
CHINESE OUTLINE FONTS SUPPORT IN
X WINDOW SYSTEM

B Y

R A Y M O N D C H E U K - K U E N C H E N

A T H E S I S

S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S

F O R T H E D E G R E E O F M A S T E R O F P H I L O S O P H Y
D I V I S I O N O F C O M P U T E R S C I E N C E T H E C H I N E S E U N I V E R S I T Y O F H O N G K O N G J U N E 1994 •

Acknowledgements
—Two years are negligible when compared with the history of Chinese

Typography, however, it is long enough for a young man to reshape his own view to

the world, make friends with some other little young men and, conduct a small

scientific research. '*

Two years has passed by and my research is reaching the end. At this special

moment of my life, I would like to express my gratefulness to all the people who

have granted me their courteous supports and encouragement. Among them, I would

like to give special thanks to my supervisor Dr. Moon Yiu Sang. His advice and

guidance has been proved useful and insightful in the course of my research.

Thanks must also be given to my colleague Mr. Wu Kwong Ho for letting me

to use his experimental Chinese font rasterizer in my implementation of the Chinese

Font Server.

I would also like to thank my friends, Mr. Lam Siu Man and Mr. Wan Kin

Man for providing me with so many Chinese articles for testing. Thanks also be

given to Miss Patti Tsui for giving me so much advice and suggestion on the writing

of this thesis.

Finally, I would like to express my gratitude to all staff members in the

Computer Science Department for their excellent technical supports and advice.

C. K. Chen Raymond

Trademarks

4.3 BSD is a trademark of the Regents of the University of California.

Apple, LaserWriter and TrueType are registered trademarks of Apple Computer, Inc.

Hewlett-Packard, HP, LaserJet and PCL are registered trademarks of Hewlett-

Packard Company.

Intel is a registered trademark of Intel Corporation.

Macintosh is a registered trademark of Apple Computer, Inc.

Microsoft Windows 3.1 is a registered trademark of Microsoft Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.

SPARC is a trademark of Sun Microsystems.

UNIX is a registered trademark of AT&T (Bell Laboratories).

X Window System is a trademark of the X Consortium, Inc.

. • r . . . - — - - — • - _ --

— — —

Abstract

The X Window System, since its emergence, has gained wide-spread usage in
the UNIX world. Although not restricted to the area of UNIX system, X Window
System has been the de facto windowing system in the UNIX society. The non-
proprietary nature of X Window System allows its source codes to be distributed
freely making X Window System an ideal platform for research and development.

The in-born ability of X Window System in handling double-byte characters
makes it a good environment to develop Chinese language applications. However,
the lack of Chinese font data makes X less competitive for building What You See Is
What You Get (WYSIWYG) software.

Moreover, as X is mainly designed for screen display, not much has been
done to produce output to printers. Applications have to rely on their own drivers to
produce printer output and maintain uniformity between printer output and screen
display.

In this thesis, several aspects of outline fonts support in X will be addressed.
We will try to introduce the notion of Chinese outline fonts into X by modifying the
font server of X Window System. Several different font loading methods will be
presented. Experiments are conducted to reveal the deficiency of X Window System
in handling double-byte fonts and so, a better loading scheme is suggested.

To overcome the lack of printing facilities in X an experimental printer
server is implemented. This printer server provides device-independent program
interface for applications. Double-byte characters are handled by the printer server as
easily as single byte characters. Caching will be employed in the printer server to
reduce font acquisition time.

As output speed is always a problem in printing Chinese, a new printer driver
is designed to speed up the printing process. Comparison with current printer driver

will be made with results shown.

• ^

Contents

Contents

1. INTRODUCTION 8

1.1. WINDOWING SYSTEM 8

1.2. FONTS 10

1.2.1. BITMAP FONTS 11

1.2.2. OUTLINE FONTS 12

1.3. DIFFERENT FONT SUPPORT MODELS 15

1.3.1. SUPPORTED BY APPLICATIONS 15

1.3.2. SUPPORTED BY WINDOWING SYSTEM …77—

1.3.3. SUPPORTED BY A DEDICATED SERVER 19

1.4. ISSUES OF CHINESE FONT SUPPORT 2 0

2. OVERVIEW OF X WINDOW SYSTEM 22

2 .1 . INTRODUCTION 2 2

2 .2 . ARCHITECTURE 2 3

2 .3 . FONT MANAGEMENT IN THE X WINDOW SYSTEM 2 3

2.3.1. BEFORE X VERSION 11 RELEASE 5 24

2.3.2. IN X VERSION 11 RELEASE 5 2 5 _

2.3.3. PORTABLE COMPILED FORMAT 25

2.3.4. FONT SERVER 26

2.3.5. FONT MANAGEMENT LIBRARY 28

2 .4 . INTERNAL CODE 2 9

3. CHINESE FONT SERVER 3 0

3 .1 . MOTIVATION _ 3 0

3.2 . FONT SERVER ARCHITECTURE 3 1

3.2.1. DEVICE INDEPENDENT FONT SERVER LAYER(DIFS) 32

3.2.2. OPERATING SYSTEM LAYER(OS) 32

3.2.3. FONT MANAGEMENT LIBRARY(FML) 33

3.2.4. FONT PATH ELEMENT J

35
3.2.5. Font File Renderer

36
3.2.6. Font Server Renderer

_ - - 3 5

3.3 . IMPLEMENTATION OF CHINESE FONT SERVER

3.3.1. Font data and code set

3.3.2. Registering a new font reader
42

3.3.3. Font specific functions
43

3.3.4. Load-All Scheme

' i l l ^

Contents

3.3.5. DEMAND-LOADING SCHEME 44

3.3.6. EMBEDDING OF FONT RASTERIZER 44

3 . 4 . TEST RESULTS 4 5

3.4.1. X APPLICATION TESTS 45

3.4.2. DEMAND-LOADING TEST 49

3 .5 . SOME REMARKS .’ 5 3

4. OVERVIEW OF PRINTING SYSTEM 54

4 . 1 . MOTIVATION — 5 4

4 . 2 . DESIGN CONSIDERATIONS 5 6

4.2.1. MODIFICATION OF THE X SERVER 56

4.2.2. EMBED THE PRINTING SYSTEM INTO THE FONT SERVER ‘ 5 7

4.2.3. DISTRIBUTED ARCHITECTURE 58

4 . 3 . SYSTEM ARCHITECTURE 6 0

4 . 4 . PRINTER SERVER 61

4 . 5 . FONT SERVER 6 3

4 . 6 . PRINTING SERVICES PROTOCOLS 6 3

4 . 7 . X WINDOW SYSTEM SERVER 6 5

4 . 8 . PRINTER SERVER LIBRARY 65

4 .9 . CLIENT APPLICATIONS 6 5

5. DESIGN AND IMPLEMENTATION OF A PRINTER SERVER 67

5 . 1 . OBJECTS IDENTIFICATION 6 7

5.1.1. DISPATCHER (DISPATCHER) 68

5.1.2. COMMUNICATION CHANNEL (COMCHANNEL) ^8

5.1.3. FONT CACHE MANAGER (FNCACHE) 69

5.1.4. PRNFONT (PRNFONT) 69

5.1.5. PER-FONT CACHE (CACHESTRUCT) - —

5.1.6. FONT SERVER (FNSERVER)

5.1.7. CLIENT MANAGER (LRULIST) 71

5.1.8. CLIENT RECORD (CLIENTREC) 71

7/
5.7 .9 . PRINTER DRIVER (PRNDRIVER)

5.1.10. DOWN LOADED FONT TABLE (DOWNLOADEDFONT) 72

72
5.1.11. Request Header (reqHeader)

-7A
5.1.12. Generic Reply(replyGeneric)

74
5 .2 . OBJECTS ORGANIZATION

75
5.2.1. Server Control Subsystem

7
5.2.2. Client Management Subsystem

84
5.2.3. Request Handling Subsystem

86
5.2.4. Font Managing Subsystem

• “ “ “ ii

^ ~ “ “ —

Contents

6. SAMPLE PRINTER DRIVER 94

6 . 1 . PRINTER CONTROL LANGUAGES 9 4

6.1.1. STRUCTURE OFPCL COMMAND 9 5

6.1.2. PCL COMMAND EXAMPLE 97

6 .2 . PRINTER FONT RESOURCES 9 8

6 .3 . TRADITIONAL FONT HANDLING METHODS IN A PRINTER DRIVER 9 9

6 .4 . SOFT FONT CREATION IN P C L PRINTER 1 0 1

6.4.1. FONT ID NUMBER J 02

6.4.2. FONT DESCRIPTOR 102

— 6.4.3. CHARACTER CODE - 104

6.4.4. CHARACTER DESCRIPTOR 105

6.4.5. CHARACTER BITMAP DATA 107

6 .5 . NEW FONT DOWNLOADING SCHEMES FOR DOUBLE-BYTE FONTS 107

6.5.1. TERMINOLOGY 108

6.5.2. UNDERLYING CONCEPTS OF ALGORITHM ONE 109

6.5.3. ALGORITHM ONE 111

6.5.3.1. CODE MAPPING 112

6.5.3.2. EXAMPLE 114

6.5.3.3. MEMORY CONSIDERATION 115

6.5.4. ALGORITHM TWO 117

7. EXPERIMENT RESULTS AND DISCUSSIONS 121

7 .1 . CACHE TEST 1 2 1

7 .2 . PRINTER DRIVER TEST 1 2 5

7.2.1. TESTING WITH 10 POINTS FONT

7.2.2. TESTING WITH 12 POINTS FONT 129

7.2.3. TESTING WITH 15 POINTS FONT 131

7.2.4. TESTING WITH 18 POINTS FONT 134

7 . 3 . TIME MEASUREMENT 1 3 6

_ 139
7 . 4 . DISCUSSION

7 .5 . FURTHER IMPROVEMENT

145

8. CONCLUSIONS 1

APPENDIX A. PRINTER DRIVER CLASS 1 4 7

APPENDIX B. SAMPLE OUTPUT 1 4 9

T^ri " ~ ‘ iii

Contents

REFERENCES 157

iv

A

Contents

List of Figures
FIGURE 1 - 1 12 POINTS CHARACTERS OF THREE FONTS 11

FIGURE 1 - 2 PROCESS OF FONT RASTERIZATION 13

FIGURE 1 - 3 A SESSION OF M S WINDOW BEFORE SYSTEM CORRUPT “ 14

FIGURE 1 - 4 A SESSION OF M S WINDOWS AFTER SYSTEM CORRUPT 15

FIGURE 1 - 5 APPLICATIONS SUPPORT THEIR OWN FONTS AND DRIVERS 17

FIGURE 1 - 6 FONTS SUPPORTED BY SYSTEM 18

FIGURE 1 - 7 FONT PROVIDING UNIT AS A SEPARATE ENTITY . . “ ” " . . . “ 19

FIGURE 1 - 8 SYSTEM WITH TWO FONT PROVIDING UNITS 2 0

FIGURE 2 - 1 STRUCTURE OF X WINDOW SYSTEM 2 3

FIGURE 2 - 2 FONT ARCHITECTURE IN X 1 1 R 5 •…… -……26

FIGURE 2 - 3 X SERVER CONNECTS TO A CHAIN OF FONT SERVERS....... .. 2 9

FIGURE 3 - 1 STRUCTURE OF THE FONT SERVER 3 1

FIGURE 3 - 2 HIERARCHICAL STRUCTURE OF FONT MANAGEMENT LIBRARY 3 3

FIGURE 3 - 3 FONT DEPENDENT RENDERERS IN F M L 3 6

FIGURE 3 - 4 DIRECTORY TREE OF F M L . 3 8

FIGURE 3 - 5 CONTROL FLOW OF OPEN FONT REQUEST 4 1

FIGURE 3 - 6 THE FONT RASTERIZER INTERFACE 4 5

FIGURE 3 - 7 A SESSION OF CXTERM READING CHINESE NEWS 4 6

FIGURE 3 - 8 XFD SHOWING PART OF A FONT 4 7 •

FIGURE 3 - 9 XFD SHOWING ANOTHER PART OF THE FONT 4 8

FIGURE 3 - 1 0 CHINESE FONT DISPLAY PROGRAM USING DAI FONT () 5 0

FIGURE 3 - 1 1 CHINESE FONT DISPLAY USING SUNG FONT () 5 1

FIGURE 3 - 1 2 CHINESE FONT DISPLAY PROGRAM USING CHUNG YUAN () .…”…”…••…......•“.“.. 5 2 …

FIGURE 4 - 1 X SERVER WITH EMBEDDED PRINTING MODULE 5 6

FIGURE 4 - 2 FONT SERVER WITH EMBEDDED PRINTING MODULE 5 8

FIGURE 4 - 3 PRINTING SERVICES PROVIDED BY A DEDICATED PRINTER SERVER 5 9

FIGURE 4 - 4 ARCHITECTURE OF PRINTING SYSTEM 6 0

FIGURE 5 - 1 INHERITANCE IN THE REQUEST CLASS 7 3

FIGURE 5 - 2 CLASS HIERARCHY IN REPLYGENERIC CLASS 7 4

FIGURE 5 - 3 ARCHITECTURE OF THE PRINTER SERVER 7 5

FIGURE 5 - 4 MESSAGE DIAGRAM OF THE SERVER CONTROL SUBSYSTEM 7 6

FIGURE 5 - 5 MESSAGE DIAGRAM OF THE CLIENT MANAGEMENT SUBSYSTEM 1 9

81
FIGURE 5 : 6 CLASS HIERARCHY OF THE COMGHANNEL _

FIGURE 5 - 7 STRUCTURE OF CLIENT MANAGEMENT SUBSYSTEM 84

FIGURE 5 - 8 MESSAGE DIAGRAM OF THE REQUEST HANDLING SUBSYSTEM 8 6

FIGURE 5 - 9 MESSAGE DIAGRAM OF THE FONT MANAGEMENT SUBSYSTEM !
104

FIGURE 6 - 1 FONT DESCRIPTOR ENTRIES

—

Contents

FIGURE 6 - 2 CHARACTER DESCRIPTOR ENTREES 106

FIGURE 6 - 3 CODING ACTION OF THE PRINTER DRIVER 109

FIGURE 6 - 4 STRUCTURE OF DOWNLOADFONT TABLE 110

FIGURE 6 - 5 BEFORE ADDING CHARACTER .… : 114

FIGURE 6 - 6 AFTER ADDING CHARACTER 115

FIGURE 7 - 1 CACHE TEST WITH A 50-CHARACTERS CACHE 122

FIGURE 7 - 2 CACHE TEST WITH A 100-CHAJRACTERS CACHE 123

FIGURE 7 - 3 CACHE TEST WITH A 500-CHARACTERS CACHE 123

FIGURE 7 - 4 CACHE TEST WITH A 1000-CHARACTERS CACHE 124

FIGURE 7 - 5 AVERAGE HIT RATIO WITH DIFFERENT CACHE SIZES 125

FIGURE 7 - 6 FILES WITH SIZES BELOW 3 0 0 0 TYPESET AT 10 POINTS 126

FIGURE 7 -7 FILES WITH SIZES BETWEEN 3 0 0 0 AND 5 0 0 0 TYPESET AT 10 POINTS. 127

FIGURE 7 - 8 FILES WITH SIZES BETWEEN 5 0 0 0 AND 8 0 0 0 TYPESET AT 10 POINTS 127

FIGURE 7 - 9 FILES WITH SIZES BETWEEN 8 0 0 0 AND 3 0 0 0 0 TYPESET AT 10 POINTS 128

FIGURE 7 - 1 0 FILES WITH SIZE ABOVE 3 0 0 0 0 TYPESET AT 10 POINTS 128

FIGURE 7 - 1 1 FILES OF SIZES BELOW 3 0 0 0 TYPESET AT 12 POINTS 129

FIGURE 7 - 1 2 FILES WITH SIZES BETWEEN 3 0 0 0 AND 5 0 0 0 AT 12 POINTS 129

FIGURE 7 - 1 3 FILES WITH SIZES BETWEEN 5 0 0 0 AND 8 0 0 0 TYPESET AT 12 POINTS 130

FIGURE 7 - 1 4 FILES WITH SIZES BETWEEN 8 0 0 0 AND 3 0 0 0 0 TYPESET AT 12 POINTS 130

FIGURE 7 - 1 5 FILES WITH SIZES ABOVE 3 0 0 0 0 TYPESET AT 12 POINTS 131

FIGURE 7 - 1 6 FILES WITH SIZES BELOW 3 0 0 0 TYPESET AT 15 POINTS 131

FIGURE 7 - 1 7 FILES WITH SIZES BETWEEN 3 0 0 0 AND 5 0 0 0 AT 15 POINTS 132

FIGURE 7 - 1 8 FILES WITH SIZES BETWEEN 5 0 0 0 AND 8 0 0 0 TYPESET AT 15 POINTS 132

FIGURE 7 - 1 9 FILES WITH SIZES BETWEEN 8 0 0 0 AND 3 0 0 0 0 TYPESET AT 15 POINTS 133

FIGURE 7 - 2 0 FILES WITH SIZES ABOVE 3 0 0 0 0 TYPESET AT 15 POINTS …….……133

FIGURE 7 - 2 1 FILES WITH SIZES LESS THAN 3 0 0 0 TYPESET AT 18 POINTS 134

FIGURE 7 - 2 2 FILES OF SIZES BETWEEN 3 0 0 0 AND 5 0 0 0 TYPESET AT 18 POINTS 134

FIGURE 7 - 2 3 FILES WITH SIZES BETWEEN 5 0 0 0 AND 8000 TYPESET AT 18 POINTS 135

FIGURE 7 - 2 4 FILES WITH SIZES BETWEEN 8000 AND 3 0 0 0 0 TYPESET AT 18 POINTS 135

FIGURE 7 - 2 5 FILES WITH SIZES ABOVE 3 0 0 0 0 TYPESET AT 18 POINTS 1 3 6

FIGURE 7 - 2 6 TIME REQUIRED TO TYPESET ARTICLES AT 10 POINTS 137

FIGURE 7 -27 TIME REQUIRED TO TYPESET ARTICLES AT 12 POINTS 137

FIGURE 7 - 2 8 TIME REQUIRED TO TYPESET ARTICLES AT 15 POINTS 1 3 8

FIGURE 7 - 2 9 TIME REQUIRED TO TYPESET THE ARTICLES AT 18 POINTS 138

FIGURE 7 - 3 0 COMPARING TWO ALGORITHMS USING LONG FILES AT 15 POINTS 142

FIGURE 7 - 3 1 COMPARING TWO ALGORITHMS USING LONG FILES AT 18 POINTS 142

“ vi

I • — — ^ ― — ii I •!'11 hi mil

Contents

List of Tables

TABLE 1 -1 MEMORY REQUIREMENT(IN BYTE) FOR DIFFERENT FONT SIZES (IN PIXEL) 11

TABLE 2 - 1 DEFAULT FONT PATH OF X 24

TABLE 3 - 1 STANDARD BIG5 CODE RANGE 37

TABLE 3 - 2 EXTENDED BIG5 CODE RANGES 37

TABLE 3 - 3 EXPERIMENTAL RESULT OF FONT RASTERIZATION 43

TABLE 3 - 4 EXPERIMENTAL RESULT OF DEMAND LOADING 4 9

TABLE 5 - 1 MESSAGES RESPONDED BY THE PRNDRIVER CLASS 82

TABLE 5 - 2 MESSAGES RESPONDED BY THE FNCACHE CLASS 87

TABLE 5 - 3 MESSAGES RESPONDED BY FNSERVER CLASS. •...“,•:...".:.•.:". 89

TABLE 5 - 4 MESSAGES LISTENED BY PRNFONT CLASS "... 91

TABLE 6 - 1 BITMAP FONT DESCRIPTOR...... 103

TABLE 6 - 2 NORMAL CHARACTER DESCRIPTOR 105

TABLE 6 - 3 CONTINUATION CHARACTER DESCRIPTOR 107

— “ ‘ “ ~ “ vii

Introduction

1. Introduction

Chinese language distinguishes itself from other languages, like English and

Japanese, in that it is basically a language of ideographics origin. In terms of the

number of characters, Chinese has a large character set with over 50,000 characters in

which 3,000 are commonly used ones. The large character set of Chinese makes

computer processing of the language difficult^ 16].

Given the number of Chinese characters, it is impossible to encode every

character by a single byte representation, which has a total of 256 different

combinations only. For this reason, Chinese characters need at least two bytes to

encode the full character set. Many different coding schemes have been developed

Two most commonly used schemes are Big5 and GB. Big5 is commonly used in

Taiwan and Hong Kong while GB is normally used in mainland China. Since font

data with Big5 coding could be more easily accessed, Big5 is used as internal coding

scheme in the implementation of this project. For more information^ of Big5, see

Chapter 3, Section 3.3.1. —- • - - - - ••‘ ~

1,1 • Windowing System

Windowing system has won a general acceptance of users for its user

friendliness, ease to use and ease to learn. It provides a more comfortable

environment for users. For example, to start a new application, a user may simply

click on an icon representing that application, rather than typing a command in the

terminal. Moreover, applications in a windowing system usually have a common

Chinese Outline Fonts Support in X Window System — 12

‘ Introduction

look and feel. A button on the upper left-hand corner of a window always means the

same thing no matter which application it belongs to. This consistency in appearance

makes the application software easier to use. Learning new software would also be

easier once the user is familiar himself with the window appearance.

In a multi-tasking system, several applications may run simultaneously.

Windowing systems allow these applications to share the screen display and input

devices for output and input. Each application has its own windows,' which are used

exclusively by itself. Application can only display information on the windows for

which it is the owner. With this sharing of input/output devices, several applications

may run simultaneously and interactively. For instance, you may write a report on a

word processor window while editing a spreadsheet on another.

Most windowing systems allow sharing of data among different

windows[35]. Data, say a text string, can be copied from one window and pasted

onto another. Some windowing systems even allow linking of data from one window

to another so that any changes of the original one will automatically update the

copied one [14].

From a programmer's point of view, windowing system also makes software

development easier. Windowing system usually provides higher level toolkits or

libraries for application software development[1][25][35] [43] [44]. These toolkits

and libraries include routines for producing screen output, getting keyboard input,

getting mouse input and querying system information etc. Instead of writing their

own input and output routines, programmers can (and usually must) use these toolkits

Chinese Outline Fonts Support in X Window System “ 9

Introduction

and libraries to generate output. Programmers need not interact directly with the

hardware on which the applications run; all hardware issues are taken over by the

windowing system. By isolating the machine-dependent aspects from the application

software, application development becomes easier. Moreover as the applications

codes are machine-independent, they can run on any hardware platform supporting

the windowing system. .

1 . 2 . F o n t s

Font is a precious resource in all windowing systems. It forms an important

part of the screen interface presented to the users. It is always desirable for a system

to produce smooth and elegant character images. In typographical terminology, a

font is a typeface in a particular size, weight and slant. All fonts of a typeface share

the same design idea of characters, usually defined by the stroke width and serifs.

For example, Helvetica is a typeface name while Courier is another. Individual

symbols in a font are called glyphs[33].

The size of font is usually measured in point. One point equals, to about-1/72

inch. Originally, point size measured the vertical height of the slug that supports

characters in printing shops. It should be noted that point size only loosely specifies

the size of the characters, that is, characters with the same point size might vary in

actual size, as shown in Figure 1-1.

Chinese Outline Fonts Support in X Window System — 12

Introduction

12-points Time New Roman

1 2 - p o i n t s C o u r i e r New

12-points Century Gothic

Figure 1-1 12 points characters of three fonts

According to the difference in representations, fonts can be classified into

bitmap fonts and outline fonts.

