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PREFACE 

The objective of the project is to design and construct a 
practical off-line character recognition system for printed 
Chinese character. Two approaches i.e. unsupervised learning and 
supervised learning has been studied. Finally, supervised 
learning approach with the basis of the 3 corner code was 
adopted. The philosophy of the supervised learning is to make 
use of the similar properties of the corner feature and 3 corner 
input code. The corner features are first extracted and then 
classify based on the knowledge given from 3 corner code. The 
classification are done at various node and finally a binary 
decision tree is formed. 

It has been shown in the study that the construction of the 
optimum decision tree belongs to the class of NP complete 
problems and thus cannot be built within polynomial time. As a 
result, a heuristic is introduced and suboptimal decision tree is 
built. 

A two stage classification procedure has been introduced where a 
3-tree protocol has been developed for the first stage 
discrimination process. the use of the context relationship 
among inputted characters is used to serve for the second stage 
classification. Random samples of both ideal type or having been 
corrupted with noise have been used to test the efficiency and 
accuracy of this classifier. 



Simple testing has been carried out and the result shows that the 
performance of the classifier is rather sensitive to the noise of 
the input character. As a result, different techniques for 
improving the performance of the classifier have been studied 
which includes the introduction of overlapping, the technique of 
back tracking for holes, the use of a fuzzy decision making use 
of a tolerance limit and the idea of entropy reduction in other 
tree architecture. Some of these can actually improve the 
performance of the classifier to quite significant degree and 
among which the 1 tree protocol which employs the use of entropy 
reduction is found to be the most promising and worth future 
exploration in more depth. By the time, since only 500 
characters are used in the training of the classifier, it is not 
reliable enough. 

This thesis can be said is the combined effort of me and my 
project partner Mr. Sin Ka Wai. Part of the research is actually 
done by him. In order to maintain the completeness of the whole . 
topics, the studies from Mr. Sin Ka Wai will be attached at the 
appendix for easy reference.‘ 

Last but not least, I would like to take this opportunity to 
thank my supervisor Dr. M. Chang for his invaluable guidance and 
assistance and my project partner Mr. Sin Ka Wai for his advise, 
support and coordination throughout the whole project. 

Mr. Yeung Lap Kei 
June 1992 
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DESIGN AND IMPLEMENTATION OF 
MULTISTAGE TREE CLASSIFIER FOR 
CHINESE CHARACTER RECOGNITION 

YEUNG LAP KEI 

ABSTRACT 

Input has long been one of the most difficult problems faced by 
most scientists in the development of practical computer Chinese 
information processing systems. The intrinsic difficulties of 
the input of Chinese characters has hindered the advancement of 
these Chinese systems and Chinese character recognition is 
thought to be the ultimate solution. Classical recognition 
systems are either font dependent or not efficient enough in 
terms of the recognition speed. Usually the size of the 
character set under consideration is restricted to be just a 
small one and cannot comprises of all the Chinese characters that 
we commonly encountered. 

Exploration has been made, to construct a multistage tree 
classifier for printed Chinese characters based on the idea of 
supervised learning. The 3 corner code has been adopted as the 
basis in the construction of the tree classifier. A two staged 
classification procedure is used where in the first stage, a 3-
tree protocol has been developed and used to discriminate 5400 
commonly used Chinese characters. Improvement in its performance 



can also be sought through the introduction of overlapping or the 
technique of back tracking for holes. The result is encouraging 
and an accuracy of up to 100% can be attained for ideal sample 
input and around 65% for noisy sample input. The classifier is 
also efficient where the average recognition time is around 0.5 
second per character. 

The second stage of classification explores the use of the 
context relationship among the inputted characters. Again, the 
performance of the classifier is good where for an ideal passage 
input, about 40% of the characters can be uniquely determined, 
58% recognized as a group of characters and less than 3% are 
misclassified. 
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CHAPTER 1 « INTRODUCTION 



§1 INTRODUCTION 

§1.1 THE CHINESE LANGUAGE 

The Chinese language, being in use by billions of people in 
the world, is different from other languages in the western 
world in its representation method. They are stand alone 
characters and square shaped. Unlike most of other 
languages, Chinese words are not formed by sequence of 
alphabets or sequence of some other symbols. Basically one 
symbol will be one Chinese character. It has its own meaning 
and its own pronunciation. Of course, phrases can also be 
formed by combining separate characters just like other 
languages. 

As a result of the above consideration, we note that since 
characters in Chinese exists by its own, and there is no 
basic group of symbols used in forming word, the total 
number of characters could theoretically be infinite. There 
is no upper bound for the number of distinct characters. 
Fortunately the Chinese culture tells us that there are 
altogether only around 20 thousands distinct Chinese 
characters and out of these, only about 5 thousands are 
commonly used. However, this is already an astonishing large 
number and has presented an intrinsic difficulties in 
Chinese character recognition system in comparison with the 
English recognition system where only tens of alphabets are 
to be distinguished. 
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The astonishing large number of characters in the Chinese 
language is, on one hand a problem which we have to face 
while on the other hand, one of the distinguished feature 
which enables a easier recognition process. It has been 
claimed that since there are many distinct characters, we 
can distinguish them more easily as the characters are 
usually very different from one another. People may just 
look at the corners or the edges before they can identify 
the characters correctly. Despite of such advantages, 
Chinese character recognition is still a difficult and 
challenging problem for most of the scientists and has 
attracted much research to be carried on this field [1]. 

§1.2 CHINESE INFORMATION PROCESSING SYSTEM 

Chinese information processing system has been developed 
rapidly in the past decades both in Taiwan and Mainland 
China. Most of the commercially available Chinese systems in 
Hong Kong come from Taiwan. 

just like the coding system usually employed for English in 
most of the computer system, there is an internal code 
associated with every Chinese characters. This internal code 
will just resemble the role of ASCII in English alphabet. 
However, there are a large number of coding system and among 
which one of the most popular system, especially in Taiwan, 
is the use of Big 5 code. Basically every Chinese character 
is represented by a Big 5 code of two bytes in length. So as 
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to distinguish a Chinese character from the English 
alphabets, the most significant bit of all Big 5 codes will 
be 1. The Big 5 code will begin at hexadecimal a440 which is 
the internal code for ••—" • As a result, upon receiving an 
internal code of length one byte, the computer system will 
first access the most significant bit of that code. If the 
bit is found to be 0, then it is a usual ASCII code and will 
just be identified as usual characters. If the bit is found 
to be 1, then it will be the start of a Big 5 code. The 
other one byte of information will be taken and the two will 
be combined to become a Big 5 code of a certain Chinese 
character. In this way, Chinese characters and other usual 
characters can coexist in the system. 

One fundamental problem in Chinese system is about input. To 
input an English alphabet is simple because the keyboard is 
primarily designed for this. How can we input a Chinese 
character to the computer system? In fact input has long 
been a difficult task in Chinese language processing by 
computer. Many different input methods have been developed. 
Typical examples include: 

1. The use of a combination of keys to input a Chinese 

character 
a. By partial forms (e.g. the Chong Qi input scheme) or 
b. By the sequence of strokes in forming a character? 

2. To input the phonemes which represent the sound of the 

character. 
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However, the most convenient method of input nowadays still 
require combination of keys to uniquely determine one single 
Chinese character. Most methods cannot uniquely determine a 
character. Usually they will seek the help from the user by 
asking the user to select for the computer among some 
possible characters displayed on the screen. These methods 
are slow and require appropriate training and practice 
before users can easily get along with. This intrinsic 
difficulty hinders further advancement in Chinese 
information processing system. 

§1.3 CHINESE CHARACTER RECOGNITION 

Different alternatives other than the conventional use of 
the keyboard have been proposed for inputting Chinese 
characters. Better solutions include the input in 
handwritten form, the input in preprinted form or the input 
in the form of voice. Among these input schemes, speech 
recognition should undoubtedly be our ultimate choice 
despite the intrinsic difficulties encountered in tackling 
the problem. More acceptable solution will be the use of 
the input in handwritten or preprinted forms. If handwritten 
character recognition is used and characters be inputted 
real time at the terminal, the system is an on-line 
recognition system. If preprinted character recognition is 
adopted, the system is said to be operating in off-line 
mode. There are recently quite a number of researches done 
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supporting the development of practical systems both of the 
type on-line and off-line. 

It has been claimed that the input of on-line handwritten 
characters occurs less frequently and is in some sense less 
practical. Doubtless to say, Chinese characters are too 
difficult to write and it usually takes time for us to 
transcribe passages of Chinese characters. On the other 
hand, it is also one of our main reasons for using the 
computer in helping us to speed up the entire task of 
Chinese information processing which includes input of 
characters, process of information and output of the 
results• 

The development of the off-line system for recognizing 
preprinted characters becomes more useful and important. It 
has been noticed that in many of the applications, we are 
just required to input pages of printed characters. Even 
though when we are writing our own passages, handwritten 
scripts can still be fed into the system for recognition if 
the discriminating power of our system is large enough. This 
means that the on-line system can actually be incorporated 
in the off-line system. As a result, the study of a 
practical off-line system is highly perferrable. However, 
one point we have to bear in mind is that an off-line system 
is not actually a "superset" of the on-line system. On-line 
systems usually possess extra discriminating power with the 
use of stroke order which off-line systems cannot have. 
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Traditional methods of thinning or stroke extracting are 
either not necessary or simple in on-line systems. Maybe 
the off-line system is more difficult to design due to the 
limited information available for the input. 

§1.4 MULTI-STAGE CLASSIFIER VS SINGLE-STAGE CLASSIFIER IN CHINESE 
CHARACTER RECOGNITION 

The design of a character recognition system is equivalent 
to designing a classifier which can successfully 
discriminate the characters. Classifier can either be 
single-staged or multistaged referring to classifiers which 
can successfully dicriminate a given character input to its 
target by one single step decision or by multiple steps of 
decision respectively. 

Single-stage classifier is characterized by its simplicity 
and efficiency. Since only one step decision is needed, the 
output should inevitably comprise of a number of groups. In 
addition, the decision function must be complicated so that 
one single decision can complete the entire discrimination 
process. Besides the classifier will also be severely 
limited by the use of only some particular informations of 
the input. As a result, the discriminating power of such a 
classifier cannot be very good. Of course in practical 
situation such a single-stage classifier cannot attain the 
required level of performance. 
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Multistage classifier can be arranged in the form of a tree 
structure so that decisions are performed in a successive 
and hierachical manner. Since there are a number of steps to 
go before final decision can be made, different types of 
information and different discriminant functions can be 
used. As a result the discriminating power of a multistage 
tree classifier will usually be better than its single-stage 
counterpart. However, there is a problem of error propagati-
on in multistage classifier which single-stage classifier 
does not have. We will discuss the problem in detail in 
later chapters. 

§1.5 DECISION TREE 

§1.5.1 Basic Terminology of a Decision Tree 

Before we are going to describe the method of building the 
tree classifier in recognizing the Chinese character, some 
terminologies about the decision tree are mentioned here 
first. The decision tree here means the Direct Acyclic 
Graph as defined by S.Rasoul Safavian & David Landgrebe in 
[2] . As mentioned in [2], the Direct Acyclic Graph would 
satisfy the following properties 

• There is exactly one node, called the root, which no 
edges enter. The root node contains all the classes. 

• Every node except the root node has exactly one 

entering edge. 
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• There is a unique path from the root to each node. 
Refer to figure 1.1, several terms for describing tree 
are defined as follows 

Root Node 
.."•r—.........—.......‘...... — „ f \ Level 0 
I . ED / V A ^ 
i Depth of ^ ^ / Internal Node 

/ \ Breath of the tree 
^ at level 2 

R J G O T X ^ — - — - 12 

J ^s^Terminal Node 

J 0 0 . . . O — - ’ 1 3 

Figure 1 . 1 - Schemat ic Diagram of a Decision Tree 

a. Edge 
The edge is the order pairs (v,w) of the node. Node v 
is called the father of node w and node w is a son of 
v. 

b. Root node 
Root node is the node where no edge enters. 
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c. Leaf node (terminal node) 

The node with no proper descendant. 
d. Internal node 

The nodes in the tree other than root node and leaf 
node. 

e. Depth of a node 

The depth of a node is the length of the path from root 
node to that node. 

f. Ordered tree 

An ordered tree is the tree in which the sons of each 
node are ordered. 

g. Binary tree 
A binary tree is an ordered tree such that 
- E a c h son of a node is identified either as a left 

son or as a right son. 
- N o node has more than one left son or more than one 

right son. 

h. Node with overlap classes 
Two internal nodes contain a least one common class, 
then it is said that the node have overlap class. 

i. Average depth of the tree 
The average depth of the tree is the average number of 
layers from the root to the terminal nodes. 

j• Average breadth of the tree 

The average number of internal nodes in each level of 
the tree. 
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§1-5.2 Structure Design of a Decision Tree 

Many methods about the optimal tree structure design has 
been proposed in [3] [4] [5] [6]. A summary has also been 
discussed in [2]. According to [2], the most common 
optimality criteria for tree design are 

• Minimum error rate 
• Min-Max path length 
• Minimum number of nodes in the tree 
• Minimum expected path length 
.Maximum average mutual information gain 

A basic problem with these methods is their computational 
unfeasibility, usually large amount of computational time 
and memory storage are required, which make it difficult 
to implement. 

It is also shown by Hyerfil and Rivest in [7] that the 
problem of constructing optimal binary trees, optimal in 
the sense of minimizing the expected number of tests 
required to classify an unknown sample is an NP complete 
problem and thus very likely of non-polynomial time 
complexity. 

