
Rasterization Techniques

for

Chinese Outline Fonts

Kwong-ho WU
The Deoartment of Comouter Science
The Chinese University of Hong Kong

i

A dissertation submitted for the degree of
Master of Philosophy

June 1994

.
^
f
l
j
?

t
/
f

f

\

 ̂

«

,

、

 r
)
/

 J
^

...r.!
 .
i

\

'
•
•
•
J
/
'

一

)

/

^

:
/
>
>

<

？

 V

 -
L
I

 、/-

？

/

'

•

-

/

>

•

»

'

,

Y

 ,

:
.
.
r
•

；
 r

 i
v
v
i

 i,

 一

“

r

.

f
o

7
&
 \

，
，
"
：
/
.
;
!
-
a
1

 f
t
7
 r
A

,
.
J

一

 【
.
.
>

口

^

j

r

i

！

 v
<
'
-
v
-

」
1

7

T

i

,

f
 I

-••'.•-.••,:二
 c.
v
!
,
i

 ..

 /
s
"
一
.
4
-
v
J
7
s
,
i
.

^

 .

 ；、一

 r
f
r

\

/

v

'

-

r

-

t

-

'

/

 ̂

 .
 J

\
r
r
\
p

 ？
:

_

,
i
l
/
》

^

^
c
i
i
^
 y
、

Acknowledgments

Without the kindly help from my dearest friends, this thesis would never
have been completed. I would like to thank my supervisor, Dr. Y. S. Moon, for
his advice, guidance and encouragement. Without Mr. C. C. Poon's help, I could
hardly get my project started. I am also grateful to Mr. C. K. Chen for his advice
and technical support throughout this project.

K. H. Wu

Abstract

An outline font gives the shape description of a character with straight lines, arcs and

curves. It is now a very popular format for representing Chinese font data because it demands

relatively less storage and can be scaled to any size without shape distortion. However, the

outline font must be rasterized, i.e. converted to bitmap, before using in raster output devices and

the resulting bitmap characters usually look unsatisfactory.

In this thesis, we try to make some improvement on the steps (scan conversion and

filling) of the present rasterization method to build a more efficient rasterizer. Also, we are

interested in discovering how the rasterization speed would be related to the features (such as

stroke count) of the Chinese character, �

The other objective is to automatically generate hints for Chinese font so that the resulting

bitmap characters would retain most of their features. Font in Ming style is just used for illustration

and, in fact, the method can be applied for many other font styles，such as Gothic.

Finally, a series of experiments are done to compare the performances of the suggested

methods with the old methods.

一 — Contents

Contents

1 Introduction 1

1.1 Outline Fonts 2

1.1.1 Advantages and Disadvantages . 4

1.1.2 Representations. . 4

1.1.3 Rasterization . . . ^

1.2 Introduction to This Thesis . .. , 6

1.2.2 Organization j

1.2.1 Objectives 7

2 Chinese Charactets Fonts . . g

2.1 Large Character Set 8

2.2 Font Styles . 8

2.3 Storage Problems . 9

2.4 Hierarchical Structure 10

2.5 High Stroke Count , . • ；, s s » « , t , 11

3 Rasterization . 13

3.1 The Basic Rasterization 13

3-1.1 Scan Conversion ,： 14

3.1.2 Filling Outline 16

3.2 Font Rasterization 17

3.2.1 Outline Scaling 17

3.2.2 Hintings 17

3.2.3 Basic Rasterization Approach for Chinese Fonts 18

3.3 Hintings 20

3.3.1 Phase Control , . ， . , 20

3.3.2 Auto-Hints � . . . - 2i

3.33 Storage of Hintings Information in TrueType Font and Postscript Font • 22

4 An Improved Chinese Font Rasterizer - . 24

4.1 Floating Point Avoidance . • • • • * • • • •

4.2 Filling. . . • . . , . — — 2 5

4.2.1 Filling with Horizontal Scan Line . , , ’ . � M

4.2.2 Filling with Vertical Scan Line . . 27

4.3 Hintings 30

“ — Contents

4.3-1 Assumptions �

4.3.2 Maintaining Regular Strokes Width . oq

^•3 3 Maintaining Regular Spacing Among Strikes . . , , • . . 24

4.3-4 Hintings of Single Stroke Contour �

4.3.5 Storing the Hinting Information in Font File . 49

4.4A Rasterization Algorithm for Printing 51

4.4.1 A Simple Algorithm for Generating Smooth Characters 52

4.4.2 Algorithm 54

4.4.3 Results 54

5 E x p e r i m e n t s 56

5.1 Apparatus 56

5.2 Experiments for Investigating Rasterization Speed 56

5.2.1 Investigation into the Effects of Features of Chinese Fonts on Rasterization

Time 56

5.2.2 Improvement of Fast Rasterizer , . . . 5 7

5.2.3 Details of Experiments 57

5.3 Experiments for Rasterization Speed of Font File with Hints '57

6 Results a n d Conclus ions , 58

6.1 Observations 58

6.1.1 Relationship Bettveen Time for Rasterization and Stroke Count 58

6.1.2 Effects of Style 61

6.1.3 Investigation into the Observed Relationship 62

6.2 Improvement of the Improved Rasterizer * 64

6.3 Gain and Cost of Inserting Hints into Font File 68

6.3.1 Cost 68

6.3 2 Gain 68

6.4 Conclusions « * » 绝， » » _

6.5 Future Work ’ . . 6 9

A p p e n d i x

— — Chapter 1

Chapter 1

Introduction
\

A Chinese system has two fundamental functions: inputting and outputting Chinese chaiaaeis.

Actually, a Chinese input method is a mapping from the features (such as shape, structure and

pronunciation) of a character to a sequence of key strokes which can be entered to the computer

by keyboard or other Inputting devices. These key strokes are, In general, represented by roman

characters. Then the internal representation code (e.g. Big5 code) corresponding to this sequence

of key strokes is found standing for that character in computer (Figure 1.1). Before displaying a

character on screen or other output devices, the system must use the internal representation code

to access the font data precisely describing the shape of that character, which is then converted

into a format for display or printing (Figure 1.2),

done b y u s e r done by computer

Cli i i iese r—"X str ing in r - \ internal code
character R o m a n characters s tored in computer

Example：

_ • YMMR • A5A5

(Tsang-Je i code) ® g 5 c o d e)

Figure 1.1： Chinese input method.

internal code font data d i s p l a ^ ^ l e font

Bxample : ^

(Big5 code) (control points of (bitmap character)
the font outline)

Figure 1.2： Steps of displaying a character.

- 1

— Chapter 1

The input speed depends very much on the design of the input method and the skill of

the operator. Many input methods have been proposed to make it easier for the user to retrieve

the input code based on the features of the character, shortening the training time for a novice.

The output speed is mainly dependent on three factors： the time for locating the font

data，the time for transforming the font data into a displayable font fdrmat, and the time for

displaying the font data on the output device. The fiist and the third factor are mainly determined

by the data structure of the font file and the design of the output device respectively. Probably,

the second factor would be the critical one, especially when a large number of characters are to

be generated. If this conversion step can be sped up, the efficiency of the whole system can be

much improved.

In the past, bitmap font was not only used for storage but also employed for display and

printing. Because bitmap font can be directly used by raster output devices like screen and printer,

font conversion was unnecessary. However, since characters in bitmap representation are

practically non-scalable and expensive in terms of storage requirement, some scalable and less

storage demanding font representations, such as outline font, are developed.

Rasterization is the process to convert an outline character into the corresponding bitmap

character. In low-resolution output devices, the bitmaps generated from outline characters usually

do not look good enough. Grid-fitting or hinting should be applied to reshape the outline

character before a bitmap character with more regular and satisfactory shape can be generated.

1.1 Outline Fonts

An outline font gives the shape description of a character with straight lines, arcs and curves.

Originally, this technique is not raster oriented. The earlier output devices, such as plotter and

screen, were only able to draw lines and points, so they had to make use of unfilled outline fonts.

Before outputting in a bitmap device, these fonts must first be rasterized，that is, the curves and

lines are converted into filled bitmap fonts.

If the outline description of the font consists only of straight lines, it is a vector font

(Figure 1.3). The bitmap characters generated from vector font is satisfactorily smooth as long as

the size of the output font is small enough. Clearly, when very large font is generated, corners

would be likely to. appear at the curve portions.

D

Figure 1.3： Vector font

‘ 2

Chapter 1

More exact description of the font outline can be given by a combination of lines and

splines (Figure 1.4). In our discussions, outline font is referring to this kind of format

图囹囹
Br̂ •••••••鳳麗•••••••••••••••••••••••••••••••••• ••••fl r B••…•”………
(a) Ming (72) (b) Hun (52) (c) Kai (102)

™J I I
(d) Dai (72) (e) Gothic (90)

Figure 1.4： Outlines and control points (the number of control points is given in brackets)

A curve segment can be represented by a set of points which precisely control the shape

of the curve (Figure 1.5). These points are called control points. Their effects on the shape of the

curve depend very much on which type the curve is [Foley & van Dam 90，ch. 11]. Outline fonts

can be constructed either manually [Rubinstein 88，pp. 134-140] [Kohen 89] or automatically by

contour digitization [Moon & Hui 89] [Gonczarowski 91] [Liao & Huang 91].
0 pi . P^—一—

4 W — .
* p3 p2

(a) Ctibic B e z i e r curve (b) B-sp l ines

. . P 2

\ v t angent a t e n d point

\
P 1 * control point

(c) Q u a d r a t i c B e z i e r curve
Figure 1.5: Some examples of parametric curves.

"" ‘ “ 3 ~

Chapter 4

1.1 Advantages and Disadvantages

Because only the control points are stored in a outline font, fewer data are required, especially

w h e n compared to the case of bitmap font. Moreover, by adequately transforming the control

points, the outline font can easily be scaled up or down without shape distortion. As a result, just

one copyvof font data is sufficient for each style to derive fonts in that style in many different

sizes. “

However, the rasterization process must take some time before the font can be used in

raster output devices. The other shortcoming is that when a small raster character is generated

from an outline font data, its symmetry and regularity may be partly or totally lost during

rasterization.

1.1^2 Representations

In this section, we briefly go over the structures of two common outline font formats, TrueType

and PostScript.

TrueType Font

TrueType font [TrueType 90], which is supported by Microsoft Windows, is one of the most

popular outline font formats currently in use. We are now going into some details of the font file.

At the beginning of a TrueType font file, headers and tables are found to provide

information for the access of font data. Besides containing coordinates of control points and some

necessary information, the font data of a character can also include some instructions for grid-

fitting so that only desired pixels will be turned on during fasterization.

Shapes of characters are described by lines and parametric cubic (or quadratic) curves. A

contour is composed of a close series of lines and curves. Lines are defined by two consecutive

on curve points. Curves are defined by control points which describe B-spIines (e.g. Beziers), and

the combination of on and off curve points depends solely on the order of the B-spJine in use.

For example, if second order Bezier is used, a curve is defined by one off curve point between

two on curve points (Figure 1.5c).

Consecutive numbers are assigned to indicate the control points so that if the curve is

followed in the direction of increasing point numbers, the filled area will always be to the right. A

character can consist of one or many contours and a composite character can be constructed by

combining two or more simpler character outlines.

PostScript Fonts

PostScript is a page description language (PDL), which is a common output format allowing

documents to be transmitted between different systems for display and printing [Adobe 90]

[Holzgang 92] [Moon & Cheang 91]. In fact, PostScript is a true programming language with

variables, routines, operators and control structures. Since it is raster oriented, it provides font

“ ‘ “

“ Chapter 1

facilities to rasterize outline fonts described with lines, arcs and curves into bitmaps of the

required sizes. Also, its provision of font cache can raise the efficiency by preventing frequently

used characters from being repeatedly rasterized.

Treating text characters as ordinary graphical objects, PostScript handles font with

appropriate operators just like any other g raph ic s�For example, from the interpreter's view, a

triangle is conceptually equivalent to a character "p". As a result, it causes no trouble to combine

text and graphics on a page. PostScript makes use of font dictionaries to describe fonts. A font

dictionary, which can be referenced by a name literal, provides font data and procedures for the

construction of all the characters in that font. This information is then used by the PostScript

interpreter to rasterize characters on a string onto the current document being edited.

David A. Holzgang gives a brief summary of the PostScript font in [Holzgang 92]: "First,

PostScript actually does draw each character, using appropriate graphics operations； and second,
t h e PostScript interpreter creates characters through the use of a font dictionary that contains all the

information required to produce a given font, including the appropriate procedures for rendering

each character.“

1.1 S Rasterization

Rasterization or rendering is the process which converts outline shapes into bitmap images

(Figure 1,6). By proportionally scaling the control parameters, bitmap shapes of arbitrary sizes can

be generated from a single outline. Then the outline contour is put on a pixel grid and hintings

are optionally applied on the outline shape for grid-fitting. Finally, all the internal pixels are

turned on.

- ： — 5

“ - Chapter 1

和过切 pixel coordiiiates

B • _ Q 3) 0) ,
^ Scaler converts FUnits ' ... ^ . ' J (,
Digitize outliiie with to pixel coordinates and Outline s ized \
FUiiit coordinates sca les outline to s ize to new grid
in TrueType font file requested by application

I
struct s •

• - 腫 -

Scan converter dec ides 广 . , ' ' ^ , � . Interpreter executes
which p ixe l s to turn on G r n d " i l t t e d instructions associated

^ with glyph "B" and gridfits

I
n*!* Ĵ J î p ̂ ij

ijijij %«••• immmwww

S4 ffi ® ffi tt S4
•iii S+ � i+i；

Bi tmap i s rendered on
ras ter device

Figure 1.6： Outline font rasterization [TrueType 90].

1.2 Introduction to This Thesis

In this thesis, our focus will be placed on outline font as input and single-bit-per-pixel bitmap

fonts as output. So, font design system describing each character with individual program like

METAFONT [Knuth 86] and multiple-bit-per-pixel bitmap fonts such as gray scale font [Warnock

80] (Figure 1.7) will not be covered.

國
HBI _ �

J f H — • 毳

S B 1
Figure 1.7: Gray scale character.

— ^ : 6 ~

Chapter 1

12.1 Objective

° u r a i m s 诅 魅 thesis are to build a fast Chinese msterizer and to find ways of automatically

adding hints to Chinese font data.

A Fast Rasterizer
\

We are interested in discovering how the rasterization speed would be related to the features,

such as stroke count, of the Chinese character to be generated. Also, we try to make some

improvement on the present rasterization method so as to give a more efficient rasterizer.

Automatic Hinting

The other objective is to automatically generate hints for Chinese font so that the resulted bitmap

characters would retain most of their regularity and symmetry. Font in Ming style is just used for

illustration and, in fact, the method can be applied for many other font styles, such as Gothic.

1J2J2 Organization

Chapter 2 describes the main features of Chinese characters and gives a brief discussion of the

problems caused by these features.

In Chapter 3, we first discuss the details in basic rasterization and then we give a brief

summary of the currently used hinting methods for European fonts.