1.2.1. Bitmap Fonts

Bitmap fonts represent each character by a matrix of numbers, with value of

either 0 or 1. Value 1 means that a dot will be drawn while value 0 means no dot is

drawn. In the actual storage, a bit is needed for each dot. So when the size of the

character grows, the memory required to hold the bitmap increases. Moreover, since

bitmap fonts depict a character bit-by-bit, the size of the character is fixed. If

bitmaps of different sizes are needed, different sets of bitmaps should be provided.

Table 1-1 shows the storage requirement of bitmap of different sizes and different

number of characters.

Number of Characters | 16x16 24x24 32x32 64x64 128x128
31.25K l O K 1 2 5 K 500K 2000K

3000 375K 1. 5M 5. 8M
_250j^]560]^__100QK 3.9M 15.6M

0000 312. 5K|700K 1.2M 4. 8M | 19M
Table 1-1 Memory requirement(in byte) for different font sizes(in pixel).

Another problem arises when the same bitmap images are used for devices

with different resolutions. As bitmap fonts depict a character in a dot-by-dot

Chinese Outline Fonts Support in X Window System — 12

Introduction

manner, the actual size of the character will be different if the size of dot changes.

The actual size of a 24x24 bitmap displayed on a 300 dot-per-inch (dpi) printer will

be much smaller than that displayed on a 75 dpi screen. This discrepancy in size

makes the building of WYSIWYG software difficult. If WYSIWYG is desired, two

sets of bitmap data must be provided, one for printer and one for screen.

Despite the apparent disadvantages of using bitmap fonts, they are indeed the

only format that can be handled by most printers and screen displays. Only a few

printers can handle format other than bitmap- Moreover, as bitmap can be mapped

directly to the display surface of printers and screen, the speed of display is extremely

fast In the circumstances where speed is a considerable factor e.g. interactive screen

display, bitmap font is usually a better choice.

1.2.2. Outline Fonts

Instead of storing every point on the bitmap, outline fonts only record the

boundaries of the characters. For each character, several points of the boundary path

are selected, called on-curve control points of the character, and their coordinates

are stored. Some other points that are not on the boundary, called the off-curve

control points are also recorded. The boundary of the character can be obtained by

connecting these points with straight lines, Bezier curves or cubic spline curves[29].

-As the description of the character is independent of the size of the cTiaracter

being Used, only one copy of font data is needed. Font bitmap of any size can be

Chinese Outline Fonts Support in X Window System — 1 2

Introduction

obtained by properly scaling the control points during rasterization. Outline font is

also called scalable font for its ease to be scaled up and down.

Original Scaling Scaled Hinting Hinted Rasterizing Bitmap
Outline > Outline ^ Image ^ Data

Figure 1-2 Process of font rasterization.

Most output devices are bitmap-oriented. They cannot handle outline fonts

directly. Outline fonts should be converted to bitmap before they can be displayed on

the output device. The process of converting outline font to bitmap is called

rasterization. The software responsible for this task is called the rasterizer.

Usually, rasterization involves several steps, as depicted in Figure 1-2[13][30].

In Figure 1-2 the step hinting is used to compensate for the distortion of low

resolution device. With low resolution devices, the scaled outline may not fit

properly with the pixel so that some strokes may be thicker while some will be

thinner than they should be. Hinting is used to adjust the scaled outline before actual

rasterization is performed.

Outline fonts reduce the amount of secondary storage required to store the

font data. However, rasterization is slow as compared with the speed of mapping

bitmap data to display. Generally, the more complex is the shape of character, the

more rasterization time is needed. If a large number of characters is to be rasterized,

the response time of the system can be very long. This problem would be more

serious in double-byte fonts, for which the sizes of character set are usually very

Chinese Outline Fonts Support in X Window System — 12

‘ Introduction

large. Experiments have been conducted to measure the rasterization time for a

whole set of Chinese characters, see Table 3-3 in Section 3.3.4 for details.

The uses of outline fonts in a windowing system leads to other problem. As

the rasterizer is usually a part of the system, any misbehavior may be dangerous to

the whole system.: For instance, in Figure 1-3 a session of Microsoft Chinese: ^ :.

I [El : - - - - --
t - I-r-1 * in• • I i r t i r r • • . " i i i m m i •'•••••••• v.̂ . • , . . . • . • •.•'• • . . ' . ' . • • • • . j . .m i t n •

IB (I

_ • ^
_ MS-DOS Windows P F 1

-

_ J & #
|. ^ ^ g

•
SMAMAIK/V MM

• _ _ — # A
VGA UTILITIES . — . . - •.

|

. " "• .• ” " • U ^ ^ U U ^ U ^ V . ^ ^ ^ ^ ^

Figure 1-3 A session of MS Window before system corrupt

Windows 3.1 in normal operation is shown. Everything seems to be fine. Then a

Chinese character whose font data is known to be bad is accessed. On rasterizing

this character, the system returns a General Protection Fault1 and corrupts. The

result is shown in Figure-1-4.

1 General Protection Fault is an error message defined by MS Windows.

Chinese Outline Fonts Support in X Window System 1 4

Introduction

^
a m m mi

a #

• ^
MS-DOS Windows PIF

:: • M …

" S - : - _ M -
SMALLTALK/V W

_ A
VGA UTILITIES ^

V . . . - • - • • - - • . • •• • “ . … - •• ‘ • •"-

Figure 1-4 A session of MS Windows after system corrupt

1.3. Different font support models

The issue of font support was addressed well before the emergence of any

windowing system. Font support refers to the activities of locating, listing,

generating and managing of font data. Different modes of font support have been

used during the years. In following sections, these different models will be

discussed.

1.3.1. Supported by applications

In old days, application programs were usually self-contained. They relied

only on the operating system to provide services such reading a disk file. They did

not need support from other applications. The application program did all the work

Chinese Outline Fonts Support in X Window System — 12

Introduction

I S m (WI m

_ 1

H i ^^m

• M ^
M S - D O S WINDOWS P I F

^ M P ‘ %

1 I

:: :: • - . M M __

SMALLTALK/V W

VGAiies ® » • ^ [§ j

Figure 1-4 A session of MS Windows after system corrupt

1.3. Different font support models

The issue of font support was addressed well before the emergence of any

windowing system. Font support refers to the activities of locating, listing :

generating and managing of font data. Different modes of font support have been

used during the years. In following sections, these different models will be

discussed.

1.3.1. Supported by applications

In old days, application programs were usually self-contained. They relied

only on the operating system to provide services such reading a disk file. They did

not need support from other applications. The a p p l i c a t i o n program did all the work

Chinese Outline Fonts Support in X Window System — 12

Introduction

itself. At this time, applications were very machine-dependent. To maintain

portability, applications usually came with a set of machine-dependent drivers for

every possible variety of monitor, printer and input device. For example, application

A might be shipped, with two display drivers, one for monochrome and one for color

display. It might also have two printer drivers, one for 24-pins dot-matrix printer and

one for laser jet. Application B was the same. So users ended up with a set of

incompatible drivers, all for the same hardware configuration.

Besides hardware configuration, the application should also maintain all

resources, such as font data, it used. Screen display would be easier if the application

is text-based. So, many applications at that time used text-base user interface to

simplify and speed up screen display. However, the appearance of text-based

applications is usually poorer than that of graphics-based. Some applications prefer to -

use graphics display and provide the font data they need themselves Since these

font data are maintained and used by individual application, sharing font data among
.: - • • - - . .,—--——-. - . + ,,‘••— • , . . • V .- - .. - . , — . . . - .- - . : . — “ - - » - : - - : -

“ applications is rare and difficult. The situation is shown in Figure 1-5.

If printer output is needed, e.g. in a word processor, the application should

use the font data provided by the printer. Since each printer has its own set of built-

in fonts, portability of document across different hardware is always a problem, i.e.,

a document printed on a laser printer would not be the same when it is printed on a

dot-matrix printer. For those printers that support soft-font downloading, font data

could also be sent to the printers. However, not all applications provide automatic

soft font downloading, users might need to do it manually. Furthermore, as the

application uses different sources of screen font and printer font, What You See Is

Chinese Outline Fonts Support in X Window System — 12

' Introduction

What You Get (WYSIWYG) is not an objective of most word processors of that

time[3][12].

Application 2

A p p H c a t i 0 n 1 Fonts Drivers Application 3

Fonts Drivers _ _ \ Fonts Drivers

Printer Display

Figure 1-5 Applications support their own fonts and drivers

This model of font support is used in some PC word processors such as “

WordPerfect and WordStar.

1.3.2. Supported by windowing system

The widespread use of windowing systems, pushes the issue of font support

from the application level to system level. Since windowing systems take over the

control of screen display from their applications, the job of providing and

maintaining font data shifts naturally to the windowing system. Applications can

now make use of the display services provided by the system rather than do it

themselves. The new arrangement is shown in Figure 1-6.

Chinese Outline Fonts Support in X Window System 17

Introduction

Application
2

Application A PP l i c a t i o n

1 3

System

Fonts Drivers

I Screen
4- Display

Printers [_ _ _ _ _ _

Figure 1-6 Fonts supported by system

This configuration has several advantages. First, applications are freed from ‘

managing their font data and which is now taken care of by the system. Second,

several applications can share the same set of fonts, without keeping their own set.

Third, the system may choose the close match fonts for both screen display and

printer output, rendering WYSIWYG possible.

However, this system also has some drawbacks. First, if the system is

corrupted by an error during outline font rasterization, all running applications will

be affected, as has been discussed in Section 1.2.2. Second, as all fonts are managed

- by the system, any changes to font format cannot be made without changing the

system. For example, in some older versions of X Window System, only one font

format was used. To use font data of other format, conversion must be made.

Chinese Outline Fonts Support in X Window System — 12

Introduction

Moreover, new font formats could not be added to X Window System without

modification of the system.

1.3.3. Supported by a dedicated server

The last theme in font support moves the font providing unit further away

from the applications. The font providing unit is no longer included in the

windowing system. It now runs as a separate process. The client-server model is

adopted. Font data can be obtained from the font providing unit by sending it a

request, as shown in Figure 1-7.

System 1

S y s t e m 2 Providing "
. Unit

System 3 ^ ^

Figure 1-7 Font providing unit as a separate entity

As the font providing unit is separated, different systems may all obtain font

data from it as long as these systems obey the protocol defined. Font data is no

longer a resource of one single system, it may be shared by several unrelated systems.

Separating the font providing unit from a single system also provides the flexibility

to change font formats and adds new font formats. Since the systems which need

fonts do not interact directly with font data, these changes are transparent to it. Only

Chinese Outline Fonts Support in X Window System — 12

‘ Introduction

the font providing unit is to be changed while keeping all other parts unchanged. The

X Window System font server adapts this approach, as will be discussed in Chapter

3.

This arrangement provides higher flexibility; however, the issue of fault

tolerance is even more important. As shown in Figure 1-7 several systems rely on -

the font providing unit to provide font data. If the font providing unit fails (may be

due to a single font data error), any subsequent font requests will never be satisfied

and the whole system (including System 1 2 and 3) will be affected. One solution is

to employ more than one font providing unit, as shown in Figure 1-8 If any one unit

fails, there will still be another font provider in the system[6].

S _ m 1 F^t -

^ • Providing
Unit

System 2

Font
Z ^ ^ Providing

System 3 ^ Unit - _

Figure 1-8 System with two font providing units

1.4. Issues of Chinese Font Support

As have been discussed in Section 1.2, the bitmap storage requirement for a

large character set language is very high. For example, if two bitmap fonts are used,

one being 64x64 and the other being 128x128, then according to Table 1-1’ over 24

Chinese Outline Fonts Support in X Window System 2 0

Introduction

mega-bytes are required. The high storage requirement makes it unjustified to keep

too many Chinese bitmap fonts. In some early Chinese systems[45], only a few

Chinese bitmap fonts, say 15x16 and 24x24 were provided in order to save hard disk

space.

Using outline Chinese fonts brings another problem. Since Chinese ~

characters are usually more complex in shape than English characters, the time

required to rasterize a Chinese character is usually longer. Moreover, if the whole set ,

of Chinese characters is rasterized, the time required will be extremely long.

However, Chinese language has a high locality of character usage. Most characters in

a Chinese document indeed appear again and again. Font support systems thus

should be designed to take advantage of this locality of characters usage in order to

reduce the time delay.

Besides storing and generating Chinese fonts, printing of Chinese text is

another, problematic area of Chinese processing. The printing speed of a Chinese

document is usually very slow as compared with printing English text. The reason

for the difference is that Chinese characters are usually printed as graphics, not as a

soft font. This printing method requires a character's bitmap to be sent to the printer

every time when that character is printed. This slows down the printing speed

significantly. Better printing methods should be employed to address this problem.

Chinese Outline Fonts Support in X Window System — 12

Overview of X Window System

2. Overview of X Window System

2.1. Introduction

The X Window System is a machine-independent, network-transparent

windowing system. It was originally developed by the Massachusetts Institute of

Technology (MIT) and is now maintained and organized by the X Consortium Inc. X

provides a rich set of functions to support both graphical and text output. One of the

most important features of X is its device-independence. X allows application

programs to display its output on any display hardware without any modification.

With its network transparency, an application program running on one machine may

also display its output on another one[35][36].

The first version of X that was widely used was version 11. It was released in -

1988. Since then, X has been ported to a wide range of platforms with different

hardware and operating systems. Despite the fact that X is already a sophisticated

and" functional complete software, X is constantly under review. The most updated

version o f X i s version 11 release 6 (X11R6) and which was released in May, 1994.

This project is mainly focused on release 5 of version 11 the latest release of

X Window System at the time when this project began. Unless otherwise stated, X

always refers to this release.

Chinese Outline Fonts Support in X Window System ~“~ 21

Overview of X Window System

2.2. Architecture

The X Window System is based on a client-server model. It consists of three

parts: the X server, X client and the X Window System Protocol. The X server is a

program running on a machine with the display hardware. It provides services to

generate graphical and text output on its display. Any user of these services is called

an X client of the X server. X clients communicate with the server using the X

_ Window, System Protocol. The structure of the. X Window .System is shown in

Client Client Client
Application Application Application

i ~ ^ ~ ~ r
Network Connection

X Server

Figure 2-1 Structure of X Window System

Figure 2-1.

2.3. Font Management in the X Window System

Among all other features of X font management is the one of most interest to

us. In X, font is organized by the X server which is responsible for locating,

maintaining and retrieving font data for all its applications [17]. The font management

Chinese Outline Fonts Support in X Window System ~“~ 21

Overview of X Window System

of X has undergone several changes in the past few releases of version 11. The

following section will discuss these changes.

2.3.1. Before X Version 11 Release 5

Before Release 5 of Version 11 an X server could only use font data located

in the file system accessible to it. The X server maintained the available fonts in

several directories called font directory. In these releases of X, fonts were usually

— grouped according to-the resolution for which they were designed. In addition to font

files, each directory should contained a file called fonts.dir. The fonts.dir file was

used to mapped the font names that were used by client application to the file names.

The set of all these font directories constituted the font path of the X server. Font

path is usually established at the time the X- server starts up. Table 2-1 shows the

default font path of X.

Directory Fonts Contained
/usr/lib/Xl 1/fonts/misc fixed pitch fonts, cursor font
/usr/lib/Xl l/fonts/75dipi fonts designed for 75 dot per

• — — - — _ • i i * -(• — . _ -.’.
… - “ inch display

/usr/lib/Xll/fonts/100dpi font designed for 100 dot per
inch display

Table 2-1 Default Font Path of X

In old releases, all font files were stored in Server Natural Format(SNF)[35]

as that was the only format recognizable by X servers. SNF contained the server data

structure for the font together with the bitmap information tailor-made for a

particular server's architecture. SNF was a bitmap font format. Each SNF file

contained data of a font at a particular point size. If several fonts of different point

Chinese Outline Fonts Support in X Window System ~“~ 21

‘ Overview of X Window System

sizes were needed, several SNF files had to be supplied. Since the SNF format stuck

closely to a specified server's implementation, SNF was not portable.

To facilitate fonts interchange among different server implementations, a

format called Bitmap Distribution Format(BDF)[35] was defined. All BDF fonts had

to be translated to SNF before they could be used by X servers.

- Bitmap scaling was not supported by this release. Moreover, outline fonts

were also not supported. In this release of X sharing of font data among several

servers of different vendors was difficult as each X server required font data of

different formats. The only way to share font data was through BDF files.

2.3.2. In X Version 11 Release 5

X Version 11 Release 5(X11R5) preserves all the font mechanisms of the

previous release. In addition, several significant changes are also introduced into the

font system, which includes:

• A new standard-of font file formal;,-called Portable Compiled Format

• A new font manipulation module, called Font Management Library

• A centralized font serving module called Font Server

2.3.3. Portable Compiled Format

Portable Compiled Format(PCF)[17] was originally designed by the Digital

Equipment Corporation. Besides bitmap data describing each character glyph of the

font, additional information, like bit-order, byte-order, scan line unit and scan line

Chinese Outline Fonts Support in X Window System 2 5

Overview of X Window System

padding, of the font file is also given[17]. Applications (including X server) can use

these values to convert the bitmap data into the desired format. PCF can be used by

all server implementations.

2.3.4. Font Server

Besides the change in font file format, a new font access architecture is

introduced in release 5. This new architecture includes a Font Management Library

(FML) and a font server. The overall font architecture in Release 5 is shown in

Figure 2-2.

Application

_
X Server

FML

^ — ^ w Font Server < •
Z^ —

- - Local Font -

Figure 2-2 Font Architecture in XI1R5

A font server is a separate process which is responsible for providing font

services to an X server. It may run on a machine other than the one where X server

resides. Every time an X server needs information of some fonts in the font server, it

may send a request to the font server through the established channel. The font

Chinese Outline Fonts Support in X Window System ~“~ 21

Overview of X Window System

server then processes the request and generates a reply for that X server. The formats

of all requests and replies are defined by a new network protocol, called the X Font

Service Protocol[ll]. Since the X server and the font server communicate with each

other using a new font protocol, not by the X protocol, other applications may also

take advantages of the services provided by the font server[21].

In X11R5, the concept of font path is extended to accommodate the naming

of the font server. The X server may contain an entry pointing to a remote font server

in its font path. For a font server that is using TCP/IP protocols, its name is of the

form:

tcp/hostname:port-number[31]

where hostname is the node name of the machine and port-number is the TCP port

number that the font server listens to[37]. Unlike naming of font directories as

specified in Section 2.3.1, font server names never start with 7". This is to prevent

any confusion with entries representing font directories[41].

The existence of a font server is transparent to applications. As shown in

Figure 2-2, applications do not request font data directly from the font server. It is

the task of the X server to determine whether or not to request font data from the font

server.

- Throughout the thesis, the term font client will always refer to any processes

which request font services from the font server. One example of a font client is the

X server.

Chinese Outline Fonts Support in X Window System ~ “ ~ 2 1

Overview of X Window System

The font server's architecture allows font data to be managed by a central

authority. Also, as a font server can be accessed by more than one font client, font

data in the font server can be shared among these font clients. Besides, as the job of

reading font files resides in the font server, if a new font format is to be used, only a

new font file reader or font rasterizer needs to be included in the font server.

2.3.5. Font Management Library

With the introduction of a font server, the X server now requires functions to

access font data from local font directories as well as functions to access the remote

font server. To integrate the old functions for local font access and the new module

for connecting remote font server, a Font Management Library (FML) is designed.

This library contains all the font manipulating functions of the X server, which

includes routines for both reading font data from local file system and getting font

data from a remote font server.

This font management library is also used by a font server. By using the

— --network-connection component of the Font Management Library, a font server can

also connect other font server, which in turn connects a third font server and forms a

chain of font servers, as shown in Figure 2-3[17]. Note that in Figure 2-3, the

existence of font servers 2 and 3 are also transparent to the X server.

Chinese Outline Fonts Support in X Window System ~“~ 21

Overview of X Window System

X Server

ajc

• " ---------- ""“ •""*-•

/ i \

, j . Font Server 1 ^ ― • Font Server 2 4 — > Font Server 3 . | ™ , ‘

• • \ / • • ……-•…… 7 r. -

Figure 2-3 X Server connects to a chain of Font Servers

The architecture and operations of the font server and the font management

will be discussed in more detail in Chapter 3.

2.4. Internal Code

Another distinct feature of X is its loose restriction on internal coding

scheme. In fact, X does not define any internal codes. It allows font data to be
- - - . - - - —

associated freely with any internal codes. This distinct feature of X allows font data

with any internal coding to be used in X. Moreover, X can handle both single byte

and double bytes fonts.

The free policy of X on internal coding makes it an ideal platform for

research and experiment[18][49][50]. Work has also been done on the localization

of X Window System to several different languages[31].

Chinese Outline Fonts Support in X Window System ~“~ 21

Chinese Font Server

3. Chinese Font Server

3.1, Motivation

X Window System has been designed with the capability to handle languages

with large character sets. Language characters with double-byte representation can

easily be managed by X. Graphics routines are also provided by the system to draw

double-byte fonts characters. However, the availability of Chinese fonts is poor.

Currently only several bitmap Chinese fonts are available in X . These Chinese

fonts are designed mainly for screen display purpose. As they are all bitmap fonts,

their sizes cannot be scaled up and down without distorting the shape of character.

Moreover, being designed to suit screen display resolution which is much lower than

resolution of most laser printers, these Chinese bitmap fonts are inadequate for

printing. There is indeed a need for more font sources for both screen display and .

printer output.

From the discussion on the -font management -system of X Window System

given in Chapter 2, it is undoubted that the introduction of the Font Server makes

font handling more flexible. With this new font handling mechanism, the inclusion of

Chinese outline fonts becomes simpler. Moreover, by modifying a font server, all X

servers which need Chinese font data can request from that font server. X server does

not need to be changed.

2 X version 11 Release 6 includes three Chinese bitmap fonts.

Chinese Outline Fonts Support in X Window System 3 0

Chinese Font Server

Bases on the sample font server included in the distribution of X Version 11

Release 5 a Chinese font server is implemented. Since outline fonts are more

flexible than bitmap fonts, the Chinese font server is mainly designed for supporting

Chinese outline fonts. Indeed, as will be seen in later chapters, using outline fonts

widens the ways the font server is to be used, not to be confined to the X server only.

3-2. Font Server Architecture

The sample font server provided by the X Consortium consists of three

modules, including:

• The Device Independent Font Server layer (DIFS)

• The Operating System layer (OS)

• The Font Management Library (FML)

The architecture of Font Server is shown in Figure 3-1.

"DIFS

FML OS

Figure 3-1 Structure of the Font Server

Chinese Outline F o n t s Support in X Windows System 52

Chinese Font Server

3.2.1. Device Independent Font Server layer(DIFS)

DIFS contains the main event loop of the font server. This event loop is

responsible for dispatching requests to the request handling routines. For each

protocol request, there is a specific function to handle it. The dispatcher manages the

set of all request handling functions into an array which is indexed by the request

type. When a request arrives, the request type is used to address the appropriate

request handling routine and that routine will be invoked.

DIFS is also responsible for managing font clients. DIFS organizes all font

clients into a global array of client record. For each font client of the font server,

DIFS assigns an entry of the array for it. The client record maintains information

about an individual font client, which includes the client's byte order, its index in the

server's client array, sequence number of the last processed request of the client and -

pointers of routines to process client requests. The maximum number of font clients

of the font server is implementation dependent.

3.2.2. Operating System layer(OS)

OS contains routines for network communications, server configuration and

error handling. The OS layer is also responsible for font catalogue manipulation.

The codes contained in OS may be operating-system dependent[17].

