
I , i

F U N C T I O N A P P R O X I M A T I O N IN

H I G H - D I M E N S I O N A L S P A C E S U S I N G

L O W E R - D I M E N S I O N A L

G A U S S I A N R B F N E T W O R K S

BY

JONES CHUI

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DIVISION OF INFORMATION ENGINEERING

THE CHINESE UNIVERSITY OF HONG HONG

JUNE 1 9 9 2

‘

 9
0

 rv-

；

彻
 3
广
」
.
.
.
.

^
 •
大
H
o

 ?
墓

6
 i

 —i

 D

一

广

 r
f

”
)

 J

3

 一
麵

\

-
—
4

u
 .

t: ： ,

• ‘ , , •

Acknowledgement .̂

It is a pleasure to express my sincere thanks to my supervisor, Dr M. K. Lai, for

his invaluable advice and patient reading of this thesis. Thanks are also given

to Mr. F. L. Chung and Mr. Y. C. Chu for many beneficial discussions and

suggestions. In addition, I would like to express my deepest gratitude to my

family for their understanding and support throughout the past two years.

\ y

ii

t:

Abstract
厂

Recently, Gaussian radial basis function (RBF) networks have proven to be

useful for approximating continuous functions. For a wide variety of problem

domains, the learning speed of RBF networks has been found to be much faster

than backprogagation (BP) networks. However, due to the well-known “curse of

dimensionality" problem, an excessively large number of RBFs may be required

to approximate the function adequately especially in high-dimensional input

space which in turn diminish the learning speed advantage of RBF networks.

Fortunately, for most real-world problems, only a few relevant input dimensions

may be needed to obtain a good approximation. To take advantage of this

situation, a new dynamic construction algorithm based on the Sanger's tree

structure network is proposed here. This algorithm, which involves a growing as

well as a pruning process, builds up the dimensions and the number of Gaussian

RBFs incrementally.

The proposed algorithm starts with a RBF network of 1-D Gaussian nodes

distributed along each input dimension. During the growing process, new Gaus-

sian nodes which incorporate additional dimensional information are added to

the network to reduce the output error. After the growing procedure is com-

pleted, the pruning process takes over the control and eliminates the node that

iii

has the least contribution to the performance of the network. The entire pro-

cess halts when the error is reduced to below some desired threshold level. With

the above combination of growing and pruning processes, more efficient RBF

network structures can be obtained.

Two empirical examples both involving predictions are also given. The first

one predicts the dynamics of the chaotic Mackey-Glass equation, while the sec-

ond one predicts the acoustic waveform of a speech signal. In both cases, the

resulting network based on a few relevant dimensions, namely LowD RBFs,

are found to be superior in output accuracy and in the reduced number of pa-

rameters required than a host of other conventional approaches, including BP,

conventional RBFs, and linear prediction technique (LPC).

iv

‘. •. ‘
t_ ‘ •

Contents

1 Introduction 1

1.1 Fundamentals of Artificial Neural Networks 2

1.1.1 Processing Unit 2

1.1.2 Topology. . 3

1.1.3 Learning Rules 4

1.2 Overview of Various Neural Network Models 6

1.3 Introduction to the Radial Basis Function Networks (RBFs) • . 8

1.3.1 Historical Development 9

1.3.2 Some Intrinsic Problems 9

1.4 Objective of the Thesis 10

2 Low-dimensional Gaussian RBF networks (LowD RBFs) 13

2.1 Architecture of LowD RBF Networks 13

2.1.1 Network Structure 13

2.1.2 Learning Rules • . • 17

2.2 Construction of LowD RBF Networks . • 19

2.2.1 Growing Heuristic 19

2.2.2 Pruning Heuristic 27

V

2.2.3 Summary 31

3 Application examples 34

3.1 Chaotic Time Series Prediction 35

3.1.1 Performance Comparison 39

3.1.2 Sensitivity Analysis of MSE THRESHOLDS 41

3.1.3 Effects of Increased Embedding Dimension 41

3.1.4 Comparison with Tree-Structured Network 46

3.1.5 Overfitting Problem 46

3.2 Nonlinear prediction of speech signal 49

3.2.1 Comparison with Linear Predictive Coding (LPC) 54

3.2.2 Performance Test in Noisy Conditions 55

3.2.3 Iterated Prediction of Speech 59

4 Conclusion 60

4.1 Discussions 60

4.2 Limitations and Suggestions for Further Research 61

Bibliography 62

vi

Chapter 1

Introduction

When a person hears the voice or catches a glimpse of the face of a familiar

person, recognition is instant. Within a fraction of a second after the ear, eye

or nose is stimulated, one recognizes the object as desirable or dangerous. The

accuracy and speed of such recognition are unmatchable by any of today's man-

made machine. Our brain accomplishes this with ICF or ICF interconnected

neurons working together. Hence, resemble the structure of human brain system

and hereby simulate neuron-like actions become the motivation of many research

works for many years.

The beginning of artificial neural networks (ANN) research dates back to

1943 in the pioneer work of McCulloch and Pitts on modeling the simple type

neuron activities. During the late 1950s and early 1960s, the invention of Rosen-

blatt's perceptron and Widrow's AD ALINE had made substantial contributions

to the development of ANN architectures and implementation concepts. How-

ever, the explosion of this field is not ready until the mid 1980s, with the success

of various new network models and learning algorithms [12] [16] [28]. Experts

1

Chapter 1 Introduction

from diverse disciplines such as physics, psychology, mathematics, engineering,

and computer sciences have been attracted to join the emerging field of ANNs.

For the foreseeable future, the bulk of ANN research will play an important role

in practical tasks and in the behavioral and brain sciences.

1 • 1 Fundamentals of Artificial Neural Networks

ANNs are mathematical models of theorized mind and brain activity. ANNs ex-

ploit the massively parallel processing and distributed representation properties

that are believed to exist in the brain. Typically, ANN processing consists of

three elements: (1) a method of processing information, (2) an organized geome-

try (topology) of interconnected processing units, and (3) a method of encoding

(learning) information. To further understand various aspects of ANN system,

some of the fundamental issues are explained in detail.

1.1.1 Processing Unit

The primary information processing structure in ANN is the processing unit

(PU). A typical PU is shown in figure 1.1. The PU usually has a “state value"

or s that is taken to be a linear function of the parameters of the unit itself and

of the external input signals,

n

Sj = Y^ WjiXi + 9j (1.1)

where Sj is the state value of the jth unit, Xi is the zth external input, Wji is

the internal parameter (weight) connected from ith input to the j unit and the

term 9 associated with input is called threshold of bias. The output of unit j

2

Chapter 1 Introduction

y

XN ,

Figure 1.1: Basic processing unit (PU)

[y-) is typically defined to be a nonlinear function (/) of the state value {sj).

Three common types of nonlinearities as shown in figure 1.2 are: (a) the hard-

limiter, (b) the threshold logic, and (c) the sigmoid function. An ANN typically

consists of a large number of such PU. Some of them interact directly with the

outside environment while others communicate only with their counterparts in

the network. Information is distributed over the whole network through the

interconnections between them.

1.1.2 Topology

Since computation task and memory storage is shared by a number of PUs

operating in parallel, a specific knowledge can be represented by a group (layer)

of PUs. An ANN which is hierarchically organized is able to process information

in different level of abstractions.

Characteristics of ANN topologies are formed by different connection schemes

and layer configurations. Generally, there are three primary PU interconnection

3

i.

• t • i

Chapter 1 Introduction

f f f

+1 +1 y ~ +1

y ：乙 y y
0 0 0

- 1

(a) (b) (c)

Figure 1.2: Nonlinear activation functions (/)

schemes. They are intra-layer, inter-layer, and recurrent connections. Intra-

layer and inter-layer connections are the connections between PUs in the same

layer and in different layers respectively. Recurrent connections have the output

of PUs looping back to the input of the same PUs.

Layers can also be divided into three types. A layer that receives input signals

from the environment is called the input layer, and one that emits signals to the

environment is called the output layer. Any layer that lie between the input

and the output layers are called hidden layers. Figure 1.3 illustrates one of the

common type ANN topology.

1.1.3 Learning Rules

As distinct from the discussion in the previous section, while the network's

structure is usually considered fixed, learning rule is defined as the process which

modifies the network parameters (e.g. interconnection weights) in order to attain

satisfactory system performance in a changing environment. All the learning

4

Chapter 1 Introduction

h VN

f j j] o O O f j Output Layer

Input Layer

Xi X2 XN

Figure 1.3: Network topology of a three-layer feedforward network

rules can be classified into two categories, supervised learning and unsupervised

learning.

In supervised learning, an external teaching signal is required. One of the

best example is the least-mean-squared (LMS) algorithm, often called the Widrow-

Hoff delta rule. This algorithm minimizes the sum of squares of the linear errors

5

Chapter 1 Introduction

over the set of training samples. The linear error (e) is defined to be the dif-

ference between the desired output {y) and the actual output (y). Having this

error signal, the weight in jth PU are then updated according to following rule

Awji = acjXi (1.2)

where Cj = (jjj — yj), xi is the zth input, Wji is the weight connection for the jth

PU, and a is the learning rate. The choice of a controls stability and speed of

convergence. For most practical purposes, a is in the range of 0 < a < 1.

