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：二二.-.=:: Introduction 

1 Introduction 

Conventionally, hard computing is concerning the precision and certainty. By 

contrast, the point of departure in soft computing is the fact that precision and 

certainty can be obtained with a high cost. In most cases, computation, reasoning 

and decision making can exploit the tolerance for imprecision and uncertainty. 

For instances, considering the case of parking an automobile. Most people can park 

an automobile because its final position and orientation have not been specified 

clearly. If they are specified clearly, parking an automobile will be a very difficult 

task and not possible to be achieved by humans. The most important point is that 

parking an automobile is an easy task to humans if imprecision is allowed, while it 

is a difficult task to traditional methods (based on mathematical model) because 

such methods do not exploit the tolerance for imprecision[24], 

The exploitation of the tolerance for imprecision and uncertainty accounts for the 

remarkable human ability to understand distorted speech, decipher sloppy 

handwriting, comprehend nuances of natural language, summarize text, recognize 

and classify images, drive a vehicle in dense traffic and, more generally, make 

rational decisions in an environment of uncertainty and imprecision. In order to 

exploit the tolerance for imprecision and uncertainty, soft computing uses the 

human mind as a role model which aims at a formalization of the cognitive 

processes of humans. 
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Introduction 

In the current consumer market, more and more electronic consumer products are 

designed based on the concept of fuzzy logic, such as cameras, microwave oven and 

washing machines. Compare with conventional electronic products, these new 

products can figure on their own what settings to use to perform their tasks 

optimally, these products can manifest an impressive capability to reason, make 

intelligent decisions and learn from experience. These products are referred to as 

Machine Intelligence Quotient (MIQ) products. The first MIQ product was 

announced by Matsushita in 1987. This was followed by the first fuzzy-logic-based 

washing machine which was also designed by Matsushita in 1989. 

In 1990, the number of high-MIQ consumer products employing fuzzy logic 

increases drastically. By the way, neural network techniques were combined with 

fuzzy logic to be employed in a wide variety of consumer products. The main 

objective of applying neural network is to endorse the products with learning 

capability. Such neurofuzzy products are likely to become ubiquitous in the years 

ahead. Underlying this evolution results in an acceleration of employing the soft 

computing, especially fuzzy logic and neural network. The objective is to design the 

intelligence system which can exploit the tolerance for imprecision and uncertainty, 

learn from experience, and adapt to changes in the operating conditions. 

At this juncture, the principal constituents of soft computing are fuzzy logic (FL), 

neural network (NN)，probabilistic reasoning (PR). In the triumvirate of FL, NN and 

PR，FL is primarily concerned with imprecision, NN is concerned with learning and 

PR is concerned with uncertainty. The most important point is that there are 

substantial areas of overlap between FL, NN, and PR. Instead of competition, FL, 
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实二二 Introduction 

NN and PR are complementary in general. For this reason, it will be advantageous 

to employ FL, NN and PR in combination rather exclusively[24]. 

A case in point is the growing number of so-called neurofuzzy (NF) which 

employed a combination of fuzzy logic and neural network techniques. Most NF 

products are fuzzy rule-based systems in which NN techniques are used for the 

purposes of learning and adaptation. 

1.1 Objective 

During the design of NF products, it will be more effective if a prototype can be 

implemented in digital computers for simulation. Such prototype can be used to 

investigate the performance and feasibility of the end products in advance. 

The objective of the project is to build a C/C++ library for the prototype of 

applications. Based on the library, a number of applications have been implemented 

for the illustration of the usability of the library. 

Among a number of neural-fuzzy models, the Adaptive Network-Based Fuzzy 

Inference System (ANFIS) is selected for the implementation of the library. This is 

because of the rich information and remarkable results of ANFIS. 
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2 Background 

2.1 Neural Networks 

About a century ago, an American psychologist, William James, published a number 

of facts which are related to the structures and functions of the brains. Since then, 

many researches had been conducted on the human neurons and neural networks. 

However, most of the researches were biological based. 

Until 1958，Frank Rosenblatt published his famous paper which defined a neural 

network structure called perceptron‘ In the paper, the perceptron was simulated on 

an IBM 704 computer at the Cornell Aeronautical Laboratory. This aroused the 

interests and imagination of scientists in the implementation of neural networks on 

digital computers. 

Nowadays, neural networks is a very hot topic in artificial intelligence as well as 

soft computing, there are many kinds of neural networks that have been 

implemented in computers. The implementation results show that neural networks 

can solve problems which are difficult to be solved by conventional computer 

systems. Because of this capability, neural networks have been applied in various 

areas, such as image recognition, digital filter, functional mapping and 

interpolation. 
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2.1.1 Topology 

Basically, the components of neural network are nodes and links. The links are used 

to connect the nodes and each of them is associated with a weight value. The nodes 

are processing elements (PE), they process the incoming signals from the links and 

generate an output signal which will be sent to other nodes. Figure 2.1 shows a 

simple neural network with links and nodes. 

Figure 2.2 shows a node and its operation on the incoming signals. During the 

transmission of a signal through a link, the signal strength is multiplied by the 

weight value of the link. The node sums up the signals of all the connected links, 

and applies a transfer function (F) on the sum. This is not the unique operation of 

nodes, here, we just describe one of the operations of nodes. 

爆 
Figure 2.1 : A simple neural networks model, each node is connected to another node 
through a link. The arrow on the links show the directon of the signal flow. 
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i l=xl*wl 

J y=F(ii+i2 \ y 

/iN=xN*wN 

Figure 2.2 : One of the operations of a node (PE). wN is the weight associated to the link, 
xN is the incoming signal. 

There are two types of topology in neural networks, they are feed forward networks 

and counter propagation networks. Both of them will be discussed subsequently. 

2.1.1.1 Feed forward networks 

. I n the feed forward networks, signals are propagated from input to output of the 

neural networks. They are transmitted in one direction and will not loop back to the 

previous nodes. Figure 2.3 shows an example of feed forward networks. 

• I I 11 I 
Input 0 u t p u t 

Signals Signals 

Figure 2.3 : An example of feed forward networks. There are 3 layers in the network the layer 
receiving the input signals is input layer, the middle layer is hidden layer, the last layer is output 
layer. Signals propagate from input layer to output layer. 
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2.1.1.2 Counter propagation networks (recurrent networks) 

In the counter propagation networks, some signals may be transmitted back to the 

previous nodes or itself. Figure 2.4 shows an example of counter propagation 

networks. ~ 

• • I • 
Input f Output 
Signals ^ ^ A . ^ A T l ^ ^ ^ ^ Signals 

— 

Figure 2.4 : An example of couter propagation networks. In the middle layer, some signals propagate to 
input layer and some signal recurrent to the node itself. 

2.1.2 Neural Network Learning 

One of the attractive features of neural networks is their learning capability. After 

training with the training data, neural networks are able to dynamically change their 

behaviors to produce desired outputs. There are two types of learning method in 

neural networks, they are supervised learning and unsupervised learning. 

Supervised learning requires a teacher to teach the neural networks, the teacher 

should present a training sample to the neural networks, and tells the neural 

networks the performance error. Then the neural networks will based on the error to 
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adjust the weight values of its links in order to minimize the error. Currently, most 

of the neural networks applications are based on supervised learning. 

On the other hand, unsupervised learning does not need a teacher. Neural networks 

with unsupervised learning"have self-organization capability, their learning are 

based on the local information, and internal control of the signals propagation. They 

can organize the training samples by itself, and discover the properties of the 

samples. Currently, unsupervised learning is still in the early stage and many 

researches are being conducted on the unsupervised learning algorithms. 

2.2 Fuzzy Logic 

One of the problems in systems design is that most of the systems are in the realm 

of "humanistic system", such as linguistic, social sciences and control systems. In 

these systems, hard mathematics does not seem to be very effective. In 1965, Prof. 

Lotfi Zadeh of University of California at Berkeley published his famous paper -

"Fuzzy Sets". 

Since then, many researches have been conducted on fuzzy logic. Nowadays, fuzzy 

logic has a wide range of applications/Especially in control systems, fuzzy logic 

plays an important role in providing robust systems which are difficult to be 

achieved by conventional control systems. 
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2.2.1 The Calculus of Fuzzy If/Then Rules 

One of the important parts of fuzzy logic is the operations of fuzzy if/then rules. 

Since the fuzzy if/then rules constitutes a collection of concepts and methods for 

handling the knowledge which is in the form of if/then rules, this part of fuzzy logic 

is referred to as the calculus of fuzzy if/then rules (CFR)[26]. The antecedents and 

consequences of the if/then rules can be either fuzzy or crisp- Here is an example of 

fuzzy if/then rules: 

If temperature is high, then pressure is low. 

Instead of comparing the pressure and temperature with the crisp values, such as 

lOPa or 20K, they are compared with the linguistic terms. Each linguistic term 

represents a fuzzy set which is defined by a membership function. Figure 2.5 shows 

an example of three membership functions of the variable "temperature". 

Lo Middle High 
1 W 八 

bK 200K "4U0K 
Temperature 

Figure 2.5 : An example of three membership functions (Low, Middle, High) ofthe variable temperture. In 
fuzzy if/then rules, the membership functions can have overlapped area. 

Since the antecedent part of fuzzy if/then rules composes a fuzzy comparison, the 

r e s u l t of the antecedent part is in the sense of degree of match which is used to 

determine the firing strength of the fuzzy if/then rules. Figure 2.6 shows an example 

o f the firing strength of a fuzzy if/then rule : if temperature is high, then pressure is 
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low. In this example, the temperature matches the membership function of "high" 

with a degree of 0.7，so the firing strength of the rule is 0.7. 

High 
1 -

0.7 - / 

0 / J 
OK 2 0 0 K Z 9 D K 4U0K 

Temperature 

Figure 2.6 :An example of the firing strength of a fuzzy if/then rule. When the reading of temperature is 290K, 
based on the membership function of "high", the degree of matching of "temperature is high" is 0.7. 

The matching process of the antecedent part is an imprecise matching. However, 

this imprecise matching form a basic of interpolation which can minimize the 

number of rules to describe the input and output relationship. 

2.2.2 Fuzzy Inference System 

Fuzzy inference system makes use of the fuzzy if/then rules for inference. Basically, 

it contains 4 parts[13] which are shown in figure 2.7. 
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I .. 1 . 
I knowledge base ! 

I database rule base 1 

Input i • ' ！ Ouput 
(cr isp)丨 *. ' j (crisp) 

i • T 1 
O I Fuzzification - ——i r-—^ Defuzzification i O 

I Interface Interface , 

！ i n ！ 

I T • I 
I p. Decision-making Unit ,：, 

L_ J 

Figure 2.7: The block diagram of Fuzzy Inference System. 

1. Knowledge Base : Composing of a rule base and database. The rule base 

contains the fuzzy if/then rules. The database contains the parameters of the 

membership functions of the linguistic term (fuzzy sets) in the fuzzy if/then 

rules. 

2. Decision-making unit : Performing the inference process on the fuzzy if/then 

rules. 

3. Fuzzification interface : Transforming the crisp inputs into the degree of 

matching of the linguistic values. 

4. Defuzzification interface : Transforming the fuzzy inference results into the 

crisp outputs. 
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2.2.2.1 Inference steps 

There are 4 inference steps in the fuzzy inference system. In order to understand 

each step clearly, an example is used for illustration.1 Consider the system with two 

rules as follows; “ 

Rule 1 : if pressure is high and temperature is low, then volume is small. 

Rule 2 : if pressure is middle, then volume is middle. 

The membership functions of pressure, temperature and volume are defined in 

figure 2.8. Suppose the current reading of pressure is 70Pa, temperature is 100K. 

Low Middle HigW Low Middle Highl Small Middle Largfe 

OPa lOOPa UK 400K OmJ 100m3 
Pressure Temperature Volume 

Figure 2.8 : The membership functions of Pressure, Temperature and Volume. 

Step 1 : According to the premise part of the fuzzy r u l e s , compare the input variable 

with the membership function to obtain the m e m b e r s h i p value of each linguistic 

term. This step is called Fuzzification. (Figure 2.9) 

^The discussed fuzzy inference system is based on the model of Takagi and Sugeno's fuzzy if/then 

rules. In this model, the output of each rule is a linear combination of the input variables plus a 

constant term. The final output is the weighted average of each rule's output. 

2-9 



一：; Background 

Highl Low 

1 
Rule l 0.3 - - 厂

 0 , 6 

W a 'lOOPa OK ' 4DDK 
Pressure Temperature 

Middle 

Rule 2 - 1 / ^ X 
Q v : r � _ � 

OPa lOOFa 
Pressure 

Figure 2.9 : According to each rule, transform the input crisp values into the 
membership values (Fuzzification). 

Step 2 : To each rule, combine the membership values of the premise part to obtain 

the firing strength (weight) of the rule. Usually, the firing strength is the product of 

all the membership values in the premise part of the rule. Therefore, the firing 

strengths are 0.18 and 0.4 for rule 1 and 2 respectively. 