It is classified in [2] that there are basically four 
categories for the construction of decision tree by 
heuristic method i.e. Bottom-up approach, Top-down 
approach, the Hybrid approach and Tree Growing-Pruning 

10 



approach. Each category is briefy described as follows: 

a• Bottom-up Approach 

In Bottom-up approach/ a binary tree is constructed 
using the training set. Some distance measurement such 
as Mahalanobis distance between a priori defined 
classes are computed and in each step the two classes 
with the smaller distance are merged to form a new 
group. The mean and covariance matrix for each group 
are also computed from the training samples of classes 
in that group and the process is repeated until one is 
left with one group at the root. This tree building 
method makes use of the philosophy that more obvious 
discriminations are done first and more subtle ones at 
the later stages of the tree. 

b. Top-down Approach 
With the decision tree constructed in Top-down 
approach/ an effective node splitting rule should be 
determined at each internal node of the tree to split 
the training set into two or more classes. A decision 
about which nodes are terminal is also being 
established. Each terminal node is assigned to a class 
label according to some criteria such as to minimize 
the mis-classification rate etc. 

c• Hybrid Approach 
In Hybrid approach, both Bottom-up and Top-down 
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approaches are used at the same time. The rationale for 
this method is that in Top-down approach such as 
hierarchical clustering of classes, the initial cluster 
centers and cluster shape information are unknown. 
These information can be provided by a Bottom-up 
approach. With this approach, the training set are 
considered using Bottom-up approach to come up with two 
clusters of classes. Then the mean and covariance for 
each cluster are computed. These information are then 
used in Top-down approach to come up with two new 
clusters. 

d. Tree Growing - Pruning Approach 
In Tree Growing - Pruning approach, the data set is 
divided into two approximately equal sized subsets and 
iteratively grow the tree with one subset and prune it 
with other subset. The role of the two subsets are 
interchanged successively. 

A summary of some of the tree design methods in terms of 

the assumptions each approach makes, their performance 

criterion and special requirement can be found in table 1 

at p.671 of [2]• 

§1.6 MOTIVATION OF THE PROJECT 

We will concentrate on the development of a off-line printed 
character recognition system. We want to explore suitable 
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methods in contracting our multistage tree classifier. Our 
study will emphasize mainly on accuracy and efficiency. 
Since our target is only on printed characters, we are 
expecting to have a recognition system with high speed. In 
this way, classical recognition which involves processes of 
thinning and stroke extraction may not be appropriate in our 
study. Instead, we will treat the input character as a 
bitmap of 0 and 1 and try to detect suitable features which 
will successfully discriminate the character with one 
another. As a result, a number of questions has to be 
explored in our current study: 

1. Which features should we use in the discrimination 
process? 

2• Which methods should we adopt in constructing the 
multistage tree classifier? 

3. What kind of tree architecture should we employ? 
Is there any distinguished advantages towards the use of 
such tree architecture? 

4. How can we evaluate the effectiveness of the classifier? 

How can we quantify such effectivness? 

5 . is there any possible improvement in the classifier thus 

developed? ‘ 

In the chapters which follow, the above questions will be 

answered and practical system of Chinese character 

recognition system will be developed. 
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§1.7 OBJECTIVE OF THE PROJECT 

The objective of the current study is to develop a practical 
off-line printed Chinese character recognition system with 
high recognition rate and reasonable speed. Multistage tree 
classifier will be used. We will focus on the methods 
employed in constructing the classifier. The methodology 
will be implemented in computer using suitable samples of 
Chinese characters as testing data. The system should be 
practical and hopefully it can be implemented in ordinary 
microcomputer system. 

§1.8 DEVELOPMENT ENVIRONMENT 

Since the system is to be practical and can be implemented 

in microcomputer system, the development environment is 

chosen to be in ordinary IBM 386 systems. The C programming 

language is used as the development tools and programs have 

been written to implement the entire idea of character 

recognition. 

Besides, we have been continuously using the Eten Chinese 
system for reference. The Eten Chinese system has provided 
good resources of bit pattern of printed Chinese characters 
and lookup tables for input schemes. These are indispensable 
materials towards the development of the current system. 
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CHAPTER 2 - APPROACH 1 UNSUPERVISED LEARNING 



§2. APPROACH ONE - UNSUPERVISED LEARNING 

Unsupervised learning actually refer to the case where no 
prior knowledge of the class membership of the objects in 
the training sample is known to the system. The objects are 
classified into clusters by some intrinsic likeliness of the 
objects themselves. There is no absolute measurement of 
likeliness, and the correctness of the classification. 
However, the nonparametric nature renders the process to be 
highly flexible and thus versatile. 

The details study of the use of the unsupervised learning 
approach in printed Chinese character - recognition is given 
by my project partner Mr. Sin Ka Wai and therefore will not 
be described in details here. In this chapter, a brief 
overview is being given in order to maintain the 
completeness of the thesis and the whole analysis can be 
found in appendix A2. 

1. several useful feature extraction methods for the input 
bit pattern of the character are first developed. 

2. Different unsupervised clustering algorithms are derived. 

One clustering algorithm is chosen to cluster the given 

training set into different groups based on the use of 

one particular feature. This step will be repeated for 

all other features which have been extracted from the 

characters• 
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3. A decision table is then formed. 

4. Based on the decision table just constructed, the optimum 
decision tree is then built. 

There are some problems associated with this approach in the 
training up of the classifier since practically the 
algorithm descirbed in (4) cannot be implemented 
computationally. This belongs to the class of NP complete 
problems. Details of the discussion and reasons will be 
given in appendix A.2. 

f 
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CHAPTER 3 » APPROACH 2 SUPERVISED LEARNING 



§3 APPROACH TWO - SUPERVISED LEARNING 

§3.1 IDEA 

As mentioned in section 2 • 6 that the tree classifier with 
unsupervised learning has several implementation 
difficulties. A lot of time is required before the decision 
functions can be built. It would make the classifier 
inflexible especially when some new characters are added to 
the training character set. 

In view of this difficulty, a tree classifier with 
supervised learning approach is suggested. It can maintain 
the advantage of a tree classifier in reducing the 
complexity of the decision making and at the same time 
improve the flexibility and decrease the training time 
required. 

The idea of the supervised learning approach is to make use 

of the similarity properties of 3 corner code input method 

and the corner feature extraction ‘method (refer section 

2.2.6 for details)• 

In 3 corner code input method, the Chinese character is 
divided into four equal parts i.e. 4 corners. Only 3 corners 
are considered i.e. top left, top right and bottom left. 
Based on the key strokes properties of that corner, an 3 
corner code 00 - 99 would be assigned. In other words, 
those Chinese characters with the same corner key strokes 
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properties would have the same 3 corner code assigned. The 
details code assignment method would be described later in 
the section 3.2. 

Similarly, with the corner feature extraction method as 
mentioned in section 2.2.6, those Chinese character with the 
same corner key stroke will have the same corner features 
extracted provided that the same character font is 
considered. 

Because of the above mentioned similiarity between the 3 
corner code and corner feature, the 3 corner code is used as 
a reference to assist the training of the classifier with 
the corner features. 

There are a lot of tree structure such as binary tree and 
multi-path tree (refer section 1.5.2). Binary tree is 
suggested because it is much simpler. Linear discriminant 
function usually used in statistics can be used at each 
decision node to divide the feature space into two regions. 

It seems that everything is fine. However, the 3 corner 
codes can only provide the 100 classes information about 
the training characters instead of two classes. The problem 
is how th 100 classes information that the 3 corner code 
provided can be used to determine the linear discriminant 
function? To tackle this problem, an Hybrid tree building 
approach described in section 1.5.2 is adopted. The details 
of the training and tree building will be described in 
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subsequent sections. The following is a brief description 
of the necessary steps. 

For each corner, 
Step.1: Group the training characters into 100 classes 

according to the 3 corner code. 

Step.2: Determine the mean of each class based on the corner 
features. 

Step.3: Determine the class discriminant functions based on 
the Mahalanobis distance 

Step.4: Re-substitute the original training characters into 
the discriminant functions. The degree of misclassi-
fication will be summarized in a misclassification 
table. 

Step. 5: An heuristic will be introduced here to combine 
those 100 classes into two groups. The philosophy 
of the grouping is to minimize the degree of 
misclassification in step 4. 

Step.6: Determine the corresponding resulting linear 
discriminant function after grouping. 

Step.7: Determine the number of distinct 3 corner codes 
denoted by N for each group. 

Step.8: Repeat step 1 - 7 for each decision node with N 
classes instead of 100. 

Step.9: With the above steps, a decision tree for each 
corner of the character would be formed. There will 
be a total of three decision trees since we will 
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consider three corners. 

SteplO: A terminal code will be assigned for each terminal 

of the decision tree. 

Stepll: Repeat step 1 - 1 0 for the other corners. 

There will be three terminal codes, one terminal code per 
decision tree. The terminal codes will be combined to form 
the character code for the training character. The 
philosophy of this character code formation is the same as 
that of the 3 corner codes mentioned in the next section. 

§3.2 THE 3 CORNER CODE 

The 3 corner code is developed from the traditional 4 corner 
code commonly used in Chinese dictionary and in library 
where Chinese books are categorized by the 4 corner codes. 
It is used as one of the traditional input scheme in some of 
the Chinese computer systems. The 3 corner coding scheme 
tries to exploit the shape at the three corners of a given 
Chinese character and encode these shapes using appropriate 
number codes. The first corner refers to the top left hand 
corner, the second corner refers to the top right hand 
corner while the third corner refers to the bottom left hand 
corner. There may be some deviation for the third corner in 
the circumstances if the shape at the bottom left hand 
corner has already been encountered and incorporated in the 
first corner code. In such case, the bottom right hand 
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Figure 3.1 - Three Corner Coding Table , 

A s a result the combined 3 corner code is a six digit 
number theoretically ranging from 000000 to 999999. Of 
course, not all the codes in this range are feasible and 
many of them does not exist. Besides, one 3 corner code may 
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not uniquely determine one single Chinese character. There 
may exist different characters having the same 3 corner code 
although such case does not occur very frequently. 

The 3 corner code input scheme is not actually popular. 
Despite its unpopularity, the codes are useful in adopting 
it as the guidelines in the approach of supervised learning. 
Moreover, these codes are also commercially available in the 
lookup table for the 3 corner code input scheme in Eten 
Chinese system. This look up table has been decoded for our 
later use. 

§3.3 FEATURE EXTRACTION AND SELECTION 

As explained in section 3.1, the corner properties of 3 
corner code will be used as the guideline to develop the 
tree classifier. Therefore the corner feature as mentioned 
in section 2.2.6 will be used. 

§3.4 DECISION AT EACH NODE 

§3.4.1 STATISTICAL LINEAR DISCRIMINANT ANALYSIS 

Since statistical linear discriminant function will be 
used, a brief description of constructing this function 
from the training sample will be given. More detailed 
discussion on statistical discriminant analysis [14] will 
be included in the appendix. 
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Consider the problem of classifying an observation vector 
x into one of k groups (or populations) TT2, TT̂ . 

When the parameters of the distribution in the kth 
populations are unknown, the usual procedure in 
classical discriminant analysis is to estimate them from 
training samples x^ j, j=l,".,N from each of the 
populations IT., i=l,...,k. Let 

n. n. 1 xij r i _ __ -

i AND S I = L I H J - Y IXIJ _ Y J / NI 

where n^ = N - 1 be the sample mean and co-variance 
matrix corresponding to the training sample from TTi, and 

3c r, . k -
s = [ I ni si )/[[ I ni J - k. i=l i=l 

be the pooled co-variance matrix. Here we estimate the 
population covariance matrix J by S. The usual, 
estimative, approach to discriminant analysis is to 
replace the parameters in the classification rules given 
in the appendix by their sample estimates. Applying this 
approach yields the sample based classification rule: 

Assign x to TT if 
(x± - x) _ x) < - x) ,S~1(5j - x) 

Vj = l,..wp? j ^ i 

The generalized discriminant function will then be given 
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by y i = ai • x + ci / where 
-1 -

a. = S x. and 
1 - -i -

Ci = - 2 Xi S Xi 

The term (xi - x) ̂ ^ ( x ^ - x) = D2(x. , x) is the sample 

Mahalanobis distance between x. and x and is an estimate l 
for the population Mahalanobis distance A (ju. fx) . If 
unequal prior probability is assumed, then the 
corresponding c. will be given by 

ci = l n p± - i s 1 

instead of the previous one. Of course p. may not be known 
k 

and is usually estimated by N. / Y N.. .a J. La 2. i=l 

§3.4.2 Optimization of the number of misclassification 

Optimum Grouping Analysis 

The probability of misclassification under any 
classification rule is a measure of the expected 
performance of that rule when classifying observations of 
unknown origin. This probability can be estimated through 
classifying each member of the samples from according 
to the discriminant function developed in the last 
section. The classification table thus obtained forms our 
basis for further analysis. 

We define optimum grouping to be that grouping under which 
the total number of misclassification to be resulted from 
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the discriminant analysis will be minimized. To start the 
analysis, a preliminary multi group discriminant analysis 
is performed based on the corner code values. Within this 
framework, the classification table will be obtained 
resembling the following: 

To group 
from group 1 2 3 4 

1 2 0 0 1 
2 0 1 2 5 
3 0 1 5 0 
4 1 4 5 8 • • • • • 
• . . • 

Our idea of optimum grouping is to choose one grouping 
here such that when these groups are merged together and 
treated as one group while all the others remaining 
treated as another, the total number of misclassification 
is minimum. Take an example that the classification matrix 
is given as 

2 0 0 l 
0 1 2 3 
0 1 5 0 
1 4 5 8 

where the group numbers are 1, 2, 3 and 4. Suppose group 
1 and 2 are merged. Then the new classification table 

becomes 
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To group 
from group 1 & 2 3 & 4 

1 & 2 3 6* 

3 & 4 6* 18 * misclassified 

Here the total number of misclassification is 6 + 6 = 
12. However, if groups 2, 3 and 4 are merged together, 
the new classification table becomes: 

To group 
from group 1 2, 3 & 4 

1 2 1* 

2, 3 & 4 1* 29 * misclassified 

Hence the total number of misclassification decreases to 
2. Our objective in the study is to find a way to obtain 
such an optimum grouping when we are given the 
classification table. 

Formulation of Problem 

Let N be the number of groups under consideration. 
Therefore the dimension of the classification table is N 
by N. Write the group label for the ith group as G[i]. 
Specifically, if the ith group represents the group of 
data having corner code equal to 60, then G[i] = 60. 

Suppose ( cij) N x N
 = classification matrix 

where c•. = number of elements from group i 
classified to group j 

C = set containing all the corner codes 
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N 

= U { G[i] } 
i=l 

Q = a certain grouping 

Of course, Q c C. 