Quite often, teacher signal is not always available, either because of high

cost or lack of knowledge. In this case, an unsupervised learning procedure is

necessary. A typical example of this kind of learning is competitive learning [10

16] [29] which divides a set of multivariate input signals (vectors) into a number

of disjoint clusters in such way that the input signals within each cluster are all

similar to one another. It is called competitive because there is a set of PUs

which compete with one another to become active. There are many variations of

the same basic idea, and perhaps the most notable one is Kohonen's topographic

maps [15] produced by a modified competitive learning scheme.

1.2 Overview of Various Neural Network Mod-

els

Since the first introduction of neural modeling by McCulloch and Pitts in 1943，

a large number of ANN models have been developed to tackle different types

of practical problems. All these models, based on the fundamental features

elaborated above, can be divided into three categories.

6

Chapter 1 Introduction

In the first category, ANN is functioning as a content-addressable memory

(CAM) or associative memory [12] [17]. Such networks store a limited num-

ber of pattern samples as interconnection weights which corresponds to a local

minimum of an energy function. If a corrupted or distorted sample is presented

to the network, it will iterate and hopefully converge to that minimum which

retrieve the correct pattern sample in full detail.

Self-organization or the unsupervised learning capability [4] [15] character-

izes the nature of ANN in the second category. The network's learning does

not require the explicit teaching samples of the function, rather it depends on

a task-independent measure of the quality. The network optimizes its inter-

nal parameters with respect to that measure and eventually it will reflect the

probability distribution of features in the input patterns.

The last category comprises of the feedforward networks or the supervised

learning models [1] [28] where the learning can be regarded as performing an

input-output mapping from a set of examples. There are many different learn-

ing techniques proposed for this type of network. Generally, they can be further

divided into two groups: global representation and local representation. For the

global representation, learning is based on repeatedly adjusting a small set of

global parameters to obtain optimal values. It has the advantage of small mem-

ory requirements, but the parameters must often be determined using iterative

LMS algorithm which can be slow and are not guaranteed to converge to an

optimal solution. The widely used backprogagation (BP) [27] is an example of

this kind.

Unlike the compact global models, the local representations often creates a

network with a large number of local parameters for table look-up while each

7

Chapter 1 Introduction

parameter only corresponds to a subset of the input region. For example, radial

basis function (RBF) [24] networks use many structural locally tuned units so

that the optimal solution is more likely to be obtained than BP which uses

relatively fewer variables with a larger degree of freedoms.

1.3 Introduction to the Radial Basis Function

Networks (RBFs)

In terms of topology, RBF networks can be regarded as a three-layer feedforward

network. Input data x are propagated to a single layer of hidden units each of

which computes a radially symmetric function of so that the output (r) of

the jth hidden units is given by

where fij is the center of the RBFs for unit j, and ||. •. || denotes a distance

measure that is generally taken to be the Euclidean norm. These hidden units

encode the inputs by computing how close they are to the centers of the local

receptive region. For this, the nonlinear activation function g can be chosen in a

variety of ways. For the rest of this thesis we have taken a Gaussian nonlinearity

a.2

g{x) = e 一 口 (1.4)

The final outputs of the RBFs are the sum of the hidden layer outputs, each

weighted by the synaptic strength (w;)

m
y = (1.5)

i=i

8

Chapter 1 Introduction

The purpose of each output layer weights is to define the contribution of each

hidden layer unit to a particular output {y) of the network.

1.3.1 Historical Development

The notion that feedforward networks compute by using Gaussian hidden units

was originally inspired by a review paper on approximation theory, which de-

scribes algorithms for multivariable interpolation by Powell [25]. Later on, La-

pedes [18] discussed the hypothesis that two layers of sigmoid hidden units pro-

duced a “bumps,，transfer function in the output space in order to perform

approximation. He further pointed out that it might be easier if the weights are

synthesised based on “bumps” instead of the original inputs. In other words,

it would be advantageous to introduce RBFs to preprocess the inputs. Since

then, various forms of RBF networks had been proposed and found successful

application in the area of pattern classification and function approximation [3

22] [23]. In fact, networks which are based on RBFs can outperform BP in

various aspects; they are easier to train, are much more predictable, and give

intuitively simple solutions. ANN models of this type will be the main theme of

the research presented in this thesis.

1.3.2 S o m e Intrinsic Problems

Although RBF networks are useful for approximating functions in a variety of

different domains, they are not free from problems. Due to the localized nature

of the RBFs, a very large number of RBFs may be required to approximate

an arbitrary function adequately, especially in high-dimensional space. This

9

Chapter 1 Introduction

problem has been known as the "curse of dimensionality” caused by the fact

that high-dimensional space is mostly empty. For example，assume that a large

number of points is distributed uniformly in the 10-dimensional unit cube. Then

the side of a cube containing 5% of the points is (0.05)°'^ = 0.74. This implies

that RBF networks will not be able to pick up small features, unless the number

of RBF nodes is gigantic. Besides the heavy size burden imposed by the problem

of dimensionality, the calculations required on any of the RBF units increase as

the dimension of the input space is high which significantly impair the learning

speed advantage of RBF networks.

An efficient way to reduce the computational work of RBF networks is to

eliminate the irrelevant variables from the input domain. Note that in some

regions of the input space, the desired output function can be approximated

using only a few relevant dimensions, which is a very common situation in certain

real physical phenomenon. For instance, figure 1.4a shows that the output y is

a function of and X2. It is clear that y is independent of X2. Large number

of RBF nodes (represented by the small circles) will be saved if we employ only

the 1-D RBFs based on relevant variable xi as shown in figure 1.4b. However,

in many cases, it is impossible a priori for the RBFs to distinguish relevant

from irrelevant input dimensions. Technique that can create RBFs to capture

low-dimensional features of a single output function is clearly desirable.

1.4 Objective of the Thesis

In this thesis, we address the irrelevant dimension problem by devising a dy-

namic RBF network construction algorithm based on some heuristic measure

10

Chapter 1 Introduction

y

/ \
y / \ 1,0 〇 〇 。 ^ A

/ J K p 〇 o 〇 0 〉 怎 1 (b)

/ y ^ o o ^ o o /
/ y ^ o o o a q /

y ^ o o o o o ^
工2 (、

(a)

Figure 1.4: Problem of redundant input dimensions

of steepest descent dynamics. Two different approaches guard the evolution of

the network growing and pruning. The network's RBF unit is first allowed to

grow larger than necessary and then prune it back to yield a smaller and more

efficient structure. As the network is grown, some of the RBF units is correlated

with more dimensions of the input space. Although the heuristic approaches

described here is in no way to guarantee to factor out irrelevant inputs for all

the RBF units or even to obtain a optimal network structure, the performance of

the suboptimal network using RBFs with fewer input dimensions is surprisingly

good as compared to conventional approaches.

This thesis is organized into four chapters. In this introductory chapter,

the intrinsic problems in applying RBF networks have been stated. In the next

chapter a dynamic construction algorithm based on Gaussian RBFs is presented,

along with the detail derivations. In chapter 3, the effectiveness of the resulting

11

‘

Chapter 1 Introduction

RBF network is demonstrated through various prediction problems. Finally, a

brief conclusion is provided in chapter 4.

12

- 广 . ,

Chapter 2

Low-dimensional Gaussian RBF

networks (LowD RBFs)

In this chapter, a dynamic construction algorithm consisting of network growing

and pruning is derived. The algorithm builds a RBF network based on Gaus-

sian nodes of variable input dimension. The structure of the network changes

dynamically during learning and is determined by the output function to be

approximated.

2.1 Architecture of LowD RBF Networks

2.1-1 Network Structure

The dimensionality of the network elements - RBFs is expandable. Since they

will correlate with one input dimension at a time during learning, the synthesis

of RBFs in many dimensions may be easier if they are factorizable. It can

be easily proven that the only RBF which is factorizable is the Gaussian. A

13

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

multidimensional Gaussian function can be represented as the product of lower

dimensional Gaussians. For example, a n-D Gaussian centered in u can be

written as
-̂||aJ-/X|p 二 . e-(疋2-"2)2 •…• ^-{^n-Hnf (2.1)

where the subscripts i...n denotes the individual dimension for input x G

With this dimensionality factorization, the network can now start to com-

pute the approximation to the desired output function using a finite set of 1-D

Gaussian RBFs. If the function (scalar) y can be determined from only the sum

of Gaussian responses of n separable input dimension, then the network output

y can be expressed in terms of m 1-D Gaussian nodes in each dimension.

n m
= (2.2)

«=i i=i

where it;, cr, and [jl denotes the height (weight), width, and center of the Gaussian

respectively, i indexes the input dimensions and j the 1-D Gaussian nodes. All

the parameters of the Gaussian are allowed to train using least mean-squared

(LMS) learning algorithm in order to minimize the mean-squared approximation

error e = ^ { y - Given sufficient input samples, this algorithm will converge

until no further adjustment in ŵ cr, and fi will improve the approximation.

