamp is t, the four input data are x(t-6), x(t-12), x(t-18)

and x(t — 24). The predictive value is x(t). Each d a t a value is separated by 6.

T h e initial conditions are x(0)-L2 and r=77. From the Mackey-Glass time series,

1000 training data are extracted. The time stamp of the training data is from t二 124

to t-1123. It is supposed that the data values before t=124 are known and are used

to train the data from f二724’

5-17

�‘=:二-.-二二： Applications

The first 平(from t=124 to t=124^) data values are used to train the ANFIS, the

rest are used to test the accuracy of the prediction. For different test cases, the

values of 平 are different.

5.3.3 Results and Discussions

A number of cases have been tested to evaluate the predictive power of ANFIS. For

each test case，the number of training data is different. The parameter of each test

case are shown in the table 5.7.

Test cases Number of

training data

1 100

2 0̂0
3 300 ~

4 400

~ ~ ~ ~ 5 0 0 ~

Table 5.7 : The number of training data for each test case.

Figure 5.9 shows the chaotic time series and the estimation error each test case.

•
i •i I

5-18

Applications

0.4I 1 I I I 丨 U I I V I
0 100 200 300 400 500 600 700 800 900 1000

sample data

0.11 | | 1 1 1 1 1 1 I

-0.05 - -

n i«； i i j 1 J i 1 1 ^ -J u-,O0 100 200 300 400 500 600 700 800 900 1000 Estimation error: training data = 100

0.015 1 r 1 1 1 1 I � 1

-0.01 I . _

-0.015 T̂o 200 300 400 500 700 800 lOO 1000
u 'uu ^ Estimation error: training data = 200

0.015, 1 1— 1 1 1 1 I I 1 ~~
0.01 - I _

-0.005 •• ， ‘ ‘ I
_

-0 .01 -

-0.01 pio 3̂ 0 400 500 6 0 0 � 700 ~~800 9 0 0 1 0 0 0
0 100 200 . UU Estimation error Gaining data = 300

5-19

�‘=:二-.-二二： Applications

0.01, , , ,
！ I I I I I ： 1 fl ! ： I

0 . 0 0 5 - J _

。！
-0.01 i 一

-0.015' 1 1 I I I I ；_I I I
0 100 200 300 400 500 600 700 800 900 1000

Estimation error: training data = 500

0 0 1 5 | 1 1 1 ： 1 1 i 1 1 � ~ I
0.01 - . -

-0.01 L -

" °
 0 1 5

0 1 0 0
:
 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 ~ ： ~ ~ 7 0 0 8 0 0 9 0 0 1 0 0 0

Estimation error: training data = 400

Figure 5.9 : Chaotic time series and the estimation error in each test case.

Note that the series is approximated very accurately and there is visually no

difference between the two. Also, the RMS error can only be shown on very fine

scale. The application shows that ANFIS give outstanding performance in

predicting the chaotic time series even though series highly complex. We can

conclude that ANFIS can be used to model highly complexity system.

5.4 Inverted Pendulum System

In this application, ANFIS is used to construct a simple f u z z y controller through the

use of temporal back propagation which means to apply the back-propagation-type

gradient descent method to propagate the error signals through different time

s t a g e s [1 4] . The controller has to keep the state variables of the system to follow a

given desired trajectory as close as possible. The whole system contains a fuzzy

controller which based on the current values of the state variables to determine the j

5-20

�‘=:二-.-二二： Applications

action to be taken, and also a plant calculates the values of the state variables based

on the action taken by the controller. The basic idea of our application is to

implement both the fuzzy controller and the plant at each time stage as a stage

adaptive network, and cascade these stage adaptive networks into a trajectory

adaptive network to facilitate the temporal back propagation learning process.

The inverted pendulum system (figure 5.10) is composed of a rigid pole and a cart

on which the pole is hinged. The cart moves on the rail tracks to its right or left,

depending on the force exerted on the cart. The pole is hinged to the cart through a

frictionless free joint such that it has only one degree of freedom. The control goal

is to balance the pole starting from non-zero conditions by supplying appropriate

force to the cart.

angle

Force w — •

Figure 5.10 Inverted Pendulum

The dynamics of the inverted pendulum system are characterized by two state

variables: 0 (angle of the pole with respect to the vertical axis), ^(angular velocity

of the cart). The behavior of these two state variables is governed by the following ^

differential equations [14]:

5-21

一…：二 - Applications -

g * sind + cosQ *
e= ^ ^ l (5.7)

jJ 4 m* cos2 ̂
I .

V3 mc+m J

where g is acceleration due to gravity, mc is the mass of the cart, m is the mass of

the pole，I is the half-length of the pole and F is the applied force in newtons. Our

control goal here is to balance the pole without regard to the cart's position and

velocity.

5.4.1 Stage Adaptive Network

Figure 5.11 shows a block diagram of a feedback control system consisting of a

fuzzy controller and a plant. We assume the delay through the controller is small

and the state variables are accessible with accuracy.

State k F u z z y Controller _ t k s tate k + 1

• (FC) • ‘
Plant •

•

Figure 5.11 : feedback control system

An obvious candidate for implementing the FC block in the figure is the ANFIS

architecture, since it has exactly the same function as a fuzzy controller. If we have

p inpUts to the plant, then the FC block can be implemented by our modified ANFIS]

with p outputs (section 3:2.6). For the implementation of the plant block, ANFIS is

also used, because it has a model-insensitive attribute which make it able to

5-22

Applications

represent the input-output behavior of the plant. Consequently, the block diagram of

figure 5.11 can also be viewed as an adaptive network containing 2 subnetworks, the

FC block and the plant block. Subsequently, the adaptive network of figure 5.11 is

referred to as SANk which represents the stage adaptive network[14] at time stage k.

5.4.2 Trajectory Adaptive Network

Given the state of the plant at time t二k+h, the FC will generate an input to the plant

and the plant will evolve to the next state at time (k+l)xh. By repeating this process

starting from t=0, we obtain a plant state trajectory determined by the initial state

and the parameters of the FC. The state transition from t=0 to mxh is show

conceptually in figure 5.12 in which the adaptive network consisting of m SANk'st

k=0 to m-1 is called Trajectory Adaptive Network (TAN)[14].

State 1 State 2 State m+1 _ ； ；
I — I ‘ - • ~ j I ~ ~ ~" ~__ !