Step 3 : Based on the linear combination of the input variables, generate the 

qualified consequent of each rule. The following are the supposed linear equations 

of each rule and the qualified consequent outputs. 

Ride 1 ： V! = A�P + JBjT + C � - V�二 AR70) + Bj(JOO) + C卜 

Rule 2 \V2= A2P + C2 厂2 = A2(70) + C2 

Step 4 : Based on the firing strength of each rule to calculate the weight average of 

the consequent output of each rule. This step is called Defuzzification, the output of 

Defuzzification is a crisp value, it is the final output of the fuzzy inference system. 

Hence, the final result of the volume is : 
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0.18 x ^ + 0 . 4 x 1 ^ 
0.18 + 0.4 

2.3 Integration of Neural Networks and Fuzzy Logic 

Both of neural networks and fuzzy logic are important concepts in soft computing. 

They both give inexact result and work in the domain space where the boundaries 

are not sharply defined. Many researchers tried to integrate these two concepts to 

obtain a new model which contains the strengths of both of these two concepts. 

Currently, there are two research directions of the integration of neural networks 

and fuzzy logic. They are Fuzzy Neurons[7][39] and Neural Networks based Fuzzy 

Inference Systems[ 13][ 16] [23] [3 7], each of them will be discussed below. 

2.3.1 Fuzzy Neurons 

In conventional neural networks, the data is crisp value, the operations of neurons 

(nodes or processing elements) are crisp based. Consider the transfer function y 

= f(x), both of variables x and y are crisp values. 

Instead of processing the crisp values, fuzzy neurons process fuzzy values. The 

transmitted signals and the weight values are fuzzy values. The f u z z y neurons 

collect and process the incoming signals. One kind of the processing method is 

applying the fuzzy operations., such as fuzzy "AND" or fuzzy "OR"，on the 

incoming signals. The other kind is generating the linear combination of the 
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incoming signals and mapping the result with the membership function to get the 

crisp output. 

Although, it was reported that the neural networks with fuzzy neurons have fast 

training rate and more robustness，however, the test cases are all toy problems, such 

as XOR, etc. The research of fuzzy neurons is in the embryonic state, it is possible 

to improve the learning algorithms in order to increase the expressive power of 

fuzzy neural networks. On the other hand, more and more researchers put their eyes 

on another stream of the researches - Neural Networks based Fuzzy Inference 

Systems. 

2.3.2 Neural Networks based Fuzzy Inference Systems 

During the design of fuzzy logic systems, most engineers find that it is very 

difficult to define the parameters of the membership function of linguistic term. 

Figure 2.10 shows two membership functions of "Middle" temperature. Both of the 

membership functions can be used to express the sentence "temperature is middle", 

however they have different widths, different means and hence different parameters. 

Which one should be used is depending on the p e r s o n a l judgment of the engineers. 

< — — — — > < > 

L ^ l LZÎ d 
Temperture 

figure 2.10 : Two membership functions of "Middle" temperture, however, two 
functions have different mean (Ml & M2) and different width (W1 & W2). 
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2.3.2.1 Statistical Method 

One of the methods is using the statistical data[5] to assist the decision making of 

engineers. For instances, i f 'most people have the perception that 20°C is middle 

temperature and the standard deviation is 3°C, then the membership function of 

"middle" has the mean of 20°C, width of 6°C and range of 17°C to 230C. 

However, this method is based on the perception of human being, it can only give a 

dirty and quick result. Moreover, the parameters cannot be fine tuned by statistical 

data. Hence, this method is only suitable to the fuzzy expert systems. For the 

control systems, the systems involve the highly nonlinear control surfaces which are 

very difficult to be interpreted by human being. Statistical method cannot give an 

optimal solution and hence is not suitable for such problems. 

2.3.2.2 Neural Networks method 

In order to solve the problems of highly nonlinear input-output mapping, neural 

networks can be made use. Neural networks have the capability of knowledge 

extraction and generalization. During supervised training, neural networks can 

extract the relationship between the input and output training patterns. Then, it can 

generalize the knowledge, such that it still give accurate results for those data which 

have not been trained, this is called function interpolation. Because of these 

capabilities, neural networks can be used to tune the parameters of fuzzy logic 

s y s t em, so that the optimal result can be obtained. Such kind of systems are refereed 
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to as Neural Networks based Fuzzy Inference Systems or Neural Fuzzy Systems. 

The main idea of Neural Fuzzy Systems will be discussed subsequently. 

The first step is using the feed forward neural networks to model architecture of 

fuzzy inference systems. The parameters are represented by the weight values of the 

links. Figure 2.11 shows an example of incorporating the fuzzy inference system 

into neural networks. The example represents the following two fuzzy rules in the 

neural networks. 

1. If Temperature is High and Pressure is High, then Valve Open is Large. 

2. If Temperature is Low and Pressure is High, then Valve Open is Small 

High 

AND Large 

Temperature Low 

Pressure S m a 1 1 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Figure 2.11 : An example of embedding two fuzzy rules into a feed forward neural networkThere are two 
membership functions for temperture (High & Low) and Valve Open (Large & Samll), one membership 
function for pressure (Low). Node 6 and 7 act as afuzzy AND operator, they also act as a connection point of 
permise and consequence part of the fuzzy rules. 

By tracing the connection of nodes, we may find that rule 1 is represented by 1，3, 

2，5, 6，8, 10. On the other hand, rule 2 is represented by 1，4, 2，5，7, 9，10. The 

parameters of the membership functions are represented by the weight values of the 

links between layer 2 and layer 3. 
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The second step is using the training data to train the neural networks. The objective 

of the training is to adjust the parameters in "order to minimize the error. Various 

training algorithm can be used, such as backpropagation learning algorithm, hybrid 

learning algorithm2 . _ 

In laboratory, we used to apply the neural fuzzy systems in control systems and 

nonlinear functions modeling in order to test the performance of the models. Many 

test results show the neural fuzzy systems can give better result than neural 

networks and fuzzy logic systems. Indeed, it is testified that neural network and 

fuzzy inference system in their integrated form have a very tight bonding, each of 

them overcome the weakness of the other. Neural network can add to the fuzzy 

inference system the ability to self tune the membership functions, on the other 

hand, the inputs to the whole system are fuzzified by the membership functions, 

thus performing a noise filtering function for the neural network component. 

hybrid Learning Algorithm is unsupervised learning algorithm + supervised learning algorithm. 
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3 ANFIS Model 

This section introduces the architecture and learning rule of Adaptive-Network-

Based Fuzzy Inference System (ANFIS)[12][13][14]. ANFIS was proposed by Jang 

from the University of California at Berkeley in 1992. ANFIS is one of the neural 

networks based fuzzy inference systems. It was shown that ANFIS is functionally 

equivalent to the radial basis function networks. A number of simulations have been 

performed on ANFIS and all of the simulations yield remarkable results. 

3.1 Adaptive Networks Architecture 

As the name implied, the architecture of ANFIS is based on the adaptive network 

which is the superset of all kinds of feed forward neural networks with supervised 

learning. Figure 3.1 shows an example of Adaptive Networks. The example shows 

that the adaptive network consisting of nodes and directional links， 

I ： ^ ^： I 
Figure 31 An example of adaptive network. The sequare and cicle nodes represent the nodes have 
different transfer function. XI andX2 are input variables. Y1 and Y2 are output variables. Signals are 
flowed as the direction of the links, i.e. one way. 
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In adaptive networks, all nodes are adaptive which means that the outputs of the 

nodes are depending on the parameters associated to the nodes. As long as the 

parameters are changed, the outputs of the nodes are also changed. 

In order to generate the outputs, the nodes receive all input signals and perform a 

particular function on the signals. The function is called the transfer function or 

activation function. It can vary from nodes to nodes. 

Basically, there is no constrain on the transfer function. However, if the gradient 

descent learning algorithm is used on the networks, the transfer function must be 

differentiable everywhere. In fact, gradient descent is the most popular learning 

algorithm in adaptive networks, you may find that most transfer functions are 

piecewise differentiable[l][13][15][17]. 

3.2 ANFIS Architecture 

Similar to most neural networks based fuzzy inference systems, ANFIS embeds the 

fuzzy rules into the adaptive networks, so that the adaptive networks are 

functionally equivalent to the fuzzy inference systems. However, there is no weight 

value a s s o c i a t e d to the links, all the parameters (weight values) are contained in the 

nodes. 

In order to illustrate the architecture of ANFIS, we assume the ANFIS contains 2 

fuzzy rules which are shown in the following. 

• • 
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Rule 1 : I f x is A ； and y is Bj, then f j = pjx + q}y+ rh 

Rule 2 : I f x is A2 and y is B2, then f2= p2x + q^y + r2. 

The fuzzy rules of ANFIS are based on the fuzzy if/then rules which was proposed 

by Takagi and Sugeno's in 1"983. For this type of fuzzy if/then rules, the output of 

each rule is a linear combination of input variables plus a constant. The overall 

output is the weight average of the output of each rule. The weight (firing strength) 

of each fuzzy rule is the product of the membership values of input variables. Figure 

3.2 shows the membership. 

l " X ；T . Y 

八 二 … - - - … … … 截 : ： 二 

丄 r ^ - x^. ^― ^ 
X y 

_ Wj 
Wj =. 

二 丨 � WY 十 ^^ 
w2 = w2] x w22 _ W2 

Wj+W2 ~ 

f i f 2 

f2 二 P2X + q2”r2 

Figure 3.2 : The upper graphs show the membership functions of input variables X and Y. 

The lower part shows the procedures of inference. 
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Figure 3.3 shows the corresponding architecture of ANFIS. It shows that the 

premise and consequent parameters are associated with the nodes in first and fourth 

layer respectively. The nodes in the first and fourth layer are called adaptive nodes 

which reflect their adaptive nature. For the other nodes, there is no parameter 

associated with them and these nodes are called fixed nodes. In the following 

section, each layer will be discussed in details. 

Premise 
八 parameters 广. .' / / Consequent 

y / x v parameters 

！ ！ - / ； I I I / 1 
I I I / 1 
I I. I I 1 

layer 1 layer 2 layer 3 layer 4 layer 5 

Figure 3.3 : The ANFIS model with rule 1 and rule 2. First layer nodes output the corresponding membership 
value of inoming signals. M nodes output the product of incoming signals. N nodes output the normalization of 
the incoming signals. L nodes output the linear combination of the incoming signals. 

3.2.1 Layer One 

Nodes of layer 1 are corresponding to the membership functions of the input 

variables. The inputs of the nodes are the values of the input variables, the outputs 

are the degree of membership of the input variables of the corresponding linguistic 

t e r m s . Each node is associated with a transfer function (node function) (x) where 
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• 

Aiis the linguistic term. Therefore, juAj (x) is the membership function of At. The 

output of node j is denoted by O) where 1 stands for the first layer1. Hence, for i e 

{1,2} a n d y e {1 ,2 ,3 ,4} . , 

《 二 h � （3 . ” 

or 

O) 二 〜 ⑴ （3.2) 

Oj is the membership value of the input variable to the corresponding linguistic 

term. Usually, the membership functions are bell-shaped with maximum and 

minimum are 1 and 0 respectively. The following functions are used to represent the 

bell-shaped membership functions. 

= x-c. o h 1 + [ ( ^ ) � (3-3) 

or 

= e a i 

where {at ， bt , ct} is the parameter set of the membership functions, they are 

referred to as the premise parameters. These functions are always used as 

membership function because they reflect the perception of human being. The 

changes are smooth and continuous, the gain is low at two ends and the middle, the 

gain is close to linear elsewhere. Beside these functions, other piecewise 

differentiable functions can also be used, such as trapezoidal or triangular-shaped 

function. 

/ The output 0f all nodes is denoted by O f , where L is the layer number and] is the node number in 

layer L, 
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As long as the parameters change, the shape of the membership functions also 

change. This results in various forms of membership function. By adjusting the 

shape of membership functions, we can change the membership values of input 

variables in order to minimize the error of the outputs. 

3.2.2 Layer Two 

Nodes of layer 2 act as the fuzzy "AND" operator in the premise part of the fuzzy 

if/then rules. The fuzzy "AND" operator performs the multiplication of the 

membership values of the input variables. The output of a node in layer 2 is 

where i j and k e {1,2}. The output Oj stands for the weight (firing strength) of the 

• 2 
corresponding rule, and it is refereed to as Wj (i.e. Wj = Oj ). 

Each node of layer 2 is corresponding to 1 fuzzy if/then rule, hence, by considering 

the connection of these nodes, the fuzzy rules can be interpreted. For instance, 

consider the first node in layer 2, it is connected by the nodes � and Bj of layer 1. 

Therefore, the first node of layer 2 stands for the Rule 1, 

3.2.3 Layer Three 

The nodes of layer three calculate the normalized weight values (firing strength) of 

the fuzzy rules. The outputs of the nodes are 

’ 勿 ： 上 ， 、
 ( 3

-
6 ) 

J + w 2 
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where7 and i e {1, 2}. It is used to refer the normalized weight as w. Hence, 

Wj=Ol ( 3 . 7 ) 

3.2.4 Layer Four 

The nodes of layer 4 calculate the crisp outputs of the fuzzy if/then rules, then 

multiply the outputs by the normalized weight of the rules. Following is the 

equation of the nodes outputs. 