If we merge the data to two groups designated by Q and 

C\Q, then after changing the rows and columns of the 

original classification matrix, a new matrix can be formed 

where the first appearing codes are from Q while the rest 

are from C\Q, i.e. 

Q c\n 
t ' ^ i 1 

r I 
Q * 

I „ „ 

f I 
C\Q ^ * I 

I I 

The total number of misclassification will be represented 

by the sum of all the entries in regions marked with (*). 

Denote M(Q) = total number of misclassification obtained 

by the partition specified in grouping Q 

Then, M(Q) = X cij + I cij 
GTileQ G[jl€Q 
G[j]€C\Q G[l]€C\n 

=11 + I I % 

G[i]€Q G[j]€C\n G[i]€C\Q G[j]€n 
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Hence our objective is to find Q which will minimize M(Q) • 
There does not seem any possible methods in finding Q and 
exhaustive search appears to be the only solution. 

Analysis of the Complexity of Exhaustive Search 

We do not know the cardiality of Q and since |C| = Nf we 
have 0 < < N. By the symmetry of the problem, |Q| > 

N/2 will imply |C\n| < N/2, hence an equivalent problem 
will be obtained which aims at finding C\Q. As a result, 
we can restrict our search for 0 < |Q| < N/2, i.e. 1 
|Q| lN/2j where Lx denotes the largest integer 
smaller than or equal to x. 

For each value of , we want to find the optimum Q so 
that M(Q) is minimized. Since there are N different 
elements in C, the total number of different combinations 
will be amounted to C^ where k is the cardiality of Q. 
Assuming a constant amount of computations a is necessary 
in each distinct combination for Q, then the total number 
of complexity of the search will be given by 

LN/2J N LN/2J N y CN (X = a Y 
Lu V L ]c k=l • k=l K 

• 
I 

L . I f CN 
2 k 

a N = - . 2 2 
r N-I > 

f::,:::.. ... ,. . I 2 .. . J • a . . 
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which shows that the job is actually not a polynomial time 
problem and belongs to the class of NP complete problems. 
Rough estimation reveals that even if a = lo"6 sec, N = 
100, the time required for finishing the search will be 
given by 

-6 N-l -6 99 10 x 2 = 10 x 2 
23 

« 6.34 x 10 sec 
16 

= 2 x 10 years 

which is an astronomically long period of time. 
The above analysis concludes that the finding of the true 
optimum is not really possible and other approaches should 
be adopted so that some "nearly" optimum values can be 
obtained. To tackle the above problem, the following 
heuristic has been proposed. 

Heuristic 

The basic assumption is to assume that if Q is the optimum 
grouping thus far, then M(fi U {G[k]}) will be minimized 
where M({G[k]}) is the minimum for all G[i] € C\Q. This 
assumption is of course not really true. Although such 
heuristic cannot give the optimum solution to our problem, 
we can still arrive at a "nearly" optimum solution at a 
reasonably short period of time with the algorithm. The 
complexity analysis of this heuristic follows. 

I • 
There are LN/2 passes for us to complete the algorithm 

I 

• 
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for k = 1, 2 , … lN/2j where k is the cardiality of Q. 
At each pass, our job is just to find the G[k] such that 
M((G[k]}) is the minimum among all G[i] € C\Q. Adopting 
our previous argument, 

time complexity lN/2j • N a « <x N /2 
which can be solved within polynomial time. Take N = 100, 

-6 

oc = 10 sec, the time required will be 

1002 I 10"6 sec = 5 X 10_3 sec 

which is an extremely short period of time. 
Implementation of the Heuristic 

To formalize our discussion/ we will first define some of 
our terminologies used. We define a k-grouping to be a 
combination of k groups of elements merged together. 
Adopting our previous notations, we have 

N = total number of groups under consideration 
G[i] = the group label of the ith group 

N 
C = U { G[i] } 

i=l 
q = set representing a certain k-grouping 

where = k. 
c = (c. . )xt ” = the classification matrix 1 j NxN 

where c. . is the number of elements from 
group i classified to group j 

: . 
To facilitate further formulation, the following 

I 
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definitions will also be included. 

A[k] = the group added to the "optimum" k-grouping 
to make up the "optimum" (k+1)-grouping 

Here "optimum" refers to the optimum claimed by the 
heuristic assumption. As a result, the "optimum" k-
grouping will be given by the groups A[0], A[l], . . A [ k -
1] and we will denote this as 

k-1 f 
A, = U - A[i] V c Q 
” i=0 [ 

G = {1,2,•••,N} 

E[A, ] = the optimum number of misclassification given JC 
by the k-grouping of groups as represented by 

A k - : ..: . . . . . 

To begin, we have to calculate E[S] for all S where |S| = 
1, i.e. for all singleton set S. For simplicity, if S 
= { i } then E[S] will be denoted as E[i] where 

E[i] the number of misclassification induced if we 
parti ion the group space into two subsets 
where one. subset is the ith group while the 
other comprises of all the groups other than 
the ith one. 

Notice that 

E[i] = sum of all entries of the shaded part in 

matrix C of figure 3.2a. 

N N 
= I L CIJ + CDi 

j^i j^i 
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N 
= I (dij + cji) - 2 cii (3-1) 

j = l 

p. 1 2 • • • i • • . N 

Figure 3 ,2a 

To facilitate further analysis and subsequent calculation, 

the following lemma is formulated. 

Lemma : E[Au{i}] =̂  E[A]+E[i] - ^ (cij+cji) w h e r e A-
jeA 

Proof : 
Suppose we rearrange the rows and columns of C so that all 
the groups represented in the set A are adjacent to one 
another and i is just next to the clusters of groups 
represented by A. The scenario can be illustrated by the 
figure 3.2b. 
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J ^ i 

TT1 
T 

r 1 
Figure 3 .2b 

E[A] = sum of all entries in the % region 
E[i] = sum of all entries in the region 

When the groups in A and the ith group are merged,. 
E[A U {i}] = sum of all entries in the region. 

» . . • 

Notice that from the diagram, 
E[A U {i}] = I region + region - region 

= E [ A ] + E[i] - \ c ” - \ cji 
j€A j^A 

= E [ A ] + E[i] _ I (cij + cji) 
jeA 

Q.E.D. 
I" " . ' . • . 

T he above lemma indicates how the total number of 
m i s c l a s s i f i c a t i o n can be calculated when a particular 
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group is being added to the existing grouping represented 
by the set A. With this lemma, the entire problem of 
finding the optimum grouping can be formulated, using the 
approach of dynamic programming, as follows. 

Dynamic Programming Formulation 

Recall assumption: 
If Â . is the optimum k-grouping then the optimum k-
grouping should contain all the groups residing in A, 

1. Calculate all E[i] for i e G by the formula (3-1). 

2. A[0] = j 
A0 = 
E[A0] = e 
where e = min E[i] 

ieG 

and j takes the value of i chosen which corresponds to 

that of e. 
3. For k = 2, •••, N-l 

E[A, ] = min j E[Ak_ ] + E[i] - Y (cii + cii) ” 
k - j ^ x J 

A[k] = the value of i chosen 
A k = A k - 1 U (ACkH 

‘ . : • 
In principle, we can calculate all the optimum k- • 
groupings from the above heuristic for all values of k € 
G, i.e. k = 1, 2, N. In practice, we want to 
arrive a a certain grouping which will partition our • 
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data set into two halves with roughly the same size so the 
multistage tree developed will be more balanced. Then 
what value of k should we choose to stop our iteration. 
One obvious choice will be N/2. In such case, we are 
aiming at partitioning all the groups into two equal 
halves which will minimize the overall number of 
misclassification with such grouping. However such 
choice does not necessary guarantee that the data set 
will be divided into two exactly equal halves and will 
result in the formation of an unbalanced tree classifier. 
As a result, a better criterion is to stop the iteration 
at a value of k, with which although the partitioning of 
the groups will not be exactly two equal halves, the 
result of grouping will divide our data set into two 
approximately equal subsets. 

Let C[i] = total number of elements in group i, i e G 

N N 
Then C[i] = ^ c . . = cjjL 

j = l . j = l 

Modified Algorithm 
1. calculate all E[i] for i e G by the formula (1)• 

2. A[0] = j 
A0 = (j) 
E[A ] = e where e = min E[i] 0 ieG 
and j takes the value of i chosen which corresponds to 

that of e. 
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3 • k = l 
N 

T = total number of data = ^ C[i] 
i=l 

Repeat 
r 

E[A ] = min E[A ] + E[i] - Y (c.. + c..)-
K i€G\A, K 1 1 ]i 

A[k] = the value of i chosen 
A k = A k_ x U {A[k]} 

Until 

Z c [ j ] > I 

§3.5 IMPLEMENTATION 
/ 

The idea of supervised learning approach has been described 
in section 3.1 and the theory of the corner feature 
extraction and clustering have also been illustrated in 
section 3.3 and section 3.4 respectively. In this section, 
the implementation details such as the creation of testing 
samples, the , building of the decision tree and the 
determination of decision functions will be mentioned. 

§3.5.1 Training Data 
The 24 x 24 dots standard character set (stdfont.24) in 

Eten Chinese System is used to train up and test the 

performance of the tree classifier. There is no 

distinguished advantage of using this character set. The 

reasons of adopting this character set as the testing 

,sample are 
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a. It is simple and easy to obtain. No extra character 
reading and prepossessing software are required and 
neither of them is the main objective of our project. 

b. The standard character set consists of about 13,000 
Chinese characters which has already covered the 
commonly used Chinese character and difficult Chinese 
character. 

c. Big 5 internal code is adopted in Eten Chinese system 
which is very popular nowadays in Hong Kong and Taiwan. 
Tree classifier based on Big 5 internal coding can 
interface with Eten Chinese system more easily. 

d. Many commonly used Chinese font types such as Ming, 
Sung etc are available in Eten Chinese system. These 
character fonts can be used to test the classifier1 s 
performance or used in multi font training and 
recognition. 

e. The lookup table for the 3 corner coding system is 
available in Eten Chinese system which can directly • ‘ 
match with the training character. 

To prepare the training data, the corner features for each 
corner of the sample characters are extracted with the 
method described in section 2.2.6. As 3 corner code is 
used as a mean for supervised learning in our tree 
classifier (section 3.1), the corner features are then 
combined with the corresponding corner code (refer section 
3.2 for details of 3 corner code) and Big 5 internal code. 

I' . . . . . . . , I 
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Finally, three training data files, one data file per each 
corner, are formed. Each training file consists of around 
13,000 character records. Each character record has 8 
corner features, the corner code and the Big 5 internal 
code. The format of the character record is illustrated in 
figure 3.3. 

C h a r a c t e r Records • 

, . 
,i • . N 

XXXX_A.AAAAAA .BBBBBB . . . . D.DDDDDD-E.EEEEEE_ . . . . H.HHHHHH_YYY |J 

j Y feature 1 Y feature 2 Y fealure 4 X feature 1 X fealure 4 f 
! I J I 1 j 

j . 1 — s y ^ I 

j Y corner features X corner fealures | 

' . s , 3 Corner code 
Character ID , 
(B.G 5 code) (00 - 9 9 ) 

F i g u r e 3 .3 F o r m a t o f t he c h a r a c t e r r e c o r d s 

§ 3.5.2 Clustering with the use of SAS 

After the training data files have been prepared, they can 
be used to train up the classifier at each node of the 
tree with the clustering algorithm and linear discriminant 
function as described in section 3.4. 
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It will take a long time and effort to develop the 
software for clustering and tree building. In order to 
reduce the development effort during the early testing 
stage, a statistical package called SAS was used. This 
statistical package has built-in library routines to 
calculate the Mahalanobis distance and covariance matrix 
which are essential in distinguishing at each internal 
nodes. 

To perform the clustering at each internal node with the 

corner file using SAS, the' following procedures is 

adopted. The corner file here refers the training data set 

in each internal node as mentioned in section 3.5.1. 

For each corner file 

a. Group the characters according to the 3 corner codes of 

each character record. The number of classes would 

depend on the content of the corner file. 

b. A SAS script program (CLUSTER.SAS) is written and to be 

run at SAS to carry out the following sub-tasks. The 

details of "CLUSTER.SAS" is shown in figure 3.4. 

- calculate the mean of each class and the covariance 
matrix between classes based on the corner features. 

-Determine the class discriminant functions calculat 
ed based on the Mahalanobis distance between classes 
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-Re-substitute the original training characters 
(corner file) into the discriminant functions. A 
statistic is made to determine the degree of 
misclassification within the classes• 

- A table of misclassification is then printed out. 
Part of the misclassification report is listed in 
appendix. 

data _cfont_; 
inf ile "sas__datl. dat"; 
input id $ fl-f8 group; 
run; 

%macro cluster(u,1) 
%do i=&u %to 

data test 
set —cfont 7 
if nSt^groUp^evalpi)) then group=999; * 999 = others; 
run; 

proc discrim data=test 
class group 
var fl-f8; 
id id; 
run; 

%end; 
%mend cluster; 
ickieie • 
* Execute the macro * * * * • 

%cluster(Of99); 

Figure 3.4 Listing of CLUSTER.SAS 

c. Reformat he misclassification report manually so as to 
form a misclassification table between the classes. 
Part of he misclassification table is shown in figure 

3.5. 
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d. A C program "SPLIT.C" is written to read in the 
modified misclassification table. The heuristic for 
splitting described in section 3.4.2 is then used to 
split the original training data set (corner file) into 
two groups• 

e. Afterwards, another SAS script program "TREE.SAS11 is 

written to determine the linear discriminant function 

for that internal node based on the splitting result in 

procedure d. Part of the discrimination report is 

listed in appendix for reference and the "TREE.SAS" is 

also shown in figure 3.6. 

data —c font 7 
i n f T l e " c T \ t c \ e - 1 0 . d a t " ; 
i n p u t i d $ f l - f 8 g ; 
flag=l; 
group=l? 
if g=54 or g=45 or g=14 or g=48 or g=59 or g=94 then flag=0; 
if g=55 or g=50 or g=58 or g=13 or g=36 or g=49 then flag=0; 
if g=45 or g=90 or g=25 or g=29 or g=20 or g=34 then flag=0; 
if g=74 or g=83 or g=88 or g=3 or g=12 or g=40 then flag=0 ; 
if g=71 or g=80 or g=93 or g=7 or g=37 or g=41 hen flag=0? 
if g=32 or g=l or g=77 or g=39 or g=46 or g=72 then flag=0 ? 
if g=84 or g=81 or g=87 or g=44 or g=52 or g=78 then flag=0; 
if g=86 or g=97 or g=23 or g=43 or g=24 or g=38 then flag=0? 
if g=92 or g=33 or g=6 or g=19 or g=8 or g=22 then flag=0; 
if g=28 or g=47 or g=95 or g=16 or g=70 or g=ll then flag=0; 
if g=io or g=57 or g=73 or g=98 or g=21 or g=42 then flag=0; 
if g=30 or g=51 or g=75 or g=53 or g=9 or g=89 then flag=0; 
if g=67 or g=66 or g=64 or g=65 or g=85 then flag=0 ? 
if flag=0 then group=0; 
run; 
proc discrim data= cfont ,• 

class group 
var fl-f8; 
id id; 
run 

Figure 3.6 Listing of the TREE.SAS 
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f - The discrimination report would be generated by SAS but 
it cannot be used directly. It will be reformatted 
manually to erase all the dummy information as shown in 
figure 3.7. Note that every nodes will be identified by 
an unique label during the character recognition stage. 