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

3.2.3. Font Management Library(FML)

The Font Management Library is a special module of the font server. All font

manipulation functions are contained in the FML. Font accessing functions can be

divided into two main categories, namely the functions to access a remote font server

and functions to manipulate font files.

The Font Management Library collects the set of routines for manipulations

of a particular font origin into a Font Renderer. The term font origin refers to the ...

location, either local or remote, from which font data can be obtained. Font Renderer

contains routines to open font, close font and list font, etc.

In the sample server, there are two Font Renderers, called Font File

Renderer and Font Server Renderer[17]. Font File Renderer is responsible for .

managing font data that are stored in the local file system while the Font Server

Renderer is used to request fonts from remote the font server. The structure of FML

is shown in Figure 3-2. - - ’ ‘ - - -

FML

Font File Font Server
Renderer Renderer

Figure 3-2 Hierarchical Structure of Font Management Library

Chinese Outline Fonts Support in X Window System 3 3

Chinese Font Server

Font Renderers provide routines for font access. However, the FML used

another data structure to perform the actual font manipulation. This data structure is

called the Font Path Element(FPE).

3.2.4. Font Path Element

Font Path Element is the core font accessing unit of the FML[32]. Basically,

a font path element is an association of a font source with a Font Renderer. A font

source can be a directory of font file or a remote font server. The FPE data structure

contains function pointers for name-checking, initialization, open font, close font and

list font, etc. These functions are provided by the two Font Renderers and must be

registered to the FML before they can be used.

At the time the server starts, the font path is passed to the FML. The FML -

validates each element in the font path by calling the name checking routines

registered in it in turn until the element is recognized or all name checking routines

have been invoked. If the element is recognized by any one of the name checking "

routine, a new FPE is created. Otherwise an error message is returned, A list of

active FPEs is thus set up. How the name checking routines validate the element in

the font path is specific to the Font Renderer. For Font File Renderer, the first

character of the name is compared with the character 7". For the Font Server

Renderer, the first three character is compared with the string "tcp".

After establishing the FPEs list, each FPE is initialized by invoking the its

own initialization routine. For the Font File Renderer, the file n^m&d fonts.dir in

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

each font directory is read while network connection to remote font server is

established for Font Server Renderer[41].

3.2.5. Font File Renderer

The Font File Renderer is responsible for accessing font data from a local file

system. The operation involved may be as simple as reading a bitmap font file or as

complex as rasterizating an outline font, depending on the format of font files.

Currently, the Font File Renderer of the sample server recognizes the following font

file formats:

• , bnf Bitmap Distribution Format

• . snf Server Natural Format

• . pcf Portable Compiled Format, new in Release 5

• . spd Speedo outline format, also new in Release 5

A Font File Renderer also manages a set of font readers for retrieving and

converting font data. These font readers must be registered Fo the font file renderer

before they can be used. For each of the font file formats listed above, there should

be a font reader registered. If a new font format is to be added to the font server, a

new font reader should be registered to the Font File Renderer. An exploded view of

the FML is shown in Figure 3-3,

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

FML
••• /

,.•• Font File / Font Server
Renderer / Renderer

* s
• . » ‘

, 7 “ “
• • • •

« * • •
• « « •

• • • • ^ ^ ^
» ^ ^

• • » • •

/ ' / / TO FONT SERVER
• ‘) •

•/• .BDF /
: • • •• “ •-/

I / .PCF -SPD /

/ I .TTF 1 - S N F 1' •: ./

• •* I /
I / • ••

.••' Font readers / t*

Figure 3-3 Font Dependent Renderers in FML.

3.2.6. Font Server Renderer

A Font Server Renderer is used for getting font data from other remote font

servers. The Font Server Renderer allowed X server as well as font server to access

font data located in a network font server.

3.3. Implementation of Chinese Font Server

3.3.1. Font data and code set

In current implementation, TrueType font format[29] is used for describing

our Chinese font data. TrueType font format was originally defined by Apple

Computer Inc. and has been widely used in Microsoft Windows. Since the.

introduction of Microsoft Chinese Windows[46][47], more and more Chinese

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

TrueType fonts have been designed and made available in the market. Choosing

TrueType font format gives a wide set of font data for the testing of this font server.

The Chinese code set used by TrueType font in Microsoft Chinese Windows

is called Big5 code. Standard Big5 code is a two byte code ranging from A140(hex)

to F9D59(hex). The range of the first byte is from A1 (hex) to F9(hex), with C7(hex)

and C8(hex) unused. The legal second byte is 40-7E(hex) and Al-FE(hex). Totally,

there are about 13000 characters in Big5 code set. The code ranges and classification

of Big5 characters are summarized in Table 3-1.

Code Range Usage
A140--A3BF Non-Chinese Characters
A440 — C67E Frequently used Chinese Characters

“C940 - F9D5 Non-frequently used Chinese Characters

Table 3-1 Standard Big5 Code Range .

However, since some commonly used Chinese characters such as

etc. are not defined in standard Big5 code set, TrueType does not use standard

Big5 code. Instead, it uses an Extended Big5 code set[45] as-its internal code.

.Extended Big5 code is almost the same as standard Big5 code except in the last code

range It defines the range F9D6(hex) to F9FE(hex) for some commonly used

Chinese characters and symbols. The code ranges defined by Extended Big5 are

shown in Table 3-2.

Code Range Usage
A140 -- A3BF Non-Chinese Characters
A440 - C67E Frequently used Chinese Characters
P940 __ p9FE Non-frequentlv used Chinese Characters

Table 3-2 Extended Big5 Code Ranges

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

3.3.2. Registering a new font reader

The first step involved in the implementation of Chinese font server is to

inform the font server that a new font file format is to be used. As revealed in the

architecture of the font server, the function of reading font data from a local file

system resides in the Font File Renderer. Unfortunately, the entry point for

registering a new font reader to the Font File Renderer is not described in any

available documentation. The source code of the sample font server implementation

thus should be browsed.

/XllR5/fonts/lib

Z \
font fc

include Speedo bitmap fc fontfile

Figure 3-4 Directory Tree of FML.

The codes of FML in the sample font server are organized into a directory tree

as shown in Figure 3-4. The top level directory is the /XI1R5/fonts/lib^, The second

level includes two sub-directories. Directory/i- maintains a self-contained library for

accessing the remote font server. It provides high level interface for the requests

defined in the X Services Protocol. This library can be used by any applications. The

font directory contains all font access procedures used, by the FML, including

3 The name of the top level directory may not be the same across different implementations...

Chinese Outline Fonts Support in X Window System 38

Chinese Font Server

procedures for both local and remote font accesses. Since only the Font File

Renderer's routines are of interest, discussion will be focused on the font directory.

The font directory is further divided into several sub-directories. The bitmap

directory contains codes of bitmap readers for BDF fonts, SNF fonts and PCF fonts.

In the Speedo directory, a font rasterizer for the Speedo fonts provided by Bitstream ~

can be found. Speedo is the first outline font format contributed to the X consortium.

The codes contained in that directory are a valuable reference for those want to

embed new outline fonts reader to the FML.

The directory namtdfonlfile is the place where the name checking, open font

and close font routines of the Font File Renderer reside. It also contains procedures

for registering new font reader. By modifying a function in the Font File Renderer .

called FontFileRegisterFontFileFunctions4 a new font reader for Chinese font is

registered.

The Chinese font reader should register the following information to the Font

File Renderer:

• " . t t r , file suffix of the file format recognized by this font reader.

• _OpenScalable, a pointer to the function that will be called when a

scalable font is to be opened

4 The functions definition is in the file renderers.c in the fontfile directory. . . _

Chinese Outline Fonts Support in X Window System 3 9

Chinese Font Server

• JnfoScalable, a pointer to the function that will return the scalable font

information

• _OpenBitmap, a pointer to the function that will be called when a bitmap

font is to be opened

• InfoBitmap a pointer to the function that will return the bitmap font

information

The Font File Renderer differentiates whether the incoming font is bitmap

font or scalable font. It also determines which function to call. In current

implementation, the Chinese font reader supports outline fonts only. So only the

functions to open outline fonts and query outline fonts information are implemented.

They are called TrueTypeOpenScalable and TrueTypeGetlnfoScalable

respectively. The function pointers _OpenBitmap and _InfoBitmap are set to zero.

The file suffix of TrueType font file is "ttf .

On receiving an open font request, DIFS calls all the active font, path —

elements(FPE) in turn until a match is found or no more FPE remains. If the FPE is

associated with the Font File Renderer, the font reader registered under the Font File

Renderer whose file suffix equal to that of the font file being opened is invoked, and

its function _OpenScalable or —OpenBitmap is called, depending on the nature of

the font. If the called function returns properly, a successful message will be passed

back to the DIFS together with information of the newly opened font. The sequence

of control flow is depicted in .

C h i n e s e Outline Fonts Support in X Windows System 52

Chinese Font Server

(O p e n F o n t ~ ^
Request Received

by DIFS)

^ N
r Open Font >

Request Handler
Invoked

v y

r FPE function ^
Called

V J

FontFile Renderer's
Open Font

Called

V J

_ C ^ I I •
TrueTypeOpenFont

Called
V J

Figure 3-5 Control flow of open font request

The function TrueTypeOpenScalable is called whenever a font file with file

extension ".ttf is opened. If TrueTypeOpenScalable function returns successfully,

a completed font record is also returned. This font record contains all information

associated with the font such as the font metric information, properties associated

with the font, code ranges, bit and byte order of the font, etc. Besides font

information, font record also contains pointers to functions for" obtaining font data

and font glyphs information.

“ “ : :

Chinese Outline Fonts Support in X Window System

Chinese Font Server

The completed font record will be returned to DIFS which attaches this font

record to the record of the font client on which behalf the font is opened. Subsequent

request for this font, such as getting bitmap data and querying font information, will

be processed by the routines indicated in the font record.

The font reader decides when to build the character glyphs. In some

implementation, all font data are built when a font is opened. However, due to the

large number of characters in Chinese font, we defer the building of character

glyphs until they are actually needed.

3.3.3. Font specific functions

Each font record must contain pointers to functions for getting bitmaps and

extents. These two pointers are called get_bitmaps and get—extents. The functions

pointed to are used directly by DBFS.

Whenever bitmap data are requested, the getjbitmaps function in the font

- - record is called. The range of required character glyphs,-bit order and byte order of

the font client are also passed to this function. As the font server allows clients to get

complete character set of a font or just a few characters, so a flag is also passed to

getjbitmaps to indicate whether the complete character set or only a subset is

needed. According to the value of this flag, we have two policies for font requesting.

We call these Load-All scheme and Demand-Loading Scheme[4].

A ry

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

3.3.4. Load-All Scheme

As we have mentioned already, all font data are generated from outlines only

when they are requested explicitly. So if a client attempts to get all the character

bitmaps of the font in one request, the font reader must generate all these bitmaps

when it receives that request. However, outline font rasterization is quite time-

consuming. Generation of bitmaps for the whole Chinese character set (about 13000

characters) will result in a significant time delay.

We used our experimental font rasterizer to conduct an experiment to

measure the average rasterization time for the whole Chinese character set. The

program ran on a SPARC 10 workstation with 64M RAM and a SPARCclassic with

16M RAM. Both machines were using SunOS 4.1.3. The times required are

recorded. An average rasterization time is taken as the mean value of the results .

obtained from the two machines. Experimental results are summarized in Table 3-3.

Note that this experiment measured only the font rasterization time. The time

- required to transfer font data from the font server to the client was not included. — :

Bitmap Sizefin pixel) Average Rasterization Time
20x20 7'32"
50x50 — H'36"
100x100 — 18'24"
150x150 18'58"

Table 3-3 Experimental Result of Font Rasterization

As shown in Table 3-3, the rasterization time is quite long. And the time

required increases as the size of bitmap increases. The long time delay is intolerable

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

in all cases. Unfortunately, the major client of the font server, the X server, tends to

load all the characters when it opens a new font. So remedial action for this problem

is necessary.

In current implementation, a whole set of 20x20 pixels Chinese character is

pre-rasterized. Every time a font client wants to load all the characters, the font --

server reads in these pre-rasterized bitmaps and sends back to the client. This

method reduces time delay significantly. However, as only one size is provided,

clients requesting different font sizes may all get the bitmaps of the same size. A

better solution is to provide pre-rasterized bitmaps of several different sizes and find

the closest match for clients. But this method demands more hard disk space for

storing bitmaps of different sizes.

3.3.5. Demand-Loading Scheme

Instead of a complete character set, a more flexible way for font loading is

demand-loading. Font clients request only the character bitmaps actually used. This

reduces the rasterization time greatly as only a relatively, small number of bitmaps are

needed. Clients which need a large among of character bitmaps may divide their

request into several requests.

3.3.6. Embedding of font rasterizer

In current implementation, the embedding of a font rasterizer is simple and

flexible. The actual implementation of the font rasterizer is not important as long as

the rasterizer takes the font file name, the Big5 code and the bitmap size as function

Chinese Outline Fonts Support in X Window System 4 4

Chinese Font Server

arguments and returns the rasterized character bitmap. Any font rasterizer can be

embedded into the font server if it obeys the interface shown in Figure 3-6.

char* FontRasterizer (char * FontFilename,

short Big5Code, int size)

Figure 3-6 The font rasterizer interface

Our experimental fonr rasterizer is originally for Intel-based personal

computers. We ported and adapted it to our font server. This font rasterizer can

handle any non-stroke-based Chinese TrueType font format[29].

The font rasterizer is invoked by the get_bitmaps function. It is the task of

the getjbitmaps function to convert the font data produced by the font rasterizer

into the format required by the font client. The conversion may include inversion of

bit-order, padding extra bytes on each scanline and swapping 2 or 4 bytes of data.

The get_bitmaps function should convert the bitmap data into the format as

specified in the request sent by the font client. In order to simplify the conversion

process, the sample font server has already included several routines for swapping

bytes and re-padding scanlines, etc.[41].

3.4. Test Results

3.4.1. X Application Tests

In order to test the pre-rasterization scheme, X applications were used since

an X server tends to load all. font data when it opens a new font. Several applications

Chinese Outline Fonts Support in X Window System 4 5

Chinese Font Server

were used in the tests. The font server was firstly started on a SPARCclassic

workstation equipping with 16M RAM and running SunOS 4.1.3. Two X servers,

one on another SPARCclassic workstation and the other on a 486DX50 running

Linux were started and connected to the font server. Two X based-applications

namely CXterm and xfd were used. These two applications were tested on both X

servers. Test results are shown in Figure 3-7, Figure 3-8 and Figure 3-9.

r vj __•.‘.‘’‘.••.__‘. •.,.>•…,•...,, ,.‘..0^"?1«:.‘::::7^71:: : : : : : : : : : : : :77::::::::::::.."^
iimiii—MiM tefaj^^^^MF^J^ga fiiSMbigieroiigi

- -

1
1

~}
~}88r{ > T7r{ "71 {

}

"}

" { " }

<(t 1
•[“ ” “ 1

” “ - ” 1
1

}
1

1
1 ~}

— ~{ 1 h ‘
gab sum •

ASCII input) _ _ _ .
Li 1

Figure 3-7 A session of CXterm reading Chinese News

The two X servers were used in the tests in order to test the ability of the

Chinese font reader to handle font clients with different byte ordering. The

SPARCclassic has a Most Significant Byte First ordering while the 486DX50 has a

Least Significant Byte First ordering scheme. Test results show that the font server

worked properly on both machines despite the difference in machine architectures.

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

I -truetype-dai-nediun-r-norr»al—25-241-75-75-n-0-cuhk-0 I
I Quit Prew Page Next Page

--—— .——-I Select a character - - - I

I range Owal^O <1G1,G4) thru 0xf9fe (249,254)
I upper left OxbOOO (17G,0)

J
I j

-
| l i l i f

|
_ I

• _ I • _ I ~ I I •
!- " I “ ‘ “ . ‘ “ * ” JLR

|
_

E

• p .
|

Figure 3-8 Xfd showing part of a font

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

I -truetype-dai-nediun-r-nornal 25-241-75-75-n-0-cuhk-0 1 I I -:
I Quit Prev Page Newt Page |I
I character 0nb355 (185,85)
I width 25 left 0, right 25 ascent 25, descent 0 (font 25, 0)
I range 0xal40 (161,G4) thru 0nf3fe (249,254) |
I upper left OxbbOO (187,0)

II

I
•

―
|
|

. j . : \ … … …

I
 _

j
| ji _ |

|
|
| | ^

Figure 3-9 Xfd showing another part of the font

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

3.4.2. Demand-Loading Test

Another two programs were used to test the demand-loading capability of the

font server. The first program simply read strings from a Chinese document and then

requested the bitmap data of the strings from the font server. The time for getting all

bitmaps of the characters in a Chinese document was recorded. Several documents

with different numbers of characters were used.

Number of Average Font Acquisition Time _ Average Font Acquisition Time

characters For 20x20 bitmap For 100x100 bitmap

181 4.5" 7"
535 11" — 2T
1046 13" — 3T
2048 19" VT
3641 22" r 1'34"

Table 3-4 Experimental Result of Demand Loading

As shown in Table 3-4, the response times are much shorter than loading all

characters. As an application loads only the bitmaps it actually needs, the

rasterization time is thus much shorter.

The second program was indeed an X based version of the first one. In

addition to reading strings and getting bitmaps, it also displayed the. characters on a

window. This program bypassed the X server font getting mechanism and acquired

font data directly from the font server.

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

Three Chinese fonts, namely Dai() Sung(and Yuan(were

used in the test. Some results of the tests are shown in Figure 3-10, Figure 3-11 and

Figure 3-12.

1

J
I ‘ ‘ —_ …… — j

Figure 3-10 Chinese Font Display program using Dai Font (

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

J , ^

Figure 3-11 Chinese Font Display using Sung Font (

Chinese Outline Fonts Support in X Window System 51

Chinese Font Server

ilfalWli^
M

I \
Figure 3-12 Chinese Font Display program using Chung Yuan(

Testing results of these programs show us that fast X applications that request

Chinese outline fonts can indeed be written by using the demand-loading feature of

the Chinese font server. .‘

Chinese Outline Fonts Support in X Windows System 52

Chinese Font Server

3.5. Some Remarks

The experimental results reveal the deficiency of the font system of X11R5 in

handling languages with large numbers of characters. The load-all-characters

mechanism of the X server incurs great time delay in font acquisition when the

number of characters is large, as in the case of Chinese font. The demand-loading

tests show that efficient X-based Chinese applications can indeed be developed with

better font management strategy, such as demand-loading. However, in X11R5

demand-loading can only be achieved if the application by-passes the font

mechanism of X server.

Fortunately, the problem of load-all-characters strategy with languages with

larger character set has been made known to the X Consortium. In the new upgrade

of X Window System, the release 6 of Version 11 this problem is fixed. The X “

server can now be configured to used a demand-loading scheme instead of load-all-

characters strategy when loading fonts with large numbers of characters. The

improvement renders the development of efficient Chinese applications easier.

The implementation of Chinese outline font server widen the sources of font

data that can be used while the improvement in font management in X makes font

acquisition more effective and efficient. It is expected that more and more Chinese

applications with attractive user interfaces and responsive to the user will be made

available in the X world soon.

Chinese Outline Fonts Support in X Windows System 52

Overview of Printing System

4. Overview of Printing System

4.1. Motivation

Some currently available windowing systems, such as Microsoft Windows

and Macintosh system, provide device-independent application program interfaces to

printing devices[l][25]. These interfaces allow applications on these systems to

prepare printer output as easily as screen output. Furthermore, the application

program interfaces shield much device dependent detail from applications.

Applications can run smoothly in spite of any changes in printing devices.

Currently, X Window System provides no facility for applications to prepare

printer output. Applications which are required to generate printer output should do

all the work by themselves, which may include managing font data used, taking care -

of what kind of printer is being used and generating output in the format of the

printer. This arrangement has several disadvantages. First, it places additional

burden on the applications. Second, if more than one type of printer is being used

applications should be able to generate output of different formats. This makes

adding a new printer to applications more difficult. Lastly, font data may not be

shared among applications as they may have different formats for storing fonts.

The deficiency of supporting outline fonts in earlier versions of X may also

account for the lack of printing facility in X Window System. As only bitmap fonts

are used, the X server may need to maintain several copies of bitmap fonts in order to

Chinese Outline Fonts Support in X Window System 55

Overview of Printing System

entertain devices of different resolutions. This incurs a large storage problem in X

when the number of fonts used is large.

The introduction of font server in Release 5 fixes this problem as new

formats, bitmap or outline, can be easily incorporated into X. This advance in font

management technology in X undoubtedly opens the door for implementation of the

printing component of X.

In light of this situation, an experimental printing system is introduced. This

printing system has the following design goals:

• Provides device independent printing interface for applications

• Allows font data to be shared among applications

• Allows new printers to be added to the system without any changes to

applications

_ • Allows double-byte fonts (such as Chinese Fonts) to be handled with the

same mechanism as single byte font

Chinese Outline Fonts Support in X Window System 5 5

Overview of Printing System

4.2. Design Considerations

To achieve the above design goals, several different approaches are

considered. The following sections will discuss the relative merits of these designs.

4.2.1. Modification of the X server

The most straightforward way to incorporate the desired printing services is

to modify the X server directly. In this design, the printing module is embedded as

part of the X server.- X client only needs to send printing requests to the X server

which will do everything else on behalf of the X client. The X server may obtain the

desired font resources from its local database or from a remote font server. The

embedded module maintains a set of printer drivers which are responsible for all

device-dependent operations pertaining to the printing requests. The embedded

system is shown in Figure 4-1 -

Application

X Server

Printing Module
• Spooler

• 0 0 1

I I ^ I T / I I
Printer / /
Drivers !—/

Figure 4-1 X server with embedded printing module

Chinese Outline Fonts Support in X Window System 5 6

Overview of Printing System

4.2. Design Considerations

To achieve the above design goals, several different approaches are

considered. The following sections will discuss the relative merits of these designs.

4.2.1. Modification of the X server

The most straightforward way to incorporate the desired printing services is

to modify the X server directly. In this design, the printing module is embedded as

part of the X server. X client only needs to send printing requests to the X server

which will do everything else on behalf of the X client. The X server may obtain the

desired font resources from its local database or from a remote font server. The

embedded module maintains a set of printer drivers which are responsible for all

device-dependent operations pertaining to the printing requests. The embedded

system is shown in Figure 4-1

Application

X Server

Printing Module
n : > Spooler

U U U_

-- “ Printer _ / / /
Drivers L J

Figure 4-1 X server with embedded printing module

C h i n e s e Outline Fonts Support in X Window System 5 6

‘ \ .

Overview of Printing System

Despite the fact that it is conceptually simple and clean, this approach is

difficult to implement. First, modifying the X server directly requires all X servers to

be changed. Second, in order to address the new printing services, the X protocol

must be changed also. Both factors induce a compatibility problem with the world-

wide X society. Applications that run on the modified X server may not be able to

run properly on another unmodified one. Lastly, as the printer drivers are attached to

the X server, adding or removing a printer driver requires recompilation of the X

server.

4.2.2. Embed the printing system into the font server

_ Another approach is to include the printing module into the font server, as

shown in Figure 4-2.

In this design, client applications should establish connections with two

different servers, one for screen display and the other for printer output. This should

not be considered as a disadvantage as even in the previous design, applications

—- - should also generate two kinds of output with one for the screen and the other for

printer output.

This approach provides higher flexibility than the previous one. When a new

printer driver is added or an old one is removed, only the font server is changed.

Moreover, as the printer drivers are now part of the font server, they can obtain the

font data they need through several procedure calls only, not by network connection.

This makes font acquisition more effective.