�==Afi = ++n), ( 3 . 8 ) 

where i e {1，2}. {pt, qt, rt) is the parameter set of the consequent parameters. 

3.2.5 Layer Five 

There is only one node in layer 5’ the node calculates the sum of all input signals. 

The sum is the overall output of the fuzzy inference system. The equation of the 

output of the node is 

y w . f . (3.9) 
of = 、 二overall output. 

i 

We have already discussed the architecture of ANFIS. The illustrated ANFIS model 

is over simple because 2 input variables with each has 2 membership functions can 

yield 4 fuzzy if/then rules, while only two of them are used for the illustration. 

However, based on the input - output patterns, it is very difficult to determine which 

rules should be adopted or detached. Therefore, in practical implementation, all 
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possible rules will be embedded into the ANFIS model. When all rules are 

embedded into the ANFIS model, the number of fuzzy rules is equal to the product 

of the number of membership function of each input variable. Figure 3.4 shows the 

ANFIS with all possible rules. 

Figure 3.4 : The figure shows all possible rules for ANFIS model which has 2 membership functions 
of each input variable. In fact, the number of rules is the product of membership functions of all 
input variables. 

Figure 3.5 shows the input space which is partitioned into 4 fuzzy subspaces, each 

subspace is governed by two membership functions from each input variable. The 

shared area represents the fuzzy region. 

Y • 

B2 J 3 ； 4 

8 
B1 ^ _ 
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Figure 3.5 ： The fuzzy subspaces of the fuzzy rules 1 & 2. 2 rules with 2 membership functions 
partition the space into 4 subspaces. The shaped area is the fuzzy region. 

3.2.6 Multiple Outputs ANFIS 

Up till now, the discussed ANFIS model has only one output, this is not very 

practical for real applications. In many applications, the training data (input/output 

pairs) are in multi-dimensions and ANFIS will not be applicable. 

One of the solutions is to construct multiple ANFIS, each corresponds to one of the 

dimensions of the output vector. Figure 3.6 shows an example of this solution, 

assuming that the output vector has 2 dimensions, hence, 2 ANFIS models are 

constructed for each dimension. Nevertheless, the error propagation in this solution 

is very serious. 

pr 0b(overall output is correct) = J ] Pr ob(ANFIS model i gives correct output) (3.10) 
i 

If the output vector has 10 dimensions, then, 10 ANFIS models should be created. If 

the accuracy of each ANFIS model is 90%, according to (3.10)，the accuracy of the 

whole system is 35% (i.e. 0.910 « 0.35). Because of the serious error propagation, 

this solution is not adopted in the project. 
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I I i ANFIS for 
I' T y I 1st output 

f 仏 一 4 — 」 

V 1 \ V \ 2nd output 

I i I 
L — — • ；— -」 

Figure 3.6 : A solution for the problem of 2 dimensions output vector. 2 ANFIS models are built for 
each output. Note that the parameter sets are different for each ANFIS model. 

Instead, another solution is adopted. Figure 3.7 shows the enhanced ANFIS which 

can support multi-dimensions output vectors. In the enhanced ANFIS, adding one 

more output dimension means adding one more set of nodes in layer 4 and 

connecting all nodes in layer 3 to this set. For this enhanced model, the error 

propagation will not be so serious as the first solution. This is because of the update 

of the premise part is based on the error of all output nodes. 
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New nodes for ‘ 
the second ( 丨 . , . ; 

output. j J 

Figure 3.7 : The enhanced ANFIS model for 2 dimensional output vectors. 

3.3 ANFIS Learning Algorithms 

This section discusses the learning algorithms of ANFIS. In Jang's paper[13], two 

learning algorithms have been proposed for ANFIS. One is gradient descent learning 

and the other is hybrid learning. Each of them will be discussed in details. Besides, 

an algorithm of least square estimate (LSE) will be introduced for hybrid learning. 

LSE is a technique for approximating the solutions of matrix equations. 

3.3.1 Gradient Descent Learning 
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Gradient descent learning algorithm is a basic and common learning algorithm in 

feed forward neural networks. It can be used to update the parameters of neural 

networks in order to achieve the correct input-output mapping of the networks. 

3.3.1.1 Gradient Descent Learning for Adaptive Networks 

Consider an adaptive network with both adaptive nodes and fixed nodes, the 

parameter set of the network is the union of all the parameters of adaptive nodes. 

The following are the definitions of the variables of the network. 

L - Number of layers in the network. 

#(k) - Number of nodes in k-th layer. 

(k’ i) - The node at /-th position of 众-th layer. 

Of - The node function and output of (k, i) • 

p - Number of training data. 

T m p - Target output of m-Xh output node for p-Xh training data, 

zr - Error of the network on p-Xh training data. 

Since the output of a node depends on the incoming signals as well as the 

parameters of the nodes function, we have 

oN《欣…，瑜“，“
c

，…入
 ( 3

"
n ) 

where a, b, c …etc. are the parameters of the node function. 

The error of 尸th training data is the sum of error of each output node. Therefore, 

一 m L 2 ( 3 . 1 2 ) 
"Ep 二 2 (Tm’p - Om’p)， 

m二 1 

t h e overall error is sum of error of each training data. 
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E = (3.13) 
p 

The error rate of the output node (L,i) can be found by (3.12), it is 

dEp T (3.14) 
= -oh 

d0^p
 l,p l'p 

For the internal node (kj), the error rate can be derived by the chain rule and it is 

the linear combination of the error rates of the nodes in the next layer. 

dEp 二〒 dEp ( 3. 1 5) 

where 1 < k < L - 1. Base on (3.14) and (3.15), we can find the error rate of all 

nodes. 

The following variables are used for finding the update rule of the parameters, 

a - a parameter of the adaptive network. 

S - Set of nodes where output depending on a. 

Based on the chain rule, we have 

dEp 一 dEp do*  ( 3. 1 6 )  

da 一 0^sa dO* da . 

The derivative of the overall error measure E with respect to a is 

— ™ — ) • 

5a - d a 

The update formula for the generic parameter cc is 

dE (3.18) 
Act = -T | - ~ , “ 

da ； 
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where r\ is the learning rate which can be expressed as 

k 
rj = , , . . . 

/ dE 
J Z a ( ‘ ) 2 (3.19) 

k is called the step size, it controls the transition length of the parameters 

(movement of parameters in the parameter space) during the gradient decent 

learning, If k is small, the transition of the parameters will be close to the gradient 

of the error surface, the learning time and the convergence time will be longer. If k 

is large, the transition of the parameters will be far from the gradient of the error 

surface, at the beginning of training, the convergence rate is high. Nevertheless, as 

long as the parameters are close to the optimum, they will oscillate around the 

optimum. Figure 3.8 shows the learning path of large k and small k. In order to 

make the learning rate to be faster and maintain the stability of the networks, an 

adaptive step size will be used. The adaptive step size will be discussed later. 

Error | i . . . . . E r r o r I I 

: . . V ~ n \ A j 

Error Surface ^ ^ ^ ^ 

L Parameter — ^ m e i e r 

(A) Small Step Size (k) (A) Large Step Size (k) 

Figure 3.8 ： The figure shows the transition paths of small step size (A), and large step size (B). In this 
example, the error is depending on one parameter only. 

There are two learning paradigms for gradient descent learning. One is the batch 

learning in which the update of parameters is performed after all training data are 
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presented to the network. For the batch learning, the update is according to the 

equation (3.17). The other is the pattern learning in which the update of parameters 

is performed after each training data is presented to the network. For the pattern 

learning, the update is according to the equation (3.16). 

3.3.1.2 Gradient Descent Learning for ANFIS 

In order to show how to update the parameters in ANFIS, consider the following 

generic model. 

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 

Figure 3.9 : Generic ANFIS Model. 

The following are the definitions of variables for the generic model: 
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- z-th input variable. 

n - Total number of inputs. 

3 - Number of training patterns. 

m - Total number of rules. 

Sj - Set of membership functions associating to rule j. 

O - Target output value. 

The following are the equations of the outputs from each layer. 

Layer 0 : Suppose is the output of the node as well as the node function, 

then we have = (at, bif cjt p), where p is the p-t\i training data. 

Layer 1 : Output is Rf = f j M ik -
Hxk^j ‘ 

Rf 
Layer 2 : Output is Nf = . 

‘ I A P 

Layer 3 : Output is g； = N f f c o + c ^ + c ^ + ^ + c ^ ) , where c, are fixed in 

forward pass. 

m 
Layer 4 : Output is 
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Suppose the error of training data p is Ep where Ep = ((y -yp)2. Then the total error 

3 3 
for the whole training data set is E = = Y/Op-yp)2. 

p-i p-i -

Consider the parameter at the_A:-th membership function of z'-th input variable : ai]c. 

The error rate of the parameter is Aaik = . 
‘ — k 

The close form of Aaik is shown in the following : 

P=1 aai,k P=1 aai,k P=1 �ai,k n 2 0 ) 

da丨’ k J dai’k, (3.22) 

where Cj 二 [c0J.〜…；j and Xp = [7 xf…（. 

f \ 一 

daik dRf fRP daa 13 ^ rVrS Jr8aiik 
h ) (3.23) 

_ 石 n ^ ( 
dRf = Mx,k^j = Mx,k.eSj 讓 # 

； ^ K , , �
 ( } 

v / 

�HM^AdMP 
L e t � p 二 ^ and putting this into (3.23)，we have 

J'x"k Mp
Xhk daik i 

V ) ' \ 
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s m (3.25) 
substitute (3.25) into (3.22), we have 

S ( 3 26) 
substitute (3.26) into (3.21), we have 

oai,k j=i 1 vl/iJ/ 1 v (3 27) 

substitute (3.27) into (3.20), we have 

P=i j=i •/»�/ 1 VI/»J/ 1 v (3.28) 

Base on section 3.3.1.1 and (3.28), the update rule of parameter aik is 

…k(t +1) 二 a i k ⑴ - 球 � � , w h e r e r\ is the learning rate. 

3.3.2 Least Squares Estimate (LSE) 

Before the hybrid learning algorithm is discussed, we discuss the Least Squares 

Estimate (LSE) first. LSE is a technique which can approximate the solution of a 

matrix equation. 

Assume that the adaptive network has one output node, the output of the output 

node is 

output = F( I ’S), (3.29) 
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to 

where I is the set of input variables and S is the set of parameters. If there is a 

function H, such that the composite function (HoF) is linear in S2, where S2 is the 

set of some of the parameters in S. Suppose S can be decomposed into 2 sets, we 

have 

一 S =而㊉馬. (3.30) 

Suppose the parameters in 力 are fixed, then we have 

H(output) = HoF(?，S2). (3.31) 

If we have 3 sets of training data, we can plug the training data into (3.31) and get 

the following matrix equation 

AX=B. (3.32) 

Suppose = then the dimension of A, X and B are 3xM, Mxl and 3x1 

respectively. For each training data Ah A, = [al
} al

2 al
M] where a) is the instant 

value of one of the input variables (suppose it is xf ) at /-th training data, where 

xf e f . For all training data, A二 ⑷冯…A�’ where t stands for the transpose. B 

is the column v e c t o r of the target output. Suppose bl is the target output of training 

data I, then B-/^ b2 … 知 / . X is also a column vector such that X二 [PiP2 … 

where eS2. 

Since the number of training data (3) is usually greater than the number of linear 

parameters (M), equation (3.32) is overdetermined problem. In general, there is no 

exact solution for (3 .32 ) . , 
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Instead，Least Squares Estimate (LSE) is used to find the approximate solution ofX, 

the main idea of LSE is to minimize the square error \ A X - B ^ . The approximate 

solution is denoted by X* and the most popular formula for X* uses the pseudo-

inverse of X : 

X ^ C A U j ^ A ' B , (3-33) 

where (A1 A)'1 A1 is the pseudo-inverse of A if At is non-singular. 

In equation (3.33), X* is expressed in a close form equation, however, it is 

computational expensive for determining the inverse of matrices. Moreover, when 

A1 is singular, X* becomes ill-defined. Therefore, instead of solving X* directly, we 

use the sequential formulas to solve X*. Let i-th row vector of matrix A in (3.32) be 

a\ and the /-th element of B be bj, then X can be calculated using the iteratively 

sequential formulas : 

X…=Xi+ Si+Jai+] (bf+1 - aUjX,) (3-34) 

si+1 = s 「 ’ 、 二 o d  ( 3. 3 5 )  

1 + 

S t is used to be called as covariance matrix and the least squares estimate X* is 

equal to The initial conditions for equation (3.34) and (3.35) are X0 = 0 and S0 

獵 Y/，where y is a positive large number and I is the identity matrix of dimension M 

xM. 

