
A MULTIRESOLUTION LEARNING M E T H O D 
FOR 

B A C K - P R O P A G A T I O N N E T W O R K S 

BY 

WING-CHUNG CHAN 

f 

A DISSERTATION 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF MASTER OF PHILOSOPHY 

DIVISION OF COMPUTER SCIENCE 

THE CHINESE UNIVERSITY OF HONG HONG 

JUNE 1994 



• . , . ‘ , ‘ • ： • ： 厂 ： - • • . _ , • 

- . . . . ’ .. . • - 勒 ^ . . . . . . . 
'、 . •> .-: • • . “ - . 

\ 、. , ‘ 

U L :.. \ ： ‘ ， - . … . . . ‘ ： . . . . > 

- • -

‘ , ， 

r ic -
小 f �） 
J ‘ 

I f * / . 4 

I “ 輪“::::) 
V …,/ 、/.、. • / 

\ ：、：；/̂ 
-’•.’. 



Acknowledgement 

As always, it is a great pleasure to acknowledge my debt to the many people 
involved, directly or indirectly, in the whole progress of this research. 

I am very grateful to Dr. Lai-Wan Chan who guided me through the sinuous 
path of this research. She always provides me many useful suggestions and 
valuable information. I also wish to thank Prof. Tony Chan who introduced me 
the preliminary idea of using the multiresolution signal decomposition technique 
with neural networks. Finally, I want to express my special thanks to Charlotte 
Yu for her endless support during these two years. 

To them all, I deeply appreciate and thank for their kindly help. 

ii 



Abstract 

A multiresolution representation of a signal provides a simple hierarchical frame-
work for interpretating the information. It is natural to first analyze the signal 
at a coarse resolution and then gradually increase the resolution. At a coarse res-
olution, the signal details are characterized by very few samples and the coarse 
information processing can be performed quickly. The finer details are charac-
terized by more samples and thus take more operations to analyze. However, 
the prior information derived from the coarser resolution constrains and thus 
speeds up the computational time at finer resolution. It is believed that such 
coarse-to-fine strategy provides a possibility for reducing the computational cost 
of signal operations. 

In this dissertation, we proposed to train a back-propagation network using 
the multiresolution learning method. This learning method involves a group of 
back-propagation networks. The objective of it is to improve the convergence 
rate and the recognition ability of the back-propagation networks. 

By using the multiresolution signal decomposition technique, we first rep-
resent the original input vectors under different resolutions. A group of corre-
sponding back-propagation networks are then built. Each of these networks is 
responsible to learn the input vectors at a particular resolution. The sequence 
of the training processes to be carried out by the group of back-propagation net-
works is from the coarsest level network to the finest level network sequentially. 
A term called the intermediate stopping criteria is defined for terminating the 
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training processes of these networks. After a network has been trained on a 
particular resolution of input vectors, the connection weights of the network are 
then transformed to the next finer level network. We have considered two dif-
ferent cases of the transformation, i.e., the transformation of connection weights 
between the input and the hidden layers and the transformation of connection 
weights between the hidden and the output layers. 
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Chapter 1 

Introduction 

The back-propagation network has been studied for many years and many re-
searchers have applied it to a wide variety of problems successfully, e.g., pattern 
recognition, function approximation, control application, and optimization for-
mulation [Hert91], [Kung93], [Rume86". 

Unfortunately, it is shown that the back-propagation algorithm, which adopts 
the steepest descent technique, is slow to converge in a multilayer network 
Hush93], [Jaco88]. There are plenty of work to improve the convergence rate 
of the networks but most of them do increase the computational complexity 
tremendously [Hush88], [Watr87]. Such limitation prohibits the use of back-
propagation networks on the large scale problems, e.g., problems with high di-
mensionality input space. 

Another problem with the multilayer perception is that it assumes the indi-
vidual input neuron acts independently from the other neurons. In fact, in some 
problems, for example, image recognition problems, use images as the grey level 
input to the network. The input neurons do have some correlations with their 
neighboring neurons. However, a multilayer perception has not taken this into 
account. 

On the other hand, the human visual system, as an optimal image processor, 
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Chapter 1 Introduction 

can process a huge amount of information quickly. Studies of such system have 
shown that the retina of the human eye is neither a single receptor aimed by 
the eyeball muscles nor a uniform array of parallel receptors, but an structured 
array so as to see a wide angle in a low-resolution way using peripheral vision, 
while simultaneously allowing high-resolution, detailed perception by the fovea 
in a small central portion of the viewing region [Levi85]. This finding triggered 
significant interest in multiresolution signal decomposition and some researchers 
Burt83], [Rose84a], [Tani75] have applied this multiresolution technique in many 

fields of applications, e.g., edge detection, data compression, surface interpola-
tion, and shape analysis. 

Recently, several researchers incorporate this technique with neural networks. 
Yhann and Young [Yhan90] have constructed a multiresolution pyramid repre-
sentation of a set of sample images and edge features at each level in the pyramid. 
Using the line and edge features at a chosen scale, a neural network is trained 
to classify the different textures. Segmentation of the scaled image is then ac-
complished using the trained network. Evans, Ellacott and Hand [Evan91] have 
developed a neural network eye detector by combining three simple processes, 
a multiresolution pyramid, problem decomposition and neural networks. The 
problem decomposition simplifies the problem domain by breaking the overall 
goal into smaller goals. This link into the both the multiresolution search and 
the use of neural networks as the classifiers. Sabourin and Mitiche [Sabo93] have 
proposed the use of a Kohonen associative memory with selective multiresolu-
tion for the task of modeling and classification of shapes and such method is 
shown to be computationally efficient. 

A multiresolution representation of a signal provides a simple hierarchical 
framework for interpret at ing the information [Koen84]. In some sense, the sig-
nal at a coarse resolution provide the "context" of the signal whereas the finer 
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Chapter 1 Introduction 

resolutions correspond to the particular "modalities". It is natural to first ana-
lyze the signal at a coarse resolution and then gradually increase the resolution. 
This is called a coarse to fine processing strategy. At a coarse resolution, the 
signal details are characterized by very few samples and the coarse information 
processing can be performed quickly. The finer details are characterized by more 
samples and thus take more operations to analyze. However, the prior informa-
tion derived from the context constrains and thus speeds up the computational 
time at finer resolutions. It is believed that such coarse-to-fine strategy provides 
a possibility for reducing the computational cost of signal operations [Rose84b . 

In this dissertation, we propose a problem-independent learning method for 
the back-propagation networks. This learning method adopts the multiresolu-
tion signal decomposition technique in order to alleviate the shortcomings of 
this kind of networks described above. This learning method involves a group 
of back-propagation networks. The objective of it is to improve the convergence 
rate and the recognition ability of the networks. 

With this multiresolution learning method, the original input vectors for 
the back-propagation network are represented under different resolutions. A 
group of corresponding back-propagation networks are then built and each of 
these networks is responsible to learn the input vectors at a particular resolu-
tion. The sequence of the training processes to be carried out by the group of 
back-propagation networks is from the coarsest level network to the finest level 
network sequentially. After a network has been trained on a particular resolu-
tion of input vectors, the connection weights of the network is then transformed 
to the next finer level network. 

In Chapter 2, we describe the basic concept and the mathematical prop-
erties of multiresolution signal decomposition. Two types of multiresolution 
representations, the Laplacian pyramid and the multiresolution transform, are 
presented in this chapter also. We then introduce our proposed multiresolution 
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Chapter 1 Introduction 

learning method in Chapter 3. In this chapter, we show how the input vectors 
are represented under different resolutions, the architecture of the group of back-
propagation networks generated, the training procedure strategy, and how the 
connection weights are transform from one network to another one. In Chap-
ter 4, we show some simulation results of our learning method. Two different 
problems are simulated. They are the XOR problem and the numeric recogni-
tion problem respectively. Finally, we conclude the dissertation and discuss our 
contributions in Chapter 5. 
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Chapter 2 

Multiresolution Signal 

Decomposition 

2.1 Introduction 

Multiresolution signal analysis has been thoroughly studied in computer vision 
since the work of Tanimoto and Pavlidis [Tani75] on hierarchical data struc-
ture for picture processing, and the Marr theory of low-level vision [Marr82 . 
Many researchers [Baaz90], [Rose84a], [Szel90], [Unse89] have applied this mul-
tiresolution technique in many fields of applications, e.g., edge detection, data 
compression, surface interpolation, and shape analysis. 

A multiresolution decomposition can be regarded as a model of certain types 
of early processing in natural vision and allows us to have a scale-invariant 
interpretation of the signal [Burt84]. Given a sequence of increasing resolutions 
(rj)jez, a scaling invariance can be obtained in a multiresolution representation 
if {rj)j^z varies exponentially. That is, there exists a resolution step a e R such 
that for all integers j, Vj = a � 

A multiresolution representation provides a simple hierarchical framework 
for interpretating the signal information [Koen84]. In some sense, the details of 
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Chapter 2 Multiresolution Signal Decomposition 

the image at a coarse resolution provide the "context" of the image whereas the 
finer details correspond to the particular "modalities". For example, it is difficult 
to recognize that a small rectangle inside an image is the window (modality) of 
a house if we did not previously recognize the house (context). Therefore, it 
is natural to first analyze the signal at a coarse resolution and then gradually 
increase the resolution. This is called a coarse to fine processing strategy. At a 
coarse resolution, the signal details are characterized by very few samples and 
the coarse information processing can be performed quickly. The finer details 
are characterized by more samples and thus take more operations to analyze. 
However, the prior information derived from the context constrains and thus 
speeds up the computational time at finer resolutions. It is believed that such 
coarse-to-fine strategy provides a possibility for reducing the computational cost 
of signal operations [Rose84b]. 

In this chapter, the concept of multiresolution signal decomposition is intro-
duced. We first study the early work of Burt [Burt83] and Crowley [Crow84 
on the Laplacian pyramid coding. In which the resulting representations, which 
form a self-similar structure, are localized in both space and spatial frequency. 
We then review the multiresolution transform studied by Mallat [Mall89a], 
Mall89b], [Mall89c]. He showed that the difference of information between 
the approximation of a signal at the resolutions and can be extracted by 
decomposing this signal on a wavelet orthonormal basis of L{R^). 

2.2 Laplacian Pyramid 

In computer vision, a common characteristic of images is that neighboring pixels 
are highly correlated. To represent the image directly in terms of the pixel values 
is therefore inefficient, i.e., most of the encoded information is redundant. For 
this purpose, Burt [Burt83] and Crowley [Crow84] have each developed efficient 
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Chapter 2 Multiresolution Signal Decomposition 

algorithms to find a representation which decorrelates the image pixels. Such 
representation is called the Laplacian pyramid and is actually a set of details 
appearing at different resolutions. Given a sequence of increasing resolutions 
(rj)jez, the details of an image at the resolution r j are defined as the difference of 
information between its approximation at the resolution r j and its approximation 
at the lower resolution rj-i. 