State 0 ！ 1 I i p I I • . .i: •

I • ； . I ^ J ； ： ； ！

S A N a 1 S A N T _ - - - _ - 1 " S A N m-1 “ “

Figure 5.12 : Trajectory Adaptive Network

Accordingly, we can still apply the back-propagation gradient descent1 to minimize

the differences between adaptive network outputs and desired outputs. In order to

m ake the inputs and outputs more explicit, we redraw figure 5.12 to get the

t r a j ec tory adaptive network shown in figure 5.13, where the inputs to the network

i LSE is not applicable in temporal back propagation.

5-23

�‘=:二-.-二二： Applications

are the initial state of the plant at time = 0，the outputs of the network are the state

trajectory from t=h to mxh7 and the adjustable parameters are all pertaining to the

FC block implemented as an ANFIS. Hence each entry of the training data is of the

form : (Initial State; Desired Trajectory), and the corresponding error measure to be

minimized is

E = ^ (h xk) - Sd(h x k)\\2+Xj]\\i^h* k)\\2 , (5.8

k=l lc=0

where in(hxk) is the controller's output at time /zx众[14]. By a proper selection of X,

a compromise between trajectory error and control effort can be obtained. Though

there are m FC blocks, all of them refer to the same fuzzy controller at different

time stages. In other words, there is only one parameter set for all m FC blocks at

different time stages.

desired
actual trajectory I trajectory

• . . 丨 . ： > > <] — —

State 1

State 2 ^ ^
• 眷 . 』

^ Error ^
I State m十 ‘

Measure

. 「 - : … 「 … 门 ” ‘ . 「

State 0 ； r — — ； [I • — ！ I p n ' ；
L - - - S A 狐 … � l — — J ' - - - - S A N m ^ l - - - ' L ^ _

\ / � � /

�� \ : \ � /

Para ,e terSet U T-TP"ate

Figure 5.13 modified trajectory adaptive network

5.4.3 Architecture and Training data

5-24

--••-；；- Applications

Controller Block_ Plant Block

Figure 5.14 Stage adaptive network, used in the simulation

Figure 5.14 shows the stage adaptive network used in our simulation. The plant is a

deterministic nonlinear dynamic system with precisely defined differential

equations, so we can just use two nodes to calculate the state variables at the next

time step by linear approximation[14]:

^ xj(t + h) = hxi(t) + xj(t)

x2(t + h) = hx2(t) + x2(t) (5.9)

where and x2(-) These two equations are the node functions of

the plant block in figure 5.11.

The controller is implemented as an ANFIS with two inputs, each of which is

assigned with two membership functions, so it is a fuzzy controller with only four

fuzzy rules.

In the training we employ 100 stage adaptive networks to construct the trajectory

adaptive network, and each stage adaptive network corresponds to the time

t r a n s i t i on of 10ms. That is, the time step (h) used is 10ms, and the trajectory

adaptive network corresponds to a time interval from t二0 to t二Is. If h is too small,

5-25

Applications

a large network has to be built to cover the same time span, which increases the

signal propagation time and thus delays the whole learning process. On the other

hand, if h is too big, then the linear approximation of the plant behavior may not be

precise enough and a higher order approximation has to be used instead. For the

training data pair, the initial states is a two-element vector which specifies the

initial condition of the pole while the desired trajectory is a 100-element vector

which contains the desired pole angle at each time step. In our simulation, only two

entries of training data are used : the initial conditions are (10,0) and (-10,0),

respectively, and the desired trajectory is always a zero vector. That is，we expect

that the trajectory adaptive network not only can learn to balance the pole from an

initial pole angle of +10° or -10°, but also can achieve the control goal in an near-

optimal manner which minimizes the error measure�

5.4.4 Results and Discussions

The result of this application is very attractive. In the first place, ANFIS is trained

with 10 epochs, then the system bases on the parameters from the training set to

evaluate other un-trained checking data. It is amazing to observe that the FC is able

to balance the pole in a very short time and also without any serious oscillation

around the vertical as shown in Figure 5.15.

. , Fw* (Mmiten) Fore® Applied ta Cirt
— 财 树 一 . 一 一 > — 一 一 — , _ _ , _ , _ , _ , _ , ： ~ ; ~ ： ~

‘ ‘ " " ” ： ~ ~ ： ； “ ： ~ ~ ： ” ‘ ： ~ ‘ ： ： ： I ： ： ： ^ ： ： ： ： ： ： ： ： ；

\ ： ： . ： ： ： ： ： ： ； ： ： 5 •!...“•..•:•.:“•."•;.••••“ C ： »••••••；

9 ..AJ ： I i — ：• r •； ‘：) ； i i i i ： \ ‘： ： ： ： ： ： j i ：

\ '• ： ： ： : • ： ： ： / (' . ' • ' • ' • • - 4 ..L. ••••*•*•» .:• ； '. <

： ： ： ： ： ： ： : -9 ： ；. •： ： •； \ '•'• '• ： ： ： '•'• '•
6 •.… .：.••-••；"…‘： '••� ；.••_":• ”."••; \ • \ / \ ： ： ： ： ： i \ ：

 :
 ： ！ ： ： ： ： ：

\ I • / • • ： ： 3 •• • V • • - ； - ‘：
\ - '• ‘： ： ： ： ‘ • -lo 4 ： ：./—： ； — —•••.— ： r \ ： ： ： ： ： ；

4 ： ： *"*••'•： •* j ： I � / ： ： ： ： ： ： '• 2 ..\.； v. “： j .*：

：\ • . ： ： ： ： . . • .i«.]....y.—/•— •： :..•••••， —•； \ ： ： ： ；
：\： ； /； ： ： ： i ： ： ： V � i ： ： i ； ; :

, • \. ； ；....••: ： \ • / • • ； ； ： ： ： I \ i — - ：‘ ： •: ‘ V “ \ ： -jo ： — \ ； ： ： ： ： • • •

； 1 — — \ ； / M M M ： ； , � — I : ； ; :

0 -r* • ！ ； -25 ... V.. .；./... .；• .: •>•••••； •• • — ； ； ； ； ： .
\y ； • ； ； ； ；

 ：
 • ；

‘ i i ‘ •
 1

 ‘ ！ • � �,2 0.4 0.S 0.9 1 1.2 1.4 1.8 !•» 2

2：~T： H 71 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.9 1 1.2 i.4 t.6 U 2 0 0 2
 T(m (S«>

0 0,2 0,4 • n_ <s«) ti_ <s«>

5-26

�‘=:二-.-二二： Applications

Figure 5.15 Result of simulation (a) angle (b) angular velocity (c) force applied

In the learning phase, we supply only two training data, corresponding to initial

conditions (10，0) and (-10, 0) of the pole. It would be interesting to know how the

FC deals with other initial conditions, or with a longer or shorter pole. Simulations

have been performed around these test cases, and the result is also very good.