-13.00569 ,-12.75579 
8.31453 8.02564 

11.59937 11.34153 
9.95468 10.53099 
6.12050 4.94885 

14.16205 12.86861 
2.04583 -0.71325 

25.90327 31.95018 
-0.30411 -0.08740 

Figure 3.7 Example of the Linear Discriminant Function 

§3.5.3 Building the decision trees 

The clustering of the training data set at each internal 
node of the decision tree has already been mentioned in 
section 3.5.2. In this section, the method of building 
the decision tree is discussed. Binary tree structure is 
used as it is simpler and easier to implement and it is 
logically equivalent to the m-ary tree counterpart. 

a. At the root node of the tree, we will use the training 
f data set created in section 3.5.1. There will be 100 

three corner classes at the root node. 
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b. Use the procedures described in section 3.5.2 to split 

the training data set into two subsets. These are the 

sons of the root node. The format of the training data 

subset is the same as the original training data set. 

The decision function (a linear discriminant function) 

for the root node is then stored and labeled according 

to its position. 

c. Repeat procedure b for each internal node until the 

terminal node of the tree is reached. The number of 3 

corner classes at each internal node would depend on 

the splitting of the training character. 

d. For each terminal node of the' tree, a code called 

corner code is assigned for identification. 

e. Three separate trees protocol is adopted in this 

experiment. The entire procedure will be repeated for 

other two corner files. 

f. As a result, there are three terminal codes (one 

terminal code per decision tree) for each training 

Chinese character. A code table with the corresponding 

corner code and BIG 5 internal code is formed. 

g. To test the performance of the classifier, a C program 

"CHDIS l.C" is developed to carry out the recognition 

process. The main function of the program includes 

• The discriminant functions of each internal nodes 

will be stored and used in the recognition algorithm. 

• Extract the corner features of an input unknown * To 

invoke this program in sas/ just type character. 

. . . . . . . . 4 3 
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• The corner features extracted will be passed through 
the three decision trees to get the corresponding 
corner codes for that unknown character. The 3 corner 
codes will be combined and this single code is used 
to identify the corresponding BIG 5 code. this 

way, the Chinese character is recognized. 

Figure 3.8 summarizes the clustering and tree building 
procedure 

_ 1/3 
In our classifier,., only (13,000) or approximately 32 
terminals per decision tree is sufficient to identify the 
13,000 training characters as 3 separate decision trees 

5 
methodology is adopted. 32 or 2 terminals means 5 levels 

in binary decision tree structure. The tree is not 

perfectly balanced due to the structure of 3 corner codes. 

It is noticed that three 32 terminals in the binary 

decision tree has a total of 32x32x32 character codes 

which is much greater than 13,000. As a result, many holes 

(i.e. character code which do not correspond to any 

Chinese character) are formed. 
4 

If 4 levels are used instead of 5 levels, a total of 2 = 

16 terminals per decision tree which corresponds to 

16x16x16 = 4096 distinct character codes outputted. It 

means that there will be an average of 3 characters for 

each character code. 
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To solve the problem of the existence of holes, back 
tracking is introduced. The idea of back tracking will be 
discussed in section 5.4. In addition to back tracking 
method, the holes can also be reduced by using other tree 
architecture such as single decision tree instead of three 
decision trees. The details of this method is illustrated 
in section 5.6 and 5.7. 

§3.5.4 Description of the classifier 

After completing the training process, we will have 

obtained 

1. the discriminant, functions of all the nodes of the 

three separate trees which correspond to the three 

corners 

2. the code corresponding to every character in the 

training data set. 

To facilitate the construction of the classifier, we will 
store all the discriminant functions in the program. The 
number of codes is very large and will be stored in a file 

in the format: 
012011 < code of the first character in stdfont.24 
020306 <- code of the second character in stdfont.24 

120314 

030915 < code of the ith character in stdfont.24 

. 
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The steps to be performed by the classifier for the 

purpose of recognizing an inputted passage of characters 
will be given as: 

a. Read in the codes for each characters from file. These 

codes will be sorted in ascending order by the use of 

radix sort and stored in an array so that subsequent 

searching using binary search can be performed. Besides 

the big 5 codes corresponding to each characters have 

also been calculated for later reference. 

b. The bit pattern of an inputted character is read into 
the system. 

c. The three corner feature values will be extracted. 

d. Using the discriminant functions stored and the feature 

values just calculated, the code for the character will 

be computed. 

e. This code will be used as the key for searching in the 
array formed in (1). Binary search will be used so 
that only a few comparisons are needed even with a 
sample of size around 13000. If there is a match, the 
corresponding big 5 code will be taken. This is the 
big 5 code of the resulting character being recognized. 

f. The character with this big 5 code will be displayed. 

g. The entire process is repeated for another inputted 

character. 
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§3.6 EXPERIMENTS AND TESTING RESULT 

I §3.6.1 Performance parameters being measured 

To access the performance of the classifier, several 

performance parameters are measured. For easy 

understanding, the tree classifier can be considered as a 

single decision node with many terminals. Each terminal 

node corresponds to a single character code with either 

one Chinese character, no Chinese character (i.e. holes) 

or more than one Chinese characters. 

As illustrated in figure 3.9, a 5 level decision tree can 

have a maximum of 32x32x32 = 32768 terminal nodes. In our 

test, he upper bound for the number of terminal nodes 

will be 13,000. However, some characters may appear in 

groups residing in the s a m e terminal node. As a result, 

the actual number of terminal nodes should be less than 

this upper bound. Refer to figure 3.9, 

. c h o r o c i e r ) 1 3 , 0 0 0 t ra in ing 
\ set J Chinese charac te rs 

V • I 

Mut i -s tages Tree Classif ier 

^ , Termina l 
Termina l Chinese C h a r a c l e r s Node n 
Node 1 wilh Node 0 0 0 0 0 1 

Figure 3.9 Mul t i -s tages Tree Classifier 
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Let N be the number of terminal nodes where N :s 13000 

n be the total number of Chinese character to be 
recognized 

n. be the number of characters at terminal node i 
where 1 i N 

The following performance measures are proposed : 

a. The mean and standard deviation of the number of 

Chinese character per character code 

The mean number of the character per terminal node is 

1 N 
MEAN = - Y n. 

M 1 N i=l 

The Standard Deviation (SD) of the number of characters 

per terminal node is 

N p 
SD = - ) (n. - MEAN) 

I::: . J . N i=l 1 

b. The coefficient of variation, i.e. MEAN / SD 

c. The entropy reduction 
Let Pj = the probability of occurrence of character j, 

where 1 ^ j ^ n 

V p. = 1 0 ^ P. V 1 ^ j ^ n ] 
Based on the Shannon's entropy calculation as proposed 

by Wang and Suen in [15], the entropy of these n 

characters is 
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n 
Hn(Pl, P2, P3 ... Pn) = - Y P. log0 P. 

] 2 D =1 
For N terminal nodes,. the reduction of entropy due to 
the classifier is 

A H = - Z V ^ k - [- L [ - 1 pj ] 2[ - I ] ] k=l i=l jeQ^ jeQ. 

d. The accuracy of the classifier 

An input unknown character is said to be accurately 

recognized if the expected Chinese internal code can be 

found at the resulting terminal node. The accuracy of 

the classifier is the percentage of the characters 

correctly recognized over the total no. of characters 

being tested. 

Number of characters correctly recognized 
Accuracy = 

Total number of characters being tested 

Note that even when the internal code of the testing 

character is not uniquely determined, it is also 

counted as accurately recognized if the expected 

internal code is residing in the group of codes in the 

terminal node. 

e. Recognition Speed 
The recognition speed measured in our experiments is 
the total time required to give the deduced internal 
code from an unknown character bit pattern. It includes 
the time for corner features extraction, character 
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codes formation and the time for other improvement such 
as context consideration, back tracking etc. The 
average recognition speed per character for the testing 
sample will be calculated. 

§3.6.2 Testing by resubstitution method 

One direct and easy way to estimate the performance of the 
classifier is the resubstitution method. In this method, 
the original design/training samples are resubstituted 
into the classifier for testing. This method has the 
advantage of maintaining the size of the design set. 
However, the independent issues between the design 
character set and test character set is ignored and is 
often criticized for being biased. 

A program has developed to read in the corner features of 

the training characters, have these feature values fed 

into the decision trees for each corner and finally output 

character codes thus formed. The character code is then 

used as an key to search for the corresponding Chinese 

internal code. If this character code corresponds to a 

group of internal codes, all these internal codes will be 

displayed. 

Several test parameters related to the performance of the 

tree classifier is measured (refer section 3.6.1). The 

result can be tabulated as follows 
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(A) General Statistic 

-Total number of distinct codes = 8759 

- M e a n number of characters per code = 1.49 

-Standard deviation for the number of characters per 

code = 1.10 

-Coefficient of variation = 1.36 

-Original entropy = 13•68 

-Final entropy = 0.83 

Reduction in entropy = -12.85 

(B) Testing of efficiency and accuracy 

As will be described in section 5.1, it is not 

necessary that all the data from the training set 

should be resubstituted to the classifier for testing. 

Random sample of size 500 is chosen for testing and 

the results are as given. 

.Average processing time per character = 0.54 second 

.Accuracy = 100% 

The recognition speed and accuracy of this classifier is 

quite attractive. Very high accuracy is guaranteed just 

because we use the training character set for testing. 

However, the use of the training character set for testing 

may not too appropriate in real life situation. No input 

device can read in the ideal bit pattern of the character 

that matches perfectly with the training character without 

any discrepancy or noise. 
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in section 3.6.3, the performance of the classifier will 
also be tested with the bit pattern of the noisy 
character instead of the training bit pattern. 

§3.6.3 Noise Model 

In real life, there is no perfectly printed Chinese 
character that can be obtained through the input device 
such as OCR, scanner etc. So, it is not quite realistic to 
use the original ideal sample characters to test the 
performance of the classifier (resubsitution method as 
described in section 3.6,2). 

To simplify the analysis, the noisy Chinese character bit 

pattern is not directly generated from the OCR or the 

scanner. It is generated randomly from the ideal character 

bit pattern using a noise model proposed in [16]. 

Assume the ideal Chinese character bit pattern is 

represented by a 0-1 matrix. The noise model proposed in 

[16] can be briefly described as follows. 

Let A be the 0-1 matrix (24x24 bit pattern in our case) 

of the ideal Chinese character. 

B be another matrix in such a way that 
B(i, j) = random number uniformly distributed 

between 0 and 1 for each (i,j). 
N be the noise model matrix such that 
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r 1 if condition is satisfied 
N(i, j) = \ 

L 0 otherwise 

Noise is added to different points (i,j) of A in a way 
that 

r A(i, j) is changed either from if N(i, j) = 1 
0 to 1 or from 1 to 0 

H 

L No change if N(i, j) = 0 

Two noise models are described in [16], they are 

I. WHITE NOISE MODEL 

In white noise model, the noise matrix is represented 

by 
r 1 if B(i, j) ^ a 

N(i, j ) = -
„ 0 otherwise 

where a is some preassigned threshold value which 

determine the noise level. The noise points generated 

by this noise model are independent from each other. 

Character of this type of noise can easily be removed 

by simple prepossessing. 

.PRINTED MATERIAL NOISE MODEL 

As mentioned in [16] the white noise model do not 
totally reflect the noise characteristic of printed 
character. The noise generated in printed material is 
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not independent to the neighboring point. They cannot 

be easily removed at the prepossessing stage. The 

noise matrix in this noise model is represented by 

r 1 if n ^ a 
N(i, j) = j 

L 0 otherwise 

where n = j3B(i, j) + B(i-1, j) + B(i+1, j) 
+ B(i, j-1) + B(i-1, j 1) + B(i+1, j-1) 
+ B(i, j+1) + B(i-1, j+1) + B(i+1, j+1) 

13 = Threshold constant 

The degree of noise affecting the character bit pattern 

depends on the values of a and /3 in the formulas above. 

The white noise model is adopted and testing samples with 

extra noise incorporated have been generated. By the 

reason to be given in section 4.1, only 500 characters 

with appropriate noise added are randomly selected and 

used for testing. The results for different values of 

threshold is tabulated below. 