In Chapter 4, we explain our techniques for building an improved Chinese font rasterizer.

These methods include ways for fast rasterization and hintings of Chinese fonts.

Details of some performance tests on the methods described in Chapter 4 are presented in

Chapter 5，and the results are described and analyzed In Chapter 6.

- 7

Chapter 4

Chapter 2

Chinese Characters Fonts
\

It is an old legend that Chinese characters were created by Tsang-Jei (食頡）about 5000 years

ago. However, it is now generally believed that Tsang-Jei was not the only creator； just like

people in other ancient countries, the ancient Chinese drew pictures to record what they saw

and these pictures became the origin of Chinese characters. Collecting all of the characters used

at his time, Tsang-Jei rearranged and reorganized them. He also enlarged the character set by

making u p some new characters.

Collectively, there are six traditional ways, called Liu-Shu 書：象形、會意、形聲、指

事、轉注、假借)[New Image 92，ch. 11， which govern the construction of Chinese characters.

We are going to discuss some main, features of Chinese characters.

2 .1 L a t ^ e C h a r a c t e r Set

There are about 50000 characters in the Chinese character set, of which 2000 to 4000 are

currently used. The 1000 most frequently characters can just cover 91% of the characters used in

a common Chinese text [Lua 90].

Since 16 bits can represent 65536 different patterns, the Chinese character set can be

encoded with two bytes. Two currently used coding standards are GB and Big-5. GB,

representing Guo-Bau, is the national standard of the mainland China. It covers about 7000

commonly used characters. Big-5 code is the standard of Taiwan, and it covers 5401 commonly

used characters and 7652 less commonly used characters [Liu 87]. If these two standards are

merged without duplication, about 18000 characters remain [Moon & Shin 90].

It is straightforward to input an article written in English to computer since each word is

a linear combination of characters and there is a one-to-one correspondence between the 26

English characters and the keystrokes on keyboard. On the contrary, the case for Chinese

characters is much complicated. Each Chinese word is 2-dimensiona% composed of radicals (see

section 2.4) and the presence of over 200 radicals poses problems for inputting [Cao & Suen 87].

2.2 F o n t Styles

A style or typeface is "a set of visually related symbols'! [Robinstein 88]. The characters in distinct

styles can differ in stroke width, stroke shape, serif shape, the ratio of horizontal stroke width to

vertical stroke width, and even the structure of the whole character.

There are two main branches of styles： one for writing and the other for printing. About

5000 years ago, when the primitive Chinese characters were made, they were actually some
“ “ “

Chapter 4

drawings of what people saw, so some characters were very complicated and it would take a

quite long time to "draw" one character. For practical purpose, the character went into seveml

stages of simplification, regularization and rearrangement. Each veision of the character set

corresponding to a conversion stage becomes one style. The Dai Style, Kai Style and Hun Style

came out in this way. �

Printing is one of the "Four Great Inventions" of Chinese. Since a mould of document

must be sculptured before a page can be printed, it would be easier and faster for the mould,

maker to have characters in more regular shapes. Hence some new styles like Ming style and

Gothic style were then made up for printing.

The main task for defining a Chinese style is to give the shapes of the basic strokes and

the whole character set can then be derived from these strokes [Newlmage 92, ch. 5-13].

Currently, there are over 20 styles in daily use and 5 common examples of them are shown in

Figure 2.1, The characters in various styles usually look very different. For instance, the

characters in Ming Style have many straight line segments whereas the characters in Hun Style

have curve segments only.

明體 行者 楷書 隸書 黑體

Ming Style Hun Style Kai Style Dai Style Gothic Style
Figure 2.1： 5 common typefaces

2.3 S t o r a g e P r o b l e m s

In the past, bitmap fonts were adopted by many major micro-computer Chinese systems, such as

Eten Chinese System and Kuo-Kiu Chinese System, for font storage, display and printing.

Keeping fonts in bitmap representation is very expensive in terms of storage.

The size of memory necessary for holding k bitmap characters of n by n pixels can be

calculated by the formula：

n +7
memory required ={INT{~-t—)k)bytes

o

For example, the storage required to hold 24 by 24 bitmap fonts for the 13053 characters

in the Big-5 code set is INT((24+7)/8)*24*5401 bytes 迸 57梦.76 迎二Table 2,1 summarizes the.…——…—

storage requirements of some commonly needed bitmap font sizes for these 13053 characters.

size 1 6 x 16 2 4 x 2 4 3 2 x 3 2 4 8 x 4 8 64x64

storage 168.78 KB 379.76 KB 675.13 KB 1.48 MB 2.64 MB

Table 2.1： summary of storage for different font size

： “ —

Chapter 4

In a 150 dpi (dots per inch) printer, a 64 by 64 bitmap corresponds to a 64/150*72 or 31

point font and, in a 300 dpi, it corresponds to a 15 point font. These point sizes are commonly
used.

Obviously, the price will be even higher if fonts of many different styles have to be

available. The emergence of some scalable font formats like outline font resolves this problem to

a certain extent.

2.4 Hierarchica l Structure »

Writing brush and ink were used together as the popular writing tools for the Chinese until the

20th Century. Just like painting, when a writing brush soaked with ink runs on paper, it leaves

an ink trace on the paper. Each trace of the brush tip is called a stroke, which is the elementary

component of a character. Some examples of strokes are shown in Figure 2 2

> \ 丨 i �

Figure 2.2: Examples of basic strokes ‘

The total count of basic strokes varies from literature to literature, depending on how

the researchers interpret the similarities between the strokes. For instance, [Yang 86] claims that

there are 7 basic strokes while [Cao & Suen 87] states that there are 11. Nonetheless, by

modifying a basic stroke or composing several basic strokes together, the other kinds of strokes

can be derived. A detailed classification of the stroke shapes is presented in [Yang 86]. Some

systems for recognizing Chinese characters are also built by systematic and structural analysis of

strokes [Hsu & Cheng 85]，OVIorishita, Ooura & Ishii 88]，[Chen, Li & Chang 8 8] . ,

Several strokes can be adequately combined to produce an intact component called

radical. Rules have been developed to govern how the strokes can be joined, overlapped or put

together to form regular radicals. 202 radicals are listed in [Cao & Suen 87], 350 radicals are

claimed in [Chou & Tsai 91] and, in the Tsang-Jei Input Method, 24 major radicals and 75 minor

radicals are used for building characters [Liu 87].

When one or more radicals are properly put together, a character is formed. Thousands

of characters can be obtained in this way (Figure 2.3).

‘ ~ ‘ “ 10~~

Chapter 2

— .
\ radicals 本 \p?

strokes I | ^
Figure 2.3： Composition of a character

2.5 H i g h S t roke Count

It is common that a Chinese character can be composed of a fairly large number of strokes.

Based on the 5401 commonly used characters in the Big-5 Chinese character set [Liu 87], we

found that the average stroke count for a character is 12,358 and, based on the 7652 less

commonly used characters, the average stroke count is 13.98 (Figure 2.4).

Distribution of Stroke Cotint for the 5401
Commonly Used Characters

5 0 0 J ,

rH rH rH rH 02 02 03

s t roke cotint

Ca)

: “ IT-

Chapter 6

D i s t r i b u t i o n of S t r o k e Count of t h e 7 6 5 2 L e s s Commonly

U s e d C h a r a c t e r s

7 0 0 丁

^ j l l l f l l l l I l U u ^
^ H ^ N o c o c o a j c a i c o o

TH H r-l rH 02 02 02
s t r o k e count

(b)

Figure 2.4： Distributions of stroke counts for (a) the commonly used characters and (b) the less commonly used

characters in the Big-5 Chinese character set. -

“ “ ~ 1 2 ~

Chapter ^

Chapter 3

Rasterization

As mentioned before，rasterization or rendering is the process which converts outline shapes into

bitmap images. This conversion process is a general process implemented in many graphical

application programs. However, in this thesis, we usually use the term rasterization to specify the

font rendering process.

In this chapter, we first discuss the steps involved in general rasterization process and font

rasterization process. Then we describe our approach for rendering Chinese outline fonts and the

general hinting methods for European fonts.

3 .1 T h e B a s i c Ras ter iza t ion

Basically, shape rendering involves two steps： scan conversion and filling These steps are

originated from the flag fill algorithm [Ackland 81]. A pixel is considered as an interior pixel if over

50% of its surface is covered by the shape master. Since shape boundaries are relatively smooth,

any pixel with center lying within the continuous border would probably be an interior pixel.

Roughly, we can approximate the area of a pixel covered by the shape master by an area which is

bounded by a straight line segment perpendicular to the scan line (Figure 3.1). However, it is true

only if the pixels are fine relative to the size of the shape to be rendered. A counter-example is

shown in Figure 3.2.

Now we are going into the details of the scan conversion and filling processes,

contmir •

Intersectloii of outline
p i x e l center / contotir a n d s c a n l ine

• ^ N ^ I I I I
s c a n l ine “ — - — — - . — j — — - - - - — ’

l T v .
i l ine for approximating t h e

a r e a b o u n d e d by^the contour

= a r e a b o u n d e d b y t h e contour

^ ^ a r e a b o u n d e d b y t h e approximation l ine

Figure 3.1： Area bounded by the contour can be approximated by that bounded by a line.

1 3 ~

Chapter ^

outline contour

Figure 3.2: Counter-example of interior pixel �

3.1.1 Scan Conversion

S c a n conversion is the process which indicates the pixels at the boundaries of the shape outline.

S c a n l i n e � t h e iine which joins the centers of the pixels in the same row or column in a dot

matrix. We now briefly discuss some common approaches of scan conversion.

Solving Equations

A simple method is to compute the intersections of the curves and the scan lines by explicitly

solving the equations involved. For example, we can make use of the following set of equations to

find the intersection points of a quadratic parametric curve and a horizontal scan line y=k.

y = a + bt + ct^

x = p + qt + rt^
y = k

+ -b±�b2-^c(a-h0
L —

2 c
where a, b，c，p, q, r and k are constants, and t is ranging between 0 and 1.

Although this method is straightforward, it takes time to do the calculations or special

computation hardware is required to speed up the process [Fahlander 89],

Modified Polygon Scan Conversion

To render a polygon, the edges of the polygon are first sorted in ascending order in the y

direction. Then each scan line is examined one by one from top to bottom or from bottom to top,

and an active list is kept to indicate which edges are intersecting with the current scan line. The

intersections of each scan line and the members in the active list are computed to determine which

pixels are at the boundaries [Rogers 85, ch. 21

This algorithm can be extended to render shape which is composed solely of straight lines

and curves monotonic along the x or y direction [Pavlidis 851 Obviously, when there are many

curves segments in a contour (which is the case for Chinese outline fonts), the cost for breaking

the curves into monotonic ones and sorting the segments would be very high.

： “ “ 1 4 ~

Chapter ^

Forward Differencing

Based on the position of a point on a curve, this approach can quite accuiately estimate the

position of an adjacent point. After locating one point on the curve, we can recurrently repeat this

process to render the whole curve.

Suppose the coordinates of the points on a quadratic curve are described by the formulas：

xit) = a + bt + ct a

y(t) = p + qt + r t z

where a, b, c, p, q，r are constants which control the shape of the curve, and t is between 0 and 1.

The 2 recurrent formulas for computing the forward differences of x coordinates are：

A^! (t) = x(t + K)~ xit) = (bh + c/i8) + (2ch)t
AR2(T) = Axx(x + / I) -Ax^t) «2ch z

which can b e rearranged as：

xit + K) = x{t) +lucx{t)
A*! it + K) s Ajq � + AxzCt)
Axz(t + h^ = 2ch a

Since the last term is independent of t, once the step value has been given and the values

Ax± (0) , AX2 (0) have been calculated, x(0+h) 'can be estimated from x(0). The value of

y(0+h) can be computed similarly. Repeatedly, the points on the curve (i.e. (x(0),y(0))，(x(h),y(h));

(x(2h), y(2h)),…，（x(l)，y(l))) can be found.

It sounds attractive that the position of a new point can be found with just 2 additions. But

if the first derivative of x(t) (or y(t)) changes abruptly in the range [0,1], many points may coincide.

Therefore, Jokob Gonczarowski [Gonczarowski 89] suggested a modified forward differencing

algorithm which adaptively adjusts the step value.

Recursive Subdivision

Given the formula describing a curve, if we can find a point other than the two end points on the

curve, w e can divide the curve into two shorter curves. When this subdivision process is

recursively repeated so that the resulted curve segments are flat enough to be approximated by line

segments, the curve can approximated by a series of short lines which is easily to be rendered.

The exact way for subdividing a curve is dependent on the type of the curve. Figure 3.3

shows the bi-division of a quadratic Bezier curve (i.e. the curve is subdivided with t=0.5).

I I I
•pOO

Figure 3.3： Bi-division of a quadratic Bezier curve.

“ ^ 15

Chapter 3

where (pOO, pOl，p02) are the control points of the original curve while (pOO, plO, p20) and (p 20,

pl l，p02) are the two sets of control points of the subdivided curves. The coordinates of the

control points can be computed by the simple formulas：

l e v e l 1 : p l 0 . x = (p00.x + p01.x)/2, plO.y = (pOO.y + p01.y)/2,

p l l . x = (p01.x + p02.x)/2, p l l . y = (pOl.y + p02.y)/2;

l e v e l 2 : p20.x = (p l0 .x + pll.x)/2，p20.y 运(plO.y + pll.y)/2；

The above subdivision is quite efficient as it takes only 1 addition and 1 shift to give a new

control point. The disadvantage here is that it would generate a number of stmight lines, which

complicates the problem.

In conclusion, all these methods are able to scan convert an outline shapes into unfilled

bitmap images.

3-X-2 Fitting Outline

Among the filling algorithms are edge fill，flood fill, seed fill and parity fill [Rogers 85, ch. 2] [Foley

& van Dam 90，ch. 19]. Edge fill is suitable for filling polygons and, provided that at least one

interior pixel is found in each individual boundary, both flood fill and seed fill can be used for

filling close pixel boundaries. We are now going into the details of the parity fill，the most

straightforward and usually the most efficient way of filling.

Parity Fill

By parity fill, a pixel is turned on if a horizontal line originating form it intersects the outline

contours an odd number of times, i.e. an odd parity [Pavlidis 79] [Pavlidis 81]. The algorithm can be

summarized as：

{

input: bitmap with boundary pixels turned on

output： filled bitmap
}

for each scan line do

setco\xrA~Q；

for each pixel in a scan line do

if the pixel is on then

increment count by 1；

else
if count is indivisible by 2 then

turn thepixel on；

endfiff

endfiff

end {for}

end {for}

Algorithm 3-1

It does the filling correctly only if all the interior pixels have odd parity. Unfortunately, this

may not be the case if some boundary pixels coincide. Therefore, Instead of representing the scan

‘ ‘ “ 1 6 ~

Chapter 4

converted points as pixels, we keep a table of span extrema for each scan line (Figure 3.4). This

table gives the exact positions of the intersection points and hence guarantees the parity filling

correct. We turn on the pixels with centers falling In the odd parity span. The remaining problem is

that local maxima, local minima and any horizontal line may meet a scan line (Figure 3.5),

\

spaa span

yi “ ~ y t empty
•

(a) Ob)

Figure 3-4： (a) Each horizontal span, is stored with its extrema. (b) Span table.