Again, the same fuzzy controller can perform the control task starting from the

various initial conditions. Figure 5.16 and figure 5.17 shows the robustness and

fault tolerance of the fuzzy controller obtained from the TBP ANFIS.

^f—‘~‘~‘ ‘ ：,…I 5 | ~ ' ~ ： ‘ ~ ^ “ ‘ ‘ ~ ! ~ ! ! ~ ~‘‘””：~!""“!~!~：~： 10
10 M — , ： ； . R ^ — .

\ ： ： ； ： ： ； ： ： 。 ； … … ： — ^ - r - ^ r ： ~ ： ~ ： ~ ~ ： 7 v-：……..•…：…..；.....：..…..•.…‘

'•; 20 0*9.... , • 广 广 • / ‘

,.....：....:..:..._主拄 _ £ . : 聲
-5 》、。•., •••••；•………… …… 0 • 一 ； ‘ ； ；

： 丨 i ； ； . I ； ； ； ； ； ： ； ： ： 1 J ： •' i i •
\ 0 2 < M 0.6 0；8 1 ~ 1 . 2 1.4 1.6 1；8 2 0.2 0.4 0.8 M 1 T.2 1.4 1.6 1.8 2 。 ^ ” “ M 1<知 L 2 “ “ M 2

T I M < S W > T L _ < S * }

Figure 5.16 : Result of controller for simulation with different starting angle.

10 pr • • • • 51 ‘ ‘ ：：： '：： ' \ : O.s • —
Z-一^、二 •• • ！ I ： ： ； ； ； ； ：.:〜。“•：.

\ V. . 0.1 • — 0 • • ^ ^ . . ‘ S 0.5 • ••••

9 . ……：……，.....i..…^…………；....•. I ： \ | ： ： ： ： ： ； ：
Y*^ • ； ： • . - - • -5 FC . . • • .： • R* • • • • I .: : •• •： • • • • • ^ JV\ : : : ； I,..... I :

«...-：……：.……:•… ： •.…： .l0......；.....；……：……；.....0•，.，:••. • ^ju ： ： ： ； j ： ； i ：

>\ ‘； ； . •, , 1 : . . y . ： * ； \ \ • • • •

4
：.....：.....：......？.....；.........： ： •......：.•+..丨.....：.....-......：.…..：.........：……

： V, -.： • ； -20 (•：• ： •• "！ \ \ •'..... ： ： ： ： ： ：

2
 …:..、....•:….：….、：……：、•.：….‘；……：.... ：\ 'i / \ \ \ ： \ 1 ^ - V ' r. .…r •…i..…：……： ：

:
….；.....、;

NŜ -25 t .-J'-. •.- ：. •‘ .YnI . ； . • • • • •

：、一 '一： ： M ^
 � � �

 ： I -J_：__��八“":__；__：__：__！__；_
•2 • | ‘ A - ~ . . , E 71 9 0 0.2 0.4 0.S 0.8 1 1.2 1.6 “ 2

0 0.2 0.4 0.G 0.8 t I.2 1.4 1.8 2 0 0.2 0.4 0. 6 «>•« 口 U " 2

Figure 5.17 : Result of controller for simulation with different pole half length.

One thing should be noted is that the proposed control strategy is quite general and

can be used to control plants with diverse characteristics. Moreover, the a priori

knowledge that we have about the plant can be applied in an auxiliary manner to

speed up the learning process, this is one of the strengths of ANFIS over the

traditional neural networks.

5-27

• .一一 一
�‘=:二-.-二二： Applications

5.5 Chinese Characters Recognition

The objective of this application is to recognize 300 printed 24x24 Chinese

characters bitmap under noise based on the ANFIS. Unlike the previous applications

which accept the input values directly, we have to transform the input before the

input data are used by ANFIS. Transformation of the input data means to create an

input vector from the input data, such input vector will be processed by ANFIS.

For instances, a Chinese character is represented by a 24x24 bitmap, we cannot take

the whole bitmap as training vector for ANFIS because its dimension is too large2 .

Instead of using the bitmap as the input vector, we have to transform (preprocess)

the bitmap into another form which has smaller dimension.

5.5.1 Feature Extraction

In fact, the transformation of the bitmap is the process of feature extraction. Feature

extraction is a process to extract the information of the image (e.g. no. of pixels).

This information is very important to the image. Based on this information, the

o r i g i n a l character can be identified, or at least, reduce t h e s e a r c h space, so that the

search of the character can be done easily and quickly.

2If t h e whole bitmap is used, the input vector mil have dimension of 576 which is very high

dimension.

5-28

�-:- Applications

In this application, signal transformation techniques are proposed as the method of

feature extraction. Transformation is to transfer the variable (information) from one

domain to another domain. After the transformation, small region of the frequency

domain carries most information of the original signal. In other words, small region

of the frequency domain information can be used to restore most part of the original

signal. Actually, such signal transformation techniques are frequently used in signal

analysis.

Beside one dimension signal, this signal transformation technique can be applied to

two dimension signal, such as image. Instead of using 2D-Fourier Transform, we

use another transformation technique which is called Discrete Cosine

Transformation (DCT). The reason is that the result of fourier transform has two

components (real and imaginary), for each frequency, two components have to be

considered. This will double the dimension of input feature vectors.

Discrete Cosine Transformation (DCT) is similar to 2D Fourier Transformation. It

can represent most of the signal (image) information in the low frequency

components while there is only one component (real) in frequency domain.

Since most of the information of the original image is represented by the low

frequency components in the frequency domain. Even we ignore the high frequency

components, by using the Inverse DCT, we can still construct the original image

with some distortions. Therefore, DCT can also be a method of feature extraction.

Moreover, the size of the dimension of feature vector will not be doubled because

the frequency domain of DCT has only one real component.

5-2P

�‘=:二-.-二二： Applications

We can implement the DCT directly based on the following equation[31]:

r (、 , 、 ， 、 ¥ ¥ " 、 � (2 x + 1)wti1 「(2_y + l)V7C] (5.10) C (u , v)= a (u)a (v) ^ / (x ' c o s c o s \ J ~ .
x=0 y=0 L J L 27V _

The inverse DCT can be done by using the following equation[31]:

f(x,y) = Yd^a(u)a(v)C(u,v)cos cos ^ ^ ^ . (.)
M=o v=o L 丄N J L 27V _

f \ M n fo ru = 0
where a(u)< , .