However, if y does not depend on a linear combination of 1-D Gaussians,

then there will be some nonzero residual error {y 一 y) which in turn creates

considerable average value of weight change variance

E[{Awy] (2.3)

(Refer to section 2.2.1 for more discussions on this heuristic) on certain nodes

indicating pressure to incorporate some additional dimension information or

14

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

"cross-terms". Similar to Sanger's tree-structured network [30] [31] [32]，the

node with the maximum variance becomes the parent to grow new nodes which

include one more input dimension. As shown in figure 2.1，the new 2-D nodes

can be generated as the product of the 1-D parent node and the chosen 1-D

Gaussians with dimensions different from the parent. In other words, the parent

node expands orthogonally to its own dimension axis in a symmetric way. As

a result, one of the original 1-D Gaussian will be split into m(n - 1) new 2-D

nodes and the output y is now given by

n—l m _L2—-uJL m—1 . . ^

y = EE^i- 2(�p2
i=i j=i i=i

n-l 饥 J 外
+ E l y i , , 2 (� (2.4)

where k denotes the input dimension corresponding to the nodes with the largest

variance and I indexes the new 2-D nodes. Note that the structure of expand-

ing the network nodes in terms of symmetric Gaussians is somewhat equiv-

alent to probabilistic neural network (PNN) or "sphere" Gaussian described

by Specht [33]. After adding these new 2-D Gaussian nodes, training is then

resumed to modify w, a, and fi to further reduce the error. Such growing and

training procedures can be following repeatedly until the output error is reduced

below some chosen threshold level.

So far, the growing of new Gaussian units is based on all dimensions that are

available except the ones from parent node. Relevant as well as irrelevant input

dimensions are included in the expansion. Thus, there is no way to produce a

minimal number of Gaussians in the network. However, to filter out the irrele-

vant inputs can be computationally expensive. The growing process employed

here, in fact, sacrifice optimality for simplicity of computation. Unfortunately,

15

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

T饥 7*1 « \ x"^ x^ rc饥
x-t Xi 丄2 x-Sy 山 71 n

T

(^ Q

xi i Xl^ xl^ 屯 4,n-l

Figure 2.1: Growing structure of the network

the increase in number of nodes is in a maximum factor of m(n — 1). There is

a great possibility that this may lead to an oversized network which is not only

poor in generalization properties, but the speed of convergence is also slow.

To attack this problem, in the way suggested by Karnin [14], a pruning

technique is introduced by estimating the slope (sensitivity) of the mean-squared

error (e) function with respect to each individual weight (w) in the entired

network. Upon the completion of LMS learning, the sensitivity of each node is

16

i

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

examined according to the formula

_ 舉切)2] w � (2.5)

— a w(E) — w(S) �丨

where the superscripts (S) and (E) denotes the beginning and end weight value

right before and after the learning process respectively. (The complete derivation

of the above equation will be elaborated in section 2.2.2) Then, the node with

the minimum sensitivity is pruned out. By means of this estimation, we can

implicitly measure the "redundancy" of each nodes and eliminate the one that

has least contribution to the learning of w. More unnecessary nodes will be

removed in the subsequent learning process until the network converges to a

desired output level.

The description above makes it clear that our approach here is to construct a

reasonably large network so that the learning process is successful, then remove

some redundant nodes to get a more economical network. Therefore, by incorpo-

rating the pruning procedure as the postprocessing step to the growing process,

a complete low-dimensional Gaussian RBF network (LowD RBFs) construction

algorithm can be formed.

2.1.2 Learning Rules

In order to determine the exact settings of w, cr, and fi in each of the Gaussian

nodes, LMS learning algorithm is employed here. Consider only the case of

adapting parameter ly, the original form of the algorithm can be written as

切 = a ^ (2.6)

17

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

or can be expressed in terms of the change of w

Aw* = ly 计 1 -w* = - a - ^ (2.7)
dwt

The adaptation cycle index is t. ti；计i and w* indicates the next and present value

of w. a is the learning factor. The present error ê is defined to be the squared

difference between the desired function y无 and the approximation obtained from

the network 伊.

二 - fY (2 . 8)

Applying the steepest descent procedure to error function e, the partial deriva-

tives of e with respect to each of the 1-D Gaussian parameters w, cr, and fi can

be obtained as

二 —(y-幻e— 2 (� 2 (2.9)

= (2.10)
dal [cTi f

^ = - (H) ‘ - 〖) 2 (镜 ） （2.11)

In accordance with equation 2.6 (we now suppress the index t for convenience),

the learning rule is then applied to alter parameters of the 1-D nodes with

each sample presentation to make an error correction proportional to the partial

derivatives.

As the number of nodes grows incrementally, more and more input dimen-

sions are included in the nodes. For input a? € the possible set of Gaussian

nodes that can be generated by the construction algorithm is

1 < z < n|

18

i • . . ‘ .

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

Expanding the equation 2.9, 2.10, and 2.11 to adjust the parameters for n-D

Gaussians, we have

Awi., = -a{y - y)e {2.12)

AaU = - y)<-ne 2(< .”)2 ((^i j 3) (2.13)

A/4 = - a (双 - (f ^) (2.14)

This is equivalent to perform training in the worst case condition - with fully-

grown n-D nodes. Since the computational saving of the construction algorithm

rests on the assumption that an adequate approximation will not always require

all the dimensions of the input data, it is not essential to compute all n Gaussian

functions in a node or to learn the parameters corresponding to the redundant

input dimensions.

2.2 Construction of LowD RBF Networks

2.2.1 Growing Heuristic

In this section, the development of the heuristics for the network growing and

pruning processes is pursued. The ultimate goal is not aimed at producing

optimal structure of the network, instead, is to develop a efficient construction

algorithm which a competent network can be easily obtained.

In our growing strategy, new Gaussian nodes with correlation of one addi-

tional dimension information are added into the network whenever the existing

structure is found to be incapable of approximating the desired function. Since

optimality is not crucial in the growing algorithm, network parameters like the

19

1 香 港 中

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

change of weight {Aw) and the mean-squared error (e) that can be easily ac-

quired along the normal course of LMS learning are employed here to determine

where and when to grow new higher-dimensional nodes. This reduces the com-

putational burden imposed by the algorithm.

To understand the choice of growing criteria and their detailed derivation,

let us first recall that the weight update equation for 1-D nodes is given by

-ifizdf.
Awi 二--们e— (2.15)

As learning proceeds, the average value of Awj will tend to zero. If function y

depends on a linear combination of the 1-D Gaussian nodes, the error (y-y) will

also approach zero. However, if the nodes do not provide sufficient information

to approximate y, then there will be some nonzero error which in turn creates

strong tendency to increase or decrease the value of Although the variations

of w{ with different signs eventually cancel each other, causing the average or

expected value E[{Awl)] tends to zero. Nevertheless, a considerable amount of

variance E[{Aw{Y] will be produced. Such a situation can be well illustrated

by a simplified example shown in figure 2.2. Figure 2.2a shows how Wi of a

single 1-D Gaussian nodes based on input Xi is related to network output y.

In figure 2.2b the desired function y indeed depends on both inputs Xi and X2,

therefore it is clear that Wi will fail to converge to a satisfactory solution and

the arrow in figure 2.2c indicates the fluctuation of wi in the xi and X2 input

space.

Because E[{AwjY] provides deficiency information for each individual 1-

D nodes, it becomes the main criterion for determining where to grow new

nodes. This leads to the following relation between the weight variance and

20

； V ‘ , • .

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

y

.Jy--'
Wi X2

Yx
(c)

Figure 2.2: Weight change variance problem

mean-squared error.

Jxi-^

E[(A妨尸]={a')E[{y - yY{e~�(…^)2] (2.16)

Since this is true for all j in i input components, the total variance of all m n

21

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

1-D nodes can be obtained as

E [± t { A w { r] = { a ') E [± f : { y - y n e ' W)̂)] (2.17)
i=l j=l i=l i=l

For any input x = [xi,x2,' • - it is assumed that at least one 1-D Gaussian

can respond to one of its components. Thus, the lower bound of the total

variance is given by

± f： E[{Awif]>{a'n m)E[{y - yf]德 ± E (2-l8)

or can be expressed in terms of mean-squared error

(2.19)
t=l j=l

where • _
• n m _(fizd2l

(… 2 二 s > 0 (2.20)

i=l j=l

From equation 2.19, we see that the error E[(y - yf] will be zero if and only if

the total variance E?=i ZJLi ^ K ^ ^ i ^] 二 0. Hence, it is advisable to minimize

the maximum El(Aw{y] for any particular j node in i input such that the error

can be reduced in this case.

To decrease the variance of the 1-D node with maximum value, new 1-D

Gaussians based on different input components are added into the chosen node

as additional second dimensional information. In other words, the original 1-D

node of maximum variance are expanded and new 2-D nodes are formed. Again,

w{ as well as other Gaussian parameters of these 2-D nodes are trained according

to the learning equations 2.12，2.13, and 2.14, so that

Awl = -^(y — 咖 - 2 (吃 吃 (2 - 2 1)

22

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

A i / j 一 — /4) + - M/) VP …�

^ (^ i i = - O i { y - y W k , 、 '） e � “ ()(2.22)

(^k-t^if j
Af4 = -a{y 一 y)wi/ 厂 2 (� 2 (箭 ） (2.23)

where k specifies the input of 1-D nodes for which E[{Awiy] is largest. From

the above equations, it is clear that the parameters of these 2-D Gaussian nodes

are being trained to correct the insufficiency of previous 1-D ones based on the

context specified by additional dimensions of the inputs.