2.2.1 Gaussian Pyramid Generation 

The first step in the Laplacian pyramid coding is to low-pass filter the original 
image go to obtain an image g-i. g-i is a "reduced" version of go in that both 
resolution and sample density are decreased. In a similar way, g-2 is formed 
as a reduced version of g-i, and so on. Filtering is performed by a procedure 
equivalent to convolution with one of a family of local, symmetric weighting func-
tions. An important member of this family resembles the Gaussian probability 
distribution, so the sequence of images •.. ,g-n) is called the Gaussian 
pyramid. Mathematically, for -N < j < 0, 0 < x < Cj, and 0 < y < Rj, 

M M 
gj(oc,y)= h{m,n)gj^i{2x - m,2y - n) (2.1) 

m=—M n=—M 

where /i is a low-pass filter. Here N refers to the number of levels in the pyramid, 
while Cj and Rj are the dimensions of the j t h level. 

2.2.2 Laplacian Pyramid Generation 

The Laplacian pyramid is a sequence of image details (Lo, i^-i,…，L-AT+I). 

Each is the difference between two levels of the Gaussian pyramid. Thus, for 
- N < j < 0， 

Lj{x, y) = gj{x, y) - gj-i,i{x, y) {2.2) 
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Chapter 2 Multiresolution Signal Decomposition 

where gj-i,i is the interpolated level gj一i by a factor of 2 along each axis [CrocSl 
and is defined as 

gj，n(:r,y) = 4： H (2.3) 
m=-M n=—M 

and 
(2.4) 

Since there is no image to serve as the prediction image for g-N+i, we set 

L-N+1 二 (2.5) 

2.2.3 Decoding 

The Laplacian pyramid is found to be a complete coding and it can be shown that 
the original image can be reconstructed exactly by expanding, then summing all 
the levels of the Laplacian pyramid like 

0 
g o= E (2.6) 

j=-N+l 
Proof . By interpolating both sides of (2.2) and (2.5) with -j times {j < 0), we 

get 
, gj,-j - 9j-i,-j+i if J V + 1 Lj-j = < 

\ 

0 0 0 
Y1 ^3-3 二 dj-j - 5'i-l-j+l 

j=-N+l j=一 iV+l j=-N-\-2 
- 1 - 1 

= g o 9 j - j 一 Y. 
j=一 AT+l =go-

• 

A more efficient procedure is to expand L一n+i once and add it to L-n+2, 
then expand this image once and add it to L-AT+S, and so on until level 0 is 
reached and go is recovered. This procedure simply reverses the steps in the 
Laplacian pyramid generation. 
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Chapter 2 Multiresolution Signal Decomposition 

2.2.4 Limitation 

This algorithm can decompose an image go at a resolution of 1 into an approx-
imation g_j at a coarse resolution 4"*̂  and the successive details (Lj)_j<j<o.^ 
If the image go has A^ pixels, each details Lj has i^A^ samples. Hence, the 
total number of samples of this representation is approximately fA^. Therefore, 
this simple and elegant algorithm does not define the details from the difference 
of information between gj+i and gj [Mall89b]. If it did, the total number of 
samples representing the image would be the same as in the original image. At 
different resolutions, the details computed with this algorithm are correlated. 
It is thus difficult to know whether a similarity between the signal details at 
different resolutions is due to a property of the signal itself or to the intrinsic 
redundancy of the representation. 

2.3 Multiresolution Transform 

In this section, we study the basic concept of multiresolution analysis introduced 
by Mallat [Mall89a], [Mall89b]. The mathematical properties of the operators 
which transform a function into an approximation at a resolution are pre-
sented. The proofs of the theorems and the equations are omitted here and the 
mathematical foundations are more thoroughly described in [Mall89c . 

2.3.1 Multiresolution Approximation of 

Suppose that the original signal f{x) described in this section is measurable and 
has a finite energy: f{x) G L^{R). According to Mallat's definition [Mall89b], 
we can define the multiresolution approximation of 

Def in i t ion . The approximation of a signal f{x) at a resolution r can be defined 
as an estimate of f{x) derived from r measurements per unit length. These 

^In this case, the resolution step a is equal to 4. 
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Chapter 2 Multiresolution Signal Decomposition 

measurements are computed by uniformly sampling at a rate r the function 
f[x) smoothed by a low-pass filter whose bandwidth is proportional to r. 

• 

In an approximation operation, when removing the details of f{x) smaller 
than r, the highest frequency of this function is suppressed. In the following, we 
study only the approximation of a function on a dyadic sequence of resolution 

Let A23 be the operator which approximates a signal at a resolution "2? and 
V2J C l^ i f i) be the set of all possible approximations at the resolution 2" of 
functions in and the set of vector space (V^Ojez is called a multiresolution 
approximation of Then, A23 is characterized with the following properties 
;Mall89a]: 

• A23 o A23 二 A23. If A2jf{x) is the approximation of some function f{x) at 
the resolution 2\ then A2jf{x) is not modified if we approximate it again 
at the resolution . 

• yg{x) G V2J, \\g{x) — /(a;)II > \\A2jf{x) - f{x)\\. Among all the approxi-
mated functions at the resolution A2jf{x) is the function which is the 
most similar of f{x). 

• A2J is an orthogonal projection on 

And the properties of include: 

• Vj G Z, V2j C V2J+1- The approximation of a signal at a resolution 
contains all the necessary information to compute the same signal at a 
smaller resolution . 

• Vj e Z, f{x) e V2J 分 /(2a;) € An approximation operation is 
similar at all resolution. The spaces of approximated functions should 
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Chapter 2 Multiresolution Signal Decomposition 

thus be derived from one another by scaling each approximated function 
by the ratio of their resolution values. 

• Discrete characterization: There exists an isomorphism I from Vi onto 
nz). 

• Translation of the approximation: \/k G Z, Aifk{x) = Aif{x — k), where 
fk(^) = f{x - k). 

• Translation of samples: I {Aif{x)) = (a,)堪？ I{Aifk{x)) = {ai-k)iez-

• is dense in When computing an approximation of f{x) 
at resolution some information about f{x) is lost. However, as the 
resolution increases to +00 the approximated signal should converge to 
the original signal. 

• n/z^oo = {0}. Conversely as the resolution decreases to zero, the 
approximated signal contains less and less information and converge to 
zero. 

As the approximation operator A23 is an orthogonal projection on the vector 
space V2J, an orthonormal basis of V2J must be found in order to numerically 
characterize A2J. The following theorem shows that such an orthonormal basis 
can be defined by dilating and translating a unique function 

The o r em 2.1 Let {V23)j^z ^^ ® multiresolution approximation of There 
exists a unique function G called a scaling function，such that 
if we set (t>2j{x) = for j e Z (the dilation of ^{x) by 2^), then 

— 2-j n)) ^^ is an orthonormal basis of ¥23. 口 

The theorem shows that an orthonormal basis of any 乂2) can be built by 
dilating a function (t){x) with a coefficient and translating the resulting func-
tion on a grid whose interval is proportional to 2—. The functions 知⑷ are 
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Chapter 2 Multiresolution Signal Decomposition 

normalized with respect to the norm. The coefficient v ^ appears in 
the basis set in order to normalize the functions in the L'^{R) norm. For a given 
multiresolution approximation iV2j)jez, there exists a unique scaling function 
(l)[x) which satisfies the above theorem. However, for different multiresolution 
approximations, the scaling functions are different. 

The orthogonal projection on V2J can then be computed by decomposing 
the signal f{x) on the orthonormal basis given by Theorem 2.1. Specifically, 
V / � € 糊 ， 

+ 00 
A^Jix) = Y1〈/(…,知- 2 - � ) �知 { x 一 2-^n) • (2.7) 

n=—00 
The approximation of the signal f{x) at the resolution 2-̂ , A2jf{x), is thus 
characterized by the set of inner products as 

々•,/=(〈/(私小-2、)1̂  (2.8) 

and A^jf is called a discrete approximation of f{x) at the resolution "2?. 
Since is a low-pass filter, this discrete signal can be interpreted as a 

low-pass filtering of j{x) followed by a uniform sampling at the rate In an 
approximation operation, when removing the details of f(x) smaller than 2一 

the highest frequency of this function is suppressed. The scaling function (f)(x) 
forms a very particular low-pass filter since the family of functions — 
2~^n))nez is an orthonormal family. 

2.3.2 Implementation of a Multiresolution Transform 

In practice, a signal measuring device low-passes the continuous input signal, and 
a digitizer outputs a uniform sampling. Hence, this measurement corresponds to 
an approximation of the original signal at a finite resolution. For normalization 
purposes, it is supposed that this resolution is equal to 1 and let Aff be the 
discrete approximation at the resolution 1 that is measured. 
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Chapter 2 Multiresolution Signal Decomposition 

Let {V2j)jez be a multiresolution approximation and be the correspond-
ing scaling function. The family of functions 知 + i ( 工 - i s 
an orthonormal basis of 如 ( 工 - c a n thus be expanded in this 
orthonormal basis of V ĵ+i as 

+00 . 
Mx-2—n�= 2—-1 Y1〈知…n),知一 1^0� 

k=—oo 

. 如 — (2.9) 

By changing variables in the inner products integral, it can be shown that 

-1 {M^ — 2—n),如州(u - =�ch-八戟u -{k- 2n))) • (2.10) 

When computing the inner products of f{x) with both sides of (2.9), the follow-
ing equation is obtained, 

〈 / (社 (以 - 2、 )〉 = 

2 {h-^{u),<t>{u -{k- 2n)))�m,<h+Au - . (2.11) 
k=—oo 

Let H he Si discrete filter with impulse response 

Vn G Z, h{n) = (</>2-i(w),執u - n)) (2.12) 

and let H be the mirror filter with impulse response 

h{n) = h{-n). (2.13) 

By inserting (2.12) and (2.13) into (2.11), it can be shown that the discrete 
approximation of f{x) at a resolution A^/, can be calculated by filtering 
A^+i/ = ((/(w),</>2J+i (w - 2-—IA:)�)kz with the discrete filter H and keeping 
every other sample of the convolution product, 

/ +00 , . . \ 
A i J 二 E • — k)�/⑷，知+1 {u - 2 + 1 A;)� . (2.14) 

\A;=-oo / neZ 
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Chapter 2 Multiresolution Signal Decomposition 

All the discrete approximations A^J, for j < 0, can thus be computed from Aff 
by repeating this process. This operation is called a pyramid transform and the 
set of discrete approximations (A^/) 一 j � < o was called a Gaussian pyramid with 
J levels by Burt and Adelson [Burt83] • 

In practice, the measuring device gives only a finite number of samples: 
Aif = {an)i<n<N- Thus, each discrete signal A^/ (j < 0) has 2m samples. 
In order to avoid border problems when computing the discrete approximations 
A^jf, it is supposed that the original signal Aff is symmetric with respect to 
n = 1 and n = N, 

/ 

a_n+2 if - i v + 2 < n < 1 
an = (X2N-n N < n< 2N - I . (2.15) 

0 otherwise 

If the impulse response of the filter H is even, e.g., H = H, each discrete 
approximation A^jf will also be symmetric with respect to n = 1 and n = 
Figure 2.1 shows the discrete approximated signal A^jf of a continuous signal 
f(x) at the resolution 1，念’ and 

The following theorem gives a practical characterization of the Fourier trans-
form of a scaling function ^(x). 