[4 2 / N f o r u 二 1，2，...,N -1

Although DCT only produce real number in frequency domain, there is still a

problem for the direct implementation of DCT. For a 24x24 Chinese character, each

pixel is either on or off. There is no gray level for each pixel. This characteristic

will lead to DCT produce high amplitude in high frequency components.

Since we want to minimize the number of dimensions of feature vectors, we shall

select the low frequency components for constructing the feature vectors. Hence, it

will be better for the feature vectors representation if most of the information shift

from high frequency components to low frequency components.

In order to reduce the amplitude of high frequency components, we try to form a

grid of 2x2 pixel and provide a gray scale to each grid. For each grid, it can have 5

gray level (0-4). The gray level is assigned according to the number of "on" pixels

in a grid. This method is called “Gray Level Preprocessing (GLP)". After GLP，the

original word pattern is still conserved. Figure 5.18 shows the Chinese character

before and after GLP.

5-30

�‘=:二-.-二二： Applications

• 畔 隨
Original Chinese character The character after GLP

Figure 5.,18 : A Chinese character before and after GLP, notice that after GLP the
size of the character is 12x12 with each pixel ranges from 0 to 4. The character
after GLP is shown as a contour picture.

An experiment has been conducted on comparing the direct implementation of DCT

and DCT with GLP. The experiment selected 100 Chinese characters randomly, and

evaluated the distribution amplitude in frequency domain for each of the above

approaches. The result shows that the DCT with GLP can greatly reduce the

amplitude in high frequency components.

In order to decide which frequency components should be used in the feature

vectors, another experiment is constructed to evaluate the distribution of amplitude

in each frequency component. Figure 5.19 shows the result of this experiment

•

F frequence components.

i

figure 5.19 : The low frequency components contain the most DCT energy

5-31

Applications

Based on the result of the experiment, the frequency components f(0，0) to f (0 , l l)

and f(l，0) to f (l l , 0) are used to constructed the feature vector. Figure 5.20 shows

the DCT of a Chinese character.

600.

400J

The character after GLP V y � ^ ^ ^ ^ 15

1 0

0 0

DCT of the GLP character.

Figure 5.20 : The figure shows the DCT of a GLP character.

Although the DCT is already have the noise3 filtering capability, a noise filter is

still embedded in Feature Extraction process in order to improve the performance of

the system.

In order to reduce the noise, a noise filter is added before the DCT is applied on the

characters. After the gray level is assigned to the grids, for those grid with gray

level 1. its gray level will be changed to 0. The result shows that the DCT with GLP

gives more than 10% improvement over the system without GLP under the noise

level4 0 to 10. Figure 5.21 shows a noise filter removing the noise from a GLP

character.

yNoise r e f e r s to the while noise which change the states of pixels randomly. Under the noise

environment, some "on"pixels may change to "off and vice verse.

^Noise Level refers to the percentage of the bitmap pixels of the words that have changed states.

5-32

�‘=:二-.-二二： Applications

Noise Character -

Figure 5.21 ： The figure shows how the noise filter removing noise.

GLP Noise Filter DCT _ _ _ > E x t r a c t i n g l o w

^ ^ ^ freq. components.

•
• .

Chinese Characters Feature Vectors
(24x24 pixel bitmap) (23 dimensions)

Figure 5.22: The procedure of feature extraction.

Figure 5.22 shows the procedure of feature extraction. Figure 5.23 shows the feature

vectors of a Chinese character with and without noise. The deviation between two

vectors is 1.8447°. The deviation was calculated by the cross angle between two

vectors. We found that the deviation between two vectors is very small and can

conclude that DCT has noise toleration capability.

5-33

�‘=:二-.-二二： Applications

Normal Noise Feature
Feature Vector Vector

~ 0.8023 0.8015
-0.0263 -0.0248
-0.2066 ‘ -0.2034
-0.0230 -0.0194
0.0104 -0.0000
-0.0291 -0.0338

"-0.2261 -0.2225
0.2301 0.2198
0.1387 0.1425
-0.1336 -0.1237
-0.0446 -0.0439
0.1353 0.1415
0.0056 0.0149
-0.2017 -0.1955
0.0170 0.0122
-0.0784 -0.0874
-0.0564 -0.0673
-0.1834 -0.1889
-0.0595 -0.0601
0.1297 0.1336
0.1638 0.1722
0.1352 0.1446
-0.0228 -0.0152

Figure 5.23 : Difference between feature vectors with and without noise

Figure 5.24 shows the reconstruction of the original character by Inverse DCT, the

reconstruction is based on the feature vector only (low frequency region) and the

rest coefficients (high frequency region) are set to zero. The figure shows that the

reconstructed word can still be recognized by human being.

, n ^ m
Feature Vector of the I Inverse D C T > ’ ^ ^

figure 5.24 : The figure shows the reconstruction of the character by the feature vector
though the Inverse DCT.

Since Chinese characters are distinct, after inverse DCT, the original character can

s t iH be recognize visually, therefore we can conclude that our method of feature

5-34

�‘=:二-.-二二： Applications

extraction can generate a distinct set of feature vectors, which at least can be

classified manually.

After the feature vectors are created, they can be used as input to ANFIS for

training and recognition.

5.5.2 Architecture

Since the feature vectors contain 23 dimensions, the ANFIS has 23 input variables.

For each input, we intended to assign 2 membership functions to it, however, we

found that the number of fuzzy rules increase rapidly as the number of membership

functions increases. If each input variable has 2 membership functions, then there

will be 223 fuzzy rules which are difficult to be handled.

Instead of assigning 2 membership functions to each variable. 6 input variables are

assigned with 2 membership functions, the rest are assigned with 1 membership

function. With this architecture, there are only 26 二 64 rules and it is less of

structured knowledge representation and more of a black-box model (like neural

networks).

For the outputs of ANFIS, we used the multiple outputs ANFIS model discussed

earlier (section 3.2.6). The ANFIS contains 10 output nodes, each of them produce

either 0 or 1. In other words, the Chinese characters are represented by 10-bit binary

codes.

5-35

�‘=:二-.-二二： Applications

5.5.3 Training Data

In this application, we use 300 Chinese characters for training and recognition. First

of all, the input feature vector of each character is generated, then the corresponding

character code is generated. The training data set contains 300 noise data with noise

at 2% (i.e. there is 600 training data, 300 noise + 300 no noise). The reason for

including the noise data in the training data set is to improve the noise tolerate

capability of ANFIS.

5.5.4 Results and Discussions

The training error of ANFIS is acceptable, after 65 training epochs, the error is

0.001. However, for each training epoch, it takes more than 2 hours. For 65 training

epochs, it is about 130 computation hours.