Figure 3.5: local maxima, local minima and horizontal coincide with a horizontal scan line.

For filling polygons, this problem can be resolved by performing sign tests for the two end

points of each line segment [Pavlidis 85] [Andler 90].

3-2 F o n t Raster izat ion

Besides the scan conversion and the filling processes mentioned, font rasterization in general

includes two more steps, outline scaling and grid-fitting.

Outline Scaling

In general, the outline font data are measured in an arbitraiy scale to describe the shape of the

character in great detail and then even the subtle curve parts can be exactly represented. For

instance, 1000 and 1024 are two common choices of size of the bounding box for font description.

Therefore, before turning into bitmap, the font data must be scaled to the desired size.

32 J Hintings

When outline fonts are rendered in low resolution devices, some characteristics like regularity,

thickness and uniform, appearance of the characters may lose and hintings are the rules used to

adjust the outlines to keep as much features of the characters as possible (see section 3.3).

“ “ ： rT

Chapter ^

>2 J Basic Rasterization Approach for Chinese Fonts

Since the above rasterization approaches are either for graphical shapes or for European characters,

they are not very adequate for rendering Chinese outline fonts. Our elementary approach is based

on [Cheang 90, appendix] and is briefly described below (Figure 3.6).

\

/ I Font Outline

A . .
J L Apply scaling, t in t ing and

converting curves to straight l ines

JK 2 翁 一
conversion r,f, „ Q . r … c � w r �

[4] (3.3,7.B) [1] (6.3,7.5)

Storing t h e intersections ^ J ^ J ^

for eacli scan line

[8] [4] [1] [2] [1] 12] [3] [4]

7 .5 12.4 13.3 16.8 [8.21 / h 7.5 � 6.3 � 8 .2 � 2 . 4 | �

I——I Sorting
Filling

0 1 2 3 4 5 . 6 7 8 9 0 1 2 3 4 5 6 7 8 9
oi h m i i ^ n o| H i 1 I 1

_ 圉 圏 0 _ _ _
5=]=二经 1:二 Repeat for aU the 丨；袒=?團
ql I I M 11 I 1 II horizontal and q W ^ + H f ^ R

vertical scan l ines
Figure 3.6: Our tasterization approach.

Outline Scaling and Hinting ,

Suppose the outline of a character is composed only of straight lines and Bezier curves. These lines

and curves are first scaled up or scaled down to the size required. Subsequently, if necessary, grid

fitting or hintings are applied to the outline, making sure that the inain features (e.g. equally wide

strokes) of the character are maintained.

Scan Conversion

‘ 18

Chapter 4

By recursive division, the Bezier curves of the outline are converted into sets of straight lines. Then

the outline is no more than a set of straight lines, just like a vector font. Except the horizontal lines,

all these lines go through the scan conversion process, in which inte岱ection points with horizontal

scan lines are found and stored. When the end point of a line meets any scan line, the inteisection

for the upper end point is considered but th^t for the lower end point is ignored (Figure 3.7). This

ensures the parity fill can be done correctly.

This intersec±ion is ignored

_ V
A —̂\

This intersection is considered 1 1 1 1 8 M e i 8 ignored

Figure 3.7: End points of line segments coincide with scan line.
Parity Filling

The font is then filled by parity filling. For each scan line, we turn on all the pixels with centers in

between alternative pair of consecutive intersection points for each scan line. Even if a span does

not include any pixel center, the nearest pixel will be activated to avoid dropouts (Figure 3.8).

Finally, the scan conversion and this filling process are repeated for the vertical scan lines, further

preventing dropout pixels and ensuring better looking bitmap characters can be generated.

. y 1 1 ay • • 袖 _ ‘
I M i " " " M i l " """""" - • � :

Figure 3-8： If a scan line cuts the outline, at least one pixel will be turned on to avoid drop-out.

Algorithm

The algorithm of the rasterizer can be summarized as：

Chapter ^

{

control points of quadratic Bezier curves ofthe character outline

output： bitmap image of the character
}

S c a l^ 诚 the control points to the size ofthe output bitmap；

Apply hintings to the control points；

C o n v e r t t h e quadratic Bezier curves into straight lines by recursive sub-division；

for each straight line segment ofthe outline do

f o r e a c h — 功 scan line intersecting the straight line segment but not touching the lower end point of the
segment do

Compute and store the intersection point ofthe straight line segment and the scan line；

end {for}

end {for}

for each horizontal scan line do

Sort the intersection points in ascending order；

for each alternative pair of consecutive intersection points do

/ o r each pixel with center falling between the two intersection points do

turn the pixel on；

end {for}

if rw pixel center falls between the intersection points then

Turn on the pixel with center closer to the two intersection points；

end{ij}

end {for}

end {for}

Repeat the process for vertical scan lines.

Algorithm 3-2

In this algorithm, only simple computations are involved and, as the scan conversion is

done both horizontally and vertically, drop-out can be avoided and the resultant characters would

look better when compared to that generated with unidirectional scan lines. On the contrary,

considerable memories are required for holding the line segments and Intersection points during

rasterization.

3-3 H i n t m g s

Even if high-quality outlines are available, the character shapes should be adjusted so as to work

well on a grid of uniformly placed pixels, especially when the type size gets smaller. At lower

resolution, the goals of hintings include getting all near-similar weight strokes in a character to

appear as equal weights and making sure that necessary curves are visible, smooth and symmetric

[Seybold 92]. The rules which govern these shape adjustments are called hints. We now briefly go

over some common hinting methods for European fonts.

33-1 Phase Control

Phase control or grid fitting is a way to adjust the character outline to a particular resolution by

displacing control points in the character outline to the nearest mid-point between pixels or pixel

center [Hersch 87] [Hersch 88] [Hersch 89] [Betrisey & Hersch 89] [Betrisey & Hersch 91a]. Figure 3.9

shows how a bitmap character can have a better look after grid fitting.

.
 :

 “ 20

— Chapter ^

A, C: liorizoiLtally displaced
B： vertically displaced

B D: pliase control of curvilinear outline part

I I I D : = = : ： 二 二 ： 二 ：

A — 一 A C—> <~C 二 ： ： ： = 二

^44frh r W n r f f f h

B

(a) before grid fitting (b) after grid fitting

Figure 3.9: Grid fitting {Hersch 89].

Commonly, a constraint description is used to specify the actions that should be taken to

modify the coordinates of the character outline. Such a description should provide two kinds of

information： a constraint qualifier and a constraint application part.

A constraint qualifier indicates how to compute the horizontal or vertical displacement

parameters by which certain characteristic points within the shape outlines are migrated. The

constraint qualifier includes some basic constraints which relate to the references lines such as base

line, x-height line and caps line. Hiese reference lines should be moved to the nearest grid lines

and, accordingly, horizontal or vertical stems are controlled individually. On the other hand, bowls

and curved character parts are adjusted by appropriately keeping the phase of the vertical or

horizontal extremity of arcs within a given phase range, controlling the flatness of the produced

discrete arc.

A constraint application part specifies on which parts of a character the current

displacement must be applied. These parts are specified by pairs of starting and ending control

points. The computed displacements are not equally applied to the whole outline： some parts are

moved according to the displacement parameters； some parts are just proportionally deformed； and

some parts may even remain fixed at their original locations.

33-2 Auto-Hints

In the above method, manual insertion of the constraint descriptions (hinting information) to the

font data is necessary and it would be very time consuming. Therefore, some researchers make

their effort to develop algorithms for automatically addition of hinting information without manual

intervention [Karow 89] [Andler 90]. The main idea of these methods is to detect the characteristic

points which control the shapes of the outline character and the associated reference lines for

21

Chapter ^

determining the adequate displacements of the characteristic points. They are then converted into

parameters adding to the font data.

In [Betrisey & Hersch 91b], a different approach for auto-hints called model-based matching

is suggested. In this approach, a topological model characterizing the main features of the shape

found in European character is first established. This model provides sufficient information for

matching its characteristic points to the corresponding points in an input font (Figure 3.10). The

model has a table of hinting information for automatic hints generation. After matching the input

shape to the model, hints which can be applied to that font are taken from the table and inserted

to the outline description. In addition, the model can include an extra structural description about

typographic structural parts, such as stems, serifs and bowls, using characteristic model points

(Figure 3-11).

Model shape： Input shape：

a

0 11 1 0

E x t e r n a l o u t l i i i e ：

ModelPtO « InputPt l ModelPtl «InputPtl ModelPt2 « I n p u t m
ModelPtB «InputPt2 ModelPtl «InputPtl ModelPt5 ^ InputPtl
ModelPt6 «InputPtB ModelPt7 卑 InputPt5 ModelPt8 = InputPt8
ModelPt9 = InputPt8 ModelPtlO = InputPtll ModelPtll = InputPtlO

Figure 3-10： Matching of characteristic points of an input font to the model [Betrisey & Hersch 91].

head serif

• ••

�

, ^ ^ bowl

spur

Figure 3.11: Structural letter parts [Betrisey & Hersch 91]

Storage ofHintings information in TrueType Font and PostScript Font

TrueType font stores the hintings information in the form, of instruction statements as part of font

data for each character. These instruction statements specify a sequence of actions and contain the

‘ “ “ “ 22~~

Chapter ^

related parameters for hintings. If the instruction statements are absent, hlntings will be performed

solely by the rasterizer or no hintings will be done at all.

In a similar way, PostScript keeps the hintings information with specific opeiations. For

instance, the operator setstrokeadjust changes a boolean value in the graphics state which indicates

whether stroke adjustment will be done during subsequent stroke and related opemtois.

:
 ‘ ‘ “ 2 3 ~ ~

Chapter 4

Chapter 4

An Improved Chinese Font Rasterizer

\

In this chapter, we first describe the technique of avoiding floating point arithmetic in section 4.1.

Then，in section 4.2，we present a fast filling algorithm originated from parity fill. In section 4.3,

some hintings techniques for Chinese outline fonts are described and, in section 4.4, an improved

rasterization algorithm for printing is presented.

4 .1 F loa t ing Po int Avo idance

In general, we do the computations in the rasterization process with floating point arithmetic

because：

Accuracy： Floating point numbers can accurately represent the data values in the computation

steps. Otherwise, rounding floating point data to Integers may introduce round off errors, which

may seriously distorts the shapes of characters generated.

Simplicity： It is straightforward to do the calculations with floating point numbers.

Nonetheless, computation involving floating point arithmetic is relatively complicated and

hence slower than integer arithmetic. Moreover, the input data, control points of the outline, are

usually represented by integers, so it would be faster and more convenient to do the computations

with integer arithmetic.

Before integer arithmetic can be used, we must handle the round-off errors caused by

rounding real numbers to integers. This can be done by scaling u p all data before rounding them to

integers.

(a) * W 乂 (generated with floating point arithmetic)
j r V - -^r ^ r

(b) ^ (。 ） ， ⑴ — ⑵ 想 ⑶ 愁 ⑷

為 ⑶ 為 ⑥ S0〔7) 翻 (8) 叙 9)
Figure 4.1： (a) Bitmap characters generated with floating point arithmetic； (b) Bitmap characters generated with integer

arithmetic and the nximbet in brackets is related to the scaling factor, e.g. 3 means shifting the data to the left by 3 bits before

rounding.

“ ~ �

“ Chapter 4

In order to determine h o w large the scaling factor should be, we genemte some bitmap

characters making use of integer arithmetic with different scaling factor , and we carefully compare

them with the corresponding character generated with floating point arithmetic to find the least

shifting parameter which would give the best results. This comparison step is repeated for many

characters in various styles, one example of which is shown in Figure 4.1. We found that if the

scaling factor is set to 256 or there is no difference between the bitmap chamcteis generated

with floating point and integer arithmetic.

With this scaling factor, w e can shift a number to the left by 8 bits for scaling up and shift it

to the right by 8 bits for scaling down. If integers are represented by 4 bytes or 32 bits, there are 24

bits left for the mantissa, which is large enough for handling many practical cases. If only 16 bits are

available for representing an integer, a scaling factor of 16 or can be used to give rather

satisfactory results.

Some adjustments to the parameters must be done：

T h r e s h o l d f o r sub-division： This is the value that determines whether a curve is flat enough to be

approximated by a straight line. This value must be multiplied by the scaling factor, otherwise extra

sub-divisions of the curves would reduce the efficiency of the rasterizer.

Width b e t w e e n a d j a c e n t s c a n l ines : scan lines should appear at every 256-th line rather than

every line.

4 .2 Fi l l ing

The simplest way to store a bitmap character is to store it as an array of bytes. Each bit in a byte

represents one pixel (Figure 4.2). If a bit is set to 1, the corresponding pixel is on, otherwise, the

pixel is off [Lee 92] [Rosenberg 91]. Given the bitmap character is represented in this way, we try to

speed u p the horizontal and vertical filling processes respectively.

00000000 0000000 00000000
00000000 0000000 00000000
00000001 1111111 00000000
00000011 1100011 11000000
00000111 1000001 11100000
00001111 0000000 11110000
00011110 0000000 01111000
00111100 0000000 00111100
00111111 1111111 11111100
00111100 0000000 00111100
00111100 0000000 00111100
00111100 0000000 00111100
00111100 0000000 00111100
00111100 0009000 00111100
00000000 0000000 00000000
00000000 0000000 00000000

Figure 4.2： Font data of character，A，in bitmap form

42.1 Filling with Horizontal Scan Line

~ ~ 2 5 ~

Chapter 4

In the horizontal filling process of Algorithm 3.2 in Chapter 3, the pixels or bits are turned on one

after another. H i i s filling process can be accelerated by filling one byte mther than one bit each

time. Supposing we want to fill all the pixels between pixel 10 to pixel 30 of any horizontal scan

line, referring to Figure 4.3, we are to fill the first byte with 8 zeroes, the second byte with 2 zeroes

followed b y � 6 ones, the third byte with 8 ones and the fourth byte with 7 ones followed by 1 zero.

Suppose pixels between pixel 10 and pixel 30
of certain scan line are to be filled.

i M 1 I M M i I vmmm w/m/mmA w/m/mm \

X / ‘ stored as

byte 0 1 2 3

b i t 01234567 01284567 01284567 01284567

Jq |̂Q|Q|Q|O^ |o^i|i|i|i|i|ij |I|I|I|I|I[I[I|I| 刚州肿

d e c i m a l v a l u e s

corresponding 0 63 255 254

to the bit patterns

Figure 4.3： Decimal values cotrespoiid to pixel patterns.

