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Abstract 

In this thesis we want to acquire a deep understanding of topological map, and 

this is achieved by giving it a rigorous mathematical treatment. Our work is 

initiated by trying to precisely define the meaning of preserving the topological 

order. Now the set of neurons is considered as the underlying set of a fully looped 

symmetrical graph. In other words, we have superimposed a graph structure on 

the set of neurons, and this rigorous graph structure replaces the traditional 

vague "spatial relationships" of the neurons. Kohonen's algorithm can be easily 

generalized to handle arbitrary graphs rather than the traditional well-known 

cases only. Then we define the local minimum of a real-valued function defined 

on this graph, and by considering the distance function as a particular case, we 

easily give a precise definition of preserving the topological order. Accompany 

this definition is a quantity J i which, roughly speaking, is the average number 

of local minima of the distance function minus 1. J i should be almost zero 

if the topological order is preserved. Hence we can use J i to detect whether 

Kohonen's algorithm has been successful or not. This method is especially useful 

in high dimensions. Then we reformulate the theory using Voronoi regions. By 

this we obtain a clear picture about preserving the topological order, that is, 

the locally defined Voronoi regions are identical to the globally defined Voronoi 

• • • 
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regions. From this the concept of induced graph emerges naturally. Here we do 

not place the neurons in the input space in such a way that the pre-specified 

graph preserves the topological order (which has been the job of Kohonen's 

algorithm), but rather to construct a graph according to the placement of the 

neurons such that this graph preserves the topological order. The induced graph, 

roughly speaking, is the minimal graph which preserves the topological order of 

the input space, and it always tries to reflect the structure of the input space. 

If the neurons are suitably placed in the input space, we can obtain a good 

representation of the input space through the induced graph. Hence the problem 

of studying the structure of the input space is transformed to the problem of 

studying the induced graph. This leads to a lot of new tools and new directions 

for studying the input space. In this thesis we try to extract the information 

about the dimension of the input space from the induced graph. Although the 

results are satisfactory even for the dimension of attractor of a chaotic time 

series or the dimension of speech space, there are too many mysteries in this 

area and our understanding of it is still far from enough. 
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Chapter 1 

Background 

1.1 Introduction 

This beginning section contains some personal viewpoints on this thesis. We 

hope that the material presented in the later sections of this thesis, like other 

mathematical objects, is rigorous enough to have its meanings self-evident, so 

that we can confine our personal viewpoints and personal interpretations to this 

section only. 

In the field "Artificial Neural Networks", one may often hear that "Koho-

nen's algorithm preserves the topological order". When we first heard of this, 

we asked two questions naturally. The first question was, "What is the precise 

meaning of preserving the topological order?" After we studied more, we found 

that its precision meaning was only given individually to some special cases, 

but not globally to any general cases. Moreover, we did not know actually what 

the general cases were. The second question was, "What is the importance of 

preserving the topological order? In fact, we thought that its importance had 
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Chapter 1 Background 

been underestimated for a long time. At last we found that the reason of being 

this was simply we could not answer the first question. Our conclusion was that 

"preserving the topological order" had been so far a description only rather than 

a statement It just described a class of phenomena which were observed after 

Kohonen's algorithm had been used. Whenever we read "preserving the topo-

logical order", we just associated it with this class of phenomena. The success 

of the association shadowed the need to give it a precise meaning. However, 

because of the lack of a precise meaning, it could never become a statement. As 

a result it had no logical or mathematical consequences, and the power of pre-

serving the topological order was so far not completely disclosed. To completely 

reveal its power, and to get a deep understanding of it, a rigorous mathematical 

treatment becomes unavoidable. 

All our work in this thesis was initiated by trying to give a precise definition 

of preserving the topological order. It may be surprising at a glance, but not 

surprising at all after you go through our work, the definition of preserving the 

topological order is not the main product of this thesis. It is even not a very 

important product. It is often the case that when you know more and more about 

the nature of the problem, and eventually get a macroscopic understanding of 

it, the original matter which attracts your attention becomes so negligible. 

There are two main products in this thesis. The first one, which we consider 

as the fusion of topological ideas and graph ideas, is to define the local minimum 

of a real-valued function defined on a graph. "Local" is clearly a topological 

concept which is defined in terms of a neighborhood. The real-valued function 

defined on the graph is in fact defined on the vertices, with the edges constituting 

the topology. Note that it is quite different from the usual case that the values 
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Chapter 1 Background 

are assigned to the edges instead of the vertices. By considering a special real-

valued function, the distance function, we easily construct our primary definition 

of preserving the topological order. The second main product of this thesis is the 

induced graph, which converts the studies of the structure of the input space 

to the studies of the structure of a graph. In fact the approach is not new. 

The reader may be familiar with the transformation of a periodic signal to its 

Fourier coefficients, or using Laplace transform to solve a differential equation, 

or the matrix representation of a linear operator in a finite dimensional vector 

space, or studying the topology through the fundamental group. Of course we 

do not mean that we have set up such a strong correspondence between the 

input space and the induced graph, but the idea is indeed similar. After the 

transformation new tools are available to tackle the original problem. In our 

case if one is familiar with the techniques in graph theory, one may discover a 

lot of new methods to analyze the structure of the input space, and a lot of new 

applications of our theory. The power is up to one's experience, knowledge and 

imagination. (Unfortunately we are not such experts in graph theory.) Someone 

may argue that there is a third main product in this thesis: the studies of the 

relation between the structure of the induced graph and the dimension of the 

input space. Although we only consider it as a special application of the induced 

graph, undoubtedly it is a surprisingly large and wonderful area of researches, 

and there is a lot of undiscovered and amazing knowledge in it. 

In the remainder of this chapter we would introduce some basic notations 

used in this thesis and then define the mathematical objects we shall be dis-

cussing about. In Chapter 2 we give a brief review of Kohonen's algorithm, with 

a discussion on its characteristics and limitations. In Chapter 3 we introduce 
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Chapter 1 Background 

the local minimum of a real-valued function defined on a graph, and its related 

theory and applications. In Chapter 4 we give a formal treatment to the theory 

of the induced graph. In Chapter 5 we present some special examples based on 

the concept of the induced graph. In Chapter 6 we focus on a special topic: the 

application of the induced graph to the determination of the dimension of the 

input space. We conclude our work in Chapter 7. 

To read this thesis, some background knowledge in neural networks, Ko-

honen's algorithm, topology, graph theory and Voronoi regions is helpful but 

not important. However, we think that training in mathematical argumentation 

may help a lot, because the meanings are often embedded in both the statements 

and the arguments. The reader may often see what we cannot see. That is why 

we do not want to add too many personal interpretations which may mislead 

the thinking of the reader. 

1.2 Basic notations 

In this section we introduce some basic notations we shall use in this thesis. 

Suppose A is a set. Then card(A) denotes the cardinality of A. denotes 

the power set of A, i.e. the set of ail subsets of A. Suppose B is also a set. For 

A C B OT B D A we mean that A is a subset of B. We may also say that A is 

contained in B oi B contains A. The word “contain” is reserved for this purpose 

only. We do npt exclude the possibility that A = B. If we want to emphasize 

that A C B but A B, we would say that A is strictly contained in B. 

Some sets have special symbols. Z always denotes the set of integers. R is 

the n-dimensional Euclidean space, i.e. its topology is the usual topology induced 

4 



Chapter 1 Background 

from the Euclidean norm. S^ is a subspace of R^ which is defined by 

Si = {x e r 2 ||x|| = 1} 

The topology of S^ is obviously the relative topology induced from the usual 

topology of R2. 

Suppose / is a function, or a map, such that its domain is a set B and its 

range is contained in a set C. Then we shall write f : B — C. The range of f 

will be denoted by f(B), i.e. 

m {/ :xeB} 

Suppose ^ is a function such that its domain contains f ( B ) and its range is 

contained in D. Then g o f : B — D denotes the composition, i.e. 

9 o fix) = g{f{x)) WxeB 

Suppose Ac B. Then f \a denotes the restriction of f to A. 

We shall use J to denote the floor function, i.e. 

= the largest integer which is smaller than or equal to x 

In this thesis a matrix is always boldfaced. Suppose A is a matrix. Then 

(A)ij denotes the entry in the i-th row and j-th column. A^ denotes the trans-

pose of A and A i denotes the inverse of A. 

When we discuss algorithms, especially iterating algorithms, some functions 

(or more commonly called variables) may be updated. We use the superscript 

+ to denote “after updated" and the prefix A to denote the difference between 

“after updated" and "before updated". 

5 



Chapter 1 Background 

Other conventions we shall adopt are the folio wings. If we want to use 

brackets as delimiters, we shall only use [ ]. ( ) is reserved for function values, 

coordinates, sequences, matrices, etc. and { } is reserved for sets. However, 

we shall still follow the tradition in representing intervals in real line, such as 

—1,1). We shall try to avoid superscript whenever possible. Even if we use it, 

we ever try to use special symbols, such as + or adding brackets ( ). Whenever 

there is a number in the upper right corner, it always means power (except for 

Si). For examples, R^ = R x R and [ S ? = S^ x S^ x A tilde ^ over a 

symbol usually means that it is an approximation of the original symbol, and a 

bar - over a symbol usually means that it is an average value. 

A box • denotes the end of a definition, proposition, assumption, etc. and 

three boxes • • • denote the end of a remark or example. 

1.3 Object of study 

In this section we define the mathematical objects we are discussing about. 

Let X C R^ be the input space. For input space we mean the closure of 

the set of all possible input patterns. For X C R we mean that each input 

pattern has n attributes, although in general they may not be independent. The 

topology of X,Tx, is the relative topology on X which is naturally induced from 

the usual topology of (For relative topology see [20, page 93].) 

Let X : {1,2 . . . M] X he a. finite sequence of input patterns. We call x 

the sequence of training patterns. We assume that x "sufficiently represents" X, 

"Sufficiently represents" may be the most unclear concept in this thesis, espe-

cially since x has finite length, concepts like dense are not applicable. Although 
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X is what we are primarily interested in, we can never observe X. What we 

can obverse is x. Any theoretical measurement on X will eventually be trans-

formed to a practical measurement on x. For "sufficiently represents” we hope 

that such a transformation will preserve the result of measurement. We shall 

encounter such transformations in Chapter 3 and Chapter 4. 

To generate x from X, we assume that there exists a probability distribution 

defined on X. Then x is a random sequence generated based on this probabil-

ity distribution. (The probability distribution is assumed to be uniform if not 

specified.) As the length of 5 M is sufficiently large, we assume that x may 

sufficiently represents X. 

Let (Q, N) be a finite set of K elements Q = {qi, , … } equipped with 

a mapping N .. Q — T{Q which satisfies the following two conditions: 

[Nl] Mqi G g , qi G N{qi) 

[N2] q i e N { q , ) i f [ q , e N { q i ) • 

We call qi a neuron and N{qi) the 1-neighborhood of qi, (Grabec [6, 7] called qi a 

"formal neuron" to emphasize that it is a formal object and does not necessarily 

have any physical meaning.) 

Remark 1.1 {Q,N) is in fact a symmetrical graph. Therefore we shall 

adopt the terminology of graph theory whenever suitable. (For reference 

see [10, pages 4-11].) We say that there is a link between qi and qj 

whenever qi G N{qj) or equivalently qj G N{qi). Also we define 

deg(g‘ = card(iV( ) Mqi G Q 

• • • 
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Chapter 1 Background 

Remark 1.2 (Q,iV) is, of course, a topological space in the sense that 

its topology Tq is the topology generated by 5 = {N{qi) : qi G Q}. (For 

generated topology see [20 pages 101-102]. In brief, S {N QI € Q} 

can serve as an open subbase for a topology on Q, and this topology is 

called the topology generated by S. Equivalently this topology is the 

weakest topology on Q which contains 5.) However, it is obvious that 

many iV's can generate the same Tq and for our purpose the topology 

only is not sufficient to characterize Q. 

A direct consequence of Condition [Nl] of N is 

u Q (1-1) 
qieQ 

i.e. S {N :QI e Q} is in fact an open cover of (Q, Tq). 
• • • 

Define w : Q R". Traditionally w{Q) = {w{qi) : qi € Q) is called the 

set of weights, although this name does not fit the physical meaning well in 

cases like Kohonen's algorithm. Anyway, what we want to do is, through the 

mapping w^ to place a set of K neurons in R" sucli tkat w{Q) is in some sense 

a good representation of X. Under this consideration the task is quite similar 

to performing a vector quantization on X. The difference is that in addition we 

want to consider the graph structure of (Q, N). 

There are two graph structures on Q which we shall frequently use as exam-

ples: 

1. 
{qK,quq2} if i = i 

= if 2 < i < K - l 

‘ { 1 i} if i = K 

8 



Chapter 1 Background 

(a) (b) 

4 r e e e e e e e o 

Figure 1.1: (a) S| . (b) Rg. 

We denote Q equipped with this N by S^ . Figure 1.1(a) tries to illustrate 

this graph structure, in which each, small circle represents a neuron and 

each straight line between two small circles represents a link between these 

two neurons. (The trivial link from a neuron to itself is always not drawn.) 

In this case deg( ) = 3 G Q, and w can be represented by a wrapped 

around one dimensional array in computer programming. 

2. 
{^1,^2} if i 1 

= { -i, qi, i} if 2<i<K-I 

‘ {qK-uqK] if i = K 

We denote Q equipped with this N by R ^ . Figure 1.1(b) tries to picture 

this graph, structure. In this case deg{qi) = 3 Wqi G Q except qi and qK 

whose deg 2 and w can be represented by a non-wrapped around one 

dimensional array in computer programming. 

9 



Chapter 1 Background 

We remark that the mapping N has a matrix representation, denoted by N, 

defined by 
f 1 if qi e N{q,) 

(Nfe = 
‘ 0 if qi i N(qj) 

Then, immediately from the definition of N^N is a, K x K real symmetric matrix 

with all I's on the diagonal. 

(Although we shall not do so in this thesis, it is in fact possible to generalize 

the matrix representation N such that (N)ij can be any real number in [0,1: 

instead of either 0 or 1 only, in order to represent, for example, the probability 

of qi to be in the 1-neighborhood of qj.) 

Example 1.1 The matrix representation of N for (Q^N) = S^ is 

^ 1 1 0 0 " . 0 1 

1 1 1 0 • • • 0 0 

o i l 1 : 

N = 0 0 1 1 0 0 

• • • 1 0 

0 0 ••• 0 1 1 1 

1 0 … 0 0 1 1 ^ 
• • • 
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Chapter 1 Background 

Example 1.2 The matrix representation of N for (Q, N) = Kk is 

^ 1 1 0 0 • • • 0 0 

1 1 1 0 • • • 0 0 

o i l 1 ' • . : : 

N = 0 0 1 1 ' - . 0 0 

1 0 

0 0 … 0 1 1 1 

0 0 … 0 0 1 1 ̂  

• • • 

Next we introduce the sum and product of two graphs. (For sum and product 

of graphs see [10, pages 244-247].) Suppose Qi = { . . . ’ and Q2 = 

{ql … 2} with K1K2 = K. Define the sum (Q, iV+) = (Qi, N^) + (Q2, N2) 

to be the set Q = x Q2 equipped with the mapping N^ : Q — T{Q defined 

by 

Ar+(( = [ N M ) X [q]]] U [{q}} X N2(q^)] 

We shall adopt the numbering convention that Q { … } where 

q[i-i]K2-\-j = (q}, Qj)' Similarly we can define any finite sum of graphs (Q^ N+ — 

(Ql, + (Q2 H \~[Qn,Nn). The numbering convention is easily checked 

to be associative. 

The sums generated by RK̂  and S^ are of special interest and thus we give 

symbols for them: 

n R ^ = R i + R ^ x + • •. + R ^ i . 
Kn Kn Kn 

n 
z S i = Si + Si + • . . + Si 1 

^ Kn ' Kn ' Kn 
) n 

11 
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(a) (b) 

• • 
Figure 1.2: (a) 2Rioo. (b) Rfoo-

Hence w defined on {Q,N) = uRk and (Q^N) = n S ^ may be represented 

by non-wrapped around and wrapped around n-dimensional arrays respectively. 

The reader may notice the close correspondences between n R y and R as well 

as nS]^ and [Si . 

Example 1.3 Figure 1.2(a) tries to picture 2Rioo. 

• • • 
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Example 1.4 The matrix representation of N for (Q,iV) 2Sj is 

S 1 1 1 0 0 1 0 0 

1 1 1 0 1 0 0 1 0 

1 1 1 0 0 1 0 0 1 

1 0 0 1 1 1 1 0 0 

N = 0 1 0 1 1 1 0 1 0 

0 0 1 1 1 1 0 0 1 

1 0 0 1 0 0 1 1 1 

0 1 0 0 1 0 1 1 1 

^ 0 0 1 0 0 1 1 1 1 / 

• • • 

Example 1.5 The matrix representation of N for (Q, N) = 2R9 is 

1 0 1 0 0 0 0 0 

1 1 1 0 1 0 0 0 0 

0 1 1 0 0 1 0 0 0 

1 0 0 1 1 0 1 0 0 

N = 0 1 0 1 1 1 0 1 0 

0 0 1 0 1 1 0 0 1 

0 0 0 1 0 0 1 1 0 

0 0 0 0 1 0 1 1 1 

0 0 0 0 0 1 0 1 1 > 

• • • 
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Remark 1.3 Suppose = (Qi’ iVi) + (Q2’ As in Remark 1.2 

let TQ+, TQ TQ2 be the topologies generated by 

= {N+{q[i.i]K2+j) : Q[i-i]K2+j e Q} 

{[ X {q]}] U [{q}} X N2{q])] q} G Qi’q G Q2} 

51 = {JVi(ql) : q} e Qi} 

52 = {N2{ql) q- e O2} 

respectively. We can, of course, form the product of topological spaces 

(Q,TQiQ2) (Qi 1) X (Q2, 2). The product topology 7q is gen-

erated by 

5i2 = {Nr{q]) X Q2 : q] e Qi} U {Qi X N2{q]) q G Q2} 

(For product topology see [20, pages 115-118].) The underlying sets of 

(Q,TQ+) and (Q, 1Q2) are the same, but the topologies are in general 

different. is in general stronger than the product topology Tq^q^. TO 

show this, it suffices to show that any set in S\2 is an open set in (Q,TQ+), 

i.e. some union of finite intersections of sets 1H aad since Tq^q^ is ike 

weakest topology containing 5i2, D Tq^q^. The proof is at once 

completed if we note that 

N I ( Q L ) X Q 2 = U [ ” X U K D ) X IV2( ] ( 1 . 2 ) 

Qi X JV2(QF) = U [ ” X U [{q}} X N2{q])] ( 1 . 3 ) 
q}EQI 

In obtaining Equations 1.2 and 1.3, we have applied Condition [Nl] of N 

and its consequence Equation 1.1. 

• • • 
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Example 1.6 + may really strictly contain Tq^q^. Consider 

Qi = {qlql} = N^iql) = 

Q2 = {qlqh N2{ql) = N^iqj) = Q2 

Then Tq+ is the discrete topology, the strongest topology on Q, and Tq 

is the indiscrete topology, the weakest topology on Q, 

• • • 

Now we introduce the product of two graphs. Define the product Q N y ) = 

((5i,7Vi) X to be the set Q x Q2 equipped with the mapping 

NyT. Q — V{Q) defined by 

The numbering convention is the same as before. Similarly we can define any 

finite product of graphs (Oi ) x (G , ^ ^ x . . . x Qn,Nn) and 

adopt the following two symbols: 

> w 
n 

[SI]?R S I X S ^ X . . . X S S J Kn Kn Kn ‘ 
n 

Once again w 

defined on {Q,N) = R J and (Q,N) = [S^]^ may be represented 

by non-wrapped around and wrapped around n-dimensional arrays respectively. 

Example 1.7 Figure 1.2(b) tries to illustrate Rfo- The reader may com-

pare it with Figure 1.2(a). 

• • • 
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Example 1.8 The matrix representation of N for (Q, N) = [S Ĵg is 

/ 1 1 1 1 1 1 1 1 1 

N 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 / 

• • • 
Example 1.9 The matrix representation of N for (Q,iV) = is 

S 1 0 1 1 0 0 0 0 

1 1 1 1 1 1 0 0 0 

0 1 1 0 1 1 0 0 0 

1 1 0 1 1 0 1 1 0 

N = 1 1 1 1 1 1 1 1 1 

0 1 1 0 1 1 0 1 1 

0 0 0 1 1 0 1 1 0 

0 0 0 1 1 1 1 1 1 

0 0 0 0 1 1 0 1 1 > 

• • • 
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Remark 1.4 Suppose {Q,Nx) = (Qi, iVi) x (Q2, iVi)- As in Remark 1.3 

let TQX be the topology generated by 

= { N i { q } ) x N 2 { q ] ) : q l e Q u q ] e Q 2 } 

It is obvious that Tq^q^ D Tqx since 

Niiq}) X N2{q]) = [Ni{q}) X Q2] H [QI X N2{q])] 

Hence each set in 5x is the intersection of two sets in 5i2, and thus an 

open set in {Q.Tq^q^)- On the other hand, by applying Equation 1.1 

again we may write each set in S\2 as the union of some sets in 5x 

NI(Q}) X Q2 = U N Q}) X N Q ( 1 . 4 ) 

<i eQ2 

Qi X N2(q]) = U ^ (1.5) 
g}eQi 

Hence Tq C Tqx and it follows that Tq^q^ = Tq^. 