The o r em 2.2 Let 執x) be a scaling function, and let H be a discrete filter with 
impulse response h{n) = {(t)2-i {u), (t){u - n)). Let H{u)) be the Fourier series 
defined by 

+ 00 
H{LJ)= J2 "(…•謂. (2.16) 

n= — oo 
Then, the function defined by 

+00 
少M = n 冲、） (2.17) 

P=1 

is the Fourier transform of a scaling function (l){x). 口 
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0.8 ~ , r-~, 1 . 1 p 1 0.8 . 1 1 • ‘ ‘ ‘ ‘ 

：圓議_ ywHyi 
J r / 0.2. 1/ • 
-0.2 - • - • 

-0.4 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 

(a) A i f (b) A U f 
0.8 p , . . . . • • 0.8 • • ‘ ‘ ‘ ‘ ‘ ‘ 

0.2 • . 0 . 2 

0 0 , 
-0.2 • • -0.2 • 

NA I • • • • • I I 1 1 -0.4 ‘ ‘ 1 ‘ ‘ - ‘ ‘ ‘ ‘ 

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 

(C) A U F � A U F 

Figure 2.1: Discrete approximations A^/ at the resolution 1, and 
Depending upon each dot gives the amplitude of the inner product 
〈 /⑷，知 ( u - 2 — n ) � . 
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It is possible to choose H{u}) in order to obtain a scaling function (}){x) which 
has good localization properties in both the frequency and spatial domains. In 
general, a scaling function which is as smooth as possible and which is well 
concentrated around 0 in the spatial domain, is preferable. 

2.3.3 Orthogonal Wavelet Representation 

As described in Section 2.3.1, the approximation of a function at a resolution 
2-? is equal to its orthogonal projection on . The additional precision of the 
approximation when the resolution increases from 2" to 2*̂+1 is thus given by the 
orthogonal projection on the orthogonal complement of V23 in V2J+1. Let O23 be 
this orthogonal complement, i.e., 

• O23 is orthogonal to V23. 

• O23 © V23 = V2J+1. 

To compute the orthogonal projection of a function f{x) on O2J , an orthonormal 
basis of O23 must be found. Much like Theorem 2.1, Theorem 2.3 shows that 
such a basis can be built by scaling and translating a function V'(̂ )-

Theorem 2.3 Let (T^Ojez ^^ « multiresolution vector space sequence, (j)[x) be 
the scale function，and H be the corresponding conjugate filter. Let be a 
function whose Fourier transform is given by 

_ = � ( • ) $ ( • ) (2.18) 

with G{u;) = + Let ip2j{x) = denotes the dilation of 
tP^x) by 2 � Then, _ 2—72)) ^^ is an orthonormal basis of O2J and 

(x - is an orthonormal basis of Here, ^(x) is 
called an orthogonal wavelet. • 
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An orthonormal basis of O23 can thus be computed by scaling the wavelet 
with a coefficient and translating it on a grid whose interval is pro-

portional to For computing a wavelet, we can define a function H{lo) to 
compute the corresponding scaling function 4>{x) with (2.17) and the wavelet 
ij){x) with (2.18). Depending upon the choice of H{u� , the scaling function 4>�x� 

and the wavelet 於 c a n have good localization both in the spatial and Fourier 
domains. 

Let Po be the orthogonal projection on the vector space O23. As a conse-
2 J quence of Theorem 2.3, this operator can now be written as 

P o J � = 2 - 3 g � / � • ( u - 2 - ) n ) � 如 ( 2 . 1 9 ) 
n = — 0 0 

Pq .f(x) yields to the detail signal of f{x) at the resolution "2? and it is charac-
terized by the set of inner products as 

认和(〈/⑷，如(卜2、)〉)成， (2.20) 

D2jf is called the discrete detail signal at the resolution and it contains the 
difference of information between A^+i/ and A^/. The wavelet can also 
be viewed as a band-pass filter. 

It can be proved by induction that for any J > 0, the original discrete signal 
Aff measured at the resolution 1 is represented by 

( A “ / ’ (制 （2.21) 

This set of discrete signals is thus called an orthogonal wavelet representation. It 
gives a reference signal at a coarse resolution A^-jf and the detail signals at the 
resolutions for - J < j < -1. It can also be interpreted as a decomposition of 
the original signal in an orthonormal wavelet basis or as a decomposition of the 
signal in a set of independent frequency channels like in Man's human vision 
model [Marr82]. The independence is due to the orthogonality of the wavelet 
functions. 
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In analogy with the Laplacian pyramid data structure described in Sec-
tion 2.2, A^-jf provides the top-level Gaussian pyramid data, and the D2J/ 
data provide the successive Laplacian pyramid levels. Unlike the Laplacian 
pyramid, however, there is no oversampling, and the individual coefficients in 
the set of data are independent. If the original signal has N samples, then the 
discrete signals D^jf and A^jf have N samples each. Thus, the wavelet rep-
resentation has the same total number of samples as the original approximated 
signal Aff. Figure 2.2 gives the wavelet representation of the signal Aff de-
composed in Figure 2.1. The energy of the samples of D2jf gives a measure of 
the irregularity of the signal at the resolution The detail signals samples 
have a high amplitude when the approximations A^jf and A^ j+J are locally 
different. 

2.3.4 Implementation of an Orthogonal Wavelet Repre-

sentation 

For any n e Z, the function - is a member of O^j C V2J+1. Similarly 
to (2.9), this function can be expanded in an orthonormal basis of V2J+1， 

+00 � 
协 _2—n�= 2 + 1 〈 如 • - 2 - 叫 ) 〉 

k 二一oo 

. 知 ( 2 . 2 2 ) 

By changing the variables in the inner product integral, it can be proved that 

一 1 {iMu 一 2一、 ) ,知 - - 1 / 0 〉 - 咖 - 她 <Ku -{k- 2n))) • (2.23) 

Hence, by computing the inner product of f{x) with the functions of both sides 
of (2.22), the following equation is obtained, 

〈/⑷,如…-2、)〉= 
+ 00 \ 

E -{k- 2n))) {f{u),ct>2Mu - . (2.24) 
k=—oo 
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0.8 I 1 -1 1 1 1 1 1 1 ' 1 0.8 I ‘ ‘ “‘ ‘““ ‘ ‘ ‘ ‘ ‘ 
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(c) D2-2f � D2-if 

Figure 2.2: Wavelet representation of the signal Aff. The dots give the am-
plitude of the inner products (J(v),如�u - 2—n)�o f each detail signal D2jf 
depending upon 
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Let G be a discrete filter with impulse response is given by 

g{n) = (̂ 2-1 (w), (t>{u 一 n)) (2.25) 

and let G be the symmetric filter with impulse response 

9[n)=g{-n). (2.26) 

It can then be shown that the detail signal D23 f can be computed by convolving 
A^j+i/ with the filter G and retaining every other sample of the output, 

= 2 g{2n 一 k ) � / � { u - 2 + i f c ) � ) • (2.27) 

The orthogonal wavelet representation of a discrete signal Aff can therefore be 
computed by successively decomposing A^+i/ into A^jf and for - J < 
j < -1 (J > 0). This algorithm is illustrated by the block diagram shown in 
Figure 2.3. 

I G > I 2 > % f 

I 2 : keep one sample out of two 

X : convolve with filter X 

Figure 2.3: Decomposition of a discrete approximation A^j+i/ into an approxi-
mation at a coarser resolution A^jf and the signal detail 

Also, (2.18) of Theorem 2.3 implies that the impulse response of the filter G 
is related to the impulse response of the filter H by 

g{n) = {-lY-^h{l-n). (2.28) 
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Hence, G is the mirror filter of H and is a high-pass filter. In signal processing, 
G and H are called conjugate mirror filters. (2.27) can then be interpreted as a 
high-pass filtering of the discrete signal A^j+if-

2.3.5 Signal Reconstruct ion 

{y/¥^(f)23{x 一 2 — n ) ， - is an orthonormal basis of V2J+1 as 
O2J is the orthogonal complement of T î in ¥2̂ +1. For any n > 0, the function 
<562̂+1(0; - can thus be decomposed in this basis, 

一 2十In) 二 
+ 00 \ • 

E〈知(u —AO,知+i(w-2-"^-in)�知Or — 
k== 一 00 

+ 00 � . 
+2- '̂ { ^ A u - 2—k),小2似[u - 2-Bn)) i；^如—2-3k). (2.29) 

k=—oo 

By computing the inner product of each side of (2.29) with the function f{x), 
the following equation is obtained, 

〈/⑷,知+1 … — 2 + i n ) � = 

2-̂ ' 2〈知如-2,如+ 1(以-2+1几)〉〈/(以),知和-2,〉 

k——oo 

k=—oo 
(2.30) 

As this expression is rewritten by using the filters H and G respectively defined 
by (2.12) and (2.25), it can then be shown that the original discrete signal can 
also be reconstructed with a pyramid transform, 

AUJ = (2 2 h{n-2k){f{u),^,,{u-2-^k)) 
\ fc=—00 
+ 2 £ ^(n - 2k) {u - 2-Jfc)�"j . (2.31) 

k=-oo / neZ 
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This equation shows that A仏 1/ can be reconstructed by putting zeros between 
each sample of A^jf and D2jf and convolving the resulting signals with the filters 
H and G, respectively. The block diagram shown in Figure 2.4 illustrates this 
algorithm. The original discrete signal Aff at the resolution 1 is reconstructed 
by repeating this procedure for — J < j < 0 (J > 0). 

