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Abstract 
厂 

Recently, Gaussian radial basis function (RBF) networks have proven to be 

useful for approximating continuous functions. For a wide variety of problem 

domains, the learning speed of RBF networks has been found to be much faster 

than backprogagation (BP) networks. However, due to the well-known “curse of 

dimensionality" problem, an excessively large number of RBFs may be required 

to approximate the function adequately especially in high-dimensional input 

space which in turn diminish the learning speed advantage of RBF networks. 

Fortunately, for most real-world problems, only a few relevant input dimensions 

may be needed to obtain a good approximation. To take advantage of this 

situation, a new dynamic construction algorithm based on the Sanger's tree 

structure network is proposed here. This algorithm, which involves a growing as 

well as a pruning process, builds up the dimensions and the number of Gaussian 

RBFs incrementally. 

The proposed algorithm starts with a RBF network of 1-D Gaussian nodes 

distributed along each input dimension. During the growing process, new Gaus-

sian nodes which incorporate additional dimensional information are added to 

the network to reduce the output error. After the growing procedure is com-

pleted, the pruning process takes over the control and eliminates the node that 
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has the least contribution to the performance of the network. The entire pro-

cess halts when the error is reduced to below some desired threshold level. With 

the above combination of growing and pruning processes, more efficient RBF 

network structures can be obtained. 

Two empirical examples both involving predictions are also given. The first 

one predicts the dynamics of the chaotic Mackey-Glass equation, while the sec-

ond one predicts the acoustic waveform of a speech signal. In both cases, the 

resulting network based on a few relevant dimensions, namely LowD RBFs, 

are found to be superior in output accuracy and in the reduced number of pa-

rameters required than a host of other conventional approaches, including BP, 

conventional RBFs, and linear prediction technique (LPC). 
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Chapter 1 

Introduction 

When a person hears the voice or catches a glimpse of the face of a familiar 

person, recognition is instant. Within a fraction of a second after the ear, eye 

or nose is stimulated, one recognizes the object as desirable or dangerous. The 

accuracy and speed of such recognition are unmatchable by any of today's man-

made machine. Our brain accomplishes this with ICF or ICF interconnected 

neurons working together. Hence, resemble the structure of human brain system 

and hereby simulate neuron-like actions become the motivation of many research 

works for many years. 

The beginning of artificial neural networks (ANN) research dates back to 

1943 in the pioneer work of McCulloch and Pitts on modeling the simple type 

neuron activities. During the late 1950s and early 1960s, the invention of Rosen-

blatt's perceptron and Widrow's AD ALINE had made substantial contributions 

to the development of ANN architectures and implementation concepts. How-

ever, the explosion of this field is not ready until the mid 1980s, with the success 

of various new network models and learning algorithms [12] [16] [28]. Experts 
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Chapter 1 Introduction 

from diverse disciplines such as physics, psychology, mathematics, engineering, 

and computer sciences have been attracted to join the emerging field of ANNs. 

For the foreseeable future, the bulk of ANN research will play an important role 

in practical tasks and in the behavioral and brain sciences. 

1 • 1 Fundamentals of Artificial Neural Networks 

ANNs are mathematical models of theorized mind and brain activity. ANNs ex-

ploit the massively parallel processing and distributed representation properties 

that are believed to exist in the brain. Typically, ANN processing consists of 

three elements: (1) a method of processing information, (2) an organized geome-

try (topology) of interconnected processing units, and (3) a method of encoding 

(learning) information. To further understand various aspects of ANN system, 

some of the fundamental issues are explained in detail. 

1.1.1 Processing Unit 

The primary information processing structure in ANN is the processing unit 

(PU). A typical PU is shown in figure 1.1. The PU usually has a “state value" 

or s that is taken to be a linear function of the parameters of the unit itself and 

of the external input signals, 

n 

Sj = Y^ WjiXi + 9j (1.1) 

where Sj is the state value of the jth unit, Xi is the zth external input, Wji is 

the internal parameter (weight) connected from ith input to the j unit and the 

term 9 associated with input is called threshold of bias. The output of unit j 
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Chapter 1 Introduction 

y 

XN , 

Figure 1.1: Basic processing unit (PU) 

[y-) is typically defined to be a nonlinear function ( / ) of the state value {sj). 

Three common types of nonlinearities as shown in figure 1.2 are: (a) the hard-

limiter, (b) the threshold logic, and (c) the sigmoid function. An ANN typically 

consists of a large number of such PU. Some of them interact directly with the 

outside environment while others communicate only with their counterparts in 

the network. Information is distributed over the whole network through the 

interconnections between them. 

1.1.2 Topology 

Since computation task and memory storage is shared by a number of PUs 

operating in parallel, a specific knowledge can be represented by a group (layer) 

of PUs. An ANN which is hierarchically organized is able to process information 

in different level of abstractions. 

Characteristics of ANN topologies are formed by different connection schemes 

and layer configurations. Generally, there are three primary PU interconnection 

3 
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Figure 1.2: Nonlinear activation functions ( / ) 

schemes. They are intra-layer, inter-layer, and recurrent connections. Intra-

layer and inter-layer connections are the connections between PUs in the same 

layer and in different layers respectively. Recurrent connections have the output 

of PUs looping back to the input of the same PUs. 

Layers can also be divided into three types. A layer that receives input signals 

from the environment is called the input layer, and one that emits signals to the 

environment is called the output layer. Any layer that lie between the input 

and the output layers are called hidden layers. Figure 1.3 illustrates one of the 

common type ANN topology. 

1.1.3 Learning Rules 

As distinct from the discussion in the previous section, while the network's 

structure is usually considered fixed, learning rule is defined as the process which 

modifies the network parameters (e.g. interconnection weights) in order to attain 

satisfactory system performance in a changing environment. All the learning 
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h VN 

f j j ] o O O f j Output Layer 

Input Layer 

Xi X2 XN 

Figure 1.3: Network topology of a three-layer feedforward network 

rules can be classified into two categories, supervised learning and unsupervised 

learning. 

In supervised learning, an external teaching signal is required. One of the 

best example is the least-mean-squared (LMS) algorithm, often called the Widrow-

Hoff delta rule. This algorithm minimizes the sum of squares of the linear errors 
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Chapter 1 Introduction 

over the set of training samples. The linear error (e) is defined to be the dif-

ference between the desired output {y) and the actual output (y). Having this 

error signal, the weight in jth PU are then updated according to following rule 

Awji = acjXi (1.2) 

where Cj = (jjj — yj), xi is the zth input, Wji is the weight connection for the jth 

PU, and a is the learning rate. The choice of a controls stability and speed of 

convergence. For most practical purposes, a is in the range of 0 < a < 1. 

Quite often, teacher signal is not always available, either because of high 

cost or lack of knowledge. In this case, an unsupervised learning procedure is 

necessary. A typical example of this kind of learning is competitive learning [10 

16] [29] which divides a set of multivariate input signals (vectors) into a number 

of disjoint clusters in such way that the input signals within each cluster are all 

similar to one another. It is called competitive because there is a set of PUs 

which compete with one another to become active. There are many variations of 

the same basic idea, and perhaps the most notable one is Kohonen's topographic 

maps [15] produced by a modified competitive learning scheme. 