Upon the completion of every learning period, the accumulated output error

(e) of the network is recorded and checked. If it does not indicate a significant

improvement over the previous one, new higher-dimensional Gaussians nodes

are made to grow in place of the original node with largest variance such that

a better approximation of y can be achieved. In what follows, we will describe

the detailed implementation of the LowD RBF network growing process step by

step:

Step-1 Set the INITIAL MSE THRESHOLD - stopping criteria for the grow-

ing algorithm. Set the CONVERGENCE TOLERANCE - determine

whether the algorithm may continue learning or add new higher-

dimensional nodes.

Step-2 Select m 1-D Gaussian nodes allocated on each input dimensions.

Initialize the parameters of these nodes to be:

• w - set to small random values and save them in temporary

array.

23

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

• a - equal CTmax which has the value large enough to cover the

domain of the input space.

• jjL - distribute all m nodes evenly over the input range of each

dimensions.

Step—3 Set i = 1 (index for learning period) and j == 1 (index for growing

period).

Step-4 Invoke one periodic learning procedure at the iih learning period,

where one learning period implies the presentation of all s training

samples to the network. The learning procedure is as follows:

• Get the next training sample.

• Perform steepest descent on all Gaussian parameters w, cr, and

fJ"

• Accumulate (A—2 and save them in temporary array.

• Compute the network performance at the zth learning period

by
s

Pi = Y.

where e j i) represents the error function of s samples at zth

learning period.

Step—5 If the performance improvement due to the parameters learning is

saturated, (i.e. pi < INITIAL MSE THRESHOLD) then terminate

the growing algorithm.

24

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

Step-6 If it is not saturated, check the percentage of improvement compared

with the previous learning period by

rrii = \PLZltl\ X 100%
Pi

If mi > CONVERGENCE TOLERANCE, set i = z + 1, go to Step-4

and continue another learning period.

Step-7 If rrii < CONVERGENCE TOLERANCE, apply the Gaussian nodes

growing procedures listed below:

• Find the node with maximum E[{AwY] as the parent.

• Generate m new 1-D Gaussians on each input dimensions except

the ones take over by the parent node.

• Initialize all parameters in newly born Gaussian nodes as

—w - set to small random values and save them in temporary

array.

- c r - equal a{j) which shrinks continuously using function

at jth growing period.

—fjL - distribute all m nodes evenly over the input range of

the chosen input dimensions.

• Synthesize the new higher-dimensional nodes as a product of

all these new 1-D Gaussians and the parent node.

• Remove the original parent node from the network.

25

t . . . ——.

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

set i = i + 1 and 二 j + 1，go back to Step-4 and continue the next

learning period.

Typically, pi is an accuracy measurement of output of the network at the zth

learning period, pi larger than the INITIAL MSE THRESHOLD are either im-

mediately corrected by the allocation of new nodes or continuously repaired using

steepest descent. The choice of these two actions to be taken are distinguish-

able by rrii. A very small value of mi (or one less than the CONVERGENCE

TOLERANCE) means that the trajectory of error transient comes into a flat

region of the error surface. Since there is a great possibility that the network

may become stable or enter the slow convergence state, new nodes should be

added as a perturbation for the learning of the network. The width a{j) of these

newly added nodes is the scale of resolution that the network is able to capture

the detail of the approximated function at the j growing period. The learning

starts with largest scale a{j) = (7丽,which creates a coarse representation of

the function. Then refines the representation by allocating nodes with smaller

and smaller a{j). Finally, it reaches cimin which is the smallest length scale of

interest.

Note that the defective node selection heuristic described here only depends

on the measurement of the maximum variance of Aw. In fact, there are two

different kinds of parameter change ACT and A// which are also available as part

of the LMS learning. However including all of them into our growing rule may

not be the best idea. Since the axis of optimization for ACT and Afi are dependent

on Aw, using only Aw is adequate to reflect the inadequacy of each Gaussian

nodes. Moreover, memory storage requirements of our growing algorithm can

be lessened.

26

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

2.2.2 Pruning Heuristic

Up to now, our study merely concentrated on network growing. It is time to

switch our attention to the final stage of the LowD RBF network development-

the pruning process. As pointed out in section 2.1.1, in order to increase the

probability for the network to approach a satisfactory solution, the growing of

new Gaussian nodes would include predetermined combination of all input di-

mensions so that the maximum number of nodes m(n 一 1) is added at each

growing period. This is undesirable at first glance, because a considerable num-

ber of nodes which contain irrelevant input information would be unavoidably

generated as a by-product of such a process. However, the technique for factor-

ing out irrelevant components of the inputs can be computationally expensive

and requires a large body of a priori information about the underlying struc-

ture of the problem. Yet many other simpler methods have been proposed to

accomplish this reduction. One of them is to let the network grow larger than

necessary and the unneeded nodes are then removed afterwards. This is exactly

the approach that is pursed here.

Unfortunately, there is no general way to determine which nodes can be

removed while the network performance would not be significantly impaired due

to the removals. One possibility which is used in [14] is to eliminate the nodes

according to their "contribution" to the LMS learning. It is suggested that the

"contribution" of each node is explicitly measured by calculating the slope (or

sensitivity) of the output error function e = \{y-yy with respect to the training

parameter. Here, our approach for pruning is to estimate the sensitivity of e with

respect to the Gaussian parameter at the end of each learning period. Then the

node with the lowest sensitivity value is pruned. More redundant nodes would

27

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

be removed in the subsequent periods so that the speed of convergence of the

whole network is improved.

For the sake of simplicity, the estimation of sensitivity {s) is only in terms of

the Gaussian weight (w;). The significance of this choice will be apparent in the

later part of our discussion. Starting the formulation with 1-D nodes, assuming

that e is a function of wj only, sj with respect to wj can be defined as

s{ = - (2.24)
wj ⑷一 wi(S)

where E and S denote the specific values at the beginning and end of the LMS

learning respectively. Note that during the development of completed network

structure, both the initialization of new Gaussian parameters and the evaluation

of sensitivity are performed periodically. This makes the duration of training

process vary from node to node. To account for this situation, we will approxi-

mate the sensitivity by the average slope of e

,eiE)-eiS) wm 測

^ E[wl] - S[wl] wl{E) - wl{S)

where E[wi] 一 S[wi] denotes the difference in learning periods according to

individual

In a normal LMS search procedure, the actual error difference e(F) - e(S)

is a function of all learning parameters. Apparently, this is in contrast to our

assumption in equations 2.24 and 2.25. To elaborate, consider the variation of

e in the domain of w while assuming all other parameters <7 and /z remains

constant. Substituting equation 2.2 into 2.8 and expanding yields

e =去(2/2 - 2ywji' ^ (乂) 。 + (w^fe (…^) (2 . 2 6)

JL

28

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

where e is a quadratic function of wj so that a convex error surface is formed.

Figure 2.3 shows a example of a typical surface contour for a network with Wi

and W2 only. The position of a point and the contour lines represents the values

of two weights and the error respectively. The actual trajectory of the error

difference descending from point S to E is indicated by the line with arrow.

From this figure, it is obvious that we can simplify the calculation of 5i by using

only the partial influence of the error due to the changes in Wi which corresponds

to the path from S[wi\ to E[wi], Hence our assumption is clarified.

Regarding equation 2.25, the calculation of sj can now be evaluated precisely

by expressing the error difference as

e � - e ⑶ 二 广‘、pjdw (2.27)
� 7 \) Je[wI] dwl

The integral is along the error path projected onto the wl axis from S[wj] to

W2

_
^ Z Wl

E[wi

Figure 2.3: Learning trajectory of the error path

29

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

E[w{]. Since the LMS learning calculation is performed at discrete times. The

above expression can be further simplified by replacing the integration by a

summation.

e{E) - e{S) = ^ (n) A ^ n) (2.28)

For the 1-D nodes, w{ are updated according to 2.15, hence the estimated sen-

sitivity to the removal of w{ can be rewritten as

, 改 _ (2 29)

“ a{E[w{\ - ^K']) wl{E)~wl{S)

or can be expressed in terms of expected value

二 丑 [(A 咖] • 咖) (2.30)

^ « wj(E)-wj(S)

Periodically, the output error e is checked to see if it shows signs of slow im-

provement over previous ones. A redundant node with the smallest sensitivity

value with be eliminated in the hope that it can speed up the convergence of

the network. This removal procedure are continued until the error is reduced to

below some desired level. Details of the pruning algorithm are given below:

Step—1 Set the FINAL MSE THRESHOLD to a smaller value (e.g. 50% of

the INITIAL MSE THRESHOLD in the growing process) - stopping

criteria for the pruning algorithm. Set the CONVERGENCE TOL-

ERANCE equal to the previous value in the growing procedure -

determine whether the algorithm may continue learning or eliminate

the redundant nodes.