^ A ^ j f > f 2 > H @ — — * 2 — A^+if > 

D^jf——> f 2 > G 

个 2 : put one zero between each sample 

X : convolve with filter X 

* 2 ： multiplication by 2 

Figure 2.4: Reconstruction of a discrete approximation A^j+if from an approx-
imation at a coarser resolution A^jf and the signal detail D i j f . 
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Chapter 3 

Multiresolution Learning 

Method 

3.1 Introduction 

In this chapter, we proposed to train a back-propagation network using the 
multiresolution learning method. This learning method involves a group of back-
propagation networks. The objective of it is to improve the convergence rate and 
the recognition ability of the networks. Some of my results have been published 
and they can be found in [Chan94a] and [Chan94b . 

By using the multisolution signal decomposition technique introduced in Sec-
tion 2.3, we first represent the original input vectors under different resolutions 
and it is described Section 3.2. In Section 3.3, we then show how a group of 
corresponding back-propagation networks are built. Each of these networks is 
responsible to learn the input vectors at a particular resolution. The training 
procedure is shown in Section 3.4. The sequence of the training processes to 
be carried out by the group of back-propagation networks is from the coarsest 
level network to the finest level network sequentially. We also define a term 
called the intermediate stopping criteria for terminating the training processes 
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of these networks. After a network has been trained on a particular resolution 
of input vectors, we then transform the connection weights of the network to 
the next finer level network (Section 3.5). We consider two different cases of the 
transformation, i.e., the transformation of connection weights between the input 
and the hidden layers and the transformation of connection weights between the 
hidden and the output layers. 

3.2 Input Vector Representation 

First of all, let us define how input vectors for the back-propagation networks 
are represented under different resolutions. Let ( ^O I ^KM be a set of M input 
vectors. Each vector is with iV-dimensionality where Xi 二 X i 2 , •. •，XiN) and 
Xij e R. As the back-propagation algorithm is a kind of supervised learning 
algorithms, for each f；-, there is a vector di called the desired output vectors 
assigned to it. Hence, the set of M pairs ( ( 式 乂 a r e formed as the 
input for the training process of the networks. 

3.2.1 Representation at the resolution 1 

It has been mentioned in Section 2.3.1 that Aff is the discrete approximation 
at the resolution 1 and contains a finite number of samples (Q n̂)i<n<Ar- We can 
then define the discrete approximation of Xi at the resolution 1, Afxi, as 

= {xin)i<n<N (3.1) 

and a set of input pairs at the resolution 1, ( ( A f x ； - , c a n thus be 
formed. 
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3.2.2 Representation at the resolution 

By choosing a suitable discrete filter H and applying (2.14), the discrete ap-
proximation of Xi at the resolution A^.xXi, is obtained by low-pass filtering 
the original signal Afxi. A^-iXi is a reduced version of Afxi in that both reso-
lution and sample density are decreased. In a similar way, 式 is formed as 
a reduced version of and so on. As a result, several levels, e.g., J levels， 

of the input pairs' sets are obtained, 

((姻乂 ) ) i妙武乂 ) ) i妙武乂 ) ) i妙（3 .2 ) 
with {{M^ i J i ) ) ^^i^M as the finest resolution level and 
as the coarsest one. At any resolution j , the discrete approximation A'̂ jXi has 

N samples, e.g., with TV-dimensionality. 
In general, the discrete approximation of Xi at the resolution A^jXi, can 

be defined as 
/ +00 \ 

Ai,Xi = Y1 H2n-k)AU.Xi{k) (3.3) 
\k=-oo J i<n<2jN 

where A^+i^KA;) being the fc-th element of A^+if；.. Hence, all the discrete 
approximations A^^xi, for j < 0, can thus be computed from Xi by repeating 
this process. 

Example . Suppose we have a set of 50 input vectors (^OI^KSQ- Each vector 
is with 8-dimensionality, e.g., Xi = •'', ̂ is), and there is a cor-

丨, — > 

responding vector di of 2-dimensionality, e.g., di 二 (dii,di2), associated 
with it. The set of pairs ((̂ ；乂)) • then forms the finest resolution 
level. For the consistency of notations, we refer it as ((Af式，勾)i心<50. 
By (3.3), two more levels of input pairs' sets can be obtained, 

• where A^-iXi = (yii,仏2,仏.3,and \ \ ^ / / 1<2<50 
•((成-2式，名))i<i<50 where = (̂ r̂ i，站)• 
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In this case, the dimensionality of is 4; while the one of A f 2 式 is 
2. The desired output vectors di are common to all three levels. 口 

3.2.3 Border Problem 

In order to avoid border problems described in Section 2.3.2 when computing 
the discrete approximations A^jXi, it is supposed that the original input vector 
Afxi, is symmetric with respect to n 二 1 and n = N, i.e., 

Afx i i-n + 2) if —iV + 2 < n < 1 
A{xi(n) = A{xi{2N - n) \iN <n<2N -I . (3.4) 

0 otherwise 
、 

If the chosen discrete filter H is even, e.g., H = H, each discrete approximation 
A'^jXi will also be symmetric with respect to n 二 1 and n = N [Mall89a . 

3.3 Back-Propagation Network Architecture 
/ \ 

After several levels of the input pairs' sets, (((A^f；., 化 .<� for J < 
0, have been generated under different resolutions, we then build a group of 
back-propagation networks (^2:')_j<j<o- Each back-propagation network is 
responsible to learn the mapping between and The 

— — — 

input layer of the network B23 receives the input vectors A^jXi as its input 
signals for further processing. Hence, the size of it for the network B23 is equal 
to the dimension of the input vectors that it learns, which is 2] N. The output 
layer represents the number of categories to be classified in the input vectors. 

—* 

Therefore, the size of it is equal to the dimension of the output vectors di and 
is the same among all networks generated. 

The required number of neurons in the hidden layer greatly depends on the 
nature of the problem to be solved [Hush93]. With some specific knowledge 
about the structure of the problem, and a fundamental understanding of how 
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the back-propagation networks might go about implementing this structure, one 
can sometimes form a good estimate of the proper network size. Like the size 
of the output layer, the size of the hidden layer is the same among all back-
propagation networks created. 

Ex amp l e . With refer to the example shown in Section 3.2, we can build three 
different back-propagation networks (^2j)-2<i<o to learn the three levels 
of input pairs' sets generated. 

• Bi is used to learn the finest level ((成式•，不))i心<5o. 

• B2-1 is used to learn the intermediate level ((A“芯,不)) 

• B2-2 is used to learn the coarsest level ((̂�-2式，名 

If we set the size of the hidden layer as 3 for all networks, each network 
will then have the structure shown in Table 3.1. 口 

Table 3.1: The structure of the back-propagation networks with 3 levels of 
resolutions. 

^ S i z e 
network Input layer Hidden layer Output layer 

B[ 8 3 2 
B2-1 4 3 2 
B2-2 I 2 丨 3 I 2 

3.4 Training Procedure Strategy 

With several levels of the input pairs' sets, (((A^r^ j < <0 ^^^ ^ < 
0，under different resolutions and a group of the corresponding back-propagation 
networks, (^2i)_j<j<0 5 we can then start the training procedure. First of all, the 
coarsest level network B2-J+1 (the network with the coarsest resolution of vectors 

27 



Chapter 3 Multiresolution Learning Method 

A^.j^^Xi as input) is trained first. We can initialize the connection weights of 
this network with small random numbers [Rume86] or by the statistical approach 
suggested by Wessels [Wess92] before the training process is started. After the 
network is well trained, we transform the connection weights of it into the 
connection weights of the finer level network B2-J+2 and then start the training 
process of B2-j^2. Such training procedure is repeated until the finest level 
network Bi has converged. 

Examp l e . To continue the example shown in Section 3.3, the coarsest level 
network 82-^ will first learn the mapping between (A�-2名)i<K5�and 
(di) after the initialization of connection weights. After it is well 
V V L < K 5 0 

trained, the connection weights of it is transformed into the next finer 
level network B2-1 and the training process of B2-1 is started to learn the 
mapping between [A^-iXi ) and (不)i<i.<5。，and so on. The training 
procedure is finished until the finest level network Bi has converged. Fig-
ure 3.1 illustrates the whole training procedure described in this example. 

• 

In the following of this section, we define for how long that a particular 
network B � ] i s trained before the transformation of connection weights is carried 
out. In the next section, we formulate this transformation between two networks, 
e.g., B2J and 召2i+i. 

3.4.1 Sum Squared Error (SSE) 

Traditionally, the training process of a back-propagation network is repeated 
until a minimum on sum squared error (SSE) or a point sufficiently close to 
the minimum is found. Let L be the size of the output layer, be the 
set of the actual output vectors from the output layer after presenting the set 
of the input vectors ( A ^ 式 $ � t h e network B^j, and be the 
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^ di Transformation of connection weights 

赞 ^熱 
Z Transformation of z — 

Figure 3.1: The training procedure for the multiresolution learning method with 
three levels of networks, (^2j)_2<j<o-
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corresponding set of the desired output vectors. The SSE of the current training 
cycle t is thus defined as 

M L 
SSE{t) 二 I： I： {Oin — dinf < e (3.5) 

i=l n=l 

where e > 0, Oi = (0^1,0^2,. •.，仏l), and di = � d i i , d i < 2 , . . •, (Ul). 

3.4.2 Intermediate Stopping Criteria 

However, such a minimum may not be found in the networks we defined except 
the finest level one Bi (the one with the original input vectors xi as input). It 
is because the detail signal Dsjf i is lost during the approximation process. 

As a result, we define an intermediate stopping criteria for terminating 
the training processes of the back-propagation networks (52j )j<j<-i which are 
trained on the discrete signals ( ( A ^ j x A ^ , ^ ) • Let K be the number 
of hidden neurons, N be the number of input neurons, Wpg be the connection 
weight between input neuron p and the hidden neuron q and it will be updated 
with Awpq in the current training cycle t. Hence, a term W{t) is defined as^ 

1 ^ K 23 N A ,,, 

ZJ 丄、八 q=i p=i ^pq 

where 0 < p < 1, called a history factor, and is used for normalization 
purpose. The intermediate stopping criteria is then defined as 

W{t) < ^ (3.7) 

where ^ > 0. 
1(3.6) is somewhat similar to the modified generalized delta rule shown in [Rume86]. The 

last term of the equation is used to filter out high-frequency variations and prohibits oscillation 
to be occurred. 
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3.5 Connection Weight Transformation 

After the intermediate stopping criteria shown in (3.7) is satisfied in one network 
B2j, we can then transform the connection weights of it to the next finer level 
network Bij+i. From the coarser level network 召2” we have two sets of con-
nection weights, {wpq} and { iv}, where Wpq is a connection weight from input 
neuron p to hidden neuron q and ？v is a connection weight from hidden neuron 
q to output neuron r. 