1.2 Overview of Various Neural Network Mod-

els 

Since the first introduction of neural modeling by McCulloch and Pitts in 1943， 

a large number of ANN models have been developed to tackle different types 

of practical problems. All these models, based on the fundamental features 

elaborated above, can be divided into three categories. 
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In the first category, ANN is functioning as a content-addressable memory 

(CAM) or associative memory [12] [17]. Such networks store a limited num-

ber of pattern samples as interconnection weights which corresponds to a local 

minimum of an energy function. If a corrupted or distorted sample is presented 

to the network, it will iterate and hopefully converge to that minimum which 

retrieve the correct pattern sample in full detail. 

Self-organization or the unsupervised learning capability [4] [15] character-

izes the nature of ANN in the second category. The network's learning does 

not require the explicit teaching samples of the function, rather it depends on 

a task-independent measure of the quality. The network optimizes its inter-

nal parameters with respect to that measure and eventually it will reflect the 

probability distribution of features in the input patterns. 

The last category comprises of the feedforward networks or the supervised 

learning models [1] [28] where the learning can be regarded as performing an 

input-output mapping from a set of examples. There are many different learn-

ing techniques proposed for this type of network. Generally, they can be further 

divided into two groups: global representation and local representation. For the 

global representation, learning is based on repeatedly adjusting a small set of 

global parameters to obtain optimal values. It has the advantage of small mem-

ory requirements, but the parameters must often be determined using iterative 

LMS algorithm which can be slow and are not guaranteed to converge to an 

optimal solution. The widely used backprogagation (BP) [27] is an example of 

this kind. 

Unlike the compact global models, the local representations often creates a 

network with a large number of local parameters for table look-up while each 
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Chapter 1 Introduction 

parameter only corresponds to a subset of the input region. For example, radial 

basis function (RBF) [24] networks use many structural locally tuned units so 

that the optimal solution is more likely to be obtained than BP which uses 

relatively fewer variables with a larger degree of freedoms. 

1.3 Introduction to the Radial Basis Function 

Networks (RBFs) 

In terms of topology, RBF networks can be regarded as a three-layer feedforward 

network. Input data x are propagated to a single layer of hidden units each of 

which computes a radially symmetric function of so that the output (r) of 

the jth hidden units is given by 

where fij is the center of the RBFs for unit j, and ||. •. || denotes a distance 

measure that is generally taken to be the Euclidean norm. These hidden units 

encode the inputs by computing how close they are to the centers of the local 

receptive region. For this, the nonlinear activation function g can be chosen in a 

variety of ways. For the rest of this thesis we have taken a Gaussian nonlinearity 

a.2 

g{x) = e 一 口 (1.4) 

The final outputs of the RBFs are the sum of the hidden layer outputs, each 

weighted by the synaptic strength (w;) 

m 
y = (1.5) 

i=i 
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Chapter 1 Introduction 

The purpose of each output layer weights is to define the contribution of each 

hidden layer unit to a particular output {y) of the network. 

1.3.1 Historical Development 

The notion that feedforward networks compute by using Gaussian hidden units 

was originally inspired by a review paper on approximation theory, which de-

scribes algorithms for multivariable interpolation by Powell [25]. Later on, La-

pedes [18] discussed the hypothesis that two layers of sigmoid hidden units pro-

duced a “bumps,，transfer function in the output space in order to perform 

approximation. He further pointed out that it might be easier if the weights are 

synthesised based on “bumps” instead of the original inputs. In other words, 

it would be advantageous to introduce RBFs to preprocess the inputs. Since 

then, various forms of RBF networks had been proposed and found successful 

application in the area of pattern classification and function approximation [3 

22] [23]. In fact, networks which are based on RBFs can outperform BP in 

various aspects; they are easier to train, are much more predictable, and give 

intuitively simple solutions. ANN models of this type will be the main theme of 

the research presented in this thesis. 

1.3.2 S o m e Intrinsic Problems 

Although RBF networks are useful for approximating functions in a variety of 

different domains, they are not free from problems. Due to the localized nature 

of the RBFs, a very large number of RBFs may be required to approximate 

an arbitrary function adequately, especially in high-dimensional space. This 
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problem has been known as the "curse of dimensionality” caused by the fact 

that high-dimensional space is mostly empty. For example，assume that a large 

number of points is distributed uniformly in the 10-dimensional unit cube. Then 

the side of a cube containing 5% of the points is (0.05)°'^ = 0.74. This implies 

that RBF networks will not be able to pick up small features, unless the number 

of RBF nodes is gigantic. Besides the heavy size burden imposed by the problem 

of dimensionality, the calculations required on any of the RBF units increase as 

the dimension of the input space is high which significantly impair the learning 

speed advantage of RBF networks. 

An efficient way to reduce the computational work of RBF networks is to 

eliminate the irrelevant variables from the input domain. Note that in some 

regions of the input space, the desired output function can be approximated 

using only a few relevant dimensions, which is a very common situation in certain 

real physical phenomenon. For instance, figure 1.4a shows that the output y is 

a function of and X2. It is clear that y is independent of X2. Large number 

of RBF nodes (represented by the small circles) will be saved if we employ only 

the 1-D RBFs based on relevant variable xi as shown in figure 1.4b. However, 

in many cases, it is impossible a priori for the RBFs to distinguish relevant 

from irrelevant input dimensions. Technique that can create RBFs to capture 

low-dimensional features of a single output function is clearly desirable. 

1.4 Objective of the Thesis 

In this thesis, we address the irrelevant dimension problem by devising a dy-

namic RBF network construction algorithm based on some heuristic measure 

10 
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Figure 1.4: Problem of redundant input dimensions 

of steepest descent dynamics. Two different approaches guard the evolution of 

the network growing and pruning. The network's RBF unit is first allowed to 

grow larger than necessary and then prune it back to yield a smaller and more 

efficient structure. As the network is grown, some of the RBF units is correlated 

with more dimensions of the input space. Although the heuristic approaches 

described here is in no way to guarantee to factor out irrelevant inputs for all 

the RBF units or even to obtain a optimal network structure, the performance of 

the suboptimal network using RBFs with fewer input dimensions is surprisingly 

good as compared to conventional approaches. 

This thesis is organized into four chapters. In this introductory chapter, 

the intrinsic problems in applying RBF networks have been stated. In the next 

chapter a dynamic construction algorithm based on Gaussian RBFs is presented, 

along with the detail derivations. In chapter 3, the effectiveness of the resulting 
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RBF network is demonstrated through various prediction problems. Finally, a 

brief conclusion is provided in chapter 4. 

12 
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Chapter 2 

Low-dimensional Gaussian RBF 

networks (LowD RBFs) 

In this chapter, a dynamic construction algorithm consisting of network growing 

and pruning is derived. The algorithm builds a RBF network based on Gaus-

sian nodes of variable input dimension. The structure of the network changes 

dynamically during learning and is determined by the output function to be 

approximated. 