Noise Level Accuracy with noisy sample 
0.005 0.474 
0.01 0.396 
0.02 0.282 
0.03 0.230 
0.04 0.132 
0.05 0.070 

Table 3.1 
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§4 POSSIBLE IMPROVEMENT 

The idea of supervised learning with the help of 3 corner 

codes has been discussed in chapter 3 and a multistage 

decision tree classifier has also build. The result shows 

that a high accuracy ( « 100% ) can be obtained if the ideal 

sample is used for testing. However, the accuracy of the 

classifier is rather sensitive to noise (refer section 3.6.2 

for the performance of the classifier) • To improve the 

accuracy of the classifier, several possible ways of 

improvement are suggested by my project partner Mr. K W Sin, 

the details are depicted in the appendix A. 4. In order to 

maintain completeness for the presentation, a summary of the 

possible improvement is described in the following 

paragraphs. 

a. Reduce the training and testing samples 

5000 commonly used Chinese character is used instead of 

the 13,000 training samples. The reduction of the number 

of Chinese characters with similar shape would reduce the 

training time required and at the same time increase the 

discriminating power of the classifier. 

b. Filter the noise of the input characters 
Two noise filtering algorithms has been recommended. These 
algorithms can eliminate the single bit noise and double 
bit noise occurs at the character bit pattern. However, 
the noise bit adhere to the character key stroke cannot be 
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eliminated as there is no knowledge to clarify whether it 

is noise bit or the actual bit pattern of the character. 

c. Decision with overlapping 

During the construction of the decision tree, the training 

characters will be classified at each node of the tree. 

Any error occurs during the classification may resulting 

in a wrong character being recognized. As the depth of 

the tree grows, such misclassification error will be 

propagated and magnified. 

Such misclassification error can be eliminated by 

duplicating those uncertain items in the decision. At a 

result, they will be classified to both of the sub-nodes 

of the parent node. Overlapping will delay the committing 

of errors to subsequent stages of classification but 

increases the number of data items residing in the 

subsequent nodes in the tree. If the depth of the tree 

classifier is large, such technique is not feasible and a 

relatively large number of data items will be associated 

with all the terminal nodes. 

d. Backtracking for holes. 
"Holes" here refer to those terminal nodes of the decision 
tree without any training characters assigned. If an 
ideal character is inputted to the classifier, the 
corresponding corner code will be obtained. However, if 
there is some error occurs during the recognition, a 
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corner code without any character i.e. holes will result 
and no character can be recognized. 

As errors has been occurred, we may wish to fix the errors 
so that codes can be corrected • The search for such 
mistake can easily be achieved through back tracking. 
Assuming that errors committed at greater depth are more 
likely than errors committed at the top levels, we can 
devise a back tracking algorithm which will back track on 
the three trees successively for an increasing number of 
levels until a realistic code is obtained. Refer to 
appendix A. 4 if you want to understand the whole details 
of back tracking algorithm. 

e. Fuzzy decision function with tolerance limit 

To tackle the problem of unnoticeable errors which may-
have committed during the process of classification, fuzzy 
decision with the tolerance limited is being studied. As 
we have pointed out previously, committing error is 
inevitable. So as to reduce the chance of obtaining 
unnoticeable errors, it will be better if we do not 
provide such a definite decision for the internal nodes. 
If the distance between an object and the hyperplane is 
smaller than a preassigned threshold value which we will 
call the tolerance limit, then decision of classification 
to which region is not made. Rather the decision will be 

delayed. 
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f. Different tree architecture 

Another way to improve the performance of the classifier 
is to explore other type of tree architecture. One of the 
possible alternatives is to combine the three trees to a 
single one. Suppose the tree for the first corner has been 
constructed. We can further develop at the terminal nodes 
of the first tree for a few levels of depth by the 
consideration of the second corner feature. Similarly the 
final tree will also be further extended at the terminal 
nodes by the consideration of the third corner feature. 
The 1-tree protocol is simple and straightforward although 
there is no guarantee that it is a good one. 

g. Building decision tree by entropy reduction method 

It makes use of the 1-tree protocol as describe in item f. 

Instead of just allowing the use of one particular feature 

successively at some levels of the tree classifier, the 

best corner feature is used at every internal nodes of the 

tree. The best feature here means the corner feature among 

the three corner features that can gives the most drop in 

the system entropy or in other words the most negative 

value of AE. 
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§5 EXPERIMENTAL RESULTS & THE IMPROVED MULTISTAGE CLASSIFIER 

§5.1 EXPERIMENTAL RESULTS 

Experiments have been carried out to test the performance of 

the classifier of different protocols as described in 

chapter 4. Parameters of those described in section 3.6,1 

are measured and the results are given as follows. 

I) 3-trees protocol 

• trained with 13,000 Chinese characters 

• without overlapping 

This original protocol as develpped in section 3 is 

tested with filtered noisy samples. Two different case 

are considered, one with back tracking while the other 

does not. 

(a) Without back tracking 

Table 5.1 shows the accuracy of the classifier 

without back tracking under different noise level 

threshold a. , 

Noise Noisy I with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 

0.05 0.436 0.506 0.262 
0.1 0.354 0.424 0.220 
0.2 0.248 0.332 0.190 
0.3 0.184 0.310 0.142 
0.4 0.094 0.174 0.108 
0.5 0.050 0.140 0.102 

Table 5.1 
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(b) With back tracking 

Table 5.2 shows the accuracy of the classifier with 
back tracking under different noise level threshold 
a. 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 
0.05 0.474 0.534 0.296 
0.1 0.396 0.464 0.264 
0.2 0.282 0.360 0.220 
0.3 0.230 0.346 0.178 
0.4 0.132 0.222 0.138 
0.5 0,070 0.170 0.120 

Table 5.2 

II) 3-trees protocol 
• trained with 5400 commonly used Chinese characters 

• without overlapping 

A. General Statistic 
-Total number of distinct codes = 2507 
-Mean number of characters per code = 2.15 
-Standard deviation for the number of characters per 

code = 1.60 
-Coefficient of variation = 1.35 
-Original entropy = 12.40 

Final entropy = 1-42 
-Reduction in entropy = -10.98 

B. Testing of efficiency and accuracy 
1. with ideal sample -
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(a) without back tracking 

• Average processing time per character = 
0.052 sec 

• Accuracy = 0.998 
(b) with back tracking 

• Average processing time per character = 
0.052 sec 

.Accuracy = 0.998 

2. with noisy samples -

(a) without back tracking 

Table 5.3 shows the accuracy of the classifier 

without back tracking under different noise 

level threshold a. 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 
0.5 0.482 0.544 0.296 
0.1 0.418 0.476 0.258 
0.2 0.284 0.390 0.206 
0.3 0.222 0.336 0.184 
0.4 0.142 0.252 0.168 
0.5 0.082 0.182 0.118 

Table 5.3 

(b) with back tracking 
Table 5.4 shows the accuracy of the classifier 

with back tracking under different noise level 

threshold a. 
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Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 
0.05 0.4 88 0.550 0.302 
0.1 0.424 0.480 0.260 
0.2 0.288 0.392 0.210 
0.3 0.224 0.336 0.186 
0.4 0.148 0.258 0.170 
0.5 0.084 0.186 0.120 

Table 5.4 

Effect of Back Tracking on the Classifier Recognition Accuracy 
For Three Separate Trees Protocol 

0.6 

0.5 - A 

0.1 - • * 

0 ‘ J 1 1 
o 0.1 0.2 0.3 0.4 0.5 0.6 

Noise level threshold 

N o i s y sample w/o back tra Noisy sample with back tr Filter 1 w/o back tracking 

p Pi! , c r l with back racking FHlcr2 w/o back tracking Filicr2 with back tracking 

Figure 5•1 

Comparing the results of (a) and (b) (refer to 
figure 5.1, it is noticed that the introduction of 
backtracking can slightly improved the performance 
of the classifier. It is also noticed that the 
filtering algorithm one has continuously performed 
much better than algorithm two and is useful in 
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improving the accuracy of the classifier. It may 
due to the fact that some bits belongs to the 
character key strokdes are being eliminated by 
this filter algorithm. Later results will also 
confirm with such finding. 

3 • with the introduction of tolerance limit c and 
tested with noisy sample 

no back tracking is introduced 

-Different values of c are used and tested. The 

performances of the classifiers are as follows. 

a. c = 0.001 

ideal sample : accuracy = 0.992 

the accuracy of the classifier is shown in 

table 5.5 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 
0.05 0.480 0.542 0.296 
0.1 0.420 0.478 0.258 
0.2 0.284 0.390 0.208 
0.3 0.224 0.336 0.184 
0.4 0.140 0.250 0.168 
0.5 0.082 0.180 0.118 

Table 5.5 

b. c = 0.005 
ideal sample : accuracy = 0.964 
Table 5 .6 shown the accuracy of the 
classifier under different noisy level 
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N°ise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 

0.05 0.464 “ ‘""“0.522 0.288 
0.1 0.410 0.470 0.252 
0.2 0.278 0.380 0.202 
0.3 0.218 0.328 0.178 
0.4 0.136 0.248 0.162 
0.5 0.084 0.180 0.118 

Table 5.6 

c . c = 0.01 

ideal sample : accuracy = 0.930 

Table 5.7 shown the accuracy of the 

classifier 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 

0.05 0.446 0.502 0.274 
0.1 0.394 0.446 0.238 

I 0.2 0,268 0.368 0.196 
0.3 0.214 0.318 0.170 
0.4 0.130 0.244 0.154 
0.5 0.082 0.178 0.118 

Table 5.7 

4. c = 0.05 

ideal sample : accuracy = 0.654 

Table 5.8 shown the accuracy of the 

classifier 
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Noise Noisy with filtering I with filtering 
level Sample by algorithm 1 by algorithm 2 
0.05 0.324 0.346 0.226 “ 
0.1 0.266 0.310 0.186 
0.2 0,204 0.272 0.162 
0.3 0-162 0,246 0.146 
0.4 0.094 0.206 0.148 
0.5 0.066 0.158 0.102 

Table 5.8 

In figure 5.2, the accuracy is plotted against the noise 
level for different values of e. It is noticed that the 
smaller the value of c, the higher the value of the 
accuracy. Since when c = 0, the case will just 
degenerate to the case where no tolerance limit is added 
and is just the original protocol. As a result, we can 
conclude that the introduction of tolerance limit does 
not improve the accuracy of the classifier. 

i. Effect of Tolerance Limit on the Classifier Recognition Accuracy 
For Three Separate Trees Protocol 

0.5 I -

s 0 I 1 1 1 I 
0 0.1 0.2 OJ 0.4 0.5 0.6 

Noisy Sample with different Noise level 
e = 0.001 e = 0.005 e = 0.01 n ft = n ns 

Figure 5.2 
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3-trees protocol 

• trained with 5,400 commonly used Chinese characters 

• with overlapping 

A. General Statistic 

-Total number of distinct codes = 4,096 

-Mean number of characters per code = 13.63 

-Standard deviation for the number of characters 

per code = 7.22 

Coefficient of variation = 1.89 

-Original entropy = 15.79 

-Final entropy = 3.96 

-Reduction in entropy = -11.81 

B. Testing of efficiency and accuracy 

1. with ideal sample 
(a) without back tracking: 

• average processing time per character = 

0.404 sec 
• accuracy = 100% 

(b) with back tracking 
• average processing time per character = 

0.394 sec 
• accuracy = 100% 

As mentioned in section 4.3 that due to the 
limitation of memory area, the sorting and 
searching during the character recognition is 
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done through file in disk. As a result the 

recognition speed in overlapping case is much 

I 

larger than that of no overlapping case. In fact, 

the recognition speed should for these two cases 

should be closed as the number of decision nodes 

is more or less the same. 

2• with noisy samples 

(a) without back tracking 

Table 5.9 showing the accuracy of the 

classifier 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 

0 . 0 5 0.592 0 . 6 4 6 0 . 3 7 8 
0.1 0.542 0 . 6 0 2 0.362 
0.2 0 . 4 3 4 0.536 0.316 
0 . 3 0 . 3 8 2 0 . 5 0 4 0 . 2 6 6 
0 . 4 0 . 2 6 0 0 . 3 9 4 0 . 2 3 4 
0.5 0.194 0.314 0.210 

Table 5.9 

(b) with back tracking 

Table 5.10 showing the accuracy of the 

classifier 

Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 

0 . 0 5 0 . 5 9 2 0 . 6 4 6 0 . 3 7 8 
0.1 0.542 0.602 0.362 
0.2 0.434 0.536 0.316 
0 . 3 0 . 3 8 2 0 . 5 0 4 0.266 
0.4 0 . 2 6 0 0 . 3 9 4 0 . 2 3 4 
0.5 0.194 0.314 0.210 

I /¾̂1 

Table 5.10 
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Again, the results show that filtering algorithm one 
is helpful in improving the performance of the 
classifier but it is not much contribution in back 
tracking case since back tracking is not necessary 
in overlapping case. 

Comparisons on the accuracy of the classifier in (II) 

and (III) with the introduction of back tracking and 

filtering algorithm one are made. The accuracy has been 

plotted against different values of noise level as shown 

in figure 5.3. From the graph, it is noticed that the 

introduction of overlapping has added extra merits to 

the performance of the classifier. 

Effect of Overlapping on the Classifier Recognition Accxiracy 
For Three Separate Trees Protocol 

0.7 p 

0.6 - ^^^^ 

_ • I T • : . . . • . • 
0.2 -

0 1 ‘ 

0 0.1 0.2 0.3 0.4 0.5 0.6 
Noise level threshold 

, • Filter 1. without overlap , • „ niter I with overlap 

Figure 5.3 
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IV) 1-tree protocol 

• trained with 500 randomly chosen commonly use Chinese 
characters 

• use entropy reduction to select corner features at 
every node 

• with overlapping 

• no back tracking for holes is necessary since there is 
merely no holes with one single tree classifier 

A. General Statistic 

-Total number of distinct codes = 64 

-Mean number of characters per code = 42.83 

-Standard deviation for the number of characters per 

code = 15.33 

-Coefficient of variation - 2.79 

-Original entropy = 11.42 

Final entropy = 5.24 

Reduction in entropy =-6.18 

B. Testing of efficiency and accuracy 
1. with ideal sample 

• average processing time per character = 0.038 

sec 
• accuracy = 0.998 

2. with noisy sample 
Table 5.11 showing the accuracy of the classifier 
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Noise Noisy with filtering with filtering 
level Sample by algorithm 1 by algorithm 2 
0.05 0.788 0.812 0.634 

_ 0.758 0.776 0.612 
0.2 0.664 0.720 0.562 
0.3 0.652 0.724 0.540 
0.4 0.550 0.618 0.488 
0.5 0.528 0.612 0.500 

Table 5.11 

§5.2 CONCLUSION 

Based on the above experimental results, the following 

points can be concluded. 