3.5.1 Weights between the Input and Hidden Layers 

First of all, let us consider how the connection weights between the input and the 
hidden layers {wpq} are transformed. The basic idea behind this transformation 
that we propose here is that the input signal received by each hidden neuron of 
the finer level network B2J+1 from the input layer should be the same as the one 
received by the corresponding hidden neuron of the coarser level network B�]• 

If a discrete signal A^^Xi is passed into the coarser level network B� ] , the 
hidden neuron q will then receive 

23 N 
(3.8) 

p=i 
as its input signal from input neurons. In order to maintain the same status 
for the hidden neuron q of the finer level network B2H1 after transformation, 
the following condition must be held for each hidden neuron, 

2J+iiV 、 2 项 

E 乂州式⑷） = E ( S⑷乂⑷） (3.9) 
o=l P=1 

where tŷ g is the connection weight of the finer level network from the input 
neuron o to the hidden neuron q. 

Based on the assumption shown in (3.9)，we can then derive the set of [w'^q] 
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as 

‘ E � i f 0 = 1 
E'LT 一 o) + h{2p + o - 2拟 N) i f 2 < o < - 1 

4 � �� • 
-{-h{2p + o - 2)j Wpq 
E'LT h卻-2州 AO’g if o = 2并liV 

(3.10) 

Proo f . By (3.3) and (3.4), the r.h.s. of (3.9) can be rewritten as 
23 N 23 N / +00 \ 

I ： ( 〜 二 E [^v, E ^P - o)AU.Xi{o) 
P=1 p=l \ o=-oo ' 

23N ( 2J+2Ar-2 � 
= W p q Y1 咖 • 州 咖 ） • 

p=l \ o=-23+^N+3 / 
(3.11) 

Furthermore, by changing the variable o used in summation and using 
I � 

the property of shown in (3.4), the summation term ^h{2p -
o)A^j+iXi{o) of (3.11) can be expressed as 

Y, H^P - o)AU,Xi{o) 
o=-2J+iiV+3 

2J+iAr 2J+2iV-2 
o=l 0=2J+iAr+l 

+ ^ h{2p-o)AU^Xi{o) 
o=-2J+i7V"+3 

o=l o=2 
2J+iiV-l 

. - o) + Y^ + 
o = 2 

23+^ N 23+^N-l 
= H ^ ^ p - o)AUiXi{o) ^ Y1 A(2p +�—2幷仏if；•⑷ 

o=l o=2 
2 州 N-1 

o=2 

32 



Chapter S Multiresolution Learning Method 

=h(2p - l)AU,Xi{l) + h{2p -
2J+17V-1 ~ \ 

+ Y. _ o) + h{2p + O - 2"+2A0 + h{2p + o - 2)) 
0=2 

• AU^Xiio). (3.12) 

Then, by substituted (3.12) into (3.11), we get 
2m 
Y1 [wpqAijXiip)^ 
P=1 

VN 
= 1 ) ^ 4 + 1 •⑴） 

p=i 
23 N \ 

P=i 
VN ( 2J+i_/V-l 
p=l \ 0=2 

+吻+ 0-2)) 
23 N 

= � P O 成州对 1) p=i 
23 N � 

+ {h{2p - 2州 A O ’ 0 州 AO 
p=i 
2^+^N-l (VN 

+ E E - o) + �h(2p + o -
0=2 \p=l 

+M2p + 0-2)) Wj,,) AU,Xi{o). (3.13) 

By equating the coefficients of the l.h.s. of (3.9) and the coefficients of the 
r.h.s. of (3.13), the result of (3.10) is worked out. 口 

3.5.2 Weights between the Hidden and Output Layers 

After the transformation of the connection weights between the input and the 
hidden layers is formulated, let us consider how the connection weights between 
the hidden and the output layers {vgr} are transformed from the coarser level 
network B2J into the finer level network B23+1 • Here we propose three different 
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schemes for the transformation. They are called the copy scheme, the average 
scheme, and the scale scheme respectively. 

Th e Copy S ch eme As shown in Section 3.3 and in Figure 3.1, the number of 
neurons in the hidden layer and the output layer are the same on both back-
propagation networks, B^i and B^hi . We can then simply copy the values 
of {Vqr} to the next finer level network B2J+1 as the connection weights 
between the hidden layer and the output layer. Let be a connection 
weight between the hidden neuron q and the output neuron r of the finer 
level network B2H1. For all 1 < ^ < ii： and 1 < r < L, we then have 

V; = Vqr (3-14) 

where K is the number of hidden neurons and L is the number of output 
neurons. 

Th e Average S cheme As mentioned in Chapter 2, a discrete approximated 
signal at a coarse resolution provide the “context” of the signal whereas the 
finer details correspond to the particular "modalities". Such modalities are 
found in the finer input vectors A^j+i^- but not in the coarser one A^jXi. 
If the modalities of the signal Â +if；. are an important factor for the 
mapping between the input and the output vectors, it is unfair that the 
connection weights between the hidden and the output layers are copied 
one by one from the coarser network B23 into the finer network B2J+1. It 
is because the distribution of the connection weights between these two 
layers are bias to the coarser input signal A^jXi after the training process 
of 823 and it is difficult for the finer level network B2J+1 to extract the 
properties of those modalities. 

Therefore, we propose a scheme that each connection weight between the 
hidden and the output layers of the finer level network B2J+1 takes the 
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average value of the sum of the connection weights between these two layers 
of the coarser level network B23 and it allows the finer back-propagation 
network to rearrange the mapping between the hidden and the output 
layers. In other words, every v;” is assigned to 

(3-15) 

Th e Sca le S ch eme It is believed that large absolute values of the connection 
weights can cause neurons to be highly active or inactive for all training in-
put vectors, and thus insensitive to the training process [Rume86]. Hence, 
initializing the net with small random connection weights is employed as 
the choice of starting parameters for the training process. Studies have 
been conducted by Wessels and Barnard [Wess92] and they suggested to 
choose the connection weights to occupy the range [—赤，为]where N 
denotes the number of connection weights leading to a particular neuron. 

As a result, we propose another scheme that the connection weights be-
tween the hidden and the output layers of the finer level network B23+1 is 
bounded within the range of [ - 为 , w h e r e N denotes the number of 
hidden neurons in the network. That is, every v̂ ^ is assigned to 

幻、 =— ^^ (3.16) 

� y/N mdix{\Vqr\l<q<K,l<r<L) 
where im,x{\vqr\i<q<K,i<r<L) is the maximum absolute value among { iv} . 
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Simulations 

4.1 Introduction 

In this chapter, some computational results are shown to illustrate the perfor-
mance of the proposed learning method described in Chapter 3. We first choose 
the impulse response h{n) that is used in the generation of the multiresolution 
representation of the input vectors for the back-propagation networks and in 
the transformation of connection weights from the coarser level network to the 
finer level network. Two different problems are simulated and they are the XOR 
problem and the numeric recognition problem. For each problem, a number of 
training processes are carried out with the multiresolution learning method. We 
then discuss the experimental results in the last section of this chapter. Mean-
while, some of the simulation results can be found in [Chan94a] and [Chan94b . 

4.2 Choices of the Impulse Response h{n) 

As shown in (3.3) and (3.10), we must first define the impulse response h{n) 
before the input vectors can be represented under different resolutions and the 
transformation of connection weights can be carried out. In other words, h{n) 
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must be defined since h{n) = h{-n) from (2.13). The basic requirement on the 
coefficients h{n) can be derived as 

4-00 
E h{n) = 1. (4.1) 

n=—oo 
Proo f . Let {V2j)j^z be a multiresolution approximation and be the corre-

sponding scaling function. As shown in Theorem 2.1, the family of func-
tions -1 知+1 {x - ez is an orthonormal basis of V^J+i. For 
any n e Z, the function 小】]{x - 2-^k) is also a member of V23 which is 
included in V23+1 and it can thus be expanded in this orthonormal basis of 
V2J+1 like 

小八x-2—k�= 2 + 1 £〈知吟如+1 ( u _ 2 + i n ) � 
n 二一 00 

• (̂ 2州{x - -In) • (4.2) 

By setting j = -1, k = 0, and with the use of (2.12), the above equation 
then becomes as 

+00 

n = —00 

+00 

= Y a - n) (4.3) 
n = — 0 0 

From Theorem 2.1, we know that (t>2j{x) 二 Hence, the above 
equation can be further simplified, to 

+00 

2-i</)(2-i;r) 二 Y^ h{n)(^{x - n) 
Tl= —CO 

+00 
cl>{x) = 2 h{n)(t>i2x-n). (4.4) 

n = — 0 0 

It is called a two-scale difference equation by Strang [Stra89]. We then 
look for a solution normalized by f <f)(x)dx = 1. If (4.4) is multiplied by 2 
and is then integrated, it can be rewritten as 

2 / (/>(x)dx = 2 £ h(n) [ (t>{2x 一 n)d{2x - n) (4.5) 
J n=-oo J 

and the result comes out. • 
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There are many ways of choosing the coefficients h{n) [Stra89]. As suggested 
by Daubechies [Daub88], we can set the impulse response h[n) as 

‘ i f n 二一1 
^ i f n = 0 

h{n) = ^ -iin = l • (4.6) 
ifn = 2 

o 
0 otherwise 

On the other hand, one always uses the average splitting technique in image 
processing. That is, the impulse response h{n) is set to 

， 

0.5 if n = 0 or n = 1 /i(n) - . • (4.7) 
0 otherwise 

\ 

With the use of the coefficients shown in (4.6)，(3.3) and (3.10) can then be 
simplified to 

/ 2n+2 \ 
= X h{2n - k)AUrXi{k) (4.8) 

\k=2n-l / i<n<2JAr 

and 
/ � 

h{l)wiq if 0 = 1 

h{0)wig if o 二 2 
+ 平’g if o = 3,5 …， 2辦 N - 3 

+ _w号,q i f � = 4,6,…，2拟N - 4 
= h(-2)w2W-2,, + if o = 妒 ' N — 2 • (4.9) 

+ h(-2)w2J]V,g 
h(-l)w_-i’q + if o = 2州TV — 1 

+ if O 二 2计 1 AT 

The proof of (4.9) can be found in Appendix A. 
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Similarly, with the use of the coefficients shown in (4.7), (3.3) and (3.10) can 
then be simplified to 

/2n+l \ 
Aixi = Y1 h如-k)AU^Xi{k) (4.10) 

\k=2n / \<n<2jN 

and 

0 if 0 = 1 
川，_ i f � = 2,4,...,2州AT (411) 

oq 罕’ g i f o = 3,5. . . ’2^iA^ — 3 

The proof of (4.11) can be found in Appendix B. 
4.3 X O R Problem 

In this section, the XOR problem is used to illustrate the performance of the 
proposed learning method. The logic of this problem is that when two binary 
inputs are of the same value, the output is equal to 0; otherwise, if the inputs 
are of different values, the output is then equal to 1 (Table 4.1). 