2.1 Architecture of LowD RBF Networks 

2.1-1 Network Structure 

The dimensionality of the network elements - RBFs is expandable. Since they 

will correlate with one input dimension at a time during learning, the synthesis 

of RBFs in many dimensions may be easier if they are factorizable. It can 

be easily proven that the only RBF which is factorizable is the Gaussian. A 

13 



Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs) 

multidimensional Gaussian function can be represented as the product of lower 

dimensional Gaussians. For example, a n-D Gaussian centered in u can be 

written as 
-̂||aJ-/X|p 二 . e-(疋2-"2)2 •…• ^-{^n-Hnf (2.1) 

where the subscripts i...n denotes the individual dimension for input x G 

With this dimensionality factorization, the network can now start to com-

pute the approximation to the desired output function using a finite set of 1-D 

Gaussian RBFs. If the function (scalar) y can be determined from only the sum 

of Gaussian responses of n separable input dimension, then the network output 

y can be expressed in terms of m 1-D Gaussian nodes in each dimension. 

n m 
= (2.2) 

«=i i=i 

where it;, cr, and [jl denotes the height (weight), width, and center of the Gaussian 

respectively, i indexes the input dimensions and j the 1-D Gaussian nodes. All 

the parameters of the Gaussian are allowed to train using least mean-squared 

(LMS) learning algorithm in order to minimize the mean-squared approximation 

error e = ^ { y - Given sufficient input samples, this algorithm will converge 

until no further adjustment in ŵ  cr, and fi will improve the approximation. 

However, if y does not depend on a linear combination of 1-D Gaussians, 

then there will be some nonzero residual error {y 一 y) which in turn creates 

considerable average value of weight change variance 

E[{Awy] (2.3) 

(Refer to section 2.2.1 for more discussions on this heuristic) on certain nodes 

indicating pressure to incorporate some additional dimension information or 
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Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs) 

"cross-terms". Similar to Sanger's tree-structured network [30] [31] [32]，the 

node with the maximum variance becomes the parent to grow new nodes which 

include one more input dimension. As shown in figure 2.1，the new 2-D nodes 

can be generated as the product of the 1-D parent node and the chosen 1-D 

Gaussians with dimensions different from the parent. In other words, the parent 

node expands orthogonally to its own dimension axis in a symmetric way. As 

a result, one of the original 1-D Gaussian will be split into m(n - 1) new 2-D 

nodes and the output y is now given by 

n—l m _L2—-uJL m—1 . . ^ 

y = EE^i- 2(�p2 
i=i j=i i=i 

n-l 饥 J 外 
+ E l y i , , 2 ( � (2.4) 

where k denotes the input dimension corresponding to the nodes with the largest 

variance and I indexes the new 2-D nodes. Note that the structure of expand-

ing the network nodes in terms of symmetric Gaussians is somewhat equiv-

alent to probabilistic neural network (PNN) or "sphere" Gaussian described 

by Specht [33]. After adding these new 2-D Gaussian nodes, training is then 

resumed to modify w, a, and fi to further reduce the error. Such growing and 

training procedures can be following repeatedly until the output error is reduced 

below some chosen threshold level. 

So far, the growing of new Gaussian units is based on all dimensions that are 

available except the ones from parent node. Relevant as well as irrelevant input 

dimensions are included in the expansion. Thus, there is no way to produce a 

minimal number of Gaussians in the network. However, to filter out the irrele-

vant inputs can be computationally expensive. The growing process employed 

here, in fact, sacrifice optimality for simplicity of computation. Unfortunately, 
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T饥 7*1 « \ x"^ x^ rc饥 
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Figure 2.1: Growing structure of the network 

the increase in number of nodes is in a maximum factor of m(n — 1). There is 

a great possibility that this may lead to an oversized network which is not only 

poor in generalization properties, but the speed of convergence is also slow. 

To attack this problem, in the way suggested by Karnin [14], a pruning 

technique is introduced by estimating the slope (sensitivity) of the mean-squared 

error (e) function with respect to each individual weight (w) in the entired 

network. Upon the completion of LMS learning, the sensitivity of each node is 

16 



i 

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs) 

examined according to the formula 

_ 舉切)2] w � (2.5) 

— a w(E) — w(S) �丨 

where the superscripts (S) and (E) denotes the beginning and end weight value 

right before and after the learning process respectively. (The complete derivation 

of the above equation will be elaborated in section 2.2.2) Then, the node with 

the minimum sensitivity is pruned out. By means of this estimation, we can 

implicitly measure the "redundancy" of each nodes and eliminate the one that 

has least contribution to the learning of w. More unnecessary nodes will be 

removed in the subsequent learning process until the network converges to a 

desired output level. 

The description above makes it clear that our approach here is to construct a 

reasonably large network so that the learning process is successful, then remove 

some redundant nodes to get a more economical network. Therefore, by incorpo-

rating the pruning procedure as the postprocessing step to the growing process, 

a complete low-dimensional Gaussian RBF network (LowD RBFs) construction 

algorithm can be formed. 

2.1.2 Learning Rules 

In order to determine the exact settings of w, cr, and fi in each of the Gaussian 

nodes, LMS learning algorithm is employed here. Consider only the case of 

adapting parameter ly, the original form of the algorithm can be written as 

切 = a ^ (2.6) 
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or can be expressed in terms of the change of w 

Aw* = ly 计 1 -w* = - a - ^ (2.7) 
dwt 

The adaptation cycle index is t. ti；计i and w* indicates the next and present value 

of w. a is the learning factor. The present error ê  is defined to be the squared 

difference between the desired function y无 and the approximation obtained from 

the network 伊. 

二 - fY ( 2 . 8 ) 

Applying the steepest descent procedure to error function e, the partial deriva-

tives of e with respect to each of the 1-D Gaussian parameters w, cr, and fi can 

be obtained as 

二 —(y-幻e— 2 ( � 2 (2.9) 

= (2.10) 
dal [cTi f 

^ = - ( H ) ‘ - 〖 ) 2 ( 镜 ） （2.11) 

In accordance with equation 2.6 (we now suppress the index t for convenience), 

the learning rule is then applied to alter parameters of the 1-D nodes with 

each sample presentation to make an error correction proportional to the partial 

derivatives. 

As the number of nodes grows incrementally, more and more input dimen-

sions are included in the nodes. For input a? € the possible set of Gaussian 

nodes that can be generated by the construction algorithm is 

1 < z < n| 

18 
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Expanding the equation 2.9, 2.10, and 2.11 to adjust the parameters for n-D 

Gaussians, we have 

Awi., = -a{y - y)e {2.12) 

AaU = - y)<-ne 2(< .”)2 ( (^i j 3 ) (2.13) 

A/4 = - a ( 双 - ( f ^ ) (2.14) 

This is equivalent to perform training in the worst case condition - with fully-

grown n-D nodes. Since the computational saving of the construction algorithm 

rests on the assumption that an adequate approximation will not always require 

all the dimensions of the input data, it is not essential to compute all n Gaussian 

functions in a node or to learn the parameters corresponding to the redundant 

input dimensions. 

2.2 Construction of LowD RBF Networks 

2.2.1 Growing Heuristic 

In this section, the development of the heuristics for the network growing and 

pruning processes is pursued. The ultimate goal is not aimed at producing 

optimal structure of the network, instead, is to develop a efficient construction 

algorithm which a competent network can be easily obtained. 

In our growing strategy, new Gaussian nodes with correlation of one addi-

tional dimension information are added into the network whenever the existing 

structure is found to be incapable of approximating the desired function. Since 

optimality is not crucial in the growing algorithm, network parameters like the 
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Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs) 

change of weight {Aw) and the mean-squared error (e) that can be easily ac-

quired along the normal course of LMS learning are employed here to determine 

where and when to grow new higher-dimensional nodes. This reduces the com-

putational burden imposed by the algorithm. 