The first reason for such long training time is the use of LSE. When the training set

is large and the dimension of each training data is high. LSE will take a long time to

be finished. This is the defect of using LSE as well as hybrid learning.

T h e second reason is the number of outputs. For the previous application, the

number of output of ANFIS is 1，while in this application, the number of output is

10. It is not difficult to see that the computational time increase in a greater extent

as long as the number of outputs increased.

5-36

Applications

Although the training time of ANFIS is quite long, it gives a remarkable result on

this application. In order to evaluate the performance of ANFIS, we use the original

300 training data to test the accuracy of ANFIS at different noise levels and the

result is shown in table 5.8. Figure 5.25 shows a Chinese character at different noise

levels. The high accuracy in noise level 2 is due to the fact that we have added to

the training data set a set of noise level 2 data.

Noise Level Accuracy
0 100%
1 98%
2 100%
3 85%
4 72%
5 63%
7 40%
9 40%

Table 5.8 : Accuracy of ANFIS at different noise levels.

— f •丨 li f H I 1面 丽•

M m m
Noise Level = 1% Noise Level = 2% Noise Level = 4%

圓 M m
Noise Level = 6% Noise Level = 8% Noise Level = 10%

Figure 5.25 : The figure shows a Chinese character at different noise levels.

5-37

�‘=:二-.-二二： Applications

The above result shows that ANFIS can have a very good performance on problem

of classification which is a classical problem of neural networks. Moreover, ANFIS

shows it noise tolerate capability for classifying the noise patterns correctly.

5.6 Image Coding

Since there is a limitation on the bandwidth of communication channels, when

image files are transferred through the communication channels, source coding of

images is needed to reduced the amount of data to be transferred, hence, save the

bandwidth.

The source coding of images can be divided into three steps which are shown in

figure 5.26.

N Codeword �
• � T r a n s f o r m a t i o n • Quantization ^ Assignment ^

Figure 5.26 : The three steps for the source encoding of images.

Transformation aims to convert an image to the most suitable domain for

quantization and codeword assignment. Quantization aims to represent a continuous

value by discrete value. Codeword assignment aims to use as less bit as possible to

represent the quantization levels.

5-38

�‘=:二-.-二二： Applications

This application applies ANFIS in one of the quantization methods - DPCM. ANFIS

will be used as a prediction engine of DPCM. Our implementation is based on the

idea proposed by Woods and O'Neil. First of all, subband coding will be applied on

the image. Then, each band will be coded by DPCM with ANFIS.

5.6.1 Subband Coding

In this application, the image will be divided into 16 bands by using subband

coding. The advantage of using subband coding of digital waveforms is that it splits

the full frequency band into several subbands, each of which can be encoded more

accurately. Coding error is confined to individual frequency subbands. Further, by

varying the bit assignment among the subbands, the noise spectrum can be shaped to

suit the human perception. In the subband coding of speech, the noise spectrum can

be shaped according to the subjective noise perception of the human ear.

For the 2-Dimensional processing of images, the image is divided in a 2-

dimensional way. For an ideal filter, the 4-band partitioning of the image is shown

in figure 5.27. The splitting of the image into subband can be done as shown in the

system diagram in figure 5.28.

5-39

�‘=:二-.-二二： Applications

f 2
-Ht

22 lb I - 22

4J4+L.
1 21- tjt z i ^

22 IE 22

^ ‘
Figure 5.27 : 4-band partitioning of image in frequency domain.

Down-sampling . Up-sampling
H11 (2x2) ^ P (2x2) ‘ F 11 —

Down-sampling . . Up-sampling

— H 1 2 — (2x2) ~ ^ ~ P (2x2) F 12 —
x(m,n)_ L 1 _ J L _ _ J ~ ~ ~ ~ _t>u(m，n)

Down-sampling . Up-sampling 一 _

— H 2 1 ~~~ (2x2) ^ P (2x2) F21 —

Down-sampling . Up-sampling

" " " H 2 2 (2x2) ^ P (2x2) F 22 ~""

‘ (a) (b)
Figure 5.28 : (a) Block diagram of 4-band analysis stage, (b) Block diagram of 4-band synthesis
stage.

If an ideal filter is available, the image can be reconstructed perfectly by using the

analysis and synthesis stages as shown in figure 5.28. Nevertheless, an ideal filter is

not available in practice. Instead, a FIR filter is used to approximate the ideal IIR

filter. In filter design, the main concern is the perfect reconstruction of the image.

In the following, Hfj, i 2}J e { 1 , 2 } , denote the filters for the analysis stage,

a n d F j j) i e { i ， 2 } , j e { l , 2}, denote the filters for the synthesis stage, where 1

c o r r e s p o n d s to the low frequency bank and 2 corresponds to the high frequency

bank. Referring to Figure 4(a) and the initial four-band splitting, we require that the

5-40

�‘=:二-.-二二： Applications

4

four subband filters Hu through H22 have mirror-image conjugate symmetry about

their mutual boundaries, which for real htj is equivalent to

， / ^ (©” ©。二钱彳①“①之 +冗） (5.12)

^ (0 3 ^ (0 2) = i^^CO^TT,®^ .
H22 ((0x ,(02) = i/11(CD1 +7l,C02 +7C)

Denoting the outputs of the filters in figure 5.28(a) as xu through x22, we have the

outputs Yjj after (2, 2) downsampling,

i i i C5 13V

(CO!，CO 2) = 7 H ^ (， 令) . , " V ") .

After synthesis, the outputs UfJ of the interpolation filters are

U i j((0 l,(02) = Y y (2 (^ 1 ^ 2) F ^ 1 , (0 2) , (5.14)

and the final output U is

i i l i i
t/fCD "CD 2少=—X 2 7 +紐，� 2 +况」/I! Z 巧 知 / +紐，� 2 +况」巧丫03 "® 2A/

4 k=oi=o i-o j=o (5 i5)

From (5 15), we can see that there is an aliasing component Ua generated[19], where

r i i (5.16)
Ua((0lt(H2) = - + 虹 ， ① 2+奴）Fy(�丨，① 2)]

4 (lc,l)羊(0,0) i=0j=0

which will vanish if and only if

Z H ^ + bz，(o2 + I n 风 (� ” �)二 0 for (众,/)垆（0，0). (
5
.

1 7
)

i j

By choosing the same reconstruction filters[19] as

5-41

�‘=:二-.-二二： Applications

。(①！，①̂二斗辟汄…,…） (5.18)

^ 2 (C O 1 , c o 2) = - 4 ^ 1 2 (C O 1 , C O 2)

巧 1 (® ” ® 2) = - 4 丑 2 1 (〜 (^)

and found that the aliased terms automatically vanish for (k, /) = (0, 1) or (1, 0).