Once we know the range of contiguous bits to be turned on for a byte，we can turn them

all on immediately. For instance, if we want to turn on bit 2 to bit 7 of a byte, we are setting a bit

pattern of 00111111 to that byte, which corresponds to the decimal value 63. Therefore we can fill

this byte by storing this decimal value to the byte. Some more examples are shown in Table 4.1.

byte p a t t e r n bits (p ixe l s) to decimal

b e filled vahic

00111111 bit 2 to bit 7 63

01111110 bit 1 to bit 6 126

11111100 bit 0 to bit 5 252 “

Table 4.1

' 26

Chapter 4

To save time, we can store the decimal values representing the patterns in a two

dimensional array to form a look-up table. The formula for Initializing the content of the look-up
table is：

for i講0 to 7do
for to 7do

if i<jthen

pattern 卿-0;
else

pattern [i](j] - 2 s " 1 - 2 7~J；

end {if}
end {for}

end {for}

Algorithm 4.1

Then，pattern [2][7]教 63，pattern [1][6] = 126 and pattern [0][5] = 252. Filling the bit p to bit q

of a byte, we can set the value of that byte to pattem[p][ql Algorithm 4.2 helps us to do horizontal

filling with the look-up table, filling up to 8 pixels In a horizontal scan line each time rather than 1

pixel each time.
{

input： coordinates of start and end pixels in scan line k for filling

output： filled bitmap
}

Determine the first byte (first_byte) and thefirst bit (first_bit) in'that byte to be filled；

Determine the last byte (lastjbyte) and, the last bit (last—bit) in that byte to be filled；

if first—byte - last_bytethen

first—byte of scan line k - pattern [fifst_bit][last_bi£]；

else

first_byte of scan line k - pattern [first_bit][7];
for all the internal bytes of scan line kdo

byte - pattern [0][7]/
end {for}

lastjbyte of scan line k • pattern [0]flast_bit]/

end{iff

Algorithm 4.2

42^2 Filling with Vertical Scan Line

The purpose of doing vertical scan conversion is to complement the horizontal scan conversion.

Horizontal scan lines may not hit the outline of a thin square (Figure 4.4), as a result, such a square •

may totally vanish in the final bitmap image. Unfortunately, a horizontal stroke in a Chinese

character is conceptually similar to such a thin square. The vertical scan conversion not only

prevents the horizontal strokes from disappearing, but also makes the resultant bitmap characters

look better.

27

Chapter 4

This object will disappear in the resultant bitmap.
— ^ ^

— scan line

Outline Objects Resultant Bitmap

Figure 4.4： Thin object may disappear if only horizontal scan lines are involved in scan conversion.

Since the horizontal scan conversion has accounted for most area of the bitmap character,

we need not completely do the steps involved in vertical filling but partly perform it to generate the

same output bitmap. We only have to turn on the unfilled pixels instead of all pixels in each vertical

span.

j m i m i i i ^ i i i

(a) Scan conversion with, horizontal scan lines only.

! ! ! ! ! ! ! Ĵ jjjĵ iSS ̂ ^^^^^ ！ ^^^^^ ！
！——i 1 ！ ！ T " 讓 ！ ！ i \ !

M I I j I M I I I 1 1 ： ： I I - H J I
！ ！ ！ I I I I I I I _ I • » • • I I I I I I I • • ‘ • » 1 I I I I 1 I I j j ‘ ‘ ！ ‘ I j I I I I I I ») ！ ！ I ！ J I I I I I I • • ‘ • • ！ I I I j j j j J { J | J |

(b) Scan conversion with, both horizontal and vertical scan lines only.

Figure 4.5: Comparison of bitmap images generated with and without vertical scan lines.

Suppose we want to turn on the pixels vertically between pixel (3,2) and pixel (3,9), and

the pixels between (3,4) and (3,7) have been blackened in the horizontal filling process (Figure

28

“ “ Chapter 4

4,6). First w e start from the end pixel (3,2) and turn on the pixels below it until a filled pixel or the

other end pixel (3,9)切 met. Hien, we start from the end pixel (3,9) and turn on the pixels above it

until a filled pixel or the other end pixel (3,2) is encountered. Hie filling algorithm is summarized in
algorithm 4.3.

: � 3
Start vertical filling from r

these pixels k 0

\ 2 � These pixels are turned on
\ 3 in the vertical fill

S t o „ i f l l
Stop vertical filling / k \ \ These pixels Have been turned on

w l i e n ^ ^ 6\ $ in the Honzontal fill
are encountered nAnV^v

7 r � n
8 \ _ These pixels are turned on
9 ‘ ill tlie vertical fill

10

Figure 4.6： Illustration of vertical filling after horizontal filling.

{

purpose： fill cells vertically between cell[x][y一start] and cell[x][y一end】，where k>=j
}

set y^yjsX^sX；

while y<^y_end and cell[x][y] is unfilled do

turn on cell[x][y]；

end {while}

set y^yj^nd；

while y>^yjstart and cell[x][y] is unfilled do

turn on cell[x][y]；

end {while}

Algorithm 4.3

： 一 “ 2 9 ~

~ Chapter 4

4.3 Hint ings

Usually, the appearances of bitmap characters directly generated from outlines by rasterization are

not satisfactory. The regularity and harmony of the bitmap characters may be partly destroyed. The

problem includes stroke width order not preserved and space width order between adjacent strokes

not conserved. These topics will be discussed in detail in section 4.3.2 and 4.3.3. In section 4.3.3，

the case of single curve stroke is considered.

4S-1 Assumptions
We make some assumptions here：

1. Each contour is a non-intersecting curve and is composed of straight lines and quadratic

Bezier curves only.

2. A segment can consist of the control points of a Bezier curve or the two end points of a

straight line.

3. The sequence of the control points in a contour is specified in clockwise order, holes are

specified in counterclockwise order.

4. There exist threshold values to decide whether a stroke is horizontal, vertical or other

43-2 Maintaining Regular Stroke Width

The order of thickness of the strokes in a character is not necessarily preserved in the generated

bitmap character. For instance, as shown in Figure 4.7, two equal wide strokes of an outline

character may be converted to bitmap strokes with unequal widths.

二 il三三三III三三€三
= = = = =三二 = = = = = = = 1 1 1 •

E:ÊE=EEEE=E=E ^ | | I
二 ：： 二 ：： 二二二二由！1= = : : 二 rasterl^atioii ___ ^ ^

[î l 1 1 1 1 1 1 1 國 斷狐爾邏

original outline rasterized character

Figure 4.7： The generated character has unequal wide strokes.

The above problem can be resolved by displacing the vertical strokes of tlie master

character as shown in Figure 4.8. The resulted bitmap character has equal wide vertical strokes.

二 :5::二二::二二:2竺;：
= = = = = = = = = ^

= : = : = = = I = : i = : = = I rasterizatiati

, , x , resulted character adjusted outline

Figure 4.8： The character generated from adjusted outline has equal Wide stfokes.

“ ..
 ：

 “ 3 0 ~

Chapter 4

Preserving Stroke Width Order

There are 3 steps for keeping the stroke width order of a character：

1. Identify the horizontal and vertical strokes in a character.

2. Determine the width and center line of each stroke.

3. Based on the width and position of center line of each stroke, apply centering or anti- v

centering process.

For the sake of simplicity, we limit our discussion to horizontal strokes only. The case for

vertical strokes can be handled by similar technique.

Extracting Horizontal Strokes

We extract horizontal strokes by the y-coordinates and directions of the horizontal line segments

(Figure 4.9). If two horizontal line segments with the same y-coordinate and direction, and the

shortest interval between them fall inside the black area, these lines will be combined to form one

single line. Two adjacent lines with opposite directions will compose a stroke if the interval

between them falls inside the black area and the width of the interval is close to the width of a

stroke. The algorithm is：

{

purpose： extract horizontal strokes from contours

input： contours in a character

output： set of individual horizontal strokes .‘

}

identify horizontal lines in the outline character and their directions, right or left；

sort the lines according to descending order of their y-coordinates；

group the lines with nearly the same y-coordinates together,
for each group of line do

when the interval between two adjacent lines is entirely falls inside the black area, merge the two lines；

end {for}

for each line (IQ) do

for each line below the current line (l j) do

if IQ and I J constitute a stroke then

group these lines as a stroke；

end{ifl

end {for}

end {for}

for each identified stroke do
include the segments which constitute serifs of that stroke；

end {for}

Algorithm 4.4

； “ 3 1 ~

Chapter 4

々 ：

• combine line 2 and 3
I r ^ ~ r ^ s ~ /

o o 、
k 鰣I s 齡丨 combine line 4 and 5

H 6 ~ 1^7 combine line 6 and 7

O O 8 9 wl combine line 8 and 9
L r " l J ^

direction of contour
Figure 4.9： Combination of line segments

As illustrated in Figure 4.8, the way to determine whether a line is wholly falling inside the

black area is based on parity check：
{

purpose： determine whether a line is wholly inside the filled area of the character

input： the line to be tested and contours of the character

output： indicator which shows that the line is inside or outside the filled area of the character
}

select the left end point of the line and store it asp；

draw a horizontal line, I，from p to the left；

set count^O；

for each of the line and curve segment of the outline character do

if the segment intersect Ido

if the segment is not a horizontal line do

if the segment is going upwards do

increase count by 1；

else

decrease count by 1；

end {i/}

endfiff

end{if}
end {for}

if count抑0 then

I is outside black area；

else

I is inside black area； •

endfi/}

Algorithm 4.5

一
 : ~ ~ 3 2 ~

Chapter 4

directions of contours encountered

/ \ lia-e to be tested if it is in the filled area

imaginary line “ L
- 1 + 1 \

+1 , area to be filled

L M ^ J

since (+l)+(-l)+(+l)=+l , the line is ill the filled
area.

Figure 4.10： Determine if a line is in the filled area.

The conditions which determine whether two lines constituting a stroke are (Figure 4.11)：

1. The lines are overlapping (i.e. the center point of the shorter line falling between the

endpoints of the longer line).

2. They are in opposite direction.

3- The distance between the lines is not much greater than the width of a stroke.

After the strokes are identified, the segments constituting the serifs of these strokes are also

extracted.

崎 一

m —
^―—~‘―J] group these lines as stroke 3

I l J .
Figure 4.11： Grouping of lines to form strokes

Determining Width and Center Line of Stroke

The width of a stroke is the shortest distance between the two main lines constituting the stroke.

The center line of a stroke is the line which falls halfway between the two main lines of the stroke.

:
 “ ： ^ 3 3 ~

“ “ “ Chapter 4

Centering or Anti-Centering ofStrvke

Tlie scaled outline strokes are displaced according to their widths. Hiere are two ways of displacing

the stroke： centering and anti-centering. If centering is applied on a stroke, it will be moved so that

its center line is positioned at the nearest middle point of grid lines (Figure 4.12a). If anti-centering

is operated on a stroke, it wiU.be migrated so that its center line falls on the nearest grid line

(Figure 4.12b). To determined which displacement method should be used, we have the simple
rule：

if round(stroke_uHdth)—0 or (roundCstrx>ke_width))mod(2)—l then
set displacement皿 centering；

else

set displacement-anti-centering；

end {if}

— - • — • 似 画

.„—趙旦
1
-鲍 —… ^ d l i n e

(a) centering (b) anti-centeriiig

Figure 4.12： Centering and anti-centering

The aim of this process is to keep the order of stroke width by making as few

modifications to the master character as possible.

433 Maintaining Regular Spacing Among Strokes

The hinting process described in the above section can only regulate the widths of strokes, but it

does not care about the spacing among adjacent strokes. So, in many occasions, the hinted

character would have irregular spacing between adjacent strokes, which would greatly downgrade

the appearance of the character.

An example of the undesirable cases is shown in Figure 5.13. There are two white space

groups of horizontal strokes in the character. In the original outline, the two space groups are of

equal width. If the character is only hinted for preserving the order of strokes' thickness, the

resulted bitmap character may have horizontal strokes apart unevenly.

“ “ 34

“ ‘ Chapter 4

二 三 三 兰 F 5 � _ 三 三 = = = _ M . = =
hinting without preserving 二二:：二 = = = = 二 = : : = 一 _ _ 一二二
even spacings among strokes L J _ _ ^

, . , , - , - — — I 1——_— 一 • = = = | 兹 _ _ 迳 囊 二 二 =
1 I 1 I 1 I I I P I I ： 1 - 1

一 — j � = = = = = = z V — 資 一二 =二 二 二 二 二 二 二 = = = = 一 一 一 囊 謹一一一

= = : = E 二二二二 j z g = = Z

= = = = = = = = = \ 二二 h 二 力 = =
 = = = , _ 这 _ 这 ±

— — m]=t—= 二 二 ： 二 二 二 = ： - 二 一 ———I 1———
1 1 1 M 1 1 1 1 1 1 1 1 1 . 二 = — _ — - — 一 I — —

- = 一 I — 1 ——

liintmgmthpreservtag 一 _ ^ _ • = 二 二 二 二

even spacings among strokes — ’ •一 — 灣 一 — 議 一

_ =] : ==二=[: = :== — 1 - - - — — _ 二 =

u = = 二 I - I ——
(I l i p ^ l l i l l l l l

1 1 1 ^ 1 1 1 1 1 w I M M r n x M
Figure 4.13： Hinting with and without preserving proper spacing

Therefore, besides the information about preserving widths of strokes, we have to acquire

some more information to regulate the spaces. For example, we can measure the distances between

every adjacent pair of straight strokes in a character and, based on these extra figures, the strokes

can be further adjusted to give a nice looking bitmap character.

In the following discussion, we represent a stroke with its pair of main lines with the serifs

removed.

Space Group

If the center of the shorter stroke falls between the two end points of the longer one, these two

strokes are overlapping (Figure 4.14). Two strokes are said to be adjacent if (i) they are overlapping

and (ii) there is no other stroke overlapping with and present between these strokes. For example,

in Figure 4.15a and 4,15b, both stroke 1 and stroke 2 are adjacent to stroke 0； however, in Figure

4.15c，only stroke 1 is adjacent to stroke 0.

—
 _

 “ 3 5 ~

~“ Chapter 4

4 印姐 of longer stroke

centre point of shorter stroke

I shorter stroke

”

longer stroke

(a) overlapping

^ ~ span of laager stroke •

centre poll t of shorter stroke
_ _

shorter stroke

longer stroke

Ob) naa- overl^)plng

Figure 4.14： Overlapping and non-overlapping strokes

~ ~ 蔽 0 k—n
overlapping \

I * \ overlapping
overlapping stroke 1 \ ' |

.. I ~ \ 丨 7 个 I 丨
/ S troke° ^ handle this pair first \ / pn&h this pair in stack

/ \
\ , ncm-avcrlapptmr

~ P stroke 1 \ overlapping "

个 / \
 (a>

stroke 2
nan-overlapping ^^

handle this pair first pudli this pair in stack
(b)

stroke 0 ^
overlapping overlapping

stroke 1 ^

咖1^2 Just handle tt丨s pair
(c)

Figure 4.15: A stroke overlaps with more than one strokes: in (a) and (b), both stroke 1 and stroke 2 are adjacent to stroke 0；

in (c) only stroke 1 is adjacent to stroke 0.