Table 4.1: The logic of XOR. 

Input Output 
~ 0 0 0 
0 1 1 
1 0 1 
1 1 I 0 

4.3.1 Setting of Experiments 

Two experiments were run with the impulse responses from Daubechies (4.6) and 
the average splitting method (4.7) respectively. In each experiment, we selected 
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different values of history factors p and intermediate stopping criteria 5 shown in 
(3.6) and (3.7) respectively, i.e., p = 0.1, p = 0.5, p = 0.9, S = 0.001, S = 0.005， 

and S = 0.009, for the training processes. To demonstrate our method, a network 
structure (B2j)-i<j<o, called the 2-level network set, was used. As described in 
Section 3.4, we first train the coarser level network B2-1 and then the finer one 
B20. Also, a 1-level network Bi, that is a traditional back-propagation network, 
was built as a control to compare the performance with the 2-level network set. 
We used all three schemes, that is shown in Section 3.5.2, for the transformation 
of connection weights between the hidden and the output layers. The training 
processes of all networks were repeated until the sum square error (SSE) was 
smaller than 0.001, i.e., e = 0.001. Therefore, for each experiment, there was a 
total of 16 training jobs to be carried out (Table 4.2). 

Table 4.2: Configurations of each experiment for the XOR problem. 

Job Network Transformation 
no. type scheme p 5 £ 

" 1 ^ 0.1 0.005 0.001 
2 2-level average 0.1 0.005 0.001 
3 2-level scale 0.1 0.005 0.001 
4 2-level copy 0.5 0.001 0.001 
5 2-level average 0.5 0.001 0.001 
6 2-level scale 0.5 0.001 0.001 
7 2-level copy 0.5 0.005 0.001 
8 2-level average 0.5 0.005 0.001 
9 2-level scale 0.5 0.005 0.001 
10 2-level copy 0.5 0.009 0.001 
11 2-level average 0.5 0.009 0.001 
12 2-level scale 0.5 0.009 0.001 
13 2-level copy 0.9 0.005 0.001 
14 2-level average 0.9 0.005 0.001 
15 2-level scale 0.9 0.005 0.001 

16 1-level — I 一 I 一 I 0.001 

The input vectors for all finer level networks Bi of each experiment are the 
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one shown in Table 4.1. Hence, the size of the input layer for these networks 
is set to 2. As the input vectors for the coarser level networks B2-1 are with 
lower resolution, the size of the input layer for these networks is set to 1. For all 
networks in each experiment, the sizes of the hidden and the output layers are 
set to 2 and 1 respectively. The learning rate for all of them is set to 0.25 and 
the momentum rate is set to 0.9 (Table 4.3). 

Table 4.3: The structure of the back-propagation networks for the XOR problem. 

Size 
BP Input Hidden Output Learning Momentum 

network layer layer layer rate rate 
"""Wi 2 2 1 

B2-1 I 1 I 2 I 1 I 0.25 0.9 

4.3.2 Experimental Results 

All of the experiments were run on a SPARCstation 1+ with 16MB memory. For 
each training job of each experiment, we have run it for 5000 times with different 
sets of initial connection weights for the back-propagation networks and finally 
took the mean value of the convergence time as the results. Table 4.4 show 
the training results for the two experiments. The convergence time^ for each 
training job is presented and a performance index, a ratio to the convergence 
time of the 1-level network, is measured. 

In general, the proposed multiresolution learning method improves the train-
ing performance of back-propagation networks when solving the XOR problem, 
except for the Job 3, 9, and 12 of Experiment 2 that they were a little bit slower 
than the traditional back-propagation network (Job 16). Figure 4.1 and 4.2 

iThe convergence time for the training jobs which have adopted the multiresolution learn-
ing method is measured as the sum of the training time for each network involved and the 
transformation time for connection weights between networks. 41 
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show the comparisons of the training performance with different values of p and 
S respectively. As shown in these two figures, it is believed that some optimal 
values for both p and 8 are existed. Figure 4.3 and 4.4 are used to compare the 
training performance among different transformation schemes between the hid-
den and the output layers. Generally, the performance of the average scheme is 
the best one among all three schemes while the performance of the scale scheme 
is the worst one for the XOR problem. With Figure 4.5, 4.6 and 4.7, it is shown 
that the Daubechies, impulse response is adequate to be used with the copy 
scheme and the scale scheme. On the other hand, the average splitting method 
is adequate to be used with the average scheme. 

Table 4.4: Training results for the XOR problem after 5000 runs. 

Experiment 1 Experiment 2 
(Daubechies, impulse response) (the average splitting method) 

Job Convergence Performance Job Convergence Performance 
no. time (sec) index no. time (sec) index 

— lUn m "1 no5 
2 13.75 1.15 2 11.72 1.35 
3 14.27 1.11 3 16.41 0.96 
4 13.05 1.21 4 14.26 1.11 
5 15.26 1.04 5 13.60 1.16 
6 13.75 1.15 6 15.65 1.01 
7 14.52 1.09 7 14.61 1.08 
8 13.87 1.14 8 12.08 1.31 
9 14.63 1.08 9 16.64 0.95 
10 14.05 1.12 10 15.46 1.02 
11 13.84 1.14 11 11.93 1.32 
12 14.23 1.11 12 16.40 0.96 
13 12.99 1.22 13 14.43 1.09 
14 15.83 1.00 14 14.02 1.13 
15 13.44 1.18 15 15.35 1.03 
16 15.80 I 1.00 16 15.80 1.00 
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Figure 4.1: Comparisons of the training performance with different values of p 
for the XOR problem. 

43 



Chapter 4 Simulations 

W i t h t h e use of p = 0.5, W i t h t h e use oi p = 0.5, 
t h e copy s cheme a n d t h e copy s cheme a n d 

t h e Daubech i e s ' impu l s e r e sponse t h e ave rage sp l i t t i ng m e t h o d 
17|——I——I——.——I——I——I 1 1——I 17| 1 1 ‘ ‘ 1 ‘ ‘ ‘ I 

C ： c • -

\ 15- I 15- _ 

Z ^ ^ - ^ ^ 二 

e 13- X ^ ® 13- -
t \ -
RL 12- M 12- ： 
e e I 

11 0 001 ‘ ^ ^ ‘ • 0.005 • ‘ • 0.009 11 0.001 0.005 0.009 
8 5 

W i t h t h e use of p = 0.5, W i t h t h e use of p = 0.5, 
t h e ave rage s cheme a n d t h e ave rage s cheme a n d 

t h e Daubech i e s ' impu l s e r e sponse t h e ave rage sp l i t t i ng m e t h o d 
1 7 | I . • • I - - ~ ‘ I 1 7 | I ‘ ~ ‘ ‘ ~ I ‘ ~ ‘ ‘ ~ I 

c • c • • S 16- S 16- ： 
• l i • V _ 

： 墓 15: : 
S 14- ^ ^ K n ： 
卜 3: ： ： 13: : 
+ -• ^^^ ： , I . . . I . . . I I 11 I I 1 1 1 1 1 1 1 

11 0 001 0.005 0.009 0.001 0.005 0.009 

W i t h t h e use of p = 0.5， W i t h t h e use of p = 0.5， 
t h e scale s cheme a n d t h e scale s cheme a n d 

t h e Daubech i e s ' impu l s e r e sponse t h e ave rage sp l i t t i ng m e t h o d 
1 7 | ~ ~ I . - “ I — — ‘ ‘ ~ ~ ‘ I ~ ~ 1 ~ ~ - - ~ ~ > 丄 ‘ ‘ ~ ‘ ― “ I 

S 16: ： n 16: ： 
i 15- . - 慕 ： 

C • C 
： 1 3 - ： ： 13: ： 

rL 12- _ ： 
e - C _ • 

0 001 ‘ ‘ “ “ ‘ 0.005 ‘ ““ ‘ ““ . 0.009 11 0.001 0.005 0.009 

Figure 4.2: Comparisons of the training performance with different values of 8 
for the XOR problem. 
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Figure 4.3: Comparisons of the training performance with different transforma-
tion schemes for the XOR problem of using the Daubechies' impulse response. 
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Figure 4.4: Comparisons of the training performance with different transforma-
tion schemes for the XOR problem of using the average splitting method. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 
average scheme. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 

average scheme. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 

average scheme. 
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4.4 Numeric Recognition Problem 

In this section, a numeric recognition problem is used as an example. For this 
problem, 10 binary patterns of numbers, from 0 to 9, were selected as training 
examples and the size of them was 32 X 32. 

4.4.1 Setting of Experiments 

Two experiments were carried out with the impulse responses from Daubechies 
(4.6) and the average splitting method (4.7) respectively. In each experiment, 
we selected different history factors p and intermediate stopping criteria 5, i.e., 
p 二 0.1, p = 0.5, p = 0.9, S = 0.001, 8 = 0.005, and 5 = 0.009, for the 
training processes. To demonstrate the proposed learning method, two types 
of network structure were used, (^2j)-2<j<o and (B2j)-i<j<o, and were called 
the 3-level network set and the 2-level network set respectively. For the 2-level 
network set, we first train the coarser level network B2-1 and then the finer one 
B20. For the 3-level network set, the training sequence is from B2-2 to B20. 
Also, a 1-level network B!, which is a traditional back-propagation network was 
built as a control to compare the performance with the 3-level and the 2-level 
network sets. We used all three schemes, that is shown is Section 3.5.2, for 
the transformation of connection weights between the hidden and output layers. 
The training processes of all networks were repeated until the SSE was smaller 
than 0.001, i.e., e 二 0.001. Hence, for each experiment, there was a total of 31 
training jobs to be carried out (Table 4.5). 

Since the binary patterns used in the experiments were all in two dimensions, 
the multiresolution technique described in Section 2.3 cannot be applied to them 
directly. However, it has been shown that the two-dimensional multiresolution 
transform can be seen as a one-dimensional multiresolution transform along the 
X and y axes [Mall89a]. We first convolve the rows of binary patterns with 
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Table 4.5: Configurations of each experiment for the numeric recognition prob-
lem. 