Chinese Outline Fonts Support in X Window System 17

I Overview of Printing System

However, this design requires extension of the X Font Service Protocols to

accommodate these new printing requests. This again induces compatibility

problems with other font servers. Furthermore, letting the font server deal with two

conceptually different kinds of requests, may not be a good choice.

X Application

v
Font Server

X S e r v e r ^ Printing Module

— I I • • •

Spooler

Figure 4-2 Font Server with embedded printing module

4.2.3. Distributed Architecture

The last approach moves the printing module out as a single process as

shown in Figure 4-3. In this design, the printing module appears as a stand-alone

entity called Printer Server which does not r e q u i r e , network support from any other

Chinese. Outline Fonts Support in X Window System 64

Overview of Printing System

processes, such as X server or font server to provide communication channel for

client applications. It does, however, rely on the font server (not shown in the figure)

for font data. Font acquisition is less efficient than with the modified font server.

The introduction of Printer Server has several advantages over the previous

two models:

• It keeps X server as well as font server unchanged.

• New printer drivers can be added with even a higher flexibility since only „

the Printer Server, not the X server or the font server, is recompiled.

• It provides higher extensibility as only the Printer Server is changed.

• Non X-based applications can also take advantages of the Printer Server

X Application

Screen D i s p ^ ^ ^ ^ ^ ^ ~ ~ ~ ~ ^ ^ ^ ^ ^ ^ ^ Output

X Server Printer Server

X

Spooler

Figure 4-3 Printing services provided by a dedicated printer server

In light of the above comparison, this approach is adopted in current

implementation of the printing system.

Chinese Outline Fonts Support in X Window System 5 9

Overview of Printing System

4.3. System Architecture

The design with a dedicated printer server is adopted in current

implementation for its flexibility and extensibility. The printing system with a

dedicated printer server is shown again in Figure 4-4 with an exploded view of client

applications. The printing system consists of the following components:

• A Printer Server

• A Font Server

• An X Window System Server

• A Printing Services Protocol

• A Printer Server Library

• Client Applications

p r i n t p r Font Data
F r m t e r Font Server
Server 4

Printing Font
Printing R e q u e s t s Data
Services
Protocol

Printer Server „ X Window System
Library S e r v e r

Screen
Display

Client Application Request

Figure 4-4 Architecture of Printing System

Chinese Outline Fonts Support in X Window System 6 0

I Overview of Printing System

These modules need not run on the same machine. They can communicate

with each other by using the network facilities. Note that communication with the X

server is defined by the X Window System Protocols[34] and that with the Font

Server is defined by the Font Services Protocols[l 1].

4.4. Printer Server

_ — — The Printer Server is the central printing component of the whole system. It

is responsible for managing print jobs of client applications. Whenever a client

application performs a printing operation, it sends a request specifying what

operations it wants to the Printer Server. The Printer Server will in turn perform the

requested operations for that client. The Printer Server shields much operation ..

details such as retrieving font data, invoking the printer driver, checking printer

memory and updating printer font record etc. from the client applications.

The Printer Server includes a list of printer drivers which are responsible for

actual output generation. Each client application must select a printer before any

output operation can be performed. All subsequent output operations will be

directed to the printer driver associated with the client application.

Basically, the operation of the Printer Server includes checking for any client

request, dispatching the request to the responsible printer driver and, after the request

is processed, sending a reply to the client.

Chinese. Outline Fonts Support in X Window System 64

I Overview of Printing System

The Printer Server also maintains a list of client records for storing

information of each client application. Each client record contains information such

as the current printer used and the communication channel owned by the client. The

Printer Server uses all this information to determine which printer driver to call,

which font to use and to which print job the operation is applied.

The Printer Server is not supposed to have the ability to generate font bitmap

data. Instead, it requests font bitmap data from the font server, and this will be

discussed in Section 4.5. However, in order to reduce network traffic and time delay

in font acquisition, the Printer Server will include a local font cache which contains

bitmap data of several recently used fonts. The Printer Server should control the

amount of memory used by the font cache and the number of fonts stored in the

cache.

As the current Printer Server runs on top of the UNIX operating system, it is

supposed that the Printer Server should be compatible with the current spooling :

system of UNIX[37], i.e., the Printer Server should not interact directly with the

printers. Instead, it generates printing output files and sends the files to the print

queue for printing.

The Printer Server must be started first before any client application connects

it. In the experimental implementation, client applications should know in advance

at which machine the Printer Server is located and which port number[37] the Printer

Server is listening to.

Chinese. Outline Fonts Support in X Window System 64

I Overview of Printing System

4.5. Font Server

The font server is the central font provider of the system, and almost all font

data is generated by it. As mentioned in Section 4.4 the printer server itself does not

generate any font data, it relies entirely on the font server to provide printer font data.

Although the X Window System server may contain some font data in its

local font database, the use of a font server is recommended. This is because if the

Printer

Server and the X Window System server are both using the same font server, the

character images displayed on screen may match those printed on paper. This makes

the implementation of WYSIWYG applications possible.

Uses of a font server also makes the Printer Server system less dependent on

the X Window System. As mentioned in Chapter 3 any application can connect the

font server as long as it obeys the font server protocol. The separation of font

provider from X Window System server allows non-X-based applications to take

_ advantages of the Printing System.

4.6. Printing Services Protocols

The Printing Services Protocols define the communication protocols between

client applications and the Printer Server. In current experimental implementation,

the following requests are defined:

• ConnectServer

Chinese. Outline Fonts Support in X Window System 64

I Overview of Printing System

- ‘ s e t u p connection with the Printer Server

• DisConnectS erver

- disconnect from the Printer Server

• QueryPrinterState

- query the current setting such as PaperSize, PaperDirection etc.

• PrinterEscape

- s e n d i n g printer escape such as STARTDOC, ENDDOC and RESET

where STARTDOC signals the printer to start a new document, ENDDOC

signals the end of the article and RESET informs the printer to reset

• SetPrinterState

- set the printer setting

• ListFont

- list available fonts

• LoadFont

- request the Printer Server to load a font

• CloseFont -— - - … -

- request the Printer Server to close an opened font

• SetFont

- set the current font used

• GetTextExtent

- query the metric information of a specified string

• DrawString

- draw a specified string

C h i n e s e . Outline Fonts Support in X Window System 6 4

I Overview of Printing System

• PrinterEjectPage

- request the printer to eject current page

4.7. X Window System Server

The X Window System Server is used for screen output display. As have

been mentioned in Section 4.4 and 4.5, the Printing System is designed to be as

- independent of the X—Window System server , as possible. So applications which

would like to use their own display routines can indeed bypass the X Window

System Server.

4.8. Printer Server Library

The Printer Server Library contains routines for sending requests to the -

Printer Server and reading replies from Printer Server. This library shields the

network communication details from client applications. From the client

applications' point of view, sending requests to the remote Printer Server just like

making a normal function-call When the function-call returns, it may contain the

information needed by the client applications or an acknowledgment from the Printer

Server. This library should be linked to client applications at compile time.

4.9. Client Applications

To take advantages of the Printer Server System, applications should include

the Printer Server Library when it is being developed. On the other hand,

Chinese. Outline Fonts Support in X Window System 64

I Overview of Printing System

-• setup connection with the Printer Server

• DisConnectServer

- disconnect from the Printer Server

• QueryPrinterState

- query the current setting such as PaperSize, PaperDirection etc.

• PrinterEscape

- sending printer escape such as STARTDOC, ENDDOC and RESET

where STARTDOC signals the printer to start a new document, ENDDOC

signals the end of the article and RESET informs the printer to reset

• SetPrinterState

- set the printer setting

• ListFont “

- list available fonts

• LoadFont

- request the Printer Server to load a font

• CloseFont _

- request the Printer Server to close an opened font

• SetFont

- set the current font used

• GetTextExtent

- query the metric information of a specified string

• DrawString

- draw a specified string

C h i n e s e . Outline Fonts Support in X Window System 6 4

I Overview of Printing System

applications are unaffected by any changes in printer driver attached to the printer

server as all printer drivers provide the same set of printing interface for applications.

In the current design, the screen display routines are provided by the X

Window System server. However, client applications may also use other systems to

produce screen output.

In spite of the screen display routines used by an application, it is highly

recommended that both the screen display routines and the Printer Server use the

same font server to obtain font data so as to achieve WYSIWYG effect.

Chinese. Outline Fonts Support in X Window System 64

. Design and Implementation of a Printer Server

5. Design and Implementation of a Printer Server
It is always of great difficulty to design a system with considerable

complexity. In the design and implementation of the Printer Server, an object-

oriented approach is adopted. Object-oriented method is employed to simplify the

design process. The main advantage of this design methodology is its emphasis on

individual objects' behavior. The design focuses on the objects which altogether

constitute the whole system, their behaviors and their relationships. The whole

system is broken down into several sub-systems which in turn are divided into

several objects. From the implementation point of view, as each object responds

only to the message it receives, regardless of the nature of the client from which the

message is sent and why the message is sent, each object can be coded and tested

individually and independently[22]. Moreover, object inheritance allows objects

with some degree of similarity to be grouped into a class, saving the efforts to write -

similar codes again and again[38].

Like most object-oriented system, the whole process of software construction

is divided into an objects identification phase and an objects organization phase[24].

5.1 • Objects identification

In the first stage of design, the classes involved are identified. The following

section is devoted to describe the classes and their responsibilities. Note that the

names of the identified classes are given in parenthesis next to the concept they

represent.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

5.1.1. Dispatcher (dispatcher)

Dispatcher is the main control unit of the Printer Server. Its responsibilities

include:

1. Initializing the Printer Server

2. Checking for client connection request

3. Maintaining a set of interested channels on which requests from client are

expected

4". Checking for client operation requests and dispatching the requests to the

request handlers

5. Scheduling the sequence of processing of client requests

6. Resetting the Printer Server

5.1.2. Communication Channel (ComChannel)

The ComChannel class encapsulates the network communication details for

its users. Reading and writing of channel appear only as normal file accesses. The

responsibilities of the ComChannel include:

L Establishing connections between clients and Printer Server

2. Providing reading and writing routines

The ComChannel provides only byte-streamed reading and writing routines. It

does not define any message boundaries. The formats of messages are defined and

- enforced by users of the ComChannel.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

5.1.3. Font Cache Manager (FnCache)

The FnCache class maintains the font resources of the Printer Server, and all

other modules of the Printer Server should only request font data and font

information from the FnCache, Its responsibilities include:,

1. Establishing and discarding connections with remote font servers

2. Returning font data and font metric information on request of other

—module …

3. Maintaining the state of its internal font cache

4. Controlling the amount of memory used by cache

5. Facilitating font sharing among clients

5.1.4. PrnFont (PrnFont)

The main design purpose of the PrnFont class is to maintain a per-font cache -

pool to cache up font bitmap of one font. Its basic operations includes:

1. Maintaining information of the cached font

—2. Returning font bitmap and font information to users

3. Requesting font bitmap and font information from remote font servers

4. Updating the state of its per-font cache pool

The set of all PrnFonts constitute the font cache of the Printer Server. These

PrnFonts are maintained by the FnCache. Note that the PrnFont class determines

wfien to update its per-font cache pool but not how to update. The details of the

replacement policy reside in the CacheStruct class described below.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

The division of the large cache pool into several small PrnFonts simplifies the

management of the font cache. The FnCache only determines the total amount of

memory used by each PrnFont, and the details of each PrnFont is transparent to it.

Moreover, the use of memory is also more flexible than allocating a large pool as

additional memory is required only when a new PrnFont is opened. The replacement

of cached bitmap would not consume additional memory as everything are done

within the amount of memory allocated to each PrnFont.

5.1.5. Per-Font Cache (CacheStruct)

The Per-Font Cache is responsible for enforcing the replacement scheme of

the Font Cache, Its responsibilities include:

1. Returning font bitmap data that are requested by the PrnFont

2. Maintaining the font bitmap into a font cache

3. Updating the contents of the cache by using the pre-defined replacement

algorithm
- - - ^ ~"~ - . " ' ' - —• • " -

By isolating the replacement policy from the PrnFont, several different

caching algorithms can easily be implemented. As long as the CacheStruct class

interfaces are unchanged, any modification to the CacheStruct class is transparent to

the PrnFont class. Different caching polices can easily be incorporated into the font

cache by subclassing from the CacheStruct class.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

5.1.6. Font Server (FnServer)

This is a C++ wrapper over the C source library provided by X Consortium,

whose only task is to provide interface functions for accessing remote font server.

5.1.7. Client Manager (LRUList)

The client manager is responsible for keeping track of the clients which are .

currently using the Printer Server. Its operations include:

1 Maintaining the set of connected clients

2. Adding a new client

3. Removing a disconnected client

4 Returning identification code of each client to users

5.1.8. Client Record (ClientRec)

The ClientRec class contains status and information of the client. These

include the printer the client used, the client number and the identity of the

communication channel etc. In fact, not much is done directly by the ClientRec

-class. Its sole responsibility is—to maintain information peculiar to the client..

5.1.9. Printer Driver (PrnDriver)

The PrnDriver class takes over all device dependent operations concerning a

print request. Its main-task is to provide routines for translating device independent

print requests into printer commands that can be understood by a specific printer.

For each new printer type attached to the Printer Server, a subclass of the PrnDriver

m u s t be provided. Operations of PrnDriver includes:

Chinese Outline Fonts Support in X Window System . 75

Design and Implementation of a Printer Server

1. Keeping track of the printer state such as available memory, paper size etc

2. Providing routines for generation of printer output

5.1.10. Down Loaded Font Table (DownLoadedFont)

The DownLoadedFont class records the information of the downloaded fonts

of a printer. It is used by the PrnDriver class to maintain its downloaded fonts. The

responsibilities of this class includes: ‘

1. Maintaining a set of downloaded fonts for a specified printer

2. Keeping track of the memory used by each downloaded font

3. Maintaining information of each downloaded font to facilitate double-byte

fonts downloading _

5.1.11. Request Header (reqHeader)

The reqHeader class is one of the important modules of the Printer Server. It

defines the formats of messages exchanged between the Printer Server and its clients.

Its basic operations include:

1. Writing request to server

2. Reading requests from client

3. Cooperating with other classes to process the request

—As has been described in Chapter 4 currently the Printing Services Protocol

defines 12 different requests. Each request required different number and types of

parameters. The values returned from different requests are also different. From an

object-oriented point of view, only the object itself knows what information to write
‘ • • •

Chinese Outline Fonts Support in X Window System 7 2

. Design and Implementation of a Printer Server

to the Printer Server and what to expect from the clients. Moreover, each request

may employ a processing mechanism which varies from requests to requests. It

follows naturally that the reading, writing and processing routines a of request are

contained in the request itself. The reqHeader class is thus subclassed in order to

support the different requests, as shown in Figure 5-1.

Connect—Req

Disconnect Req

ListFo nt—Req

LoadFont—Req

SetFont—Req

CloseFont Req
reqHeader

DrawS tring_Req

GetTextExtent Req

EjectPage_Req

— SetPrinterS tate:Req — — - —

GetPrinterState Req

PrinterEscape—Req

Figure 5-1 Inheritance in the request class

The reqHeader class is used by both the Printer Server and the Printer Server

Library. The Printer Server uses it to read requests from the client while the Printer

Server Library (i.e. the print client) uses it to write requests to the Printer Server.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

5.1.12. Generic Reply(replyGeneric)

Similar to reqHeader, replyGeneric class defines the replies which are sent

back to the print clients. Its basic operations include:

1. Writing reply to client

2. Reading reply from server

3. Processing of reply

The replyGeneric class is also subclassed to support the different kinds of

replies sent back to client. However, since most of the replies simply return an error

code to indicate whether the request is processed successfully or not, only a few

replies are different from the base class. For those replies which need special

handling, a subclass of the replyGeneric is defined. The class hierarchy of the

replyGeneric class is shown in Figure 5-2.

ListFont—Reply

replyGeneric — — GetPrinterState_Reply

GetTextExtent_Reply

Figure 5-2 Class hierarchy in replyGeneric class

5.2. Objects Organization

After the identification of objects, the next step involved is to organize them

properly. As can be seen in the objects identification phase, several concepts are

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

more important than others. These concepts usually involve more than one classes of

objects or related to critical operations. These concepts are listed below:

• Server Control

• Client Management

• Request Handling

• Font Management

The objects identified in previous phase are organized around these concepts

and subsystems are constructed for each concept. The relationships among these

subsystems are shown in Figure 5-3. Note that Figure 5-3 shows only an overview of

the system; the detail messages transfer will be described in the following sections.

r ^ (
Server Control 4 ^ Client Management

Subsystem Subsystem

— . . ^

^ — - - (… —
Request Handling Font Management

Subsystem ^ ^ Subsystem

t J

Figure 5-3 Architecture of the Printer Server

5.2.1 • Server Control Subsystem

The server control subsystem consists of the dispatcher class and the

communication channel class. The dispatcher class responds mainly to three
Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

messages, namely DISJNIT, LOOP and RESET while the ComChannel responds to,

in this case, the ACCEPT and COM—INIT messages. The message diagram of the

server control system is shown in Figure 5-4. Note that in Figure 5-4 all message

names are in capital letters. This typographic convention will be used throughout the

chapter.

DISJNIT LOOP

- — —
/ """"RESET \

I + + + ACCEPT
•

dispatcher ComChannnel ^
COMJNIT

Server Control Subsystem^/

Figure 5-4 Message Diagram of the Server Control Subsystem

In response to the DISJNIT message, the dispatcher performs printer-server ...: :

initialization. Printer Server initialization includes instantiation of its internal

objects, sending the name list of active font servers to the Font Management

Subsystem for font server connection establishment^will be discussed later) and

setting up its own communication channel for client connection by sending a

COM__INIT message to the ComChannel class.

The dispatcher enters its main processing loop on receiving a LOOP message.

In this processing loop, the dispatcher listens indefinitely on the set of interested

channels. The set of interested channels include both the channels used by print

Chinese Outline Fonts Support in X Window System . 75

Design and Implementation of a Printer Server

clients to send requests and the channel dedicated to connection establishment. If

any one of the channels is ready for processing, the dispatcher will ask the Client

Management Subsystem to identify the requesting client and invoke the Request

Handling Subsystem to process the request.

The dispatcher should also enforce policy to make sure that a single client

cannot dominate the printer server. When several requests are waiting to be handled,

the dispatcher should take control back from one client to ensure fair service among

clients. Priority can be assigned to a client when needed. In this design, all clients

bear the same priority.

After the dispatcher has been idle for a long period and no print client is

currently connected to the Printer Server, the dispatcher will refresh the Printer

Server by sending itself a RESET message. The RESET message instructs the

dispatcher to clear all interested channels except the one for print client connection.

The dispatcher will also send a message to the Font Management Subsystem to

inform it to clear its font database and reconnect the font servers.

The dispatcher also cooperates with the Client Management Subsystem to

maintain the state of each client. When a new client application sends a connect

request to the server, the dispatcher invokes the Client Management to initiate a new

client record for that.client -application. When a.client application disconnects, the

dispatcher sends a message to the Client Management Subsystem to inform it to

discard the client record of this client application and to free all resources allocated to

this client application.

Chinese Outline Fonts Support in X Window System 77

. Design and Implementation of a Printer Server

On receiving a COM_INIT, the ComChannel object performs the necessary

steps required to establish a network channel from which all print clients can connect

the Printer Server. This channel number is the Printer Server's listen port. In current

design, this port is fixed.

The ACCEPT request informs the ComChannel that the listen port is ready

for processing. The ComChannel then processes the listen port, prepares a channel

for the print client and returns the number or identification of the channel to the

dispatcher. This identification will be passed back to the dispatcher and will be used

when a new client record for this client is created.

5.2.2 Client Management Subsystem

The Client Management Subsystem involves the following classes, namely

the Client Manager(LRUList), the ClientRec, the ComChannel, the PrnDriver and the

DownLoadedFont. The organization of the Client Management Subsystem is shown

in Figure 5-5. - " -…- -

The LRUList class is responsible for keeping track of the state of all client

applications connected to the Printer Server. It maintains information of each client

application into a list of ClientRec objects, with one object for each client

application. Every time a new print client connects the Printer Server, the dispatcher

s e n ds an ADD REC request to the LRUList which in turn creates a new ClientRec

object for that print client. This newly created ClientRec object is also added to the

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

LRUList. Similarly, when a print client discards, the dispatcher sends a DEL—REC

request to the LRUList to remove the ClientRec object from the list and destroy that

object.

DEL_REC ADD_REC

~ CLI DEL J : ~k - ‘
/ LRUList ^ ClientRec A

CLI_INIT

PRNJNIT COM INIT

DRAW STR I READ
^ i h

PrnDriver ComChannel • <

SETSTATE | • “1 WRITE
FIND—CODE ADD CODE

X Z —,
\ DownLoadedFont I /

I V I L 1 / I

Client Management Subsystem

Figure 5-5 Message Diagram of the Client Management Subsystem

The ComChannel class is also included in this subsystem, or more precisely,

instances of ComChannel class are included in the Client Management Subsystem.

As has been mentioned already, each print client has a dedicated channel for sending

requests to the Printer Server. The Printer Server does need to identify which

channel is used by which print client. It would be more convenient if an instance of

ComChannel is contained in each ClientRec object. This also ensures that each

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

client can only read the communication channel dedicated to it and will not disturb

other clients.

The ComChannel responds to three messages, namely COM INIT READ

and WRITE. The ComChannel actually does nothing when it receives the

COM_INIT message, except to create a new instance of itself. The COM_INIT

message is given in the Figure 5-5 just to show that it is the ClientRec which initiates

the instantiation of ComChannel.

The ComChannel responds to the READ and WRITE by reading from and

writing to the dedicated channel. As already mentioned, the ComChannel provides

low-level services only, it does not define any message boundaries for the

information it reads and writes. In current design, BSD socket is being used[37]. If a

new communication mechanism is employed, only this class needed to be changed

while the user of this class is not affected.

One may note that the behavior of the ComChannel class in this subsystem is

a little different from what is described in Section 5.2.1. In fact, the ComChannel

class defined here does not respond to the ACCEPT message and it does nothing on

receiving the COM—INIT message. To cope with this discrepancy in behavior, the

ComChannel class described in Section 5.2.1 is redefined to be a subclass of the

-ComChannel class. This new subclass will be called MainChannel class from here

on, to differentiate from its superclass ComChannel.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

The MainChannel class inherits all methods from ComChannel class.

However, it has its own response to the COM_INIT message. It also has an

additional method for the ACCEPT message. The class hierarchy is shown in Figure

5-6.

ComChannel

— MainChannel .

Figure 5-6 Class hierarchy of the ComChannel

In order to shield application programs from tackling device-specified

printing issues, the concept of device driver is employed. With the isolation of

application programs from device-dependent operations, application programs can -

run smoothly across systems with different hardware configurations. The design

objective of the printer driver is to achieve such isolation.

The printer driver class PrnDriver provides a set of operations for client

applications. Whenever a client application issues a printer-related request, the

printer driver is invoked. According to the request type, the PrnDriver class performs

the corresponding operations for the client. As the PrnDriver class always work on

behalf of a specific client, an instance of PrnDriver class is contained in the

Client—Rec object. Each time a print client wants to do some printer operations,

messages are sent to that instance of PrnDriver class.

Chinese Outline Fonts Support in X Window System . 75

Design and Implementation of a Printer Server

The PrnDriver class responds to several messages namely the DRAW_STR,

GETSTATE, SETSTATE, ESCAPE, EJECTPAGE. Not all the messages are shown

in Figure 5-5 in order to save space and to keep the diagram less complex. The

responses of the PrnDriver to these are usually very simple, they are listed in Table 5-

1.