The unfilled region between two adjacent strokes is called a space. Before being capable of

measuring the widths of the spaces, of course, we must know which two strokes form an adjacent

pair in a character. A list of strokes in which every consecutive pair of strokes is an adjacent pair is

called a space group (Figure 4.16). Obviously, it is probable that a Chinese character has more than

one space group.

:
 ~ 36~~

Chapter 4

stroke 0

stroke 1 I
I

— ^

stroke 2

T
I stroke 3 丨 i �

stroke 4 ！

厂 stroke 5

-i.

stroke 6 stroke 7
I stroke 8

y •«

stroke 9 � —~1— . *
L — stroke 10 stroke 11

space group 0： stroke 0, 2, 3，5, 8, 9

space group 1： stroke 1，4，6，10
space group 2: stroke 4，7，11

Figure 4.16： 3 space groups.

After finding all space groups in a character, the distances between the center lines of every

pair of adjacent strokes are measured. These values are used to compute how far two adjacent

strokes should be separated.

Then we assign an elasticity to each space. A space can be classified into elastic or inelastic.

The width of an inelastic space is maintained under any circumstances while the width of an elastic

space will not be adjusted given that its change is within a tolerated value. We will illustrate

elasticity later.

The algorithm for finding the space groups of a character is：

{

purpose： search for the space groups for horizontal strokes in a character

input： horizontal strokes of a character

output： space groups
}

sort all the horizontal strokes in descending order ofcenterlirw；

i=0；

stack 年{empty};

set•翼{empty};
for each stroke in the sorted list (sO) do

sl=sO；

while si is not in any stroke group or stack is not empty do

if sO is not in any stroke group then -

add s i to stroke group i；
else

s i "pop(stack)；

；
 ：

 ~ 37

— Chapter 4

add si to stroke group i；

si "pop(stack)；

add s i to stroke group i,
^nd {iff

/ o r each ofthe stroke not in any stroke group (s2) do

*{ 8 2 “ ^ i n a ny s t r o k e Sroup and s2 overlaps with si and none of other strokes which is
between si ands2 overlaps both with s i and s2 then

add s2 to set；

end{if}、 -
end {for}

if set is not empty do
if there is only 1 stroke in set then

s3 -the stroke in set；
else

s3 -stroke which is closest to sO in set/
f o r each ofthe remaining stroke in set (s4) do

push (stack, s4)； •

push (stack, si)；
end {for}

end{ij}

add s2 to stroke group i；

sl=s3；

end {if}

end {while}

end {for}

Algorithm 4.6

In this algorithm, a stack is used to temporarily hold the strokes to be handled later. It is

not uncommon that one stroke may overlap with several strokes which are non-overlapping (Figure

4.15). Therefore, we select the closest one to handle first and store the rest in a stack. After tackling

the first one, we pop a stroke from the stack, treat it together with the original stroke as elements of

a new space group and carry out the space group construction procedure again. This process is

continued until the stack is empty and all strokes have been dealt with.

Elasticity of Space

The aim of regulating spaces in a character is to ensure that two originally equal wide spaces would

result in equal wide spaces in the resulted bitmap character. In fact, if the character does not have

any two spaces of identical width, no alternation of the spaces or strokes' positions would be

required at all. The resultant bitmap character would be the best approximate discrete image of the

original outline character. In other words, we highly prefer to change the outline as little as

possible.

" : 38~~

Chapter 4

r • ! 卜 n
3 Pixels apart This stroke must be e j e c t e d distance is 2 pixels

displaced one pixel upwards

L U l f
(a) Inelastic space �

一 tolerant value
3 pixels apart y

i s expected /

— — i 个 I R L

This stroke is allowed to place

j anywliere in this region

(b) Elastic space
Figure 4.17： Comparison of the movement of stroke just below an inelastic space and elastic space.

The elasticity of a space can help us to determine how the relevant stroke should be

displaced. The stroke Instantly below an inelastic space has to be completely adjusted according to

the expected space width computed from the figures stored in the space group (Figure 4.17a). On

the other hand, as shown in Figure 4.17b, the stroke just below an elastic space need not be further

relocated if its distance from the upper stroke does not exceed a region which is determined by the

expected distance and a tolerant value. If the stroke 朽as been displaced out of this region, it must

be moved back into it.

The following rules are used to determine the elasticity of a space：

1. If 5 consecutive spaces in a space group are equal in width, set spO, sp4 to elastic and set

sp l , sp2, sp3 to inelastic (Figure 4.18).

2. If 4 consecutive spaces in a space group are of equal width, then we have to consider 2

cases (Figure 4.19)：

case 1： if sO is the longest stroke, set spO to elastic and set spl , sp2 and sp3 to inelastic,

case 2： if s3 is the longest stroke, set sp3 to elastic and set spO，spl and sp2 to inelastic.

3. If 3 consecutive spaces in a space group list are equal in width (Figure 4.20), then we have

to consider 3 cases：

case 1： if s0，si are in the same part and s2, s3 are in the same part (see section 4.3.3 for

the details of determining the part of a character), or s03 si, s2 and s3 are in 4

different parts, then set spO, sp2 to inelastic and set sp l to elastic；

case 2： if sO, s i , s2 are in the same part and s3 is in another part, then set spO and spl to

Inelastic and set sp2 to inelastic；

case 3： if s i s2, s3 are in the same part while sO is in another part, then set spO to elastic

and set spl , sp2 to inelastic.

“ 一. “ 59~

Chapter 4

4. If 2 consecutive spaces in a space group list are equal in width, set both of their elasticity to
inelastic (Figure 4.21).

5. Set the elasticity of the rest to elastic.

、

elastic

inelastic

inelastic

inelastic

elastic

^ — —

Figure 4.18： 5 consequent equal wide spaces.

r r ^ L ^——
inelastic J / elastic

— inelastic inelastic

一 - jnelastic
• ~~ inelastic

^

I elastic
inelastic

• —̂—1 ——Li t J

Figure 4.19： Two characters with 4 consequent equal wide spaces.

：
 ^ 4 0 ~

“ Chapter 4

, .
丨 80 ^ �

spO L inelastic - ^ S P °

二 ± - H s i sp l

s p l \4 elastic spS
sp2 N inelastic ^ ^ ^ ^

L U = 4 J ^ z
I L_J

spO=spl=sp2

Figure 4.20： 3 consecutive spaces with equal widths.

i I ^ inelastic

� e q u a l w i d t h

I ̂ I y _ •
^ inelastic

L " " " J

Figure 4.21; 2 consecutive spaces equal in width.

Adjustment of the Spaces

First of all, we calculate the displacement of each stroke in a character for preserving stroke width

with the techniques described in section 4,3.1. Then, with reference to the information stored in

each space group, these displacements are adequately adjusted to regulate the spaces with the

techniques discussed above. The displacement parameters are actually adjusted one by one starting •

from the top stroke down to the bottom stroke in each space group. Finally, the displacement

values are added to the control points of the corresponding strokes.

. ： 41

Chapter 4

Hintings of Single Stroke Contour

Figure 4.22 shows some rasterized bitmaps of single strokes with features not very well matching

with the original outline. Hie serifs and the curve shape of the strokes are not well preserved and

these deficiencies may reduce the readability of the chamcter. Hierefore, in addition to maintaining

stroke width and spacing, we have to keep up some more features, such as the serifs and the

r O U n d b o w � 1 ^ o f d o t s t r o k e . ^ e r w i s e , even the same single outline strokes would give very
different bitmap images.

The outline should be adjusted so that：

1. the serifs of a stroke are conserved；

2. the round shape of the dot stroke is conserved；

3- similar curve strokes outline give similar bitmap strokes.

(a) right slanted stroke

(b) left slanted stroke

I
‘

• :« •！攀 * 雕 •

(c) dot stroke

Figure 4.22： Some unsatisfactory bitmaps of single strokes.

As illustrated in Figure 4.23, if we can appropriately align two extrema of the outlines to

the grid lines, the resulted bitmap strokes would look better with retaining some significant

features. In the following sections, we will discuss how we can do these adjustments for single

stroke outline.

“ — Chapter 4

R ^ H Z T Q 図

骂 塞 (> %
\

(a) riglit slanted stroke

？ 土》==6 ^^
士全j士土

 V
 ^ ^

(b) left slanted stroke

I •丨•丨种I十丨 ^

(c) dot stroke

Figure 4.23： Bitmaps generated from outlines fitted to grid lines

Steps for Grid Fitting of Single Stroke

The grid fitting process includes 5 steps：

1. Classify the contours into different parts.

2. Extract single stroke contours.

3. Identify the type of the single stroke contours.

4. Find extrema of the identified curve strokes for each part.

5. Add hints to the outline.

Determining parts

A character can be composed of more than one disjoint part. Each part may consist of one contour

or more contours with inner contours inside an outer contour (Figure 4.24). Before the contours

can be classified into different parts, we must determine the geometric relationships among the

contours. We can handle each part of the character individually.

For European fonts, one part cannot be found inside another part, therefore a contour can

be found inside at most one another contour. However, for Chinese fonts, one part can be found

inside another parts (Figure 4.24)，so a contour can be enclosed by more than one contours.

_ _ ^ — 4 3 ~

Chapter 4

I contour 1
^ I •

^ ^ c o n t o t u * 3 I r^

� � l i c o n t o u r 2
. . ；

Part 1 consists of contour 1 and 2

Part 2 consists of contour 3 and 4

Pigute 4.24： One part is found inside another part

To classify contours into parts, we have the following algorithm：

{

purpose： to classify contours into parts

input： all contours

output: contours with appropriate part number
} ‘

set part_number » 0；

for each contour ido

compute n = number of contours enclosing contour i；

if n" 0 or a multiple of2 then {contour i does not belong to any part of the outer contours}

if contour x has not been assigned apart number then

set the part number of contour i to pait_number；

increment

end{ij}

else {contour i forms a part with one of the outer contours}

find contour) • one of the outer n contours which is found inside the restn-l contours； ‘

if contour i or contour) is already assigned apart number then

assign this part number to the other contour;

else

set the part numbers of contour i and) to part_numbef；

incremerUp^Ajmrobet-
end{iff

end{iff

end {for}

Algorithm 4.7

Under assumption 3 stated in section 4.3.1, a contour i is detected inside contour j if a

point on contour i falls inside contour j. Parity check can be used to determine whether a point is

inside an contour.

； ： ~ ~ 44~

‘ ； Chapter 4

Extracting Single Stroke Contour

A single stroke contour \s a closed contour description which represents one single stroke of a

character. A multiple strokes contour \s a closed contour description which represents more than

one single strokes of a character (Figure 4 25)

Figure 4.25： Examples of multiple strokes contour

Here are 4 rules for identifying single stroke contour：

Rule 1： If a contour encloses another contour, it is not a single stroke contour.

Rule 2： If it is geometrically smooth at the conjunction point of two segments, the two segments

belong to the same stroke.

Rule 3： If a segment is turning right relatively to the precious segment, these two segments belong

to the same stroke.

Rule 4： If the length of one or both of two contiguous segments is smaller than a threshold value,

the two segments belong to the same stroke.

s m o o t h a t / /
conjunct iorL y / /

p o i n t s ^ ^

(a) Rule 2 contour direction
^ tangent 2 is turning

/ if l个 relatively right to tangent 1

Cb) Rule 3

J —a— vertical
/ O I thresliold

y / i - H , -
^^ horizontal -

(t h r e s l i o l d
(c) Rule 4

Figure 4.26： Illustration of Rule 2，3 and 4.

. ~ 4 5 ~

Chapter 4

Rule 1 is trivial. Rule 2 means that the fii^t derivatives of the two segment curves are

approximately the same at the conjunction point. This ensures that the whole stroke looks smooth

(Figure 4.26a). Rule 3 comes from the property of a close curve. Since the contour are running in

clockwise direction, the subsequent segment should turn relatively right to the previous segment so

as to form a close curve (Figure 4.26b). The turning direction can be determined by the cross

product of tangent 1 and tangent 2 as follow：

{

purpose： to determine the relative turning direction of two tangents

input： tangents of the second end points of two segments

output： relative turning direction
}

compute ctossp6i'CrossProduct (tangentl, tangent2ji,-
If ctosspdx.=~Othen

tuming_difection 费 NIL；

else if crosspdt>Othen

tuming_direction 电 right；

else

turning_direction = left；

end{ij}

Algorithm 4.8

Rule 4 handles the case that Rules 2 and 3 are violated solely due to the serifs. Actually, the

threshold value can be replaced by one horizontal and one vertical threshold value so that the

actual length of the curve is not required to calculate (Figure 4.26c).

The algorithm for determining a single stroke is：

{

purpose： to determine whether a contour is a single stroke contour

input： all contours of a character outline

output： status of each contour
}

for ecich contour do

if the contour encloses another contourthen

set single_stfoke 為 FALSE；

else

set singje_stf oke = TRUE；

for each subsequent pair of segments of the contour do

if the two segments does not belong to the same stroke (determined by Rules 2，3 and 4) then

set single_stroke = FALSE;
break；

end{if}

end {for}

end{ij}

end {for}

Algorithm 4.9

Identifying the Extracted Strokes

Suppose we have extracted single strokes from a character outline. The following guide lines can

help us to distinguish the type of the stroke：

“ ： 4 6 ~ ~

Chapter 4

\ control point p ^̂

\ \ J control point q /

I \ I \ ^ I/

bow curve 1 \ /

(a)

(b)
Figure 4.27： Bow curve of dot stroke

D o t stroke： The significant feature of a dot is a bow curve (Figure 4.27a). A bow curve is a curve

with great curvature and, usually, such a bow curve is represented by two consecutive quadratic

Bezier curves. With reference to Figure 4.27b, the conditions for detecting a bow curve are： (1)

x>45° , y>45°, (2) 150�<=^x+y<=200�and (3) the curve is smooth at control points p and q. The

direction that the sharp end slants determines the Inclination orientation of the stroke (Figure 4.28c,

》vm ,
(a) left slanted curve stroke , " (c) right slanted dot stroke

(b) right slanted curve stroke (d) left slanted dot stroke
Figure 4.28： 4 types of curve strokes

Lef t S l a n t e d Stroke： It is recognized by a pair of long curves with positive first derivatives (Figure

4.28a). Long curves refer to the two longest curve segments which compose the single contour.

Moreover, they must converge in the down-left direction and diverge in the up-right direction.

Right s l a n t e d stroke： It is recognized by a pair of long curves with negative first derivative, and

they converge in the up-right direction but diverge in the down-left direction (Figure 4.28b).

Finding Extrema of Single Stroke — .

For simplicity, let u s limit our discussions on the case of right slanted curve stroke. The other cases

can be treated in a similar manner.

Referring to Figure 4.22, we can see that the serif of the stroke disappears because the

corners of the serif do not overlap the scan line. So, if we can shift the stroke such that the corners

of the serif fitted to the grid line, the serif will appear again (Figure 4.23).