• • • 

Remark 1.5 Combining the results of Remark L3 aad Remark 1.4 we 

have 

D TQ.Q,= X ( 1 . 6 ) 

In both proofs we made use of the fact that N satisfies Condition [Nl]. 

For arbitrary graphs Relation 1.6 is in general not true. We skail only 

have 1Q2 Tqx. 
• • • 
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Example 1.10 Consider 

Qi = {qlq]} NM) = ^ . = {q]} 

Q2 = {qhq'2} N^iql) = {ql} , N2{ql) = {q^} 

Then 

Tq+ = discrete topology 

’ {( } 

^ . , { ( M } 
TqyQ2 = any unions 01 • 

{{qum^M.d)}. 

‘ {( } 
X = any unions of ‘ 

Q 

Hence Tq+ strictly contains Tq^q^ and Tq^q^ strictly contains Tgx- This 

example shows that 1Q2 is not necessarily equal to Tqx for arbitrary 

graphs. 

• • • 

Example 1.11 Consider 

Ql = {qlql} Niiql) = {q]} , = {ql} 

Q2 = {qlql} N2{ql) = {qj} , N^iq^) = {ql} 

Then 

TQ-I- any unions of ^ 
I { ( 4 , {( 

IQ2 = discrete topology 

Tqx = discrete topology 

18 
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Hence + is strictly contained in TQ^Q^ = TQX- This example shows that 

both TQ+ D TQXQ2 and + D TQX are not necessarily true for arbitrary 

graphs. 
• • • 

Before ending this section we discuss an assumption which we shall often add 

on X. 

Assumption 1 X is convex. 

• 

In fact, convexity is a very demanding condition which is very difficult to achieve, 

but of course has a lot of useful consequences. Practically we only need some 

of such useful consequences (see Chapter 3 and Chapter 4), and convexity, such 

a strong condition, may be actually not needed. However, convexity is needed 

to assign a natural geometrical interpretation to what we shall do. To explain 

this, we start with the concept of distance. 

Suppose 3,5' e X. For distance between s and we always mean the length 

of geodesic joining s and Geodesic, rougkly speaking, is the shortest path 

along the space. When we consider s, as points in X , we call tke length 

of geodesic joining them the geodesic distance between them. If X is patii-

connected, there must exist a path connecting 5 and s,, and also since X is 

closed, the shortest path, i.e. the geodesic, must exist. Hence the geodesic 

distance is always defined. However, when we consider 5, s' as points in R 

the geodesic joining them, to which we often refer as the "straight line” joining 

them, is in general different from the geodesic joining them along X, and we 

shall call its length the direct distance between s and s,. Figure 1.3 pictures the 

19 
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t. ,...... . _ 
0.5- / \ -

0 - j -

-0.5 - ...... / -
. . • * 

-1 - ........_..............•.......• -
I I L—— 

-1 0 1 

Figure 1.3: X = S^ (dotted line). 5 = (0,1) and s, = (1,0). The geodesic 
distance (length of solid line) between them is The direct distance (length of 
dashed line) between them is y/2. 

difference between these two distances for the case X = S^. 

Since we are studying X, whenever we talk about distance we should use 

geodesic distance. However, it is very difficult to measure the geodesic distance. 

Almost in all cases direct distance will be measured instead. Practically such 

a substitution often produces satisfactory results, but theoretical pioblems may 

be encountered. We shall encounter some in Chapter 3 and Chapter 4. To avoid 

such problems it requires that the geodesic distance between any two points in 

X is always equal to the direct distance between them, and hence the solution 

is, of course, convexity. 

It will be clearer in Chapter 3 and Chapter 4 that geodesic distance is the 

correct distance we should use, as we shall see that using geodesic distance the 

whole theory will not need the convexity of X. 

Since in practice it is very difficult to measure the geodesic distance, we shall 
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Chapter 1 Background 

from now on reserve the word "distance" for the direct distance, although direct 

distance and geodesic distance become identical if X is convex. 
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Chapter 2 

Review of Kohonen's algorithm 

In this chapter we give a brief review of Kohonen's algorithm [11, 12, 15]. In 

Section 2.1 we introduce the general form of Kohonen's algorithm, so tkat 

we can consider arbitrary graphs. For example, we consider in Example 2.4 

(Q, AT) = R4 + S\q. We shall also consider in Chapter 4’ Example 4.5 that 

(Q, N) is the induced graph, and then the general form of Kohonen's algorithm 

becomes indispensable. Accompany the general form of Kohonen's algorithm 

in Section 2.1 is the definition of the r-neighborhood, and how to calculate all 

the r-neighborhoods is the main topic of Section 2.2. In Section 2.3 we give 

some remarks on Kohonen's algorithm in order to reveal its characteristics and 

limitations. 

2.1 General form of Kohonen's algorithm 

In this section we present the general form of Kohonen's algorithm. 

Kohonen's algorithm is in terms of a neighborhood whose size can be varied. 
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To make it precise we give the following definition. 

Definit ion 2.1 The r-neighborhood, where r is a non-negative integer, of a 

neuron qi is a subset of Q which is defined recursively by 

N r l ] 0-neighborhood of qi = {qi} 

:Nr2] r-neighborhood of qi = [JN{qj) : qj £ r - 1-neighborhood of qi 

We shall denote the r-neighborhood of qi as ( ) . r is also called the radius of 

the neighborhood. The matrix representation of TV is denoted by which 

is naturally defined, by 

if • 

‘ 0 if q i ^ _ q “ 

Now we define the general form of Kohonen's algorithm as follows. Suppose 

the training patterns are presented sequentially. Let xi be the current training 

pattern and qi G Q such that 

d{w{qi),xi) < d{w{qj),xi) ^qj G Q 

where d is the distance function. Then 

w'^{qj) = w{qj) + rj[xi - w{qj)] Wqj G r-neighborhood of qi (2.1) 

where the superscript + means "after updated" and rj is the learning rate, r is 

in general decreasing with time. It is also known that rj decreasing with time 

may also increase the performance of Kohonen's algorithm. However, since the 

examples and the applications in this thesis are not very complicated, we shall 
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use a fixed learning rate and the performance is still sufficiently good. The initial 

weights are just set to the first K training patterns. 

Practically we shall use the following recursive procedure to find out the 

r-neighborhood of . ( T h e procedure is implemented using C programming 

language.) 

void set«in_Eieighborhood ( i n t q i n t r ) 
{ 

i n t j ; 

i f (r > 0) 
{ 

f o r ( i = 1; j <= K; i++) 

i f (qj e N{q)) 

set_in_iieighborhood (qj, r — 1); 

} 
e l s e 

ill-neighborhood [^] = 1; 

\ J 

Before calling the procedure, we first reset in_Eieighborhood [qj] = 0 for all. 

qj e Q. Then after calling set_in_neighborhood ( r), we have 

i i iJ ieighborhood[9j]= 1 iff qj € ( 

The reason of defining the r-neighborhood and the general form of Kohonen's 

algorithm is that we can discuss Kohonen's algorithm for arbitrary mappings N 

instead of restricting our discussions to some well-known cases. So it is much 
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convenient for us to employ tke concept "r-neighborhood" in doing some the-

oretical generalizations. One may notice that, according to the neighborhoods 

traditionally chosen for Kohonen's algorithm, the corresponding graph structure 

should be R ^ , but it was always drawn as uKk- In Section 1.3 we saw that 

Kj^ has much more connections than uKk- Moreover, one link may intersect 

another when drawn, which makes the graph difficult to visualize. Therefore we 

shall follow the tradition. Both uRk and R will be drawn as n R ^, and we 

shall explicitly point out which graph we are talking about. (We remark tiiat in 

practice we would not use the above recursive procedure to find out iV(” if 

we are considering the traditional graph {Q,N) = since it is much slower 

when r is large. For this special case we can find out _(q‘) easily, and tlie 

recursive procedure is designed for arbitrary graphs.) 

For simplicity we may sometimes fix the radius of neighborhood in Kohonen's 

algorithm. If the radius is fixed to r we shall call the corresponding learning rule 

r-Kohonen's algorithm. We shall often use 1-Kohonen's algorithm. For cases 

where K is small, 1-Kohonen's algorithm is sufficient to illustrate the ideas. 

Another special case is 0-Kohonen's algorithm, which, is identical lo the well-

known "standard competitive learning" [8 pages 218-220]. We shall simply cd] 

it competitive learning. 

2.2 r -ne ighborhood by matr ix 

In the previous section we defined the r-neighborhood recursively. In fact we 

can define it using N, the matrix representation of N. To see this, we start with 

a definition. 
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Definit ion 2.2 A path of length r, r > 0, from a neuron qi to a neuron qj is a 

finite sequence (f : {1 ,2 , . . . , r + 1} Q such that 

[PI] 6 = qi 

[P2] 6+1 = qj 

[P3] F o r 2 < m < r - f e N{U-i) 

• 

Then the following result is well-known. 

Proposit ion 2.1 is the number of distinct paths of length r from qj to 

Proof. We prove Proposition 2.1 by induction. Proposition 2.1 is 

trivially true for r = 0 and r = 1. For r, it is clear that 

number of distinct paths of length r from qj to qi = 
K 

^ [ number of distinct paths of length r — 1 from qj to qk] x 
fc=i 

number of distinct paths of length 1 from qk to 

Hence if Proposition 2.1 is true for r — 1, 
number of distinct paths of length r from qj to qi 

X (N)‘, (N X N = (N%-
k=i 

• 

The following Corollary is evident from Proposition 2.1 and the definitions. 
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Corollary 2.2 qi G r-neighborhood of qj iff (N”),. .—0. 

• 
In other words, 

= nonzero(]>r) 

where 
1 if (A)ij + 0 

(nonzero(A))tj = 

[ 0 if (A)" 0 

To find out the r-neighborhood of 1 neuron, it is more conYenient to use tJie 

recursive procedure. However, to find out the r-neigiiborhoods of all neurons it 

becomes more convenient to calculate nonzero(N""). There are many practical 

hints in calculating nonzero(N^): 

1. To calculate nonzero(N""), it is no need to calculate N"", or even N for 

2 < m < r. Note that 

nonzero(N"") = nonzero(N x nonzero(N""-” 

since the entries in N and N""^ are all non-negative. Therefore we only 

need to calculate nonzero(N"^) in each intermediate stage. As we know 

that (nonzero(N'^))tj can be only 0 or 1 the multiplication is reduced to 

a logical operation “AND, . Moreover, what we want is 

nonzero(N x nonzero(N"^)) 

instead of 

N X nonzero(N"") 

so the following two hints can further reduce the amount of computations. 
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2. Note that qi € iV( implies qi G iV( In other words, if 

(nonzero(N^))i^- = 1 

then 

(nonzero(N x nonzero(N'^)))ij = 1 

(Purely from the computational point of view, we may think that it is 

because (N)“ must be 1.) 

3. Note that 

(nonzero(N x nonzero(N"")))ij = 1 

iff 3k such that 

(N)ifc = (nonzero(N^))^i = 1 

since the entries in N are all non-negative. Therefore, once such a A: is 

found, it is no need to go through other neurons. That means, besides the 

multiplication, it is also no need to perform the addition, 

4. Note that = (N^i i since (N)^^ = (N) , a n d ( N ^ n = 1 since 

{N)ii = 1. Therefore it is no need to calculate the diagonal and tke lower 

triangle of nonzero(N""). We only need to calculate the upper triangle of 

nonzero(N^). 

2.3 Examples 

At last we want to give some remarks on Kohonen's algorithm through several 

examples. 
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Example 2.1 The input space = {x € R2 : ||x|| < 1}. Each training 

pattern is parametrized as (/> cos( ̂ ,/9 sin0), where p is randomly drawn 

from a uniform distribution on [0,1) and 0 is randomly drawn from a 

uniform distribution on [0,27r). As a result, the density is higher near the 

origin. The total number of training patterns M 10000. {Q,N) is cho-

sen to be The parameters of Kohonen's algorithm are set as follows. 

If XI is the current training pattern, then the radius of neighborhood 

‘ l ^ i X5J if / < 1000 
r = < 

0 if / > 1000 

The learning rate 
0.15 if r > 0 

rj = < 
0.015 if r = 0 

V 

7] is so set because if r] is not sufficiently small when r = 0, the original 

well-ordered grid^ may be destroyed. 

w{Q) is plotted in Figure 2.1. The graph structure of (Q,N) is super-

imposed on the figure by connecting two distinct neurons by a straight 

line if there is a link. We shall, for convenience, denote this graphical rep-

resentation as w(Q,N). From Figure 2.1 we see that there are some pits 

along the boundary. It is because Kohonen's algorithm tends to place 

more neurons near the center and fewer neurons near the boundary in 

order to match the density of the training patterns. 
• • • 

The following examples consider the ring. 

iQf course we have not defined what we mean by "well-ordered". The reader may interpret 
it in its traditional sense. 
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1 1 r 

: 
- 1 - -

I I 1—— 

-1 0 1 

Figure 2.1: w{Q,N) in Example 2.1. 

Example 2.2 In this example {x € : Q.g < ||x|| < 1}. The 

configuration is the same as that of Example 2.1 except that p is randomly 

drawn from a uniform distribution on [0.6 1) instead of [0,1). The result 

w[Q,N) is plotted in Figure 2.2(a). We see that some neurons fall in the 

hole of the ring and some links run across the hole. 

• • • 

Example 2.3 The configuration is completely the same as that of Exam-

ple 2.2, but this time the weights are restricted to the input space. This 

can be done by projecting the weight onto the input space immediately 

after it is updated by Learning Rule 2.1. As X is closed, the projection 

can be defined as the point in X which, is closest to the weight, and prac-

tically regarded as the closest training pattern to the weight. Since the 

metric is Euclidean, such a projection is well-defined on a neighborhood 
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(a) W 

_ - 1 - - 1 - -

I I I 1 1 I 
- 1 0 1 - 1 0 1 

Figure 2.2: (a) w{Q,N) in Example 2.2. (b) w{Q,N) in Example 2.3. 

of X. However, it cannot generally be defined on the whole R^. There-

fore the learning rate rj should not be set too large. In this example the 

input space is chosen to be so simple that we need not identify the clos-

est training pattern, but just adjust the norm of the weight to achieve 

projection. 

The result w(Q,N) is shown in Figure 2.2(b). We see that altliOTigli 

the neurons are restricted to the input space, some links stili run across 

the hole. 
• • • 

The above two examples seem to say that Kohonen's algorithm cannot handle 

input spaces which are not simply connected. However, we see from the examples 

below that this conclusion is not absolutely correct. 

Example 2.4 The input space and the sequence of training patterns are 

the same as those in Example 2.2 but this time (Q iV) + sjg- Note 
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(a) (b) 

- 1 - - 1 - -

I I I I 1—— 1— 
- 1 0 1 -1 0 1 

Figure 2.3: (a) w{Q,N) in Example 2.4. (b) w{Q,N) in Example 2.5. 

that the total number of neurons is the same as before, but there are 

imich fewer links. In fact, the number of links is approximately equal to 

that of 2R8. AS a result the size of r-neighborhood is much smaller than 

before. Therefore ,tlie radius of neighborhood is set irnich larger: 

L ® X 10 if / < 1000 
r = < 

0 if I > 1000 

rj is set the same as in the previous examples. 

The result w{Q,N) is shown in Figure 2.3(a). Although the grid is 

not completely well-ordered, we can observe a hole. 

• • • 

The reader may think that it is because we have used a graph which especially 

fits the ring. This is only partially true. 
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Example 2.5 The configuration is the same as tkat of Example 2.4, 

except that (Q^N) is now chosen as R4 + Rie instead of R4 + Sie- The 

result w{Q,N) is shown in Figure 2.3(b). Note that the result is quite 

different from that of Example 2.2. From this we expect that the result 

when (Q,iV) = R4 + Rie is also very different from the result when 

(Q,N) = Rg + Rg. In other words, besides the "dimension", the "length" 

in each "dimension" is also critical. In Chapter 4 we shall introduce the 

Voronoi regions formally, Kohonen's algorithm has a strong tendency to 

form isotropic Voronoi regions. (Our comments above may be viewed as a 

supplement to the discussions in [9 pages 94-96], in which a modification 

on Kohonen's algorithm was also proposed to obtain better results.) 
• • • 

From the above examples we see that to have a good match, we must have 

sufficient knowledge about the input space. That makes the induced graph we 

introduce in Chapter 4 more valuable if we know very little about the input 

space. We shall recall some of the above examples later when we discuss the 

induced graph and the dimension of the input space. 
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Local minima 

In this chapter we present one of the most important theoretical concepts in this 

thesis, which we also consider as the fusion of topological ideas and graph ideas: 

the local minimum of a function defined on a graph. With this concept we define 

in Section 3.1 what we mean by preserving the topological order, and hence a 

closely related quantity J i . In Section 3.2 we study how to minimize J i , with an 

analysis on Kohonen's algorithm at the end of the section. In Section 3.3 we in-

troduce an important application of J i to detect wkether Kohonen's algorithm 

succeeds or not in high dimensions. We also remark the difference between n R ^ 

and R ^ . In Section 3.4 we see how the change of the graph structure affects the 

local minima, from which the vague idea of the induced graph begin to emerge. 

In Section 3.5 we generalize out theoretical work as well as the definition of 

preserving the topological order by employing the geodesic distance. At last, 

in Section 3.6 we see the budding of the induced graph through an equivalent 

formulation of our theory in terms of Voronoi regions. From this we see the 

close relation between the induced graph discussed in Chapter 4 and the local 
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minimum discussed in this chapter, although the material in Chapter 4 may also 

be treated independently. 

3.1 Theory of local minima 

Definition 3.1 Let / : X -> R. We say that G X is a local minimum 

of / or f has a local minimum at if 3 a neighborhood^ U of x' such that 

f[x') < f{x) Vx G U. We say that x' e X is a, global minimum of / or f has 

a global minimum at if f{x') < f{x) Vx 6 X. Note that a global minimum 

is obviously a local minimum. 

• 

Let c?: R"" X R"" R be the distance function, i.e. 

d(x, x') = distance between x and x 

With x' fixed, d{x,x') is a function of x. More precisely, we may define 

dx> : R"" —> R such that da:'{x) = x^) 

All our work is motivated by the following almost trivial fact 

Proposit ion 3.1 Assume X is convex. Suppose x' G X. Then d^' \x has a 

unique local minimum at x' G X. 

• 

and its weaker form 

lA neighborhood U oi x' ^ X \s an open set U of X such that x' G U. 
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Corollary 3.2 Assume X is convex. Suppose x' € X. Then every local mini-

mum of dx' \x is a global minimum of dx' \x-
• 

Corollary 3.2 is evident from Proposition 3.1. Here we skip the proof of Propo-

sition 3.1. However, we shall give a proof to a similar proposition formulated in 

terms of geodesic in Section 3.5. 

Convexity is a very strong restriction on X. Practically the methods we shall 

propose work well for some non-convex input spaces. So it is useful to single out 

the following class of input spaces. Let 

C = {X : G X, dx' \x has a unique local minimum at x^ G X} 

Then Proposition 3.1 is equivalent to saying that if X is convex, X £C. 

Remark 3.1 It is easy to give an example in which X is not convex and 

X ^C. Define 

P(a,6) = cos (f>,p sin(t>) : p ^+ [0,27r)| C R^ 

Consider X = P( l ,3) as shown in Figure 3.1(a). Let = Then 

d , h a s at least two local minima, ( 0 , a n d (0, 

However, for X G C, it is not necessary that X be convex. X = S^ as 

shown in Figure 3.1(b) is an example. 

The reader may wonder why the results for P ( l , 3) and S^ are different 

as we know that they are homotopic. It is because we have used direct 

distance instead of geodesic distance. (See Section 1.3.) We shall return 

to this question in Section 3.5. 

• • • 
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(a) (b) 
— I — 1 1— — I ‘ 

0 - ( ) - 0 - -

.0.5- . V J. 
- 1 - - 1 - ^ ^ -

I I I I I 1 — 

- 1 0 1 - 1 0 1 

Figure 3.1: (a) P ( l , 3 ) . (b) S!. 

What we want to do is to construct a modified version of Corollary 3.2 which 

talks about local minima in Q instead of X. We proceed firstly to defining what 

we mean by a local minimum of a function defined on Q: 

Definit ion 3.2 Let / : Q — R. We say that qi G Q is a local minimum of / , or 

f has a local minimum at qi, if / ( ) < f(qj) ^/qj € N{qi), the l-neighborhood 

of qi. We say that qi G Q is a global minimum of / or f has a global minimum 

at qi, if f{qi) < f{qj) ^qj G Q. Note that a global minimum is obviously a local 

minimum. 