To understand the choice of growing criteria and their detailed derivation, 

let us first recall that the weight update equation for 1-D nodes is given by 

-ifizdf. 
Awi 二--们e— (2.15) 

As learning proceeds, the average value of Awj will tend to zero. If function y 

depends on a linear combination of the 1-D Gaussian nodes, the error (y-y) will 

also approach zero. However, if the nodes do not provide sufficient information 

to approximate y, then there will be some nonzero error which in turn creates 

strong tendency to increase or decrease the value of Although the variations 

of w{ with different signs eventually cancel each other, causing the average or 

expected value E[{Awl)] tends to zero. Nevertheless, a considerable amount of 

variance E[{Aw{Y] will be produced. Such a situation can be well illustrated 

by a simplified example shown in figure 2.2. Figure 2.2a shows how Wi of a 

single 1-D Gaussian nodes based on input Xi is related to network output y. 

In figure 2.2b the desired function y indeed depends on both inputs Xi and X2, 

therefore it is clear that Wi will fail to converge to a satisfactory solution and 

the arrow in figure 2.2c indicates the fluctuation of wi in the xi and X2 input 

space. 

Because E[{AwjY] provides deficiency information for each individual 1-

D nodes, it becomes the main criterion for determining where to grow new 

nodes. This leads to the following relation between the weight variance and 
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y 

.Jy--' 
Wi X2 

Yx 
(c) 

Figure 2.2: Weight change variance problem 

mean-squared error. 

Jxi-^ 

E[ (A妨尸]={a')E[ {y - yY{e~�(…^ )2 ] (2.16) 

Since this is true for all j in i input components, the total variance of all m n 
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1-D nodes can be obtained as 

E [ ± t { A w { r ] = { a ' ) E [ ± f : { y - y n e ' W)̂  )] (2.17) 
i=l j=l i=l i=l 

For any input x = [xi,x2,' • - it is assumed that at least one 1-D Gaussian 

can respond to one of its components. Thus, the lower bound of the total 

variance is given by 

± f： E[{Awif ]>{a'n m)E[{y - yf ]德 ± E (2-l8) 

or can be expressed in terms of mean-squared error 

(2.19) 
t=l j=l 

where • _ 
• n m _(fizd2l 

( … 2 二 s > 0 (2.20) 

i=l j=l 

From equation 2.19, we see that the error E[(y - yf ] will be zero if and only if 

the total variance E?=i ZJLi ^ K ^ ^ i ^ ] 二 0. Hence, it is advisable to minimize 

the maximum El(Aw{y ] for any particular j node in i input such that the error 

can be reduced in this case. 

To decrease the variance of the 1-D node with maximum value, new 1-D 

Gaussians based on different input components are added into the chosen node 

as additional second dimensional information. In other words, the original 1-D 

node of maximum variance are expanded and new 2-D nodes are formed. Again, 

w{ as well as other Gaussian parameters of these 2-D nodes are trained according 

to the learning equations 2.12，2.13, and 2.14, so that 

Awl = -^(y — 咖 - 2 ( 吃 吃 ( 2 - 2 1 ) 

22 



Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs) 

A i / j 一 — /4) + - M/) VP …� 

^ ( ^ i i = - O i { y - y W k , 、 '） e � “ ( )(2.22) 

(^k-t^if j 
Af4 = -a{y 一 y)wi/ 厂 2 ( � 2 ( 箭 ） (2.23) 

where k specifies the input of 1-D nodes for which E[{Awiy] is largest. From 

the above equations, it is clear that the parameters of these 2-D Gaussian nodes 

are being trained to correct the insufficiency of previous 1-D ones based on the 

context specified by additional dimensions of the inputs. 

Upon the completion of every learning period, the accumulated output error 

(e) of the network is recorded and checked. If it does not indicate a significant 

improvement over the previous one, new higher-dimensional Gaussians nodes 

are made to grow in place of the original node with largest variance such that 

a better approximation of y can be achieved. In what follows, we will describe 

the detailed implementation of the LowD RBF network growing process step by 

step: 

Step-1 Set the INITIAL MSE THRESHOLD - stopping criteria for the grow-

ing algorithm. Set the CONVERGENCE TOLERANCE - determine 

whether the algorithm may continue learning or add new higher-

dimensional nodes. 

Step-2 Select m 1-D Gaussian nodes allocated on each input dimensions. 

Initialize the parameters of these nodes to be: 

• w - set to small random values and save them in temporary 

array. 
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• a - equal CTmax which has the value large enough to cover the 

domain of the input space. 

• jjL - distribute all m nodes evenly over the input range of each 

dimensions. 

Step—3 Set i = 1 (index for learning period) and j == 1 (index for growing 

period). 

Step-4 Invoke one periodic learning procedure at the iih learning period, 

where one learning period implies the presentation of all s training 

samples to the network. The learning procedure is as follows: 

• Get the next training sample. 

• Perform steepest descent on all Gaussian parameters w, cr, and 

fJ" 

• Accumulate (A—2 and save them in temporary array. 

• Compute the network performance at the zth learning period 

by 
s 

Pi = Y. 

where e j i ) represents the error function of s samples at zth 

learning period. 

Step—5 If the performance improvement due to the parameters learning is 

saturated, (i.e. pi < INITIAL MSE THRESHOLD) then terminate 

the growing algorithm. 
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Step-6 If it is not saturated, check the percentage of improvement compared 

with the previous learning period by 

rrii = \PLZltl\ X 100% 
Pi 

If mi > CONVERGENCE TOLERANCE, set i = z + 1, go to Step-4 

and continue another learning period. 

Step-7 If rrii < CONVERGENCE TOLERANCE, apply the Gaussian nodes 

growing procedures listed below: 

• Find the node with maximum E[{AwY] as the parent. 

• Generate m new 1-D Gaussians on each input dimensions except 

the ones take over by the parent node. 

• Initialize all parameters in newly born Gaussian nodes as 

—w - set to small random values and save them in temporary 

array. 

- c r - equal a{j) which shrinks continuously using function 

at jth growing period. 

—fjL - distribute all m nodes evenly over the input range of 

the chosen input dimensions. 

• Synthesize the new higher-dimensional nodes as a product of 

all these new 1-D Gaussians and the parent node. 

• Remove the original parent node from the network. 
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set i = i + 1 and 二 j + 1，go back to Step-4 and continue the next 

learning period. 

Typically, pi is an accuracy measurement of output of the network at the zth 

learning period, pi larger than the INITIAL MSE THRESHOLD are either im-

mediately corrected by the allocation of new nodes or continuously repaired using 

steepest descent. The choice of these two actions to be taken are distinguish-

able by rrii. A very small value of mi (or one less than the CONVERGENCE 

TOLERANCE) means that the trajectory of error transient comes into a flat 

region of the error surface. Since there is a great possibility that the network 

may become stable or enter the slow convergence state, new nodes should be 

added as a perturbation for the learning of the network. The width a{j) of these 

newly added nodes is the scale of resolution that the network is able to capture 

the detail of the approximated function at the j growing period. The learning 

starts with largest scale a{j) = (7丽,which creates a coarse representation of 

the function. Then refines the representation by allocating nodes with smaller 

and smaller a{j). Finally, it reaches cimin which is the smallest length scale of 

interest. 