一 ~ ~ 47

Chapter 4

\ \ � -\ X norizontal
\ m a x i m t i i n

\ p o i n t

. \ N
\ ^ ^ vertical reference line

vertical \
minimum \ X

point ^ ^ ^ /
~ horizontal reference l i n e

Figure 4.29： Reference lines of a right slanted stroke.

We can find the corners of a stroke contour by locating its extremum points. For instance,

considering a right slanted curve stroke, the minimum point in y and the maximum point in x on

the contour have to be found (Figure 4.29). These-extrema help to determine the vertical and

horizontal offsets of the corner points from the grid lines. One should note that an extremum point

of a stroke is probably not a control point.

Here is the algorithm used to search for the lowest point of a contour：

{

purpose： to find the lowest point of a curve stroke

input： an individual curve stroke outline

output： the lowest point
}

setyjocmv - A_LARGE_VALUE
for each segment s of the stroke contour do

if sis a straight line then

if the y-coordinate of the lower end point ofs is smaller than y_min then

setyjaun - y-coordinate of the lower end point of s

end {i/}

else { s is a Bezier curve }

{ LetpO andp2 be the two end points of the Bezier curve and pi be the offline control point}

if at least one control point of s has a y-coordirUUte is smaller than y_max then
^"pl.y<p0.y and pl.y<p2.y then { pi is the lowest point}

Jlndp, the minimum point in y ofs；

if p.y < y_min then

sety_mm - p.y；

endfiff

else if p0.y<-^)2.y then {pO is the lowest point}

setyjocuxx - pO.y；

else {p2 is the lowest point}

sety_tam -p2.y；

end{ij}

end{ij}

end{ij)

end {for}

Algortihm 4.10

For a quadratic Bezier curve, the minimum point in y direction is found at the point where

the first derivative is zero and the second derivative is positive. It is simple to compute these

- “7
 一 4 8 ~

— Chapter 4

derivatives for a quadratic equation. If such an extremum point does not exist on the Bezier curve,

the local minimum must be the lower end point. A similar technique can be used to find the

horizontal maximum point.

Inserting Hints in the Outline
\

Vertical extrema are transformed to horizontal reference lines and horizontal e^rema are

transformed to vertical reference lines. These reference lines together with the set of affected points

are saved as hints in the outline description.

At run time, distances of the reference lines from their nearest grid lines are computed.

These offsets are then added to all the related control points of the single strokes. If the

coordinates of a control point are specified relative to the previous control point, a hint can apply

to all the affected points by merely adding the offset to the first affected point and adding the

reversal of the offset just after the last affected point.

Application to the Other 3 Types of Single Strokes

The same procedure can be applied to the other 3 types of curve stroke (left slanted curve stroke,

right slanted dot and left slanted dot), with the following amendment：

1. Left slanted curve stroke： vertical maximum point and horizontal maximum point are

searched；

2. Right slanted dot： vertical minimum point and horizontal minimum points are searched；

3. Left slanted dot： vertical minimum point and horizontal maximum points are searched (same

as that of right slanted curve).

43-5 Storing the Hinting Information in Font File

In the above discussion, we do the hinting process at run time. However, it is very time consuming

to do so. The efficiency can be raised a lot if we attach the hinting information to the end of each

original font data.

Data Structure

To test how good the performance of a font file with hinting information could be, we attach hints

to a font file with the following data structure： h

T y p e N a m e Descr ip t ion

BYTE numVertStroke Number of vertical strokes in the character.

STROKE一TYPE vertStroke [«] Array of information of each vertical stroke； n

I . is the number of vertical strokes.

BYTE numHoriStroke Number of horizontal strokes in the character.

一 49

Chapter 4

STROKE.TYPE horiStroke [«] Array of information of each horizontal stroke；

w is the number of horizontal strokes.

B Y T E numVertStrokeList Number of vertical stroke group in the

character.

STROKE_LIST_TYPE vertStrokelist [n] Army of information of each vertical I

I stroke group； wis the number of vertical I

stroke groups,

B Y T E numHoriStrokeList Number of horizontal stroke group lists in

the character.

STROKE_LIST_TYPE horiStrokeList [n] Array of information of each horizontal ！

stroke group； n is the number of

… horizontal stroke group.

B Y T E numSIn^leContour Number of single contour in the character.

SINGLE一CONTOUR一TYPE I singleContour [n] Array of information of each single contour,

where the definitions of structures and the meanings of the variables are：

STROKE—TYPE:

T y p e N a m e Descr ip t ion

BYTE order Order of the stroke (the first stroke is of order 0，the

second is of order 1, and so on.).

BYTE width Width o f the stroke.

BYTE D c e n t e r l i n e Position of the center line of the stroke； its leftmost

USHORT bit indicates its type： if that bit is set, it is of type

USHORT with the rest 15 bits storing the value； otherwise，

“ it is of type BYTE with the rest 7 bits storing the value.

BYTE numControlPointPairs Number of pairs of control points； each pair contains

a starting control point and a ending control point, and

the intermediate control points are in consequent positions

BTYE flagstn] Array of flags for each pair of control points； n is the

number of pairs of control points.

BYTE ostartControlP oint [«] Array of starting control points, their types are indicated ！

USHORT by flags; wis the number of pairs control points. ••

BYTE endControlPoint [w] Array of ending control points； the first number is relative

i to 0; others are relative to previous number； n is the

‘ number of pairs of control points.

•— Chapter 4

Each flag is a single byte. Their meanings are shown below.

Bit Description

Type of starting point 0 If set, the type of the starting control point is USHORT； ；

otherwise, the type of the starting control point is BYTE.

Existence of 1 If set, there is a corresponding ending control point； i

ending control point otherwise, control point there is no corresponding ending

control point.

Offset of ending 2 If set, the relative offset of the ending point from the

control point corresponding starting point is 1； otherwise, the relative offset is 0.

Reserved 3-7 These bits are reserved. Set them to zeroes.

STROKE—LIST一TYPE;

T v p c N a m e Descr ip t ion

BYTE order Order of the stroke group (the first stroke group is of order 0,

the second is of order 1，and so on.)

BYTE numStrokelnList Number of strokes in the group. •

B Y H strokeOrder [n] Array of strokes in the group； n is the number of strokes in the 只roup.

BYTE ogap \n-1\ Array of gaps between consecutive strokes； its leftmost bit indicates

USHORT its type： if that bit is set, it is of type USHORT with the rest 15

' b i t s storing the value; otherwise, it is of type BYTE with the rest 7

bits storing the value； n is the number of strokes in the group.

BYTE elasticity [n] Array of elasticity for each gap; n=3nt((NumStrokeInIist-l)/8)+1.

SINGLE—CONTOUR—TYPE:

T y p e N a m e Descr ip t ion

BYTE order Order of the single contour (the first single contour is of order 0，

the second is of order 1, and so on.)

USHORT vertRefLine Reference line for vertically adjusting the single contour.

USHORT horiRefLine Reference line for horizontally adjusting die^single contour. 一 — .

The experimental results of this hinted file is presented in Chapter 5 and 6.

4.4 A Ras ter iza t ion Algor i thm f o r Printing

We can restate the general rules for determining internal pixels of the output bitmap based on the

character outline as follows：

Rule 1： If a pixel's centerfalls within the character outline, that pixel is turned on.

Rule 2： If a pixel's center coincides with the character outline, that pixel is turned on

51~

— Chapter 4

Unfortunately, the geometric properties of a slanted or curve stroke may not be preserved

by these simple rules. Figure 4.30 shows 3 examples of the undesired cases.

丄 丄 I 丄 丄 丄 丄 因 囹 因

u l i 二 . 二 丄 L) ^ ^ � �

丄 丄 f 丄 二 . 丄 丄] / ^ ^ ^

case 1： not smooth stroke

. I • I • I•丨.丨 • I .忍

Z Z ^ A V Z Z K ^ ^ •

= = ^ z z = i V ^^
•丨.4.丨/丨小丨1 -

case 2: uneven width

卞 丨 • 少 囹 図

丄 丄 2 丄 z 丄 丄 k 因

• • « • • « •

case 3： destroying geometric property-

Figure 4.30: 3 undesired cases of the simple algorithm

In these cases, the bitmap strokes are not smooth and this may destroy the regularity and

harmony of the characters composed of these strokes. The root of this problem is that, when a

character with continuous boundaries is converted into a discrete image, some information of the

shape gets loss. Nonetheless, we can make some adjustments to the rasterization process to lessen

this deficiency, especially when printing.

4.4.1 A Simple Algorithm for Generating Smooth Characters

With reference to the rules for determining internal pixels mentioned above, if a resultant bitmap

image is of 2 pixels wide, the original outline span can be only wide enough to cover two pixel

centers or just not wide enough to cover three pixel centers. In other words, the width of the

outline span can mnge between 1 pixel and 3 pixels (Figure 4.31). So, the maximum error of this

52

Chapter 4

algorithm is 1 pixel. We now present a rasterization method which gives maximum eiror of 0.5
pixel.

span

I I outline

I 1
1 pixel

I I
3 pixels

Figure 4.31： A stem with width ranging from 1 to 3 pixels may give a 2 pixels wide image.

Our principle is very simple： the number of pixels to be turned on for a span is determined

by rounding the width of that span. For instance, a 2.3 pixel wide outline span will give a 2 pixel

wide bitmap image, and a 2.8 pixel wide outline span will result in a 3 pixels wide bitmap image.

Suppose the width of a span is between 1.5 pixels and 2.5 pixels, then 2 pixels

(ROUND(x)=2 for 1.5<=x<2.5) must be turned on. We have to determine which two pixels are to

be turned on. Depending on the width and position of the span, it may overlap 2, 3 or 4 pixel

columns：

1. If it overlaps 2 pixel columns, the 2 pixel columns are turned on (Figure 4.32a).

2. If it overlaps 3 pixel columns, the middle pixel and the end pixel with greater coverage are

turned on (Figure 4.32b，4.32c).

3. If it overlaps 4 pixel columns, the middle 2 pixels are turned on (Figure 4.32d).

(a) I •丨• W . I . 1

I~I r ^ I

(c) 句 ——

(d) I小丨圓卜丨•丨
I I

span

1.5 pixels <= span width < 2.5 pixels

Figure 4.32： Illustration of the algorithm

Chapter 4

To illustrate the second case in more detail，we consider one more example. Suppose a 2.2
pixel wide span overlaps 3 pixel columns with covemge of (0.55，1.0，0.65). Since ROUND(2.2)=2,

two pixels must be blackened. Undoubtedly, the middle pixel with 1.0 covemge must be turned on

and，as 0.65 > 0.55，the right pixel is also turned on.

\ 1 1 1 6 characters generated by this technique sometimes have ragged edges. If these

characters are displayed in low resolution output device such as screen with 80 dpi, they may not

look better than those generated by the traditional algorithm. However, when the bitmap

characters are output to a printer with medium resolution (say 200 dpi or 300 dpi), blank regions

around the characters' boundaries will take on the color of the dots adjacent to them, just like the

case of half-bitting [Rubinstein 90, p.80] [Maag 89]. This would increase the qualities of the

characters printed..

4.4J2 Algorithm

The algorithm is listed below： {

purpose： to determine which pixel should be turned on

input： intersection points of the outline ivith each horizontal scan line

output： bitmap image of the outline
} —

for each horizontal scan line do
for each alternative pair of intersection points do

calculate the distance between the two points, d；

compute ̂ ~ROUND(d)；

count the number of pixels overlapped by the extent of the two points, n；

if w=n then

turn the n pixels on；

else {the middle n-2pixels are turned when wri+1 or tvn+2 and n >= 2}
turn the middle n-2 pixels on；

if w=n+l then
if the left end pixel with more coverage than the right end pixel then

turn the left end pixel ojy

else

turn the right end pixel on；

endfiff
endfij}

end{ij}

end {for}

end {for}

Algorithm 4.11

4.43 Results

Figure 4.33 shows the bitmaps that would be generated by the algorithm mentioned above. The

deficiencies shown in Figure 4.30 can be corrected to preserve the main features of the characters.

Figure 4.34 and Figure 4.35 shows some examples of bitmaps generated by the traditional method

and the above algorithm. We can see that the characters generated by the above algorithm is

satisfactorily smooth.

“ * — Chapter 4

1 1 1 / i p E l '

_ 醒 / i p / f ^

mmm. mm/ 『

狐 1 caseS case3

Figure 4.33： Resulted bitmaps generated by the smooth algorithm.

戈火父瓜多狹

戈火父瓜多狹
(a)

戈火父瓜多狹

戈火父瓜多狹
(b)

Figure 4.34; (a) bitmap characters generated by traditional algorithm and (b) bitmap characters generated by the above

algorithm in a low resolution printer.

趴大連三月家者极萬4、

戰火連三月京者极萬金

戰大連三月家者极龙金

戰火連三月家者极萬食

Figure 4.35： Upper 2 rows are bitmap characters generated by traditional algorithm and the lower two rows are bitmap

characters generated by the above algorithm in a higher resolution printer.

- ^ ^ ‘ 5 5 ~

Chapter

Chapter 5

Experiments

By conducting some experiments, we want to test if the algorithms described in Chapter 4 could

do well. We now describe the details of the experiments in this chapter and an analysis of them

will be given in Chapter 6.

5.1 A p p a r a t u s

Performance measurements are made on an IBM-PC 80486/50 with 8M RAM. Font files are in

TrueType format where curve segments are described by quadratic Beziers. For fair comparisons

among various fonts, we have carefully examined the font files to ensure their qualities are

comparable, i.e. roughly the same number of quadratic Bezier segments is used to describe

curves with similar shapes.

5.2 E x p e r i m e n t s f o r Invest igat ing Hasterizatioii S p e e d

Besides investigating the performance of the new algorithm, we are also interested in seeing the

effects of Chinese characters' features, such as stroke count and font style, on the time required

for rasterization.

52.1 Investigation into the Effects of Features of Chinese Fonts on Rasterization

Time

Among the properties of Chinese characters discussed in Chapter 2，we expect that two of them

may affect the rasterization speed： the stroke count and the kind of style of the Chinese

characters generated.

Stroke Count

The complexity of a Chinese character may probably be reflected by the number of strokes it

has. The more strokes a character contains, the more curves would be in the outline and the

more complex the character would be.

So, the time required for rasterization is expected to be an increasing function of the

stroke count. There is some more Information we would like to know： Is the effect of stroke

count significant? How does the time for rasterization relate to the stroke count?

“ � “ 56~

Chapter 5"

Font Style

The style of a character determines the shapes of the basic strokes and the relationship between

strokes, and hence the whole impression of the chamcter. We have chosen 5 common kinds of

typefaces, namely Ming, Gothic, Hun, Kai and Dai styles (see Figure 2.1 in Chapter 2). They are

selected not only due to their popularity in use, but also because of their great varieties in style

and structure.