• 

Remark 3.2 Comparing Definition 3.2 with Definition 3.1 the reader 

may notice the requirement of a local minimum in Q is stronger than 

the requirement of a local minimuin in X. The former requires the 1-

neighborhood while the latter requires 3 a neighborhood U only. It is 
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because we are now considering {Q,N) as a graph instead of merely a 

topological space. (See Remark 1.2.) 
• • • 

Secondly we note that d^i o w (with fixed) is a real-valued function defined 

on Q, where o denotes the composition. Being motivated by Corollary 3.2, we 

give the following definition 

Definition 3.3 Suppose X is convex. We say that {Q, N) witk w preserves the 

topological order of X if 

[Tl] w{Q) = {w{qi) :qieQ}cX 

•T2] every local minimum of d^' o i/; is a global minimum of d^' o w for all 

G X 

• 

We have used the weaker form since, not hard to see, it is too strong to require 

that dx' o w has a unique local minimum for all x' E X. It is simply because the 

global minimum of d^' o w may not be unique for some G X, even wken X is 

convex. However, in general o w has a unique global minimum for almost ail 

x' € X. Thus it is reasonable to require that <4' o has a unique local minimum 

for almost all x' € X. As mentioned in Section 1.3, Condition [Tl] and [T2] on 

X will practically be transformed to conditions on x. Since x has finite length, 

it is highly probable that o w has a unique global minimum for all x/, and 

thus workable to require that d^i o w also has a unique local minimum for all xi. 

We make the former into an assumption. 
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Assumption 2 Practically we assume that for all i i , 

^ if i ^ j 

and hence dj^ o w has a unique global minimum. 

• 
With this assumption, we proceed to a practical version of Definition 3.3. Define 

1 if qj is a local minimum of dx' o w 
Ix'^qj) = 4 . . 

0 if qj is not a local minimum of d^i o w 

and let 

K 

i=i 

be the number of local minima of da ' ow'mQ. Assuming x “sufficiently repre-

sents" X , we would adopt the following practice: 

Practice 1 Suppose we know X e C. We would say that {Q,N) with w pre-

serves the topological order of X if 

"Tl] maxg. miiifj d(w[qi)^ xi) is sufficiently small 

^ / \ 

T2] c o X = e, where e = (1 1 . . . 1) 
^ ‘ 

M 

• 

Of course even when {Q,N) with w preserves the topological order of X in the 

sense of Definition 3.3, Assumption 2 may not be true and therefore [T2] may 

not hold. However, since x has finite length, it is in general not difficult to 

perturb w slightly to make [T2] hold. Hence Practice 1 is acceptable. 
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Instead of checking whether c o 5 = e, we shall more often try to minimize 

\co X — e\ 

Since the space of finite sequences is finite dimensional, all norms on it are 

equivalent. (See [13, page 75].) Here we use the 1-norm. Define 

= ~ M ~ = M (3.1) 

Since in our case c(x/) > 1 for all xi, we may rewrite Equation 3.1 as 

1 

In the following sections we shall try to minimize Ji . 

3.2 Minimizing the number of local minima 

The most natural problem we hope to solve is 

Problem 1 Given x and find a mapping w such that Ji = 0. 

• 

It is of course not easy to solve Problem 1. In this section we try to give a partial 

solution to this problem. 

First of all, we try to solve Problem 1 directly using gradient descent method. 

We want to write Ji explicitly as a sum of step functions, which count the number 

of local minima. Then we smooth Ji to Ji by sigmoid functions. Hence we can 

compute the gradient of Ji , and use gradient descent method to minimize it. 

For simplicity we shall only consider (Q,iV) == RK or (Q,N) = S^-. 
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Let 
1 if a: > 0 

e { x ) = < 
0 if x < 0 

\ 

be the step function. For convenience we introduce the following two symbols. 

Let 

’ xi)Y - [d{w{q,\xi)Y) if l< J <K-1 

1 if j 
\ 

0{[d{w{qj.r), xi)]' - [d{w{qj), xi)]') if 2<j<K 
k j 

1 if y 1 

if(Q,iV) = RK or 

‘ 5 2 if l < j < K - l 
aij < 

0{[d{w{q^), xi)Y - [d{w{qj), xi)]') if j = K 

^ — xi)]' [d{w{q,), Xi)Y) if 2<J<K 

— 1 0(ld(w(qK),xOr-ld(w(q,),xi)]') if j = l 

if (Q, N) = S)^. The reader may easily note that 

A i =7xMj) 

Then we may write 
^ M K 

/=1 j=i 
Suppose now we use the sigmoid function 

e{x)=-——^~-

to approximate the original step function 0{x). It is well-known that 9{x) is 

smooth and 

^ = 0[1 - 0] (3.2) 
ax 
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Let a/’j and bij be the corresponding approximations of a“j and hij respectively. 

Then the smooth approximation of Ji can be written as 

^ 1 AF IC 

A = i Z Z l A j — 1 
1=1 i=i 

By applying Equation 3.2 it is easy to obtain the gradient: 

~ 2 ^ 
V ^ G O ^ L = -J^Yl T•[ Z — ( ): 

where the coefficient 

ai,i = ’‘&/,‘[2 - di^i - hi^i] /“_i6“i_i[l - S“‘+i&,’i+i[l - 6/“+i 

Hence the learning rule is 

2 M 
W^iqi) = — T}V—i Ji = ^ ^ ( g O - I j j Y ^ o îA î - — ] (3.3) 

where the superscript + means “after updated". In our simulations the learning 

rate rj was chosen to be 0.05 and the initial values of were set to the first 

K training patterns. 

Remark 3.3 The reader may notice how the "lateral interactions" ap-

pear as terms in Information is passed directly from each neuron 

to its l-neighborhood. Therefore we may say that each link between two 

neurons does really represent a connection between them, and it is not 

necessary for the neurons to be fully interconnected. 

• • • 

Example 3.1 The input space X = [-1,1]. There are totally 7 neurons 

and 500 training patterns. Each training pattern is presented only once. 
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Figure 3.2: The evolution of w{Q) in Example 3.1. 

1.8 1 1 1 1 1 1 1 1 1 
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number of training patterns presented 

Figure 3.3: The evolutions of Ji (solid line) and Ji (dashed line) in Exam-
ple 3.1. 
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Figure 3.2 plots t/;( ),s which are scalars in this example, vs the number 

of training patterns presented. Figure 3.3 plots J\ (solid line) and Ji 

(dashed line) vs the immber of training patterns presented. We see that 

Ji is in general decreasing. 

• • • 

Remark 3.4 Learning rule 3.3 is a "static" learning rule, in the sense 

that Aw{qi) (where A means the difference between "after updated" and 

"before updated") is a function of w{qi) only. All training patterns con-

tribute simultaneously in each, iteration. In practice one often prefers a 

"dynamic" learning rule. In that case each training pattern x/ is presented 

sequentially, and Aw(qi) is also a function of x/. Simulations showed that 

if we used 

W^iqi) = w{qi) - rj2ai4xi w{qi)] (3.4) 

instead of Learning rule 3.3, there were almost no differences. (See Fig-

ure 3.4 and Figure 3.5.) 
• • • 

The results of our simulations showed that although Learning rule 3.3 could 

minimize J i , it could not keep w{Q) on X. The weights tended to spread over 

R". It was because 

1. we did not incorporate the requirement w{Q) C X m the learning rule, 

and it was easier to lower Ji if w{Q) was not confined to X; 

2. we smoothed Ji by sigmoid functions. As a result J i ^ 0 even when 

Ji = 0 (as shown in Figure 3.3), and thus Learning rule 3.3 tried to lower 

Ji further by spreading out the weights. 
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Figure 3.4: The evolution of w{Q) when Learning rule 3.4 is used. 
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Figure 3.5: The evolutions of Ji (solid line) and Ji (dashed line) when Learning 
rule 3.4 is used. 
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Therefore Learning rule 3.3 is considered to be unsuccessful w.r.t. preserving the 

topological order, although it has given many interesting insights to us. 

Next we proceed to a study on Kohonen's algorithm. It is well-known that 

practically Kohonen's algorithm is very effective in preserving the topological 

order, although it does not always solve Problem 1. It is not easy to ana-

lyze Kohonen's algorithm, and we summarize the basic results in the following 

proposition. 

Proposit ion 3.3 Suppose xi is the current training pattern and qi is the global 

minimum^ of c/f, o w. Denote the r-neighborhood of qi by TV (^) . Then Koho-

nen's learning rule is 

w+(qj) = w(qj) + r}[xi - w{qj)] G 

We have the following basic results: 

[Kl] = 1 

[K2] yqj e N qi), 7 ( = 0 

[K3] V A l M = 0 

[K4] V • e = 0 

[K5] e VV(r) < 0 

[K6] yqj e , ^ i M > 0 

2As stated in Assumption 2, global minimum of df, o tx is assumed to be unique for all x/. 
So we say "the" global minimum. 
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Proof. [Kl], [K2], [K3] are obvious from the definition of r-

neighborhood, and [K4], [K5], [K6] are also easily obtained if we 

observe that 

[1 - V?, G TV ( 

• 

We remark that Proposition 3.3 talks about the effect of a single training 

pattern only. It is too complex to consider the local minima of all o w^ 

I = 1,2 . . . M. 
In general the contribution of [K6] does not balance the contribution of 

:K5]. It is very easy to have A7 ,( < 0 if qj G ( \iV (… but it is 

not so easy to have M x M j ) > 0 if qj G iV ( ) ( i)( ) . T o make it precise, 

we give the following two propositions. Note that the “if” parts of these two 

propositions may easily hold in the sense that they consists of “3” and "or" only. 

Proposit ion 3.4 Suppose qj G N(' (qi)\NW(qi). Then q] < 0 if 

:K5-1] 3qk e N{qj) n s.t. [1 - r/J^X^l^it)) < dxi{w{qj)) 

• 

i.e. if Tj is sufficiently close to 1, 7 , ) is surely < 0. On the other hand, 

Proposit ion 3.5 Suppose qj e N . T h e n > 0 if any 

of the following conditions holds 

[K6-1] 3qk e N{qj) n N T qi) s.t. ) < d^XH^ij)) 

[K6-2] 3qk e N(qjy\ (qi) s.t. 4 , — ( ) < [1 ( ) 
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• 
Note that even when rj is very close to 1, [K6-1] may still hold and as a result 

^ i M > 0. 

3.3 Detect ing the success or failure of Koho-

nen's algorithm 

In this section we introduce an application of J i . It is known that Kohonen's 

algorithm does not always preserve the topological order successfully. For low 

dimensions we may plot N) to see whether Kohonen's algorithm succeeds 

or not, as what we have done before. However, we cannot use this method in 

high dimensions. Now we may measure Ji to determine whether Kohonen's 

algorithm succeeds or not. In the following examples we monitor J i after each 

training pattern is presented and a weight is updated using Kohonen's learning 

rule. Of course, this is only for illustration purpose. Practically we only need to 

measure Ji at the end of training. 

Example 3.2 The input space X = [-1,1]. The total number of train-

ing patterns M 500. [Q,N) is chosen to be Rie- The parameters 

of Kohonen's algorithm are set as follows. If x/ is the current training 

pattern, then the radius of neighborhood 

M-I r = [—~- X 7J •"M - 1 

The learning rate 
( 

0.15 if r > 0 
7]= < 

0.015 if r 0 
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Figure 3.6: The evolution of J\ in Example 3.2. 

The result Ji is shown in Figure 3.6. We see that Kohonen's algorithm 

succeeds in this example. 

• • • 

Example 3.3 The input space X = S^. [Q,N) = Sjg. All other param-

eters are set the same as those in Example 3.2. The result Ji is shown in 

Figure 3.7. We see that Kohonen's algorithm also succeeds in this case. 

Then we plot w{Q,N) in Figure 3.9(a) to verify our conclusion. 

• • • 

Example 3.4 Here we want to demonstrate a failed version of Exam-

ple 3.3. The configuration is the same as that of Example 3.3, except 

that this time we use 1-Kohonen's algorithm and rj is fixed to 0.15. The 

result Ji is plotted in Figure 3.8. From it we conclude that 1-Kohonen's 
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Figure 3.7: The evolution of Ji in Example 3.3. 
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Figure 3.8: The evolution of Ji in Example 3.4. 
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(a) (b) 
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Figure 3.9: (a) w{Q,N) in Example 3.3. (b) w{Q,N) in Example 3.4. 

algorithm fails in this example^. We also plot w{Q,N) in Figure 3.9(b) 

to verify our conclusion. 

• • • 

Example 3.5 The input space X [ - 1 Ip. The total number of train-

ing patterns M 1000. {Q,N) is chosen to be The radius of 

neighborhood 
M-I 

r = [ — r X 5J 
^ M - 1 

The learning rate 
0.15 if r > 0 

rj = * 
0.015 if r = 0 

The result Ji is shown in Figure 3.10. We see that Kohonen's algorithm 

3lt is known that whether Kohonen's algorithm works or not depends on some random 
factors, such as the initial weights and the sequence of training patterns. Therefore, we can 
only say that it does not work in this example, but cannot say that it does not work for this 
configuration. 
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Figure 3.10: The evolution of Ji in Example 3.5. 

succeeds in this example. We also plot w{Q,N) in Figure 3.12(a) to verify 

our conclusion. (It can be seen from our choice of r that, since we are 

now studying the topological order, we focus on the ordering phase of 

Kohonen's algorithm only. As a result, the grid shown in Figure 3.12(a) 

has not been completely extended.) 

• • • 

Example 3.6 Here we demonstrate a failed version of Example 3.5. The 

configuration is the same as that of Example 3.5 except that M 500 

and 
‘ M-I , 

r = [—~- X 4 ^M -1 J 

The result Ji is shown in Figure 3.11. From it we conclude that Kohonen's 

algorithm fails in this example. We also plot w{Q,N) in Figure 3.12(b) to 
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Figure 3.11: The evolution of Ji in Example 3.6. 
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Figure 3.12: (a) w{Q,N) in Example 3.5. (b) w{Q,N) in Example 3.6. 
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Figure 3.13: The evolution of Ji in Example 3.7. 

verify our conclusion. Note that it is a classic way of failure of Kohonen's 

algorithm. 
• • • 

Example 3.7 The input space X = [-1, i f . The total number of train-

ing patterns M = 1500. (Q,N) is chosen to be KQ^, The radius of 

neighborhood 

r = [—~- X 2 
^ M - 1 

The learning rate 
0.15 if r > 0 

RJ = < 

0.015 if r = 0 

The result Ji is shown in Figure 3.13. We see that Kohonen's algorithm 

succeeds in this example. Note that this time we cannot plot w{Q, N) to 

verify our conclusion. 
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Figure 3.14: The evolution of Ji in Example 3.8. 

• • • 

Example 3.8 In this example we want to demonstrate what happens . 

when the neighborhood is set too large. The configuration is the same as 

that of Example 3.7 except that 

r = L t F 7 X 3J LM - 1 

The result Ji is plotted in Figure 3.14. It seems that Ji becomes saturated 

before it starts to decrease again. The same phenomenon is observed 

for other dimensions of input space, provided that the initial r is set 

sufficiently large. 

• • • 
The above examples have one point in common. That is, J i 0 is achievable 

for some ŵ  although Kohonen's algorithm cannot always find it out. In the 
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Figure 3.15: The evolution of Ji in Example 3.9. 

examples below, Ji 0 is not achievable, and we shall see how Kohonen's 

algorithm manages such cases. 

Example 3.9 The input space Ŝ  but (Q,iV) Rie- Other pa-

rameters are set the same as those in Example 3.2. The results Ji and 

w{Q,N) are shown in Figure 3.15 and Figure 3.17(a) respectively. We 

see that although only one link is missed, Ji can detect the difference. 

• • • 

Example 3.10 The input space X = [ - 1 1] but (Q iV) = S^g. Other 

parameters are set the same as those in Example 3.9. The result J\ is 

shown in Figure 3.16. Note that the final value of Ji is quite close to that 

of Example 3.9. 

• • • 
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Figure 3.16: The evolution of Ji in Example 3.10. 

Example 3.11 In this example the input space X — [—1 Ip. The total 

number of training patterns M = 10000. {Q,N) is chosen to be S^^. The 

radius of neighborhood 

‘ L X 16 if I < 1000 
r < 

0 if I > 1000 
\ 

The learning rate 
0.15 if r > 0 

T} < 

0.015 if r = 0 

w(Q,N) is plotted in Figure 3.17(b) . Note that the result is classic. The 

final value of Ji is 14.0475, which is far away from 0. 
• • • 
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(a) W 4 \\ 4 : 
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Figure 3.17: (a) w(J^,N in Example 3.9. (b) w{Q,N) in Example 3.11. 

Remark 3.5 The reader may readily notice that in most of the time we 

used Kj^ instead of UKK in Kohonen's algorithm for the measurement 

of Ji . Besides the traditional reason, there is another more important 

reason. A neuron is much easier to be a local minimuin if (Q^N) = TIKK 

than if {Q,N) = RJ^ when n 1. This is in fact a special case of what 

we shall discuss in Section 3.4. Roughly speaking, for UKK to preserve 

the topological order of R", w{Q) should exactly form a rectangular grid. 

Even a small perturbation in w may make Ji ^ 0 when n > 1. Since 

our requirement is not so strong, it would be better to use R ^ instead of 

URK for the measurement of Ji. However, theoretically URK is better 

than R ^ in the sense that URK may be minimal but R is never minimal 

when n > 1. The meaning of this statement will become clear in the next 

two chapters. 

• • • 
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3.4 Local minima for different graph struc-

tures 

One may easily see from Definition 3.2 that it is more difficult for qi to be a local 

minimum if N(QI) is larger. More precisely, if QI is a local minimum in (Q, N), 

it may not be a local minimum in (Q,NE) if NE N{qi). Thus a natural 

but new problem arises. 

Definit ion 3.4 Let NE • Q N is called a partial graph of NE if 

0 V^I € Q 

We shall abbreviate this relation to NE N. 

• 

Problem 2 Given x and w and suppose Ji + 0 find a new graph 

(Q,NE), NE D N and satisfies [N2]^, such that { Q , N E ) with w would have 

Ji = 0. 
• 

In practice w is not arbitrary given, but usually obtained using Kohonen's al-

gorithm, so that NE is hopefully close to N. Unlike Problem 1, this problem is 

obviously solvable with the trivial solution 

NE{QI) = Q V^, G Q 

even if X 0 C. Of course such a trivial solution is not useful, but it is still easy 

to find out a non-trivial solution. In Chapter 4 we shall introduce the induced 

mapping Nj and hence Nsiqi) can be easily set to N{qi) U Ni{qi) V G Q. 

"̂ NE N implies NE satisfies [Nl]. 
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Since we have not introduced the induced mapping iVj, we would now use 

another systematic but natural approach: 

Suppose we have used Kohonen's algorithm to find out a w for which 

Ji ^ 0. Then we go through the training patterns again. Let xi be 

the current training pattern and qi be the global minimum of d^i ow. 

Suppose qj, j ^ i is also a local minimum. We would think that qj 

should not be a local minimum since it is not the global minimum. 

So we enlarge N{qj) and N{qi) by 

N^iqj) N{qj) U {qi} 

N^iqi) 

{N{qi) is also enlarged to ensure that [N2] is satisfied.) Then qj 

must not be a local minimum anymore. The process is repeated for 

all training patterns and at last we would have J i 0. 

With this method we present some examples, w is obtained using Kohonen's 

algorithm of which the parameters are set as follows. The total number of 

training patterns M == 10000. The radius of neighborhood 

j L l ^ x f J if ^ < 1000 
< 

0 if / > 1000 
V 

where K is the total number of neurons. The learning rate 

0.15 if r > 0 
7] < 

0.015 if r = 0 

Example 3.12 We start with an example in which. X ^ C. Let X = 

P(l ,3) and Si^, i.e. K 16. Figure 3.18(a) shows that the 
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Figure 3.18: (a) w(Q,JV) in Example 3.12. (b) w ( Q , N b ) in Example 3.12. 

result w(Q,JV) of Kohonen's algorithm is satisfactory. However, since 

X 0 C, OUT theory does not work. Ji is measured to be 0.5625 instead 

of 0. After using the above algorithm to find NE, JI is forced to 0. 

The result W{Q,NE) is shown in Figure 3.18(b). Although we have not 

introduced the induced mapping Ni, we also plot w(Q,Ni) in Figure 3.19 

for comparison, where Nj is the practical approximation of Nj. (The 

method to obtain N j is mentioned in Practice 2 which will be discussed 

in details in Chapter 4.) 

• • • 

Example 3.13 In this example X P(0,1) and (Q,iV) = S\Q. Fig-

ure 3.20(a) shows the result w{Q, N) of Kohonen's algorithm. Ji is 

measured to be 1.0793. Then we obtain NE using the above algorithm. 

W{Q,NE) is plotted in Figure 3.20(b). This time JI is measured to be 0. 

We also plot w Q, Nj) in Figure 3.21 for comparison. 
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I I I 
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Figure 3.19: w{Q,Ni) in Example 3.12. 
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Figure 3.20: (a) w{Q,N) in Example 3.13. (b) W(Q,NE) in Example 3.13. 
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— I 1 — I — 
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Figure 3.21: NJ) in Example 3.13. 

• • • 

Example 3.14 In this last example we find NE for Example 3.11. The 

result w(Q,N) of Kohonen's algorithm is already shown in Figure 3.17(b). 

Now we plot it again in Figure 3.22(a) for ease of comparison. w(Q, NE) 

and w{Q,Ni) are plotted in Figure 3.22(b) and Figure 3.23 respectively. 

Note from Figure 3.22(b) that the "density" of links is especially high 

at some locations, which, are in fact the locations of the first few training 

patterns. Actually it is not hard to see that in our algorithm the most sig-

nificant changes in N are usually made by the first few training patterns, 

among which a lot are inadequate. 