1. Back tracking for holes can improve the performance of 
the classifier to a certain extent. At the same time, we 
have also noticed that the increase in the average 
processing time for each character is only negligible. 

2. The introduction of the tolerance limit does not help in 
improving the performance of the classifier. It has been 
noticed that when c is set to zero, this protocol will be 
degenerated to the ordinary protocol where there is no 
fuzzy decision by tolerance limit. 

3. The use of overlap can improve the performance of the 
three separate trees protocol. Perhaps the extra costs 
to pay for such an improvement will be the increased 
average processing time per character ( from 

approximately 0.05 second to 0.4 second). Besides, 
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the mean number of characters per distinct code has also 
increased from 2.15 to 13.63. Of course, if this 
classifier serves only as the first stage of our 
discrimination process, such an increase in the mean 
number of characters will not bother us much. Rather the 
increase in the accuracy should be our major concern. As 
a result, despite all these drawbacks, the use of 
overlapping should still be adopted. 

4. The one single tree protocol with overlap has found to be 
quite promising in its discriminating power as compared 
with other protocols. However, since only 500 characters 
are used in training up the classifier/ the good 
performance of such classifier will not be guaranteed for 
a larger training set (say with 5400 commonly used 
Chinese characters)• Experiments should be performed to 
confirm the above finding. 

5. Concerning the filtering algorithms, we have noticed that 
the filtering algorithm one has continuously better 
performance than the algorithm two. As a result, we can 
conclude that inputted characters should be filtered by 
algorithm one before they are fed into the recognition 
system. 
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§6 IMPROVED MULTISTAGE TREE CLASSIFIER 

§6.1 THE OPTIMAL MULTISTAGE TREE CLASSIFIER 

The results discussed at chapter 5 reveal that the three 
separate tree protocol should be adopted. The idea of 
backtracking for holes should also be incorporated. As a 
result, the improved multistage classifier recommended is: 

• trained with 5,400 commonly used Chinese characters 

• idea of the backtracking is incorporated 

• with overlapping 

The classifier will follow the following sequence of steps 
in classifying the characters inputted. 
1. The codes for all the 5,400 characters are inputted 

through a file. These codes will be sorted in ascending 
order with the use of radix sort. The sorted codes, 
together with the corresponding Big 5 codes, will be 
stored in an array for later reference. 

2 • The bit pattern for the characters are inputted to the 
system for classification. They will be inputted to the 
system one by one • For every character inputted, the 
corner features at the three corners will be extracted 
first. 

3. The discriminant functions at every nodes of the tree 
classifier have already been stored in the program. With 
these functions, the code for the character will be 
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calculated. Of course, if it is a character from the 
ideal training sample, the code computed should exactly 
match with actual code for that character. There may be 
deviation if this character is from some noisy sample. 

4. The code will be used as the key to search for the 
corresponding Big 5 code for that character inputted. 
Binary search will be used. 

5. The inputted character will be recognized as that 
character having the Big 5 code as that found in (4) • 

6. The process will be repeated for another character 
inputted. 

§6.2 PERFORMANCE ANALYSIS 

Classifier based on the improved multistage tree idea has 

been constructed and being tested with ideal samples, noisy 

samples and samples which have been filtered using filtering 

algorithm one. Again, only random samples of size 500 are 

generated for the purpose of testing. The results are given 

as follows. 

(A) The Recognition Rate 
Four categories can be identified in terms of the 

recognition result. They are the percentage of 

characters 
1. correctly recognized as a single unique character; 

2 . correctly recognized as a group of characters 

3. incorrectly recognized as another character or 
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another group of characters; 
4• having not been recognized as any characters.. 

Both (1) and (2) belongs to the class of success while 
cases (3) and (4) lead to errors. In particular, case 
(3) will incur unnoticeable error and is most 
undesirable. The results of the classification is given 
in table 6.1. 

% ideal Noisy sample Filtered sample 
sample at noise level 0.005 at noise level 0.005 

1 0% 0% 0% 
2 79.6% 59,2% 64.6% 
3 0.2% 40.8% 35.4% 
4 0% 0% 0% 

Table 6.1 

(B) Recognition speed 
Since idea of overlapping has been incorporated and the 

total number of codes is large, we have to use file to 

hold the sorted during run time. This has significantly 

increased the average processing speed of the 

classifier. However, the speed is still small enough to 

be implemented in the microcomputer environment. Upon 

testing, the average processing time per character is 

found to be. 
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Ideal Nosiy sample at Filtered sample at 
Sample noise level 0.005 noise level 0.005 

Processing 
Speed (sec) 0 - 5 °- 5 °- 5 

Table 6.2 

Besides, the performance of other protocol has also been 
studied for referece and the recognition rates can be 
tabulated below: 1 
I. 3-trees protocol 

. trained with 5400 commonly used characters 

. without overlapping 

. with back tracking 

% ideal Noisy sample Filtered sample 
sample at noise level 0.005 at noise level 0.005 

1 20.2% 8.8% 10.8% 
2 79.6% 40% 44.2% 
3 0.2% 51% 45% 
4 0% 0 .2% 0% 

Table 6.3 

II. 1-tree protocol 
.with overlapping 

I I % ideal Noisy sample Filtered sample 
sample at noise level 0.005 at noise level 0.005 

~ o% “ 0% ~ ~ 0% 
2 99.8% 78.8% 81.2% 
3 0.2% 21.2% 18.8% 
4 0% 0% [__ 0% 

Table 6.4 
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§7 FURTHER DISCRIMINATION BY CONTEXT CONSIDERATION 

§7.1 IDEA 

The multistage tree classifier developed in the previous 

chapters only provide a partial discrimination of all the 

Chinese characters into a number of clusters, since global 

feature (the corner feature) is used, we cannot expect 

discrimination to be complete just with the tree classifier 
developed. Although we can .increase the depth of the trees 
so that data in each clusters can be further discriminated 

. » * 

into smaller clusters. However, this , increase in depth is 
not justified in light of the additional error encountered 
for a tree with greater depth as pointed out in [15]. As a 
result, further exploration should be sought so as to 
completely discriminate the characters. 

It has been suggested that since only global features have 
been used in the first stage of our decision, local feature 
may help in further classification in our second stage of 
decision. Local features including the search for a dot 
around certain position, search for a stroke at the corner, 
a slanted stroke at the right edge and the like, have been 
recommended. In this way, rules can be set up for this 
second stage discrimination. However, there are some 
drawbacks to this approach. Since we have left with quite a 

. ,. '. , 

large number of clusters from our first stage of work, may 
be up to hundreds or thousands of rules are needed so as to 
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further discriminate these clusters of characters. This is 

time consuming and laborious. Moreover, there is no general 

strategy for the setting up of such rules. We cannot decide 

whether one setting is better while compared with another 

setting. 

To tackle the entire problem, we decided to use the semantic 
of the language. It has been noticed that in every 
application of Chinese character recognition, the input to 
the system should be in the form of a passage. This means 
that characters will be grouped in phrases and be fed into 
the recognition system successively. Suppose a certain 
character has been recognized. Then we can guess the next 
character to come and have hem be confined to only tens of 
characters which are semantically related to the previous 

character. For instance," " ‘ “ t " "may follow the 
character " "• Hopefully, based on such consideration of 
context, we can discriminate every character uniquely when 
the whole passage is fed into the system. 

I T here is a difficulty in grouping all the semantically 

I I related words in Chinese since such grouping done manually 

I i s time consuming and laborious. Fortunately, help can be 
I sought from commercially available Chinese system. The Eten 

Chinese system is one which provides an input method by the 
I consideration of context. T h e lookup table for this input 

method actually groups together related words of a character 

s o a s to facilitate subsequent searching more easily. 
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Converting this file to a file with coding in Big 5, we can 

store the lookup table in a particular file, the format of 
which is 

<Big 5 of 1st character list of semantically related words> 
<Big 5 of 2nd character list of semantically related words 
<Big 5 of 3rd character <list of semantically related words 

The first character on each line will be served as the key 
j during subsequent searching. A partial listing of this 
I table has been included in the appendix for reference. 

§7.2 DESCRIPTION OF ALGORITHM 

The implementation of the idea in computer is simple. All we 
have to do is to store the previously recognized character 
and look for the corresponding lis of seman ically related 
characters which are to be stored in an array. The bitmap of 
the next character will then be inputted to the system. With 
the use of the multistage tree classifier developed 
previously, the first stage discrimination is performed and 
a group of characters is obtained. To choose he most likely 
character among this particular group of words, the second 
stage discrimination process will be performed by context 
consideration. The list of semantically related characters 
corresponding to the previously recognized character is 
sought and be compared with each of the character in the 
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1 g r o u p o f characters left after the first stage of 
classification. If a match can be found, then the character 

_ has been uniquely recognized. If a match cannot be obtained, 
decision cannot be made at this moment. Further decision has 
to be made and there are various methods in tackling the 
situation which are to be discussed later in this section. 

To summarize the above discussion, the following algorithm 
has been suggested. 

1. Store the previously recognized character to variable 

pre char. •• !• 
2 • G e t he list of semantically related characters of 

pre char. 

3. Read in bitmap of next character. 

4. Multistage tree classifier is used and a group of 
characters is concluded. These possible characters are 
stored in array pos_char[] and the total number of 
characters is stored in variable max—pos—char 

5. For i=0 to max—pos—char-1 

5.1 Check whether pos_char [i] is in the list of the 
semantically related characters of pre_char. 

5.2 If found, 

k < i 
Report the finding 
pre—char < pos_char[k] 

5.3 Otherwise, Uncertainty Tracking algorithms 
6. Go to step (1). 
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UNCERTAINTY TRACKING ALGORITHM 

Our final task is to find methods to deal with the case of 
I : .» .. 

uncertainty. Obviously there exists a number of algorithms 
to tackle the problem. 

The first method tries to defer the decision in later stages 
of classification. When any uncertainty is encountered we 
simply do not decide and try on every possibilities until 
any one such path, upon completion of subsequent stages of 
classification, : gives a definite decision to the 
classification. In other words, we wait until one such path 
gets a match. This approach, although sounds sensible, is 
not practical for implementation. Obviously the number of 
possible paths will be booming due to the large number of 
semantically related characters at each level of 
classification. Such depth first search of solution will be 
very time consuming. On the other hand, there is no 
guarantee that a feasible solution should be obtained even 
after prolonged search.. 

Breadth first search may be another solution but still the 
exponentially growing number of possible paths also hinders 
the implementation of the algorithm. Searching does not 
seem to be a good method. May be the introduction of a 
suitable heuristic function will render selective search to 
be a better way. But how can we choose the heuristic 
function? There is simply no easy method. 
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The next method is simply to ignore that character. Whenever 
uncertainty arises, we simply admit that our system fails 
to recognize correctly this character and leaves the answer 
untouched. The system will then proceed to recognize the 
next character coming into the system. However, such method 
is definitely not good since our recognition system depends 
very much on the previously recognized character if context 
is to be used as a classification criterion. Any characters 
having left to be unrecognizable will make the entire system 
to fail in subsequent stages of classification for other 
characters. 

Then we see that the most straightforward way to tackle 
I • / . . . ' • "‘ . ..... 

uncertainty should be to let the user to make the decision • - ̂  «• 
for us. In such case, when uncertainty arises, all 
possibilities will be displayed to the user and the user 
will make the decision for the system before the system goes 
on. This method, though a little subtle, should be the 
simpliest and the best that we can have. 

§7.3 PERFORMANCE ANALYSIS 

Adopting the improved multistage tree classifier as 
developed in chapter 6 as the first stage of discrimination 
and the idea of context consideration as the second stage, a 
final multistage tree classifier can be constructed. 
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We cannot test the performance of this classifier by inputs 
which are not realistic and cannot suit the requirement for 
context consideration. Characters used in the testing 
samples of our previous work are merely not semantically 
related in any way. As a result, we have to choose a passage 
to serve as the testing sample. Again ideal sample, noisy 
sample and filtered noisy sample are fed into the system and 
tested successively. 

Similar to the four categories for the recognition result 
discussed in section 6.2, there will also be categories of 
outcome in our case. 

1. Characters to be correctly recognized as a single unique 

character. 

2• The first stage of classification leaves a group of 

characters and the second stage of classification cannot 

successfully select the correct character from this 

group. In this case, the result will still correspond to 

a group characters•. 

3. Character has been incorrectly recognized either as 

another character or as residing in another group of 

characters. 
4• Charac ers cannot be recognized as any known character 

even at the first stage of classification. Again, we 
have also assumed that the character has been uniquely 
recognized so as to facilitate further classification 
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Adopting the four categories, the performance of this 
classifier can be demonstrated as follows. 

Percentage being classified to Ideal Sample 
category 1 38.44% 
category 2 58.75% 
category 3 2.81% 
category 4 0% 

Table 7.1 

Despite of the lower accuracy of the 3-tree protocol without 
overlapping, it has been found that the percentage of 
characters which can be uniquely recognized, that is. those 
being classified to category 1, is to some extent greater 
than that with overlapping. The following table summarizes 
the performance of such classifier. 

Percentage being classified to Ideal Sample 
category 1 51.56% 
category 2 46.88% 
category 3 1-56% 
category 4 0% 

Table 7.2 
I 
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§8 CONCLUSION 

§8.1 Advantages of the classifier 

The advantages of the classifier thus developed can be 
summarized as follows• • . 
1. It is fast and efficient when passage of moderate size is 

inputted for recognition. 
2. If ideal sample is used, the accuracy of the classifier 

is very high and is approaching 100%. 
3. The use of three separate decision trees has make 

possible the use of distributed processing where one 
processor will be responsible for one decision tree. 

4. Practically we have included all commonly used Chinese 
characters in our system and there is little chance of 
getting a character input which is unknown to the system. 

5. If a new character is added to the system, we can define 
a new code for this character based on the existing 
classifier by allowing this character to go through our 
system and have this result be written on our code file. 
However since our code file has already been sorted, it 
will take some time for this new code to be inserted at a 
proper position in the file. 