522 Improvement of Fast Rasterizer

The performance of two rasterizers, Rasterizer 1 implementing algorithm 3.1 (the original

method) and Rasterizer 2 implementing the techniques discussed in Chapter 4 (the improved

method), are compared.

In addition, we want to find out the influences of (i) style and (ii) stroke count of the

output bitmap character on the performance. The varying factors are：

1. Font style： Dai style (隸書），Hun style (行者）,Kai style (措書），Ming style (明體）
EEI

and Gothic style (

2. Number of strokes： 1 to 30.

523 Details of Experiments

We take the 5401 most commonly used characters of the Big5 Chinese character set from each

of the 5 sorts of typefaces mentioned above. The size of the output bitmap characters are fixed

at 150 by 150 pixels which is so large that hintings are not necessary.

The characters are then divided into groups according to their stroke count.

Rasterization times are recorded for all members of each group, where time includes character

generation only and displaying time is excluded. Then the mean times for each group are

computed.

5.3 E x p e r i m e n t s f o r Rasterizat ion Speed of Font File with Hints

Since the objective of the above experiment is to measure the improvement of the suggested

rasterization algorithm without doing hintings, we do one more experiment to investigate the

gajin and loss of rasterizing font file with hints. .-

By simple random sampling (see Appendix), we select 100 characters from the set of

most commonly used characters (with 5401 members). Then we extract the data of these

characters from the font file in Ming style and save these data in a new file. Inserting hints into

this font file using the techniques and data structure introduced in section 4.3 of Chapter 4

produces another new font file with hints. By carefully comparing aspects of these font files, we

want to see if it is worthwhile to insert hints to the file.

“ ‘ Chapter 6

Chapter 6

Results and Conclusions
\

In this chapter, we present and analyze the results' obtained from performing the experiments

described in Chapter 5. Finally, we conclude our work and give some directions for future
research.

6.1 Obsetvat ions

Based on the results of our experiments, we get some interesting observations about the

relationship between the time required for rasterization and the features of the Chinese characteis.

Relationship Between Time for Rasterization and Stroke Count

Hgure 6.1 shows the plots of average time for rasterization against stroke count for the 5 font styles

‘ respectively. It is likely that we can describe the relationships shown in the figures with straight

line models. To test this conjecture, we fit linear regression models to the plots. The fitted values of

the model are shown in each of the figures as dotted lines, and we found that the model can

explain over 90% of the changes in observed data (Table 6.1). Since the slopes of the fitted lines,

displayed in Table 6.1, are significantly greater than 0, we can conclude that the time is linearly

dependent on the number of strokes.

Typeface Dai Hun Kai Ming Gothic

R 2 0.96 0.92 097 095 0.97

slope 3.20 2.33. 3.09 3.22 3.56

vertical intercept 39-18 | 37.92 45.4 38.22 33-94

Table 6.1： A summary of the linear regression models fitted to the mean times.

‘ ~ 58~~

Chapter 6

140 T

1 2 0" ^ ^
x 100 - ^ w ^ 5 ^

1 8 0 -
JJ mean
者

 60
-

40 y fltmeSan
2 0 •• fttalldata

0 I 1 ' I 1 I I I I i I I I I I I 1 I I I i I I I I ! I I ! ,
r H O O l O ^ O ^ o O l O ^ O i T H O O i o ^ ^ THiHrHtHrHC<IC<I05c<2S2

Stroke Count

' •. (a)

140 丁
120

100 I
^ I
g 80 + mean

J 60 U
p fit mean

40 P 7

…fit all data
20

0 -I~I~I~I~I~I~I~I~~I~I~I~I~I~I~I~I~I)~I_I~~II_I_I_I_I_I_I_I_I
rH 冲 卜 O C 0 C D � 0 2 1 1 5 0 0

rH rH rH rH 02
Stroke Count

� (b)

I . ^ ^ I .

-I
,
100
 户 ^ ^

g 80 4

1
 円 .

OQ I fit all data

0 -J~I
rHCOlO 卜 OirHOOlO 卜 OirHCOliJ 卜⑦

Stroke Count

(C)

“ “ ~ 5 9 ~

“ Chapter 6

1 I
120 -r

100 . ^ C

1 4 .
j 6 0 ^ ^ 一

40
Z fib mean

20 4
fit all data

0 I 1 1 1 1 ' • l I I I I I I I
T H O O l O b O j O O l O h O r n c O i u h �

iHrHrHrHr-«C<2C<20aCaca
Stroke Count

= ^ = = = = = = = = = = = = = = = = = ^ (d)

160 丁

140 ,

120 -. ^ ^ ^ ^

i 100 - ,

� B0 -- mean.

^ 60 - —_
---• ' - fit mean. 4 0 � ^ ^

20 fit all data.

0 ~I‘~I~II~I~I~I~I~I~~I~I~I~I~ J—I~I~I~I~!~I~I~I~I~I~I~I~I~I rHCOlO 卜 OJrHCOlO 卜 OirHCOUJ 卜 O rHrHrHrHrHC<2C<2C5CaC<2
Stroke Count

1 (e)

Figure 6.1： Plots of time against number of strokes for the 5 typefaces

Since there are repeated observations for each stroke count, we can perform a lack of fit

test to verify whether the straight-line model is fit to the data [Bhat & Johnson 77; ch.ll]. Table 6.2

summarizes the results for the tests based on all data rather than just mean times. The computed F

statistics are very large and the corresponding p-values are close to 0，which means the straight-line

models can completely account for the changes in data.

60

Chapter 4

Typeface Dai Hun Kai Ming —

0.96 0.92 0.97 QQS Q.97

s l ° P e 2,82 ^ 0 6 2.64 2.93 3.08

vertical 47.56 45.22 55.10 46.26 43.75

intercept

F-value 1196 488 919 1103 1343

28，5371 28, 5371 28. 5^71 2R 9 7 1 9«

p-value approx. 0 approx. 0 approx. 0 approx. 0 approx. 0

Table 6.2： A summary of the lack of fit test based on all data.

6.12 Effects of Style

Next we are going to inspect whether the font style has a significant effect on the rasterization time.

Figure 6.2 is resulted from combining the plots in Figure 6.1： Figure 6.2a shows the combination of

original lines； Figure 6.2b and 6.3c show the fitted lines for mean times and for all data

respectively.

We can observe that, in Figure 6,2a, the curves except that for Hun style intersect with

others at many points and，in Figure 6.2b and 6.2c，there is little difference among the fitted lines.

The figures shown in Table 6.1 further indicate that the fitted lines are just slightly different from

others with respect to the slope and vertical intercept. Therefore, we could arrive at the conclusion

that，in general, the font style has Insignificant effect on the rasterization time.

Comparisons ofthe Rasterization Hme fo r the 5 Type&cesl

(150x150) I I

140 T

1 S 0 . . 々 ^ ^ ^ — — ^
彻 一一 Kal

I BO--

J 二：
令 Htm

20
0 I t I t I I I I I I t I I I I I Gothic
rHQOlO 卜 OrHOOlO 卜 OiHOOUJ 卜⑦

THTHTHrHr- tCClWWCdW
Stroke Count

_ _ ： , (a)

• —

Chapter 4

Cotnparisoa ofthe fitted lines for means _

160 丁

,：： ^ ^ F ^ j 、
1 1 0 0 一 ^

40 H u n

2 0 I Gothic
0 ‘ 1 I I I I I I I I j I

rH rH iH H 02 5J (M
Stroke Count

I (b)

140 丁

« ^ ^ ^ ^ ^ ^ Dai

I 60

40 j H u n

20 I Gotliic

0 -I~I I i i I I I I i I I~I i I I I I I I I I I I I I i I i I
H 冲 卜 O C O C D O C 2 l O C O

iH r-l TH rH ca 02 55
Stroke Count

(c)

Figure 6.2: Plots show comparisons of execution times for the 5 typefaces

6.13 Investigation into the Observed Relationship

Now we are trying to investigate the rationale behind the above interesting observations. Figure 6.3

shows the relationship between number of control points and stroke count. We can see that,

except for the characters in Hun style, the number of control points of the characters in the other 4

styles do not differ a lot. Even for a character in Hun style, provided that it has less than 25 strokes,

its number of control points is not very far away from its counterparts. Figure 6.4 shows the plots

of rasterization time against number of control points, from which we observe that the time for

rasterization is linearly dependent on number of control points.

The number of control points would determine how many curve or line segments are in

the outline, which would in turn affect the time for scan conversion. Also, more control points

would imply larger net area of the outline and thus more time would be needed for filling. In other

_ —

“ Chapter 6

words，the number of control points in an outline can approximately estimate the time for

rasterization. This is supported by the experimental results shown in Figure 6.4 and 6.5.

From this point of view, as the number of control points increases with the stroke count,

the time for rasterization would increase with stroke count. We observe that the outline characters

in the 5 typefaces have roughly equal number of control points, therefore, their times for

rasterization would be more or less the same.

860 T

I v 广 …

m 300 - / ~ ,
I / ^ C ： ^

fS 250 - 广-^
I 200 -

卜 —
I 丄㈨ - ^ ^ Ming

« 60 - ^ ^ ^
Gothic

0 ‘ I I I I I I I I 1 I
' H C O l O ^ C l ^ c O l O ^ O i i H C Q l O I ^ O i

Stroke Count

Figure 6.3： Plot showing the relationship between number of control points and stroke count

1 2 0 丁 1 4 0 T

I g 巧口00 ^ ^ 1 1 0 0
 m 口 卿 口 口

f 60 … 口 f 8 0 * D BP^
® • u W on n
I 4 0 - 1 Z D ^ D

P • • H 40 • •口

8 0 2 0 - .

o J . . > 1 0 J— ,
o 60 100 160 200 0 100 200 300

Number of Control Points Number of Control Points
(a) (b)

. " 6 3 ~

Chapter 6

1 5 0 丨 ISO T

1 1 0 0 r D B D D " D D i loo. •⑩口 “
二 • • XT a 5 …•••口
I 50 ••口 _

 X
 爸

0 , 1 , _ , , ,
1 1 0 -I , , , , , ’

o 50 100 ISO 200 250 ^X) 0 B 0 100 ISO 2 0 0 , 6 0 300

Jfember of CoatrdPoInte Number ofConteol Points

(c) (d)

ISO T

1 100 - n %

I BO
cf3

0 . ,
0 100 200 300 400

Number of Control Points

(e)

Figure 6.4： Relationships between execution times and number of control points

160 j

140 ^ ^

j Gotlilc

0 300

Number of Control PolntA

Figure 6.5： Fitted lines of times against number of control points

6.2 Impix>vemeiit o f Improved Rasterizer

In this section, we present the results of comparing the performance of two rasterizers： Rasterizer 1

Implements the traditional rasterization algorithm and Rasterizer 2 implements the improved

_ _ _ _ _ —— — — — 64

‘ ； Chapter 6

rasterization techniques. Our objective is to study the improvement of msterizer 2 over msterizer 1,

where improvement is determined by the formula:

improvement = 1 - x l 0 Q %
time_ of 一 rasterizer 一 2

Figure 6.6 plots the execution time against the number of strokes of the chaiacteis for the 2

rasterizers for the 5 style and we observe that Rasterizer 2 is much faster than Rasterizer 1. Figure

6.7 plots the percentage of time improvement of rasterizer 2 over msterizer 1 against the number of

strokes. In all cases, we can observe that the improvements are over 30%. This implies that

Rasterizer 2 can significantly improve over Rasterizer 1.

1 4 0 T i4o T

120 . ^ ^ ^ 120- / ^ ^
, 1 0 0 100. ~ ^ ^ ^
I 80 ^ ^ ^ ... a 80.. — ^ “
U ^^ Z、、一~ """
I 60 / / _ 一 . 一 J 60. �一 f — ~ — I

40 • /•、、.-, afâ tal 初 , ‘ , 〜 、 C f j ^ t o l
“ . " z ' … liMprwed 2 0 、 . 一“ ………，,…tnqmwcd

0 I . I I , ！ , , , n , , , , , , , , , , , , '

Stroke Count Stroke Count

(a) (b)

140 -r J20
120 loo.

\: 一 - i : : �

I 60 ^ ^ � 一 r I 4 0 � • ’ r = — 1

2 0 , , — , ――tajaw d̂ 80 - , . , '�•"
0 I _ I I I I I I I ! I ！ 1-^-1-1 0 I I I I I

Stroke Count Stroke Count

(C) (d)

“ 6 5 ~
* •*

“ Chapter 6

140 T

120 /

！
 80
 .,、

I 6 0 - Z .•、一

40 、 ， 〜 , - _ '

20 "...Z••••'"
0 1 • • • I I I I I I I ! I I

Stroke Count

(e)

Figure 6.6： Series of graphs showing the relationship between execution time and number of character strokes for the two

rasterizers.

60 6 0 t

I 2 0 • i 20
月 1 0 . I 10

o j , ' ,“，^ ! ; , � i i J 丨

Stroke Count Stroke Count

(a) (b)

60 T 50.

I:. I2。..、. v
月 1 0 . . 1 1 0 .

0 I I I ! I ! 0 I I !

Stroke Count Stoke Count

(c) (d)

~ 66

~~“~~‘ Chapter 6

60

1
I 30 \

I 80
10-

0 I I I I | { t _

Stroke Count

(e)

Figure 6.7： graphs showing the relationship of % of time reduction and numbet of strokes for the 5 typefaces and pixel sizes

of the output bitmaps.

Other than the experimental results presented above, we have also performed some

experiments for generating bitmaps of various sizes, such as bitmap characters of size 50x50，

100x100 and 200x200. From our results, the larger the pixel size, of the bitmap is, the better the

improvement would be. For instance, Figure 6.8 shows how the rasterization time varies with size

of the bitmap character 卿、for the original rasterization process with and without hintings, the fast

rasterization process with and without hintings. It shows that the fast algorithm requires relatively

less time for generating larger bitmap characters. This fact is in accord with our expectation

because, when the area to b e filled is larger, the filling algorithm would be more efficient with fully

utilizing byte filling.

140 T

1 2 0 -

1 0 0 - - -

^ 80 - Z

« Z ^ ^ 一 _-‘-：一 产 i — hinted
I 60 -

‘ ， fast

40 - ^ -
广 . f a S t + h i Q t

• ^

2 0 - -

0 1 I 1 I I 1 1 I 11 I I I 1 I 1 I I 1 I I I II I I 1 I

iH tH rH iH rH

size ofbitm^> character

Figure 6.8： Graph shows how the rasteri2ation times varies with size of bitmap character ^ ^ generated by different

rasterization processes.

‘ “ Chapter 6

6.3 Gain a n d Cost o f Insert ing Hinte Into Font File

This section summarizes the results obtained from the experiment for comparing the font file with

hints with the one without hints described in section 5.3 in Chapter 5.