• • • 

From the above examples we see that NE has a lot of excess links, although 

it is not the trivial mapping NQ . Such excess links are mainly produced by the 
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(a) W 

- 1 - - 1 - -
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- 1 0 1 - 1 0 1 

Figure 3.22: (a) w{Q,N) in Example 3.14. (b) W{Q,NE) in Example 3.14. 
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I I 1— 
-1 0 1 

Figure 3.23: w{Q,Ni) in Example 3.14. 
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first few training patterns. Thus we notice that "minimal" is very important, 

and we shall see in Chapter 4 that the induced mapping Nj is in some sense 

minimal. From the satisfactory results of the induced mapping shown in the 

above examples, we hope that there is a sufficient motivation for the reader to 

go through our work in Chapter 4. 

3.5 Formulation by geodesic distance 

In this section we want to generalize our theoretical work in Section 3.1. 

The generalization is achieved by employing geodesic distance instead of 

direct distance, and as a result we do not need the convexity of X. However, 

to guarantee that geodesic distance is defined for any two points in X, it is still 

necessary to assume X is path-connected. 

Let 

x') geodesic distance between x and x' 

Note that d is only defined on X x X instead of the whole R/" x Similarly 

we may define 

dx' X B. such that ^ ( ) = x ' ) 

Then we have the following generalization of Proposition 3.1 

Proposit ion 3.6 Assume X is path-connected. Suppose x' G X. Then ' h a s 

a unique local minimum at x' G X. 

Proof. It is obvious that x' is a global minimum and hence a local 

minimum. To prove uniqueness, it suffices to show that given any 

X ^ X {x ^ x') and any open neighborhood U of x, there exists 
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a point x" G U s.t. da:>{x") < da:'{x). Since X is path-connected, 

there must exist a path joining x' and x, and since X is closed, the 

shortest path, i.e. the geodesic, must exist5. Let Q be the trace® of 

the geodesic excluding the end points x' and x. Take o;" 6 # 0 . 

Then dx'{x") < da;t{x) since 

which is evident from the concept "shortest path" embedded in the 

definition of geodesic. 

• 

Assume w{Q) C X. Then we can still define o w. Hence we obtain a 

generalization of Definition 3.3. 

Def in i t ion 3.5 Suppose X is path-connected and w{Q) C X. We say that 

(Q iV) with w preserves the topological order of X if every local minimum of 

dx' o If is a global minimum of d^' o w for all x' G X. 

• 
We remark that this definition is really consistent with Definition 3.3 in the 

sense that if X is convex, dx' = dx'. 

We have seen that if we use direct distance, we must at least restrict our 

class of input spaces to C, otherwise undesirable results may be obtained. (See 

Example 3.12.) If we could measure geodesic distance, the results would be 

quite different. We could hence study a much larger class of input spaces. (It 

®Geodesic may not be unique, so it may not be suitable to call it "the" geodesic. However, 
the geodesic distance is well defined. 

®Strictly speaking a path is a map and its trace is the range of this map. 
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can be easily seen that C is contained in the class of path-connected spaces.) 

In Section 3.1, we mentioned that S^ £ C but P ( l , 3 ) C although they are 

homotopic. In Example 3.12 and Example 3.13, we saw that both J i 0 when 

(Q, N) = S^ , although P ( l , 3) and P(0,1) are not homotopic. However, in fact 

we know that S ^ preserves the topological order of S^ and P ( l , 3), with different 

suitable w, in the sense of Definition 3.5, but S]^ with no w would preserve the 

topological order of P(0,1) in the sense of Definition 3.5. Therefore, if we had 

used geodesic distance, we should notice the similarity between S^ and P ( l , 3 ) 

and the difference between P ( l , 3) and P(0,1) . 

3.6 Local minima and Voronoi regions 

Finally we want to point out how the concepts developed in this chapter arrive 

at the birth of the main idea discussed in the next chapter, the induced mapping. 

It is based on an equivalent formulation of Definition 3.5 in terms of Voronoi 

regions. Suppose X is path-connected. Recall that the Voronoi region [8 page 

225] of qi is 

Bi{Q) = {x e x d{w{qi), x) < d{w{qj), x) V .G Q} 

Here we introduce a local version of Voronoi regions. Define 

Bi{N{qi)) = {x£X: d{w{qi),x) < d{w{qj),x) Wqj G A (̂ } 

to be the local Voronoi region of qi. It is clear from the definitions that Bi{Q) C 

Bi[N{qi)). The equivalent formulation of Definition 3.5 is based on the following 

trivial but important fact 
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Proposi t ion 3.7 Suppose X is path-connected. Then the following two state-

ments are equivalent: 

Ll ] Every local minimum oi d^ o w is a, global minimum of d^ o w for all 

X E X. 

[L2] Bi{Q) = Bi{N{qi)) for all qi e Q. 

• 
The proposition is evident from the definitions. Hence we have 

Proposit ion 3.8 Suppose X is path-connected and w{Q) C X. Then (Q, N) 

with w preserves the topological order of X iff Bi{Q) = Bi{N{qi)) for all qi G Q. 

• 
It is important to note that the Voronoi region of qi is completely determined by 

X and K , and does not depend on the mapping N. On the other hand, the local 

.Voronoi region of qi is characterized by its l-neighborhood N{qi). So conversely 

if we are formally given the local Voronoi region of qi without knowing its 1-

neighborhood N(qi), we can pick out a set of neurons from Q which can define 

this local Voronoi region, and treat this set of neurons as N{qi). Proposition 3.8 

says that if (Q, N) with w preserves the topological order of X, we can identify 

the Voronoi regions with the local Voronoi regions. Conversely, if we are only 

given X and w, we can find a mapping N such that {Q, N) with w would preserve 

the topological order of X. This is done by first obtaining the Voronoi regions 

from X and w, and then obtaining the local Voronoi regions by identifying them 

with the Voronoi regions, and at last grasping a collection of neurons for each 

local Voronoi region to define the corresponding l-neighborhood. This is the 
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basic idea of the induced mapping Ni . Of course many mapping iV's satisfy 

Statement [L2]. For induced mapping we hope to find one which is almost 

minimal, in a sense which will be precisely defined in the next chapter. 
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Induced graph 

In this chapter we present the most natural but important theoretical concept 

in this thesis: the induced graph. We (Section 4.1) first introduce the Voronoi 

regions formally, and then present our last generalization of the definition of 

preserving the topological order, and at last define the induced graph. It follows 

by several remarks which are originally designed to fasten the concept of the 

induced graph, but eventually become an essential part of our theory. In partic-

ular, the results presented in Remark 4.3 and Remark 4.5 are significant, which 

also form the basis of our analysis (Section 4.2) in the practical method we use 

to find the induced graph. Remark 4.4, on the other hand, discusses the central 

idea when (Q, N) with w would be a good representation of X. At the end of 

this chapter (Section 4.3) we present some examples of the induced graph. 
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4.1 Formalism 

Let X be the input space. Suppose each component^ of X is path-connected 

and w{Q) C X. Since x') is defined only when x and x' fall in the same 

component of X , it would be convenient if, given any set of neurons 0 , we can 

grasp a subset of neurons 0' of O such that w{0') is contained in the same 

component of X. Let C : Q — V{X) be defined by 

Ci = component of X s.t. w(qi) G Ci 

We always adopt the following notation: For any set O C Q^ 

6i = {qj e o w{qj) e Ci} 

Then it is clear that for any qk G O,, Ck = Ci. Define : V { Q ) V{X) by 

Bi{0) = {xe Ci : d{w{qi),x) < d{w{qj),x) Vg,- G O J 

It is evident from the definition that 

Bi{0) = Bi{6i) (4.1) 

Moreover, we have the following basic results. 

Proposit ion 4 .1 Bi has the following properties: 

B l ] VO C Q, Bi{0) is closed in X. 

[B2] V O c g , Bi{0\{qi]) = Bi{0) = Bi{0 U {qi}). 

B3] V0i ,02 C Q, Bi{Oi) C (O2) iff Oi O2. In particular, Bi{Q) C 

Bi{0) VO c Q. 

1A maximal connected subspace of a topological space is called a component of the space. 
See [20 page 146:. 
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:B4] VOi, O2 C Q, (O2) strictly contains Bi{Oi) Oi strictly contains 

O2. 

B5] Suppose O2 C Oi and ( O 2 ) = (Oi). Then VO C Q s.t. O2 C 

O C Oi, (O2) = Bi{0)= (Oi). 

[B6] V O c g , 

U B (o) = U Ci 
qjeO gj€0 

In particular, 

U = U C3 
qjeQ qjEQ 

[B7] V O i , O 2 , . . . , O x C 0 , 

U B )=U C3 
qjeQ qjEQ 

\J 

[B8] Suppose X e Ci = Ck s.t. d(w(qi),x) d(w(qk),x). Then VO C 

Q, x e Bi{0) iff rr G Bk{0). In particular, x G Bi{Q) iff x € Bk{Q). 

B9] VO C Q, Bi{0) is path-connected. Moreover, Vx G (O), if Q is 

the trace of a geodesic in Ci joining w{qi) and cc, then S C Bi(0) . 

Proof. [Bl] , [B2], [B3] are trivial from the definition. [B4] and 

[B5] can be easily obtained from [B3]. The proof of [B6] is evident. 

The proof of [B7] becomes easy if we apply the particular case O Q 

of [B3] and [B6]. So we start with [B8". 

Proof of [B8]. We note that x 6 Bi[0) means 

d{w{qi),x) < d{w{q^),x) V G Oi (4.2) 
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V 

Putting d{w{qi), x) = d(w(qk), x) into Equation 4.2, we have 

d(w(qk), x) < d(w(qj), x) \/qj G Oi = Ok 

which means x G Bk{0). 

Proof of [B9]. Suppose 3x' e G s.t. x' Bi(0). Let 

0' = Oi U {qi} 

Then it is clear from Equation 4.1 and [B2] that ( O ) = (0 ')’ 

and hence Bi{0'). [B6] says that 

U ( • ' ) = Ci 
qjeO' 

Hence x' G Bk{0') for some qk G 0' and qk — qi. Since qi G this 

implies d{w{qk),x') < d{w{qi),x'). But d{w{qk),x') — d(w{qi),x'), 

otherwise [B8] implies that x' G Bi{0'). Hence we have 

d(w{qk),x') < d{w{qi),x) 

However, according to the definition of a geodesic, 

d{w{qk),x) < d{w{qk),x') ^ d{x ,x) 

< d{w{qi), x') + d{x', x) = d{w{qi), x) 

contradicting to the fact that x G Bi{0). 

• 

Bi{Q) is called the Voronoi region of qi. 
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Definit ion 4.1 Suppose each component of X is path-connected and w{Q) C 

X. We say that (Q NQ) with w preserves the topological order of X if Ui Ci X 

and Bi{Q)= (TVg( ) ) for all qi e Q. 

• 

According to Proposition 3.8, Definition 4.1 is really a generalization of Defini-

tion 3.5. Note that we have used the symbol NQ instead of N to emphasize that 

it is the given mapping, in contrast to the induced mapping Ni we shall define. 

Next we proceed to the construction of the induced mapping Nj. Let Af be 

the class of mappings N : Q — T Q which satisfy 

[NI] yqi e g , qi e N 

[N2] yqi.qj e Q, qi G N{qj) iff qj G N{qi) 

We define a partial order in Af. For Ni,N2 G Af, we say that Ni < N2 iff 

[<1] yqi e 0, iVi CiV2 and 

[<2] V ^ e Q B N qi)) = Bi[N2(qi)). 

It can be easily checked that < satisfies the axioms of a partial order. Note that 

'<1] is in fact saying that N! is a partial graph of N , a n d we shall continuing 

adopt the abbreviation N2 3 Ni. The reader may refer to Definition 3.4. 

Proposit ion 4.2 Let NQ G AF denotes the trivial mapping 

Nqiqi) = Q Wqi e Q 

and suppose NI < NQ. Then for any TV G AT s.t. N D iVi, NI < N < NQ. 
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Proof. Since Ni < TVq, 

(TVI = ( ‘) V^,- G Q 

Hence Proposition 4.2 follows from Proposition 4.1 [B5]. 

• 
Recall that NM is called a minimal element iff iV < TVm implies N = NM for any 

N EAF. 

Definit ion 4.2 Let {N^} be the set of minimal elements which satisfy N^ < 

NQ, Then the induced mapping NJ is defined by 

Ni{qi) = [jN4qi) yqi € Q 
a 

and we shall call the corresponding graph {Q^Ni) the induced graph. 

• 
It is clear that Ni G M. Moreover, we have 

Proposit ion 4 .3 Let NI be the induced mapping and N be any mapping in N 

s.t. NO, <N for all a . Then 

N c , < N i < N < N Q Va (4.3) 

Proof. It is evident that N! D N for all a. Also, 

N{qi) D N^{qi) yqi G Q Va 

implies that 

U = VG, G Q 
a 

i.e. N D Ni. Hence Inequality 4.3 follows from Proposition 4.2 

immediately. 
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• 
The reader should not be surprised to have 

Proposit ion 4.4 Suppose each component of X is path-connected and w{Q) C 

X s.t. Ut Ci = X. Then {Q,Ni) with w preserves the topological order of X. 

• 

Actually the above proposition holds for any N < NQ. The special importance 

of Ni is owing to the fact that it is “minimal ’ in the sense of Proposition 4.3. 

The reader may be a little bit disappointed in the definition of the induced 

mapping. The definition is in fact not complicated, but more complicated than 

we thought. Since Q is finite, V{Q) is finite, and hence Af is finite. So theo-

retically there is no difficulty in finding the minimal elements. However, as we 

know from our experiences that we can in general easily identify NJ without any 

hesitation, it is understandable that the reader may not be satisfied with Defi-

nition 4.2 which cannot reveal the ease. Therefore we think that it is necessary 

to add some remarks to our definition. 

Remark 4.1 Now we have a clear picture in mind what "preserving the 

topological order" means. It is characterized by the Voronoi regions. A 

Voronoi region is formally defined by all neurons, but in fact is constructed 

by the neurons in the 1-neighborhood only. In other words, many neurons 
/s 

are in fact useless in constructing the Voronoi region. Let 0{ be Q minus 

the set of neurons which are useless in constructing the Voronoi region 

Bi(Q). We want the l-neighborhood Ni{qi) to merely contain 6{. (Note 

that Ni{qi) + 6i since qi never contributes to the construction of Bi{Q) 

by Proposition 4.1 [B2], but we always want qi G Ni{qi).) It is natural to 
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determine 0 , in the following way. First we initialize Oi = Q. Then for 

qj = l ,2 . . . iir we examine whether Bi{Q) = Bi{di\{qj}). If they are 

equal, we set Of = 6i\{qj}. After all neurons are presented once, the Oi 

obtained in this way is minimal, in the sense that 

Proposition 4.5 If • is any subset of Q s.t. O C Oi and Bi(0)= (Q) 

then 0 = Oi. 

Proof. Suppose Bqj G 0{\0. Then by Proposition 4.1 [B5: 

Bi(di\{qj}) = Bi(Q). On the other hand, let (5 denote the 

Oi when qj was examined. Since qj was retained, Bi{d^\{qj}) 

strictly contains Bi{Q). Then { i ) ) strictly contains 

Bi{di\{qj}), and by Proposition 4.1 [B4] (5 is strictly con-

tained in Oi. This is impossible. 

• 
Similarly we obtain 0 , for all qi. Then it seems more natural than Defi-

nition 4.2 to define the mapping Ni as N^ where 

U Vg,- G Q 

The above method is equivalent to defining a partial order in V{Q) 

instead of J\f and then finding out the minimal elements in order to de-

fine the 1-neighborhood. Unfortunately, Nq defined in this way may not 

have symmetry, i.e. satisfy Condition [N2], since we try to define each 1-

neighborKood individually. (See Example 4.1 below.) Therefore we must 

consider N! as a whole, and Definition 4.2 becomes a suitable one. Of 

course there is a natural way to make Nq into a symmetrical mapping 

Nsymiqi) = {qj eQ :qje N qi) or qi G N )} 
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However, Nsym so defined may not be minimal in {M, <). (See Exam-

ple 4.2 below.) 

The reader may readily notice that the reasons of Nq being non-

symmetrical are different in Example 4.1 and in Example 4.2. In Exam-

ple 4.2 the sequential presentation of the neurons plays an important role, 

while in Example 4.1 it does not. The dependence on the sequence of the 

neurons can be eliminated by taking the union. (See discussions under 

Remark 4.2.) After that the mapping Nq is seldom non-symmetrical. 

If Nq is still non-symmetrical, as in Example 4.1, then it is reasonable 

to conjecture that there may be a stimulating and informative reason, 

i.e. N "should in some sense" really be non-symmetrical. So far we 

have assumed that N is symmetrical, mainly because intuitively we think 

"neighborhood" is a symmetrical relation. It is not so evident for sym-

metry to be a necessary condition. Studying non-symmetrical graphs, 

although interesting, is a very large topic and we shall continue to confine 

our studies to symmetrical graphs in this thesis. 

• • • 

Example 4.1 Let X be the region bounded by the solid line in Fig-

ure 4.1(a), Q = {quq2,q3} and w{qi) = w{q2) = w{q3)= 

( - ! - ! ) . The Voronoi regions are separated by dashed lines in the figure. 

Then 

= { 1 ,92 ,93} 

^0(92) = {qi,q2} 

^ 0 ( 9 3 ) = { 1,^2,53} 

Note that Nq is not symmetrical since G ̂ oiqs) but qs ^ N^{q2). 
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(a) (b) 
— I 1 1— — I 1 ‘ 

t | I I t \ i / 
0.5 _ O ! O - 0.5 _ \ I / -

0 — " " K • 1 ^ " 
-0.5 \ - -0.5 / \ v_ z \ 

- 1 - ^ - - 1 - ‘ ^ -
I I I I I 1 

- 1 0 1 - 1 0 1 

Figure 4.1: (a) The input space considered in Example 4.1. (b) The input 
space considered in Example 4.2. 

• • • 
Example 4.2 Let X be the region bounded by the solid line in Fig-

ure 4.1(b), Q = { 1,^2,93,54} and w{qi) = ^^ ) = ( i i) 

w(q3) ( - - , - | ) , w{q4) = - | ) . The Voronoi regions are separated 

by dashed lines in the figure. Then 

N qi) = {gi, 52,^4} 

= {^1,92,94} 

No{q3) = {92,^3,94} 

^0(^4) = {92,93,94} 

Note that Nq is not symmetrical since, for example, q^ € N (^qi) but 

Suppose we make N into a symmetrical mapping Nsym by 

Nsym{qi) {qj eQ :qj e N^iqi) or qi G N )} 
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Then 

Nsym{qi) = {gi, 94} 

^sym(g2) = 

Nsymiqs) = {^2,53,^4} 

Nsym{q4) = {91,92,53,94} 

Clearly if we define Ni s.t. 

Ni{qi) = { 

^1(92) = 

Niiqs) {$2 ,93 ,94} 

Niiq^) = 

then Ni < Nsym and hence Ngym is not a minimal element. In fact, Ni 

itself is a minimal element. 

However, if—gi) = (— ) — = ) ,— * • 

( - ! - § ) , then 

{91, } 

= {91,52,93} 

{92 ,53 ,94} 

(We have added a prime to distinguish it from before.) Clearly N'^ is also 

not symmetrical since, for example, qs 6 iV^(gi) but qi ^ N^{q3). 

If similarly we make N'^ into a symmetrical mapping N' , we would 

have 

N'SYMM = { 
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N'symM = {91, 92, 53, 54} 

N'synMs) = {91,52,93,94} 

KymM = {92,93,94} 

Once again if we define N2 s.t. 

{91, 93} 

N2{q2) = 

#203) = {gi, 93,^4} 

2 = { } 

then N2 < Nlym and hence N' is not a minimal element. In fact, N^ 

itself is another minimal element. 

Hence we see that iV^ may not be unique. 

• • • 

Remark 4.2 The reader may notice that we define iVj to be the union 

of Na. It is because the N^ may not be unique (although it often is). 

Therefore, if we want uniqueness, we cannot define Ni to be any N^. 

Imagine we obtain a procedure similar to the previous remark for the 

mapping N considered as a whole, in which one link (i.e. pair of neurons) 

is examined and may be discarded at a time. Although this procedure 

guarantees that we can obtain a minimal element, owing to the non-

uniqueness, the minimal element we obtain may depend on the order of 

the links presented. Therefore, if we define NJ to be this minimal element, 

we may obtain another NJ if we renumber the neurons. This situation is 

in general undesirable. To eliminate its dependence on the sequence of the 

links presented, we simply take the union, and hence we obtain a unique 
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NI which is still "as minimal as possible" in the sense of Proposition 4.3. 

(Of course we cannot take the intersection otherwise we cannot guarantee 

NI < NQ,) 

• • • 

Remark 4.3 Another reason of saying that the reader may not be satis-

fied with Definition 4.2 is the following. Suppose we are given qi,qj € Q. 

We cannot tell immediately from the definition whether qj G Ni{qi). It 

is because the condition of telling whether qj € Ni(qi) is not so simple, 

and it is not good to use it as the definition. However, simple condition 

really exists for non-minimal mapping. The following proposition is an 

example, which is in fact saying tliat if two Voronoi regions have empty 

intersection, the corresponding neurons do not contribute to building the 

Voronoi region of each, other. 