Job Network Transformation 
no. type scheme p S £ 

^ 0.1 0.005 0.001 
2 3-level average 0.1 0.005 0.001 
3 3-level scale 0.1 0.005 0.001 
4 3-level copy 0.5 0.001 0.001 
5 3-level average 0.5 0.001 0.001 
6 3-level scale 0.5 0.001 0.001 
7 3-level copy 0.5 0.005 0.001 
8 3-level average 0.5 0.005 0.001 
9 3-level scale 0.5 0.005 0.001 
10 3-level copy 0.5 0.009 0.001 
11 3-level average 0.5 0.009 0.001 
12 3-level scale 0.5 0.009 0.001 
13 3-level copy 0.9 0.005 0.001 
14 3-level average 0.9 0.005 0.001 
15 3-level scale 0.9 0.005 0.001 
16 2-level copy 0.1 0.005 0.001 
17 2-level average 0.1 0.005 0.001 
18 2-level scale 0.1 0.005 0.001 
19 2-level copy 0.5 0.001 0.001 
20 2-level average 0.5 0.001 0.001 
21 2-level scale 0.5 0.001 0.001 
22 2-level copy 0.5 0.005 0.001 
23 2-level average 0.5 0.005 0.001 
24 2-level scale 0.5 0.005 0.001 
25 2-level copy 0.5 0.009 0.001 
26 2-level average 0.5 0.009 0.001 
27 2-level scale 0.5 0.009 0.001 
28 2-level copy 0.9 0.005 0.001 
29 2-level average 0.9 0.005 0.001 
30 2-level scale 0.9 0.005 0.001 
31 1-level — I — I — I Q-OQl 
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a one-dimensional filter retain every other row, convolve the columns of 
the resulting signals with another one-dimensional filter and retain every other 
column. Hence, two sets of patterns can be collected with sizes 16 x 16 and 8 x8 
and they are used as input vectors for networks B2-1 and B2-2 respectively. For 
all networks in each experiment, the sizes for the hidden layer and the output 
layer were set to 10 and 10 respectively. The learning rate for all of them is set 
to 0.35 and the momentum rate is set to 0.9 (Table 4.6). 

Table 4.6: The structure of the back-propagation networks for the numeric recog-
nition problem. 

Size 
BP Input Hidden Output Learning Momentum 

network layer layer layer rate rate 
Wi 10 10 ^ 

B2-1 16 X 16 10 10 0.35 0.9 
B2-2 I 8 x 8 I 10 10 0.35 0.9 

4.4.2 Experimental Results 

All of the experiments were run on a SPARCstation 10/30 with 32MB memory. 
For each training job of each experiment, we have run it for 120 times with 
different sets of initial connection weights for the back-propagation networks and 
finally took the mean value of the convergence time as the results. Table 4.7 
shows the training results of the two experiments. The convergence time^ for 
each training job is presented and a performance index, a ratio to the convergence 
time of the 1-level network, is measured. 

It is shown in Table 4.7 that the multiresolution learning method improves 
the training performance of back-propagation networks significantly, from the 

2The convergence time for the training jobs which have adopted the multiresolution learn-
ing method is measured as the sum of the training time for each network involved and the 
transformation time for connection weights between networks. 
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Table 4.7: Training results for the numeric recognition problem after 120 runs. 

Experiment 1 Experiment 2 
(Daubechies' impulse response) (the average splitting method) 

Job Convergence Performance Job Convergence Performance 
no. time (sec) index no. time (sec) index 

~ 35007 4li "1 mm ^ 
2 666.64 2.16 2 667.52 2.16 
3 630.77 2.28 3 638.43 2.25 
4 144.94 9.92 4 147.86 9.73 
5 731.99 1.96 5 689.17 2.09 
6 613.87 2.34 6 592.48 2.43 
7 332.14 4.33 7 393.92 3.65 
8 691.22 2.08 8 672.43 2.14 
9 623.02 2.31 9 649.16 2.22 
10 461.88 3.11 10 480.56 2.99 
11 967.85 1.49 11 762.49 1.89 
12 739.97 1.94 12 712.23 2.02 
13 282.87 5.09 13 327.59 4.39 
14 664.81 2.16 14 667.90 2.15 
15 609.93 2.36 15 622.98 2.31 
16 639.27 2.25 16 656.60 2.19 
17 924.62 1.56 17 904.94 1.59 
18 674.52 2.13 18 688.19 2.09 
19 498.82 2.88 19 442.41 3.25 
20 779.65 1.85 20 908.51 1.58 
21 675.79 2.13 21 676.41 2.13 
22 693.56 2.07 22 609.22 2.36 
23 878.38 1.64 23 1070.28 1.34 
24 673.50 2.14 24 677.56 2.12 
25 870.13 1.65 25 678.58 2.12 
26 976.48 1.47 26 1068.83 1.35 
27 767.38 1.88 27 753.83 1.91 
28 634.77 2.27 28 553.48 2.60 
29 959.69 1.50 29 962.09 1.50 
30 673.51 2.26 30 659.53 2.18 
31 1437.44 LOO 31 1437.44 1.00 
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least improvement of 1.34 times faster (Job 23 of Experiment 2) to the best 
improvement of 9.92 times faster (Job 4 of Experiment 1) than the traditional 
back-propagation network (Job 31) for the numeric recognition problem. Fig-
ure 4.8 and 4.9 show the comparisons of the training performance with different 
values of p and S respectively. As shown in these two figures, the history factor p 
does not affect the training performance too much; in other words, the training 
performance is not varied too much within a range of p. On the other hands, 
the convergence rate of the networks will increase as the intermediate stopping 
criteria 6 decreases. Figure 4.10 and 4.11 are used to compare the training 
performance among different transformation schemes between the hidden and 
the output layers. Generally, the performance of the copy scheme is the best 
one among all three schemes while the performance of the average scheme is the 
worst one for the numeric recognition problem. With Figure 4.12, 4.13 and 4.14, 
it is shown that the training performance is not varied too much no matter which 
impulse response is selected (the Daubechies' impulse response and the average 
splitting method). It can also be shown from Figure 4.8 to 4.14 that the training 
performance increases as the network level increases, e.g., the convergence time 
for a 3-level network is shorter than the one for a 2-level network. 
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Figure 4.8: Comparisons of the training performance with different values of p 
for the numeric recognition problem. 
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Figure 4.9: Comparisons of the training performance with different values of 8 
for the numeric recognition problem. 
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Figure 4.10: Comparisons of the training performance with different transfor-
mation schemes for the numeric recognition problem of using the Daubechies' 
impulse response. 
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Figure 4.11: Comparisons of the training performance with different transforma-
tion schemes for the numeric recognition problem of using the average splitting 
method. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 

average scheme. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 
average scheme. 
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Figure 4.13: Comparisons of the training performance with different sets of 
impulse response coefficients for the numeric recognition problem of using the 

average scheme. 
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To demonstrate the recognition ability of the trained networks, we con-
structed a set of testing patterns with 15% uniform noise. The sample size 
of these testing patterns for each experiment is 500. Table 4.8 shows the recog-
nition results for all 120 runs of the numeric recognition problem. The sum 
squared errors (SSE) are measured among the output neurons for all samples as 
shown in (4.12). 

M L 
腳 二 (4.12) 

i=l 71=1 

where M is the sample size and L is the size of output layer. An index, called 
the recognition index, is calculated as a ratio to the sum squared error of the 
1-level network for comparisons. 

In general, the proposed multiresolution learning method improves the recog-
nition performance of back-propagation networks in solving the numeric recogni-
tion, especially when the average and the scale schemes are adopted. Figure 4.15 
and 4.16 show the comparisons of the training performance with different val-
ues of p and 8 respectively. As shown in these two figures, the history factor p 
does not affect the recognition performance of the back-propagation networks 
too much; in other words, the recognition ability is not varied too much within 
a range of p. On the other hand, the recognition ability of the networks will 
increase as the intermediate stopping criteria S increases. Figure 4.17 and 4.18 
are used to compare the training performance among different transformation 
schemes between the hidden and the output layers. Generally, the performance 
of the average and the scale schemes are much better than the copy scheme 
for the numeric recognition problem in term of recognition, it is shown in Fig-
ure 4.19 that the average splitting method is better than the Daubechies' impulse 
response when using the copy scheme. On the other hand, it is shown in Fig-
ure 4.20 and 4.21 that the recognition performance is not varied too much no 
matter which impulse response is selected (the Daubechies' impulse response 
and the average splitting method) when using the average or the scale scheme. 
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It can also be shown from Figure 4.15 to 4.21 that the recognition performance 
of a 2-level network is better than the one of a 3-level network if the copy scheme 
is adopted. For the average and the scale schemes, the performance of them are 
merely the same. 
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Table 4.8: Recognition results for the 120 runs of the numeric recognition prob-
lem. 

Experiment 1 Experiment 2 
(Daubechies，impulse response) (the average splitting method) 

Job Sum squared Recognition Job Sum squared Recognition 
no. error index no. error index 

~ 1 ^ : 1 5 ^ 0：^ 
2 11.15 1.35 2 10.05 1.50 
3 11.70 1.29 3 10.16 1.48 
4 54.93 0.27 4 41.67 0.36 
5 12.44 1.21 5 11.48 1.31 
6 13.34 1.13 6 11.79 1.28 
7 23.43 0.64 7 15.96 0.94 
8 11.12 1.36 8 10.20 1.48 
9 11.52 1.31 9 9.76 1.55 
10 13.64 1.11 10 12.53 1.20 
11 10.52 1.43 11 10.55 1.43 
12 10.53 1.43 12 10.21 1.48 
13 28.69 0.53 13 19.52 0.77 
14 11.42 1.32 14 10.38 1.45 
15 12.12 1.24 15 10.45 1.44 
16 13.85 1.09 16 13.51 1.12 
17 11.36 1.33 17 11.29 1.34 
18 10.97 1.37 18 10.52 1.43 
19 18.56 0.81 19 17.44 0.86 
20 12.12 1.24 20 11.76 1.28 
21 11.90 1.27 21 11.35 1.33 
22 14.09 1.07 22 13.71 1.10 
23 11.59 1.30 23 11.28 1.34 
24 11.28 1.34 24 10.93 1.38 
25 11.77 1.28 25 11.64 1.30 
26 10.94 1.38 26 11.18 1.35 
27 10.99 1.37 27 10.87 1.39 
28 14.58 1.03 28 14.54 1.04 
29 11.91 1.27 29 11.20 1.35 
30 11.38 1.33 30 11.27 1.34 
31 15.08 1.00 31 15.08 1.00 
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Figure 4.15: Comparisons of the recognition results with different values of p for 
the numeric recognition problem. 
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W i t h t h e use of p = 0.5, W i t h t h e use of p = 0.5’ 
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Figure 4.16: Comparisons of the recognition results with different values of for 
the numeric recognition problem. 
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W i t h t h e use of p = 0.1 W i t h t h e use of p = 0.5 
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Figure 4.17: Comparisons of the recognition results with different transformation 
schemes for the numeric recognition problem of using the Daubechies' impulse 
response. 
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W i t h t h e use of p = 0.1 W i t h t h e use of p = 0.5 
a n d 5 = 0.005 a n d S = 0.001 
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Figure 4.18: Comparisons of the recognition results with different transforma-
tion schemes for the numeric recognition problem of using the average splitting 
method. 
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Figure 4.19: Comparisons of the recognition results with different sets of im-
pulse response coefficients for the numeric recognition problem of using the copy 
scheme. 
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W i t h t h e use of p = 0.1 W i t h t h e use of p = 0.5 
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Figure 4.20: Comparisons of the recognition results with different sets of impulse 
response coefficients for the numeric recognition problem of using the average 
scheme. 
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W i t h t h e use of p = 0.1 W i t h t h e use of p = 0.5 
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Figure 4.21: Comparisons of the recognition results with different sets of im-
pulse response coefficients for the numeric recognition problem of using the scale 
scheme. 