Step-2 Continue the one periodic learning procedure at the ith learning

period.

30

. � “ • .

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

Step-3 Check if pi < FINAL MSE THRESHOLD. If yes, exit the pruning

algorithm with success.

Step-4 If no, check the marginal improvement compared with the previous

learning period. Ifm,- < CONVERGENCE TOLERANCE, Retrieve

all necessary data from the temporary array and compute the sensi-

tivity of each nodes according to

E[{AwY] w{E)
召 = " " “ a w { E) - w{S)

then remove the one with minimum value.

Step-5 Set i = i + 1, go back to Step-4 and continue another learning period.

2.2.3 S u m m a r y

We have presented the idea of automatically constructing appropriate struc-

ture of LowD RBF networks that successfully approximates a given function

which might have a few irrelevant input dimensions. The construction algo-

rithm mainly composes of two processes - network growing and pruning. The

growing process builds up the network elements - (Gaussian nodes) incremen-

tally until the learning is successful. However, in order to avoid using a priori

knowledge of the data, all input dimensions information are included in the

node adding rule. Thus, large amount of unnecessary elements may involve in

the resultant network structure. The pruning procedure is then used to trim

the oversized network by removing unneeded nodes. This exactly complements

the previous process. In fact, by simply cascading the pruning procedure to the

growing process, a complete algorithm is formed. Figure 2.4 shows the flowchart

31

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

Set up initial network parameters.
Save the initial weight value. *
Start the network with 1-D nodes

^ Train parameters by steepest descent
J ̂ Accumulate MSE and weight change
• variance.

Train parameters by steepest descent 1 — - — — — — p - - - — — — — J
Accumulate MSE and weight change
variance. ^ Ĵt.̂ ^^

No ‘
<^^inish training for s samples?^,^ *

No ^ 丁
« • — — — t r a i n i n g for s samples?^ Yes

,f Yes <;[^Reach the FINAL MSET^^^

< ; R e a c h the INITIAL M S W ^ No

丨 No * < ^ S E varies by more than 1 % ? ^ »

Yes nr
* varies by more than 1 No

—— . .
Locate node with min. sensitivity.

No _ , *
，丨 Remove that one.

Locate node with max. variance.
Add new nodes below that one.

•

Figure 2.4: Flowchart of the construction algorithm

32

t . I . . .

Chapter 2 Low-dimensional Gaussian RBF networks (LowD RBFs)

of this combined algorithm. In the next chapter we shall verify the usefulness

of this algorithm by examining whether the algorithm helps save computation

and memory space while achieving high accuracy.

33

Chapter 3

Application examples

In this chapter we present the results of some numerical experiments used to

test the performance of our low-dimensional Gaussian RBF networks. We also

perform extensive analysis on the associated network construction algorithm.

Although the simulations being studied are indeed quite simple, they still effec-

tively demonstrate the operating principles of the new algorithm. The first set

of experiments uses synthetic data. It involves prediction of the Mackey-Glass

differential delay equation. Several conventional ANN models will be used for

performance comparison. The second experiments employs the LowD RBFs as

a nonlinear predictor of speech data. The purpose is to check whether the LowD

RBFs is able to exploit nonlinear as well as linear correlations in real data.

34

Chapter 3 Application examples

3.1 Chaotic Time Series Prediction

As a simple test case, LowD RBFs is used to predict the chaotic time series

generated by integrating the Mackey-Glass delay differential equation [20

^ = 0.2 _ o.i^(t) (3.1)
dt 1 + x^^t - r) 、 乂

where r is a delay parameter which specifies the width of an initial function.

This time series has an infinite-dimensional phase space. However, it does have

low-dimensional attractors whose dimension increases with r [8]. This series has

become something of a standard benchmark for prediction algorithms [5], [9],

1 8] , and [2 2；.

First, we consider the case where r = 17, for which the series has an attractor

with a fractal dimension of about 2.1 [8]. To generate the values of x at discrete

time steps, the above equation is integrated using a fourth-order Runge-Kutta

method with the initial function set to a constant value of 0.8. Following the

previous references, the networks is trained to predict x{t + 85) given x{t),

x{t 一 6)，x{t - 12), and x{t — 18) as inputs. (We shall refer to this as an “85-step

prediction".)

To set up the LowD RBFs construction algorithm, we have to decide how

many single dimension Gaussian nodes to be allocated for each input components

and their initial width a max- We have no specific criterion for deciding what the

optimal values should be. In the following experiments the number of nodes is

chosen to be 4 and the width to be half of the maximum input range divided by

that node number o • 而 = T h i s choice is arbitrary and definitely not optimal

with regard to prediction accuracy. Other parameters used by the algorithm to

predict Mackey-Glass equation with T 二 17 are listed as follows:

35

‘I. • “

Chapter 3 Application examples

_ a 二 0.025

• DECAY= 30

• CONVERGENCE TOLERANCE^ 0.01

• INITIAL MSE THRESHOLD^ 0.0002

• FINAL MSE THRESHOLD^ 0.000085

Since the above DECAY and the two MSE THRESHOLD parameters have great

influence on the characteristics and accuracies of the final LowD RBF networks,

special attention are paid to the sensitivity analysis of these parameters in the

subsequent sections.

During the dynamic construction process, the sample inputs to the network

are randomly taken from 500 training set at each learning period. Gaussian

nodes are either added or removed from the network whenever the CONVER-

GENCE TOLERANCE is found to be less than 0.01. The final network structure

is grown to have the following number of nodes with maximum dimension of 3.

• Number of 1-D nodes = 4

• Number of 2-D nodes = 124

• Number of 3-D nodes = 115

Figure 3.1 shows the variation of the average MSE as the number of nodes

is changed. The complete process requires 425 learning periods which takes

approximately 50 minutes of CPU time on a DEC 5000 workstation. To indi-

cate how accurate the result could become, the normalized root mean-squared

(NRMS) error is employed here as the figure of merit.

NRMS Error = . � “ (3.2)
\ E (2/ - yr

36

% •‘ .

Chapter 3 Application examples

where y is the mean target value over s testing samples. In equation 3.2, the

NRMS is defined to be the root mean-squared error, divided by the standard

deviation of the data sample. It is necessary to remove the scale dependence of

the sample and the standard deviation provides such a scale to use. Thus, the

NRMS is insensitive to the dynamic range of the time series.

Now to measure the performance of the network for the 85-step prediction,

the previous 500 training samples is used as a test set and input to the network

again, the NRMS error is found to be 0.051. Figure 3.2 shows the predictions

and the true time series are virtually indistinguishable. Figure 3.3 shows the

NRMS error as a function of 85-step predictions.

0.02 r i “— ‘ — • ‘ ‘ ‘ ‘ “

0.018 - “

0,016 - “

0.014 - _

I 0-012 • -
0.01 _ g \

< 0.008 _

0.006 - _

0.004 - \ ‘

0.002 - _

.一 , -

% 50 100 150 200 250 300 350 400 450
Learning Period

Figure 3.1: Error transitions of the network during construction process.

37

Chapter 3 Application examples

1.61 1 1 1 1 • ‘ "‘

1.4 - _

柳fymi
0.4 - V _

—True value
0.2 - —Prediction “

100 150 200 250 300 350 400 450 500
Step

Figure 3.2: The 85-step prediction output of LowD RBFs and the true values.

0.251 . 1 • ‘ •‘ ‘

0 . 2 - -

g 0.15 - _

讓 t
z 0 . 1 - -

哪 MWikWII
100 150 200 250 300 350 400 450 500

Step

Figure 3.3: The NRMS error on each time step for the 85-step predictions.

38

Chapter 3 Application examples

3.1.1 Performance Comparison

The idea of training a network based on low dimensional feature is not new. In

fact, a network algorithm described as “Gaussian bars” by Hartman et al. [11

have similarities to the LowD RBFs proposed here. In the network with only a

single layer of 1-D nodes, the structure is exactly equivalent to a single layer of

Gaussian bar networks. However, the two networks differ in the way that the

Gaussian nodes are combined for the multilayer architecture: the LowD RBFs

are composed layers of 1-D nodes via multiplication in order to produce higher

dimensional nodes, while in a multilayer Gaussian bars, the networks are more

similar to the structure of BP in which the outputs of one Gaussian bars unit

can regard as direct inputs to the other units. We now compare the LowD RBFs

with the Gaussian bars as well as other network models. Note that the output

error and parameters saving of the LowD RBFs are actually comparable to or

even exceeded the results in [11], which summarizes again in table 3.1.

Network type | Total parameters | Normalized RMS error

LowD RBFs
1083 0.05

Gaussian Bars 750 0.22
1461 0.19
4500 ^

BP m ^
601

RIF^ m o3o
1801 0.03
3001 0.02

Table 3.1: Performance summary for 85-step prediction problem.