Proposition 4.6 Let 0 , = {qj € Q : Bi{Q) n B Q) # 0}. Suppose 0 is 

any subset of Q s.t. (0) = Bi(Q). Then Bi(0 n (5‘ Bi(Q). 

Proof. We choose an indirect but interesting proof. It suffices 

to show that Bi(0 fl 0{) + Bi{0) will result in contradiction. 

Suppose Bi{0 n Oi) D Bi{0) but Bi(0 n (5‘) + (0). Con-

sider ‘(0 n (5t) itself as a topological space^. Then Bi{0) is 

closed in Bi{0 A (5i) since Bi{0) is closed in X by Proposi-

tion 4.1 [Bl]. Therefore Bi{0) cannot be open in Bi{0 A (5i). 

(Otherwise Bi{0) both open and closed in Bi(0 A (5i) im-

plies that Bi(0) is a component of Bi(0 A (5‘) which implies 

^The topology of 5 , ( 0 A (5i) is the relative topology on Bi{0 n which is induced from 
the topology of X . 
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Bi{0) = Bi(0 5,.) since Bi{0 n (5i) is connected by Proposi-

tion 4.1 [B9].) That means 3x e Bi{0) s.t. all neighborhoods^ 

of X cannot be contained in Bi{0). Then it is impossible to 

have 

d{w{qi),x) < d{w{qj),x) € di\6i 

(Otherwise, 3 a neighborhood U of x s.t. for all x' € U, 

d{w{qi),x') < d{w{qj),x') qj 6 di\ i 

Then is a neighborhood of x which is contained in Bi{0),) 

Therefore we may take qk € (5t\6,- s.t. 

d{w(qi),x) d{w{qk),x) 

Since x £ Bi(0)= (Q), then by Proposition 4.1 [B8] x € 

Bk(Q). Hence Bi(Q) n Bk(Q) 0 contradicting to the fact 

that qk ^ Oi. 

• 
A trivial consequence is 

Corollary 4.7 Bi{6i) = Bi{Q). 

• 
According to Corollary 4.7 we may naturally define a mapping Nq by 

Noiqi) = 6i "iqi € Q 

It is clear that Nq satisfies Condition [Nl] and [N2] and hence in N. 

Moreover, N^ < Nq for all a and it follows from Proposition 4.3 that 

^Here we consider Bi(0 n itself as a topological space, and a neighborhood U of x is a 
subset U of Bi{0 n (5‘) s.t. U is open in 5 , ( 0 fl 6 , ) and x eU. 
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Nj < Nq. (We skip the proof here, although it is easy, since it is a special 

case of Proposition 4.10 below, of which we shall give a proof.) In fact it 

may happen that N j + NQ and therefore we cannot use Nq to replace Ni 

in the theoretical work. However, the usefulness of Corollary 4.7 should 

not be underestimated, especially we know that it is very effective in 

telling when two neurons should not be in the l-neighborhood of each 

other. 

It is not hard to see that Proposition 4.6 is equivalent to saying that 

if qj i Qi, then for any 0 C Q s.t. (0) = Bi(Q), Bi{0\{qj})= 

Bi{Q). This motivates us to give a precise definition of what we mean by 

a neuron qj contributing to the construction of the Voronoi region Bi(Q). 

To distinguish it from the term "contribution" we used before without 

precisely defined, we give it a special name. 

Definition 4.3 We say that the neuron qj does not weakly contribute 

to BiiQ) iff for any 0 C Q s.t. Bi{0) = Bi{Q), Bi{0\{qj}) = Bi{Q). 

Otherwise we say that qj weakly contributes to Bi{Q). 

• 
An important result is Proposition 4.9. We start with a lemma. 

Lemma 4.8 Let qj + qi s.t. qj does not weakly contribute to Bi{Q) and 

qi does not weakly contribute to Bj{Q). Then qj 0 Na{qi) and qi Na{qj) 

for any N^. 

Proof, qj does not weakly contribute to Bi(Q) and qi does 

not weakly contribute to Bj{Q) imply that 

Bi[N =Bi{N^{qi)\{qj}) 

BMqj)) = Bj{N^{qj)\{qi}) 
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Then we may define a mapping 

N{qi) = N^{qi)\{qj} 

N{qk) = Nc^iqk) ^qk G Q\{qi.qj} 

Clearly N e Af. Since N^ is minimal, we have 

M<ii) = 

Na(qj) : N^{qj)\{qi} 

and hence qj Na{qi) and qi Nj^qf). 

• 

Proposition 4.9 Suppose qj G Ni(qi) but qj + qi. Then qj weakly 

contributes to Bi{Q) or qi weakly contributes to Bj(Q). 

Proof. Suppose both, are not true. Then by Lemma 4.8 qj ^ 

Na(qi) for all a, contradicting to the fact that qj G Ni(qi). 

• 

Proposition 4.9 in fact says that N j discards all neurons which do not 

weakly contribute, except those retained for the reflexive (Condition [Nl]) 

or symmetrical (Condition [N2]) reason. 

Another important result is 

Proposition 4.10 Let N e Af. Suppose qj ^ N(qi) implies that qj does 

not weakly contribute to Bi{Q). Then iVj < N. 

Proof. First we show that N^ < N for all a. Suppose qj ^ 

N(qi). Then qj does not weakly contribute to Bi(Q). On the 
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other hand, qi 0 N{qj) since N satisfies Condition [N2]. So 

qi does not weakly contribute to Bj{Q). It is also clear that 

qj + qi since N satisfies Condition [Nl]. Applying Lemma 4.8 

we know that qj ^ Na(qi). Hence N{qi) NJ^qi). Since this 

is true for all qi, N Na and by Proposition 4.2 Na < N. 

Then it follows from Proposition 4.3 that Ni < N. 

• 
Proposition 4.10, of course, once again tells us that Ni is in some sense 

"minimal". However, the main importance of Proposition 4.10 is that 

it guarantees how we can obtain a mapping N which is well-defined, i.e. 

independent of the numbering of the neurons. This is simply achieved by 

employing "not weakly contribute" to be a necessary condition to discard-

ing a neuron. It is in fact natural since "not weakly contribute" means 

that the neuron can be discarded from a set independent of the set holding 

it. In particular, if the l-neighborhood is obtained by examining and pos-

sibly discarding one neuron at a time, then "not weakly contribute" says 

that the neuron can be discarded at any time, and hence independent 

of the specific sequence. In other words, all "not weakly contributing" 

neurons can in fact be discarded simultaneously. 

The reader may readily understand why we call the kind of contribu-

tion we have defined in Definition 4.3 the "weak" contribution. Since Ni is 

possibly non-minimal in (A/‘, <), Proposition 4.10 implies that some min-

imal elements N^ may discard some neurons which do weakly contribute, 

but the same Voronoi regions still result. So we call the contribution 

“weak”. 

• • • 
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Remark 4.4 In this remark we want to discuss when (Q, N) with ty is a 

good representation of X. Of course we have not precisely defined what 

we mean by a good representation of X, but we can still discuss it in the 

intuitive sense. First it is natural to ask if 

Rl] {Q^N) with w preserves the topological order of X 

whether it is always a good representation of X. The answer is no. For 

example, if iV = NQ, then [Rl] always holds provided that W{Q) C X and 

Ut Ci X, but (Q^NQ) with w is in general not a good representation of 

X. That means, in addition to [Rl] we need a suitable choice of N. An 

obvious choice is the induced mapping, i.e. 

R2] N = Ni 

However, [Rl] together with [R2] still cannot guarantee a good repre-

sentation of X. (See Example 4.3 below.) In fact, there exists an induced 

mapping Nj for arbitrary w which satisfies w(Q) C X. Intuitively a suit-

able choice of w is necessary for a good representation of X. It is because 

w determines how the neurons are placed in X and hence the Voronoi 

regions. To be a good representation, we hope that 

R3] w places the neurons in X approximately according to the 

probability distribution defined on it 

[R3] is not very rigorous. Roughly speaking, we want the "firing proba-

bility" of each neuron is approximately the same, and each. Voronoi region 

is approximately isotropic, i.e. the mimber of training patterns in each di-

rection is approximately the same. Such a w can in general be obtained 

using competitive learning. (For a more rigorous treatment of [R3] see 

6 7], in which. Grabec studied intensively how to place the neurons in the 
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input space in order to reflect the probability distribution defined on it. 

We may employ the idea of Grabec in our case. Here we explain it briefly. 

Let : X X X R be a "window" function. In general x') is 

a decreasing function of x'). Grabec used the Gaussian function for 

some simple input spaces. Then w is chosen in order to minimize 
K 

i=i 

where f(x) denotes the probability distribution defined on X.) 

If [Rl], [R2] and [R3] are all satisfied, we may say that (Q^N) with 

tx; is a good representation of X. 
• • • 

Example 4.3 Suppose X = [-1,1]^ and 

Then w{Q^Ni) is as shown in Figure 4.2. Clearly [Rl] and [R2] are 

satisfied. Moreover, the area of each. Voronoi region is the same, i.e. the 

firing probability of each neuron is the same. However, (Q, iV/) with this 

w is of course not a good representation of X. We may notice that the 

Voronoi regions are not isotropic. 

• • • 
In the next section we introduce the method we practically use to find the 

induced mapping. 

4.2 Practical way to find the induced graph 

Before we introduce the practical method, we first give a remark. 
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Figure 4.2: w{Q,Ni) in Example 4.3. X is the region bounded by the solid 
square and the Voronoi regions are separated by dashed lines. 

Remark 4.5 For practical reason it is natural to ask what happens if 

we use direct distance instead of geodesic distance. As mentioned before 

if we use direct distance, we must assume X to be convex in order to 

guarantee the consistence of the theory. So it suffices to study the role of 

convexity, which cannot be easily seen at a glance, when direct distance 

is used. Define 

Bi{0) = {x G X : d{w{qi), x) < d(w(qj), x) ^qj G 0} 

If we say that Bi{Q) is the Voronoi region of qi in X’ then Bi{Q) is the 

intersection of X and the Voronoi region of qi in R". If X is convex, 

then Bi{0) = Bi{0) for any 0 C Q, and Proposition 4.1 [B9] still holds, 

i.e. Bi(0) is path-connected. In fact we know that Bi(0) is moreover 

convex. So everything is fine. However, if X is not convex, then Bi{0) 
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may not be connected. (See Example 4.4 below.) The proof of Propo-

sition 4.6, although simple, in fact needs Bi{0) to be connected. If we 

do not have Proposition 4.6, a direct consequence is the disappearance of 

Corollary 4.7, the most powerful tools of telling when two neurons should 

not be in the 1-neighborhood of each other. The importance of Proposi-

tion 4.6 is much, beyond this. It is the corner-stone of our Definition 4.3. 

Then all results in terms of “weakly contribute", including Lemma 4.8, 

Proposition 4.9 and Proposition 4.10 will disappear. In other words, al-

most all theoretical tools which help to find out the induced mapping dis-

appear simultaneously. From this we see that guaranteeing connected 

is very informative to us in studying the induced mapping. Moreover 

even if we can find out an induced mapping, we may not obtain a good 

representation of X if Bi{0) is not really connected. (See Example 4.4 

below. Also see discussions in Section 3.5.) It is intuitively evident if we 

picture in our mind that each, neuron represents a piece of input space 

and the links between neurons tell how such pieces are pasted together. 

If a Voronoi region is not connected, that means the corresponding neu-

ron in fact representing several pieces of input space, which is extremely 

unnatural. 

The reader may readily see that the main reason of using geodesic 

distance is to guarantee that Bi{0) is path-connected. Fortunately, even 

if we use direct distance and X is not convex, generally Bi{0) is path-

connected provided that the cardinality of 0 is sufficiently large. (See 

Example 4.4.) So practically there is almost no difficulty in obtaining 

path-connected Voronoi regions if we use more neurons to represent the 

input space X. 

• • • 
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(a) (b) 
—I 1 1— —I 1 1 “ 

1 - 1 - -

0 5 - - 0 5 - n i -
J • 4-J ..- ^ ^ - . . 

0 - ( ^ ^ D - 0 - / N -

-0.5 - - -0.5 - -

- 1 - - 1 - -

I I I I 1 1— 
-1 0 1 -1 0 1 

Figure 4.3: (a) w Q,Ni for the case K = 3 in Example 4.4. (b) w{Q,Ni) for 
the case K = S in Example 4.4. 

Example 4.4 The configuration is almost the same as that of Exam-

ple 3.12. X P ( l ,3) ; the total number of training patterns M = 10000; 

(Q,iV) = S]^] w is obtained using Kohonen's algorithm; the radius of 

neighborhood 

J i m t i x f j if / < 1000 f = < 
0 if I > 1000 

\ 

and the learning rate 

0.15 if r > 0 
rj = < 

0.015 if r = 0 

The result when K = 3 is plotted in Figure 4.3(a), in which a small 

circle represents a neuron and a straight line represents a link in (Q,iV/), 

where Nj is the practical approximation of iV/ which is obtained using 

Practice 2 mentioned below. (For convenience we denote this graphical 
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1 1 r 
1 - -

0 5 - -

- m -
.0.5- -

- 1 - -

I I i — — 

-1 0 1 

Figure 4.4: w{Q,Ni) for the case K = 16 in Example 4.4. 

representation as w(Q,Ni).) Clearly Bi{Q) is not connected. Suppose we 

increase K to 8. The result w{Q,Ni) is plotted in Figure 4.3(b). Then 

we see that Bi{Q) is now path-connected, but Nj is still incorrect since 

Bi{Q\{qj}) is still not connected. At last we increase K to 16. The result 

w{Q,Ni) is plotted in Figure 4.4. Then Bi(Q\{qj}) is eventually path-

connected and hence a correct Nj is obtained. Of course Bi{0) is still 

not connected for some 0 C Q, but as we mentioned below Practice 2 is 

powerful enough to solve the problem. 

• • • 
Next we introduce practically how we obtain an approximation of the induced 

mapping. 

Practice 2 To obtain an approximation N j of the induced mapping Ni, we 

first initialize N/ , the matrix representation of iV/, to be the identity matrix. 

Then the training patterns are presented sequentially. Let xi be the current 
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training pattern. Suppose qi is the global minimum of d^i o w and qj is the 

global minimum of o w Then we set (Ni)ji = = 1. 

Or equivalently for any qj G Q, qj G Ni{qi) iff 

"N1] qj = qi, or 

N2] 3xi s.t. qi is the global minimum of c? o w |Q\{gj} and qj is the global 

minimum of dxi o w |Q\{g‘}. 

Clearly, TV/ so obtained is in M and independent of the numbering of the 

neurons and the order of the training patterns presented. 

• 

Thinking with some examples the reader may find that in most cases TV/ = 

Ni. However, it is not easy to feel the theoretical correspondence between N j 

and NI. We try to explain this by reversing the process. That is, we translate 

Practice 2 into its theoretical version by replacing by 3x ^ X^ dhy d and 
A 

BI by BI. Hence we obtain a theoretical version NJ of NJ and then compare it 

with the induced mapping NJ. 

The reader may notice that we have formulated Practice 2 in terms of global 

minimum. Actually in practice it is more natural to find out the (global or local) 

minimum directly, but theoretically it becomes more convenient to formulate in 

terms of Voronoi regions. So we rewrite Practice 2 in terms of Voronoi regions. 

For any qj G Q, qj G Ni{qi) iff 

N I ] qj = qi, or 

[N2] 3x1 s.t. XI e Bi{Q) n or xi G Bj{Q) n 
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However, we should not forget Assumption 2, which points out that 

since qj + qi. So we should rewrite [N2] as 

[N2] s.t. XI € [Bi{Q)\Bj{Q)] O Bj{Q\{qi}) or xi G [Bj{Q)\Bi{Q)] n 

Now we may translate [N l ] and [N2] into their theoretical versions. Let NJ 
~ A 

denote the theoretical version of Ni. Then for any qj G qj G Ni{qi) iff 

N l ] qj = qi, or 

Bj{Q) is strictly contained in Bj{Q\{qi}) or Bi{Q) is strictly con-

tained in Bi{Q\{qj}). 

It is clear that the requirement Bi{Q\{qj}) = Bi{Q) is weaker than that of 

“not weakly contribute", which requires ((9\{ }) = Bi{0) for any 0 C Q. 
A 

Therefore Ni{qi) may discard some neurons which do weakly contribute, and 
A 

as a result we cannot guarantee from Proposition 4.10 that TV/ < TV/. In fact, 
A A 

it may even happen that NJ ^ NQ, i.e. Bi{Ni{qi)) + Bi{Q) for some qi G Q. 

Therefore, the reader may be disappointed. Surprisingly, NJ often produces re-

sults much better than we expect. It is because practically we must use direct 

distance instead of geodesic distance. As mentioned before, there is a problem 

of non-connectedness of Bi{0). Practically we can increase the number of neu-

rons, i.e. the cardinality of Q, to make Bi{Q) path-connected. Therefore, it is 

not difficult to have Bi(Q) and Bi{Q\{qj}) path-connected. However, we cannot 

make Bi{0) path-connected for arbitrary O. In particular, increasing the cardi-

nality of Q has little effect in increasing the cardinality of the 1 -neighborhoods. 94 
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(It is natural since the 1-neighborhoods represent the "structure" of the input 

space which should not be affected by the number of the neurons representing 

it.) If we consider weak contribution, i.e. (O) and S i (0 \{q j} ) for arbitrary 

O, then using direct distance may eventually produce incorrect information as 

the cardinality of O becomes smaller and smaller, and as a result a “not weakly 

contributing" neuron may be wrongly classified as a “weakly contributing" neu-

ron. However, since we now consider Bi(Q) and such mistakes are 

seldom made. In other words, N j is very robust in the choice between geodesic 

distance and direct distance. If we say that N j discards some neurons which 

do weakly contribute, it also discards some neurons which do not weakly con-

tribute but would otherwise be wrongly classified as weakly contributing neurons 

when direct distance is used, and its positive effect is in general much greater 

than its negative effect. Therefore it is a good choice to use Ni as a practical 

approximation of N! in order to avoid errors caused by using direct distance. 

4.3 Some examples 

At last we give some examples of Nj. We have already seen some in Exam-

ple 3.12 3.13, 3.14 and 4.4. Here we give some more. Consider the examples we 

discussed in Chapter 2. Nj) for w obtained in Example 2.1, 2.2, 2.3, 2.4 

and 2.5 are shown in Figure 4.5 4.6(a), 4.6(b), 4.7(a) and 4.7(b) respectively. 

In these examples w were obtained using Kohonen's algorithm, but in fact the 

induced graph has no relation to how w is obtained. For any w there is an 

induced graph. To obtain a good representation of X, we would more often 

use competitive learning instead of Kohonen's algorithm to obtain w. However, 
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— I 1 1— 

A : 

- .5- ^ ^ _ 

- 1 - -

‘ I I 

-1 0 1 

Figure 4.5: Nj) in Example 2.1. 

(a) (b) 

- 1 - - 1 - -

I U I I I I 
- 1 0 1 - 1 0 1 

Figure 4.6: (a) w{Q,Ni) in Example 2.2. (b) w{Q,Ni) in Example 2.3. 
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(a) (b) 

-O -: • : 
- 1 - - 1 - -

I I I I 1 1 
- 1 0 1 - 1 0 1 

Figure 4.7: (a) w{Q^Ni) in Example 2.4. (b) w{Q,Ni) in Example 2.5. 

under special circumstances competitive learning may not work, as we see from 

the following example. 

Example 4.5 Here we want to give an example which is similar to the 

one given in [9, pages 96-97]. The input space 

• • ^ • • 1_ “ •‘ ^ -| • • • 
X = - X - 1 , - - U - X 77,1 

3 3 3 3 3 3 

consists of two components. The training patterns are first drawn from 

the lower component of X only, and as a result, all the neurons are placed 

in the lower component of X. Then the training patterns are drawn from 

both components of X, and we see how the neurons drift from one compo-

nent to both. To achieve this, we cannot simply use competitive learning, 

otherwise only one neuron will be attracted to the upper component. 

(This is similar to the well-known "dead units" problem for simple com-

petitive learning. See [8 page 221].) One way to solve this problem is to 
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establish "links" between neurons. Hence if one neuron is attracted by 

the upper component of X, it will pull other neurons to go. It just means 

to provide a graph (Q,iV) for Kohonen's algorithm to use. In [9], two 

examples were given. In the first one (Q,iV) was specified initially. In 

the second one (Q, iV) was established dynamically based on the minimal 

spanning tree. Here, if we are not given any graph initially, we can simply 

establish (Q,N) dynamically based on the induced mapping. Similar to 

the minimal spanning tree in [9], we need not calculate the induced graph 

frequently. In fact, we think that we should not update (Q, iV) to (Q, Nj) 

so frequently. It is because the induced graph, unlike the minimal span-

ning tree, is not necessarily connected^. It just reflects the structure of 

the input space. The disconnectedness of the input space will make the 

neurons in the upper component of X disconnected from the neurons in 

the lower component of X. If {Q,N) is updated to {Q,Ni) so frequently, 

the links may disappear before sufficient neurons have drifted to the up-

per component of X. (Of course this problem can also be solved by many 

other simple methods.) 

In this example the total number of training patterns M 50000. 