71 



Chapter 4 Simulations 

4.5 Discussions 

Based on the experimental results shown in the Section 4.3 and 4.4, we discuss 
the properties of the multiresolution learning method and explain the above 
results in this section. 

First of all, let us investigate why the training performance of a back-
propagation network will be improved when the multiresolution learning method 
is used. With the use of the coarser level network in the learning method, the 
training examples can be learned in a coarser resolution. Since the architecture 
of a coarser level network is always simpler than the one of a finer level network, 
the coarser level networks often take less time in the training processes. Even 
the examples cannot be fully generalized in this level, the coarser level networks 
can actually reduce the overhead for the finer level networks in some extents. 
The function of the finer level networks is to refine the generalization rather 
than start it from the beginning. 

Concerning the recognition ability of the networks in the numeric recogni-
tion problem, most of them performed well and could nearly recognize all testing 
samples correctly. For a standard back-propagation network without using the 
multiresolution learning method, the connection weights of it are usually initial-
ized with small random numbers. During the training process, the connection 
weights are adjusted according to the generalized delta rule only. After the train-
ing process has been completed, the range of the connection weights will become 
large. In other words, the network will be more sensitive to some features of a 
training example than others and the fault tolerance of it to noisy data becomes 
low. On the other hand, with the use of the multiresolution learning method, 
the transformation of connection weights, especially the average and the scale 
schemes, acts as a constraint to limit the variance among connection weights 
and reduces the possibility of producing a network which is sensitive to some 
features of a training pattern. Thus, it increases the recognition performance of 
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the network. 
However, the recognition performance of some training jobs of the numeric 

recognition problem, which adopted 3-level network set and the copy scheme, 
was not comparable with others, e.g., the recognition index is below 1.00. By 
monitoring one of the training processes of Job 4 in Experiment 1 (Table 4.9), it 
is discovered that the criteria SSE{t) < e was satisfied earlier than W{t) < S for 
the network B2-1. Thus, the training process jumped to the next level network 
B20. As it has been shown in Section 3.5, the state of each hidden neuron can 
remain unchanged after conducting the transformation of connection weights 
between the input and the hidden layers. Also, the copy scheme does not alter 
the connection weights between the hidden and the output layers but just copies 
them from a coarser network to a finer one. So SSE{t) will not increase at this 
moment but continue to decrease. However, B20 was the last network used to be 
trained in the process. The job then ended without any further training because 
SSE{t) < e. 

Table 4.9: The last 10 training epoches of one of the training processes for Job 
4 in Experiment 1. 

Network Type Time (sec) SSEjt) W{t) 
B ^ , l O ^ 0.001024 0.002848 
^2-1 107.20 0.001021 0.002065 
B2-1 107.48 0.001017 0.001657 
B2-1 107.76 0.001014 0.001474 
B2-1 108.04 0.001010 0.001484 
B2-1 108.31 0.001007 0.001304 
B2-1 108.59 0.001004 0.001451 
B2-1 108.87 0.001000 0.001665 
B2-1 109.15 0.000997 0.001815 
B20 110.23 I 0.000996 0.001259 

From Table 4.9, it can be interpreted that the network B2-1 had learned suf-
ficient information from the approximation {A^-ix}. It then led to SSE{t) < £. 
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Hence, the network B20 could only know what B2-1 had learned but it did 
not have a chance to learn the difference of information between {A^ox} and 
{A^.ix}, that is the detail approximation {D2-1X} described in Section 2.3.3. 
However, the samples used to test the network B � � c o u l d contain those informa-
tion {1)2-1 x}, and B20 would then misclassified them. 

As it is shown in Figure 4.8 and 4.9, the convergence rate increases as 5 
decreases. It is quite easy to be understood that such improvement is expected. 
In this case, the low level network, say B23 contributes more in the whole training 
process with a small value of 5 and is allowed to learn the information of {A'^jx} 
as much as possible. The main objective of the high level network B23+1 is 
to learn the difference of information {D2jx} between {A^j+ix} and {A^jx}. 
Usually, the computational cost for B23 is smaller than the one of 
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Conclusions 

In this dissertation, we proposed a problem-independent learning method for 
the back-propagation networks to improve the convergence rate and the recog-
nition ability of the networks. Traditionally, the back-propagation algorithm, 
which adopts the steepest descent technique, is slow to converge in a multilayer 
network. Such limitation prohibits the use of back-propagation networks on the 
large scale problems. Also, it assumes the individual input neuron acts indepen-
dently from the other neurons. In fact, in some problems, for example, image 
recognition problems, use images as the grey level input to the network. The 
input neurons do have some correlations with their neighboring neurons. How-
ever, a multilayer perception has not taken this into account. Therefore, the 
learning method we proposed adopts the multiresolution signal decomposition 
techniques in order to alleviate the shortcomings of this kind of networks. 

We have described in Chapter 3 the detail of the proposed multiresolution 
learning method. The learning method involves a group of back-propagation 
networks. Based on the multiresolution signal decomposition technique, we 
have defined the input vectors for the back-propagation networks under different 
resolutions (shown in (3.1) and (3.3)) and have derived the transformation of 
connection weights between layers from the coarser level network to the finer 
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one (shown in (3.10), (3.14), (3.15) and (3.16)). The sequence of the training 
processes to be carried out by the group of back-propagation networks is from 
the coarsest level network to the finest level network sequentially. We also de-
fine a term called the intermediate stopping criteria for terminating the training 
processes of these networks (shown in (3.6) and (3.7)). 

Two different problems are simulated and they are the XOR problem and 
the numeric recognition problem (Chapter 4) to illustrate the performance of 
this learning method. Experimental results showed that the proposed method 
improve the training speed and the recognition ability of the back-propagation 
networks significantly. Since the architecture of a coarser level network is always 
simpler than the one of a finer level network, the coarser level networks often 
take less time in the training processes. Even the examples cannot be fully 
generalized in such level, the coarser level networks can actually reduce the 
overhead for the finer level networks in some extents. The function of the finer 
level networks is to refine the generalization. Also, the convergence rate increases 
as the intermediate stopping criteria S decreases. In this case, the coarser level 
network contributes more in the whole training process with a small value of 5 
and is allowed to learn the input vectors as much as possible. With the use of 
the multiresolution learning method, the transformation of connection weights, 
especially the average and the scale schemes, acts as a constraint to limit the 
variance among connection weights and reduces the possibility of producing a 
network which is sensitive to some features of a training pattern. Thus, it 
increases the recognition performance of the network. 
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Appendix A 

Proof of Equation (4.9) 

By (2.13) and (4.6), we can derive h{n) as 
‘ i f n = -2 

, ¥ iin = -l 
h{n) = ^ i f n = 0 • (A.l) 

i f n = l o 

0 otherwise 

In other words, for -2 < n < 1, h{n) is a non-zero number; otherwise, it is 
equal to 0. Let us consider (3.10) with 3 different cases. 

• Case 1: o = 1 
23 N ~ 

= YM饰-”〜 
p=l 

=h{l)wi, + h{3)w2g + • . • + 辦 N - l)w2JN,<i 
二 (A.2) 

• Case 2: o 二 2仔^N 
23 N 

鳴 q = YM饰-炉 
p=l ~ 

二 h�2 - 2辦 Nywiq + …+ h{-2)W23N-l,q 

=h{-2)w23N-l,q + 购作’ g ( A . 3 ) 
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• Case 3: 2 < o < 2州 ̂ V- 1 
The first term ^ h{2p - o)wpq can be rewritten as 

23 N ~ 
E h{2p - o)Wpq 
P=1 

h{0)wi, 'do = 2 
= < = .(A.4) 

Ji( 一 + i f o = 4,6，.••，2并 1 N - 2 

The second term E + 2树Nywpq can be rewritten as 

23 N 

~h{2p + o - 2并2斤―列 二 迁 o 二 树N - 2 . 

(A.5) 

The last term E + o - 2)wpq can be rewritten as 
23 N 
Y, + 0 - = 0. (A.6) 
p=l 

By putting (A.2), (A.3), (A.4), (A.5), and (A.6) all together, we then get 

h{l)wiq if 0 = 1 

hiO)wig i i o = 2 

~h(-咖罕，g + 比平’g if O = 3,5 • • •, 2杆lyv - 3 
+ m^l,, if o 二 4,6,...，2树 N - 4 

= h(-2)u;2jjv-2,, + if o = 2舟N — 2 • (A.7) 
+ h{-2)w23N,q 
h(-l)W2Jjv-i’q + if o = - 1 

/V 

+ h{-l)w23N,q 

‘ ^(-2)^2.AT-i,, + if O 二 2树 N 

78 



Appendix B 

Proof of Equation (4-11) 

By (2.13) and (4.7), we can derive h{n) as 

0.5 i f n 二一1 

h{n) 二 j 0.5 if n 二 0 . (B.l) 
0 otherwise 

In other words, for n 二一1 or n 二 0, h{n) is a non-zero number; otherwise, it is 
equal to 0. Let us consider (3.10) with 3 different cases. 

• Case 1: o = 1 
2 J AT ~ 

切 ig 二 pg 
p=i 

=h{l)wi, + h{3)w2q + ••• + ~h(2�-l)w2JN,q 
二 0 (B.2) 

• Case 2: o 二 2州 N 
23 N 

w'2j+ijv，g = YMip-炉旧切 pq 

=h{2 - + ... + h{-'2)w2JN-l,q + 
=H0)w2JN,g (B.3) 
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• Case 3: 

The first term E h{2p - o)wpq can be rewritten as 

、 ’q i f 0 = 2,6，…，2并 1 A T - 2 
V h(2p - o)wpg = < ^ .11 • 

The second term E H卻 + � _ can be rewritten as 

VN 0 if 2 < o < - 2 

(B.5) 

The last term Eh(2p + 0 - 2)wpq can be rewritten as 
23 N 
^ h{2p + 0 - = 0. (B.6) 
p=i 

By putting (B.2), (B.3)，(B.4), (B.5), and (B.6) all together, we then get 

0 if 0 = 1 
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