MESSAGE ~ RESPONSE ~ “ _

DRAW—STR Draw a string to the page using the specified font

GETSTATE Return the current state such as paper orientation,

number of copy etc..

SETSTATE Set the state of the Printer according to the value

specified

ESCAPE Perform printer escape, which may be starting a new

document, or closing the current document and resetting

the printer

EJECTPAGE Eject the current page - : :

Table 5-1 Messages responded by the PrnDriver class

The DRAW_STR message deserves more discussion. For double-byte fonts,

character bitmap cannot be downloaded directly to the printer, and some mapping

must be made to transform a double-byte font into several single-byte fonts. The

DownLoadedFont class is designed mainly for this purpose. For single byte fonts, the

DownLoadedFont class does nothing special but records the state of the downloaded

font such as which character has been downloaded and the font identity number of

Chinese Outline Fonts Support in X Window System 8 2

. Design and Implementation of a Printer Server

this font in the printer etc.. The DownLoadedFont responds to two messages, namely

FIND—CODE and ADD—CODE. The FIND_CODE informs the class to check

whether the specified code is stored, and return a truth value. The ADD—CODE

message tells the class to update its record to include the code specified in the

ADD CODE message.

A printer driver is needed for each printer attached to the printer server. As

applications using the printer server should not be machine-dependent, most machine

specified operation are picked up by the printer driver. Every printer driver should at

least provide the minimal set of operations for client applications. These operations

include producing output in the format of the printer, returning printer state to the

client applications and setting the printer state in according to client's request etc..

Appendix A lists the complete set of program interface that must be supported by a .

printer driver in this experimental printer server.

- Instead of sending its output directly to the printer, the printer driver generates

an output file and sends the file to the UNIX spooler for queuing. As each client

should only generate output to its own output file, an instance of printer driver is

contained in each client record. That instance of printer driver should generate

output to the client's output file only.

When a new printer is to be added to the printer server, a new printer driver

must be provided. All printer drivers must conform to the program interface as

defined in Appendix A.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

The ClientRec class contains all information of the related print client,

including the ComChannel and the PrnDriver objects. The ClientRec object itself

does not respond to many messages, only the CLI_INIT and the CLI_DEL messages.

Figure 5-5 shows the message passing among different objects in the Client

Management Subsystem, a more dynamic, run-time snap shot is shown in Figure 5 - 7 . , -

LRUList

ClientRec ClientRec ClientRec

ComChannel ComChannel ComChannel

PrnDriver PrnDriver PrnDriver

Figure 5-7 Structure of Client Management Subsystem

5.2.3. Request Handling Subsystem

This subsystem includes the reqHeader class, the replyGeneric class and all

their subclasses. At the center of the subsystem is the reqHeader class. It responds to

four messages, namely READ_REQ, PROCESS_REQ, CREATE_REQ and the

WRITE REQ message. The WRITE_REQ request is only used in the Printer Server

Library, the Printer Server itself never generates any WRITE REQ.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

Every time the dispatcher discovers that a channel is ready for reading, it

invokes the reqHeader object by sending it a CREATE REQ message together with

the ClientRec object which posses this channel. On receiving the CREATE—REQ

message, the reqHeader object reads the first several bytes, called the request header

of the request, from the channel using the ComChannel object contained in the

ClientRec. After reading the request header, the reqHeader object determines the

actual type of the request from the information stored in the request header. A new

instance of subclass of reqHeader will be created according to the type of the request.

For example, if it is a SetFont request, an instance of SetFont_Req will be

instantiated. A PROCESS—REQ message will be passed to this newly created object,

together with the ClientRec and the request is processed by the object on behalf of

the client indicated in the ClientRec object. The request handler uses the PrnDriver

object contained in the ClientRec object to generate output.

When the request handler finishes processing the request, it instantiates an

instance of_replyGenenc or its subclass, depending on the type of the request, and

sends it a SEND_REPLY message together with the ClientRec instance. The

replyGeneric or its subclass then writes back a reply for the requesting client, using

the channel provided in the ClientRec. The flow of messages is shown in Figure 5-8.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

CREATEJREQ “ ~ ~

reqHeader , S u b c l a s s o f ")
reqHeader I i

J PROCESS—REQ •

SEND_REPLY

3C
corresponding

\ : —. - - reply /

V 1 y
Figure 5-8 Message diagram of the Request Handling Subsystem

In the current design, client and server are synchronousP9] i.e. the client

application should wait for the server reply before it can send another request. This

synchronization is enacted by the Printer Server Library, and client applications may

not even notice it.

5.2.4. Font Managing Subsystem

The Font Managing Subsystem is a relatively independent module in the

system. It is not as integrated as the other modules. Basically, the Font Managing

Subsystem controls the font access of the whole system, and all other modules should

request through the Font Management Subsystem only‘

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

The Font Management Subsystem includes the FnCache, the PrnFont, the

FnServer and the CacheStruct classes. The FnCache is the interface for other

modules to access font data. It shields all font related details from the other modules.

The FnCache class responds to quite a lot of messages, namely FNC_INIT,

FNC—OPEN—FONT, FNC_CLOSE_FONT, FNC—LIST_FONT

FNC_GET—BITMAP FNCLGETJEXTENT and FNC—GET INFO. The responses

of the FnCache to these messages are summarized in Table 5-2.

MESSAGE RESPONSE ~ ~ ‘

FNC—INIT Establishes connections with remote font servers

FNC—OPEN—FONT Opens a font and returns the font id

FNC—CLOSE FONT Closes a specified font -

FNCJLIST—FONT Lists the available fonts

FNC—GET BITMAP Returns bitmaps of the specified characters

FNC_GET_EXTENT Returns metric of the specified characters

FNC GET INFO Returns information of the specified font

Table 5-2 Messages responded by the FnCache class

As has been mentioned in Section 4.4 the Printer Server cannot generate any

f o n 7 data. Whenever the Font Managing Subsystem receives a font request, k send a

font request to the font servers. The font server will generate the required bitmap for

the Printer Server. The Printer Server should be able to connect at least one font

Chinese Outline Fonts Support in X Window System . 75

Design and Implementation of a Printer Server

server in order to guarantee the availability of font data. This connection must be

established when the Printer Server starts.

At the time the Printer Server starts up, the Server Control Subsystem sends a

FNC_INIT message to the FnCache object together with a list of known font servers.

On receiving the FNC_INIT message, the FnCache tries to establish connections with

these remote font servers. If none of the font servers can be connected, the FnCache

will return an error message to the Server Control Subsystem which will in turn

terminate the Printer Server with a proper error message to the user.

For each connected font server, the FnCache creates an instance of FnServer

for it. The FnCache manages the set of connected font server into a list of FnServer

instances. The FnServer class is where the FnCache, i.e., the Printer Server obtains

font data. The messages listened to by the FnServer are similar to those of FnCache

class, as shown in Table 5-3.

Whenever a FNC_OPEN—FONT message is received by the FnCache, it first

checks whether the font is already opened or not. If it is a new font, the FnCache

sends the FS_CHECK_NAME message to the list of FnServer in turn until any one

of them acknowledges that it has the requested font or the end of list is reached. If

the FnCache class receives a positive response from any of the FnServer objects, it

finds a new entry in the font cache table, creates a new PrnFont object and attaches

this instance of the PrnFont object to the table. The index of this PrnFont instance in

the table is returned to the print client, which uses this number for subsequent

requests of this requested font.

Chinese Outline Fonts Support in X Window System 8 8

Design and Implementation of a Printer Server

MESSAGE RESPONSE

FS_CONNECT Connects remote font server

FSJDIS CONNECT Disconnects from remote font servers

FS—OPEN FONT Requests remote font server to open font

FS—CLOSE FONT Requests remote font server to close font

FS_QUERY_BITMAP Queries remote font server for bitmap

FS_QUERY_EXTENT Queries remote font server for font metric

FS_LIST_FONT Requests remote font server to list fonts

FS_CHECK FONT Checks whether a font is available from the font

server

FS—QUERY INFO Queries remote font server for information of a font

Table 5-3 Messages responded by FnServer class

The PrnFont class contains attributes of each font. It also contains an

instance of CacheStruct class which performs the actual data searching and bitmap

replacement operations. The PrnFont should contain the following font attributes:

• Font full name - full name of the font as described by XLFD[9]

• Typeface name

• Font size in tenth of a point

• Font bitmap size in pixel

• Font Pitch - whether the font is mono-spaced or proportional-spaced

Chinese Outline Fonts Support in X Window System 8 9

. Design and Implementation of a Printer Server

• Posture - whether it is upright or italic

• Stroke Weight of Font - can be normal, medium or bold

• Character Set - contains the character encoding of the font

When a new instance of PrnFont is created, these entries are filled by the

FnCache. Since the font name supplied by the client application may not contain all

the above information, the FnCache should calculate the unknown values from the

available information in the font name. These font attributes are used by the

mapping function(which will be described later) in determining whether two fonts

are the same or not.

Besides being used in font matching, these font attributes are also important

for the Printer Driver. When the Printer Driver downloads a new soft font to the —

printer, it also describes the font being downloaded to the printer. These attributes

are used to describe the downloaded font. This description is important to the printer

as some printers allow applications to-select a font by simply specifying one or more

attributes of that font. The printer thus needs these attributes to enforce the selection.

The PrnFont also contains a reference count. Whenever an existing PrnFont

is chosen by the mapping function, the reference count is increased by one. When

this font is closed by a client, the reference count is decreased by one. If the

reference count drops to zero, that instance of PrnFont is deleted. The messages -

listened to by the PrnFont class are summarized in Table 5-4.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

MESSAGE R E S P O N S E ~

PRN_INIT Instantiates a CacheStruct instance

PRN GET—BITMAP Returns characters bitmap ‘

PRN-GET—EXTENT Returns metric i n fo rma t ion~

Table 5-4 Messages listened to by PrnFont class

Whenever the FnCache is requested to open a font, the mapping function is

invoked. The mapping function is responsible for determining whether the requested

font is already opened or not. If the font that matches the mapping criteria is found in

the available instances of PrnFont, the index of this PrnFont is returned. Otherwise,

FnCache creates a new PrnFont for the requested font.

The mapping function uses the following two criteria to match an incoming _

font:

1. If the Font Full Name of the incoming font is exactly the same as that of

— any one instance of the PrnFonts, the mapping function uses this instance. ---

2 If the Typeface name, Font Pitch, Posture, Stroke Weight and Character

Set of the incoming font match with an instance of the PrnFont, the

mapping function compares the bitmap size (in pixel) of two fonts. If they

are equal, the mapping function returns that instance of PrnFont, otherwise

it continues the matching with the unchecked instances.

The set of all CacheStruct instances constitute the font cache of the Printer

Server. To increase flexibility, the CacheStruct is separated as a single object from

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

the PrnFont so that when the caching strategy is changed, only this part of the codes

needs to be changed. The CacheStruct class determines the caching policy used.

When a new instance of PrnFont is instantiated, it may, depending on the nature of

the font being used, select a CacheStruct that best suits the font[10][20].

The FnCache is responsible for limiting the amount of memory used by each

CacheStruct object. When the CacheStruct object is instantiated, the FnCache sends

it the maximum amount of memory it may use (MaxMemory) and the maximum

number of characters (MaxChars) it may hold in the cache to the CacheStruct. The

actual maximum amount of memory that can be used by the CacheStruct is defined in

Equation 5-1.

MaxCacheMemory
=min(MaxMemory MaxChars x GlyphBitmapSize)

Equation 5-1 Cache Memory

-Basical ly, the Least Recently Used (LRU) replacement algorithm is employed

in the cache. The LRU is so generic that it can be applied to any fonts, including

both English and Chinese fonts. However, any other caching strategy can be

implemented and adapted from the CacheStruct so that it can take into consideration

the special characteristic of a language to achieve better performance[20].

The CacheStruct class responds to two messages, namely SEARCH_CODE

and UPDATE CODE. The SEARCH—CODE informs the CacheStruct class to

search the specified character code in the CacheStruct and return the found bitmap.

Chinese Outline Fonts Support in X Window System . 75

. Design and Implementation of a Printer Server

The UPDATE—CODE tells the CacheStruct class to update the content of the cache,

using the predefined algorithm, to include the specified characters bitmap.

Whenever a FNC_GET_BITMAP message is received, the FnCache sends a

PRN GET BITMAP message to the requested font. The instance of PrnFont then

sends a SEARCH_CODE message to the CacheStruct instance contained in it to do

the actual bitmap searching. If the requested bitmap data are found, the bitmap will

be sent back to the clients immediately. If that bitmap is not available, the PrnFont

sends a font request to the font server to obtain font data. By making all font requests

to be handled by the FnCache, font data can be shared among all clients. A partial

message diagram of the Font Management Subsystem is shown in Figure 5-9.

FNC—GET—BITMAP -

/ ^ z z b z ~ x
/ FS—CONNECT \

/ FnCache y FnServer \
I I I~~FS_OPEN ‘

PRN_GET_BITMAP PRN_INIT PRN—GET—EXTENT + +

PrnFont
FS_QUERY_BITMAP

UPDATE CODE SEARCH CODE

Figure 5-9 Message diagram of the Font Management Subsystem

Chinese Outline Fonts Support in X Window System . 75

Sample Printer Driver

6. Sample Printer Driver

A printer driver is responsible for managing all printer output for the Printer

Server. It provides a set of functions that the client application uses to generate

printer output. These printer driver functions translate device-independent printing

commands into device-dependent printer primitives of a specific printer. A printer

driver must be provided for each printer attached to the Printer Server.

In the implementation of the experimental Printer Server, a printer driver for

HP LaserJet III printer is provided. Besides supporting the basic functionality's of

PrnDriver class described in Appendix A, this sample printer driver also implements

a new soft font handling algorithm which could speed up Chinese characters printing.

6.1. Printer Control Languages

Printer Control Language is the type of programming language used and

understood by a specified printer. Different" printers may have their own printer

control languages. For example, PostScript is the printer control language of Apple

LaserWriter printer while HP laser printers use PCL as their control language. As

our sample printer driver is designed for HP laser printers, the following discussion is

restricted to the PCL language.

From a glance at the PCL language quick reference guide[15], one may notice

that PCL is relatively simpler and more primitive as compared with other high level

languages such as C or Pascal. In fact, PCL provides no command for decision

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

making loop or subroutine branching. In stead, PCL supplies a set of commands for

setting and resetting the states of the printer. For example, you may issue a PCL

command to set the primary font used by the printer to font number 3. As long as

you do not reset the primary font used, the printer will always refer to font number 3

for its primary font.

The set of all these states of the printer constitutes the environment or

configuration of the printer. Whenever the printer executes a command, it refers to

the environment for the information it needs. The default environment is set when

the printer first starts or resets. The default values will not change until you

explicitly issue a PCL command to alter them.

Similar to other programming languages, PCL has its own grammar.

Basically, all PCL commands must be started with a Escape Character esc (ASCII

code 27). So PCL commands are also called escape sequences. The esc character is

used to inform the printer that the coming characters are part of a PCL conimand, not

normal text data. Knowing that the characters constitute a command, the printer will

not print it out. Instead, the command will be executed by the printer.

6.1.1. Structure of PCL Command

Generally, the PCL language command consists of five components:

• Escape character esc

• A zero or one character Parameterized character

• A one character Group character

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

• A command argument

• A one-character Terminating character

If the command requires additional data, these data will follow immediately

after the terminating character.

The Parameterized character is used to tell the printer that the following

- command includes a parameter. It informs the printer to parse through the command

before executing the command. Note that not all commands are parameterized. If

the command is not parameterized, the parameterized character is omitted.

Furthermore, more than one character code is used in representing parameterized

character. PCL allocates ASCII code range 33 to 47 (i.e., from " to "/") to be used

as parameterized characters. Which one of character in the range is used depends on

the group to which the command belongs to.

The Group character indicates the type of the command. This character

distinguishes the different types of PCL commands. For example, the group

character "&" indicates page format commands while indicates raster graphics

commands. Group characters lie in the range of ASCII characters 39 to 126 (i.e.

from ” ‘ ” to

The Terminating character can be uppercase or lowercase ASCII letter. It

specifies to which parameter does the command argument apply to. If the character

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

is lowercase, it indicates that the command will be continue. Otherwise, the

command is concluded and will be followed by command data or a new command.

The command argument field contains numerical parameters required by the

command. It can be any decimal integer. Sign indicator "+" and can also be

placed in front of the integer value [2]. _ —…-—" : :

6.1.2. PCL Command Example

For instance, in the command

esc *p 400 X

character "*" is the parameterized character, character "p is the group

character, value 400 is the command argument and character is the terminating

character. This command instructs the printer to move the cursor to 400 pixels right

of current position.

One may notice that the Parameterized character and Group character do

overlap in the range 39 - 47. This implies th—at some characters (those which fall into

the overlapped region) can be used alone to indicate parameterized command group

while others need two characters (one for parameterized character and one for group

character).

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

6.2. Printer Font Resources

Among the various features of a printer, the one of most interest to us is its

fonts handling ability. The HP LaserJet classifies the fonts it uses according to the

font sources. A font source refers to the location in which the font is stored. In HP

LaserJet, fonts can be stored in three different locations, namely permanent internal

ROM, external font cartridges and internal RAM.

The permanent internal ROM contains the resident fonts (or built-in fonts) of

the printer. These fonts are always available whenever the printer is powered on.

They do not consume any internal printer memory. Resident fonts cannot be deleted

by any PCL command.

External font cartridges contain permanent ROM chips which hold bitmap “

data of several fonts. Cartridge fonts are available whenever the appropriate font

cartridge is plugged in. Cartridge fonts cannot be deleted by any PCL command.

Since font cartridges can be plugged in and out of the printer, users can choose the

fonts they really need and place the appropriate cartridge into the printer.^ Similar to

permanent ROM fonts, cartridge fonts do not consume memory.

The internal memory of the printer can store fonts downloaded from the

computer. These fonts are called soft fonts as they are stored in RAM and not

Turned'' into permanent ROM. Soft fonts can be downloaded to the printer when

they are actually needed and can be deleted when no longer required. However, soft

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

fonts would consume printer memory that is used to process the document. The

more soft fonts are used, the more memory is consumed and the less remains.

Theoretically, PCL allows a maximum of 32,767 soft fonts to be downloaded.

However, the number of soft fonts that can be stored in the printer memory is bound

by the memory available.. . … … - … . - —.……

PCL further classifies soft fonts into permanent soft fonts and temporary soft

fonts. Permanent soft fonts are stored in the printer memory until the printer is

turned off or the font is explicitly deleted by PCL commands. They will not be

affected by printer resets. Temporary soft fonts, on the other hand, will be deleted

when the printer resets. They will also be overwritten by other soft fonts and

graphics when memory is scarce. So, if an overwritten soft fonts is used again, it

must be re-downloaded to the printer. Permanent soft fonts are usually used when

the fonts are used very intensively and if the font sizes are not very large. Otherwise,

temporary soft f^nts a(e used. …… … ^ ,̂̂ ";"5"

6.3. Traditional Font Handling Methods in a Printer Driver

Basically, there are two main methods to draw a string to a page. In the first

place, we may send the character bitmaps to the printer directly and instructs the

printer to visualize the character glyphs as graphics images. This method is

conceptually simpler and requires no additional effort. Furthermore, the bitmap data

sent to the printer do not consume much memory since it is stored only temporarily.

The disadvantage of this method is that for each time a character is to be drawn, the

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

bitmap data must be send again. The printer cannot retrieve the bitmap data of that

character since it is not stored in the printer memory.

The second method makes use of the soft font handling capabilities described

in Section 6.2. To draw a character, the printer driver creates a new soft font (in the

format required by the printer) and downloads the font to the printer. Each time a

character of that soft font is printed, the printer retrieves the bitmap data from the

. printer memory and draws the character glyph image on paper. This method requires

additional effort to create the soft font and extra printer memory to store the bitmap

data and information (such as font identity number and font name) of the downloaded

font. However, this method is more effective when the repetition rates of the

characters in the soft font are high.

Although the second method seems to be superior to the first one, its

application is subjected to limitations. Firstly, some printer control languages (such

—as PCL) restrict the number of characters in a downloaded soft font Jo 255. 5 For —

double-byte fonts (such as Chinese fonts), this maximum is far too small. Secondly,

this method assumes the target printer to have significant printer memory (usually

several hundred kilobytes) to hold downloaded font data, this requirement may not be

met by most dot-matrix and ink-ject printers. Thirdly, since not all types of printer

are equipped with soft font handling capabilities, drawing characters as graphics may

- — b e a better choice for printers that cannot support soft font downloading.

5 PCL allows a maximum of 245 characters in a soft font. All characters are printable except ASCII

values 0, 7-15 and 27. ; ~ —

Chinese Outline Fonts Support in X Window System 1 0 0

Sample Printer Driver

In the PCL printer driver of MS Windows 3.1 [27] one-byte fonts are handled

using the second method while double-byte (such as Chinese) fonts are drawn as

graphics images. It is natural to have double-byte fonts to be printed as graphics as

PCL cannot support soft font with more than 245 characters. However, as has been

mentioned already, printing double-byte fonts as graphics image required bitmaps to

be downloaded every time they are needed. This slows down the whole printing

process if the repetition rate of the characters is high. Unfortunately, Chinese

characters do have an uneven usage frequency[48]. "Some "characters have very high

usage frequencies while others are very low. Printing Chinese characters as graphics

does not take advantage of this high repetition rate.

6.4. Soft Font Creation in PCL Printer

In this section, the steps involved in the creation of a soft font in PCL printer

is presented. PCL can handle two types of soft fonts, namely bitmap font and

scalable font (see Section 1.2). However, since the font server is bitmap-oriented,

only bitmap data is passed to the Printer Server and printer drivers. Hence the

—_ - sample .printer-driver-always downloads soft fonts as bitmap fonts. In the following

discussion, the term soft font always refers to bitmap font.

Creating a bitmap soft font in PCL printer involves the following steps:

1. Assign font ID number to the new soft font

2. Create and downloads a Font Descriptor

3. Assign character code to the character being downloaded

4. Create a Character Descriptor

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

5. Download the character bitmap together with a character descriptor

Note that steps three to five must be repeated for each character being

downloaded.

6.4.1. Font ID number

Every soft font of a printer should have a unique font ID number. This

number is used to select the soft font v/hen it is needed, -This number is assigned and

kept track of by the printer driver. If a font ID number is used again, the old soft font

assigned with this font ID number will be deleted automatically by the printer.

6.4.2. Font Descriptor

The font ID number is followed by a collection of parameters depicting the -

font being downloaded This collection is called the Font Descriptor. Entries in the

Font Descriptor are used to tell the printer what kind of font is being downloaded.

—They are" also used when an application selects a font by its attributes rather than its

font ID number. In this circumstance, the printer matches the specified attributes

against the available fonts and uses the closely matched one.

PCL defines a 64-byte font descriptor for bitmap soft fonts. The printer

driver should specify all entries of the font descriptor to the printer, with the reserved

"entries set to 0. The format and entries of the font descriptor are shown in Table 6-1.

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

Byte Most Significant Byte Least Significant Byte

(Most Significant Bit First) (Most Significant Bit First)

0 Descriptor Size

2 Reserved Font Type \
4 Reserved

6 Baseline Distance
8 ‘ Cell Width
10 “ Cell Height
12 Orientation Spacing
14 ~ Symbol Set
16 — Pitch .
18 "Height

- 2 0 XHeight - -. . — ——— -
- - — 2 2 Width Type Style -

24 Stroke Weight Typeface
26 Reserved Serif Style
28 Reserved
30 Underline Distance Underline Height
32 Text Height
34 Text Width
36 Reserved
38 Reserved
40 Pitch Extended Height Extended
42 Reserved -
44 Reserved
46 Reserved

48-63 Font Name

Table 6-1 Bitmap Font Descriptor _ —

Note that all two-byte entries of the font descriptor are stored according to

Most Significant Byte First convention. If the printer driver runs on a machine with

different byte ordering, swapping should be done before the font descriptor is

downloaded. Figure 6-1 depicts the meanings of some entries.