Note that the defective node selection heuristic described here only depends 

on the measurement of the maximum variance of Aw. In fact, there are two 

different kinds of parameter change ACT and A// which are also available as part 

of the LMS learning. However including all of them into our growing rule may 

not be the best idea. Since the axis of optimization for ACT and Afi are dependent 

on Aw, using only Aw is adequate to reflect the inadequacy of each Gaussian 

nodes. Moreover, memory storage requirements of our growing algorithm can 

be lessened. 
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2.2.2 Pruning Heuristic 

Up to now, our study merely concentrated on network growing. It is time to 

switch our attention to the final stage of the LowD RBF network development-

the pruning process. As pointed out in section 2.1.1, in order to increase the 

probability for the network to approach a satisfactory solution, the growing of 

new Gaussian nodes would include predetermined combination of all input di-

mensions so that the maximum number of nodes m(n 一 1) is added at each 

growing period. This is undesirable at first glance, because a considerable num-

ber of nodes which contain irrelevant input information would be unavoidably 

generated as a by-product of such a process. However, the technique for factor-

ing out irrelevant components of the inputs can be computationally expensive 

and requires a large body of a priori information about the underlying struc-

ture of the problem. Yet many other simpler methods have been proposed to 

accomplish this reduction. One of them is to let the network grow larger than 

necessary and the unneeded nodes are then removed afterwards. This is exactly 

the approach that is pursed here. 

Unfortunately, there is no general way to determine which nodes can be 

removed while the network performance would not be significantly impaired due 

to the removals. One possibility which is used in [14] is to eliminate the nodes 

according to their "contribution" to the LMS learning. It is suggested that the 

"contribution" of each node is explicitly measured by calculating the slope (or 

sensitivity) of the output error function e = \{y-yy with respect to the training 

parameter. Here, our approach for pruning is to estimate the sensitivity of e with 

respect to the Gaussian parameter at the end of each learning period. Then the 

node with the lowest sensitivity value is pruned. More redundant nodes would 
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be removed in the subsequent periods so that the speed of convergence of the 

whole network is improved. 

For the sake of simplicity, the estimation of sensitivity {s) is only in terms of 

the Gaussian weight (w;). The significance of this choice will be apparent in the 

later part of our discussion. Starting the formulation with 1-D nodes, assuming 

that e is a function of wj only, sj with respect to wj can be defined as 

s{ = - (2.24) 
wj ⑷一 wi(S) 

where E and S denote the specific values at the beginning and end of the LMS 

learning respectively. Note that during the development of completed network 

structure, both the initialization of new Gaussian parameters and the evaluation 

of sensitivity are performed periodically. This makes the duration of training 

process vary from node to node. To account for this situation, we will approxi-

mate the sensitivity by the average slope of e 

,eiE)-eiS) wm 測 

^ E[wl] - S[wl] wl{E) - wl{S) 

where E[wi] 一 S[wi] denotes the difference in learning periods according to 

individual 

In a normal LMS search procedure, the actual error difference e(F) - e(S) 

is a function of all learning parameters. Apparently, this is in contrast to our 

assumption in equations 2.24 and 2.25. To elaborate, consider the variation of 

e in the domain of w while assuming all other parameters <7 and /z remains 

constant. Substituting equation 2.2 into 2.8 and expanding yields 

e =去(2/2 - 2ywji' ^ ( 乂 ) 。 + (w^fe (…^ ) ( 2 . 2 6 ) 

JL 
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where e is a quadratic function of wj so that a convex error surface is formed. 

Figure 2.3 shows a example of a typical surface contour for a network with Wi 

and W2 only. The position of a point and the contour lines represents the values 

of two weights and the error respectively. The actual trajectory of the error 

difference descending from point S to E is indicated by the line with arrow. 

From this figure, it is obvious that we can simplify the calculation of 5i by using 

only the partial influence of the error due to the changes in Wi which corresponds 

to the path from S[wi\ to E[wi], Hence our assumption is clarified. 

Regarding equation 2.25, the calculation of sj can now be evaluated precisely 

by expressing the error difference as 

e � - e ⑶ 二 广‘、pjdw (2.27) 
� 7 \ ) Je[wI] dwl 

The integral is along the error path projected onto the wl axis from S[wj] to 

W2 

_ 
^ Z Wl 

E[wi 

Figure 2.3: Learning trajectory of the error path 
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E[w{]. Since the LMS learning calculation is performed at discrete times. The 

above expression can be further simplified by replacing the integration by a 

summation. 

e{E) - e{S) = ^ ( n ) A ^ n ) (2.28) 

For the 1-D nodes, w{ are updated according to 2.15, hence the estimated sen-

sitivity to the removal of w{ can be rewritten as 

, 改 _ (2 29) 

“ a{E[w{\ - ^K']) wl{E)~wl{S) 

or can be expressed in terms of expected value 

二 丑 [ ( A 咖 ] • 咖 ) (2.30) 

^ « wj(E)-wj(S) 

Periodically, the output error e is checked to see if it shows signs of slow im-

provement over previous ones. A redundant node with the smallest sensitivity 

value with be eliminated in the hope that it can speed up the convergence of 

the network. This removal procedure are continued until the error is reduced to 

below some desired level. Details of the pruning algorithm are given below: 

Step—1 Set the FINAL MSE THRESHOLD to a smaller value (e.g. 50% of 

the INITIAL MSE THRESHOLD in the growing process) - stopping 

criteria for the pruning algorithm. Set the CONVERGENCE TOL-

ERANCE equal to the previous value in the growing procedure -

determine whether the algorithm may continue learning or eliminate 

the redundant nodes. 

Step-2 Continue the one periodic learning procedure at the ith learning 

period. 
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Step-3 Check if pi < FINAL MSE THRESHOLD. If yes, exit the pruning 

algorithm with success. 

Step-4 If no, check the marginal improvement compared with the previous 

learning period. Ifm,- < CONVERGENCE TOLERANCE, Retrieve 

all necessary data from the temporary array and compute the sensi-

tivity of each nodes according to 

E[{AwY] w{E) 
召 = " " “ a w { E ) - w{S) 

then remove the one with minimum value. 

Step-5 Set i = i + 1, go back to Step-4 and continue another learning period. 

2.2.3 S u m m a r y 

We have presented the idea of automatically constructing appropriate struc-

ture of LowD RBF networks that successfully approximates a given function 

which might have a few irrelevant input dimensions. The construction algo-

rithm mainly composes of two processes - network growing and pruning. The 

growing process builds up the network elements - (Gaussian nodes) incremen-

tally until the learning is successful. However, in order to avoid using a priori 

knowledge of the data, all input dimensions information are included in the 

node adding rule. Thus, large amount of unnecessary elements may involve in 

the resultant network structure. The pruning procedure is then used to trim 

the oversized network by removing unneeded nodes. This exactly complements 

the previous process. In fact, by simply cascading the pruning procedure to the 

growing process, a complete algorithm is formed. Figure 2.4 shows the flowchart 
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Set up initial network parameters. 
Save the initial weight value. * 
Start the network with 1-D nodes 

^ Train parameters by steepest descent 
J ̂  Accumulate MSE and weight change 
• variance. 

Train parameters by steepest descent 1 — - — — — — p - - - — — — — J 
Accumulate MSE and weight change 
variance. ^ Ĵt.̂ ^^ 

No ‘ 
<^^inish training for s samples?^,^ * 

No ^ 丁 
« • — — — t r a i n i n g for s samples?^ Yes 

,f Yes <;[^Reach the FINAL MSET^^^ 

< ; R e a c h the INITIAL M S W ^ No 

丨 No * < ^ S E varies by more than 1 % ? ^ » 

Yes nr 
* varies by more than 1 No 

—— . . 
Locate node with min. sensitivity. 