When dealing with the multiple output networks (multiple output ANFIS in section 

3 2.6), the LSE is still applied, but b\ is a row vector which is the z-th row of matrix 

B. « 
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Up till now, our discussion is based on the batch learning. For pattern learning, the 

parameters have to be updated by Ep instead of E. Actually, this is not the 

appropriate procedure to minimize E, however, the result can be approximated by 

setting a small learning rate. 

In order to account for the time-varying characteristic of the incoming data for the 

sequential least formulas, we need to reduce the effect of old training data when 

new training data is presented to the network. The solution is to modify the original 

sequential least formulas to its weighted version such that the recent data have 

larger weight than the past data. For the weighted version, we introduce a forgetting 

factor (X) into the original equations (3.34) and (3.35) which become 

Xi+1 二 X ^ S ^ H a h X i ) (3.36) 

i f a
( ( 3 - 3 7 ) 

Si+1 丄 械 产 & , i-0’l，…’ 
AA 1 + ai+iSiai+i J 

where X is a value between 0 and 1. For smaller X, the effect of the old data will be 

reduced rapidly. Nevertheless, if X is too small, it may cause the instability of the 

system. 

3.3.3 Hybrid Learning Algorithm 

3.3.3.1 Hybrid Learning Algorithm in Adaptive Networks 

The hybrid learning a l g o r i t h m is based on both the gradient descent learning and 

least squares estimate. The reason of introducing the LSE is that the gradient 

descent learning is generally slow and easy to be trapped by local minima. 
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For hybrid learning, each training epoch is composed of forward pass and backward 

pass. In the forward pass, training data are supplied in order to construct the 

matrices A and B in equation (3.32). Then, matrix X is calculated by using the 

sequential least square formulas in (3.34) (3.35) or (3.36) (3.37). Once X can be 

found, the parameters in S2~ are found. In the backward pass, the signals are 

propagated to the output node based on the parameters of S2 which were found in 

the forward pass. The output error can be found by subtracting the output value by 

the target value. The error can be used to update the parameters of Sj by using the 

gradient descent learning. 

By fixing the parameters in Sj, LSE is able to find the parameters in S2 such that 

they are guaranteed to be the global minimum in S2 parameter space. Therefore, 

hybrid learning makes use of LSE to reduce the parameters searching space firstly, 

then applies the gradient descent learning. This approach can substantially reduce 

the convergence time of the network training. 

3.3.3.2 Hybrid Learning Algorithm in ANFIS 

Clearly，ANFIS is an adaptive networks. Therefore, the hybrid learning algorithm 

can be applied to ANFIS. This section mainly discuss how to define the parameters 

in Sj and 力. 

From figure 3.2，it is observed that given the values of the premise parameters, the 

overall output can be expressed as a linear combinations of the consequent 

parameters. The output in figure 3.2 can be expressed as � 1 
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Hence, the linear parameters are the consequent parameters and we have 

S = set of total parameters, 

AS； = set of premise parameters, 

S2 - set of consequent parameters. 

The function H is the identity function and F is the function of fuzzy inference 

system of the ANFIS. 

In the ANFIS with hybrid learning algorithm, during the forward pass, signals go 

forward till layer 4 and the consequent parameters are identified by LSE. In the 

backward pass, the errors propagate backward and the premise parameters are 

updated by the gradient descent algorithm. Table 3.1 shows the activities in each 

pass. 

“ I Forward pass Backward pass 

Premise parameters fixed gradient descent 

Consequent least squares estimate fixed 

parameters 

Signals ‘ node outputs error rates 

Table 3.1 : Hybrid learning activities of ANFIS for each pass. 

However, it should be noted that the computational complexity of LSE is very high. 

In some situations, such as the large number of training data, LSE may not be 

applicable. Jang has introduced 4 training modes which are shown in Table 3,2. 
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Training modes Description ‘ ~ 

Gradient descent only All parameters are trained by gradient descent learning algorithm. 

Gradient descent and LSE is applied at the first training epoch to give the initial values of the 

one pass LSE consequent parameters, then, the gradient descent is applied to all the 

parameters. 

Gradient descent and Hybrid learning algorithm. 一 — — 

LSE 

Sequential LSE only Applying LSE to update all the parameters of ANFIS. “ 

Table 3.2 : Four training modes of ANFIS. 

The selection of using which of the training modes is depending on the computation 

complexity of the problem and the resulting performance. 
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4 ANFIS Library 

As mentioned before, the objective of the project is to construct an ANFIS library. 

This section discusses the structure and use of the library. 

4.1 Library Structure 

The library is built by using C++ in order to support the new programming approach 

-Object-Oriented Programming (OOP). In general, all OOP languages compose of 

three parts in common : objects, polymorphism and inheritance[10]. 

An object is a logical entity that contains both data and code that manipulates that 

data. Within an object, some of the code and data may be private to the object and 

inaccessible to any thing outside the object. In this way, an object provides a 

significant level of protection against some other, unrelated part of the program 

accidentally modifying or incorrectly using the private parts of the object. This 

linkage of code and data is often referred to as encapsulation. 

Polymorphism is characterized by the phase "one interface, multiple methods". This 

means that one name can be used for several related but slightly different purposes. 

In essence, polymorphism allows one interface to be used with a general class of 

actions. The specific action selected is determined by the type of data involved. 

-V jt 

Inheritance is the process by which one object can acquire the properties of another 
M 

object. This is important because it supports the concept of classification. If you 
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think about it, most knowledge is made manageable by hierarchical classifications. 

Through the feature of inheritance, an object need only define those qualities that 

make it unique within its class and it is possible for one object to be a specific 

instance of other objects. 

Based on the OOP, large scale systems can be constructed more easily, moreover, 

the maintenance cost of the systems can be reduced. 

4.1.1 System Modules 

The ANFIS library contains the following system modules. 

Module Name Description 

a n f i s . h Contains the header information of the ANFIS library, 

a n f i s . c c C o n t a i n s the constructors and destructors of the object 

"anfis一model，，which is the main body ANFIS model, it 

also contains the procedures to establish the architecture of 

the adaptive network, 

b a c k w a r d , c c Contains the procedures of the backward pass of the training 

phase. 

b u i l d , c c “ Contains the procedures of building each layer and its nodes 

of the ANFIS model. 

. f i l e i o . c c 一 Contains the procedures of reading the input training data 

file and writing the output file, 

f o r w a r d , c c Contains the procedures of the forward pass of the training 
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phase. 

k a l m a n . c c Contains the procedures of calculating the LSE of the 

network parameters, 

l a y e r s . c c Contains the destructors of the object " l a y e r " , 

m a t r i c s . c c Contains the procedures of matrices and vectors operations, 

n o d e . c c Contains the constructors and destructors of the object 

"node" . 

p a r m . c c Contains the procedures of initialization and update of the 

network parameters, 

t r a i n . c c Contains the training procedures of the ANFIS model. 

4.1.2 Class Objects 

The ANFIS library contains the following class objects. 

Class Object Description 

a n f i s 一 m o d e l This is the main body of the ANFIS library. Programmers 

only need to declare a class of anfis—model， they can 

train and evaluate the network. 

m a t r i x This is the class of matrices, it is used to declare the input 

parameters of training and evaluating procedures of 

a n f i s 一 m o d e l . Each element of m a t r i x class has the data 

type " d o u b l e " . 

v e c The is the class of vectors, it is .used to declare the input 

parameters of the procedures for setting the parameters of 

4-3 



ANFIS Library ; 

. . “ . . ' - . . I • M i i • • ； I I ! 
membership functions of a n f i s一model . Each element of 

. .. ... ‘ … ；• j 

v e c class has the data type " d o u b l e ” 

.1.3 Class Functions 丨 ., • . ' ' i \ ‘' • . . .
 1

 ； j i 
j 

�he prototypes of a n f i s一m o d e l，m a t r i x and v e c class declaration are as 
‘ ‘ ： _ j- ‘.! j 

. ‘ . • . . ： ‘ . • • ‘ ‘ “ • ^ ‘ - . j ；； I (• 
ollows: 1 i 

anf i s 一m o d e l var_name (int input 一 n o d e s , in t output—nodes); •;；；-

matrix var一name(int nura_of_columns, int num_of_rows); 

v e c v a r _ n a m e ( i n t num_of一e lemen t s ) . ; 

： •'•
：：：
-'>

；：
--' ：̂

 ：
' ‘‘ '

：
>
：
 '

：；：
 ： ；'：|!| 

rhe value of the elements of m a t r i x and v e c can be specified directly as follows : ; j 

m a t r i x一 v a r i a b l e [ c o l ] [ r o w ] = d a t a一 i t e m ; 

v e c _ v a r i a b l e [ i d x ] = d a t a _ i t e m ; 

Since m a t r i x and v e c are used to declare the input parameters of the procedures, . 

there is no associated class functions for programmers. In this section, we only list 

the class functions of a n f i s—model as follows : 

..."丨I . 

Class functions of anf is del Description ~ _ " " [ 

•int is_modei,creat:e(i； Return 1 is the ANFIS model is createa, 丨丨丨 

— . ；！! 
otherwise, return 0. ！；丨 

i n t g e t _ i n p u t _ V a r j顏…; ；““— Return the number ot mpui vanabic, ；,： | 
一 I ；! 

(input nodes). j| 
- — — ^ ~ " " " * 
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5 Applications 

This section presents the performance of ANFIS in various applications. In all 

applications, ANFIS is trained by the input-output training pair and no expert is 

consulted for the fuzzy rules. Since no expert is consulted, we do not know which 

fuzzy rule should be adopted and all possible rules are embedded in ANFIS for all 

applications. 

For the input range and the number of membership functions of each input variable 

is fixed, the initial values of the premise parameters are set so that the memberships 

functions are equally spaced along the input range. Moreover, the membership 

functions have to satisfy the e-completeness[13] with s=0.5. "s-completeness with s 

=0.5" means that for any input jc within the input range, there exist a membership 

function such that j j ^ ( x ) > 0 . 5 . In this manner, the fuzzy inference system can 

provide smooth transition and sufficient overlapping from one linguistic label to 

a n o t he r . Figure 5.1 shows an initial setting of membership functions for the number 

of membership functions is 4 and input range is [0,12]. 

： 7 �、 一 J7, 

� / X 厂 � . X 
\ / N / � / , 

、、 / \ - / . • . . \ / 
\ / \ / 、 / 

o.5 \丄 — 厶 / \ / \ / \ / � / \ / \ / \ I 
/ N

 v / \ / \ 
/ \ � / � ‘ \ 

/ �� / ��� Z \ 
^ ^ � d 

Input Variables 

Figure 5 J ： The initial membership functions with s-completeness^O.5. 
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As discussed before, the step size should be changed adaptively, the heuristic 

rules[13] are as follows : 

1. If the error measure undergoes 4 consecutive reductions, increase k by 10%. 

2. If the error measure undergoes 2 consecutive combinations of 1 increase and 1 

reduction, decrease ^by"10%. 

Although the selection of 10% is rather arbitrarily, the results are quite satisfactory. 

Moreover, the initial value of k is not very critical as long as it is not too big. 

Besides that, other adaptive learning rate can also be used as the step size to control 

the learning speed. Figure 5.2 shows the error measure w.r.t. the training epochs. 

小 

V 
error A. 

measure \ • 

Training epochs 

Figure 5.2 : The figure shows the action of the heuristic rules of step size. At point A, rule 1 is used to 
increase the step size after 4 downs. At point B, rule 2 is used to decrease step size afier 2 combinations of I 

up and 1 down. 

5.1 Logical Operators 

The first application is using ANFIS to model the logical operators : XOR，OR, 

AND. 
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5.1.1 Architecture 

In this application, the ANFIS contains 2 input variables, 1 output variable and 2 

membership functions for each input variable. Based on this architecture, 4 possible 

rules can be defined, they are 

1. I f x is A j and y is Bj then z 二 pjx + + D, 

2. If x is A� andy is B2 then z = p2x + q2y + r2, 

3. I f x is A2 andy is B1 then z = p3x + + 

4. I f x is A2 and y is B2 then z - p4x + q4y + r4 • 

Ap A2, Bj, B2 are defined by the membership functions \xA] (x), (x),[iBi (y),\^B2 (y) 

where 

1 
u a (x)= — 

1 + [ (
 a i / J (5-1) 

X-C, -y h 

_ � ) � (5.2) 

力 " 〒 ” (5-3) 

1 

Table 5.1 shows the consequence and premise parameters of each rule. 

Consequence Parameters I Premise Parameters 

I a l , b l , c l , a3, b3, c3 p i , ql5 rl 

• y " a l , b l , c l , a4, b4，c4 p2, q2，r2 

1 a2, b2，c2, a3, b3，c3 P3，Q3， r3 
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a2’ b2，c2, a4, b4，c4 p4，q4, r4 一 

Table 5.1 : Consequence and Premise parameters of ANFIS as logical operators. 

After the ANFIS is trained, the values of the parameters are shown in table 5.2. 