However, in the case (k, /) = (1, 1) the aliased term will vanish iff

i/nOBpCO^i^JcO! +7T，C02 +71) 二//n0X)”(O2 +7T,C02). (5.19)

We can show that any separable filter Hn would clearly satisfy (5.19). If we define

the 2-D baseband filter hu as the separable product

a (5.20)
h11(m,n)~h1(m)h1(n),

By taking the Fourier transform on (5.20) and substitute it into (5.19), we can find

that the 2-D QMF filters can be taken as a separable product of identical 1-D QMF

filters [19] and the 2-D analysis filter banks can be obtained by simply multiplying

two 1-D filters, i.e.

^(CO15CO2) = ^(CO1)^(CD2)5 ! < / , / < 2. (5.21)

Consider a 1-D Subband filter pair hx and h2 which satisfy

A O) 二、(厶 一 1 一77) 0<n<L/2-\ (5.22)

胁) = (- 1) 、 (" ）

时 ⑷ I + 1 砣 ⑷ 卜 1

Base on (5.18) and (5.21)，all filters (Hu and) in the system can be found. By

employing a linear phase symmetric LxL¥lR filter for hu with L even, we have

/2„(m，乃）二、（丄一1-叫丄一 1 一 ")， 0<m,n<\L-l. (5.23)

5-42

：二： Applications

and we can show that the phase of the output signal U would have a linear

phase[19].

By selecting the low-pass filter , we can obtained the 4-subband filter as shown

in figure 5.29. ~

. . . I ^ ‘

f _ 1 [_ H ^) — ^own-sampling ^ 〜 机 …

TJ / � Down-sampling . (1 , 2) . Wfz) — —— ’―——J ——
(2， I

L — J J — H/-ZJ — D 0 ~ P H N G . (M， N)

r z (l j 2) ^ 12

x(m，n) I

R o w s Columns

Down-sampling � ， �

k 1 ——— (1,2) >y21 (m 'n)

Down-sampling
H�-z)—— —J 1

(2,1)
— H i - z J — Down-sampling y (m, n) 1 ^ ^ (1,2) ^

I
Figure 5.29 : Separable 4-subband filter.

We can build the 16-subband filter by cascade a 4-subband filter with another four

4-subband filters as shown in figure 5.30.

H Z Z Z Z Z F - —

H F
— u(m, n)

x (m , n) n H ~ F ———1>

H I — — H Z Z Z H F F 1

— — — H Z Z Z H F

Figure 5.30: Block diagram of full 16-band system using 4-subband filter.

5-43

�‘=:二-.-二二： Applications

5.6.2 DPCM with ANFIS

After the image is splitted into 16 different subbands, an ANFIS will be applied on

different subbands for DPCM, the number of training data for each ANFIS is less

than that of directly code the image with ANFIS. This is one of the reasons of using

subband coding before DPCM with ANFIS, it aims to reduce to training data set of

each ANFIS model. Hence, the accuracy and training time of ANFIS can be

improved greatly.

Instead of using the conventional N-tap linear predictor, we use ANFIS as the

predictor engine. If ANFIS gives a more accuracy prediction than N-tap linear

predictor, the performance of DPCM can be improved. In other words, less bits can

be used to code the data. Figure 5.31 shows the conventional DPCM system (a) and

DPCM with ANFIS (b).

X(n) d(n) p d'(n) X(n) d(n) ^ d ' (n)
^ Quantizer ——•Q——• Quantizer —

jk L A . L :

Predict and compare loop Predict and compare loop

N-tap ^ 緩 。 ^ (+)
< predictor ^ ^ ^ Predictor V

[_______] X I.
Predict and correct loop Predict and correct loop

T — J —̂—
�
 � b)

Figure 5 31 : Two approaches to DPCM, the equation of predict and correct loop is
X'(n)=X"(n)+d'(n). (a) One-tap predictor DPCM. (b) ANFIS predictor DPCM.

5-44

�‘=:二-.-二二： Applications

Nonuniform quantization is used to code the prediction error. The compression

function is based on the ji-law compander which is the North American Standard. It

is in the form of

,门 > 1 / � 7 (5.24)
ln[l + \iC/)]

y 二 y 匪 7 / 7
 7
 7 sgn(x).

where sgn(x) is the sign of x and ymax = 1.

The parameter]u in the ji-law compander had originally been set to 255 for 8-bit

converter[2].

The bit assignment of the nonuniform quantizing for each subband is according to

the following equation,

/ 「？ I (5.24)

Bk^B + -log2 -f- , 1 < k < M ,
2 L a g / » .

M
where a2

 t is the prediction error variance on band k, and g2 二 p lc) is the P’K

geometric mean of the a2
pk [18][19].

5.6.3 Architecture and Training data

In this application, each ANFIS model has 3 input variables and 1 output variable.

For each input variable, 3 membership functions are associated with it.

In order to generate the training set, first of all, subband coding will be applied on

the image to divide the image into 16 subbands. A set of training data will be

5-45

�‘=:二-.-二二： Applications

generated from each subband. Each training data set will be used to training an

ANFIS model, hence, there are totally 16 ANFIS models.

Training data are generated by considering a 2x2 grid with 4 pixels. The upper left,

upper right and lower left pix'el are taken to be the input data for ANFIS. The lower

right pixel is the predicted pixel (output) of ANFIS. Figure 5.32 shows how the

training data is generated.

Training data 1

feedback error

Training data 2
(i-ij-i) (ij-i) r — — — — — —

^ ANFIS Predictor _
2x2 Grid ； ^

(i-lj) (W “ H. j

1 Training data 3 1

• Expe'ctel "Dutpuf —

Figure 5.32 : The ANFIS training model and generation of training data from a 2x2 grid.

For a nxn subband, the total number of training data is (n-l)x(n-l). For example, a

subband of 64x64 pixels, it has 3969 training data.

5.6.4 Results and Discussions

T h e proposed Subband coding and DPCM with ANFIS coding scheme is used to

code the "Lena" image which is shown in figure 5.33.

5-46

• — f ' - - - • .

. - 二： Applications

m
Figure 5.33 : Original "Lena “ image.

After the image is divided into 16 subbands by SBC, each subband is trained with

an ANFIS model and the information of the prediction error is recorded in table 5.9.