6. Since we have been making use of Big 5 as the internal 
coding system, the chaaracters being recognized will all 
be coded in Big 5. As a result, the output from our 

: recognition system can easily be interfaced with all 
Chinese systems commonly used in Hong Kong, 
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§8.2 Limitations 

There are some limitations to our classifier and they are 
H 

listed below. 
I • • 

‘ ‘ ‘ . . • 

1. The performance of the classifier degenerates with noisy 
sample input at larger noise levels. This is not 
desirable since noisy sample input is more realistic than 
the ideal one. 

2. The classifier is font sensitive. The performance will 
degenerate when tested with characters of other font 
type, e.g. Ming font. 

3. This is not fast enough when long passages are inputted 
to the system for recognition. This is a problem 
originated from the large number of codes generated as a 
result of overlapping. 

4. There is still a small probability of unnoticeable error 
which is highly undesirable since these errors can hardly 
be detected and located. 

. . . . . . .. 

.•' ..:. . 
‘. - . I,., ; ‘ • . . . . . 

:... “ • __ 
...’.. ‘ 

I : . - . . 

. . . .• . 
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§9. AREA OF FUTURE RESEARCH AND IMPROVEMENT 

§9.1 DETAILED ANALYSIS AT EACH TERMINAL NODE 

In the tree classifier recommended in chapter 6, the number 
of levels in the decision tree is quite large in order to 
make the number of Chinese characters at each terminal node 
reasonably small. To fulfil this requirement, a lot of mis-
classification occurs. 

The mis-classification error can be reduced by several 
techniques which includes overlapping the critical 
characters (refer section 4,3), back tracking for holes 
(refer section 4.4) and use of fuzzy decision function with 
tolerance limit (refer section 4.5). However, all the 
technique mentioned cannot make a great improvement due to 
the nature of corner feature which can only discriminate 
the Chinese characters with different corner styles. It is 
quite obvious that the recommended tree classifier can only 

m ‘ 
be used as the first stage classification which roughly 
classifies the character set into groups with similiar 

• 

corner styles. In this way, the number of levels in the 

decs ion tree can be reduced in order to reduce the error 

incurred. 

The actual identification is done at the second stage 
classification where special discrimination techniques on 

I i?... ' 
particular set of character(s) are used. One example of 
this second stage classifier is the use of context 
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consideration as that used in Eten Chinese System (refer 

chapter 7 for details)• However, this method is only useful 

if a large database with context relation is maintained. 

Furthermore, the Chinese character which has no context 

relation with the other Chinese character or is the first 

character of the sentenses may not be recognized. 

§9.2 IMPROVING THE NOISE FILTERING TECHNIQUE 

It is shown in section 4.2 & 5 that a good noise filtering 

technique can improve the recognition rate of the tree 

classifier. In section 4.2, two noise filtering algorithms 

has been recommended. However, both of the algorithms can 

only eliminate a single noise bits and two consecutive 

noise bits. The noise bits that are closed to the character 

key stoke or closed to other noise bits cannot be filtered. 

. . -

s It is recommended to derive an effective noise filtering 

technique that can eliminate the unnecessary noise bits 
.:. - . 

especially in the feature extraction regions. This noise 

filtering algorithm can be included into the feature 

extraction program at which more analysis at the feature 

extraction region is done before extracting the corner 
I '^M^- • 
I ) ..... 

features. 

' 1 . .— 

I 
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§9.3 THE USE OF 4 CORNER CODE 

In approach 2, three corner codes are used to assist the 
training of the tree classifier in recognizing the Chinese 
character. It can shorten the training time and improve the 
flexibility of the tree classifier especially when the 
training character set is changed. However, several 
characteristics of three corner codes also degrades the 
performance of the classifier i.e. 

a. In three corner code, there are 100 classes (i.e. 00 -

99 classes) per each corner. For supervised learning, 

the training character set is divided into 100 classes 
* 

according to the three corner code. It is then combined 

into two groups based on the minimum clasification error 

in the covariance matrix. However, to minimize the 

global classification error of an 100 classes decision 

tree is a very difficult task. A lot of calculation is 

required which makes the implemenation impossible. As a 

result, making use of the heuristic proposed in section 

3.4, we only got the local minimum at each level of the 

tree classifier instead of the global minimum of the 

whole tree. 

Furthermore, the 100 classes requirement would increase 
the number of levels for each decision tree. The mis-
classification error accumulate from level to level and 
the overlapping requirement will then drastically 
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increase. 
i 

I 4 
I -r 

b. Only the features of the three corners are used for the 

training of the tree classifier which is insufficient to 
10¾ . 

distinguish a large character set. 

I 'l̂r 
I , 

The problems mentioned greatly increase the error of the 

tree classifier or reduce the performance of the 

classifier. However, it can be improved with the use of 4 

corner code instead of 3 corner code. 

Four corner code is similiar with three corner code as have 

been mentioned since section 3.2. But,, in 4 corner code, 

only 10 classes (i.e. 0 - 9) for each corner is used 

instead of 100 classes. The computational requirement in 

getting the global optimum decision tree is geatly reduced 

when compare with 3 corner code method. 

With 10 classes per each corner, the number of levels, and 

thus the error accumulated in each level and the number of 

overlapping are greatly reduced. 

Furthermore, with the features at four corners of the 

character instead of three corners, the power of 

discrimination will be improved. 

However, the following implementation difficulties will be 

encountered• 

a # i n the existing Chinese Systems available in the market 

like Eten Chinese System, KC Chinese System, there is no 
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four corner code table available. A lot of 
implementation effort will be required to build this 
four corner code table as there are over 13,000 Chinese 
characters. 

b. In four corner code Chinese character input method, one 
four corner code may corresponding to more than one 
Chinese characters. 

c. If four corner code is adopted, four decision trees are 
required instead of three decision tree. The increase in 
the number of decision trees would increase the 
probability of classification error and complicate the 
back traking effort. However, it can reduce the number 
of levels in each decision tree. 

To conclude, it is worthwhile to implement with four corner . 
code instead of three corner code. A more practical 
approach is to train up the classifier with reduced 
training character set and compare the peformance with that 
of the three corner code. 

§9.4 INCREASE IN THE DIMENSION OF THE FEATURE SPACE 

As described in section 2.2.6, there are a total of 24 
feature points (8 feature points i.e. 4 at the x axis and 4 
at the y axis for each corner of the character) used in the 
training of the tree classifier to discriminate up to 
13 f ooo Chinese characters. However, at each internal node 
of the corner decision tree, all the 8 feature points of 
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the corner are used up in determining the leaves of the 
node. It is not preferrable according to the argument of 
C.Y. Suen & Q.R.Wang in [15]. 

According to Suen1s argument in [15], those features which 
have been used in the parent node will not be used in the 

child nodes again because these features become less 

informative. It is obvious since similiar classes are 

assigned to the same child node after clustering using 
these features, thus they have less discriminative power in 

” ..: , v. • , : ... . ‘ i 
this child node than that of the parent node. 

I . ' 
t . • 

Because of this philosophy, it is recommended to increase 
the number of feature points at each corner, say 16 points 
instead of 8 points. At each decision node, only the best 
feature points are used. Different feature points may be 
used at different decision nodes. To select the best 
feature points, the feature merit measures like information 
content measure or Fisher's criterion are suitable for 
feature selection in a multiclass problem. 

§9.5 1-TREE PROTOCOL WITH ENTROPY REDUCTION 

The idea of single tree protocol with overlap and entropy 
reduction has already explored in section 4.7, test with 
small training character set (500 training samples) have 
also been done and the result is quite promising (refer 
chapter 5) • Due to the limitation of the memory and 
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processing power in PC environment, this approach was not 
further elabolate in our project. However, it is worthwhile 
to have some further research in this area. 

One of the most significant advantage of 1-tree protocol 
over the 3-trees protocol is the reduction of the 
overlapping element at the terminal nodes. The details has 
already mentioned in section 4.3. 

§9.6 THE USE OF HUMAN INTELLIGENCE 

It has been mentioned in the section 10.1 that two stage 
tree classifier is better than one stage classifier in high 
speed, large character size, character recognition process. 
However, mis-classification still happen in two stage 
classifier, a lot of effort such as overlapping or back 
tracking method should be used to reduce the error. To 
further improve the classifier performance, a most straight 
forward way is to display all the possible Chinese 
character when an unlogical Chinese character is detected. 
The unlogical Chinese character here mean that there is no • 
context relation with the neighbour characters. Human 

I /-
I 'ji-' 

intelligence has to be used to select the right character. 
I 

. .,. , ,.‘ : . : . \ • . . • 
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A.l K-MEANS 

The original K-MEANS algorithm uses the arithmetic mean 
(i.e. the centroid) of the data as the cluster centres and 
based on a group of preassigned k initial cluster centres as 
seeds to classify the entire data set into these k clusters. 
The usual Euclidean distance is used as the distance measure 
between individual object and a given object will be 

I classified to any particular cluster if its distance to that 

cluster centre is the minimum. During the classification 
• 

process, the cluster centres will be continuously updated 
and the number of objects in the clusters incremented. The 
algorithm can be summarized as follows. 

ORIGINAL K-MEANS 

1. Choose x , x 2 , x^ as the initial k cluster 
centres. 

Let =number of data in the ith cluster 
Set n^ = 1 V i = 1,2,... 

2. Take x from the data set, while not end of file do 

2.1 Calculate d(x,x^) V i=l,2r.",k 
where d(x,y) = Euclidean distance between x and y 

2.2 Assign x to the jth cluster such that 
) = min d(xfx.) J l 1 

2.3 Update cluster centre x, of the jth cluster by 

n .X. + X 
x • = — 
J n. + 1 

1 



2.4 Update the number of data in the jth cluster by 

n. = n. + l 3 J 

3. Repeat the classification process by feeding the data 
into the system based on the k cluster centres just 
calculated in (2). 

I -' 
I 

The above K-MEANS algorithm has been criticized that 
there seems do not have an easy way of obtaining the initial 
k cluster centres as the seeds. One possible improvement is 
then to repeat the above algorithm until the cluster , - •. . . ’ 
centres become stable. In that case, the algorithm is 
said to have converged. As a result, the modified K-MEANS 
algorithm is: 

MODIFIED K-MEANS 
1. Choose X p x 2, x^ as initial k cluster centres. 

Let n. = number of data in the ith cluster l 
Set n^ = 1 V i=lr2,... 

2• Repeat 
0 • • , 

2.1 Save x^ = x^ for 1=1,2, • • • 
2.2 Take x from the data set, while not end of file do 

2.2.1 Calculate d(x,xi) V 1=1,2,... 
where d(x,y) == Euclidean distance between x and 
y 

2.2.2 Assign x to the jth cluster such that 
d(x,x.) = min d(x,x.) J l 1 

2 



2.2.3 Update cluster centre x. of the jth cluster by 
n.x. + x 

# zn 
3 n. + 1 D 

2.2.4 Update the number of data in the jth cluster by 

n. = n. + 1 J J 
0 Until I x. - x. j < e for all i where e l l • 

is some preassigned tolerance value. 

The modified K-MEANS algorithm, though more robust to the 

initial choice of cluster centres, is complicated and takes .' • ‘ 
time for it to converge. Since convergence is not . 

guaranteed and it usually takes quite a long time for us to 
notice the convergence or divergence of the Algorithm, the 
above modified algorithm is usually not recommended. 
Practically the original K-MEANS algorithm is more 
preferable• 

Apart from the criticism for the difficulties in choosing 

the initial k cluster centres, another major problem 

associated with the algorithm is the choice for the value of 

k. what value of k should we choose? This is actually a 

dilemma for us. One possible solution is the K-MEANS with 

coarsening and refining parameters. 

In this new algorithm, the number of clusters is not fixed ‘ ‘ 
and will be changed during the training period. There are mSK''. • ‘ . 

two possible changes in the number of clusters, one for 
cluster splitting and the other for cluster merging. When 
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the radius of a certain cluster is too large, that cluster 

will be split into two individual clusters, thus increasing 

the total number of clusters by one. On the other hand, when 

the distance between any two clusters is too small, the two 

clusters will be merged together to form one single cluster, 

thus decreasing he total number of clusters by one. Such 

splitting and merging processes can help to stabilize the 

final groupings of the clustering result in a more 

preferable way. * . 
• • ’ • . 

How can the "large" and "small" in the process of splitting 
• • • ' . 

. • . • — 

and merging be characterized? Here we will use a coarsening 
-

parameter C and a refining parameter R specified before the 
start of the training. For simplicity, the splitting rule 
will only be applied when a certain object is being assigned 
to one particular cluster. If the distance between that 
object to that particular cluster is greater than C, then 
group splitting occurs and that object will individually 
form a new cluster. For merging of clusters, we will merge 
any two clusters if the distance between the two cluster 
centres is less than R. The entire algorithm has already 
been summarized as the K-MEANS with coarsening and refining 
as discussed in section 2.3. 
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A2 • APPROACH ONE - UNSUPERVISED LEARNINGS 

§2.1 IDEA 

In choosing the approach towards the construction of a 
classifier, we seek for different ways to classify our 
objects. Of course, training samples are provided. Depending 
on the nature of the samples given, two different approaches 
exist, here, we will call unsupervised learning and 

.supervised learning. 

By supervised learning, we mean that the actual class 
membership of the objects are known and we can base on such 
knowledge of class membership to group the objects into some 
clusters. In this way, the classifier can then be 
constructed. More details of this approach will be given in 
the next section. 

By the term unsupervised learning, we actually refer to the 
case where no prior knowledge of the class membership of the 
objects in the training. sample is known to the system. We 
can classify the objects into clusters by some intrinsic 
likeliness of the objects themselves. For instance, in 
classifying a given basket of fruit, the likeliness may be 
measured by the external colour of the object so that all 
objects appeared red come together, so do green objects, 
blue objects and the like. Of course there is no absolute 
measurement of likeliness. Colour is one way in the above 
example while weight may be another. Then how can we decide 
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whether to use colour or weight as the measurement? This 
forces us to define clearly the goodness of the 

measurements f which is actually quite a difficult task. 
Besides, there is also no absolute measurement in the 
correctness of the classification since we merely do not 

. . 

know which object belong to which class as class membership 
l. v . 

is unknown to the system. 
[ « " , .... 