63.1 Cost � •

The first row of Table 6.3 shows the sizes of the two font files. The second row shows" the time for

rasterizing 100 randomly selected characters of size 33x32 from the font file without hints and that

from the font file with hints. We can see that the increases in file size and execution time for

generating 32x32 bitmap of the 100 characters are reasonable, that is the cost is acceptable.

without hints with hints % increase

f i l e s i 2 e 40862 bytes 50297 bytes +23%

execution time for 32x32 bitmap 403-5 ms 422.1 ms +50/0

Table 6.3: Comparison of file size for 100 randomly selected characters,

63-2 Gain

Figure 6.9a shows the 100 characters generated from file without hints and Figure 6.9b shows the

corresponding characters produced from file with hints. Obviously, the hinted characters look

much better than those generated without hintings. "Figure 6.10 shows two characters generated

from Microsoft Windows and our algorithm respectively for different sizes. We can observe that our

control of the spaces among strokes is better.

戶刊央旦札禾吏字旭汗即局沛沍災牢甬巡刮協
帚毘炊肫肯芟咦奕幽毒迥面倥倘卿悔捆挽疲盎
蚊問排眾羞荸訢陷喂單喬圍幀愕愎港焜痢詐募
廈搔滂溫煙綏虜裒鈸雉馴慚斡榜褚領戮敵潔蔓
操濂澧諺踱骼鴕簌韓擷瞿儳橱櫝瀟癟蹺懺躋驃
(a)

戶刊央旦札禾吏字旭汗即局沛沍災牢甬巡刮協
帚毘炊肫肯芟咦奕幽毒迥面倥倘卿悔捆挽疲盎
蚊問排眾羞荸訢陷喂單喬圍幀愕愎港焜痢詐募
廈搔湊溫煙綏虜裒鈸雉馴慣斡榜褚領戮敵潔蔓
操濂澧諺踱骼鴕簌韓擷瞿儳橱櫝瀟癟蹺懺臍驃
Cb)

Figure 6.9： (a) 100 randomly selected bitmap characters (32x32) are generated without hintings； (b) the corresponding

characters are generated with hintings.

“ ： 68~~

Chapter 4

臓 a m ^ m 麵 叔 明 咄 ^ ^ ^ ^ ^ ^ ^

. 一 “ M\
M̂CiC ：|

I 00 ^瞿瞿瞿蟹霍 I

I 禮瞿蟹瞿瞿霍 I .

I w 單 單 軍 單 單 單 單 I

I 油 翠 單 單 單 單 單 卓 I

Figure 6.10: Comparison of bitmaps generated from Microsoft Chinese Windows 3.1 (a, c) and from our hinted font file (b,

d).

6.4 Conchis ions

In conclusion, we have suggested some techniques which make improvement on the scan

conversion and contour filling steps of the rasterization process for Chinese outline fonts. Our

experimental results show that these techniques can speed up the rasterization process. Also, we

demonstrate an auto-hinting approach for Chinese font with relatively straight horizontal strokes,

such as Ming style and Gothic style. With hints added into the font file as part of font data, the

rasterizer can create much more beautiful bitmap characters, not costing too much in terms of space

and time. In addition, based on our experimental results, we observe an interesting relationship：

the time taken by the rasterization process is linearly dependent on the stroke count of the

character to be generated but quite independent of in what style the character is.

6.5 Futui^ Work

Storing font data in bitmap format, we have to keep one font data copy for each of the various

styles in many distinct sizes. Storing font data in outline font format, we have to keep one font data

copy for each of the various styles. This trend may Imply that there exist a format in which only

one copy of font file would be required for generating fonts in different sizes in different styles.

By studying the skeleton of a character, the Chinese can write a character in different styles

with adequately amending the skeleton and directing the movement of the brush-tip of the writing

—一 69

Chapter 6

brush. Similarly, we can store Chinese character with their skeletons and fonts in distinct styles can

be produced by appropriately altering the skeleton and some pammete^ which control the

appearance of the stroke applied to each stroke. Figure 6.11 shows the idea of tiansfomiing a

character skeleton into fonts in Gothic and Ming styles.

ckaractcr skeleton — ^ ^

I 1 ^

^
Gothic style Ming style

Figure 6.11： Generation of Chinese fonts from character skeleton.

Some problems of implementing this approach includes： how can we convert the skeletons

Into strokes? How should we adjust the parameters of the model and the character skeleton so that

we can generate strokes in exactly the same shape of strokes in a common style (like Ming style,

Dai style and Kai style)?

""""‘ ‘ : : 70~

~ Appendix

Appendix

Our simple random sample of size 100 is selected using the following mndom digits

table. Since the population size is 5401, we read 4 adjacent digits from the table to get a number

each time, skipping any number which is greater than 5401, until 100 disHnct numbers have
been drawn.

To choose which line to start, we draw a random number between 0 and 19 by a

calculator and we obtain 7. Therefore, beginning with line 7, tlie randomly selected numbers

are 1778，3000, 1510, 8068 (skipped), 3091,…

ONE THOUSAND RANDOM DIGITS

00~04 05-09 10-14' 15-19 20-24 25-29 30-34 35-39 40-44 45-49

0 0 ' 5 4 4 6 3 22662 65905 70639 79365 67382 29085 69831 47058 08186
01 15389 85205 18850 39226 42249 90669 96325 23248 60933 26927
02 85941 40756 82414 02015 13858 78030 16269 65978 01385 15345
03 61149 69440 11286 88218 58925 03638 52862 62733 33451 77455
04 05219 81619 10651 67079 92511 59888 84502 72095 83463 75577

05 41417 98326 87719 92294 46614 50948 64886 20002 97365 30976
06 28357 94070 20652 35774 16249 75019 21145 05217 47286 76305
07 17783 00015 10806 83091 91530 36466 39981 62481 49177 75779
08 40950 84820 29881 85966 62800, 70326 84740 62660 77379 90279
09 82995 64157 66164 41180 10089 41757 78258 96488 88629 37231

.10 96754 17676 55659 44105 47361 34833 86679 23930 53249 27083
11 34357 8S040 53364 71726 45690 66334 60332 22554 90600 71113
12 06318 37403 49927 57715 50423 67372 63116 48888 21505 80182
13 62111 52820 07243 79931 89292 84767 85693 73947 22278 11551
14 47534 09243 67879 00544 23410 12740 02540 54440 32949 13491

15 98614 75993 84460 62846 59844 14922 48730 73443 48167 34770'
16 24856 03648 44898 09351 98795 18644 39765 71058 90368 -44104
17 96887 12479 80621 66223 86085 78285 02432 53342 42846 94771
18 90801 21472 42815 77408 37390 76766 52615 32141 30268 18106
19 55165 77312 83666 36028 28420 70219 81369 41943 47366 41067

— — — . 71

~ References

References：

[Abe，Yamamoto & O h n o 91] Hiroshi Abe, Yoshimichi Yamamoto, Yoshio Ohno； "High

Q^^y Gray-scale Kanji Font Generation Using Automatic Stwke Displacement"-, In Raster

Imaging and Digital Typography n- Cambridge University Press, 1991.

[Ackland 81] B. D. Ackland and N. H, Weste； "The Edge Flag Algorithm -A Fill Method far Raster

Scan Displays"-, In IEEE Trans, on Computers, vol. 30，no. 1, January 1981.

[Adobe 90] Adobe Systems Inc.； PostScript Language Reference Manual, 2nd Edition- Addison-

Wesley, 1990.

[Andler 90] Sten F. Andler； "Automatic Generation of Gridfitting Hints for Rasterization of

Outline Fonts or Graphics") In EP90, 1990.

[Betrisey & H e r s c h 89] Claude Betrisey and Roger D. Hersch; "Flexible application of outline

g^ constraints"-, In Raster Imaging and Digital Typography, Cambridge Univeisity Press, 1989.

[Betrisey & H e i s c l i 91a] Claude Betrisey and Roger D. Hersch; "Model-based Matching and

Hinting of Fonts") In Computer Graphics, vol. 25? no. 4, July 1991.

[Betrisey & H e r s c h 91b] Claude Betrisey and Roger D. Hersch； "Advanced Grid Constraints：

Performances and Limitations"； In Raster Imaging and Digital Typography II, Cambridge

University Press, 1991. ••

[Bhat & J o h s o n 77] Gouri K. Bhattacharyya & Richard A. Johnson； Statistical Concepts and

Method-, Wiley, 1977.

[Cao & S u e n 87] X. Cao and C. Y. Suen； "A New Phonetic and Ideographic Coding Technique for

Chinese Information Processing") In Computer Processing of Chinese & Oriental Languages, vol. 3,

no. 2, December 1987.

[Cheang 90] Cheang Sio Man； "Chinese Windows System tvith Distributed Fonts"] Thesis (M.

Phil.), the Chinese University of Hong Kong, 1990.

. : ^

• , '. References

[Chen, Li & C h a n g 88] Keh-Jiann Chen, Kuo-Chun Li and Yeong-Long Chang； "A System for

On-Line Recognition of Chinese Characters"] In Computer Processing of Chinese & Oriental

Languages, An International Journal of the Chinese Language Computer Society, vol. 3，no. 3 & 4,

March 1988.

[Chou & Tsa i 91] Sheng-Lin Chou and Wen-Hsiang Tsai； "Recognizing Handwritten Chinese

Characters by Stroke-Segment Matching Using an Iteration Scheme"-, In Character & Handwriting

Recognition, World Scientific Publishing Co. Pte. Ltd，1991.

[Fa lhander 89] Olvo Fahlander； "A spline contour method with efficient filling"-, In Raster

Imaging and Digital Typography, Cambridge University Press, 1989.

[Foley & v a n D a m 90] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes；

Computer Graphics, Principles and Practice，2nd Editiow, Addison Wesley, 1990.

[Gonczarowski 89] Jakob Gonczarowski; "Fast Generation of Unfilled and Filled Outline

Characters"-, In Raster Imaging and Digital Typography, Cambridge University Press, 1989.

[Gonczarowski 91] Jakob Gonczarowski； "A Fast Approach to Auto-tracing (with Parameteric

Cubics)"] In Raster Imaging and Digital Typography II, Cambridge University Press, 1991.

[Hetsch 87] Roger D. Hersch； "Character Generation Under Grid Constraints"-, In Computer

Graphics, vol. 21, no. 4, July 19B7,

[Hersch. 88] Roger D. Hersch； "Outline Phase Control for Character Rasterization"； In

Eurographics '88, 1988.

[Hersch 89] Roger D. Hersch； "Introduction to font rasterzation") In Raster Imaging and Digital

Typography, Cambridge University Press, 1989.

[Holzgang 92] David A. Holzgang； Understanding PostScript, 3rd Edition-, Sybex Inc., 1992.

[Hsu & C h e n g 85] Wen-Hsing Hsu and Fang-Hsuan Cheng; "Recognition of Handwritten

Chinese Characters by Structural Analysis of Strokes") In Computer Processing of Chinese &

Oriental Languages, vol. 2, no. 2，October 1985.

[Karow 89] Peter Karow； "Automatic hinting for intelligent font scaling"] In Raster Imaging and

Digital Typography, Cambridge University Press, 1989.

_ — ： “ ~ 7 3 _

. “ References

[Knuth86] Donald E. Knuth； TheMETAFONTBook, Addison-Wesley, 1986.

[Kohen 89] Eliyezer Kohen； "A Simple And Efficient Way to Design Middle Resolution Fonts"； In

Raster Imaging and Digital Typography, Cambtidge University Press, 1989.

[Lee92]李明清；尹义杀.絲激肩好龙翁入放虏芳竽;旗標出版社，i9 9 2 .

[Liao & H u a n g 91] Chia-Wei Liao and Jun S. Huang; "Font Generation by Beta-Spline Curve"- In

Computer & Graphics, Vol 15，No. 4，1991.

[I iu 87]廖明德纟倚天中文系統〜倚天資訊有限公司，1987.

[Lus 90] K. T. Lua； "Analysis of Chinese Character Stroke Sequences'�In Computer Processing of

Chinese & Oriental Languages, vol. 4, no. 4, March 1990.

[Maag 89] Bruno Maag； "Shape investigations witb bitmapped characters"., In Raster Imaging and

Digital Typography, Cambridge University Press, 1989.

[Moon & Cheang 91] Y. S. Moon and S. M. Cheang； "Deficiencies of PostScript in

Displaying/Printing Chinese Fonts"-, In Communications of COUPS, vol. 1，no. 1，1991.

[Moon & Hui 89] Y. S. Moon and W. K. Hui； "High Quality Chinese Fonts Generation for

Desktop Publishing - A Computer Vision Approach') In Pattern Recognition Letters 9，1989.

[Moon & Sh in 90] Y. S‘ Moon and T. Y-. Shin； "Chinese Fonts and their Digitization"； In EP90,

1990.

[Morishita, Ooura & Ishii 88] Tetsuji Moiishita, Masahiko Ooura and Yasuo Ishii； "A Kanji

Recognition Method Which Detects Writing Errors"-, In Computer Processing of Chinese & Oriental

Languages, An International Journal of the Chinese Language Computer Society, vol. 3, no. 3 & 4,

March 1988.

[New Image 92]中國文字造形詨铲;新形象出版事業有限公司，1992.

[Ou & Ohno 89] Chialing Ou and Yoshio Ohno; "Font Generation Algorithms for Kanji

Characters"-, In Raster Imaging and Digital Typography, Cambridge University Press, 1989.

. : 7 4

References

[Pavlidis 79] Theo Pavlidis； "Filling Algonthms for Raster Graphics"-, Computer Graphics Image
Proc. 10，1979.

[Pavlidis 81] Theo Pavlidis； "Contour Filling in Raster Graphics"-, In Computer Graphics, vol. 15,

no. 3，1981.

[Pavlidis 85] Theo Pavlidis； "Scan Conversion of Regions Bounded by Parabolic Splines"- In IEEE

Computer Graphics and Applications, vol 5，no. 6，June 1985.

[Rogers 85] David F. Rogers； Procedure Elements for Computer Graphics-, McGraw-Hill Book

Company, 1985.

[Rosenberg 91] Charles Rosenberg； "A Ixnv Complexity Method for Compressing Kanji Font

Bitmaps"、In Raster Imaging and Digital Typography H, Cambridge University Press, 1991.

[Rubinstein 88] Richard Rubinstein; Digital Typography - An Introduction to Type and

Comparison for Computer System Design-, Addison-Wesley, 1988.

[Seybold 92] "Outline Font Hints and Rasterization： A Technology Primer") In The Seybold Report

on Desktop Publishing, vol. 6, no. 7, 1992.

[TrueType 90] TrueType Font Files； Microsoft Corporation, 1992.

[Warnock 80] John E. Warnock; "The display of characters using gray level sample arrays"-, In

Computer Graphics, vol. 14，no. 3，July 1980.

[Yang 86] Jiben Yang； "A Psychological View on the Standardization ofthe Structural Elements

of Chinese Characters in Information Encoding"; In Computer Processing of Chinese & Oriental

Languages, vol. 2，no. 1, May 1986. 1

；

CIJHK L i b r a r i e s

QQQHM^MHb I