Parameters Values Parameters Values Parameters Values 

~al 0.433637 bl 2.01019 cl -0.0448426 

a2 0.43755 b2 2.01062 c2 1.0338 

a3 0.433637 b3 2.01019 c3 -0.0448426 

a4 0.43755 b4 2.01062 c4 1.0338 

pi 0.0349429 ql 0.0349429 rl -0.0323391 

p2 -0.0100705 q2 0.530827 r2 0.529259 

p3 0.530827 q3 -0.0100705 q3 0.529259 

p4 -0.0307884 q4 -0.0307884 r4 0.00209854 

Table 5.2 : Values of consequence and premise parameters. 

Figure 5.3 shows the output functions of each rule and the membership functions of 

^ 乂2，Bj, B2 . We found that there is almost no change on the membership 

functions with their initial setting. This can be explained by the few training epochs 

of ANFIS, the update of the premise parameters is very small within the few 

training epochs. 
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y x O ^ T ^ 
(a) Output function of rule 1. (b) Output function of rule 2. 

0 0 

(c) Output function of rule 3 • (d) Output function of rule 4. 

。 + ; 「 、 、 ， , . ： 丨 、 、 ’ . / ] 

l x J Q ( J 
——40——60 ^ 100 i io °0 20 40 80 100~~120 u c x input (x10e-2) P . ,, v 

(e) Membership functions of variable X. (0 Membership fimctt 咖 ofvanable Y. 

Figure 5.3 : (a) - (d) are the output equations of the consequence part of the fuzzy rules 1 - 4. (e) 

and ( j ) are the membership functions of input variables X and Y. 

5.1.2 Training Data 

The training data are the corresponding input/output values of the logical operators. 

Table 5.3, 5.4, 5.5 show the training data of the XOR，OR，AND respectively. 
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Training set Input 1 Input 2 Output 

1 1 1 - 0 

~2 1 0 1 

"1 ‘ 0 I 1 

—4 0 0 0 

Table 5.3 : Training data of XOR. 

Training set Input 1 Input 2 Output 

1 = 1 " T " 1 “ 

"2 1 0 0 

1 0 " T ~ 0 

0 0 0 

Table 5.4 : Training data of AND, � 

Training set || Input 1 Input 2 Output 

i i i i 

~ . 1 o 1 

"1 0 1 : ~ 

丁 o 0 ~ ~ o ^ 

“ Table 5.5 : Training data of OR. 

5.1.3 Results and Discussions 

F o r the modeling of l o g i c a l operators, ANFIS gives the remarkable results. Only 

one training epoch is needed to delivery nearly z e r o error. Moreover, ANFIS still 

g i v e a correct output under the noise environment. The maximum noise level is 30% j 

deviation from the original values of 0 or 1. 
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The membership functions of ANFIS can account for the noise toleration capability. 

Since the membership functions transfer the crisp inputs to the values of degree of 

matching, within certain range of deviation, the inputs still fall into the same fuzzy 

subspace, hence, ANFIS stilfgive a correct output. 

In fact, neural networks are usually used to model the logical operators. In this 

application, we found that ANFIS can also work as neural networks. Moreover, it 

gives a better result in the aspects of training time and noise toleration. 

The LSE can account for this better result. When ANFIS is trained by the hybrid 

learning, it only need 1 training pass to achieve the RMS error less than 10"5 for the 

cases of XOR，AND and OR. However, when ANFIS is trained by gradient descent 

with adaptive step size and momentum. It requires 110 training epochs for XOR 

case, 98 training epochs for OR case and 102 training epochs for AND case. 

Base on the gradient descent learning, we construct a neural network to simulate the 

logical operator AND, XOR and OR. The neural network has 3 layers，2 nodes in 

input layer, 5 nodes in the hidden layer, 1 node in output layer. The neural network 

is trained by backpropagation algorithm with adaptive learning rate and momentum. 

The neural network needs 86, 129，91 training epochs for AND, OR, XOR 

respectively. This result shows that with the gradient descent learning for modeling 

of logical operators, ANFIS is not necessary better than neural network and the 

remarkable result from ANFIS can be explained by the LSE in hybrid learning 

algorithm. The error curve of both ANFIS and neural network, in the XOR case is 

shown in figure 5.4. 
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： 门 丨 n 
l4\ - !：：| . 

o i . . . 
nl I I I , . . I o' 1— ：：德 u -J ‘ 1 1 
U0 10 20 30 40 50 60 70 80 90 0 2Q 40 60 ^ 80. 100u 120 140 160 180 

Training epoch Training epochs 
(a) (b) 

Figure 5.4 : (a) is the error curve for neural network training, (b) is the error curve for ANFIS with 
gradient descent training. 

We have also try to increase the number of fuzzy terms (membership functions) for 

each input variables. When the number of fuzzy terms is 4，ANFIS still need 108 

training epochs for XOR. The result shows that further increase the number of 

membership functions does not improve the performance. This can be explained by 

the fact that the optimal number of membership function is reached，further increase 

the number of membership only increase the computations, but not improve the 
performance. 

5.2 Modeling of Nonlinear Function 

The second application is the modeling the 5mc function which is highly nonlinear 

in three-dimensional space. The sine function is 

�sin(x) sin(y) (5.5) 
z = sinc(x,y) -— x • 

i y 
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5.2.1 Architecture 

Based on (5.5)，the ANFIS has 2 input variables and 1 output variable. Since the 

sine function is highly nonlinear, more membership functions are needed to give an 

accuracy result, provided the optimal number of membership functions is not 

reached. This can be explained by the functional equivalence between radial basis 

function networks and fuzzy inference systems. In radial basis function networks, 

the number of basis functions reflects the complexity of the mapping to be learned, 

the more the basis functions, the more complex the mapping[8][30]. Therefore, 

instead of using 2 membership functions for each input variable, we use 4 

membership functions for each input variable. 

5.2.2 Training Data 

The range of the input variables is -10 to 10, the even values of the input variables 

are selected to be the training data. Based on this selection method, the training data 

can be evenly distributed in the input space. The output is calculated by the sine 

function directly. Table 5.6 shows part of the training data. 

Training ^ y z 

Set 

=7= ！To ^ T l O 0.00296 

2 .8 -10 -0.00673 

3 -6 -10 0.00253 

1 2 0 8 10 -0.00673 
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121 10 10 0.00296 

Table 5.6 ： Part of training data for sine function modeling. 

With this architecture, there are maximum 16 possible rules and 72 parameters 

which are composed of 24 premise parameters and 48 consequence parameters. 

5.2.3 Results and Discussions 

With the hybrid learning algorithm, ANFIS can simulate the sine function within 

150 training epochs, this remarkable result is achieved by adding the momentum to 

the gradient descent pass, so that ANFIS can escape from the local minimum. In this 

application, we can visualize how ANFIS perform its update on membership 

functions in its training, and also the power of using momentum in such kind of 

complicated problems. The training of ANFIS in this application can be classified in 

the following stages : 

Stage 1 : At the beginning of the training, because of the higher amplitude of 

the sine function around the origin, the RMS error is mainly 

contributed by that region (figure 5.6a). ANFIS shifts the centers of 

two membership functions to the origin to reduce the RMS error 

(figure 5.6b). As long as the centers of two membership functions 

shifting to origin, the firing strengths of the fuzzy rules with input 

variables around the origin will be higher. Base on (3.9), we found 

that if the firing strengths of the rules are higher, the effect of the 

corresponding outputs will be greater to the whole system. Hence, the 
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RMS error from the region of origin can be reduced, this also 

accounts for the rapid drop of RMS error at the beginning of training. 

Stage 2 : After two membership functions overlap each other and are centered 

at origin. The一 RMS error is mainly due to the error from the side 

regions. Start from training epoch 15.5 on (figure 5.6b), ANFIS 

spends all of its effort to approximate regions that contributes most 

of the error and forgets other regions. 

Stage 3 : As the training continue, the error will be mainly contributed by the 

side regions, and ANFIS will be trapped by a local minimum. With 

the momentum added, ANFIS can escape from the local minimum 

with the tradeoff of an increased RMS error (figure 5.6c). 

Stage 4 •• After escape from the local minimum, the distortion of the central 

region will be recovered in the subsequent training epochs (figure 

5.6d). After 40 training epochs, the approximated surface is already 

very similar to that of the original one (figure 5.6e). The model will 

keep on refining the surface and after 150 training epochs, ANFIS 

gives the result of RMS error less than 0.0005 (figure 5.6f). The 

result is difficult to be achieved by neural networks even the 

networks are trained for a number of hours. Figure 5.5 shows the 

surface of the original continuous sine function. 
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Figure 5.5 : The figure shows the surface of sine function at different sampling step (ss). (a) ss = 

0.5, (b) = 1, (c) = 2. 

Figure 5.6 shows the memberships functions and reconstructed surface of ANFIS at 

different training epochs and the RMS error w.r.t training epochs. 

OeNwahlp Functlcne for Input Variable X —f— ? 

0 8 \ / \ \ / Z = ANFIS<X,Y)— 
• \ / w •••'�. / 

06 Y v v 1 

M 今 /\ ：丨• 

：„XX A 
Z 一 : 、

 1 0
 "

1 0 

-10 -s ^ 5 10 
a, Training epoch = 0.5 

He*«wr8hip functlorw for Input Variaoie X 

画 ^ 
0 6 rl ^ h ^ S ^ 1

� 

y �’�.��-...... 
°-10 -s" ？ 5 “ 

b, Training epoch = 15.5 

llMfurailp function far Input VaftabU X 
Af f/‘ : �.V' z = fiNFIS(X,Y)— 

0.B \ / fK 
o.s I ; / \ \ Z 

. “ / / \ ; / \ \ 0.4, 

： ： / M a X 
. . z J 、 、 - _ 

5 f “ 3 r° 

b, Training epoch = 19.5 
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^ Error RHS Error on f̂FIS p̂llĉ tlm 2 

i l l 
0 20 40 SO 80 100 120 140 ^ 

Epoch« Y 
lô -qo 

Figure 5.6 : The figure shows the membership functions of each variables and the reconstructed 
surface of ANFIS at different training epochs. The last two graphs are . the error curve and original 
surface of sine function for training. 

When the momentum is removed from the hybrid learning, we found that ANFIS is 

not able to escape from the deepen local minimum and yields in a worse result. 

Figure 5.7 shows the error rate and reconstructed surface of ANFIS (without 

momentum) after 150 training epochs. We can see that the reconstructed surface is 

worse than that in figure 5.6. Thus, we can conclude that momentum can be used to 

assist the ANFIS training to escape from local minima. 

%…….M……ii)…….……1M..…ii.…f X
 Y 

RMS error vs training epochs Evaluated ANHS surface 

F i g u r e 5.7 ； The error curve and evaluated surface of ANFIS training without momentum. 

When ANFIS is trained with gradient descent, training takes longer time. This can 

be e x p l a i n e d by the size of searching space. In gradient descent learning, the 

consequent parameters are also tuned by gradient descent, hence, the searching 

space is very large and more time (training epochs) is needed. It should be noted 

that，the searching space increased exponentially with respect to the parameters 
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increasing. Although, ANFIS takes more time in gradient descent training scheme, 

it still give a better result than neural network. Figure 5.8 shows the final 

reconstructed surface of ANFIS and neural network after 10000 training epochs. 

The RMS error of ANFIS is 0.0015 and that of neural network is 0.0022. Similar as 

the ANFIS, the neural network is trained with momentum and adaptive learning 

rate. 

(a) (b) 

Figure 5.8 : Reconstructed surface of sine function, (a) From ANFIS trained with gradient descent 
only, (b) From Backpropagation Neural Networks 

5.3 Chaotic Time Series 

In the above application, we have shown that ANFIS is able to model a highly non-

linear function. This application aims to demonstrate the predictive capability of 

ANFIS which was used to predict the future values of chaotic time series. 

The chaotic time series is a benchmark problem[13] because it's period is non-fixed, 

moreover，the change of initial parameters can modify the behaviors of the series. In 

this application, the time'series is based on the chaotic Mackey-Glass differential 

delay equation defined below : 
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1 + x - r ) 

To find the solution of equation (5.6), we apply the Runge-Kutta method to find the 

numerical solution to the equation[13]. ， 

The objective of this application is using the past N data values up to the point t to 

predict the future value at point t+D. In this application, we use 4 past data values 

to predict to future value. We will discuss the training data in the subsequent 

section. 

5.3.1 Architecture 

As mentioned before, we use 4 past data values for prediction, that means we have 

to use 4 input variables. Each input variable was assigned with 2 membership 

functions arbitrarily. There are totally 16 rules in the system and 104 training 

parameters, of which 24 are premise parameters and 80 are consequent parameters. 

5.3.2 Training Data 

Suppose the current time stamp is t, the four input data are x(t-6), x(t-12), x(t-18) 

and x(t — 24). The predictive value is x(t). Each d a t a value is separated by 6. 

T h e initial conditions are x(0)-L2 and r=77. From the Mackey-Glass time series, 

1000 training data are extracted. The time stamp of the training data is from t二 124 

to t-1123. It is supposed that the data values before t=124 are known and are used 

to train the data from f二724’ 

5-17 



�‘=:二-.-二二： Applications 

The first 平(from t=124 to t=124^) data values are used to train the ANFIS, the 

rest are used to test the accuracy of the prediction. For different test cases, the 

values of 平 are different. 