39

1

Chapter 3 Application examples

0.085 “ ‘ ‘ ‘

0.08 \ “
\

0.075 _ \ …-T-ting -
�.�.� —Training

0.07 - \ - -’•
g \
S \
g 0.065 - •� 公 z -
g ����� ^ _

0.06 - \
\

�
\

0.055 - ���� _
\
\ 及

0.05 - \ -
、----s …〜， Z "
^ 2 t s 3 33 4

INITIAL M S B THRESHOLD xlCM

Figure 3.4: The total network parameters as a function of the INITIAL MSE
THRESHOLD

1800•r ‘ — ‘ ‘

1600 - \

1400 - \ _
1 V
霞 \ ^ 1200 - \ _

1
之 1 0 0 0 - 一

8 0 0 - “

1.5 2 2.5 3 3.5 4
INITIAL M S E THRESHOLD xlCM

Figure 3.5: The prediction error as a function of the INITIAL MSE THRESH-
OLD

40

Chapter 3 Application examples

3.1.2 Sensitivity Analysis of M S E T H R E S H O L D S

Basically, the INITIAL MSE THRESHOLD controls the amount of Gaussian

nodes growth in the dynamic construction process. To study the effectiveness

of the the above parameter for the 85-step prediction task, we vary the INI-

TIAL MSE THRESHOLD from 0.0001 to 0.0004, while fix the FINAL MSE

THRESHOLD to a small constant value of 0.00007 and let the networks grow

for maximum 450 learning periods. In addition to the original training set, a

500 testing samples of the Mackey-Glass equation at t = 2000 are employed

here to reflect the generalization ability. Figure 3.4 shows the reduction of total

parameters as the value of INITIAL MSE THRESHOLD increases. Figure 3.5

depicts the trend of NRMS error as the function of INITIAL MSE THRESH-

OLD. It is clear that as the MSE increases, the error both on training and test

sets decrease as the network has enough degrees of freedom to fit the structure

of all the LowD RBF nodes. However, after a critical value of MSE has been

reached, the error starts to increase. From this point, the network has suffered

from the overfitting problem which will be discussed in detail shortly afterwards

3.1.3 Effects of Increased Embedding Dimension

To study a higher-dimensional case, we now consider the Mackey-Glass equation

with r=30. At this value of r, the series has an attractor with a fractal dimension

of 3.6 [8]. We reconstructed the network inputs using values at x{t), x{t — 6),

x{t — 12), x{t — 18), x{t - 24), and x{t 一 30). Because the dimensionality of the

attractor is larger than that of the r = 17 case, the number of training samples

is increased to 1000 in order to set up the LowD RBFs, for which the task is

41

Chapter 3 Application examples

to predict x{t + 6). (Again, we shall refer to this as a “6-step prediction".) If

the network can perform this sufficiently well, then it can be taken to iterate

on its own outputs and make predictions from the "seed" data samples. For

example, if one wants to predict x{t + 12), the network is first used to compute

the x{t + 6) value based on the initial “seed，，data，then feeds the x{t + 6) back

into the input to predict x{t + 12) using the predicted x{t + 6) value instead of

the actual x{t + 6) from the time series. This procedure corresponds to iterate

the network to perform prediction at multiples of a; = 6 ("Iterated prediction").

Since iterative method of prediction will cause small errors to accumulate, as

expected, the error will increase farther as the network iterated into the long-

term prediction.

To tackle the above higher-dimensional problem, we start the LowD RBF

using the following setting of parameters.

• Number of nodes on each dimension:?

• J — M
• ^max — 4

• a = 0.025

• DECAY= 30

• CONVERGENCE TOLERANCE= 0.01

• INITIAL MSE THRESHOLD^ 0.00005

• FINAL MSE THRESHOLD: 0.00003

The network is trained for 322 learning periods. (It requires almost the same

CPU time as in 85-step prediction.) The final structure has the following number

of nodes with a maximum dimension of 3

• Number of 1-D nodes = 3

42

Chapter 3 Application examples

• Number of 2-D nodes = 67

• Number of 3-D nodes = 135
s

which is able to achieve an NRMS error rate as low as 0.024 for the 6-step

prediction. Figure 3.6 shows the trend of average MSE as the number of nodes

is varied. Figure 3.7 shows that the 6-step prediction matches the actual time

series very well. In figure 3.9, it shows that the network is capable of producing

a valid iterated prediction up to 550 steps (with NRMS < 1). The NRMS errors

for the 6-step and iterated prediction tasks are plotted in figure 3.8 and 3.10

respectively.

xio-3
8 I . 1 —~‘ ‘

7 - _

6 - _

i -
I 4 - -

I 3 -

2 • “

1 _

% 50 100 150 200 250 300 350

Learning Period

Figure 3.6: Error transitions of the network during construction process.

43

Chapter 3 Application examples

1.6 1 1 -1 1 1 1 ‘ ‘ ‘

1.2- fl ^ rt J rt M . fl ^

I : : w
0.6 - \ _

\ v \
-True value

V V
0.2 - V -Prediction _

0 � 100 200 300 400 500 600 700 800 900 1000

Step

Figure 3.7: The 6-step prediction output of LowD RBFs and the true values.

0.141 1 1 1 1 ‘ —‘ ‘ ‘ 一 ‘

0.12 - -

0.1 - _

葛 0.08 “

_ 0.06 - 丨 _

0 .04- I I I I I -

。.僅議圓 liiiiyii
0 100 200 300 400 500 600 700 800 900 1000

Step
Figure 3.8: The NRMS error on each time step for the 6-step predictions

44

Chapter 3 Application examples

\ V —True value _
0.2 - V � � “

—Prediction
難 , e 養

% 100 200 300 400 500 600

Step

Figure 3.9: The iterated prediction output of LowD RBFs and the true values.

1.61 i “ ‘

1 . 4 -

1.2 -

I I：
0.6 -

0.4 - II 1/1 “

“‘•lauMiJUAAkAAAl I
"0 100 200 300 400 500 600

Step

Figure 3.10: The NRMS error on each time step for the iterated predictions.

45

Chapter 3 Application examples

3.1.4 Comparison with Tree-Structured Network

As mentioned in previous section, the most closely related algorithm is Sanger's

tree-structured networks which use Fourier basis functions to approximate a

continuous function. Note that the Sanger's algorithm uses on-line learning

which does not store the past input samples. This is in contrast to the training

method employed in LowD RBFs networks. Therefore, it is difficult to compare

the performance of these two algorithm directly. However, for reference only,

some of the experiment results from 6-step prediction problem described above

are summerized in table 3.2

Network type Total parameters NRMS error Iteration steps
LowD RBFs 952 0.024 550

Tree-structured nets. 12720 0.025 600

Table 3.2: Performance summary for the 6-step prediction problem.

3,l-5 Overfitting Problem

It is important to note that at the beginning of the dynamic construction process,

the width of the initial Gaussian nodes are defined by a large value of cr, so that

they are able to create a coarse representation of the function. As learning

progresses, the representation can be refined by reducing the effective radius of

the newly born nodes exponentially at a rate controlled by the DECAY constant.

Figure 3.12 shows the NRMS error versus different values of the DECAY. (To

test the generalization performance of the network, additional 1000 test samples

are taken from the output of the Mackey-Glass equation at t=4000). In this fig-

46

Chapter 3 Application examples

18001 1 I • ‘ ‘ ‘ ‘

1600 - /

1400 - / “

s /
I ^ ^ _

^ ； / ：
600 /

柳 ^ 30 35 td 45 50 55 60
DECAY

Figure 3.11: The total network parameters as a function of the DECAY param-
eter

0.036 . “ ‘ ‘ ‘ ‘ ‘ j 丨

0.034 - / _
…-Testing
---Training

0.032 - _

. / L
g 0.03 - /
^ /
CO /

_ 0.028 - „ ...o ^ ！ _
宏 。 ••〜•• /

o - -o- /
0.026 - /

, 八 Z \ 一- . 0.024 - Z 、、、 一 Z ^
����

�x----

0.02220 25 30 35 40 45 50 55 60
DECAY

Figure 3.12: The prediction error as a function of the DECAY parameter

47

k.

Chapter 3 Application examples

ure, we find that the results on both training and testing set are basically followed

the slow increasing tendency in error rate as the DECAY increases. However,

such a trend can not be applied to the large value of DECAY. It is because at

this value of DECAY (e.g. DEC AY 二 60) the effect of radius decrement releases,

new nodes with large width are simply added to the network. The result is

that these newly added nodes are significantly overlapped which pushes many

of the original nodes away from the input region, so as to reduced the overall

error in the fastest possible way, rather than adjust them locally. In this case,

the network is depleted of effective nodes to reduce the error in subsequent

learning period. Consequently, large number of nodes are added to the network

to compensate for this "loss", which in turn generate an enormous size of the

network structure with little improvement on the error rate. This is further

supported by the results as plotted in figure 3.11. Finally, we have to point

out that the overfitting problem also occurs when too many Gaussian nodes

(regardless of the width) are pumped into the input region of interest. This

gives a good explanation of the situation in figure 3.5

48

Chapter 3 Application examples

3.2 Nonlinear prediction of speech signal

Speech coding has a long history. Approaches to coding can be divided into

two groups. One is called waveform coding, which deals with the acoustic wave-

form itself. PCM, DPCM, delta modulation [13], and transform coding fall in

this group. Another good representation of speech is to model the process by

which a human speaker produces speech. For example, the vocal tract can be

modeled as an all-pole filter with the poles corresponding to the vocal tract's

resonance frequencies. This is the well-known linear predictive coding (LPC)

technique [21]. The set of LPC coefficients plus the excitation (periodic signal

or white noise) forms a more compact representation of the speech signals than

the acoustic waveform. Speech coding based on this type of models is called

parameter coding.