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

J T _ • • • •

Baseline = = - - - - _ : _
Distance = ~ / T

S h t : _ , X H d S h t

~

= = ; ^ = = = S== = = = = = = = = = = = = ““ ^ ^ = = ^ 1 —Underline
Z ^ = = = : = = : = = = _ _ _ _ _ — I I I I I I I B E - - - , Distance

z i M i i i i J B H E i i i i i i i i r = = = = : = \L
\ Baseline = ==== =

llllll llllltl lilllllllll^
Cell Width ^ ^

Figure 6-1 Font Descriptor Entries

6.4.3. Character Code

A character code must be specified for each character being downloaded to

the printer. This character code must be unique within the selected font. If the same

cfiaracter code is assigned twice within a font, the old character bitmap will be

overwritten by the new one.

According to the value in the Font Type field in the Font Descriptor, a

maximum of 245 different codes can be assigned to a downloaded character.

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

Whenever a character is to be printed, the respective character code is sent to

the printer. The printer used the font ID number and the character code to identify

which character bitmap to print.

6.4.4. Character Descriptor

The next step is to described the character being downloaded to the printer. It

- i s siniilar to the description of the font except that this time parameters of individual

character are sent.

PCL defines a 16 bytes Normal Character Descriptor and a 2 bytes

Continuation Character Descriptor for character description. The normal

character descriptor is used with the first block of data of the character while the

continuation character descriptor is used with the subsequent blocks. The format and

fields of a normal character descriptor is shown in Table 6-2. The meanings of some

fields are depicted in Figure 6-2.

Byte MSB - - LSB - … - -
0 Format Continuation
2 Descriptor Size Class
4 Orientation Reserved
6 Left Offset
8 Top Offset
10 Character Width
12 Character Height .
14 Delta X __

Table 6-2 Normal Character Descriptor

Chinese Outline F o n t s Support in X Window System : 1 0 5

Sample Printer Driver

^ h f a c t e r Byte Padding
Reference ^ ^ _ _ - b

Point

Top = = : : • - " • I - - - - - - - -B-- - - - - Position After
Character Offset ==::::= ===== : /Printing Character
Height -ms - = • = = == = J p i :

A / - … i i z j IZ = •—— . - -
^ ―

\ l " l l l i z i z: \ Baseline

Left ^ < ^
Offset Character

Width

^ Delta X ^

Figure 6-2 Character Descriptor Entries

The Descriptor Size field should be set to 14 for a normal character

descriptor. The Continuation field is worth a more detailed explanation. Since PCL

limits the size of data transfer in one block to 32767 bytes6 large characters should

be sent in more than one block. The continuation descriptor is used to indicate that

the coming data is a continuation of the previous block, not a new block. The format

of the continuation descriptor is shown in Table 6-3. Note that for a normal character

descriptor, the continuation field is set to 0 while that in the continuation character

descriptor is set to 1.

6 In reference number 2 P. 202, it states that the maximum size of a block is limited 32767 bits, it

should be 32767 bytes instead of 32767 bits. -

Chinese Outline Fonts Support in X Window System 1 0 6

Sample Printer Driver

Byte MSB LSB
0 Format Continuation (1)

Table 6-3 Continuation Character Descriptor

6.4.5. Character Bitmap Data

The last step is to sent the character descriptor and the bitmap data to the —

printer. Before sending the bitmap, the printer driver should inform the printer how

many bytes of data are being sent. This size -should include the size of the character

descriptor. For example, if a bitmap of 64 bytes is being downloaded together with a

normal character descriptor, the printer driver should tell the printer that 80 (64+16)

bytes are being sent.

The bitmap is sent row by row with the top most row first. The Most

Significant Bit of each byte corresponds to the left most pixel of the character. Each

row is padded to the nearest byte.

After sending the bitmap data, the process of downloading a character is

completed. Each time this character is to be drawn, only the font ID number and

character code are needed to inform the printer what bitmap is to be visualized. No

bitmap data needs to be sent again.

6.5. New font downloading schemes for double-byte fonts

In this section, two new font downloading schemes for double-byte fonts will

be presented. Basically, these new schemes also make use of the soft font creation

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

method. However unlike PostScript Level 2 printer, PCL printer cannot handle a

soft font with size greater than 245[26]. A Chinese font must be subdivided into

several fonts before bitmap data are downloaded to the printer.

6.5.1. Terminology

The following terms are used through out the discussion.

• driver font id: the font identity number assigned by the printer driver and... = :

used by the application to tell the printer driver which font to used

• printer font id: the actual font identity number assigned to a font when it

is being downloaded to the printer. This id is used to tell the printer what

font to use. If a font contains more than 245 characters, then it must be

divided into several fonts before it can be downloaded to the printer. For

each driver font id, there may be more than one printer font id associates

with it. It is the printer driver's responsibility to map driver font id to the

appropriate printer font id.

• character internal code: this is the internal code of the character. This

code can be ASCII for English and BIG5 for Chinese, depending on the

encoding tables used

• character print code: this is the printer representation code of the

character. This code is assigned by the printer driver. The application

supplies the printer driver with driver font id and character internal code,

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

which returns a printer font id and the character print code which can be

used for actual printing.

Figure 6-3 depicts the mapping defined by the printer driver.

—— driver font id . • _ • printer font id
Printer Driver

character internal code ~ • • character print code

Figure 6-3 Coding Action of the Printer Driver

6.5.2. Underlying Concepts of Algorithm One

Several basic concepts are involved in this font downloading scheme:

• A character bitmap is downloaded only if it is really needed and currently

the printer does not have it.

. — - D o u b l e - b y t e font should be divided into several fonts when it is

downloaded to the printer.

• For each bitmap data being downloaded, a DownLoadFont table is

searched to obtain the printer font id and character print code to be used in

the printer.

The DownLoadFont table is maintained by the printer driver. It keep track

of which character bitmaps have been downloaded to the printer and their respective

(Chinese Outline Fonts Support in X Window System 160

Sample Printer Driver

font id and character code. The font id is used to select the font when it is needed

while the character code tells the printer which character bitmap is to be drawn.

The DownLoadFont table is implemented using a iinked list. Each node of

the list records the status of each downloaded font of the printer, with one node per

printer font. Entries like driver font id and printer font id are contained in each node

which are used to facilitate mapping between two ids. Besides the driver font id, an

entry" called minor font—id is also stored. It indicates the sequence number of the

sub-font of the font with font number driver font id. For example, the first sub-font

of the driver font id 1 is 0 the second sub-font of the driver font id 1 is 1 and so on.

The driver font id and the minor font id together determine the printer font id.

An Encoding Array is a also included in each node. This encoding array is

used for mapping character internal code to character print code. For each character

internal code used, the character internal code is contained in the array. The

corresponding character print code is indeed the index of the character internal code

in the array. The structure of the DownLoadFont table is shown in Figure 6-4.

driver font 1 driver font 1 driver font 1

minor fonUd 2 minor_font_id 1 minor_font_id 0 g Encoding ^ ~ Encoding ~ Encoding

Array _ Array Array

Figure 6-4 Structure of DownLoadFont Table

Chinese Outline Fonts Support in X Window System 1 1 0

Sample Printer Driver

6.5.3. Algorithm One

Whenever a character is to be drawn, the DownLoadFont table is searched.

If the respective bitmap has already been downloaded, the printer driver selects the

printer font using the font id returned and then instructs the printer to draw the

character with the character code returned. If on the other hand, the respective

bitmap has—not been downloaded the printer driver checks if the last printer font ;

downloaded has space to accommodate this new character. If it has, the printer

driver selects that font and downloads the character bitmap with the unused character

code. The printer driver then updates the last printer font record to indicate that one

more character is downloaded.

On the other hand, if the last printer font downloaded does not have space to

accommodate this character, the printer driver creates a new entry in the _

DownLoadFont table, creates a new Font Descriptor(see Section 6.4) and sends the

character bitmap to the printer. The algorithm is shown in Algorithm 6-L

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

• f o r each cha rac te r inc<i l r i g ' S t i l ^ { : ‘

y (2
/* cha rac te r bitmap a l ready downloaded */
i f (cu r ren t_ fon t_ id NotEq^alTo

‘ p r i n t e r _ f o n t _ i d)
‘ , s e t cu r ren t^ fon t^ id to ' ‘

W W : ? $.
; “ : '/ : send ‘

' ‘ H ‘ - ‘ t ^ swd^ ‘‘ :' ' ‘

v•‘ ’ r r - ‘ " - ^ o ^ ^ i ' U y ^ ^ - > ' > v

- ‘::^ : / / ^ l ' f i ^ { i n c p d l n g f i n ^ l ^ i f b n t ^ e n t ^ ' ^ ‘ m ^
T : ' ' , ' , ? ' ' new"f<3nt)i{v ‘ , ^ > ’ / :/: , ‘

-i ‘ ‘ : ‘ ‘ ‘ g^t-praateri ' font^lld; ;‘‘‘‘ - ^ …; , : / ; / /V „/"''
‘ ‘ ‘ ‘ mak^ new;; font : ^t i t^ i - , : ,/:'': ' , , , ‘

‘ ‘‘ ? send, fdnji/Zdescript'or with p r in te r_fon t_ id ,
‘ , ‘ s e t t o / ^ i r i i i t e r l f d n t ^ i d ; ‘ ‘

’ /* o ld fpnt ; entry,;;'sti'l2'Vhas' room -for- new"-, ^ ' {
‘ ‘‘ , ‘ c h a r a c t e r , f ‘ I :, '', y,, \ ,

• ‘ ge t character lprxnter_code Jrom Encoding' Table ,
, c r e a t e ^ and' ' .descriptor7',- '

‘ ‘ send cha rac te r . bi-fcitî p , ^ '-„ ' ' ' ' , , ’: ’
, ’ s e n d ' <;haracter^rxnfc^oOe; :

Algorithm 6-1 Soft Font Downloading Algorithm One

6.5.3.1. Code Mapping

One of the crucial parts to the success of the algorithm is the mapping of

driver font id and character internal code to printer font id and character print code.

In the abstract sense, the mapping can be viewed as a mathematical function which

takes the driver font id and character internal code as arguments and yields the printer

font id and character print code.

Let M(drFID IntCode) be the mapping function, where drFID is the driver

font id and IntCode is the character internal code.

(Chinese Outline Fonts Support in X Window System 160

Sample Printer Driver

Since for each pair of arguments (drFID,InCode), a unique result must be

obtained (otherwise two different characters will have the same print code in the

printer), the function M should be injective.

Let prFID be the printer font id and PrnCode be the character print code.

For each pair of argument (drFIDJntCode) -the DownLoadFoiiP table i s ‘

searched. If drFED is found in the table, the node with largest minor jont_id is then

searched for an empty entry in the Encoding array to accommodate the IntGode.-

If this node has an empty array entry, PrnCode is set to the INDEX of this

entry in the array and IntCode is put in this entry.

If drFID is not found or the node with largest minor—font—id is full a new -

node with driver font id equal to drFID is created. Depending on whether this is the

first entry of drFID, minor_font_id of this new node is set to 0 or largest

minor_font_id +1 : IntCode is then put into the first entry of the Encoding array and

PrnCode is set to its index. Since only the node entry with largest minor—font—id

needs to be checked, this newly created node is prepended to the DownLoadFont

table so that the minor_font_id numbers of the fonts with the same driver font id is

arranged in descending order.

Finally, the prFID is calculated using the formula:

prFID drFID * 256 + minor font id

As the maximum value of minor font_id is 255, the prFID can be viewed as

a two digits base 256 numbe.r with its most significant digit equal to the drFID and

Chinese Outline Fonts Support in X Window System ’ 113

Sample Printer Driver

least significant digit equal to minor font—id. It is quite obvious that the above

formula indeed guarantees that two different drFIDs will not be mapped, in any case,

to the same prFID. (Imagine that if two two-digits decimal numbers are equal, then

their respective digits must also be equal.)

6.5.3.2. Example

Consider the following example. The content of the DownLoadFont table is
• _ . j

as shown in Figure 6-5. A new Chinese character .with driver font id 3 and

character internal code A8F4(hex) is being downloaded to the printer. Since the last

.entry with driver font id 3 in this case minor_font_id 2 is not full, A8F4(hex) is

placed in the first unused entry _ (index number 50) in the Encoding array. After

putting character A8F4(hex), the first unused entry is now at index number 51. The

DownLoadFont table after putting A8F4(hex) is shown in Figure 6-6.

driver font 3 — driver font 3 driver font 3

minor_fontJd 2 mlnor_font_id 1 minor font—id 0

g N e x t Free • _ Encoding • _ Encoding
Entry=50 r j Array Array -

r H Full r j i Full

Figure 6-5 Before Adding Character

In this case, the printer font id of the character is 770 (3 x 256 + 2) while its

character print code is 50. From now on, these two numbers are used whenever the

character A8F4(hex) of driver font id 3 is used.

Chinese Outline Fonts Support in X Window System : , 119

- Sample Printer Driver
""11111'"""""" — mi

driver font 3 driver font 3 driver font 3

minor f o n t j d 2 minor font_id 1 minor font_id 0

S Next Free • B Encoding • W ^ Encoding
j I... „ I. .I I o
Entry=51 _ Array PTM Array

J ‘

Figure 6-6 After'Adciing Character ^ T - — —

6.5.3.3. Memory Consideration ——

As the downloaded soft fonts are stored in printer memory, there will be a

chance that at the middle of a print job, the memory available is not sufficient to

accommodate a new font. In this case, some old fonts should be deleted from the

printer memory in order to free space for incoming soft fonts. The printer driver

should be responsible for keeping track of the available memory in the printer and

deleting some fonts when necessary.

The printer driver maintains the DownLoadFont table using a First-In-First-

Out (FIFO) algorithm. Whenever memory is tied, the oldest font is deleted from the

printer first and record of this oldest font is removed from the'DownLoadFont table.

Any later reference to this font entry will fail and bitmap data of characters in this

font entry should be downloaded again if they are needed afterward.

The algorithm shown in Algorithm 6-1 is not capable of handling low

memory condition. A modified algorithm is now shown in Algorithm 6-2. This new

version performs memory checking whenever something is being downloaded to the

Chinese Outline F o n t s Support in X Window System 1 1 5

• . ‘ - :.....• • . . ":... ... , - '.' .•; ' . - •

Sample Printer Driver

printer. It deletes some old fonts when memory available is insufficient for incoming

data.

f • • •
:r •

‘ \ :v i < f: ^ _ / % !' • i rA :< ' " ' •

f o r : ^ M

: ' ' ’ ‘ ‘ (^ “ ^ “

• ” p r i n t e r / ' f b n t ' - ' i d ; ‘":'> ' ^ ‘ ^ I ‘ ‘‘d

‘ ’ ‘ \ , ^ z p x w t B x J t a i p ^ ^ -
•• … ’ ‘ ' , / “ ’ ’ “ ‘ , ,,, , , w , : - ' ‘

‘ send - “ t ' /^^^k -
W ‘ ' ' » : ; ' / ' , : end char cd'de^difecfcly; without ‘ ‘‘/

, bitmap''-a'ga^in''*'? ” ’ , ‘‘‘.‘
’ ’ (, (" ' / : - , ' : - , ‘ ^

‘ ^ ' ''’ '' '' , ’’ ’' ’ “ \ , ‘ i ' "i vy,"' ' ' ' f / , ' ' '>‘‘ ’ " ’, :'‘,: /: ",, ' ’‘ , / " ' / , , ‘ ‘ ‘‘ ‘‘ ''''• “‘ • •"• ‘y, ‘ ‘ ‘‘ '', ‘ ‘ ‘ • ‘‘ / ‘ ‘ 'y, I

^ else' - {-// ^ • 'Q- . ^ - > ‘ > H X

/Xf. {Enco^ng- Array in old—font—entry f u l l
, ‘ ' ; \ , ‘ “ ,ne—'font ‘ ' " ‘ ‘ ’ / : ; , ' , ' ' ':

'Y , ^ f ' l ' y ‘ 'v^get { , ‘ ^ ‘‘
- , “ ‘ “ ':: niaJce t iew ' f o k p l ' e n t r y ^ ' f k l r ‘ ‘ ' " : : '’ :: ,' /"' ','/,; ,

t s - ‘ ‘ “”'"'’//, / / “/ , , ‘ ‘ “ ’ "* / '7' ''' “ ' <' /
, ‘ *• / ’‘ “ ’ / , ‘ ‘ ‘“‘‘ < , ^ •* ," / ‘ ‘ \ /«• ’x*/ } ''' , f / ,
: : / / { \ ‘ . M o ' d C f l e d ' - t o / c h e c k ' memory -
' ’W:i:' y:" i f {low/memory')''{-; (^ ' , - ‘ ' ’ ‘
'… ‘ delet©- oldest foat- ‘ ,':/: •

2: ,': :(" ' / ':?,;:' " " ' , , ‘ .Update, p r i n t e r / availab' te , memoify ,
i ''' , \ > ' '':'c ‘‘ ') / ‘ ‘ ‘ A ‘ ‘'> \/'::'‘,/ ' , ' f j i y 3

fe : , send font descr ip tor with p r in te r_foh t_ id ;
' , ' D ' ' ' ‘ ‘ ‘ p r i n t e r ava i lab le '-memory ’
' ' ’ / V • : ‘ se t ctirrent_font_i'd' ';fe p r i n t e r font—id';''' , y
. . . • J . ..’ • /..' •.:. u . ' . • y , , - - " , <

‘‘ ‘ ‘ ‘ ’ / r y"y ‘ ̂ ‘ ‘ S ’ ‘ ‘‘
’ ‘“ fv 1 '/ * ‘ ' font . entry 'strXX; has -rooin, toxy^^ i

• , ::"'»,'• '' \ character */'' ‘ “ / ‘ ‘ I
_ . , ’’ get char ac t er_j>r in t_c ode from Encoding, Tabl* ‘

‘ ‘ ‘create character c
‘ ' ' ‘‘ ‘ … \ ‘ ‘ - , ^ ‘ C ‘ /' , / ‘

‘‘ ̂ - ‘ , ‘“ ‘ /' \ ‘ ' “ Vrf, ,; ,
, W . :, 'C:V ' ,:v ‘ , del e t e" ol\des t ‘ 'font" … , ‘
/ \'‘ / ‘' ,4/ / ^update- sprinter ava i lab le memory » ''

. ‘ send character descr ip tor ‘ “
,'• “ ’ , send char ac ei^ bitrnaj); ’ , , ’

.. ,• ‘ v send character_priht_code; / ::)/-: , ‘ ‘
‘ ’ ’ update p r i n t e r available- memory record; ‘ ‘ ,

_ _ I ® ^ _ _

I - "' . . / , … ‘ - " … … " ^^ ‘,“'““ "'" '‘ -
\ - ' - ‘ ‘ ' ' ' - - , ‘ ‘ t ‘ / ' “ - ^ - .
J , / t , • • i/v". v. ' a, z5 ><fj \ ' ' • .. A *" vv ̂ , " "/> "••" ‘ " “"” f J ‘ “

Algorithm 6-2 Version 2 of Algorithm One

Chinese Outline Fonts Support in X Window System 1 1 6

Sample Printer Driver

6.5.4. Algorithm Two

In Algorithm One, two levels of searching are required. The DownLoadFont

table should be searched first for drFID. For each DownLoadFont table entries with

the font id equal to drFID, their Encoding Tables must be searched to see if the

IntCode is contained in one of them. The searching for IntCode ends only if the

IntCode is found or when all the Ericodihg Array has been searched. It follows that if

there are five DownLoadFont entries whose font id is equal to drFID, then in the ~

worse case, five Encoding Tables should be searched.

The main objective of Algorithm Two is to reduce the level of searching to

one. As we have seen in Section 6.5.3.1 the code mapping relies on the second level

of searching in order to guarantee its injectivity To eliminate the second level of

searching, the mapping algorithm should be changed ,

The design of Algorithm Two is inspired by the fact that Big5 code is double

- bytes. Algorithm Two tries to separate the Big5 code into two parts. Instead of

defining the mapping by searching, Algorithm Two constructs a mathematical

function which maps the incoming code pair (drFID, IntCode) to the printer code pair

(prFID, PrnCode). Similarly to Algorithm One, this function much be injective.

Let V be a function which takes two arguments, the drFID and IntCode. Let

First—IntCode and Second IntCode denote the first and second byte of IntCode

respectively.

Chinese Outline Fonts Support in X Window System : , 119

Sample Printer Driver

The function V is defined as:

V(drFID, IntCode)

=(drFID x 256 + First_IntCode, Second—IntCode)

That is, ‘ ...
• • “ -

prFID = drFID x 256 + First_IntCode

PrnCode= SecondJntCode … - :

— The next step involved is to prove the injectivity of function V.

Suppose that •

V(drFIDl, IntCodel) = (prFID 1, PrnCodel)

V(drFID2, IntCode2) = (prFID2, PrnCode2)

and prFID 1 =prFID2

PrnCodel =PrnCode2

It follows immediately that

Second—IntCode l=Second IntCode2- ——

Furthermore, from the definition of prFID and the fact that First_IntCode

must be less that 256,

prFID mod 256 = First IntCode

So,

prFID 1 = prFID2

prFID 1 mod 256 = prFID2 mod 256 -

:=4> - First_IntCodel _ = First IntCode2
• ‘ - • •

Chinese Outline Fonts Support in X Window System 1 1 8

Sample Printer Driver

Therefore,

IntCodel = IntCode2

Furthermore,

prFIDl = prFID2

drFIDl x 256 + FirstJntCodel = drFIDl x 256 + FirstJntCode2

drFIDl x256 = drFID2 x 256 … ™ —

drFIDl =drFID2

So, it can be concluded that

V(drFIDl, IntCodel) = V(drFID2, IntCode2)

drFIDl= drFID2 and IntCodel = IntCode2

With the injective function in hand, the design of Algorithm Two is straight

forward. The (drFID First—IntCode) from the incoming code is searched first. If the

font entry is already in the DownLoadFont table, the entry in the respective Encoding

Array" with index equal to Second_IntCode is test to see if the character bitmap is

downloaded or not. If the bitmap have been downloaded, the PrnDriver updates this

entry, creates the character descriptor and sends the descriptor to the printer followed

by the character bitmap.

If the font entry is not in the DownLoadFont table, the PrnDriver checks

whether there is enough room in the printer and deletes some old fonts if necessary.