5.3.3 Results and Discussions 

A number of cases have been tested to evaluate the predictive power of ANFIS. For 

each test case，the number of training data is different. The parameter of each test 

case are shown in the table 5.7. 

Test cases Number of 

training data 

1 100 

2 0̂0 
3 300 ~ 

4 400 

~ ~ ~ ~ 5 0 0 ~ 

Table 5.7 : The number of training data for each test case. 

Figure 5.9 shows the chaotic time series and the estimation error each test case. 

• 
i •i I 
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0.4I 1 I I I 丨 U I I V I 
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Estimation error: training data = 400 

Figure 5.9 : Chaotic time series and the estimation error in each test case. 

Note that the series is approximated very accurately and there is visually no 

difference between the two. Also, the RMS error can only be shown on very fine 

scale. The application shows that ANFIS give outstanding performance in 

predicting the chaotic time series even though series highly complex. We can 

conclude that ANFIS can be used to model highly complexity system. 

5.4 Inverted Pendulum System 

In this application, ANFIS is used to construct a simple f u z z y controller through the 

use of temporal back propagation which means to apply the back-propagation-type 

gradient descent method to propagate the error signals through different time 

s t a g e s [ 1 4 ] . The controller has to keep the state variables of the system to follow a 

given desired trajectory as close as possible. The whole system contains a fuzzy 

controller which based on the current values of the state variables to determine the j 
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action to be taken, and also a plant calculates the values of the state variables based 

on the action taken by the controller. The basic idea of our application is to 

implement both the fuzzy controller and the plant at each time stage as a stage 

adaptive network, and cascade these stage adaptive networks into a trajectory 

adaptive network to facilitate the temporal back propagation learning process. 

The inverted pendulum system (figure 5.10) is composed of a rigid pole and a cart 

on which the pole is hinged. The cart moves on the rail tracks to its right or left, 

depending on the force exerted on the cart. The pole is hinged to the cart through a 

frictionless free joint such that it has only one degree of freedom. The control goal 

is to balance the pole starting from non-zero conditions by supplying appropriate 

force to the cart. 

angle 

Force w — • 

Figure 5.10 Inverted Pendulum 

The dynamics of the inverted pendulum system are characterized by two state 

variables: 0 (angle of the pole with respect to the vertical axis), ^(angular velocity 

of the cart). The behavior of these two state variables is governed by the following ^ 

differential equations [14]: 
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g * sind + cosQ * 
e= ^ ^ l (5.7) 

jJ 4 m* cos2 ̂  
I . 

V3 mc+m J 

where g is acceleration due to gravity, mc is the mass of the cart, m is the mass of 

the pole，I is the half-length of the pole and F is the applied force in newtons. Our 

control goal here is to balance the pole without regard to the cart's position and 

velocity. 

5.4.1 Stage Adaptive Network 

Figure 5.11 shows a block diagram of a feedback control system consisting of a 

fuzzy controller and a plant. We assume the delay through the controller is small 

and the state variables are accessible with accuracy. 

State k F u z z y Controller _ t k s tate k + 1 

• (FC) • ‘ 
Plant • 

• 

Figure 5.11 : feedback control system 

An obvious candidate for implementing the FC block in the figure is the ANFIS 

architecture, since it has exactly the same function as a fuzzy controller. If we have 

p inpUts to the plant, then the FC block can be implemented by our modified ANFIS ] 

with p outputs (section 3:2.6). For the implementation of the plant block, ANFIS is 

also used, because it has a model-insensitive attribute which make it able to 
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represent the input-output behavior of the plant. Consequently, the block diagram of 

figure 5.11 can also be viewed as an adaptive network containing 2 subnetworks, the 

FC block and the plant block. Subsequently, the adaptive network of figure 5.11 is 

referred to as SANk which represents the stage adaptive network[14] at time stage k. 

5.4.2 Trajectory Adaptive Network 

Given the state of the plant at time t二k+h, the FC will generate an input to the plant 

and the plant will evolve to the next state at time (k+l)xh. By repeating this process 

starting from t=0, we obtain a plant state trajectory determined by the initial state 

and the parameters of the FC. The state transition from t=0 to mxh is show 

conceptually in figure 5.12 in which the adaptive network consisting of m SANk'st 

k=0 to m-1 is called Trajectory Adaptive Network (TAN)[14]. 

State 1 State 2 State m+1 _ ； ； 
I — I ‘ - • ~ j I ~ ~ ~" ~__ ! 

State 0 ！ 1 I i p I I • . .i: • 

I • ； . I ^ J ； ： ； ！ 

S A N a 1 S A N T _ - - - _ - 1 " S A N m-1 “ “ 

Figure 5.12 : Trajectory Adaptive Network 

Accordingly, we can still apply the back-propagation gradient descent1 to minimize 

the differences between adaptive network outputs and desired outputs. In order to 

m ake the inputs and outputs more explicit, we redraw figure 5.12 to get the 

t r a j ec tory adaptive network shown in figure 5.13, where the inputs to the network 

i LSE is not applicable in temporal back propagation. 
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are the initial state of the plant at time = 0，the outputs of the network are the state 

trajectory from t=h to mxh7 and the adjustable parameters are all pertaining to the 

FC block implemented as an ANFIS. Hence each entry of the training data is of the 

form : (Initial State; Desired Trajectory), and the corresponding error measure to be 

minimized is 

E = ^ ( h xk) - Sd(h x k)\\2+Xj]\\i^h* k)\\2 , (5.8 

k=l lc=0 

where in(hxk) is the controller's output at time /zx众[14]. By a proper selection of X, 

a compromise between trajectory error and control effort can be obtained. Though 

there are m FC blocks, all of them refer to the same fuzzy controller at different 

time stages. In other words, there is only one parameter set for all m FC blocks at 

different time stages. 

desired 
actual trajectory I trajectory 

• . . 丨 . ： > > < ] — — 

State 1 

State 2 ^ ^ 
• 眷 . 』 

^ Error ^ 
I State m十 ‘ 

Measure 

. 「 - : … 「 … 门 ” ‘ . 「 

State 0 ； r — — ； [ I • — ！ I p n ' ； 
L - - - S A 狐 … � l — — J ' - - - - S A N m ^ l - - - ' L ^ _ 

\ / � � / 

�� \ : \ � / 

Para ,e terSet U T-TP"ate 

Figure 5.13 modified trajectory adaptive network 

5.4.3 Architecture and Training data 
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Controller Block_ Plant Block 

Figure 5.14 Stage adaptive network, used in the simulation 

Figure 5.14 shows the stage adaptive network used in our simulation. The plant is a 

deterministic nonlinear dynamic system with precisely defined differential 

equations, so we can just use two nodes to calculate the state variables at the next 

time step by linear approximation[14]: 

^ xj(t + h) = hxi(t) + xj(t) 

x2(t + h) = hx2(t) + x2(t) (5.9) 

where and x2(-) These two equations are the node functions of 

the plant block in figure 5.11. 

The controller is implemented as an ANFIS with two inputs, each of which is 

assigned with two membership functions, so it is a fuzzy controller with only four 

fuzzy rules. 

In the training we employ 100 stage adaptive networks to construct the trajectory 

adaptive network, and each stage adaptive network corresponds to the time 

t r a n s i t i on of 10ms. That is, the time step (h) used is 10ms, and the trajectory 

adaptive network corresponds to a time interval from t二0 to t二Is. If h is too small, 
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a large network has to be built to cover the same time span, which increases the 

signal propagation time and thus delays the whole learning process. On the other 

hand, if h is too big, then the linear approximation of the plant behavior may not be 

precise enough and a higher order approximation has to be used instead. For the 

training data pair, the initial states is a two-element vector which specifies the 

initial condition of the pole while the desired trajectory is a 100-element vector 

which contains the desired pole angle at each time step. In our simulation, only two 

entries of training data are used : the initial conditions are (10,0) and (-10,0), 

respectively, and the desired trajectory is always a zero vector. That is，we expect 

that the trajectory adaptive network not only can learn to balance the pole from an 

initial pole angle of +10° or -10°, but also can achieve the control goal in an near-

optimal manner which minimizes the error measure� 

5.4.4 Results and Discussions 

The result of this application is very attractive. In the first place, ANFIS is trained 

with 10 epochs, then the system bases on the parameters from the training set to 

evaluate other un-trained checking data. It is amazing to observe that the FC is able 

to balance the pole in a very short time and also without any serious oscillation 

around the vertical as shown in Figure 5.15. 
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Figure 5.15 Result of simulation (a) angle (b) angular velocity (c) force applied 

In the learning phase, we supply only two training data, corresponding to initial 

conditions (10，0) and (-10, 0) of the pole. It would be interesting to know how the 

FC deals with other initial conditions, or with a longer or shorter pole. Simulations 

have been performed around these test cases, and the result is also very good. 

Again, the same fuzzy controller can perform the control task starting from the 

various initial conditions. Figure 5.16 and figure 5.17 shows the robustness and 

fault tolerance of the fuzzy controller obtained from the TBP ANFIS. 
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Figure 5.16 : Result of controller for simulation with different starting angle. 
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Figure 5.17 : Result of controller for simulation with different pole half length. 

One thing should be noted is that the proposed control strategy is quite general and 

can be used to control plants with diverse characteristics. Moreover, the a priori 

knowledge that we have about the plant can be applied in an auxiliary manner to 

speed up the learning process, this is one of the strengths of ANFIS over the 

traditional neural networks. 
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5.5 Chinese Characters Recognition 

The objective of this application is to recognize 300 printed 24x24 Chinese 

characters bitmap under noise based on the ANFIS. Unlike the previous applications 

which accept the input values directly, we have to transform the input before the 

input data are used by ANFIS. Transformation of the input data means to create an 

input vector from the input data, such input vector will be processed by ANFIS. 

For instances, a Chinese character is represented by a 24x24 bitmap, we cannot take 

the whole bitmap as training vector for ANFIS because its dimension is too large2 . 

Instead of using the bitmap as the input vector, we have to transform (preprocess) 

the bitmap into another form which has smaller dimension. 

5.5.1 Feature Extraction 

In fact, the transformation of the bitmap is the process of feature extraction. Feature 

extraction is a process to extract the information of the image (e.g. no. of pixels). 

This information is very important to the image. Based on this information, the 

o r i g i n a l character can be identified, or at least, reduce t h e s e a r c h space, so that the 

search of the character can be done easily and quickly. 

2If t h e whole bitmap is used, the input vector mil have dimension of 576 which is very high 

dimension. 
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In this application, signal transformation techniques are proposed as the method of 

feature extraction. Transformation is to transfer the variable (information) from one 

domain to another domain. After the transformation, small region of the frequency 

domain carries most information of the original signal. In other words, small region 

of the frequency domain information can be used to restore most part of the original 

signal. Actually, such signal transformation techniques are frequently used in signal 

analysis. 

Beside one dimension signal, this signal transformation technique can be applied to 

two dimension signal, such as image. Instead of using 2D-Fourier Transform, we 

use another transformation technique which is called Discrete Cosine 

Transformation (DCT). The reason is that the result of fourier transform has two 

components (real and imaginary), for each frequency, two components have to be 

considered. This will double the dimension of input feature vectors. 

Discrete Cosine Transformation (DCT) is similar to 2D Fourier Transformation. It 

can represent most of the signal (image) information in the low frequency 

components while there is only one component (real) in frequency domain. 

Since most of the information of the original image is represented by the low 

frequency components in the frequency domain. Even we ignore the high frequency 

components, by using the Inverse DCT, we can still construct the original image 

with some distortions. Therefore, DCT can also be a method of feature extraction. 

Moreover, the size of the dimension of feature vector will not be doubled because 

the frequency domain of DCT has only one real component. 
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We can implement the DCT directly based on the following equation[31]: 

r ( 、 , 、 ， 、 ¥ ¥ " 、 � ( 2 x + 1)wti1 「(2_y + l)V7C] (5.10) C (u , v)= a (u)a (v) ^ / ( x ' c o s c o s \ J ~ . 
x=0 y=0 L J L 27V _ 

The inverse DCT can be done by using the following equation[31]: 

f(x,y) = Yd^a(u)a(v)C(u,v)cos cos ^ ^ ^ . ( . ) 
M=o v=o L 丄N J L 27V _ 

f \ M n fo ru = 0 
where a(u)< , . 

[ 4 2 / N f o r u 二 1，2，...,N -1 

Although DCT only produce real number in frequency domain, there is still a 

problem for the direct implementation of DCT. For a 24x24 Chinese character, each 

pixel is either on or off. There is no gray level for each pixel. This characteristic 

will lead to DCT produce high amplitude in high frequency components. 

Since we want to minimize the number of dimensions of feature vectors, we shall 

select the low frequency components for constructing the feature vectors. Hence, it 

will be better for the feature vectors representation if most of the information shift 

from high frequency components to low frequency components. 