The first 10000 training patterns are drawn from the lower component of 

X only, and the following 40000 training patterns are drawn from both 

components of X. There are totally 32 neurons. The initial weights are 

simply set to the first 32 training patterns. Hence they are all in the 

lower component of X. w is then trained using Kohonen's algorithm, 

^For a symmetrical graph to be connected we mean that for any two distinct neurons 
qi, Qj G Q, there exists a path (of any finite length) from qi to qj. 
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(a) (b) 
— I 1 1— — I 1— 1— 

1 - 1 - -

0.5- - 0.5- W l -

0 - - 0 - I j{ -

- .5- M - - .5- 1 -

-1 - -1 - -
1 I 1 — I 1 1—— 

- 1 0 1 - 1 0 1 

Figure 4.8: (a) w{Q,N) in Example 4.5 at / = 10000 after updated, (b) 
w{Q, N) in Example 4.5 at I = 15000 before updated. 

whose parameters are set as follows: 

L S E i X 2J if / < 40000 
7 * = = < 

0 if / > 40000 

0.15 if r > 0 
rj = < 

0.015 if r = 0 

Note that the graph (Q^N) used by Kohonen's algorithm is now the last 

calculated induced graph instead of any given graph. The induced graph 

is calculated at the beginning and just after 

I = 5000,10000,15000,... 50000 

Figures 4.8(a)-4.9(b) show w{Q,N) at I = 10000 just after updated 

to the induced graph, w{Q^N) at I = 15000 just before updated to the 

induced graph, w(Q, N) at I = 15000 just after updated to the induced 

graph and w{Q,N) at I = 20000 just after updated to the induced graph. 
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(a) (b) 
I 1 1—— 1 r 1~ 

: n : : 

0 - 0 - -

- .5- 6 • - - • -
-1 - -1 - -

—I 1 — — I — I 1 _i 
- 1 0 1 -1 0 1 

Figure 4.9: (a) w{Q,N) in Example 4.5 at I = 15000 after updated, (b) 
w(Q, N) in Example 4.5 at I = 20000 after updated. 

Figure 4.10 shows the final induced graph, after training. We see that 

there are 15 neurons in the upper component of X and 17 neurons in the 

lower component of X. The result is better than that of using the min-

imal spanning tree in [9]. It is intuitively reasonable since the induced 

graph is much better than the minimal spanning tree in reflecting the 

structure of the input space. However, we should still be aware that the 

disconnectedness of the induced graph is after all a potential problem in 

this application. As we have mentioned before the links actually reflect 

information flows. In other words, two neurons in different connected 

components do not communicate with, each other, and thus being discon-

nected is an irreversible process. Of course the original purpose of the 

induced graph is to reflect the structure of the input space only, but not 

to be used in this specific application. Moreover, we think that it is not 

hard to find out some heuristics such that the graph is not disconnected 
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r— 1 1 
1 - -

0.5- -

0 - -

T --1 - -
I I I— 

-1 0 1 

Figure 4.10: The final induced graph in Example 4.5. 

until its final stage. 

• • • 

In the next chapter we shall present some examples of other kinds. 
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Chapter 5 

Given mapping vs induced 

mapping 

5.1 Comparison between given mapping and 

induced mapping 

Suppose we are given a mapping NQ- We would like to find a mapping WG such 

that WG satisfies [R3] and (Q, NQ) with WQ preserves the topological order of X, 

However, such a WQ may not exist. Even if it exists, it cannot always be found 

because of the lack of a perfect "topological order preserving" algorithm. On 

the other hand, given a mapping w j which satisfies [R3], the induced mapping 

NI can always be found provided that wi{Q) C X. However, since Ni has no 

pre-specified structure, {Q, N!) with WI may be less valuable than (Q, NO) with 

Wg if Wg can be found. (We say "may be" since Nj is surely minimal in the sense 

of Proposition 4.3, but No may not. So which one is more valuable depends on 
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the context.) For example, suppose Nq = R2 Q. Then we know that {Q .Nq ) 

with some wq preserves the topological order of [0 1] x [0,1]. It is difficult to 

imagine a wi obtained using competitive learning produces an induced mapping 

NI which has a similar periodic structure as NQ- Therefore (Q, NG) with WQ is 

more valuable than (Q, Ni) with wi. From this we see that, if we are given Ng, 

it is still useful if we can 

G l ] compare Ni with Ng^ and 

:G2] match Ni to Ng . 

We study [Gl] in this section and leave [G2] to the next section. 

There are many methods to compare two sets. Here we measure 

K 
Kca.id{NG\Ni) = ^c^vd{NG{qi)\Ni{qi)) 

t=i 
K 

Kc^id{Ni\NG) = 

i=i 

In the remainder of this section we investigate whether Kohonen's algorithm 

would match Ni to Ng. We monitor KcdizA^NoXNi) and Kcard(7V/\iVG) at 

each iteration to see whether they are in general decreasing and eventually able 

to reach 0. The task is quite similar to monitoring J\ as we did in Section 3.3. In 

fact we shall just repeat the examples in Section 3.3, but this time we measure 

KcsiA NG\Ni) and Kcai Ni\Ng instead of Ji, 

(The reader may notice that J i is a norm-induced metric while neither 

Kc3iTd{NG\Ni) nor Kcdivd{Ni\NG) is a metric. However, 

y / K c ^ T d { N G \ ^ + K 7 ^ N i \ N G ) = | | N j — NgIIF (5.1) 
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where | | N j — NG||F is the F-norm of N / — NG and by definition is 

J E - ( N c k P 
V I J 

Equation 5.1 can be easily obtained by noting that |(Nj)t) — (Ng);) P = |(N/)t-j — 

(NcOtjl since ( N / ) i j — ( N g is either -1 0 or 1. 

Therefore, we now in fact consider the negative part and the positive part of 

N / — N g separately. It can be seen from the following examples that we should 

separate i^card(iVG\^/) and Kcard(Nz\NG) into two observables because they 

give different useful information.) 

Example 5.1 Here we repeat Example 3.2 in which X = [—1,1] and 

{Q,Ng) = Ri6. Kcd.Td{NG\Ni) and KcaiTd{Ni\NG) are plotted in Fig-

ure 5.1 as a solid line and a dashed line respectively. 

• • • 

Example 5.2 Here we repeat Example 3.3 in which X = S^ C R^ and 

(Q.NG) = SIQ. KCS.TD{NG\NI) and KCS,TD{NI\NG) are plotted in Fig-

ure 5.2 as a solid line and a dashed line respectively. 

• • • 

Example 5.3 Here we repeat Example 3.4. The configuration is the 

same as that of Example 3.3 except that this time 1-Kohonen's algorithm 

is used and rj is fixed to 0.15. KcaiTd{NG\Ni) and KcaiTd(Ni\NG) are 

plotted in Figure 5.3 as a solid line and a dashed line respectively. 

• • • 
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30|1 I I 1 I 1 1 1 1 1 

2 5 I 

2 0 - S -

1 5 - -

10- U - . -

1 
5 - I -

0 I 1 ft-Li—I—I—I——I—I—‘— 
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 

number of training patterns presented 

F i g u r e 5.1: The evolutions of i^card(iVG\iVj) (solid line) and Kcaxdi{Ni\NG) 
(dashed line) in Example 5.1. 

35 1 1 1 1 1 I 1 1 1 

3 0 1 -

2 5 - -

2 n y i 
. m m -

•ii g I iij I 

1 - _ .ml 
II % II) \ XL/̂  , 

5- I G F _ 
.II:R H. • • • 

QI I 1 I I_iLUi Ll 1 1 1 
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 

number of training patterns presented 

Figu re 5.2: The evolutions of Kcdird NG\Ni) (solid line) and Kc^id{Ni\NG) 
(dashed line) in Example 5.2. 
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3 5 1 1 1 1 1 1 1 1 1 1 

3 0 1 -

h . 

2 5 - i i _ 

2 0 - h -

1 5 - -

10 - ^ rj -
i n n j i y 1 r 

5 - 1 LIIRIW M W -

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 500 

number of training patterns presented 

Figure 5.3: The evolutions of Kcaid(NG\Ni) (solid line) and Kcax N i \ N g ) 
(dashed line) in Example 5.3. 

4 5 0 1 1 1 1 1 1 1 1 1 1 

4 0 0 I I -

2 5 0 - \ L i “ 

R V V V > 
I 

1 0 0 -
I 
I 

5 0 - . -

o ' I I I I i r.Si-• ' .-"—-- . f 1 1 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 

number of training patterns presented 

Figure 5.4: The evolutions of Kca,id{NG\Ni) (solid line) and Kc^x i \ N g ) 
(dashed line) in Example 5.4. 
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4 5 0 1 1 1 1 1 1 1 1 1 — 1 

4 0 0 -

350 

300- -

2 5 0 - V V v v W v V ~ 

200 \ -

1 5 0 - -

100 - _,, -\ 
5 0 - U A ^ , , -

' W ‘ ' ”,,, • ‘ • 
qI I I I I 1 1 1 1 1 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 

number of training patterns presented 

F i g u r e 5.5: The evolutions of Kca^id^NoXNi) (solid line) and Kcaiid{Ni\NG) 
(dashed line) in Example 5.5. 

Example 5.4 Here we repeat Example 3.5 in which X = [-1,1]^ and 

{Q,Ng) = Ri4. Kc^Td{NG\Ni) and Kc3.id{Ni\NG) 

are plotted in Fig-

ure 5.4 as a solid line and a dashed line respectively. 
• • • 

Example 5.5 Here we repeat Example 3.6. The configuration is the 

same as that of Example 3.5 except that M — 500 and 

r = L t t ~ 7 X 4J •"M - 1 

Kc2iTd{NG\Ni) and KcaiTd{Ni\NG) are plotted in Figure 5.5 as a solid 

line and a dashed line respectively. 

• • • 
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9 0 0 1 1 1 1 1 1 1 1 

800 ^ -

5 0 0 - -

4 0 0 - -

3 0 0 J -

I I 

200 -

1 0 0 - -

qI I i - — 
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 

number of training patterns presented 

Figure 5.6: The evolutions of (solid line) and i^card(iV/\iVG) 
(dashed line) in Example 5.6. 

Example 5.6 Here we repeat Example 3.7 in which X = [-1,1]^ and 

{Q,NG) R|4. KC^X&{NG\NI) and KC2.T&{NI\NG) are plotted in Fig-

ure 5.6 as a solid line and a dashed line respectively. 

• • • 

Example 5.7 Here we repeat Example 3.8. The configuration is the 

same as that of Example 3.7 except that 

r = L t J — r X 3J M - 1 

Kcs.id{Ng\Ni) and ICcaxd(Ni\NG) are plotted in Figure 5.7 as a solid 

line and a dashed line respectively. 

• • • 
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9 0 0 1 1 1 1 1 1 T 1 

800 

7 0 0 - -

600 - ^ “ -

5 0 0 - -

4 0 0 - -

3 0 0 -

200 \ -

100 -V ^ -

q I I I . . i « . . . - 1 1 

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 

number of training patterns presented 

F i g u r e 5.7: The evolutions of i^card(iVG\iV/) (solid line) and Kcaid{Ni\NG) 
(dashed line) in Example 5.7. 

Example 5.8 Here we repeat Example 3.9 in which X = S^ C R^ and 

{Q,Ng) = Ri6. Kc^id{NG\Ni) and Kcd.T&{Ni\NG) are plotted in Fig-

ure 5.8 as a solid line and a dashed line respectively. We see from the final 

results that Kc2iid.{NG\Ni) 0 and Kcdij:d{Ni\NG) — 2 that means ex-

actly one link is missed. 

• • • 

Example 5.9 Here we repeat Example 3.10 in which X [-1,1] and 

(Q,Ng) = KC3.ID{NG\NI) a n d 

KcdiTd{Ni\NG) are plotted in Fig-

ure 5.9 as a solid line and a dashed line respectively. Note that this time 

the final values of Kca,id{NG\Ni) and Kcs,id{Ni\NG), unlike Ji , are 

completely different from those of Example 5.8. • • • 
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35 1 1 1 1 1 1 1 1 1 “ 

3 0 1 -

25 \ -
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2 0 - % •' • -

. ‘ V . 

UII……RI -……--
Q I < I I i l l I • ‘ ‘ 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 
number of training patterns presented 

Figure 5.8: The evolutions of Kcaid{NG\Ni) (solid line) and KcsiTd{Ni\NG) 
(dashed line) in Example 5.8. 
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number of training patterns presented 

Figure 5.9: The evolutions of Kca,id{NG\Ni) (solid line) and Kcai Ni\Ng") 
(dashed line) in Example 5.9. 

110 



Chapter 5 Given mapping vs induced mapping 

Example 5.10 Here we repeat Example 3.11 in which X — [ -1 , Ip and 

{Q,NG) = S^ . The final values of and 

are 8 and 186 respectively. 

• • • 

As we just mentioned in Remark 3.5, the NG we have chosen is never min-

imal when n > As a result, even when Kohonen's algorithm succeeds, 

Kcai6{NG\Ni is never 0 in the above examples where n > 1. However, when 

Kohonen's algorithm succeeds, Kcaxd(Ni\NG) is always zero, i.e. 

NICNG 

When Kohonen's algorithm fails, the situation becomes complicated. From Ex-

ample 5.9 we see that both Kca,vd{NG\Ni) and i^card(iV/\iVG) may not be 0 

i.e. NG may not be a partial graph of Ni and Ni may not be a partial graph 

of NG. In Example 5.10, the situation is even more complicated. It seems 

that if the convergence phase (i.e. when r = 0) is longer, it is less likely that 

/(card(iV(^\iV>) = 0, i.e. it is less likely that NG C NI. The reader may go back 

to Figure 3.22(a) and 3.23 to make a comparison. 

From the results of the above examples, it seems that the tendency of J i is 

clearer than that of Kcd,vd[NG\Ni) and /(card(iV/\7VG). So, if our only purpose 

is to check whether Kohonen's algorithm has been successful or not, and if we 

make sure that X 6 C, then we prefer to measure J i rather than K c a i d ( N G \ ^ i 

and KC3ITD(NI\NG). However, if X C, then we must measure KCSIID{NG\NI) 

and Kca.id{Ni\NG)' 
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Figure 5.10: The evolution of J i in Example 5.11. 

Example 5.11 In Example 3.12 we saw that since X = P ( l ,3) C / i # 

0 although Kohonen's algorithm succeeded (with {Q^Nq) - Sjg). In this 

example we examine this situation in more details. The configuration is 

the same as that of Example 3.12 except that M = 1000 instead of 10000. 

Ji , KCA,TD(NG\-IVI) and KCDN NI\NG) are measured after each training 

pattern is presented. Ji is plotted in Figure 5.10 and Kcs,Td{NG\Ni) 

and Kcsj:d{Ni\NG) are plotted in Figure 5.11. We see that the final 

value of Ji « 0.5. So we would draw a wrong conclusion if we used Ji. 

However, the final values of both Kc3,id(NG\Ni) and KcdiTd(Ni\NG) are 

0. So we would draw a correct conclusion if we 
used Kca.Td{NG\Ni) and 

Kca.id{Ni\NG). 
• • • 
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Figure 5.11: The evolutions of Kcsiid{NG\Ni) (solid line) and Kceiid{Ni\NG) 
(dashed line) in Example 5.11. 

Example 5.12 In this example we consider again X = P(0,1) ^ C 

and (Q^Ng) = S\Q. The configuration is the same as that of Exam-

ple 3.13 except that M = 1000 instead of 10000. Similarly we monitor 

J i , KcdiTd{NG\Ni) and Kcaid(Ni\NG) at each iteration. Ji is plotted 

in Figure 5.12 and Kc2iTd{NG\Ni) and Kc3,rd{Ni\NG) are plotted in 

Figure 5.13. We see from Figure 5.13 that if we used Kc3iTd(NG\Ni) 

and /(card(i9/\iV"G), we would find that Kohonen's algorithm failed (sim-

ply because (Q,NG) with no w can preserve the topological order of X). 

Hence we can distinguish between P( l ,3) and P(0,1). 
• • • 
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Figure 5.12: The evolution of J i in Example 5.1. 
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Figure 5.13; The evolutions of Kca,id{NG\Ni) (solid line) and Kcaid(Ni\NG) 
(dashed line) in Example 5.12. 
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5.2 Matching the induced mapping to given 

mapping 

In this section we try to solve 

Problem 3 Find a mapping w such that the induced mapping Ni is equal to 

the given mapping NQ-

• 

Clearly Problem 3 is not solvable unless NQ is reasonably given, in the sense that 

it is the induced mapping^ of some w. In fact, it is not easy to propose a given 

mapping NG if we have no information on X. Under these circumstances we 

may find a w using competitive learning and the corresponding induced mapping 

NI would provide valuable information for us to propose a given mapping NG. 

Then we may try to find another mapping w which, matches Ni to NG. 

In the previous section we see that Kohonen's algorithm can often solve 

Problem 3 partially by making Ni C NG. In this section we give two more 

examples which may help us to gain more insights into Problem 3. 

Example 5.13 Let us recall the l-Kohonen's algorithm. Suppose x/ is 

the current training pattern and is the global minimum of d^ o w. Then 

w^iqj) 'i^iqj) + — w{qj) 

i.e. the term xi w{qj) is included iff qj G ( )• 

Intuitively we can make two neurons in the l-neighborhood of each 

other by making them sufficiently close. This motivates us to modify 

^Therefore, nRj^ is a qualified candidate but R ^ is not. 
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Figure 5.14: The evolution of J i in Example 5.13 when 1-Kohonen's algorithm 
is used. 

l-Kohonen's algorithm to 

+ = — •)+ 
• K “ 

V {^G)ji[xi - w(qj)] + - - w{qj)] 
. k=l . 

i.e. we include an additional term w(qk)-w{qj) li qj G NG{qk)\^li(lk)- In 

other words, if gj should be in the l-neighborhood of qk {qj G Noiqk)) but 

qj is now not in the l-neighborhood of qk (qj iVj(gfc)), then qj should be 

closer to qk. We hope that such a modificatioii can improve the original 

1- Kohonen's algorithm. 

We have already seen a failed case of l-Kohonen's algorithm in Ex-

ample 3.4 and Example 5.3. For ease of comparison we plot the results 

again in Figures 5.14-5.16. Let all the parameters remain the same, 

but this time we use our modified. l-Kohonen's algorithm. The results 
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Figure 5.15: The evolutions of Kca,Td{NG\Ni) (solid line) and Kc2iid{Ni\NG) 
(dashed line) in Example 5.13 when 1-Kohonen's algorithm is used. 
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Figure 5.16: W{Q^NG) in Example 5.13 when 1-Kohonen's algorithm is used. 
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Figure 5.17: The evolution of J i in Example 5.13 when modified 1-Kohonen's 
algorithm is used. 

including Ji , KCDITD{NG\NI), KC2ITD(NI\NG) and W{Q,NG) are plotted 

in Figures 5.17-5.19. We see that the topological order is successfully 

preserved. Of course our modified l-Kohonen's algorithm is not a re-

placement of traditional Kohonen's algorithm. For example, if we use 

Kohonen's algorithm with 

_ M-l ^ 

and other parameters unchanged, we can still preserve the topological or-

der (see the results in Figures 5.20-5.22), and clearly the computational 

complexity of Kohonen's algorithm is much lower than that of our mod-

ified 1-Kohonen's algorithm. Our modified 1-Kohonen's algorithm is for 

illustration purpose only. 
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Figure 5.18: The evolutions of Kcsiid{NG\Ni) (solid line) and Kca,Td{Ni\NG) 
(dashed line) in Example 5.13 when modified l-Kohonen's algorithm is used. 
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Figure 5.19: No) in Example 5.13 when modified 1-Kohonen's algorithm 
is used. 
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Figure 5.20: The evolution of J i in Example 5.13 when Kohonen's algorithm 
is used. 
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Figure 5.21: The evolutions of Kc3iid{NG\Ni) (solid line) and Kc^iA[Ni\Ng) 
(dashed line) in Example 5.13 when Kohonen's algorithm is used. 
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Figure 5.22: W{Q,NG) in Example 5.13 when Kohonen's algorithm is used. 

The reader may wonder, if qj should be attracted, to qk when qj € 

NGiqk)\Ni{qk), then why qj should not be repulsed from qk when qj G 

Ni{qk)\NG{qk)- However, we really should not do so. Otherwise it is very 

difficult to guarantee that w{Q) C X. 

• • • 

Example 5.14 Once w changes, the Voronoi regions changes and the 

induced mapping Nj changes accordingly. It is in general very difficult 

to predict how Nj changes, except for one case. We call this case a 

permutation. In this case the set of weights w{Q) does not change, and 

so does the set of Voronoi regions. Therefore we can easily predict what 

NI becomes. 

121 



Chapter 5 Given mapping vs induced mapping 

For convenience we use matrix notation. Let qi be represented by a 

column vector q̂  such that 

1 if j = i 
(qt)ii = 

0 if j ^ i 

Then it is clear that 

(Nj)ij = q^N/q^ 

The matrix representation oi w is di n X K matrix 

w = ( w{qi) w{q2) . •. w{qK) 

such that each column represents a weight. Clearly 

w{qi) = wqi 

Let r : Q — Q be an 1-1 onto map. We call T a permutation. Suppose 

we set 

w'^ = w oT 

or in matrix form 

w+ = w r (5.2) 

where 

r = ( r ( g i ) r(q2) •.. r ( ) 

is the matrix representation of F. Clearly F is a IT X iif matrix and 

r rq‘ 

Now it is easy to see that 

qi e iff r(g,) € Nz(T(qj)) 

122 



Chapter 5 Given mapping vs induced mapping 

i.e. 