B a n d) ~~Prediction error Prediction e r r o r M i n i m u m Maximum
m e a n variance prediction error prediction error

H - l l 0.0940 352.77 -120.83 230.94
11.12 _ -0.0022 59.12 -66.51 96.97
11^21 -0.0043 5.96 -14.58 1 8 - 2

f T 2 2 -0.0152 19.13 “ -31.62 28.56
i ^ H 0.0412 19.70 -36.47 一 40.09
12^12 -0.023 16.80 -38.53 2 ^ 5 3
12-21 -0.0022 3.64 -12.94 16^2
1 ^ 2 2 -0.0170 9.47 -33.19 2 8 - 6 8

T T T n 0.0330 2.02 -16.24 2 0 3 4
~ 2 M 2 -0.0052 1.66] 2 M
2iT21 0.0000 1.31 -8.68 U.97
21^22 0.0004 1.58 “ -9-19 L l i
2 2 ^ 1 -0.0170 4.61 " “ ~ -29.09
2 2 ^ 2 -0.0030 6.72 -19.51
2 2 ^ 1 0.0120 3.82 -27.52 65J2
22-22 0.0030 4.95 - H . 6 1

Table 5.9 : Information of prediction error.

5 refers to the subband resulting from filtering the image by H” and then by Hk,

5-47

�‘=:二-.-二二： Applications

A comparison has been done on the DPCM with 3-tap predictor and ANFIS

predictor on the band 11-11. Table 5.10 shows the results of the comparison. The

coefficients of the 3-tap predictor are from the "IEEE video course : Digital and

Video Compression coding" which was presented by John W. Woods and James

Modestino[18]. The reason -of using the 3-tap predictor is to compare with the

ANFIS with 3 input variables.

DPCM with Prediction error""“ Prediction error Minimum Maximum
mean variance prediction error prediction error

" “ 3 - t a p predictor 19.4088 478.91 -96.80 151.69 —
ANFIS predictor 0.0940 352.77 -120.83 230.94

1 ——————— Tabie j JO ； Comparison of the predictor error on band 11-11.

Figure 5.33 shows the pdf of the prediction error of 3-tap predictor and ANFIS

predictor. Based on table 5.10 and figure 5.34，we can conclude that the prediction

capability of ANFIS is more accurate than that of 3-tap predictor.

The pdf of prediction error of ANFIS predictor
0.05. . r ：~-i ‘ ‘ 1 I

0.045 L 1

0.04L 1

0.035 L \

2 � . � 3

f 0.025 L j

°-°15 I
0.01 L A j

°-005 „ A , l , 1

5-48

�‘=:二-.-二二： Applications

The pdf of prediction error of 3- tap predictor
0.018, , , r , ,

0.016- I -

0.014- I

0.012- j I -

s _ - - 醒

£ 0.008 - U ^ ^ -

0.006 - l l ^ H
0.004 -

0.002 - jt|||

nlMM • l l ^ l ^ y j ^ B ^ W ^ n - . . . _ _ ,
-100 -50 0 50 100 150 200

Prediction error : e

(b)

Figure 5.34 : The pdf of prediction error of (a) ANFIS predictor, (b) 3-tap predictor.

In order to evaluate the quality of the reconstructed image, The Peak Signal to

Noise Ratio (PSNR) is used.

2552

PSNR(dB) = 10log ——j}

(5.25)

Table 5.11 shows the comparison of PSNR6 of "Lena" image from 3-tap predictor

and ANFIS predictor at different bit per pixel (bpp). It shows that ANFIS can give a

better performance at each level.

6 The psNR is calculated before the entropy coding.

5-49

：二： Applications

Bit per pixel PSNR (ANFIS) PSNR (3-tap)

1 bpp 29.2951 . 28.8172

2 bpp 31.9848 31.0918

3 bpp 33.4526 33.2240

Table 5.11 : PSNR of reconstructed image of ANFIS and 3-tap predictor at different bpp level.

_

�

5-50

；d : — — _ Applications

(b)

m^m
m

(C)

Figure 5.35 : Reconstructed image "Lena" at (a) lbpp, (b) 2bpp, (c) 3bpp.

Figure 5.35 shows the reconstructed image of "Lena" at different bpp. From this

application，the prediction capability of ANFIS has been used in image coding.

5-51

^ -二： Concluding Remarks

6 Concluding Remarks

The report has discussed the idea of neural network based fuzzy inference system

(Neural Fuzzy System). The main idea is to embed the fuzzy inference system into

an adaptive network or feed forward neural networks. Base on the learning

algorithm of neural networks, the parameters of the fuzzy system can be fine tuned

and the semantic of the knowledge can be extracted from the input-output patterns.

Among a number of neural fuzzy systems, ANFIS (Adaptive-Networks-Based Fuzzy

Inference System) from Jang was adopted for implementation. The architecture and

learning algorithms have been discussed. The reason of adopting ANFIS in the

project was because of the clear specifications of the ANFIS by Jang's paper and a

number of remarkable results were reported for ANFIS.

The implementation was based on the development of a C++ library for ANFIS. The

library was used to build a number of applications for the illustration of ANFIS

capabilities. The applications are ranged simple logical operators to complex

classification or control problems. The implementation shows that the library can be

used as a software prototype for N e u r a l - F u z z y applications, so that engineers can

simulate their Neural-Fuzzy applications before put them into hardware (e.g. VLSI)

implementation. - -

Although all applications yielded the remarkable results from ANFIS, ANFIS is not

a problem free model. Because of the lack of expert knowledge, in most cases, all

possible rules are embedded in ANFIS. In the report, we have shown that the

6-1

-；：；；"； Concluding Remarks

training time grows exponentially with respect to the number of fuzzy rules.

Instead, ANFIS should only embed those rules with higher firing strengths and this

is the problem of systems identification. For this problem, generic heuristic search

(such as tabu search) from the field of Artificial Intelligence can be considered as a

solution. This can be a further enhancement of the project.

Besides the explosion of training time, the proposed hybrid learning algorithm do

has its limitation when the number of training data is large. The LSE of hybrid

learning will take a long time to approximate the solution of the matrix equation

(3.32). Moreover, dealing with the real time applications, such as control problems,

hybrid learning is not applicable and gradient descent learning has to be used

instead.

In the applications of ANFIS, ANFIS shows it capability in functional mapping1.

The results are outstanding and better than those of neural networks. The explicit

structural knowledge representation can account for the outstanding performance of

ANFIS.

In this project, ANFIS has been proven to have good performance. This implies the

adaptive networks with explicit structural knowledge representation have a better

performance than traditional neural networks with implicit knowledge

r e p r e s e n t a t i o n . I do think the future research direction should approach to the

explicit structural knowledge representation.

/ Actually, all implemented applications belong to the catalogue of functional mapping and

interpolation.