In order to reduce the amplitude of high frequency components, we try to form a 

grid of 2x2 pixel and provide a gray scale to each grid. For each grid, it can have 5 

gray level (0-4). The gray level is assigned according to the number of "on" pixels 

in a grid. This method is called “Gray Level Preprocessing (GLP)". After GLP，the 

original word pattern is still conserved. Figure 5.18 shows the Chinese character 

before and after GLP. 
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• 畔 隨 
Original Chinese character The character after GLP 

Figure 5.,18 : A Chinese character before and after GLP, notice that after GLP the 
size of the character is 12x12 with each pixel ranges from 0 to 4. The character 
after GLP is shown as a contour picture. 

An experiment has been conducted on comparing the direct implementation of DCT 

and DCT with GLP. The experiment selected 100 Chinese characters randomly, and 

evaluated the distribution amplitude in frequency domain for each of the above 

approaches. The result shows that the DCT with GLP can greatly reduce the 

amplitude in high frequency components. 

In order to decide which frequency components should be used in the feature 

vectors, another experiment is constructed to evaluate the distribution of amplitude 

in each frequency component. Figure 5.19 shows the result of this experiment 

• 

F frequence components. 

i 

figure 5.19 : The low frequency components contain the most DCT energy 
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Based on the result of the experiment, the frequency components f(0，0) to f (0 , l l ) 

and f(l，0) to f ( l l , 0 ) are used to constructed the feature vector. Figure 5.20 shows 

the DCT of a Chinese character. 

600. 

400J 

The character after GLP V y � ^ ^ ^ ^ 15 

1 0 

0 0 

DCT of the GLP character. 

Figure 5.20 : The figure shows the DCT of a GLP character. 

Although the DCT is already have the noise3 filtering capability, a noise filter is 

still embedded in Feature Extraction process in order to improve the performance of 

the system. 

In order to reduce the noise, a noise filter is added before the DCT is applied on the 

characters. After the gray level is assigned to the grids, for those grid with gray 

level 1. its gray level will be changed to 0. The result shows that the DCT with GLP 

gives more than 10% improvement over the system without GLP under the noise 

level4 0 to 10. Figure 5.21 shows a noise filter removing the noise from a GLP 

character. 

yNoise r e f e r s to the while noise which change the states of pixels randomly. Under the noise 

environment, some "on"pixels may change to "off and vice verse. 

^Noise Level refers to the percentage of the bitmap pixels of the words that have changed states. 
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Noise Character -

Figure 5.21 ： The figure shows how the noise filter removing noise. 

GLP Noise Filter DCT _ _ _ > E x t r a c t i n g l o w 

^ ^ ^ freq. components. 

• 
• . 

Chinese Characters Feature Vectors 
(24x24 pixel bitmap) (23 dimensions) 

Figure 5.22: The procedure of feature extraction. 

Figure 5.22 shows the procedure of feature extraction. Figure 5.23 shows the feature 

vectors of a Chinese character with and without noise. The deviation between two 

vectors is 1.8447°. The deviation was calculated by the cross angle between two 

vectors. We found that the deviation between two vectors is very small and can 

conclude that DCT has noise toleration capability. 
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Normal Noise Feature 
Feature Vector Vector 

~ 0.8023 0.8015 
-0.0263 -0.0248 
-0.2066 ‘ -0.2034 
-0.0230 -0.0194 
0.0104 -0.0000 
-0.0291 -0.0338 

"-0.2261 -0.2225 
0.2301 0.2198 
0.1387 0.1425 
-0.1336 -0.1237 
-0.0446 -0.0439 
0.1353 0.1415 
0.0056 0.0149 
-0.2017 -0.1955 
0.0170 0.0122 
-0.0784 -0.0874 
-0.0564 -0.0673 
-0.1834 -0.1889 
-0.0595 -0.0601 
0.1297 0.1336 
0.1638 0.1722 
0.1352 0.1446 
-0.0228 -0.0152 

Figure 5.23 : Difference between feature vectors with and without noise 

Figure 5.24 shows the reconstruction of the original character by Inverse DCT, the 

reconstruction is based on the feature vector only (low frequency region) and the 

rest coefficients (high frequency region) are set to zero. The figure shows that the 

reconstructed word can still be recognized by human being. 

, n ^ m 
Feature Vector of the I Inverse D C T > ’ ^ ^ 

figure 5.24 : The figure shows the reconstruction of the character by the feature vector 
though the Inverse DCT. 

Since Chinese characters are distinct, after inverse DCT, the original character can 

s t iH be recognize visually, therefore we can conclude that our method of feature 
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extraction can generate a distinct set of feature vectors, which at least can be 

classified manually. 

After the feature vectors are created, they can be used as input to ANFIS for 

training and recognition. 

5.5.2 Architecture 

Since the feature vectors contain 23 dimensions, the ANFIS has 23 input variables. 

For each input, we intended to assign 2 membership functions to it, however, we 

found that the number of fuzzy rules increase rapidly as the number of membership 

functions increases. If each input variable has 2 membership functions, then there 

will be 223 fuzzy rules which are difficult to be handled. 

Instead of assigning 2 membership functions to each variable. 6 input variables are 

assigned with 2 membership functions, the rest are assigned with 1 membership 

function. With this architecture, there are only 26 二 64 rules and it is less of 

structured knowledge representation and more of a black-box model (like neural 

networks). 

For the outputs of ANFIS, we used the multiple outputs ANFIS model discussed 

earlier (section 3.2.6). The ANFIS contains 10 output nodes, each of them produce 

either 0 or 1. In other words, the Chinese characters are represented by 10-bit binary 

codes. 
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5.5.3 Training Data 

In this application, we use 300 Chinese characters for training and recognition. First 

of all, the input feature vector of each character is generated, then the corresponding 

character code is generated. The training data set contains 300 noise data with noise 

at 2% (i.e. there is 600 training data, 300 noise + 300 no noise). The reason for 

including the noise data in the training data set is to improve the noise tolerate 

capability of ANFIS. 

5.5.4 Results and Discussions 

The training error of ANFIS is acceptable, after 65 training epochs, the error is 

0.001. However, for each training epoch, it takes more than 2 hours. For 65 training 

epochs, it is about 130 computation hours. 

The first reason for such long training time is the use of LSE. When the training set 

is large and the dimension of each training data is high. LSE will take a long time to 

be finished. This is the defect of using LSE as well as hybrid learning. 

T h e second reason is the number of outputs. For the previous application, the 

number of output of ANFIS is 1，while in this application, the number of output is 

10. It is not difficult to see that the computational time increase in a greater extent 

as long as the number of outputs increased. 
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Although the training time of ANFIS is quite long, it gives a remarkable result on 

this application. In order to evaluate the performance of ANFIS, we use the original 

300 training data to test the accuracy of ANFIS at different noise levels and the 

result is shown in table 5.8. Figure 5.25 shows a Chinese character at different noise 

levels. The high accuracy in noise level 2 is due to the fact that we have added to 

the training data set a set of noise level 2 data. 

Noise Level Accuracy 
0 100% 
1 98% 
2 100% 
3 85% 
4 72% 
5 63% 
7 40% 
9 40% 

Table 5.8 : Accuracy of ANFIS at different noise levels. 

— f •丨 li f H I 1面 丽• 

M m m 
Noise Level = 1% Noise Level = 2% Noise Level = 4% 

圓 M m 
Noise Level = 6% Noise Level = 8% Noise Level = 10% 

Figure 5.25 : The figure shows a Chinese character at different noise levels. 
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The above result shows that ANFIS can have a very good performance on problem 

of classification which is a classical problem of neural networks. Moreover, ANFIS 

shows it noise tolerate capability for classifying the noise patterns correctly. 

5.6 Image Coding 

Since there is a limitation on the bandwidth of communication channels, when 

image files are transferred through the communication channels, source coding of 

images is needed to reduced the amount of data to be transferred, hence, save the 

bandwidth. 

The source coding of images can be divided into three steps which are shown in 

figure 5.26. 

N Codeword � 
• � T r a n s f o r m a t i o n • Quantization ^ Assignment ^ 

Figure 5.26 : The three steps for the source encoding of images. 

Transformation aims to convert an image to the most suitable domain for 

quantization and codeword assignment. Quantization aims to represent a continuous 

value by discrete value. Codeword assignment aims to use as less bit as possible to 

represent the quantization levels. 
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This application applies ANFIS in one of the quantization methods - DPCM. ANFIS 

will be used as a prediction engine of DPCM. Our implementation is based on the 

idea proposed by Woods and O'Neil. First of all, subband coding will be applied on 

the image. Then, each band will be coded by DPCM with ANFIS. 

5.6.1 Subband Coding 

In this application, the image will be divided into 16 bands by using subband 

coding. The advantage of using subband coding of digital waveforms is that it splits 

the full frequency band into several subbands, each of which can be encoded more 

accurately. Coding error is confined to individual frequency subbands. Further, by 

varying the bit assignment among the subbands, the noise spectrum can be shaped to 

suit the human perception. In the subband coding of speech, the noise spectrum can 

be shaped according to the subjective noise perception of the human ear. 

For the 2-Dimensional processing of images, the image is divided in a 2-

dimensional way. For an ideal filter, the 4-band partitioning of the image is shown 

in figure 5.27. The splitting of the image into subband can be done as shown in the 

system diagram in figure 5.28. 
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f 2 
-Ht 

22 lb I - 22 

4J4+L. 
1 21- tjt z i ^ 

22 IE 22 

^ ‘ 
Figure 5.27 : 4-band partitioning of image in frequency domain. 

Down-sampling . Up-sampling 
H11 (2x2) ^ P (2x2) ‘ F 11 — 

Down-sampling . . Up-sampling 

— H 1 2 — (2x2) ~ ^ ~ P (2x2) F 12 — 
x(m,n)_ L 1 _ J L _ _ J ~ ~ ~ ~ _t>u(m，n) 

Down-sampling . Up-sampling 一 _ 

— H 2 1 ~~~ (2x2) ^ P (2x2) F21 — 

Down-sampling . Up-sampling 

" " " H 2 2 (2x2) ^ P (2x2) F 22 ~"" 

‘ (a) (b) 
Figure 5.28 : (a) Block diagram of 4-band analysis stage, (b) Block diagram of 4-band synthesis 
stage. 

If an ideal filter is available, the image can be reconstructed perfectly by using the 

analysis and synthesis stages as shown in figure 5.28. Nevertheless, an ideal filter is 

not available in practice. Instead, a FIR filter is used to approximate the ideal IIR 

filter. In filter design, the main concern is the perfect reconstruction of the image. 

In the following, Hfj, i 2}J e { 1 , 2 } , denote the filters for the analysis stage, 

a n d F j j ) i e { i ， 2 } , j e { l , 2}, denote the filters for the synthesis stage, where 1 

c o r r e s p o n d s to the low frequency bank and 2 corresponds to the high frequency 

bank. Referring to Figure 4(a) and the initial four-band splitting, we require that the 
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4 

four subband filters Hu through H22 have mirror-image conjugate symmetry about 

their mutual boundaries, which for real htj is equivalent to 

， / ^ ( ©” ©。二钱彳①“①之 +冗） (5.12) 

^ ( 0 3 ^ ( 0 2 ) = i^^CO^TT,®^ . 
H22 ((0x ,(02) = i/11(CD1 +7l,C02 +7C) 

Denoting the outputs of the filters in figure 5.28(a) as xu through x22, we have the 

outputs Yjj after (2, 2) downsampling, 

i i i C5 13V 

(CO!，CO 2 ) = 7 H ^ ( ， 令 ) . , " V " ) . 

After synthesis, the outputs UfJ of the interpolation filters are 

U i j((0 l,(02) = Y y ( 2 ( ^ 1 ^ 2 ) F ^ 1 , ( 0 2 ) , (5.14) 

and the final output U is 

i i l i i 
t/fCD "CD 2少=—X 2 7 +紐，� 2 +况」/I! Z 巧 知 / +紐，� 2 +况」巧丫03 "® 2A/ 

4 k=oi=o i-o j=o (5 i5) 

From (5 15), we can see that there is an aliasing component Ua generated[19], where 

r i i (5.16) 
Ua((0lt(H2) = - + 虹 ， ① 2+奴）Fy(�丨，① 2)] 

4 (lc,l)羊(0,0) i=0j=0 

which will vanish if and only if 

Z H ^ + bz，(o2 + I n 风 ( � ” � )二 0 for (众,/)垆（0，0). (
5
.

1 7
) 

i j 

By choosing the same reconstruction filters[19] as 
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。(①！，①̂二斗辟汄…,…） (5.18) 

^ 2 ( C O 1 , c o 2 ) = - 4 ^ 1 2 ( C O 1 , C O 2 ) 

巧 1 ( ® ” ® 2 ) = - 4 丑 2 1 ( 〜 ( ^ ) 

and found that the aliased terms automatically vanish for (k, /) = (0, 1) or (1, 0). 