Hence we have 

N+ T^NiT 

Conversely, suppose we can solve 

NG = r ' ^ N j r (5.3) 

for a permutation T and put it into Equation 5.2, then we have a mapping 

w such, that Nj = NQ- (Note that it is therefore not an iterating algorithm 

since we try to solve Problem 3 in one step.) 

Equation 5.3 is well studied if we do not restricted F to a permuta-

tion. Since N/ is real symmetric, we can always diagonalize N / using its 

eigenvectors, i.e. 

N / E j = E jA/ 

where 
an eigenvalue of N/ if i j 

= 

0 if i ^ j 

and the i-th column of E/ is the eigenvector corresponding to the eigen-

value {Ai)ii. Since N/ is real symmetric, we can normalize the lengths of 

the eigenvectors such, that 
E71 = EJ 

and also arrange the eigenvalues such that 

(A/)ii < (A/)22 < • • < {^I )kk 

since all eigenvalues are real. (We order the eigenvalues since we want to 

compare A/ and Ag.) The manipulation of Ng is similar. Hence we have 

N j = E j A j E f i = E /AjEJ (5.4) 
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N g = EgAgE^I = EgAgEJ (5.5) 

Putting Equation 5.4 and 5.5 into Equation 5.3 we have 

E g A g e J r ' ^ E / A / E j r [Ejr] '^A7[Ejr] 

Therefore, if 

A j = Ag 

then we may solve 

E5 = E j r 

to obtain 

r E 

Of course T so obtained may not be a permutation. However, if T is 

very close to a permutation, in the sense that each row and each column 

of r has one and only one dominating entry, then we may still set w+ 

according to Equation 5.2 and hope that Nj" is much closer to Ng . 

We look at an example. Suppose X = S^, {Q.NQ) = Sj and W{Q,NG) 

is as shown in Figure 5.23(a). Written explicitly, 

< 1 1 0 0 0 1 

1 1 1 0 0 0 

0 1 1 1 0 0 
NG = 

0 0 1 1 1 0 

0 0 0 1 1 1 

1 0 0 0 1 1 y 
^ -0.2157 -0.8112 0.0202 0.6927 0.9148 0.8530 

w = 
0.9387 0.5296 -0.9505 0.6599 -0.3359 -0.4025 y 
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(a) (b) 
—I 1 1— f—I 1 1 

_ ••••• Y.. • • ••• - . J - •••• -
I I I I I 1 

-1 0 1 - 1 0 1 

Figure 5.23: (a) W(Q,NG) in Example 5.14 {X Si), (b) W+ Q,NG in 
Example 5.14 {X = S^). 

< 1 1 0 1 0 0 

1 1 0 0 1 0 

~ 0 0 1 0 1 1 
NI = 

1 0 0 1 0 1 

0 1 1 0 1 0 

0 0 1 1 0 1 y 

At this stage 

|Ng — N/| |F = 4.4721 
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After some calculations we find that 

^ - 1 0 0 0 0 0 \ 

0 0 0 0 0 0 
0 0 0 0 0 0 

Ag Ai• 

0 0 0 2 0 0 

0 0 0 0 2 0 

0 0 0 0 0 3 ̂  
Hence we can use the above method to obtain 

f 0.3987 -0 .0673 -0 .1337 0.2345 -0.2650 0.8327 

0.8327 0.3987 - 0 . 0 6 7 3 - 0 . 1 3 3 7 0.2345 —0.2650 

0.2345 -0.2650 0.8327 0.3987 - 0 . 0 6 7 3 0.1337 
r = 

- 0 . 0 6 7 3 - 0 . 1 3 3 7 0.2345 -0.2650 0.8327 0.3987 

0.2650 0.8327 0.3987 -0.0673 -0.1337 0.2345 

-0.1337 0.2345 - 0 . 2 6 5 0 0.8327 0.3987 - 0 . 0 6 7 3 

From this we see that T is approximately a permutation, in the sense 

that each row and each, column is dominated by an entry 0.8327. Then 

by Equation 5.2 

( - 0 . 6 7 5 0 -0.9685 -0.3281 0.6542 0.9048 0.0369 
w+ = 

0.6907 0.0625 -0.8251 0.7170 0.3733 0.9798 y 

w'^(QyNG) is plotted in Figure 5.23(b). As expected we have 

| |NG-N|" | |F = 0 

i.e. NG = N f . 

The reader may readily see that the above usage is quite limited. Let 

us look at another example. 
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Figure 5.24: The evolution of Ji in Example 5.14 {X = [ - 1 , i f ) during first 
training. 

We have already seen a classic way of failure of Kohonen's algorithm 

in Example 3.6 and Example 5.5. For ease of comparison we plot the 

results again in Figures 5.24-5.26(a). It is the usual case that further 

training cannot help, and we must restart the training, perhaps with new 

parameters. For example, if we just present the same sequence of train-

ing patterns again to further^ train the mapping w, with all parameters 

remain the same, then W{Q,NG) is as shown in Figure 5.26(b). Now we 

modify w to by the above method we discussed, before we further 

the training process. Then we see that Kohonen's algorithm is successful 

this time. (See the results in Figures 5.27-5.29.) 

• • • 
2For "further" we mean that the weights are not initialized again. 
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Figure 5.25: The evolutions of Kcbidi{NG\Ni) (solid line) and KcaidfJ^ANo) 
(dashed line) in Example 5.14 {X = [ - 1 , Ip ) during first training. 
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Figure 5.26: (a) W{Q,NG) in Example 5.14 {X [ 1 I ] ” after first training, 
(b) W{Q,NG) in Example 5.14 {X = [—1 1]^) after further training. 
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Figure 5.27: The evolution of Ji in Example 5.14 {X = [—1 1]^) during further 
training from 
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Figure 5.28: The evolutions of (solid line) and Kcaid(Nj[\NG) 
(dashed line) in Example 5.14 ( I [—1,1]2) during further training from 
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-1 - -
I I I—— 

-1 0 1 

Figure 5.29: W{Q,NG) in Example 5.14 {X = [-1,1]^) after further training 
from 

In the next chapter we study a special topic: the application of the induced 

graph to the determination of the dimension of the input space. 
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Chapter 6 

A special topic: application to 

determination of dimension 

In this chapter we talk about invariants of graphs. It is clear that for an input 

space X, many mappings w may satisfy [R3] and these mappings may generate 

different induced graphs. Such graphs may all be good representations of X. 

Then it is natural to ask what is invariant among these graphs^. For example, 

it is clear from the discussions in Example 5.14 that the matrix of eigenvalues 

A of N is invariant under permutations. In particular, the largest magnitude of 

the eigenvalues, is invariant under permutations, which is the 2-norm 

of N . In fact, | |N| | i , ||N||2, ||N||oo and ||N||ir are all invariant under permuta-

tions. Therefore, for different known input spaces Xki^ Xk2^ ^kSi..., we may use 

competitive legxning to place a set of K neurons in each of them and find out 

the induced mappings Nki, Nk2^ Nk3, Then we may compute and record the 

matrices of eigenvalues A^i, Aa;2, Ajta,... or the norms ||Na;2||, HN^sH,... 

^Since all graphs considered in this chapter are induced graphs, we shall, for ease of writing, 
drop the subscript I, i.e. write NJ as AT, N j as N, iV/ as iV and N / as N. 

131 



Chapter 6 A special topic: application to determination of dimension 

of N;ti, Njt2, Nfc3, Suppose now we are given an unknown input space X. 

We may similarly obtain an induced mapping N using competitive learning, 

and then compare the matrix of eigenvalues A or the norm ||N|| of N with 

the recorded data, in order to estimate the structure of X. (We remark that 

the complexity of computing | |N||i , ||N||oo or ||N||ir is much lower than that 

of computing A or ||N||2. However, A clearly provides more information. As 

shown in Example 5.14, A tells whether one N can ever match another through 

a permutation.) 

More generally, we may study invariants of graphs for a set of input spaces 

rather than a single input space. Suppose we want to study a certain property 

of input spaces. Then for all input spaces I p i Ip2 Ip3 . . . which possess such 

a property, we may ask what is invariant among (Q, Npi), (Q, iVp2), (Q, Nps ) ,— 

The property we are focusing on in this chapter is the dimension of the input 

space. Suppose we are given an input space X whose dimension is not known, 

but we use competitive learning to obtain a graph (Q, N) which, is a good rep-

resentation of X. Of course we may still compare the matrix of eigenvalues A 

with the recorded data A^i, Aa:2, Ajta,. . . in order to estimate the dimension of 

X. However this method is relatively^ computational intensive but not very 

accurate. Moreover, it seems unnecessary to compute the eigenvalues in or-

der to determine the dimension. One may think that, for example, we may 

20f course the computational complexity cannot be regarded as high when the method is 
compared with other traditional methods which need a topological order preserving algorithm. 
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roughly guess the dimension by glancing at the average cardinality^ of the 1-

neighborhoods 

card(iV) = ^ca rd ( iV ( ) 

This is really a good start, but we want something better. 

6.1 Theory 

For ease of clarifying our main theme, we shall temporarily abandon our as-

sumption that Q is finite. If X is unbounded, we shall accept Q to be count ably 

infinite such that all Voronoi regions are bounded, provided that the essemble 

average 
1 K 

^ 1=1 
can still be defined as a limit. 

Suppose we can talk about the dimension of the input space X. It is intu-

itively true that as the dimension of X increases, caid{N{qi)) also increases. For 

example, if X = R " and w{Q) forms a cubic lattice* in X, then all the Voronoi 

regions are n-dimensional cubes. It is easy to see that card(iV( ) ) = = 2 n + 1 

for all qi, which increases with the dimension n. Of course the Voronoi regions 

are in general not all cubes. However, the property that the essemble average 

card(iV) increases with the dimension is generally true. 

^We have already mentioned different norms of N . The relations between them and the 
cardinalities of the 1-neighborhoods are 

| |N| | i = | |N | |oo=maxcard( i \ r (g i ) ) 

| |N | | f ^ i^card( iV) 

^e.g. w(Q) = {(ii, 12 , . . . , in) : . . . , in G z} . 
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Example 6.1 We use competitive learning to place 1000 neurons in the 

input space [ 1,1 50000 training patterns are randomly drawn from 

the input space under uniform distribution. The initial weights are set 

to the first K training patterns. The learning rate r) is 0.15. To ensure 

that [R3] is satisfied, the same training sequence is presented 10 times to 

train the mapping w. The following table summarizes the results. 

71 1 2 3 4 

card(iV) 2.9980 6.3260 10.3680 14.6820 

n 5 6 7 8 

card 18.6360 22.4360 26.1560 29.1600 

In particular, for the case n = 1 we can also compute card(iV) directly. 

We know that the only possible induced graph for [-1,1] is KK- Hence 

[ir - 2] X 3 + 2 X 2 998 x 3 + 2 x 2 
card(iV)= = = 2.998 

which matches our experimental result. 

The results are plotted in Figure 6.1, from which we see that the 

data approximately fit into a straight line. We also plot the relative 

frequencies^ for different n in Figure 6.2, from which we see that the 

variance increases with n. In other words, when n is large, the Voronoi 

regions consist of many different types of n-dimensional polygons. 

• • • 

Although car(i(iV) gives good hints to the dimension of the input space, using 

it to determine the dimension has a practical problem and also a theoretical 

problem. Let us discuss the practical problem first. 

f ( x ) is the portion of neurons whose 1-neighborhoods have cardinality x. 
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Figure 6.1: card(iV) vs n. 
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Figure 6.2: Relative frequencies for different n (marked above the means). 
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Figure 6.1 motivates us to assume that card(7V) is related to n by a straight 

line. It seems that, if we measure card(i^), we can hence know the dimension. 

However, it has no reason to believe that the slope and the intercept of the 

straight line are invariant under our choices of parameters, such as the number 

of neurons K and the number of training patterns M. Therefore we do some 

more experiments. 

Example 6.2 All parameters are set the same as those in Example 6.1 

except that n is now fixed to 2 and K is now varied from 100 to 1000. 

The results are summarized in the following table. 

K 100 200 300 400 500 

card(iV') 6.1200 6.3000 6.3133 6.3850 6.4000 

K 600 700 800 900 1000 

card 6.4000 6.4286 6.3525 6.3689 6.3260 

• • • 

Example 6.3 All parameters are set the same as those in Example 6.1 

except that n is now fixed to 2 and M is now varied from 5000 to 50000. 

The results are suminarized in the following table. 

M 5000 10000 15000 20000 25000 

card 4.3840 5.2040 5.6180 5.8400 6.0060 

‘ M 30000 35000 40000 45000 50000 

card(iV') 6.0920 6.1800 6.1960 6.2820 6.3260 

• • • 
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Figure 6.3: Relative frequencies for M =5000, 10000, 25000 and 50000 (with 
n = 2). 

From the above two examples we see that card(iV') is basically invariant un-

der the change of K until K is very small. However, it clearly increases with 

M (or perhaps the ratio M/K). Figure 6.3 shows the relative frequencies for 

the cases M =5000, 10000, 25000 and 50000. We think the reason of card(iV) 

dependent on M is that the induced graph is practically generated by the train-

ing patterns, and as the number of training patterns decreases, some links are 

missed. Figure 6.4 shows w(Q,N) for the case M 5000. In the figure we 

also plot the training patterns as dots. We see that at the place where a link is 

missed, there is also a lack of training patterns. 

Therefore, if we want to determine the dimension from card(7V), we must 

fix the reference. For example, if we are given an input space X of unknown 

dimension, we may uniformly draw 50000 training patterns from it, and use 
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_ 

I I I 1 1 

- 1 - 0 . 5 0 0 . 5 1 

Figure 6.4: w{Q,N) for M = 5000 in Example 6.3. The training patterns are 
also shown as dots. 

competitive learning to place 1000 neurons in it. Then we may measure card(iV) 

and look at Figure 6.1 to estimate its dimension. The reader may notice that the 

methodology is basically the same as that of comparing the eigenvalues, but this 

time we compare card(iV). In both cases we must set up a table which records 

the data of the known input spaces first, and then compare the data of the 

unknown input space with those in the table. Such an approach is traditional, 

although different researchers recorded different things in the table (e.g. [24]). 

However, we are now more ambitious. We want to determine the dimension 

directly without making any comparisons. 

Next we proceed to the theoretical problem. For a good representation we 

do not specify the mean to obtain the mapping w, but only require w to satisfy 

certain conditions. Competitive learning is only a specific method to obtain 
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a good w, but some w which satisfy [R3] can (in general) never be obtained 

using competitive learning. Although competitive learning is extremely simple 

and good, and we seldom use any other methods, we still want to find out 

a quantity which varies with the dimension only, but does not vary with the 

mapping w, provided that w still satisfies [R3]. card (TV) is clearly not such a 

quantity. For example, let us consider X = R^. Using competitive learning, 

car(i(iV) « 6.3260. However, if w{Q) is a cubic lattice, then card(iV) = 5. 

Of course we shall (in general) never obtain a cubic lattice using competitive 

learning. Besides squares, regular triangles or regular hexagons can also tile the 

plane. Suppose the Voronoi regions are all regular triangles, then card(iV) = 4. 

If the Voronoi regions are all regular hexagons, card(7V) = 7. All these are good 

representations of X but their card(iV) are quite different. We hope that we 

can determine the dimension whichever graph we are given. We do not want to 

restrict our works to the graphs which we obtain using competitive learning. 

To develop our new method, let us recall the following fact. In R the 

volume of the r-ball of x 

Br(x) = {x' : — x\\ < r} 

grows as r^. Some researchers made use of this idea in the determination of the 

fractal dimension. They counted the number of samples in the r-ball and saw 

how it grew with the radius r. Here we similarly study how the cardinality of 

the r-neighborhood grows with the radius of the neighborhood r. 

Suppose X — R'̂ . With each w which satisfies [R3] we associate a quantity 

1 K 
P{n,r) = card(7V = ^ ^ car(i(iV ( 

K i=i 

139 



Chapter 6 A special topic: application to determination of dimension 

(a) (b) 

0 5 10 0 5 10 

equilateral triangle right-angled triangle 

Figure 6.5: Triangles which tile the plane. 

In particular, we shall use the notation Pc{ri^ r) if w{Q) is a cubic lattice, i.e. all 

the Voronoi regions are n-dimensional cubes. 

To motivate the reader, we focus on the case = R^ first. We shall soon 

show that 

Pe(2,r) = 2r2 + 2r + l 

Figures 6.5(a)—6.7(b) show different types of polygons which tile the plane. In 

fact they are all Voronoi regions for some mappings w. Then we observe that 

P (2 , r ) = + 2r] + 1 
4 

where /C2 is the number of sides of the polygon. This observation is really 

surprising. It motivates us to conjecture that for any mapping w which satisfies 

R3 

P(2 , r ) « + 2r] + 1 

where K is dependent on w but independent of r. If similar conjecture is true for 
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(a) (b) 

_ 

0 5 10 0 5 10 

square parallelogram 

Figure 6.6: Quadrilaterals which tile the plane. 

(a) (b) 

0 5 10 0 5 10 

pentagon regular hexagon 

Figure 6.7: Pentagons and hexagons which tile the plane. 
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any dimension n, we may reduce the study of P(n , r) to the study of Pc{n, r), 

and focus our attention on the latter only. In other words, to know P(n , r) for 

any combinations of Voronoi regions, we only need to know P(n , r) for a specific 

combination of Voronoi regions. This is why the observation surprises us. 

In fact it is not hard to calculate i^ ( r), which is equal to the number of 

integral n-tuples satisfying the following inequality: 

n 

< r 
/=i 

It is clear that 

n 

number of integral n-tuples satisfying ^ \xi\ <r — 
1=1 

r n - 1 • 

y ^ number of integral n — 1-tuples satisfying ^ \xi\ < m x 
m = 0 L 1=1 -

number of integral 1-tuple satisfying \xn\ = r — m 
m • 

Hence we have proved the following proposition. 

Proposit ion 6.1 Pc(n, r) is given by the following recursive formula 

Pc{n, r) = 2 2 Pc{n - 1, m) + P,(n - 1, r) (6.1) 
m = 0 

with the initial condition Pc{l,r) = 2r + 1. 

• 

Example 6.4 Applying Proposition 6.1 we have calculated Pc{n, r) for 

some n: 

Pc( l ,0 2 r + l 

Pc(2,r) 2r2 + 2r + l 
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Pc(3,r) = ^r^ + 27-2 + + 1 

… 2 4 4 3 10 2 8 , 
Pc(4,r) + + 

… 4 5 2 4 8 3 10 2 46 , 
(5 R) = IT + R + R + + 

rw … 4 6 4 5 14 4 8 3 196 2 46 ^ 
= I T +TR + R 

We see that Pc(n, r) grows with r as a polynomial of degree n. As r is 

very large, PC(TI, r) grows approximately as r similar to the volume of 

the r-ball. However, since the coefficient of r'̂  decreases rapidly as the 

dimension n increases, r is generally not large enough to make the highest 

order term dominate. For example, 

coefficient of r•" 1 _ n 
coefficient of r 2 

Therefore, r must be at least much larger than n/2 for the highest or-

der term to dominate all other terms, which is almost impractical. In 

fact, for r in its practical range, all terms in Pc(ny r) have non-negligible 

contributions. 

It is reasonable to conjecture that, similar to P ( ,r), P(n, r) also 

grows with r as a polynomial of degree n. Thus the following method 

seems workable. We may measure and fit 

cardCiVCi)), card(iV(2)), car(i(iV(3)),..., card(iV(^+i)) 

into a polynomial of degree n+1. If the coefficient of almost vanishes 

(at least smaller than 2/nx coefficient of r""), then we may conclude that 

P(n, r) is a polynomial of degree n, and hence the dimension is deter-

mined. However, this method is not good enough for the following two 

reasons. Firstly, to measure up to card(i9"(n+i)) is time consuming when n 

and K are large, although we have already employed those practical hints 
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mentioned in Chapter 2. Secondly, Q is in fact finite. Therefore P(n, r) 

would not grow indefinitely but eventually saturate. If X is bounded, 

this happens when the r-neighborhood hits the boundary. As a result 

card(iV(^)) may not fit into the n-th. degree polynomial when r is large. 

Since we have to measure up to card(i9"( +i)) the method becomes inac-

curate when n is large. Here we see that to determine the dimension, we 

should use local information only, i.e. card(iV'(^)) for small v. 

• • • 

Substituting r by r — 1 in Equation 6.1 we have 

r - 2 

Pc(n, r - 1) = 2 Pe(n - 1, m) + P,(n - 1, r - 1) (6.2) 
m = 0 

Subtracting Equation 6.2 from Equation 6.1 we obtain 

Pc(n , r) - r - 1) = 2P,{n ^ 1, r - 1) + Pc{n - 1, r) - Pc{n - 1, r - 1) 

i.e. 
Pc{n, r) = P,{n - l , r ) + P,(n, r - 1) + Pe(n - 1, r - 1) (6.3) 

Although the next proposition follows immediately from Equation 6.3, it is really 

surprising. 