6-2

References

7 References

[1] Bart Kosko, "Neural Networks and Fuzzy Systems", PHI, 1992.

[2] Bernard Sklar, "Digital Communications : Fundamentals and Applications",

PHI, 1988.

[3] Blum Adam, "Neural Networks in C++ : an object-oriented framework for

building connectionist system", Wiley, 1992.

[4] Charles Elkan, "The Paradoxical Success of Fuzzy Logic", Department of

Computer Science and Engineering, University of California, San Diego, Nov

1993.

[5] Cox Earl, "Solving Problems with Fuzzy Logic", AI Expert, Mar 1992.

[6] Don Tveter, "Getting a fast break with Backprop”，AI Expert, July 1991.

[7] Earl Cox, "Integrating Fuzzy Logic into Neural Nets", AI Expert, June 1992.

[8] Gary William Flake, "Nonmonotonic Activation Functions in Multilayer

Perceptrons", PhD disssertation, pp. 6-18，Institute for Advance Computer

Studies, Department of Computer Science, University of Maryland, 1993.

[9] Hamid R. Berenji, "Fuzzy Logic Controllers", An Introduction to Fuzzy Logic

Applications in Intelligent Systems, Kluwer Academic Publishers.

[10] Herbert Schildt, “C++: the Complete Reference", McGraw-Hill, 1991.

[11] Hopefield, "Neural Networks and Physical Systems with Emergent Collective

Properties", Proceedings of the National Academic Science, Vol. 1 and 2, MIT

Press, 1992.

[12] J-S Roger and C. T. Sun, "Functional Equivalence between Radial Basis

Function Networks and Fuzzy Inference Systems", 1992.�

7-1

二二 �—— References

[13] J-S Roger Jang, "ANFIS: Adaptive-Network-Based Fuzzy Inference System",

IEEE Transactions on Systems, Man, and Cybernetics, 1992.

[14] J-S Roger Jang, "Self-Learning Fuzzy Controller Based on Temporal Back

Propagation", IEEE Transactions on Neural Networks, Vol. 3, No. 5，Sept

1992. -

[15] James A. Freeman, David M. Skapura, "Neural Networks : Algorithms,

Applications and Programming Techniques", Addison-Wesley Publishing

Company, 1992.

[16] James M. Keller, Ronald R. Yager, Hossein Tahani, "Neural network

implementation of fuzzy logic", Fuzzy Sets and Systems (1992) 1-12, North-

Holland.

[17] John Hertz, Anders Krogh and Richard G. Palmer, "Introduction to the Theory

of Neural Computation", Addision-Wesley Publishing Company, 1991.

[18] John Woods and James Modestino, "Digital Image and Video Compression

Coding" (video tapes), IEEE Educational Activities Board, Sept 1992.

[19] John Woods, "Subband Coding of Images”，IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. ASSP-34, No. 5, Oct 1986.

[20] Kaufmann, “Introduction to the Theory of Fuzzy Subsets", Academic Press,

1975.

[21] Kohonen T.，"Self-Organization and Associative Memory，，，Springer-Verlag,

1988.

[22] Larry O'Brien, "Developing a Neural Network with Turbo C++”，AI Expert,

Oct 1990.

[23] Lin Chin-Teng and Lee C. S. George, ' ' N e u r a l - N e t w o r k - B a s e d Fuzzy Logic

Control and Decision System", IEEE Transactions on Computers, Vol. 40，No.

12, D e c 1991.

7-2

•̂：一 一 - References

[24] Lotfi A. Zadeh, "Fuzzy Logic, Neural Networks and Soft Computing",

Communications of the ACM, Vol. 37, No. 3, Mar 1994.

[25] Lotfi A. Zadeh, "Knowledge Representation in Fuzzy Logic", An Introduction

to Fuzzy Logic Applications in Intelligent Systems, Kluwer Academic

Publishers.‘

[26] Lotfi A. Zadeh, "The Calculus of Fuzzy If/Then Rules", AI Expert，Mar 1992.

[27] Maureen Caudill, "Neural Networks Primer", Part I 一 VIII，AI Expert, Dec

1987, Feb 1988, Jun 1988, Aug 1988，Nov 1988, Feb 1989, May 1989，Aug

1989.

[28] Minsky M. and Papert S.，"Perceptrons : an Introduction to Computational

Geometry, MIT Press，1969.

[29] Paul M. Embree, Bruce Kimble, "C Language Algorithms for Digital Signal

Processing，，，PHI, 1991.

[30] Philip D. Wasserman, "Advanced Methods in Neural Computing", Van

Nostrand Reinhold, 1993.

[31] Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Addision-

Wesley Publishing Company, 1992.

[32] Rao K. R. and Yip P., "Discrete Cosine Transform : algorithms, advantages,

applications", Academic Press, 1990.

[33] Richard M. Karp，"Combinatorics, Complexity, and Randomness", Turning

Award Lecture, 1985.

[34] Russell C. Eberhart, Roy W. Dobbins, "Neural Network PC Tools", Academic

Press, 1990.

[35] Schwartz Daniel G., "Fuzzy Logic flowers in Japan", IEEE Spectrum, July

1992. -

[36] Schwartz Tom J., "Fuzzy Tools for Expert Systems", AI Expert, Feb 1991.

7-3

：一- - References

[37] Shin-ichi Horikawa，Takeshi Furuhashi and Yoshiki Uchikawa, "On Fuzzy

Modeling Using Fuzzy Neural Networks with the Back-Propagation

Algorithm", IEEE Transactions on Neural Networks, Vol. 3, No. 5，Sept 1992.

[38] Takeshi Yamakawa, "A Fuzzy Inference Engine in Nonlinear Analog Mode

and Its Application to a Fuzzy Logic Control", IEEE Transactions on Neural

Networks, Vol. 4，No. 3，May 1993.

[39] TH Goth, PZ Wang, HC Lui, "Learning Algorithm for the Enhanced Fuzzy

Perceptron", Institute of Systems Science, National University of Singapore,

1991, unpublished.�

[40] Toshiro Terano, Kiyoji Asai, Michio Sugeno, "Fuzzy Systems Theory and its

Applications", Academic Press, 1992.

[41] Williams Tom，"Fuzzy Logic is anything but Fuzzy", Computer Design, Apr

1 9 9 2 ,

[42] Xiao-Hu Yu, "Can Backpropagation Error Surface Not Have Local Minima",

IEEE Transactions on Neural Networks, Vol�3，No. 6，Nov 1992�

7-4

‘

CUHK L i b r a r i e s
_ _ _ _ 丨

D0027S7ST