A major limitation of LPC is that it only models the poles of the vocal

tract. For instance, nasal sounds which require at least a pole-zero model could

not be modeled adequately. Since a zero has to be approximated by several

poles, this often results in requiring a higher order linear model than ought to

be necessary. Therefore, several researchers [6] [19] [34] [7] have investigated

the possibility of using nonlinear, especially ANN based, predictor to further

improve speech modeling.

As similar to the previous work on modeling of chaotic processes, speech

production can be viewed as a flow on a low-dimensional manifold. Results

in [2] and [34] reveal that most of the speech lies on an attractor with dimension

approximately ranging from 3.3 to 3.4. Hence, it is possible to produce good

forecasts of speech using only a subset of its past values. This situation makes

49

Chapter 3 Application examples

the LowD RBF networks a good candidate as an nonlinear predictor (NLP) for

the speech signal.

In this experiment, the LowD RBFs as well as the LPC model are examined
r

in the task of speech prediction. Here, the LPC algorithm is implemented using

the relation

封 = (3.3)

i=i

where n defines the order of prediction model or usually refers it as predictor

order, is the (n + l)th sample of the signal, a,- is a set of LPC coefficients

which are computed every 10ms on a frame length of 25.6ms. Note that an error

signal e(t) (residual) would be generated by the equation 3.3 is defined as

e(t) = x{t) - x{t) (3.4)

Since the LPC parameters only extract the poles of the vocal tract, if the actual

speech signal was well modeled by the linear predictor, then e{t) is a good

approximation to the external excitation.

The speech data (corresponding to the isolated word /one/) are extracted

from a male speaker sampled at lOKHz with 12-bit resolution in a duration of

0.55s. An 1000 samples of the speech from segment 0.2s to 0.3s (as shown in

figure 3.13) are employed as the training set to illustrate the performance of

the LowD RBFs in the present of noise and periodic signal. Given n (predictor

order) normalized samples as inputs, the task is to predict the value of {n + l)tli

sample. For the case of n = 12, the network is trained using the following

parameters:

• Number of nodes on each dimension=2

. f j - M
• ^max — 4

50

Chapter 3 Application examples

• a = 0.025

• DECAY= 20

• CONVERGENCE TOLERANCE二 0.01

• INITIAL MSE THRESHOLD: 0.00025

• FINAL MSE THRESHOLD二 0.000115

The complete training requires 370 learning periods, which produces a network

of 259 nodes with a maximum dimension of 3.

• Number of 1-D nodes == 14

• Number of 2-D nodes = 189

• Number of 3-D nodes = 56

Figure 3.15 shows the prediction output of the LowD RBF networks. Before

examining the nonlinear prediction results, we have to define a new figure of

merit commonly used in the speech community [26] - prediction gain

Prediction Gain == -20/o5fio(NRMS) dB (3.5)

In the above test, the LowD RBFs can achieve a gain of 16.5dB，while only

about 11.95dB is obtained using LPC. The results is further illustrated by the

NLP and LPC residuals shown in figure 3.16 and 3.14 respectively.

51

Chapter 3 Application examples

0.5 I 1 1— 1 ‘ ‘ — ‘ ‘ ^ ‘

0.4 - -

0.3 - -

-0.2 - I ‘ ‘ ‘

-0.3 - _

-0.4 - ‘

-O f) 2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

Time (s)

Figure 3.13: The original speech signal in the segment from 0.2s to 0.3s

0.21 . f— ‘ ‘ ‘ ‘ ‘ ‘

0.15 - “

0.1 - _

- 0 . 1 - “

-0.15 - “

-0.%2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

Time (s)

Figure 3.14: The residual after the linear prediction.

52

Chapter 3 Application examples

1 1 1 1 1 1 ‘ ‘ ‘

0.9 - -

0 . 8 - -

0.2 - -

0 . 1 - “

% 2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

Time (s)

Figure 3.15: The prediction output of the LowD RBFs network.

0.2 j 1 . 1 ‘ ‘ ‘ ‘ ‘ ‘

0.15 - -

0 . 1 - _

^ 0.05 - “

- 0 . 1 - “

-0.15 - _

-0.% 2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

Time (s)

Figure 3.16: The residual after the nonlinear prediction

53

Chapter 3 Application examples

3.2.1 Comparison with Linear Predictive Coding (L P C)

Since the LPC is by far the most widely used speech prediction technique, it

serves as a benchmark for the comparison of various NLP models [6] [19]. A

plot of prediction gain versus predictor order for LowD RBFs as well as LPC

models is shown in figure 3.17. From this figure, it is clear that LowD RBFs is

superior in performance in terms of prediction gain by about 4dB compared to

that obtained of using LPC model.

18 I 1 1 ‘ ‘ —‘ ‘

<o

1 6 - “

...•••.�•••.•.••…

-
14 - ••,• .o

Q

• i _ 一 一 一 一
0 T
. i z .
1 10 -

1 z
® LowD RBFs

8 - Z -
Z — L P C

6:zZ' -
i 6 7 8 9 m n 12

Predictor Order

Figure 3.17: The prediction gain as a function of predictor order for LowD RBFs
and LPC techniques.

54

Chapter 3 Application examples

3.2.2 Performance Test in Noisy Conditions

To study the performance of the LowD RBFs in a noisy condition. A different

segment of speech from 0.1s to 0.2s (as shown in figure 3.18) are extracted as a

new training set. Based on the same construction parameters used previously,

except the following,

• INITIAL MSE THRESHOLD二 0.000075

• FINAL M S E THRESHOLDS 0.000062

the resulting LowD RBF network generates the following number of nodes with

a maximum dimension of 2.

• Number of 1-D nodes 二 13

• Number of 2-D nodes = 173

Figure 3.20 shows the prediction output of this network. In this test, the pre-

diction gain of the network is only 5.13dB compared to 6.06dB for LPC. The

results indicate that LowD RBFs do not perform as good as LPC in which a

high noise level is presented. To explain this situation, let us first recall that

both growing and pruning heuristics are based on the measurement of weight

change variance. Unfortunately, this variance is indeed an unreliable selection

index in the presence of noise. It is due to the fact that the Gaussian nodes

with the largest noise level will always have the highest variance, regardless of

their usefulness to the function approximation. For the sake of completeness,

the residuals of NLP and LPC techniques are also shown in figures 3.19 and 3.21

respectively.

55

Chapter 3 Application examples

0.51 1 1 • ‘ ‘ ‘ ‘ ‘ ‘ "“

0.4 - _

0.3 - _

0.2 - _

0.1 _ 1 “

I 0 辦•峰——丨命丨•̂ĤĤ̂MMif/̂ -
- 0 . 1 - -

- 0 . 2 - _

-0.3 - _

-0.4 - _

-0 . f) l 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Time (s)

Figure 3.18: The original speech signal in the segment from 0.1s to 0.2s.

0.21 1 1 1— ‘ ‘ ‘ ‘ ‘

0.15 - -

0.1 - _

， 0 . 0 5 - I _

^ -0.05 - “

- 0 . 1 - -

-0.15 - •

-0% 1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0 18 0.19 0.2

Time (s)

Figure 3.19: The residual after the linear prediction.

56

Chapter 3 Application examples

1 , 1 1 1 ‘ ‘ ‘ ‘ ‘
0.9 - “

0.8 - _

0.7 - _

畺 0.6- J

^ 0.4 - _

0.3 - _

0.2 - _

0 . 1 - “

I I I •

？,.1 " " " " 0 ^ 2 0 ^ 3 " " " 0 ^ 4 0 1 5 a i 6 0 ^ 7 o l s 0.19 0.2

Time (s)

Figure 3.20: The prediction output of the LowD RBFs network.

0.21 1— 1 “ • ‘ ‘ ‘ ‘ “ ‘

0.15 - -

0.1 - _

，0.05 - _

运-0.05 - _

- 0 . 1 - “

-0.15 - _

-0.%.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

Time (s)

Figure 3.21: The residual after the nonlinear prediction.

57

Chapter 3 Application examples

1 , I 1— 1 ‘ ‘ ‘ ‘ ‘

0.9 - _

0.8 - ‘

0.7 - _

§ 06 _

1。：sWWWWWWWWWWWWWWWWŴ
I�-4-

0.3 - _

0.2 - _

0.1 - _

0 2 2 o S i 0 ^ 4 o S " " " " ^ ^ 0 . 3

Time (s)

Figure 3.22: The iterated prediction by LowD RBFs in the segment from 0.2s
to 0.3s.