Proposit ion 6.2 Pc(n^r) = Pc{r,n) 

Proof. We prove it by induction. Suppose the following three are 

true: 

P c { n - l , r ) = P c ( r , n - 1 ) 

P c ( n r - 1 ) = P c ( r - l , n ) 

P c ( n - l , r - l ) = P , ( r - l , n - l ) 
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Then 

Pc{n,r) Pc(n - 1, r) + r - 1) + Pc(n - 1, r - 1) 

= P c ( r , n - 1) + P , ( r - 1, n) + Pe(r - 1, n - 1) 

= P c { r - 1, n) + Pe(r, n - 1) + Pc(r - 1, n - 1) 

=Pc(r,n) 

The initial condition i^c(l r) + 1 = Fc(r, 1) is trivial. 

• 

Proposition 6.2 is an indispensable tool in studying the local behaviour of 

Fc(n,r). To know Pc{n,r) for small r , it suffices to know Pc(n, r) for small 

n. In other words, if we know how the r-neighborhoods grow in low dimensions, 

we know how the r-neighborhoods locally grow in all dimensions. Note that it 

is much easier to obtain PJji, r) for small n than to obtain Pc(jh r) for small r . 

To calculate the latter we need to use the recursive formula Equation 6.1. 

Now it is time to propose our conjecture. 

Conjecture 1 Let X = Then for any mapping w which satisfies [R3], 

P (n , r) « Ac[Pe(n, r) Pc(n — 2, r)] + P —2, r) (6.4) 

where K, is independent of r . 

• 

Remark 6.1 The reader may wonder how we arrive at Conjecture 1. 

After looking at the case n = 2, one may more easily guess that 

P (n , r ) « Av[Pc(n,r) — 1] + 1 
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However, if we consider a special way to tile X — R^, we would see that 

Conjecture 1 is more likely to be true. (If Conjecture 1 is true for any 

mapping w which satisfies [R3], then it must be true for the following 

special case.) Suppose we have already tiled R^. Let {V : i G Z} be the 

set of Voronoi regions. We have claimed that 

P(2,r)«K[2r2 + 2r] + l (6.5) 

Clearly {Vi X [j, j 1] : i^j e Z} tiles RA Using an argument similar to 

the proof of Proposition 6.1, we see that 

r-l 

P(3, r) = 2 X ^(2, m) + P(2, r) (6.6) 
7 7 1 = 0 

in this special case. Substituting Equation 6.5 into Equation 6.6 and then 

applying the following two identities 

A r[r + 1 
y m = 
L 2 
m=l 
A 2 r[r + l ] [ 2 r + l 

> 7 7 2 = — 7 L 6 m=l 

we finally obtain 

P(3,r) « K [ - r ^ + 2r2 + - r ] + 2r + 1 
L 3 3 

= K Pe (3 , r ) -Pe ( l , r ) (6.7) 

Similarly {Vi X [j, j + 1] x [A: + 1] : i,j, k e Z} tiles RA Using the same 

argument we easily obtain 

r - l 
P(4,r) = 2 ^ P(3,m) + P(3,r) (6.8) 

m = 0 
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in this special case of special case. Substituting Equation 6.7 into Equa-

tion 6.8 and then applying the recursive formula Equation 6.1 we have 

• r 1 -

. . m = 0 . 

2 £ P e ( l , m ) + Pe(l,r) + 2 £ P e ( l , m ) + Pe(l,r) 
L m=0 J J L m=0 -
Pc(4 , r ) -Pe(2 , r ) + c(2,r) 

The reader may readily notice that what we have demonstrated is in fact 

if Equation 6.4 is true for all w for dimension n, then it is true for a special 

subclass of {ti;} for dimension n + 1. 

• • • 

Conjecture 1 tries to say that 

P (n r ) - f i ( n - 2 , r ) 

is independent of r. Hence we may set 

P ( n , l ) - P c ( n - 2 , 1 ) P ( n , 2 ) - P c ( n - 2 , 2 ) 

Pc(n, 1) — — 2,1) 2) — 2 2) ^ ‘ ^ 

Applying Proposition 6.2 we know that 

i^c(n l ) = = 2 n + l 

P e ( n - 2 , 1 ) = P e ( l , n - 2 ) = 2 n - 3 

Pe(n,2) = Pc(2,n) = 2n2 + 2n + 1 

P c ( n - 2 , 2 ) = P e ( 2 , n - 2 ) = — 6n + 5 

Putting them into Equation 6.9 we finally obtain the following equation 

+ [ - 2 P ( n , 1) — 2]n + [P(n, 1) + P(n , 2) - 2] « 0 (6.10) 
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Hence, if we measure card(7V) and card(i^(2)) and substitute them into Equa-

tion 6.10 we may solve n. From the experiments below we find that n should 

be the smaller root of Equation 6.10, i.e. 

1 + car(l(iV) - V5-h card(iV)^ — 2card(iV(2)) 
n « (6.11) 

For convenience we shall denote the right hand side of Equation 6.11 as n. 

Clearly h is not necessarily an integer. 

Here we have used card (TV) and card(i^(2)) only, satisfying our hope that only 

the local information is used. Besides the advantages we have mentioned earlier, 

this also allows us to solve a quadratic equation (Equation 6.10) only instead of a 

higher order equation. Practically if we only need to calculate up to card(i^ ) 

we may make some further special treatments in the computer program in order 

to reduce the time required to calculate card(iV(^)(g,)), r = 1,2. Firstly, we 

can combine the calculations of cdird{N{qi)) and car(i(7^(2)(… in only one loop. 

Secondly, we can calculate card(iV(2)(^-)) without actually calculating •). 

(In other words, we can obtain the column sums of nonzero(N^) without having 

computed the whole matrix nonzero(N^).) This also saves computer memory 

such that a larger K is allowed. 

Example 6.5 The configuration is the same as that of Example 6.1. The 

results are summarized in the following table. 

n 1 2 3 4 

n 0.9990 2.0139 2.9846 3.9534 

n 5 6 7 8 

h 4.8842 5.8117 6.5589 7.2453 
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9 I 1 1 1 * 1 1 T — • — 
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0 1 2 3 4 5 6 7 8 9 

dimension (exact) 

Figure 6.8: (n, n) are plotted as circles to see whether they fit into the straight 
line n = n. 

For ease of visualization we also plot the results in Figure 6.8 to see 

whether they fit into the straight line n n. It can be seen that the ‘ 

error increases with the dimension. We think that it is owing to the 

effect of "hitting the boundary" we mentioned before. As the dimension 

increases, a larger portion of neurons are placed near the boundary of the 

input space, especially when the total mimber of neurons is kept fixed. 

Note that Conjecture 1 is not true when the r-neighborhoods cannot 

expand freely. If a neuron is too near the boundary of the input space, 

its 2-neighborhood may be "clipped", and error is introduced to n. We 

expect that the error can be reduced if we use more neurons in the cases 

of high dimensions. Anyway, our experimental results can be accurate up 

to dimension 6 which is really satisfactory. 

• • • 
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Example 6.6 The configuration is the same as that of Example 6.2. The 

results are summarized in the following table. 

K 100 200 300 400 500 

n 1.8385 1.9201 1.9465 1.9620 1.9784 

K 600 700 800 900 1000 

n 1.9844 1.9896 2.0049 2.0079 2.0139 

• • • 

Example 6.7 The configuration is the same as that of Example 6.3. The 

results are summarized in the following table. 

M 5000 10000 15000 20000 25000 

n 1.8507 2.0299 2.0372 2.0360 2.0323 

M 30000 35000 40000 45000 50000 

n 2.0268 2.0244 2.0167 2.0212 2.0139 

• • • 
From the above two examples we see that h is invariant under the changes 

of K and M until they become very small. When K is very small, the effect 

of hitting the boundary becomes significant. When M is small, some links are 

missed as mentioned before. However, we see that n is much more robust than 

card(iV) under the miss of links. This can also be seen from Figure 6.9, which 

plots the normalized n (solid line) and the normalized card(iV') (dashed line) as 

M varies from 5000 to 50000 with h and car(i(iV) normalized to 1 at M = 50000. 

In the last example of this section we want to point out that 10 cycles of 

presentation of the training patterns may be in fact not needed provided that 

the number of training patterns is sufficiently large. 
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Figure 6.9: Normalized h (solid line) and normalized card(iV) (dashed line) vs 
M (reference point at M = 50000). 

Example 6.8 The configuration is the same as that of Example 6.1 ex-

cept that the 50000 training patterns are only presented once instead of 

10 times. The results are summarized in the following table. 

n 1 2 3 4 

n 0.9990 2.0351 3.0053 3.9699 

n 5 6 7 8 

n 4.9539 5.7988 6.5463 7.2545 

• • • 

6.2 Advanced examples 

In this section we give some more advanced examples. 
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_ 

I I i 1 1 

- 1 - 0 . 5 0 0 . 5 1 

F i g u r e 6.10: w{Q, N) for the case n = 2 in Example 6.5. 

Example 6.9 In this example we want to demonstrate that h is accurate 

even if the probability distribution defined on X is non-uniform, since 

w obtained using competitive learning can compensate such, an effect. 

Figure 6.10 plots w{Q,N) for the case n = 2 in Example 6.5. Suppose 

now we obtain a new sequence of training patterns from the old one by 

the following component-wise transformation: 

xl = xf 

Then the training patterns are no more uniformly distributed on X. We 

present this new sequence of training patterns, with all other parameters 

remain the same, to train a w and then measure fi. The result w{Q,N) 

is plotted in Figure 6.11, and h is measured to be 2.0800. 

• • • 
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_ 

I I I I 1 

- 1 - 0 . 5 0 0 . 5 1 

F i g u r e 6.11: w(Q, N) in Example 6.9, with the training patterns not uniformly 
distributed. 

Example 6.10 We have mentioned that X is more often bounded in-

stead of the whole R^. Moreover, X is not necessarily rectangular. Here 

we consider a special bounded subset of R^. Let us recall Example 2.3. 

(In fact we just arbitrarily pick up a better one among Example 2.2, 2.3, 

2.4 and 2.5). We have shown at the end of Chapter 4 the induced graph 

of this w. Here we plot it again in Figure 6.12. For this induced graph n 

is measured to be 1.5148. We see that a thin 2-dimensional band tends 

to be classified as an 1-dimensional object. It is caused by the effect of 

hitting the boundary we have mentioned in the previous section. 

• • • 

Example 6.11 Although our theoretical work is based on linear input 

spaces, we hope that it can still be applied to non-linear input spaces. 
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- 1 - -

I I —— 

-1 0 1 

Figure 6.12: w{Q,N) in Example 6.10. 

Suppose X is non-linear, but at each point of X we can define the tangent 

plane. Then the dimension at a point x oi X can be viewed as the 

dimension of the tangent plane at this point. Locally at x the behaviour 

of X is very close to the behaviour of the tangent plane, and as n makes 

use of local information only, it should still be accurate if the curvature at 

X is not very large. Here we consider two simple non-linear input spaces: 

Si = { (cos sin <t>):<t>e [0,27r) | 
/ \ 

1 1 [3 + 2cos</)il cos(/>2, [3 + 2cos0i] siii(^2,2 s i n ‘ 
S I X S I \ ^ 

^ 01, <̂2 € [0,27r) . 

Clearly S^ is a circle in R^ and S^ x SMs a torus in R^. To obtain the 

sequences of training patterns, and (t>2 are randomly drawn from a 

imiform distribution on [0,2 ) and as a result the training patterns of 

Si X Si are not uniformly distributed on it. 
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If all the other parameters are set the same as those in Example 6.1 

and Example 6.5 then we have the following results: 

X card n 

Si 3.0000 1.0000 

Si X Si 6.5120 2.0736 

We see that h is accurate. 

If we compare the relative frequencies of the cardinalities of the 1-

neighborlioods with, those obtained in Example 6.1 for the cases n = 1 

and n 2, 

cardinality relative frequency 

of the X = X = X 

1-neighborhood [-1,1] S! [-1,1]^ S! x S! 

1 0.0000 0.0000 0.0000 0.0000 

2 0.0020 0.0000 0.0000 0.0000 

3 0.9980 1.0000 0.0030 0.0000 

4 0.0000 0.0000 0.0400 0.0000 

5 0.0000 0.0000 0.1440 0.0910 

6 0.0000 0.0000 0.4050 0.4630 

7 0.0000 0.0000 0.3300 0.3670 

8 0.0000 0.0000 0.0770 0.0790 

9 0.0000 0.0000 0.0010 0.0000 

10 0.0000 0.0000 0.0000 0.0000 

then we can easily observe the effect of hitting the boundary. The low 

end of the relative frequencies for an input space with boundary (such as 

X = [-1,1] or X = [-1,1]2) is much lower than that for an input space 

without boundary (such as X = S^ o rX = S^xS^) of the same dimension, 
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while their high ends still coincide. It is because the 1-neighborhoods of 

the neurons near the boundary have lower cardinalities. 

• • • 
Example 6.12 In this last example of this section we consider an arbi-

trary input space. Let 

X = 1 ([tl + + 1] cos(ti) , [tl + tl + l] siii(^i), [tl i-tl + l] C S(t2), 

'tl + tl1] :ti,t2 € [0 ,27r) , i3 ,^4 G [ - 1 , 1 ] } 

Clearly X C R® has dimension 4. Moreover, the cross section of X at 

fixed ts and t^ is in fact a torus in R^, and thus X is non-linear. To 

obtain the sequence of training patterns, ^i, t are randomly drawn from 

a uniform distribution on [0,27r) and ^3, t^ are randomly drawn from 

a uniform distribution on [0,1). The total mimber of training patterns 

M = 50000. We use competitive learning to place 1000 neurons in X. 

The learning rate 77 is 0.15 and the same training sequence is presented 

10 times. At last card(iV') is found to be 14.8780 and n is measured to be 

4.1880. 
• • • 

6.3 Special applications 

In this last section we study some interesting applications. 

Example 6.13 In this example we consider the dimension of attractor 

of a chaotic time series. Consider the chaotic Mackey-Glass differential 

delay equation [16]: 
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where r is a parameter. (The reader may also see [19 14, 5].) This 

system has low dimensional attractors whose dimensions increase with r 

21, 2]. As in [19], the equation is integrated using a fourth order Runge-

Kutta method to provide values of x at discrete time steps®. The initial 

condition is a constant function at x — 0.8. The single time series is then 

embedded in a state space by creating state vectors [3, 17, 22 4, 14 

(a; ,x{t 6), x{t — 12) 1])) 

where n is the dimension of the state vectors and must be > the dimension 

of the attract or. We have totally 50000 such state vectors, which are 

shuffled and then used as training patterns. The total number of neurons 

K - 1000 and the learning rate rj = 0.15. The same training sequence is 

presented 10 times to train the mapping w. The result is summarized in 

the following table. 

T dimension reported in [21, 2] card(iV') n 

17 2.1 5.8640 1.9129 

30 3.6 10.0160 3.1885 

We see that n is reasonable even for the dimension of attractor of a chaotic 

time series. 
• • • 

Example 6.14 In this example we consider the dimension of speech 

space. (For the importance of finding the dimension of speech, see [1, 24].) 

In particular, we study the space of LPC coefficients of speech. (However, 

6\Ve thank Mr. Jones Chui sincerely for providing a C program which integrates the Mackey-
Glass differential delay equation and creates the state vectors. 
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as mentioned in [1 24] the dimension is basically independent of the rep-

resentation of speech.) The raw speech data^ are obtained by sampling 

at 10 kHz using 12 bit quantization. The duration of each speech frame 

is 25.6ms, and the starts of consecutive frames are spaced by 10ms. 12 

LPC coefficients are obtained for each frame using Durbin's Recursive 

algorithm (autocorrelation method, [18]). These 12 LPC coefficients form 

a training pattern in R^^. We have totally 43227 such training patterns, 

which are shuffled before used. The total immber of neurons K 1000 

and the learning rate 77 = 0.15. The same training sequence is presented 

10 times to train the mapping w. At last we find that card(i^) = 19.5500 

and n = 4.5410. The dimension we have estimated is quite consistent 

with the results in [24, 23], in which other methods were employed to 

obtain the dimension. 

• • • 

7We thank Dr. Edmund Lai sincerely for providing the raw speech data and a C program 
which calculates the LPC coefficients. 
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Chapter 7 

Conclusion 

In this thesis we have considered the set of neurons Q as the underlying set 

of a fully looped symmetrical directed graph (Q ,N) . In other words, we have 

superimposed a graph structure on the set of neurons. This rigorous graph struc-

ture replaced the vague "spatial relationships" of the neurons which had been 

traditionally used. Then we defined the local minimum of a real-valued func-

tion defined on this graph. By considering the distance function as a real-valued 

function, we defined primarily what preserving the topological order means. The 

definition of preserving the topological order was generalized gradually, from X 

being convex, to X being path-connected, to at last each component of X being 

path-connected. 

Accompanied the definition of preserving the topological order was a quantity 

J i which is the average number of local minima of c? ow minus 1. J i is expected 

to be almost 0 when the topological order is preserved. Hence we can measure 

J i to detect whether Kohonen's algorithm succeeded in high dimensions. This 

formed one of the most important applications of J i in this thesis. 
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One main problem of using Ji is that practically it only works when X E C. 

Of course we needed not confine the class of input spaces to C in our theory 

since we can consider geodesic distance, but practically we can only measure the 

direct distance. On the other hand, the induced graph, which was obtained by 

formulating the theory in terms of Voronoi regions instead of local minima, has 

a practical approximation which is surprisingly good even when direct distance 

is used. Of course it was a good reason for us to direct our attention to the 

induced graph rather than the local minima, but the main motivation to do so 

was that the concept of induced graph is so natural that every one can easily 

understand. 

The purpose of the induced graph is to reflect the structure of the input space, 

and hence we can study the structure of the input space by studying the induced 

graph instead. Roughly speaking, the induced graph is the “minimal , graph (in 

the sense of Proposition 4.3) which preserves the topological order of the input 

space. We had added some remarks to clarify the idea of the induced graph. 

With the concepts of preserving the topological order and the induced graph, 

we discussed the vague idea of when {Q,N) with w is a, good representation of 

X. 

If one is familiar with the minimal spanning tree^ in [9], one may readily 

notice that there are some common points between the induced graph and the 

minimal spanning tree. (Nevertheless, in fact we had not noticed any similarities 

between them until the final stage of our work.) Firstly, both were motivated by 

the limitations of the original Kohonen's algorithm. Secondly, in both cases no 

pre-specified graph structure is given, and the induced graph and the minimal 

l i t seems more common to call it the minimum spanning tree. However, since in [9] it was 
called the minimal spanning tree, we had better follow [9]. 

160 



Chapter 1 Conclusion 

spanning tree are induced from the mapping w. However, there are also essential 

differences between them. In [9], the minimal spanning tree was computed using 

direct distance, and its relation to the input space was only through the mapping 

w, which was trained by the training patterns. Of course using geodesic distance 

may reflect more about the structure of the input space, but practically we never 

measure geodesic distance. The induced graph, on the other hand, is closely 

related to the Voronoi regions. Even when direct distance is used, whether 

there is a link is completely determined by whether there is a training pattern 

nearby. Therefore the induced graph strongly reflects the structure of the input 

space. In fact it was the original purpose of the induced graph, and the minimal 

spanning tree was not originally for this purpose. As a result, the induced graph 

is much better than the minimal spanning tree in reflecting the structure of the 

input space. For example, we have seen that if the input space is disconnected, 

the minimal spanning tree is never disconnected but the induced graph would 

be disconnected according to the input space. Moreover, as we have seen in 

Chapter 6 the dimension of the input space can be easily extracted from the 

induced graph, but we do not think that the same is true for the minimal 

spanning tree. 

If we say that the emergence of the induced graph was driven by the maturity 

of the theory, then the development of the theory for the studies of the dimension 

was completely driven by the observations in the experiments. The appearance 

of the induced "graph was so natural that almost everyone was ready to accept 

it, while the observations in the experiments about the dimension were indeed 

amazing. For example, although Conjecture 1 may not be true for non-linear 

spaces, it was a sufficient surprise to us. If we do more researches in this area 
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in future, we should not be surprised to have more and more surprises. 

At last we want to point out some possible directions of further researches. 

We have applied J i , Kceiid{NG\Ni) and Kcaid(Ni\NG to detect whether Ko-

honen's algorithm succeeded or not. It is useful especially for high dimensions. 

We have also tried to make use of the information of local minima or induced 

graph to develop new algorithms or modify Kohonen's algorithm, but none of 

them was a significant success. Although the induced graph successfully reflects 

the structure of the input space, as mentioned in Chapter 5 it does not mean 

that we do not need a topological order preserving algorithm anymore. On the 

contrary, from the experimental results of Kohonen's algorithm in high dimen-

sions (e.g. torus in R^), we find that we really need a better topological order 

preserving algorithm. Kohonen's algorithm has some limitations as mentioned 

in Chapter 2. To develop a better topological order preserving algorithm is im-

portant but extremely difficult. Another possible direction of further researches 

is to develop more applications of the induced graph to the studies of the struc-

ture of the input space. In this direction there are plenty of opportunities. Even 

in the determination of dimension, our work has only been a start rather than an 

end. Our results for non-linear spaces were not good enough, and should have 

some improvements if we know more about the nature of non-linear spaces. In 

fact our understanding in linear space is still far from complete. The researches 

in this area are colourful, and the findings are always non-trivial. As we have a 

good start, there is no reason to stop our work in this direction. 
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