No _ , * 
，丨 Remove that one. 

Locate node with max. variance. 
Add new nodes below that one. 

• 

Figure 2.4: Flowchart of the construction algorithm 
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of this combined algorithm. In the next chapter we shall verify the usefulness 

of this algorithm by examining whether the algorithm helps save computation 

and memory space while achieving high accuracy. 
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Chapter 3 

Application examples 

In this chapter we present the results of some numerical experiments used to 

test the performance of our low-dimensional Gaussian RBF networks. We also 

perform extensive analysis on the associated network construction algorithm. 

Although the simulations being studied are indeed quite simple, they still effec-

tively demonstrate the operating principles of the new algorithm. The first set 

of experiments uses synthetic data. It involves prediction of the Mackey-Glass 

differential delay equation. Several conventional ANN models will be used for 

performance comparison. The second experiments employs the LowD RBFs as 

a nonlinear predictor of speech data. The purpose is to check whether the LowD 

RBFs is able to exploit nonlinear as well as linear correlations in real data. 
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3.1 Chaotic Time Series Prediction 

As a simple test case, LowD RBFs is used to predict the chaotic time series 

generated by integrating the Mackey-Glass delay differential equation [20 

^ = 0.2 _ o.i^(t) (3.1) 
dt 1 + x^^t - r ) 、 乂 

where r is a delay parameter which specifies the width of an initial function. 

This time series has an infinite-dimensional phase space. However, it does have 

low-dimensional attractors whose dimension increases with r [8]. This series has 

become something of a standard benchmark for prediction algorithms [5], [9], 

1 8 ] , and [ 2 2；. 

First, we consider the case where r = 17, for which the series has an attractor 

with a fractal dimension of about 2.1 [8]. To generate the values of x at discrete 

time steps, the above equation is integrated using a fourth-order Runge-Kutta 

method with the initial function set to a constant value of 0.8. Following the 

previous references, the networks is trained to predict x{t + 85) given x{t), 

x{t 一 6)，x{t - 12), and x{t — 18) as inputs. (We shall refer to this as an “85-step 

prediction".) 

To set up the LowD RBFs construction algorithm, we have to decide how 

many single dimension Gaussian nodes to be allocated for each input components 

and their initial width a max- We have no specific criterion for deciding what the 

optimal values should be. In the following experiments the number of nodes is 

chosen to be 4 and the width to be half of the maximum input range divided by 

that node number o • 而 = T h i s choice is arbitrary and definitely not optimal 

with regard to prediction accuracy. Other parameters used by the algorithm to 

predict Mackey-Glass equation with T 二 17 are listed as follows: 
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_ a 二 0.025 

• DECAY= 30 

• CONVERGENCE TOLERANCE^ 0.01 

• INITIAL MSE THRESHOLD^ 0.0002 

• FINAL MSE THRESHOLD^ 0.000085 

Since the above DECAY and the two MSE THRESHOLD parameters have great 

influence on the characteristics and accuracies of the final LowD RBF networks, 

special attention are paid to the sensitivity analysis of these parameters in the 

subsequent sections. 

During the dynamic construction process, the sample inputs to the network 

are randomly taken from 500 training set at each learning period. Gaussian 

nodes are either added or removed from the network whenever the CONVER-

GENCE TOLERANCE is found to be less than 0.01. The final network structure 

is grown to have the following number of nodes with maximum dimension of 3. 

• Number of 1-D nodes = 4 

• Number of 2-D nodes = 124 

• Number of 3-D nodes = 115 

Figure 3.1 shows the variation of the average MSE as the number of nodes 

is changed. The complete process requires 425 learning periods which takes 

approximately 50 minutes of CPU time on a DEC 5000 workstation. To indi-

cate how accurate the result could become, the normalized root mean-squared 

(NRMS) error is employed here as the figure of merit. 

NRMS Error = . � “ (3.2) 
\ E (2/ - yr 
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where y is the mean target value over s testing samples. In equation 3.2, the 

NRMS is defined to be the root mean-squared error, divided by the standard 

deviation of the data sample. It is necessary to remove the scale dependence of 

the sample and the standard deviation provides such a scale to use. Thus, the 

NRMS is insensitive to the dynamic range of the time series. 

Now to measure the performance of the network for the 85-step prediction, 

the previous 500 training samples is used as a test set and input to the network 

again, the NRMS error is found to be 0.051. Figure 3.2 shows the predictions 

and the true time series are virtually indistinguishable. Figure 3.3 shows the 

NRMS error as a function of 85-step predictions. 

0.02 r i “— ‘ — • ‘ ‘ ‘ ‘ “ 

0.018 - “ 

0,016 - “ 

0.014 - _ 

I 0-012 • -
0.01 _ g \ 

< 0.008 _ 

0.006 - _ 

0.004 - \ ‘ 

0.002 - _ 

. .....一 , -

% 50 100 150 200 250 300 350 400 450 
Learning Period 

Figure 3.1: Error transitions of the network during construction process. 
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Figure 3.2: The 85-step prediction output of LowD RBFs and the true values. 

0.251 . 1 • ‘ •‘ ‘ 

0 . 2 - -

g 0.15 - _ 

讓 t 
z 0 . 1 - -

哪 MWikWII 
100 150 200 250 300 350 400 450 500 

Step 

Figure 3.3: The NRMS error on each time step for the 85-step predictions. 
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3.1.1 Performance Comparison 

The idea of training a network based on low dimensional feature is not new. In 

fact, a network algorithm described as “Gaussian bars” by Hartman et al. [11 

have similarities to the LowD RBFs proposed here. In the network with only a 

single layer of 1-D nodes, the structure is exactly equivalent to a single layer of 

Gaussian bar networks. However, the two networks differ in the way that the 

Gaussian nodes are combined for the multilayer architecture: the LowD RBFs 

are composed layers of 1-D nodes via multiplication in order to produce higher 

dimensional nodes, while in a multilayer Gaussian bars, the networks are more 

similar to the structure of BP in which the outputs of one Gaussian bars unit 

can regard as direct inputs to the other units. We now compare the LowD RBFs 

with the Gaussian bars as well as other network models. Note that the output 

error and parameters saving of the LowD RBFs are actually comparable to or 

even exceeded the results in [11], which summarizes again in table 3.1. 