1 1 1 — — - I ‘— ‘ —^ ‘ ‘ ‘

0.9 - _

0.8 - _

0.7 - “
& _
：| 0.6 -
1 0.5 — “ “ ‘

i 0.4 - _

0.3 - _

0 . 2 - “

0.1 - _

0 1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
Time (s)

Figure 3.23: The iterated prediction by LowD RBFs in the segment from 0.1s
to 0.2s.

58

Chapter 3 Application examples

3.2-3 Iterated Prediction of Speech

It is interesting to take the above LowD RBF networks trained by two different

speech segments, and put them into the iterated predictions. Using the first 12

samples from each of the segments as a “seed,，, and iterate the corresponding

L O W D R B F S produced the waveforms in figures 3.22 and 3.23. Note that in fig-

ure 3.22, the network is able to produce a quasi-periodic speech-like waveform.

On the other hands, the iterated network output in figure 3.23 exhibits a heavily

damped structure of the original noisy signal. In both cases, the iterated wave-

forms are not the same as the actual waveforms. Actually, the two LowD RBFs

produce the low-passed version of the original waveforms. Thus, it is possible

that the LowD RBFs is able to encapsulate a few important relevant dimensions

of underlying structure of the speech production system.

59

Chapter 4

Conclusion

4.1 Discussions

In this thesis, we presented an alternative architecture of the Gaussian RBF net-

works, which we called LowD RBFs for approximating continuous functions in

high-dimensional input spaces, based on the assumption that most of the input

dimensions are redundant. A new dynamic construction algorithm composed of

growing and pruning processes was developed for building LowD RBFs of vari-

able sizes and dimensions, determined by the inherent dimension of the function

to be approximated. The approach used in this algorithm is to grow the number

of LowD RBF nodes larger than is necessary and then prune it back to yield a

smaller and more efficient structure. Since both growing and pruning criterions

use terms of the steepest descent dynamics that are readily available during the

normal course of LMS training, only negligible extra computational overhead is

needed to implement the algorithm.

Empirical results in the previous chapter showed that the performance of

60

Chapter 4 Conclusion

the LowD RBFs with respect to accuracy and efficiency was comparable to or

even surpassed most of the conventional approaches. This was especially true if

the training set contains redundant input dimensions. Since the behavior of the

construction algorithm is problem dependent, we compared the LowD RBFs to

a host of other models on two quite different function approximation problems:

For the Mackey-Glass equation, we found that the LowD RBFs learn much

faster than BP, while retaining the same precision as conventional RBFs. In the

nonlinear prediction of speech signals, the LowD RBFs were able to produce

an additional 4dB of prediction gain than that obtained using the LPC linear

predictor.

4.2 Limitations and Suggestions for Further

Research

We have discussed the advantages of the construction algorithm and demon-

strated the outstanding performance of the resulting LowD RBF networks. How-

ever, one should not overlook the mechanism used to generate the LowD RBFs.

It is important to realize that both the growing and pruning procedures are

only heuristics. There is no way to guarantee that they can produce a optimal

network structure. The behavior of these heuristics may perform badly under

certain conditions such as in the presence of high noise level. Further research

is necessary to improve the robustness of the growing and pruning methods.

61

Bibliography

1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning Algorithm for

Boltzmann Machines. Cognitive Science, 9:147-169, 1985.

2] M. D. Alder, R. Togneri, and Y. Attikiouzel. Dimension of the

Speech Space. lEE Proceedings I (Communications, Speech and Vision),

138(3):207-214, June 1991.

3] D. S. Broomhead and D. Lowe. Multivariate Functional Interpolation and

Adaptive Networks. Complex Systems, 2:321-355, 1988.

4] G. A. Carpenter and S. Grossberg. A Massively Parallel Architecture for

a Self-Organizing Neural Pattern Recognition machine. Computer Vision,

Graphics, and Image Processing, 37:54-115, 1983.

5] M. C. Casdagli. Nonlinear Prediction of Chaotic Time Series. Physica D,

35:335-356, 1989.

6] R. M. Dillon and C. N. Manikopoulos. Neural Net Nonlinear Prediction for

Speech Data. Electronics Letters, 27(10):824-826, May 9 1991.

7] F. Fallside. Analysis of Linear Predictive Data as Speech and of ARMA

Process by a Class of Single-Layer Connectionist Models. In F. Fogelman

62

Soulie and J. Herault, editors, Neurocomputing: NATO ASI Series Vol F68,

pages 265-283. Springer-Verlag, Berlin, 1990.

8] J. D. Farmer. Chaotic Attractors of an Infinite Dimensional System. Physica

D, 4:366, 1982.

9] J. D. Farmer and J. J. Sidorowich. Predicting Chaotic Time Series. Phys.

Rev. Lett； 59(8):845-848, August 1987.

10] S. Grossberg. Neural Networks and Natural Intelligence. MIT Press, Cam-

bridge MA, 1988.

11] E. J. Hartman and J. D. Keeler. Predicting the Future: Advantages of

Semilocal Units. Neural Computation, 3:566-578, 1991.

12] J. J. Hopfield. Neural Networks and Physical Systems with Emergent Col-

lective Computational Abilities. Proc. Natl Acad, Sci； 79:2554-2558, April

1982.

13] N. S. Jayant. Digital Coding of Speech Waveforms: PCM, DPCM, and DM

Quantizers. Proceedings of the IEEE, 62:611-632, May 1974.

14] E. D. Karnin. A Simple Procedure for Pruning Back-Propagation Trained

Neural Networks. IEEE Transactions on Neural Networks, l(2):239-242,

June 1990.

15] T. Kohonen. Self-Organizing Formation of Topologically Correct Feature

Maps. Biological Cybernetics, 43:59-69, 1982.

16] T. Kohonen. Self-Organization and Associative Memory. Springer-Verlag，

New York NY, 2nd edition, 1988.

17] B. Kosko. Adaptive Bidirectional Associative Memories. Applied Optics,

26:4947-4960, December 1 1987.

18] A. Lapedes and R. Farber. How Neural Nets Work. In D. Z. Anderson,

editor, Neural Information Processing Systems, pages 442-456. Am. Inst,

of Physics, New York NY, 1988.

19] D. Lowe and A. Webb. Adaptive Networks, Dynamical Systems, and the

Predictive Analysis of Time Series. In Proceedings of First lEE Interna-

tional Conference on Artifical Neural Networks, pages 95—99, London UK,

October 1989.

20] M. C. Mackey and L. Glass. Oscillation and Chaos in Physiological Control

Systems. Science, 197:287, 1977.

21] J. MakhouL Linear Prediction: A Tutorial Review. Proceedings of the

IEEE, 63:561-580, 1975.

22] J. Moody. Fast Learning in Multi-Resolution Hierarchies. In D. S. Touret-

zky, editor, Advances in Neural Information Processing Systems /，pages

29-39. Morgan Kaufmann, San Mateo CA, 1989.

23] M. Niranjian and F. Fallside. Neural Networks and Radial Basis Functions

in Classifying Static Speech Patterns. CUED/F-INFENG/TR 22, Cam-

bridge University Engineering Dept. Technical Report, 1988.

24] T. Poggio and F. Girosi. Networks for Approximation and Learning. Pro-

ceedings of the IEEE, 78(9):1481-1497, September 1990.

25] M. J. D. Powell. Radial Basis Functions for Multivariable Interpolation: A

Review. In J. C. Mason and M. G. Cox, editors, Algorithms for Approxi-

mation, pages 143-167. Clarendon Press, Oxford, 1987.

26] L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals.

Prentice-Hall, Englewood Cliffs NJ, 1978.

27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Rep-

resentations by Error Propagation. In D.E. Rumelhart and J.L. McClelland,

editors, Parallel Distributed Processing, chapter 8. MIT Press, Cambridge

MA, 1986.

28] D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing,

volume I k 11. MIT Press, Cambridge MA, 1986.

29] D. E. Rumelhart and D. Zipser. Feature Discovery by Competitive Learn-

ing. Cognitive Science^ 9:96-112, 1985.

30] T. D. Sanger. A Tree-Structured Adaptive Network for Function Approx-

imation in High-Dimensional Spaces. IEEE Transactions on Neural Net-

works, 2(2):285-293, March 1991.

31] T. D. Sanger. A Tree-Structured Algorithm for Reducing Computation in

Networks with Separable Basis Functions. Neural Computation, 3:67-78,

1991.

32] T. D. Sanger. Using LMS Trees for Image Processing. In Proceedings of

International Joint Conference on Neural Networks, pages 405-410, Seattle

WA, July 1991.

33] D. F. Specht. Probabilistic Neural Networks. Neural Networks, 3:109-118,

1990.

34] B. Townshend. Nonlinear Prediction of Speech Signals. In M. Casdagli and

S. Eubank, editors, Nonlinear Modeling and Forecasting, SFI Studies in

the Sciences of Complexity, chapter Proc. XIII, page 21. Addison-Wesley,

Redwood City CA，1991.

/
,
悬

I
’

厕

‘
1 I

？
：
广

 -
‘‘

P

fe
^^

:?
�

^

；
：̂

 «

�
)

(
，
；

m
ii-

%

�

, • t' ‘ •
o . �

>J .

• , ‘ ‘

iiimiiwm saLJejqn >IHn3 ‘ — —-.---- .