However, in the case (k, /) = (1, 1) the aliased term will vanish iff 

i/nOBpCO^i^JcO! +7T，C02 +71) 二//n0X)”(O2 +7T,C02). (5.19) 

We can show that any separable filter Hn would clearly satisfy (5.19). If we define 

the 2-D baseband filter hu as the separable product 

a (5.20) 
h11(m,n)~h1(m)h1(n), 

By taking the Fourier transform on (5.20) and substitute it into (5.19), we can find 

that the 2-D QMF filters can be taken as a separable product of identical 1-D QMF 

filters [19] and the 2-D analysis filter banks can be obtained by simply multiplying 

two 1-D filters, i.e. 

^(CO15CO2) = ^(CO1)^(CD2)5 ! < / , / < 2. (5.21) 

Consider a 1-D Subband filter pair hx and h2 which satisfy 

A O ) 二、(厶 一 1 一77) 0<n<L/2-\ (5.22) 

胁 ) = ( - 1 ) 、 ( " ） 

时 ⑷ I + 1 砣 ⑷ 卜 1 

Base on (5.18) and (5.21)，all filters (Hu and ) in the system can be found. By 

employing a linear phase symmetric LxL¥lR filter for hu with L even, we have 

/2„(m，乃）二、（丄一1-叫丄一 1 一 ")， 0<m,n<\L-l. (5.23) 

5-42 



：二： Applications 

and we can show that the phase of the output signal U would have a linear 

phase[19]. 

By selecting the low-pass filter , we can obtained the 4-subband filter as shown 

in figure 5.29. ~ 

. . . I ^ ‘ 

f _ 1 [ _ H ^ ) — ^own-sampling ^ 〜 机 … 

TJ / � Down-sampling . ( 1 , 2 ) . Wfz ) — —— ’―——J —— 
(2， I 

L — J J — H/-ZJ — D 0 ~ P H N G . ( M， N ) 

r z ( l j 2 ) ^ 12 

x(m，n) I 

R o w s Columns 

Down-sampling � ， � 

k 1 ——— (1,2) >y21 ( m 'n ) 

Down-sampling 
H�-z )—— —J 1 

(2,1) 
— H i - z J — Down-sampling y (m, n) 1 ^ ^ (1,2) ^ 

I 
Figure 5.29 : Separable 4-subband filter. 

We can build the 16-subband filter by cascade a 4-subband filter with another four 

4-subband filters as shown in figure 5.30. 

H Z Z Z Z Z F - — 

H F 
— u(m, n) 

x ( m , n ) n H ~ F ———1> 

H I — — H Z Z Z H F F 1 

— — — H Z Z Z H F 

Figure 5.30: Block diagram of full 16-band system using 4-subband filter. 
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5.6.2 DPCM with ANFIS 

After the image is splitted into 16 different subbands, an ANFIS will be applied on 

different subbands for DPCM, the number of training data for each ANFIS is less 

than that of directly code the image with ANFIS. This is one of the reasons of using 

subband coding before DPCM with ANFIS, it aims to reduce to training data set of 

each ANFIS model. Hence, the accuracy and training time of ANFIS can be 

improved greatly. 

Instead of using the conventional N-tap linear predictor, we use ANFIS as the 

predictor engine. If ANFIS gives a more accuracy prediction than N-tap linear 

predictor, the performance of DPCM can be improved. In other words, less bits can 

be used to code the data. Figure 5.31 shows the conventional DPCM system (a) and 

DPCM with ANFIS (b). 

X(n) d(n) p d'(n) X(n) d(n) ^ d ' (n) 
^ Quantizer ——•Q——• Quantizer — 

jk L A . L : 

Predict and compare loop Predict and compare loop 

N-tap ^ 緩 。 ^ ( +) 
< predictor ^ ^ ^ Predictor V 

[_______] X I. 
Predict and correct loop Predict and correct loop 

T — J —̂— 
�
 � b ) 

Figure 5 31 : Two approaches to DPCM, the equation of predict and correct loop is 
X'(n)=X"(n)+d'(n). (a) One-tap predictor DPCM. (b) ANFIS predictor DPCM. 
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Nonuniform quantization is used to code the prediction error. The compression 

function is based on the ji-law compander which is the North American Standard. It 

is in the form of 

,门 > 1 / � 7 (5.24) 
ln[l + \iC/ )] 

y 二 y 匪 7 / 7
 7
 7 sgn(x). 

where sgn(x) is the sign of x and ymax = 1. 

The parameter ]u in the ji-law compander had originally been set to 255 for 8-bit 

converter[2]. 

The bit assignment of the nonuniform quantizing for each subband is according to 

the following equation, 

/ 「？ I (5.24) 

Bk^B + -log2 -f- , 1 < k < M , 
2 L a g / » . 

M 
where a2

 t is the prediction error variance on band k, and g2 二 p lc) is the P’K 

geometric mean of the a2
pk [18][19]. 

5.6.3 Architecture and Training data 

In this application, each ANFIS model has 3 input variables and 1 output variable. 

For each input variable, 3 membership functions are associated with it. 

In order to generate the training set, first of all, subband coding will be applied on 

the image to divide the image into 16 subbands. A set of training data will be 
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generated from each subband. Each training data set will be used to training an 

ANFIS model, hence, there are totally 16 ANFIS models. 

Training data are generated by considering a 2x2 grid with 4 pixels. The upper left, 

upper right and lower left pix'el are taken to be the input data for ANFIS. The lower 

right pixel is the predicted pixel (output) of ANFIS. Figure 5.32 shows how the 

training data is generated. 

Training data 1 

feedback error 

Training data 2 
(i-ij-i) (ij-i) r — — — — — — 

^ ANFIS Predictor _ 
2x2 Grid ； ^ 

(i-lj) (W “ H. j 

1 Training data 3 1 

• Expe'ctel "Dutpuf — 

Figure 5.32 : The ANFIS training model and generation of training data from a 2x2 grid. 

For a nxn subband, the total number of training data is (n-l)x(n-l). For example, a 

subband of 64x64 pixels, it has 3969 training data. 

5.6.4 Results and Discussions 

T h e proposed Subband coding and DPCM with ANFIS coding scheme is used to 

code the "Lena" image which is shown in figure 5.33. 
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m 
Figure 5.33 : Original "Lena “ image. 

After the image is divided into 16 subbands by SBC, each subband is trained with 

an ANFIS model and the information of the prediction error is recorded in table 5.9. 

B a n d ) ~~Prediction error Prediction e r r o r M i n i m u m Maximum 
m e a n variance prediction error prediction error 

H - l l 0.0940 352.77 -120.83 230.94 
11.12 _ -0.0022 59.12 -66.51 96.97 
11^21 -0.0043 5.96 -14.58 1 8 - 2 

f T 2 2 -0.0152 19.13 “ -31.62 28.56 
i ^ H 0.0412 19.70 -36.47 一 40.09 
12^12 -0.023 16.80 -38.53 2 ^ 5 3 
12-21 -0.0022 3.64 -12.94 16^2 
1 ^ 2 2 -0.0170 9.47 -33.19 2 8 - 6 8 

T T T n 0.0330 2.02 -16.24 2 0 3 4 
~ 2 M 2 -0.0052 1.66 ] 2 M 
2iT21 0.0000 1.31 -8.68 U.97 
21^22 0.0004 1.58 “ -9-19 L l i 
2 2 ^ 1 -0.0170 4.61 " “ ~ -29.09 
2 2 ^ 2 -0.0030 6.72 -19.51 
2 2 ^ 1 0.0120 3.82 -27.52 65J2 
22-22 0.0030 4.95 - H . 6 1 

Table 5.9 : Information of prediction error. 

5 refers to the subband resulting from filtering the image by H” and then by Hk, 
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A comparison has been done on the DPCM with 3-tap predictor and ANFIS 

predictor on the band 11-11. Table 5.10 shows the results of the comparison. The 

coefficients of the 3-tap predictor are from the "IEEE video course : Digital and 

Video Compression coding" which was presented by John W. Woods and James 

Modestino[18]. The reason -of using the 3-tap predictor is to compare with the 

ANFIS with 3 input variables. 

DPCM with Prediction error""“ Prediction error Minimum Maximum 
mean variance prediction error prediction error 

" “ 3 - t a p predictor 19.4088 478.91 -96.80 151.69 — 
ANFIS predictor 0.0940 352.77 -120.83 230.94 

1 ——————— Tabie j JO ； Comparison of the predictor error on band 11-11. 

Figure 5.33 shows the pdf of the prediction error of 3-tap predictor and ANFIS 

predictor. Based on table 5.10 and figure 5.34，we can conclude that the prediction 

capability of ANFIS is more accurate than that of 3-tap predictor. 

The pdf of prediction error of ANFIS predictor 
0.05. . r ：~-i ‘ ‘ 1 I 

0.045 L 1 

0.04L 1 

0.035 L \ 

2 � . � 3 

f 0.025 L j 

°-°15 I 
0.01 L A j 

°-005 „ A , l , 1 
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The pdf of prediction error of 3- tap predictor 
0.018, , , r , , 

0.016- I -

0.014- I 

0.012- j I -

s _ - - 醒 

£ 0.008 - U ^ ^ -

0.006 - l l ^ H 
0.004 -

0.002 - jt||| 

nlMM • l l ^ l ^ y j ^ B ^ W ^ n - . . . _ _ , 
-100 -50 0 50 100 150 200 

Prediction error : e 

(b) 

Figure 5.34 : The pdf of prediction error of (a) ANFIS predictor, (b) 3-tap predictor. 

In order to evaluate the quality of the reconstructed image, The Peak Signal to 

Noise Ratio (PSNR) is used. 

2552 

PSNR(dB) = 10log ——j} 

(5.25) 

Table 5.11 shows the comparison of PSNR6 of "Lena" image from 3-tap predictor 

and ANFIS predictor at different bit per pixel (bpp). It shows that ANFIS can give a 

better performance at each level. 

6 The psNR is calculated before the entropy coding. 
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Bit per pixel PSNR (ANFIS) PSNR (3-tap) 

1 bpp 29.2951 . 28.8172 

2 bpp 31.9848 31.0918 

3 bpp 33.4526 33.2240 

Table 5.11 : PSNR of reconstructed image of ANFIS and 3-tap predictor at different bpp level. 

_ 

� 
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(b) 

m^m 
m 

(C) 

Figure 5.35 : Reconstructed image "Lena" at (a) lbpp, (b) 2bpp, (c) 3bpp. 

Figure 5.35 shows the reconstructed image of "Lena" at different bpp. From this 

application，the prediction capability of ANFIS has been used in image coding. 
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6 Concluding Remarks 

The report has discussed the idea of neural network based fuzzy inference system 

(Neural Fuzzy System). The main idea is to embed the fuzzy inference system into 

an adaptive network or feed forward neural networks. Base on the learning 

algorithm of neural networks, the parameters of the fuzzy system can be fine tuned 

and the semantic of the knowledge can be extracted from the input-output patterns. 

Among a number of neural fuzzy systems, ANFIS (Adaptive-Networks-Based Fuzzy 

Inference System) from Jang was adopted for implementation. The architecture and 

learning algorithms have been discussed. The reason of adopting ANFIS in the 

project was because of the clear specifications of the ANFIS by Jang's paper and a 

number of remarkable results were reported for ANFIS. 

The implementation was based on the development of a C++ library for ANFIS. The 

library was used to build a number of applications for the illustration of ANFIS 

capabilities. The applications are ranged simple logical operators to complex 

classification or control problems. The implementation shows that the library can be 

used as a software prototype for N e u r a l - F u z z y applications, so that engineers can 

simulate their Neural-Fuzzy applications before put them into hardware (e.g. VLSI) 

implementation. - -

Although all applications yielded the remarkable results from ANFIS, ANFIS is not 

a problem free model. Because of the lack of expert knowledge, in most cases, all 

possible rules are embedded in ANFIS. In the report, we have shown that the 
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training time grows exponentially with respect to the number of fuzzy rules. 

Instead, ANFIS should only embed those rules with higher firing strengths and this 

is the problem of systems identification. For this problem, generic heuristic search 

(such as tabu search) from the field of Artificial Intelligence can be considered as a 

solution. This can be a further enhancement of the project. 

Besides the explosion of training time, the proposed hybrid learning algorithm do 

has its limitation when the number of training data is large. The LSE of hybrid 

learning will take a long time to approximate the solution of the matrix equation 

(3.32). Moreover, dealing with the real time applications, such as control problems, 

hybrid learning is not applicable and gradient descent learning has to be used 

instead. 

In the applications of ANFIS, ANFIS shows it capability in functional mapping1. 

The results are outstanding and better than those of neural networks. The explicit 

structural knowledge representation can account for the outstanding performance of 

ANFIS. 

In this project, ANFIS has been proven to have good performance. This implies the 

adaptive networks with explicit structural knowledge representation have a better 

performance than traditional neural networks with implicit knowledge 

r e p r e s e n t a t i o n . I do think the future research direction should approach to the 

explicit structural knowledge representation. 

/ Actually, all implemented applications belong to the catalogue of functional mapping and 

interpolation. 
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