It then creates a new font descriptor and sends it to the printer, followed by the

Chinese O u t l i n e Fonts Support in X Window System : , 119

Sample Printer Driver

character descriptor and character bitmap. Algorithm Two is depicted in Algorithm

6-3

The DownLoadFont table is updated according to tHe LRU algorithm. Every

time a font is reference, it is moved to the head of the list. Deletion is always made

at the end of the list.. “ .' ‘

‘ ‘ •• ,
 f

 , t "
 J f t t/f / < V ̂ v / / / / • i J * , •• / . •• ‘‘ ‘ ‘ . . A " ‘ , ‘ ‘ f , , * "V ‘‘ ‘‘ ‘‘ W ‘ ‘‘ ‘ __ • • . . < . '..< .. v.. ‘ • •..>.•. .. y f t .. ‘ ‘ \ . .•“ ..*•• . .f / ‘.tA.f" f f V Www AS f f J ' t ' —‘ "• ‘ , ’ ’ ’ •" ff , , ' ' ' ’’’ ““ ’ y ” ” ‘ ‘ , , ,

f o r e a c h c h a ' r a ' c t f i ? ^ i n , - {-;- ' ,,,,, ” k \ : : ‘
‘ { c h a r a c t e r g l y p ' h i n \ p ; r x n f c e r) { /'''::''j ’ ’ :i

/ / * c h a r a c t e r b i t m a p a l r e a d y d o w n l o a d e d , :t • ' … " : ' ' > “ ‘

d ' v ‘ ’ V^set c u r r e n t _ f o n i _ i d 'to . ‘ ‘ ‘ '’ ' D
‘‘ ‘ ‘7 ‘‘ ’ ’ ‘ : ‘ ‘ -V ' ‘ ; ^ ‘
:::::::::::::: :::::: ::: $ $? < 1 ^

‘ '•"f^f^l^qh^rXbt^j^j^rfjn^^J^^'b^—'/'l' ^ ‘/ ^ ,i' i:> f •
A ‘ ‘ s e n d ‘ ' d i r e c t l y ! W i f & u f c - s e A d i r i g , ‘ ‘ ’ ,

‘ ‘ ‘' ’ “ ,V. ^ i t i ^ p - ' i g ^ i n ^ ‘ : ‘ ‘ ‘ “ … ‘ ,V"—/'> >':'

, ©Ise { ‘ ‘ ‘‘ „, ',‘•'', ‘“ “ , / ' ' ' , ‘ ‘ ‘ ‘‘ , • ''' - ' ' ‘ W f : - : " ;':,

7;':'/"/:, i f new ‘' ‘ [/ -
: , , ^ c a l c u ' l ' a t e p r i n t e r _ f o n t ^ i ' d ‘ ‘ '/ ‘ , ' ' ': f ' ;/:'': ''/--A

, - ' , ' , ' : ' , m a k e n e w f o n t . e ' n t ^ y ‘ \ d :) ' ,:,S ' ' W

’ / ' ' 'X : \ ' ' J U / M o d i ' f r e d v ' „ t o c h e c l ^ | l i e n i o r y ' }” ‘‘ ;(:

j ? ‘ , — H 'if iow''inemo c " / • ' ' O :' , ' ' “ ’ ' ' : ' :
'“ . ' : ‘ ' ' ’ ’ ’ ^elefee^/ol^esti f o n t : - , …… ― ^̂ ^̂ • ' ' r-/«

' i / : ,' ’, \ '' '\ avai lable ".jaeraory ^ ^/'Pi^ZX ^ ―
' ; y : " ‘ s e n d ' ' f o n t - d e s c r i p t o r w i t h p r i q f c e r f o n t i d ? '

‘‘‘‘‘ • Jprint' er i y inemo:̂ yr>%^ (/ • ; ;':' / v' y:
''' ' " " s e t c u r r e n t i i f o n t ^ i d ‘ t o p r i n t e r l _ f o n t _ i d ^ -- ^ ^

‘ : •…. … / o l d ' f o n t ' e n t r y found \ ‘ ‘ / ‘ ‘ ‘ “‘‘/ / '
, m | ' ' " c a i c u X a t e ^ c h a r a c t a n t ^ c o a e ' v „ — ‘ >/ ::’ / " … w

$ “ / c r e a t e c h a r a c t e r d e s c r i p t o r ~ ‘ : - ,

' … i f (l o w m e m o r y { ‘ ' / : ? : ' ’ ‘ ‘ ‘ , '
^ ^ , d e l e t e o l d e s t ' ; f o n f c / ^ ; ̂ s , ‘ ‘

: ' ' ' ‘ / , u p d a t e p r i n t e r - a v a i l a b l e m e m o r y ; , f'/e
V' '‘ 5 : :—l' , : ''' ' " ’ :::'"' v̂
, \ v "‘ < v ' , ' " ' , • ‘‘‘,•• ‘ , , ‘ ,‘' J ‘'V'/ “ / “ ''' r

… \ , s e n d c h a r a c t e r ; d e s c r i p t o ' r , ‘ .
tef4 5 : P :: :: ' s e n d c h a r a c f c d r b i t m a p , " ‘ ,“ ,—':;" /:''' ;zl'’ m ; ‘ : j

^character^print_coae ‘,h :, ; \ f e 2
_ _ _ _ _ _ _ _ _ _ _

“ : f , ^ < ,-< l':w: ' :KO ‘‘'X&i'̂ S ';i'/j-,;:- '‘'' ' ', “ <f ‘ ‘ “ :

Algorithm 6-3 Algorithm Two

Chinese O u t l i n e Fonts Support in X Window System : , 119

Experiment Results and Discussions

7. Experiment Results and Discussions

In the following sections, the experimental results of several tests will be

presented. Two types of tests are performed. In the first type, the cache performance

will be examined. The cache is tested with 279 articles with different numbers of

characters. In the second test, the two font downloading algorithms are compared

with that of MS Windows. In this test, 90 articles with different sizes are used,

7.1. Cache Test

The performance of the cache is measured with four sets of tests. The

number of characters cached in the tests is set to 50 100 500 and 1000 respectively

In each test, 279 articles are used For each article, the number of cache hits and

cache miss are recorded and the relative hit ratio is calculated.

All four sets of tests are performed on a SPARC 10 station running SunOS

4.1.3. The cache is flushed after a single article is finished. Test results are shown in

Figure 7-1, Figure 7-2 Figure 7-3. and Figure 7-4. The average hit ratio is shown in

Figure 7-5.

In Figure 7-1 and Figure 7-2 the fluctuation of hit ratio among articles is

quite large, while in Figure 7-3 and Figure 7-4 the hit ratio, although it still has

fluctuates, does have a tendency to increase when the file size increases. This can be

explained by the fact that the hit ratio of the cache not only depends on the size of the

input file, but also depends on the arrangement of the characters in the file. The

(Chinese Outline Fonts Support in X Window System 160

Experiment Results and Discussions

arrangement of characters within the file IS usually called the working set of the

file. [40]

When the cache size is small, as in Figure 7-1 and Figure 7-2, a long article

with high repetition rate still has a low hit ratio because the cache size is to

accommodate the -working set of-the article. -Whenthecache size is large enough, as

in Figure 7-3 and Figure 7-4, there is enough- room to accommodate the working set

of ~ost _articles, so the hit rati<? is higher.

Cache T es t with cache s iz e equal to 50 Characters

80
70
60

o _ 50

~ 40

~ 30
20

10

0
N co '=:J ~

co N en <..0
("I"') LD C) co

N N

<..0 N N C) '=:J N N '=:J C)

<..0 en <..0 ~ N r"'- r"'- N '=:J

LD en N '=:J r"'- en ~ '=:J r"'-
("I"') ("I"') '=:J '=:J '=:J '=:J LD LD LD

Fila 5 ize

Figure 7-1 Cache Test with a 50-characters cache : --

Chinese Outline Fonts Support in X Window System'"

'=:J N
r"'- C)
C) ("I"')

<..0 <..0

1IIIIIIIillllllilllllllllllllllllllllllllllllllilllllllllllllI
co to C) C) -.;:f
N N to r"'-
<..0 N '=:J ('I"") <..0
<..0 r"'- en '=:J <..0

'=:J

122

Experiment Results and Discussions

Cache Test with cache size equal to 100
Characters

80 I ‘

2 0 -
1 0 -
-Q iiiii

c \ J c o c o c s i , s r c D c o - ^ r c o c D C D
oo- r̂ - CM CSJ n . . - co LO c o c n r r r - L n c D ^ r c D L n c j D ^ r ―̂ c o ' ^ r ^ r L D L o c s D t s j c o c r)

T
File Size

Figure 7-2 Cache test with a 100-characters cache

Cache Test with cache size equal to 500
characters

100

20 - I
Q liioiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiŷ

C v o ^ C D C v J ^ C J C D C N J C D C D oo c n c i 5 c o c s j r ^ " ^ r c 3 - i — co r o c = D L O C j r v . T — r ^ - c o o j r o O O C O • L H L O C O

File Sizes • ‘ - 1- - - ‘
I

Figure 7-3 Cache Test with a 500-characters cache

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

Cache Test with cache size equal to 1000
characters

100 y

I t ^ ^ A A A A v i W V ^ w M a A A N V n A / ^ ^

- - 0 Jiiî
C S J O D C O O J - ^ r C D a D ^ C O C D C D _ co csj CVJ co . CD • rv- ot CO LO

CD ^r T— LO C3 CD LO U3 "ST
T— C ^ - ^ v T ^ r L T J L j D C O a D O O C T)

r—
F ile S ize

Figure 7-4 Cache test with a 1000-characters cache

As can be seen from Figure 7-5 the average hit ratio increases when the

number of characters cached increases. However, the curve shown in Figure 7-5

does not have a fixed slope. Instead, the slope of the curve decreases as the cache

size increases. In order words, the marginally cache improvement diminishes with

the size of cache.

From Figure 7-5 a 500-characters cache gives a hit ratio of about 70%. This

cache size is employed in the Printer Server since further increase in cache size does

not improve the hit ratio much.

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

A v e r a g e Hit R a t i o

80 y
70 -- ^ ^ B - B

• 6 0 - • •

4 0 ^
30 -
2 0 - - . . . ‘ … . . . … “ … … - - ‘ . 1 : , … -

1 0 -
0 ~ ~ : ~ ~ ~ . 1 ‘ . .•+ 1 _ , • “ ‘ .1. - : : : • -

5 0 - 500—— - 100CT “
Number of cached characters

-

Figure 7-5 Average Hit Ratio with different cache sizes

7.2. Printer Driver Test

The second type of experiment is intended to test the performance of the new

printing algorithm for double-byte font. In this experiment, 90 articles are tested and

the results are compared with those generated by MS Windows,

A simple typesetting program is-used in this test. It major operations include

reading Chinese article from file, cutting the long string into several lines so that they

can be printed on paper and generating request to the Printer Server for printing. The

sizes of the output files generated by the Printer Server are recorded which will be

used in the comparison. Fonts of different sizes, namely 10 points, 12 points, 15

points and 18 points are used in the test. Only one Chinese font facename called

Sung(> is used in the test because the facename used does not affect the sizes of

output files.

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

In this test, the Printer Server, Font Server and the typesetting program ran on

three different SPARC 10 stations running SunOS 4.1.3. The two soft font

downloading algorithms are used on two versions of Printer Server and are tested

independently. The printer driver is configured for a PCL printer with one mega byte

of internal memory. The typesetting program processes the articles one by one, so

during the test, the Printer Server serves only one client at a time. In order to

compare the algorithms with a currently available product, these 90 articles are also

typeset by MS Word 6.0 on MS Chinese Windows 3.1 with a HPPCL5 printer driver

using the same Chinese font. All tests of MS Windows are done on a 80486-50MHZ

PC.

7.2.1. Testing with 10 points font

As the file size of input file vary from several hundred bytes to a hundred

thousand bytes, the variation in output file size is very great. In order to show clearly

the different between current printer driver implementations and MS Windows printer

driver, the data gathered are divided into five charts. Each chart shows only the data

generated from input files whose sizes fall in the specified range.

Below3000 at lOpts

300000 T -c
250000 -

. 200000— ^ ^ A , 9 0 U

% 150000 - ^ ^ ^ ^ ~ o A l g o r . 2

J — ^ ― MS Driver

0 1 I I I I I I I I I I I i I i I i I I I i I I I
o ^ p ^ r ^ ' ^ r c r j c D C O ^ c Q M ' c x J o o O C D - ^ T T ~ cd r^ CD r̂ - ao oo i~

"V^Z T— ,— r— 1— r- OJ OJ OJ
Input S ize

Figure 7-6 Files with sizes below 3000 typeset at 10 points

Chinese Outline Fonts Support in X Window System 1 2 6

Experiment Results and Discussions

• 3000-5000 at 10 pts

600000 r

500000 -- ^ ^ ^ — —l -
.J 400000 - “ ^ ^ ^ A A l g o r . 1
1 300000 _ a — A , g o r . 2

O 2 0 0 0 0 0 t a ^ Q ^ a - Q ^ Q ^ Q ^ - 0 ^ ^ " ^ ^ ^ 0 " ^ o MS Driver
100000 j ^ ^ r ^ u ^ ^

0 -J~I~I~I~I~I~I~I~I~I~I~I~I~II~I~I~I~I~I CsJ.OO CO CD CjO OJ CO CO CD CSJ CSJ 1~ ^ 1~ CD CSJ GO 1~ £3 cz> oj lo co cn i~ c\j r̂ oo c n c n c n c n m c n ^ r - ^ T ^ r ^ r
Input S ize

Figure 7-7 Files with sizes between 3000 and 5000 typeset at 10 points

5000-8000 at 10 pts

900000 T ,
800000 -- I

2 500000?^ — O A l g o r . 2
g. 400000 -- y

o S S ^ ^ w ^ W W ^ ^Driver

100000 - I 1 :
0 -II~I~IIIII~I~I~i—I~I""“I~I~f—I~I―“II

CvJCDOOCOCSJCSJOV co un cd cd i o o a r̂ - r>- oo O - J ^ l d c d t — L o r ^ - c u c n c o - LO LD IX) LO CJD C£> CO -• r~
Input S ize

Figure 7-8 Files with sizes between 5000 and 8000 typeset at 10 points

Chinese Outline Fonts Support in X Window System . 1 3 7

Experiment Results and Discussions

——

8000-30000 at 10 pts

1800000 T
1600000-- ^

a) 1400000 - J ^ 0 ‘ “
1200000 - A Algor. 1

^ 1000000
S. 8 0 0 0 0 0 f < > < > < > < K ^ - - Algor. 2
"3 600000 --
° 400000 - ^ ——0——ms D r i v e r

200000 ^OQ^aQaa^Q^a 0^ 0 0" 0^
0 ' i I I I i i I I I i [I I I i I I

o o c D o o o c ^ m c u c s j V m

Input S ize

Figure 7-9 Files with sizes between 8000 and 30000 typeset at 10 points

: Above 30000 at 1 Opts

16000000 T
- - - 1 4 0 0 0 0 0 0 f ^ ^ 1

S 12000000 t / ^ ~ ~ Algor. 1
c75 1 0000000+

= 8 0 0 0 0 0 0 ^ ^ — / M g o r . 2
B- 6000000+ ^
O 4000000 _ _ _ o _ _

2000000 J ^ Msunver
o O ~ ~ 9 ^ ― ^ ~ ~ ~ 9 L - i

cn C\J LD rv. LO r̂ - CD C O r - C D L O L O C O C X D O J CD CO C\J CO OO C O C O L O O O C O ^ r L O C D
r o ^ r c o c o o o o j c n ^ r

1 T — T
Input S ize

L_ : :
Figure 7-10 Files with size above 30000 typeset at 10 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

7.2.2. Testing with 12 points font

The following charts describe the testing results of the 90 documents typeset

at 12 points. Similar to data gathered from files typeset at 10 points, data from this

experiment are also divided into five charts. This arrangement will also be applied to

the following sections.

Below3000 at 12 pts

400000 t
350000 -- j / ^

= I q
I 200000 - ^ ^ ^ — o — / ^ g o r . 2

o 100000 — ~ MS Driver
50000 T ^ '

0 -I~I~I~I~I~I~I""“I~I~I~I~I~I~I~I~I~~I~II~h-HI~I~~I
GO CO r̂ - • CO CD CO "̂r CD CO QD r̂ co cd r̂ 1~ co r̂ - cn r>- cn co i~ OOCTJOCOmLOLOCOCOCD 1 l ~ i~ t— 1~ i~ i— C\J OJ OJ

Input S ize

Figure 7-11 Files of sizes below 3000 typeset at 12 points

3000 - 5000 at 12 pts

700000 ^ ^

… ―… ^ ^ ^ ^ ^ r — — — — n
s 500000 - ——tAJgor.l

S 400000 Y ^ ^
^ ——o——Algor. 2
Br 300000 -- n Q

° 2 0 0 0 0 0 L ^ a ^ ^ W ^ ^ J ^ D r i v e r .

100000 --
-II_I~I~I~I~~I~~I~II~I~I~I~I~I~I~I~I~I~I .
C \ J (D O C X D C D C i D C \ J a O C O C 3 C \ J -csj 1~ -1~~ CD e\j oo 1~ CD CD C\J LO r^ CX3 CD 1 O J TT OO
c n c n c n c n c n c n ' ^ r ' ^ r ' ^ r ' ^ r

Input S ize

Figure 7-12 Files with sizes between 3000 and 5000 at 12 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

5000-8000 at 12 pts

1200000 r ,

1000000 -- ^ c x x x / ^

S 8 C300 — ^ - AJgor. 1

600000 -- ~ o — Algor. 2

… O 400000 - ‘ - . - -o——MS Driver

200000 ^ ^ ^ ^ A r ^ ^ V V ^

0 1 i i I I I i I i I I i I I I I I I I I T = T " r ^ c \ J c o a D c o c \ J c \ j c D T N r co lo cd co i~ or* cd r̂ . r̂ cxj CO •'T* LO CD 1 L O r̂ - CM on CO L D L O L O L D C O C i D C O r ^ r ^ r ^

Input S i ze

Figure 7-13 Files with sizes between 5000 and 8000 typeset at 12 points

8000-30000 at 12 pts

2500000 r

• … • 2000000 - J : “ ~ :—"

s Z ^ A ^ ^ ‘ 1

DO 1500000 -

5- 1000000 f
o o MS Driver L ~ — J —

0 J ~ I ~ I I I I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I
O O O C D C D C S J C D O J C D C D
P ^ c D ' ^ r o s j r ^ . c x D ' ^ r c o c n
C Z ^ C J D O ^ ^ v T C D C O C s j m C V J O D C X D C O c y) c y) c z D c s j ^ r L n

T— T— 1—
Input S ize

I Figure 7-14 Files with sizes between 8000 and 30000 typeset at 12 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

Above 30000 at 12pts

25000000 t
20000000+ o “ “

^ ^ Algor. 1
^ 15000000 - j y ^ ^

10000000 | ° algor. 2

° 5 0 0 0 0 0 0 — > — Ms Driver
oO——Q 9——Q——9——9—— ^ r c \ J L n L o r v « c D r̂ o LO m co oo OJ

CD CO rv- CsJ "T" co co
co sr co OD oo csj cn •

T— 1 1 ~
Input S ize

Figure 7-15 Files with sizes above 30000 typeset at 12 points

7.2.3. Testing with 15 points font

The following charts show the experimental results of files typeset at 15

points.

Less Than 3000 at 15pts

600000 t p

—500000 j , . „ j / ^ _ I :——n

S 400000 j A A | g r . 1

% 300000 I ^ y > < > < X > < > < > < ^ ° Algor. 2

Ms Driver [

0 —I—I—I—I—i—I—I—I—I I I I I I I I I I I I I I I
cocor^ COCDCO CO ooco

cd 1~ co cn r>- cn oo i~ COGOCDCOLOLjOLOCO CD T~ 1~ 1~ 1~ "I~ 1~ C\J OJ C\J
Input S ize

Figure 7-16 Files with sizes below 3000 typeset at 15 points

Chinese Outline Fon t s Support in X Window System . 137

Experiment Results and Discussions

3000-5000 at 15 pts

1000000 T

S 600000
= — Algor.2
3- 400000 -- q
O 200000 ^ ^ o ^ r ^ 0 ^ 0 " 0 " ^ ^ ^ ^ 0 ^ ^ ° MS Driver

0 "I— ~̂I~I~I~I~I~HH1—4—1~I~I~I~I~F—1~I~I -
CNJOOCXDCDCDOJOOCjOOOJ (XI t— ^ T— ^ CD CXJ OO -r— CD “ CDOOLOrv-CXDCDT— CVJTTCXD
o o r o n n c o r o •

Input S ize
^

Figure 7-17 Files with sizes between 3000 and 5000 at 15 points

5000-8000 at 15 pts

1600000 r j y
1 4 0 0 0 0 0 -- A

-- ~ ^ ― / M g o r . l - —
1000000

"S 800000 - ^ A l g o r . 2
% 600000 -- a
o n ^ o——MS Driver

200000 --
Q - I I I ~ ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ ~ I I ~ I I I ~ I

• c c r r ^ - C U C D O O C D C N J C V J C D cn IJO cd CD i~ CQ CD r̂ OO LT) O") r— LO CsJ O") L O L O L O L n ^ ^ t o r^-r^-
Input S iz©

Figure 7-18 Files with sizes between 5000 and 8000 typeset at 15 points

Chinese Outline Fonts Support in X Window System 1 3 2

Experiment Results and Discussions

8000-30000 at 15 pts

3500000 t

3000000 -- J

S 2500000 - ^ A l g o r . 1
S 2000000 --
I 1500000 ^ ^ ^ 2

0 1000000 - • o ~ MS Driver

- … - 5 0 0 ^ ^ o ^ y Q ^ a ^ a ^ o ^ K K r ^ I
0 -i~I~II~I~I~I~I~I~h~H~I~I~I~I~I~I~I

OOCIDCDCDC\JCDC\JCDCO
r ^ c o ' s r c s j r ^ - o o ^ C j D c r) CDCOCD a o c \ j c o c \ j o o o o o o c n a o c D C v j LO T—" "I— T—

Input S ize

— _

Figure 7-19 Files with sizes between 8000 and 30000 typeset at 15 points

Above 30000 at 15 pts

35000000 ―—',… - - . ‘ f “‘ …

= I ^ ^ Algor. 1
• 250000001 ^ ^ y

% I - - Algor,2
g. 15000000+ y

1 1 0 0 0 0 0 0 0 ^ ^ _ O — MS Driver

CO C N J L O r ^ L O r ^ C D C O r ^ C D L O L O C D O O C S J o c D r ^ c s j 0 0 0 0 C d C D L O O O C O ^ L i D G O

Input S ize
^

Figure 7-20 Files with sizes above 30000 typeset at 15 points

Chinese Outline F o n t s Support in X Window System . 137

Experiment Results and Discussions

7.2.4. Testing with 18 points font

The following charts show the testing results of the documents typeset at 18

points.

File Sizes Less than 3000 at 18pts

800000

700000 I

600000 I - ' f 1

J 500000 j A ‘ A 1

400000 j _ o A l g o r . 2

m s D r i v e r

100000 —
0 1 i I i i i i I i I I I I I i I I I i I I i i I

c o r o r v - v c o c D c o ^ r c o c o cdgd-^Tt~ od r̂ - cn r̂ - cn oo i OOmCDCOLnLOLOCOOTCD T 1 — T"" T~ T 1 T ~ C\j OJ C\J
Inputs ize

Figure 7-21. Files with sizes less than 3000 typeset at 18 points

Files of Sizes 3000-5000 at 18pts

1400000 r
1200000 - I

g 1000000-- - ~ algor. 1

5 800000 Algor. 2
a. 600000 - q ^
O 400000 ^ ^ q ^ ^ ^ V ^ k ^ / V q ^ ^ MS Driver

200000 -- ‘
0 - I + I ~ ~ I ~ I ~ I ~ \ — \ H ~ I ~ I ~ ! I I ~ I ~ I ~ I I ~ ~ I ~ I _

CSJ O O C O C D C O C S J C X D C O O C N J r\j ._ ST i CD CsJ CO 1 C D C D C S J L O r ^ C O C D i — C N J ^ O O CO CO OO CO CO oo
Input S izes

Figure 7-22 Files of sizes between 3000 and 5000 typeset at 18 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

5000-8000 at 18 pts

2500000

2000000 -- z w s ^ / ^ " 0 f

I 1500000 ~ ^ “ 1
= ° Algor. 2

1000000 --
° n ^ MS Driver

sooooo ^ ^ V a ^ V ^ K ^ V V ^ 0 L ^ ~ .