Network type | Total parameters | Normalized RMS error 

LowD RBFs 
1083 0.05 

Gaussian Bars 750 0.22 
1461 0.19 
4500 ^ 

BP m ^ 
601 

RIF^ m o3o 
1801 0.03 
3001 0.02 

Table 3.1: Performance summary for 85-step prediction problem. 
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Figure 3.5: The prediction error as a function of the INITIAL MSE THRESH-
OLD 
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3.1.2 Sensitivity Analysis of M S E T H R E S H O L D S 

Basically, the INITIAL MSE THRESHOLD controls the amount of Gaussian 

nodes growth in the dynamic construction process. To study the effectiveness 

of the the above parameter for the 85-step prediction task, we vary the INI-

TIAL MSE THRESHOLD from 0.0001 to 0.0004, while fix the FINAL MSE 

THRESHOLD to a small constant value of 0.00007 and let the networks grow 

for maximum 450 learning periods. In addition to the original training set, a 

500 testing samples of the Mackey-Glass equation at t = 2000 are employed 

here to reflect the generalization ability. Figure 3.4 shows the reduction of total 

parameters as the value of INITIAL MSE THRESHOLD increases. Figure 3.5 

depicts the trend of NRMS error as the function of INITIAL MSE THRESH-

OLD. It is clear that as the MSE increases, the error both on training and test 

sets decrease as the network has enough degrees of freedom to fit the structure 

of all the LowD RBF nodes. However, after a critical value of MSE has been 

reached, the error starts to increase. From this point, the network has suffered 

from the overfitting problem which will be discussed in detail shortly afterwards 

3.1.3 Effects of Increased Embedding Dimension 

To study a higher-dimensional case, we now consider the Mackey-Glass equation 

with r=30. At this value of r, the series has an attractor with a fractal dimension 

of 3.6 [8]. We reconstructed the network inputs using values at x{t), x{t — 6), 

x{t — 12), x{t — 18), x{t - 24), and x{t 一 30). Because the dimensionality of the 

attractor is larger than that of the r = 17 case, the number of training samples 

is increased to 1000 in order to set up the LowD RBFs, for which the task is 
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to predict x{t + 6). (Again, we shall refer to this as a “6-step prediction".) If 

the network can perform this sufficiently well, then it can be taken to iterate 

on its own outputs and make predictions from the "seed" data samples. For 

example, if one wants to predict x{t + 12), the network is first used to compute 

the x{t + 6) value based on the initial “seed，，data，then feeds the x{t + 6) back 

into the input to predict x{t + 12) using the predicted x{t + 6) value instead of 

the actual x{t + 6) from the time series. This procedure corresponds to iterate 

the network to perform prediction at multiples of a; = 6 ("Iterated prediction"). 

Since iterative method of prediction will cause small errors to accumulate, as 

expected, the error will increase farther as the network iterated into the long-

term prediction. 

To tackle the above higher-dimensional problem, we start the LowD RBF 

using the following setting of parameters. 

• Number of nodes on each dimension:? 

• J — M 
• ^max — 4 

• a = 0.025 

• DECAY= 30 

• CONVERGENCE TOLERANCE= 0.01 

• INITIAL MSE THRESHOLD^ 0.00005 

• FINAL MSE THRESHOLD: 0.00003 

The network is trained for 322 learning periods. (It requires almost the same 

CPU time as in 85-step prediction.) The final structure has the following number 

of nodes with a maximum dimension of 3 

• Number of 1-D nodes = 3 
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• Number of 2-D nodes = 67 

• Number of 3-D nodes = 135 
s 

which is able to achieve an NRMS error rate as low as 0.024 for the 6-step 

prediction. Figure 3.6 shows the trend of average MSE as the number of nodes 

is varied. Figure 3.7 shows that the 6-step prediction matches the actual time 

series very well. In figure 3.9, it shows that the network is capable of producing 

a valid iterated prediction up to 550 steps (with NRMS < 1). The NRMS errors 

for the 6-step and iterated prediction tasks are plotted in figure 3.8 and 3.10 

respectively. 
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Figure 3.6: Error transitions of the network during construction process. 
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Figure 3.7: The 6-step prediction output of LowD RBFs and the true values. 
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Figure 3.8: The NRMS error on each time step for the 6-step predictions 
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Figure 3.9: The iterated prediction output of LowD RBFs and the true values. 
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Figure 3.10: The NRMS error on each time step for the iterated predictions. 
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3.1.4 Comparison with Tree-Structured Network 

As mentioned in previous section, the most closely related algorithm is Sanger's 

tree-structured networks which use Fourier basis functions to approximate a 

continuous function. Note that the Sanger's algorithm uses on-line learning 

which does not store the past input samples. This is in contrast to the training 

method employed in LowD RBFs networks. Therefore, it is difficult to compare 

the performance of these two algorithm directly. However, for reference only, 

some of the experiment results from 6-step prediction problem described above 

are summerized in table 3.2 

Network type Total parameters NRMS error Iteration steps 
LowD RBFs 952 0.024 550 

Tree-structured nets. 12720 0.025 600 

Table 3.2: Performance summary for the 6-step prediction problem. 

3,l-5 Overfitting Problem 

It is important to note that at the beginning of the dynamic construction process, 

the width of the initial Gaussian nodes are defined by a large value of cr, so that 

they are able to create a coarse representation of the function. As learning 

progresses, the representation can be refined by reducing the effective radius of 

the newly born nodes exponentially at a rate controlled by the DECAY constant. 

Figure 3.12 shows the NRMS error versus different values of the DECAY. (To 

test the generalization performance of the network, additional 1000 test samples 

are taken from the output of the Mackey-Glass equation at t=4000). In this fig-
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Figure 3.11: The total network parameters as a function of the DECAY param-
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Figure 3.12: The prediction error as a function of the DECAY parameter 
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ure, we find that the results on both training and testing set are basically followed 

the slow increasing tendency in error rate as the DECAY increases. However, 

such a trend can not be applied to the large value of DECAY. It is because at 

this value of DECAY (e.g. DEC AY 二 60) the effect of radius decrement releases, 

new nodes with large width are simply added to the network. The result is 

that these newly added nodes are significantly overlapped which pushes many 

of the original nodes away from the input region, so as to reduced the overall 

error in the fastest possible way, rather than adjust them locally. In this case, 

the network is depleted of effective nodes to reduce the error in subsequent 

learning period. Consequently, large number of nodes are added to the network 

to compensate for this "loss", which in turn generate an enormous size of the 

network structure with little improvement on the error rate. This is further 

supported by the results as plotted in figure 3.11. Finally, we have to point 

out that the overfitting problem also occurs when too many Gaussian nodes 

(regardless of the width) are pumped into the input region of interest. This 

gives a good explanation of the situation in figure 3.5 
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3.2 Nonlinear prediction of speech signal 

Speech coding has a long history. Approaches to coding can be divided into 

two groups. One is called waveform coding, which deals with the acoustic wave-

form itself. PCM, DPCM, delta modulation [13], and transform coding fall in 

this group. Another good representation of speech is to model the process by 

which a human speaker produces speech. For example, the vocal tract can be 

modeled as an all-pole filter with the poles corresponding to the vocal tract's 

resonance frequencies. This is the well-known linear predictive coding (LPC) 

technique [21]. The set of LPC coefficients plus the excitation (periodic signal 

or white noise) forms a more compact representation of the speech signals than 

the acoustic waveform. Speech coding based on this type of models is called 

parameter coding. 

A major limitation of LPC is that it only models the poles of the vocal 

tract. For instance, nasal sounds which require at least a pole-zero model could 

not be modeled adequately. Since a zero has to be approximated by several 

poles, this often results in requiring a higher order linear model than ought to 

be necessary. Therefore, several researchers [6] [19] [34] [7] have investigated 

the possibility of using nonlinear, especially ANN based, predictor to further 

improve speech modeling. 

As similar to the previous work on modeling of chaotic processes, speech 

production can be viewed as a flow on a low-dimensional manifold. Results 

in [2] and [34] reveal that most of the speech lies on an attractor with dimension 

approximately ranging from 3.3 to 3.4. Hence, it is possible to produce good 

forecasts of speech using only a subset of its past values. This situation makes 
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the LowD RBF networks a good candidate as an nonlinear predictor (NLP) for 

the speech signal. 