-- _0 -I~1 1 I I I I~II~II~II~I~I~Ih-H~l-H
O ^ l d c d c o t — r o o r ^ - r ^ - c j o t̂n "̂r lo cn !~ U7 r̂ - oj ro co L O L n L O L o c o c o c o f ^ r ^ - r ^ .

Input S ize

Figure 7-23 Files with sizes between 5000 and 8000 typeset at 18 points

Files Sizes 8000-30000 at 18pts

4500000 -r p
4000000 -- I

: ^ ^ - + — 2 …
"3 1500000 - , 1C ^ .
O 10qqooo - ° ^ Dr iver

500000 ^ O ^ ^ ^ o ^ ^ ^ ^ ^ Q ^ Q ^ Q L _ — — ^ — — — 1

0 J ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ h — I ~ I O O C D C D C D C N J C O C s J C D C O r ^ c o ^ r c v j r ^ - c x D ^ r c o c r) C D C o c D " s r c D c n c s j r o c \ j O O O O C D O C n C D O C S J ^ L O
1 T 1—" T

Input S ize

Figure 7-24 Files with sizes between 8000 and 30000 typeset at 18 points

Chinese Outline Fonts Support in X Window System 1 3 5

Experiment Results and Discussions

Greater than 30000 at 18 pts

45000000 T

40000000 { . r

m 35000000 | ^ ^ A

• 30000000 I Z ~ A

^ 25000000 f j /
g. 20000000 { ° 2

=15000000 f ^ ^
° 10000000 ° Ms Driver

co ^r' c\j isr> r^ ir> cd C O r ^ - C D L O L O C O C O C s J cd co r̂ - c\j r̂ co oo r̂ c o c o u d o o c o LOCH c n ^ c o c j o c x D c s J c n ^ r T 7— T
Input Size

Figure 7-25 Files with sizes above 30000 typeset at 18 points

7.3. Time Measurement

The times required to typeset the 90 articles are also measured. However, the

these data are not used in comparing the two algorithms and printer driver from MS

Windows for two reasons:

1. The two algorithms are not the key factor as far as the speed of typesetting

is concerned since there are network communication and remote font

acquisition over head.

2. Besides the network communication issue, the Printer System and MS

Windows run on different machines. There is no point in comparing

running time of software which run on machines with different speed.

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

The time measurement given below is just for reflecting the speed of the

Printing System. It is not intended for any comparison.

Time Required (10 pts)

2000 j
1800 { A
1600 f X

… I S _ _ - l 1
I 800 + a — o ~ A l g o r . 2

F i _ o f ^ J

CXDCO'«T"-,^rOOCDC\JOOCSJTsrCDCOC\J
c o ^ c x D c o i j n c D o o c D r x . r x . ^ i — r̂ -•f— i— c s j r n ' s r ' T L n o o r ^ . c n c o L n

T— CO

Input S ize

Figure 7-26 Time Required to typeset articles at 10 points

T ime R equired (12 pts)

- - 2 0 0 0 T - A —
1800 j p

12OT f J “ " A ~ ~ $ e r i e s l
•o 1000 { rP
cu 800 f ——o Series2

600l ^
400 J

• ^ " 0 0 0 ^ C ^ O J C D L O C S J L O C D c o ^ ^ r o o . c D L O O G o c n r ^ r ^ i~
- co

Input S ize

Figure 7-27 Time required to typeset articles at 12 points

Chinese Outline Fonts Support in X Window System . 1 3 7

Experiment Results and Discussions

—

Time Required (15 pts)

2500

2000

J I J “ A Algor. 1

I J A — o — ^gor. 2

0 e W M T O M M M S M ^ ^ ^ ^ ^ m m
coco •^ roococs joocs j^^ rcDcocNj ^ r o o c D ^ r r ^ c D c \ J C D L o c \ j L n c D

i i o j c n ^ ^ L n c D r ^ - c n c o L n
r— <JD

Input S ize

Figure 7-28 Time required to typeset articles at 15 points

Time Required (18 pts)

3000 r — — .

^ 2500 --

S 2 0 0 0 " f I Series!
• 1500 - ‘ 6
03 o Series 2
£ 1000 - P
P Lf

500 -

COCQXJ" O O C O C s J O O C s J ^ T C D O O C s J
QO "ST OO CO LO CD OO CD N i

_ t— co ro "̂ r r̂ m— <jd r̂ - cn co - lo
r— UD

Input S ize

Figure 7-29 Time required to typeset the articles at 18 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

7.4. Discussion

In all the above experiments, the output file size is measured instead of actual

printing time. There are two reasons for this decision. First, the 90 articles are tested

with 4 different font sizes and 3 different printing algorithm, there are altogether

1080 different combinations. In terms of number of pages, the output generated from

the 90 articles ranging from one page to about 110 pages. Assume that on average 50

pages are generated from each combination of experiments, there will be a total of

54,000 pages. If all the output files are printed, there will be a total of 54,000 pages

printed. It is a waste of resource to print all pages out and the amount of labor work

.involved is well beyond the limit of this project.

Second, since the time required to transfer the data from the computer to the

printer usually outweigh the time required for the printer to process the data[42], one

can infer that the larger the file, the longer the printing time since the transfer time is

longer On the other hand, since the files generated by MS Windows are compressed,

so .even with the.same file size, the time required to print a compressed graphic file is

still longer than a file of the same size which contains only soft font and text only.

Lastly, the printing time measured from the selectively printed output files is

also helpful in estimating the printing time. From a rough estimation, each page

generated by MS Windows contains about 250K bytes of data, i.e. a file of size 20

mega bytes is about 80 pages long. The time required by a LaserJet III to print a page

C h i n e s e Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

of compressed graphic is about 40 seconds. So an 80 pages document need about 53

minutes.

The estimations of printing time for files generated by the new algorithms are

more complex since the time required not only depends on the output size, but also

on the working set of the input document. Very roughly, a page generated by the two

algorithms contains 25K to 40K bytes of data and the time required to print a page is —

about 15 seconds7,

From the charts shown in the previous sections, it can be observed that the

sizes of output files generated by MS Windows increase when the input files increase

and when the point size of the font used increases. It is due to the fact that MS

Windows print double-byte font as graphics, the larger the input files, the larger the

output file sizes.

The files generated from MS Windows are, in almost all the cases, much

greater than that of current printer driver implementations. The differences in file

sizes are especially high when the input files are large. For example, for a file with

about 30,000 bytes the output file generated when it is typeset at 10 points is about

4 mega bytes while that of current printer drivers are both less than 1 mega. When a

file with size of about 120,000 bytes is typeset at 10 points, the file generated by MS

Windows is about 11 mega bytes while that of current printer driver algorithms are

I - still less than one and a half mega bytes. The two printer drivers in current —

7 The page sizes given here are calculated by dividing the output file size by the number of pages.
While the per-page printing time is observed from printing of 10 files. • .__ ‘

Chinese Outline Fonts Support in X Window System 1 4 0

Experiment Results and Discussions

implementation do have a great improvement over the printer driver from MS

Windows.

From the charts shown above, the performances of the two soft font

downloading algorithms are very close to each other. Generally, it is difficult to tell

which one is better. However, for long input files with font sizes, the performance of

the second algorithm is better, as shown in Figure 7-30 and Figure 7-31.

Algorithm two is also more preferable than algorithm one for ks simplicity.

In fact, algorithm two is conceptually more simple than algorithm one since it maps

the codes by a mathematical function instead of by searching. It is also easier to be

implemented than algorithm one.

Furthermore, there is in fact one case that cannot be handled by the current

implementation of algorithm one. Since the minor font—id is always increasing,

there will be a chance that the minior_font_id will reach its maximum value 255. At

this time, if the minor—font id increases one more, an error would occur and the

injectivity of the algorithm would be destroyed. Additional measures should be

employed to guarantee that the minor_font_id should not be greater than 255. One

possible solution is to delete all fonts in the printer whose major—font_id is equal to

the one whose minor font id reaches the upper bound. The deletion of all related

fonts is necessary for resetting the minor_font_id to zero. However, this would

reduce the hit ratio of the downloaded printer fonts since some fonts are deleted

unnecessarily Algorithm two does not suffer from this problem since entries in the

DownLoadFont table are independent from each other.

Chinese Outline Fonts Support in X Window System 1 4 1

Experiment Results and Discussions

In conclusion, algorithm two is recommended for implementation of Chinese

printer driver.

Comparison of long file at 15 pts

3500X10 j ,— -
3000000-- — ——

S "2500000-- - " — - ' p " “
^ 2000000- ' Algor. 1
1. 1500000-- ^
I 1 0 0 C X X D 0 f — ^ ^ ^ ^ ~

500000 I :
0 -I 1 1 ~I 1—~I 1 1

n ^ c s i L o r ^ L n r ^ w O C O r n - C D L O L O t j O O O C J c D t x j p ^ - c s J ' s r c o a D '̂ r C D C O L n a D C O - S T L O C D
O O ^ X C S D C O C O t N J C O

T- T—" T

Input Size

Figure 7-30 Comparing two algorithms using long files at 15 points

Comparison of long files at 18 pts

6000000 T - — — - : : : : :
5000000 -

- … I 000 — , :|
f 2000000 V ^ °
° 1000000 Y L ~ ‘

- | } I 1 [I 1
o o ^ c M L o r v - L o r v - o
C O r ^ - C D L O L O C O O D C \ J o c o r ^ c s J oo oo""=r c ^ C i D L n o o m ^ r L o c y j co c o c o o o o j c o T T—~ 1

Input S ize

Figure 7-31 Comparing two algorithms using long files at 18 points

Chinese Outline Fonts Support in X Window System . 137

Experiment Results and Discussions

The last thing to be discussed is the time measurement. As shown in Figure

7-29 the longest time required is 45 minutes which is the time required to typeset a

document with about 150 pages at 18 points. The Printing Subsystem can, on

average, typeset 3 pages per minute when only one print client is using the system.

The speed of the system is acceptable because unlike screen display, printing

requests are not sent very often. For the requests such as those just wants the metric

information of a paragraph of text, the response comes almost immediately. The only

time printing requests come in a large batch is when the client wants to perform the

actual printing. At this time, the user is usually willing to wait longer before the

printing finishes. Furthermore, on the operating system where multi-tasking is

supported, the application program can indeed fork a copy of itself to handle printing

in the background while letting the user to continue his work.

7.5. Further Improvement ‘

There are several areas in the current implementation that have to be

improved to make the system more comprehensive and efficient. First, the requests

protocol should be extended to include graphic printing primitives such as line

drawing, curve drawing and polygon filling etc. [8]. The text printing system should

also be extended to support more complex text printing such as drawing a string with

a clipping rectangle and drawing vertical text etc..

Chinese Outline Fonts Support in X Window System . 137

• Experiment Results and Discussions

On the other hand, the response time of the system increases when the

number of clients increases. This is partly due to the fact that in current

implementation, the Print Service Protocol is designed to be synchronous. A print

client must wait for the reply before it can send another request. If asynchronous

protocol is used, the print client can continue its own work without being blocked by

the Printer Server. Synchronous protocol is simple and easy to implement. For an

experimental system, synchronous protocol is more appropriate. However, on a

system where efficiency is of more importance, asynchronous protocol should be

used[39].

Efficiency can also be increased by making a clone of the Printer Server.

When the limit of the Printer Server is reached, the Printer Server can fork a copy of

itself to handle the new coming clients. Making a new copy of the Printer Server

improves the response time of the system, however, it also makes the sharing of

resources more complex. The font cache should be designed such that it can be

shared by several copies of the Printer Server or otherwise, each copy can only use

font data store in its font cache.

(Chinese Outline Fonts Support in X Window System 160

Conclusions

8. Conclusions
This project started with the idea to enhance the Chinese fonts handling

facilities in X Window System and ends up with a Printing System for both single

byte and double-byte fonts which can be used by not only the X but also other

independent applications.

A Chinese Font Server is firstly implemented to enrich the Chinese fonts

source in X. The initial design decision for making the Chinese Font Server support

outline fonts has been proved to be adequate. The time needed for the on-the-fly

generation of bitmap from outline is acceptable if a demand loading scheme is

employed. This is reflected in both the testing of Font Server and the experiments on

the Printer Server.

With the Chinese outline fonts provided by the Chinese Font Server, the

support of Chinese font printing on a system level is now possible. The Printer

Server is built on the foundation of the Chinese Font: Server. The" distributed

architecture of the Printing System provides much flexibility. Application programs

can take advantages of the Printer Server as long as they talk the Printing Services

Protocol.

By equipping the printer driver with the new Chinese font printing algorithm,

the printing speed of Chinese characters is much improved. Although the algorithm

has only been implemented for HP LaserJet, it can indeed be used on any printers

that support soft font downloading.

Chinese Outline Fonts Support in X Window System 1 4 5

Conclusions

The impact of this research is on Chinese only. The system can be extended

to other languages with double-byte representation such as Japanese and

Korean[18][23]. The font server can be modified to support Japanese and Korean in

the fashion as that of Chinese. Moreover, on the Printer Server, the only thing that is

dependent on Chinese is the mapping function of Algorithm Two, which depends on

the fact that Big5 code is designed such that frequently used characters usually have

a small first byte. Algorithm Two can be adapted to other double-byte languages by

simply redefining the mapping function.

The story does not end here. With the release of X Window System release 6

a more flexible demand loading scheme can be used for loading fonts. This is in fact

good news to all double-byte fonts users. By using the demand loading scheme, the

loading time of double-byte fonts can be shorten significantly. This research

demonstrates that the idea of a distributed printing system is indeed plausible.

Although with only limited facilities, WYSIWYG applications with support for

screen display (from X Window System) and for printer output (from Printing

System can still be implemented. It is believed that the idea of a distributed printing

system will be employed in a system with more comprehensive functionality.

Chinese Outline Fonts Support in X Window System 1 4 6

Appendix A. Printer Driver Class

Appendix A. Printer Driver Class
Below is a generic printer driver class defined in the experimental Printer

Server. Any printer driver should be a sub-class of the PrnDriver class. Since all
method functions defined below are device-specific, subclass of PrnDriver should
overload these functions in order to produce output in the format required by a
specified printer.

class PrnDriver {

private

int setting
unsigned short X—res;
unsigned short Y—res;
unsigned short p_size;
unsigned short p orientation,- -
unsigned short num—copy;
unsigned short pr—Quality;
unsigned short pr—Duplex;
int currentfid;
char *fname
unsigned long mem—available,-
ofstream outf // file handle
DownLoadedFont *head;

public

PrnDrive.r (char *name);
virtual -PrnDriver()
virtual int Prnlnit()
virtual int PrnGetSetting(unsigned short flag,

unsigned short *xres,
unsigned short *yres,unsigned short *ppr,
unsigned short *ort,unsigned short *num,
unsigned short *dup);

// get the device mode
virtual int PrnSetSetting(unsigned short flag,

unsigned short xres,
unsigned short yres,unsigned short ppr,
unsigned short ort,unsigned short num,
unsigned short dup-) _ ―

virtual int PrnTextExtent(FnCache *ch,
char *name,fsChar2b *str,int str_len,
unsigned char id, fsCharlnfo **ext_out);

virtual int PrnDrawString(FnCache *ch,
char *name, unsigned char id,
fsChar2b *str, int str_len, int x,int y);

virtual unsigned char PrnOpenFont(FnCache *ch ‘
char *name)

virtual unsigned char PrnCloseFont(FnCache *ch ,
unsigned.char id);

virtual int PrnEscape (int escCode)
virtual int SetFont(int, char*)
virtual int EjectPage()
virtual int MoveXY (int x, int y);

I .)

Chinese Outline Fonts Support in X Window System 1 4 7

Appendix A. Printer Driver Class

Note that the above printer driver supports the soft font downloading

algorithm described in Chapter 6. Subclass of PrnDriver could ignore the

DownLoadFont entry if it does not want to used it to keep track of the information of

the downloaded fonts.

Note that the implementations of these method functions are up to the printer

driver and are not restricted by the function declarations.

(Chinese Outline Fonts Support in X Window System 160

Appendix B. Sample Ouput

Appendix B. Sample Ouput

(Chinese Outline Fonts Support in X Window System 160

^
f

^
S

S
S

S

1^
•

1
\

f
J

i\
i

&

&

_
I

f
g

S
I

S
S

S
S

^
4

—

i
^

^
l

f
t

s
i

^
^

I
f

-g
g

g
g

j
f

f

_

m

I
.

g

_

1

^ 1

.
j

X

€ I I
’

I I I
)

I
I

u

.
i*

• Appendix B. Sample Ouput

I

$

° |

I

°

i

|

°

- I

°

\

.

‘

1

5

— i

- A _ _

f 1

,

I
1 I

i t
5

- $ -

} j
f ’

- S H i s i
J @ «

Chinese Outline Fonts Support in X Windows System 152

• Appendix B. Sample Ouput

X Window System Printing Extension
n

. ° _ …
’

X Window System Printing Extension
—“—

k‘ • - S M
 0

!

Chinese Outline Fonts Support in X Windows System 152

• Appendix B. Sample Ouput

X Window System Printing Extension

I
JA .

,

. . … … — — I

X Window System Printing Extension

~ ―… __

§ °
,

Chinese Outline Fonts Support in X Windows System 152

I
—

“

P3 I
‘

—

—

I I
X

window
System

Printing
Extension

« I I
o

—

i

I
•

o
|

’
I I

\
• (

X

‘
. i

I
&

.

1
&

I
C/)

I <D

.
^

I
|

o
1,

‘
•

CO
I!

(D
 •

I
I

• Appendix B. Sample Ouput

I j
I

i

Chinese Outline Fonts Support in X Windows System 152

References

References

[1] Apple Computer, Inside Macintosh, Volume II Addison-Wesley 1985

[2] Bennett Steven J. & Randall Peter G. The LaserJet IE Companion Brady
Publishing, 1991.

[3] Bigelow Charles, Font Design For Personal Workstations, Byte January
1985 pp. 255-6

[4] Chen C. K. and Moon Y. S.’ Modification of X Window System Font
Server to Support Chinese Outline Fonts, Proceedings of International

. Conference on Chinese Computing' 94 pp. 249-257

[5] Coplien James, Advanced C++, Programming styles and idioms, Addison
Wesley, 1992.

[6] Debry Roger and Griffee Alan W Management of multiple font
technologies in a distributed system environment, Raster Imaging and
Digital Typography, 1988.

[7] Finseth Craig A., The Craft of Text Editing Emacs for the Modern
World, Springer-Verlag 1991.

[8] Foley James & Dam Andries van, Computer Graphics Principles and
Practice, Addison Wesley, 1990.

[9] Flowers Jim, X Logical Font Description Conventions Version 1.5 Public
Review Draft, X Consortium,Inc, ,.

[10] Fuchs D.R. and Knuth D.E., Optimal Prepaging and Font Caching, ACM
- Trans, on Prog. Lang, and Sys., Vol-.7 l, 1985 pp. 62-19

[11] Fulton Jim, The X Font Service Protocol ver. 1.0, Network Computing
Devices, Inc. 1991.

[12] Griffee A. W. and Casey C.A., An introduction to typographic fonts and
digital font resources, IBM System Journal, Vol 27 No 2 1988.

[13] Hersch Roger D. Introduction to font rasterization, Raster Image and
Digital Typography Proceedings of the International Conference, Ecole
Poytechnique Federale Lausanne, 1989. ppl-13.

[14] Heller Martin, Strengthening the ties that bind, Windows, Vol 4 No.3,
1993. pp 129-134.

Chinese Outline Fonts Support in X Window System :
 158

References

[15] Hewlett Packard, PCL Printer Language Technical Quick Reference
Guide, Hewlett Packard, 1990.

[16] Huang Jack Kai-tung The Input and Output of Chinese and Japanese
Characters, IEEE Computer, January 85, pp. 18-24

[17] Israel Elias and Fortune Erik, The X Window System Server Digital
Press, 1992.

[18] Iwamoto Hitoshi and Cai Rong, Handling Several Character Sets on the
X Window System, Center of International Cooperation for
Computerization.

[19] Jones Oliver, Introduction to The X Window System, Prentice Hall,
1989. -

[20] Kawabata A. and Marinescu Dan C. Font Cache Design Issues in a
Distributed Electronic Publishing System for Japanese Language
Documents, Oki Technical Review Vol. 58.

[21] Lemeke Dave, Font server implementation overview, Network
Computing Devices, Inc,. 1991.

[22] Martin James, Principles of Object-Oriented Analysis and Design,
Prentice Hall, 1993.

[23] Matsuda Ryouichi, Processing Information in Japanese, IEEE Computer,
January 85 pp. 27-34

[24] Meyer Bertrand, Object-Oriented Software Construction, Prentice Hall,
” - 1988.

[25] Meyer Brian and Doner Chris, Programmer's Introduction to Windows
3.1, Tech Publication Pte. Ltd, 1992.

[26] McGilton Henry and Campione Mary, PostScript by Example, Addison-
Wesley Publishing Company, 1992.

[27] Microsoft Corporation Microsoft Windows Device Driver Kit, Device
Driver Adaptation Guide, 1992.

[28] Microsoft Corporation, Microsoft Windows Device Driver Kit, Printer
and Fonts Kit 1992. _

[29] Microsoft Corporation, TrueType Font Files ver. 1.00 Microsoft
Corporation, 1992.

[30] Moore Geroge, An Introduction to Digital Typography using TrueType,
Microsoft Corporation.

Chinese Outline Fonts Support in X Window System :
 1 5 8

• References

[31] Nye Adrian, Xlib Programming Manual, O'Reilly & Associates Inc
1992. ’ .

[32] Packard Keith & Lemke David, The X Font Library, X Consortium Inc
. 1 9 9 1 . ' .

[33] Rubinstein Richard, Digital Typography: An Introduction to Type and
Composition for Computer System Design, Addison-Wesley 1988.

[34] Scheifler Robert W, X Window System Protocol MIT X Consortium
Standard, X Version 11 Release 5, X Consortium Inc.

[35] Scheifler Robert W. and Gettys James, X Window System, The Complete
Reference to Xlib, X Protocol, ICCCM, XLFD, Digital Press, 1992‘

[36] Scheifler Robert W. and Gettys James, The X Window System, ACM
Transactions on Graphics, Vol. 5 No. 2, 1986, pp 79-109.

[37] , Stevens W. Richard, UNIX Network Programming, Prentice Hall, 1990.

[38] Stroustrup Bjarne, The C++ Programming Language, Addison Wesley,
1991. ‘ ‘ —

[39] Tanenbaum Andrew S” Computer Networks, Prentice Hall 1989.

[40] Tanenbaum Andrew S. Modern Operating System, Prentice Hall, 1992.

[41] X Consortium Inc., Font Server sample implementation.

[42] . Weise David and .Adler Dennis, TrueType, and Microsoft Windows
Version 3.1, Microsoft Corporation.

[43] Young Douglas A., X Window ^Systems Programming and Application -
with Xt, Prentice Hall, 1989.

[44] Young Douglas A., Object-Oriented Programming with C++ and
OSF/Motif, Prentice Hall, 1992.

[45]

[46] Microsoft Window 3.0 Aug,
1991. … — “ _

[47] Microsoft Windows 3.0 Aug 1991.

[48] -
1988.

[49] , UNIX X

Chinese Outline Fonts Support in X Window System .159

References

. ’

[50] Windows _
1 J Z

(Chinese Outline Fonts Support in X Window System 160

I

CUHK Libraries

_ _
00DE4T431