In this experiment, the LowD RBFs as well as the LPC model are examined 
r 

in the task of speech prediction. Here, the LPC algorithm is implemented using 

the relation 

封 = (3.3) 

i=i 

where n defines the order of prediction model or usually refers it as predictor 

order, is the (n + l)th sample of the signal, a,- is a set of LPC coefficients 

which are computed every 10ms on a frame length of 25.6ms. Note that an error 

signal e(t) (residual) would be generated by the equation 3.3 is defined as 

e(t) = x{t) - x{t) (3.4) 

Since the LPC parameters only extract the poles of the vocal tract, if the actual 

speech signal was well modeled by the linear predictor, then e{t) is a good 

approximation to the external excitation. 

The speech data (corresponding to the isolated word /one/) are extracted 

from a male speaker sampled at lOKHz with 12-bit resolution in a duration of 

0.55s. An 1000 samples of the speech from segment 0.2s to 0.3s (as shown in 

figure 3.13) are employed as the training set to illustrate the performance of 

the LowD RBFs in the present of noise and periodic signal. Given n (predictor 

order) normalized samples as inputs, the task is to predict the value of {n + l)tli 

sample. For the case of n = 12, the network is trained using the following 

parameters: 

• Number of nodes on each dimension=2 

. f j - M 
• ^max — 4 
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• a = 0.025 

• DECAY= 20 

• CONVERGENCE TOLERANCE二 0.01 

• INITIAL MSE THRESHOLD: 0.00025 

• FINAL MSE THRESHOLD二 0.000115 

The complete training requires 370 learning periods, which produces a network 

of 259 nodes with a maximum dimension of 3. 

• Number of 1-D nodes == 14 

• Number of 2-D nodes = 189 

• Number of 3-D nodes = 56 

Figure 3.15 shows the prediction output of the LowD RBF networks. Before 

examining the nonlinear prediction results, we have to define a new figure of 

merit commonly used in the speech community [26] - prediction gain 

Prediction Gain == -20/o5fio(NRMS) dB (3.5) 

In the above test, the LowD RBFs can achieve a gain of 16.5dB，while only 

about 11.95dB is obtained using LPC. The results is further illustrated by the 

NLP and LPC residuals shown in figure 3.16 and 3.14 respectively. 
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Figure 3.13: The original speech signal in the segment from 0.2s to 0.3s 
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Figure 3.14: The residual after the linear prediction. 
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Figure 3.15: The prediction output of the LowD RBFs network. 
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Figure 3.16: The residual after the nonlinear prediction 
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3.2.1 Comparison with Linear Predictive Coding ( L P C ) 

Since the LPC is by far the most widely used speech prediction technique, it 

serves as a benchmark for the comparison of various NLP models [6] [19]. A 

plot of prediction gain versus predictor order for LowD RBFs as well as LPC 

models is shown in figure 3.17. From this figure, it is clear that LowD RBFs is 

superior in performance in terms of prediction gain by about 4dB compared to 

that obtained of using LPC model. 
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Figure 3.17: The prediction gain as a function of predictor order for LowD RBFs 
and LPC techniques. 
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3.2.2 Performance Test in Noisy Conditions 

To study the performance of the LowD RBFs in a noisy condition. A different 

segment of speech from 0.1s to 0.2s (as shown in figure 3.18) are extracted as a 

new training set. Based on the same construction parameters used previously, 

except the following, 

• INITIAL MSE THRESHOLD二 0.000075 

• FINAL M S E THRESHOLDS 0.000062 

the resulting LowD RBF network generates the following number of nodes with 

a maximum dimension of 2. 

• Number of 1-D nodes 二 13 

• Number of 2-D nodes = 173 

Figure 3.20 shows the prediction output of this network. In this test, the pre-

diction gain of the network is only 5.13dB compared to 6.06dB for LPC. The 

results indicate that LowD RBFs do not perform as good as LPC in which a 

high noise level is presented. To explain this situation, let us first recall that 

both growing and pruning heuristics are based on the measurement of weight 

change variance. Unfortunately, this variance is indeed an unreliable selection 

index in the presence of noise. It is due to the fact that the Gaussian nodes 

with the largest noise level will always have the highest variance, regardless of 

their usefulness to the function approximation. For the sake of completeness, 

the residuals of NLP and LPC techniques are also shown in figures 3.19 and 3.21 

respectively. 
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Figure 3.18: The original speech signal in the segment from 0.1s to 0.2s. 
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Figure 3.19: The residual after the linear prediction. 
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Figure 3.20: The prediction output of the LowD RBFs network. 
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Figure 3.21: The residual after the nonlinear prediction. 
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Figure 3.22: The iterated prediction by LowD RBFs in the segment from 0.2s 
to 0.3s. 
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Figure 3.23: The iterated prediction by LowD RBFs in the segment from 0.1s 
to 0.2s. 
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3.2-3 Iterated Prediction of Speech 

It is interesting to take the above LowD RBF networks trained by two different 

speech segments, and put them into the iterated predictions. Using the first 12 

samples from each of the segments as a “seed,，, and iterate the corresponding 

L O W D R B F S produced the waveforms in figures 3.22 and 3.23. Note that in fig-

ure 3.22, the network is able to produce a quasi-periodic speech-like waveform. 

On the other hands, the iterated network output in figure 3.23 exhibits a heavily 

damped structure of the original noisy signal. In both cases, the iterated wave-

forms are not the same as the actual waveforms. Actually, the two LowD RBFs 

produce the low-passed version of the original waveforms. Thus, it is possible 

that the LowD RBFs is able to encapsulate a few important relevant dimensions 

of underlying structure of the speech production system. 
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Conclusion 

4.1 Discussions 

In this thesis, we presented an alternative architecture of the Gaussian RBF net-

works, which we called LowD RBFs for approximating continuous functions in 

high-dimensional input spaces, based on the assumption that most of the input 

dimensions are redundant. A new dynamic construction algorithm composed of 

growing and pruning processes was developed for building LowD RBFs of vari-

able sizes and dimensions, determined by the inherent dimension of the function 

to be approximated. The approach used in this algorithm is to grow the number 

of LowD RBF nodes larger than is necessary and then prune it back to yield a 

smaller and more efficient structure. Since both growing and pruning criterions 

use terms of the steepest descent dynamics that are readily available during the 

normal course of LMS training, only negligible extra computational overhead is 

needed to implement the algorithm. 

Empirical results in the previous chapter showed that the performance of 
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the LowD RBFs with respect to accuracy and efficiency was comparable to or 

even surpassed most of the conventional approaches. This was especially true if 

the training set contains redundant input dimensions. Since the behavior of the 

construction algorithm is problem dependent, we compared the LowD RBFs to 

a host of other models on two quite different function approximation problems: 

For the Mackey-Glass equation, we found that the LowD RBFs learn much 

faster than BP, while retaining the same precision as conventional RBFs. In the 

nonlinear prediction of speech signals, the LowD RBFs were able to produce 

an additional 4dB of prediction gain than that obtained using the LPC linear 

predictor. 

4.2 Limitations and Suggestions for Further 

Research 

We have discussed the advantages of the construction algorithm and demon-

strated the outstanding performance of the resulting LowD RBF networks. How-

ever, one should not overlook the mechanism used to generate the LowD RBFs. 

It is important to realize that both the growing and pruning procedures are 

only heuristics. There is no way to guarantee that they can produce a optimal 

network structure. The behavior of these heuristics may perform badly under 

certain conditions such as in the presence of high noise level. Further research 

is necessary to improve the robustness of the growing and pruning methods. 
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