The two problems stated above present the intrinsic 
difficulties in the implementation of unsupervised learning. 
However, unsupervised learning still has its own distinguis-
hed advantages. Since no prior knowledge is required in the 
entire process of the classification, this provides a 
suitability for most of our everyday life problems since 
usually such prior knowledge is not known beforehand. This 
non-parametric nature renders the process to be highly 
flexible and thus versatile. As a result, most of the 
research in pattern recognition are done based on this 
approach. 

In this chapter, we are going to explore how the technique 
of unsupervised learning can be used in the training of a 
Chinese character recognition system. Like the usual step 
in most of other recognition systems, features are first 
extracted from input characters. After going through a 
clustering algorithm, objects will be clustered into groups 
which separate them into one another. The final stage will 
be to construct the tree classifier and form the optimum 
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decision tree. The most distinguished differences between 
supervised and unsupervised learning are in the use of the 
clustering algorithm and. the method of constructing the 
decision tree classifier. All these details will be 
discussed in detail in the sections following. Here, an 

I |. -
overview is given. 

1- Several useful feature extraction methods from the input 
bit pattern of the character will be discussed. 

2• Different unsupervised clustering algorithms will be 
described. We will choose one clustering algorithm to 
cluster the given training set into different groups 
based on the use of one particular feature. This, step 
will be repeated for all other features which have been 
extracted from the characters. 

3. A decision table as will be formed, details of which 
will be discussed. 

4. From the decision table just constructed, we will show 
how the optimum decision tree can be built. 

There are some problems associated with this approach in 
the training up of the classifier since practically the 
algorithm described in (4) cannot be implemented 
computationally. This belongs to the class of NP complete 
problems. Details and reasons will be given in section 
2.6. 
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§2.2 FEATURE EXTRACTION 

I •’ 
The idea of he unsupervised learning has already been 

mentioned in section 2.1. To star with the classifier 
1.1 

development, feature selection pay a very important role in 

determining the performance of the classifier. Feature is 
the measurement of likeliness we have mentioned in section 
2.1. If a good feature is selected, the unknown object can 
easily be identified. In this section, the feature selection 
criteria will first be discussed. Different feature 
extraction methodologies that are favourable for this 
approach will also be described. 

§2.2.1 Feature Selection Criteria 

The most distinguished advantage of the tree classifier 

recommended in section 2.1 is to break down the most 

complicated decision into a tree of many simple, easy to 

obtain decisions. 

Based on this philosophy, the feature extracted should 

satisfy the following feature selection criteria 

a. The feature should be as simple as possible so that the 

time required to extract the feature is reduced to 

minimum. 

b. The feature can effectiveity classify a particular set 

of Chinese characters. 
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1 . . , . 

c- T h e feature selected should provide maximum 
I \<s 

separability. 

d. The feature should be insensitive to noise, rotation, 

shift etc. 

e. The feature should require as minimum memory as 

possible. 

It is the fact that no single feature can satisfy all of 
the above selection criteria, which means that measures 
such as the probability of error, the reduction in entropy 
etc should be calculated in order to determine which 
feature is the best choice. The one with the maximum 
advantage like separability, number of resulting classes 
etc. will be selected. 

Furthermore, it is also mentioned in [2] that the size of 

the feature to be used at each node should be limited to 

be much smaller than the total number of available 

features. The sections follow will describe some of the 

most common features used in recent research of Chinese 

character recognition. Of course, it is by no means a 

enhaustive list but only provides an overview of the 

methods used in the extraction of useful features from the 

character. 
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§2.2.2 4C Code 

"4C" actually refers to the four corners of a Chinese 

character. It has been argued that in the Chinese 

language, the shape of the corners can provide us much 
- . . . ' . . s 

information. As a result the 4C code can be used as a 
fc' 

feature for classification. 

The 4C code is defined by encoding the four corner square 
zones of a character according to the size of the black 
points. To. make the feature value more robust to the 
total number of pixels in the given character, the four 
black to white ratios are calculated. The respective 
order of the codes taken is illustrated in figure 2.1. 

F i g u r e 2 . 1 The Order of the 4 Corne r Code 
t a k e n f r o m a Ch inese C h a r a c t e r 
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For a 24 x 24 bitmap, each corner consists of a 6 x 6 
bitmap which will, be amounted to 36 dots. We refer black 
dot as "1" and white dot as "0". Therefore the 4C code 
will be defined as a vector x of dimension four where 

I ‘ 

X = ( X1 X2 X3 X4) 
I 

and x, = black-to-white ratio of the kth corner. k 

To formalize the calculation, denote 

B = (b^.)24x24 = bitmap of the Chinese character 
' • -

•• 

where b. . = 0 or 1 V i,j 

Then 
6 6 

1 I i=l j=l x =. 1 36 

6 24 

I l… 
i=l j=19 x = 2 36 

24 6 

I 1 I ^ 
i=19 j=l 

x = 
3 36 
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24 24 
1 I bij 

x =
 i = 1 9 

4 36 

Such ratios calculated are insensitive to noise and is 
robust with respect to the change in the pixel size of the 
character. 

I 

§2.2.3 Regional Code 

The regional code is defined by encoding the four corner 
square zones and the two central strips of a character 
according to the size of the black points. Similar to the 
4C code discussed previously, the six black to white 
ratios are calculated so as to make the feature more 
robust to the total number of pixels in the character. 

The first four values of the feature vector are just those 
of the 4C code. The fifth value corresponds to the 
vertical central strip while the sixth value corresponds 
to the horizontal central strip. Just like the 4C code, 
each corner consists of a 6 x 6 bitmap. The two central 
strips will be a 5 x 24 bitmap which is just 120 dots. 

Specifically, if x = (x x x x x x ) and B = ‘ 1 2 3 4 5 6 
fb. .) = bitmap of the Chinese character where b.. v lj'24x24 
= 0 or 1 V i, j • 
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Then 

6 6 .' I I b .. 
l.J 

i=l j=l 
x -

1 36 

6 24 

I I b .. 
l.J 

i=l j=19 
x -

2 36 

24 6 

I I b .. 
l.J 

i=19 j=l 
x -

3 36 

24 24 

I I b ij 
i=19 j=19 

36 

24 14 

I I b .. 
l.J 

i=l j=10 
X5 -

120 

24 14 

I I b .. 
l.J 

j=l i=10 
X6 -

120 
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§2.2.4 Walsh Transform 

Walsh transform has been claimed to be a simple, fast and 
reliable method for separating complex Chinese characaters 
[8]. Two dimensional Walsh transform will be discussed 
here. 

. 

. •‘ . 

Walsh transform involves only 1 or -1 operation and thus 
is a fast computation. It distinguishes from the 
conventional Fourier transform in that the former has 
"sequency" property and the latter has "periodicity" 
property. It is suitable for the analysis of the central 

portion of the characters. 

1 .1 Walsh function [9] WAL(n,0) , - - < 0 s -, are defined 
2 2 

recursively as follows: 

r 1 if 1 < e 1 
WAL(0,e) = , 2 2 and 

w 0 otherwise 

I : .:: • LIJ+Q r . : .: .. ! . . 
WAL(2j+q/0) = [-1] WAL(jf2(0 + - ) ) + 4 

j+9 1 1 • [-1] WAL(j,2(0 - -)) , q = 0 or 1; ^=0,1, .., n. * 4 J 

If a is not in (- -), then WAL(j ,0) = 0. The ordering 
2 2 

of Walsh functions is sequency (Walsh) ordering: 

WAL(0f9), WAL(l/e), W A L ( 2 f 9 ) , … 

As usual, suppose the input character is represented by an 

I' : . .. 14 
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\~m , 
H^H 

M x M bitmap (yi;j)MxM i = 1,2,..., M; j = 1,2,", M and 
let the origin of the coordinate system be translated to 

M M the centre of the character. The central - x - submatrix 
2 2 

centred at the origin is extracted • 
M 

Let N = - • 
2 

1. When N is odd, say N = 2k+l, we extract N equally 
1 1 spaced points from interval [ - - , -] and they are 
2 2 

k-1 k-2 1 ! k-1 ! 
MM mm am^mm^mmmtmmm ^m^^m^mmmmm mm ^^mmmmmm f | mmm^^^m, 

/ / / • • • • / / ^ / / / / 2 2k 2 k 2k 2k 2k 2 
2. When N is even, say N = 23c, then the N equally spaced 

points are 

2 k-1 2k-3 3 1 1 3 2k-l 
4k 4k 4k 4k 4k 4k 4k 

Substituting these N points into Q of WAL(n,e) given 

above, we get sequence of values of WAL(n,i), 1=0,1,2,..., 

N-l. 

Now rename the extracted central portion as (xij)NxN' 
i=0,1,2,.", N-l ; j=0,1,2,… N-l • Then the two dimensional 

Walsh transform of (x..) is 
] 

± N-l N-l 
C = ~ Y Y x.. WALCm/i) WAL(n,j) mn z i-i N i=0 j=0 XJ 

where C is called the Walsh coefficient, mn 

We have noticed that since x. . and Walsh functions have J 
values 1 or -1 so that the above calculation can be 
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performed in "and or" circuit which is very fast, resides 

it has been suggested that in Chinese recognition system, 

only those C ^1 s with 2 ^ m ^ 6 and 2 ^ n ^ 6 are 
lulx 

necessary for consideration of feature selection. 

§2.2.5 Black Dot Density Projection Profile 

The bit pattern of a printed Chinese character can be 
represented by black dots and white dots matrix as shown 
in figure 2.2. The black dot density projection profile 
over the x and y axis shows the complexity of the 
character and can be used as an feature for character 
recognition. 

To determine the black dot density projection profile, the 

total number of black dots projected to x axis and y axis 

are first calculated (figure 2.3). The mean, 1st, 2nd and 

3rd moment of the black dot density projection profile 

are also calculated. The calculation is formulated as 

follows . 

If P(i,j) is the bit map of the Chinese character such 

that 
r 1 for black dot 

r P ( i , j ) = -
‘ 0 for white dot 

where 1 i 24 and 1 ^ j ^ 24 for a 24 x 24 dot Chinese 

character bit pattern. 

_ : . . . . . . 1 6 



Black dot wwH 

^ f f i n H r a H M 

J ^ b s F F F "" . 
TECZRJFFL—> 

i d d y ± I J 
a. The b lack do l & wh i fe do l of a 

Chinese c h a r o c l e r 

0 0 0 1 0 0 0 0 “ 
0 0 0 1 0 0 0 0 
1 1 1 1 1 1 1 1 
0 0 0 1 0 0 0 0 
0 0 1 0 1 0 0 0 
0 1 0 0 0 1 0 0 
1 0 0 0 0 0 1 0 " 
1 0 0 0 0 0 1 1. 

b. The b i l pa l f e rn of a Chinese cha rac te r 

Figure 2.2 Matrix Representation of a 
Chinese Character 

axis 

0 2 4 6 8 

I N R R 
_ " m " — — ^ ^ mmw^mm 
_ H B 

_ B H H H H z m 
Black dot densi ty . • X OX IS 
p ro jec t ion over 
the Y ax is 4 

0 
Black do densi ly p ro jec t ion 
over he X ax is 

Figure 2.3 The black dot density projection 
profile over fhe X <& Y axis 



For x projection 

the projection, profile over x axis is 

24 
X(i) = ^ P(i,j) i = 1 to 24 

j=l 

the mean value of the black dot density is 

24 
X = — Y X(i) 

OA La ^ 4 i=l 

the kth moment of the projection profile are 

24 , _ JC 
m k = Z (X(i) - X) . k=l,2,3 moment 

i=l 
Similarly, for y axis projection 

the projection profile over y axis is 

24 
Y(j) = [ P(i,j) j = 1 to 24 

i=l 

the mean value of the black dot density is 

- 1 
Y = ^ I Y ( J ) 

the kth moment of the projection profile are 

:. 24 _ k 
m k = Z (Y(j) - Y) k=l,2,3 moment 

j=l 
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§2.2.6 Corner Feature 

One of the characteristic of a Chinese character is its 
outline figure which can be used as a preliminary 
classification of the printed Chinese characters. The 
peripheral feature is to represent this outline figure for 
an input pattern. 

There are many types of peripheral feature extraction 
methodology suggested in [10] [11] and each has their own 
advantage for a particular application. The 4C code 
described previously is one of an example. 

In this project, another type of peripheral features 
called Corner Feature is suggested. The features are 
extracted in the following way 

a. Determine the boundary of the character in the 

character bit map (figure 2.4). 

b. Within the character boundary, dividing the character 

frame into four equal parts i.e. corner part. 

c. For each corner part, sub-divide the frame into four 

line parts both horizontally and vertically from the 

character boundary. Since the distance of the character 

boundary (both horizontal and vertical) is not the same 

for each character, the following calculation should be 

adopted to determine the suitable feature positions. 

Refer to figure 2.4. 

18 
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1st CORNER X m i n = X4 X3 X2 Xcen = X I Xmax 

• i i t 
I “ . 

min = 4 J | j | X ax i s 

,—.....”... .. 
Y2 _I_ZBffiPBLHBL = = : 

1 .".-.~.~—-. -__- ._„ —j,— „._. „_„ jMBM ~ ~ ~ ~ ~ ~ 

Ycen = Y1 | H L 

: H M f f [ “ y B o u n d a r y 

_ $ 
H 9 — 

Ymax ^ H H D s o r -
— — I I I I I I I I I I I I I I I I I I I axi “ ••••••• 

‘ X B o u n d a r y 

Figure 2.4 Corner Feature Extraction of a Chinese Char 

If P(i, j) is the bit pattern of the Chinese character, 
then let 

Xmax the distance from the edge of the character bit 

pattern to the right boundary of the character. 

Xmin the distance from the edge of the character bit 

pattern to the left boundary of the character. 

Ymax the distance from the top edge of the character 

bit pattern to the bottom boundary of the 

character. 

Ymin the distance from the top edge of the character 

bit pattern to the upper boundary of the racter. 
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Therefore, 

„ r (Xmax + Xmin) 1 Xcen = INT — + 0.5 L 2 J 

Ymax + Ymin) Ycen = INT + 0.5 
L 2 J 

" (Xcen - Xmin) Xoffset = INT — — + 0.5 L 3 
( (Ycen - Ymin) 1 

Yoffset = INT — — + 0.5 
3 J 

For each corner part, the position of each feature 
point can be calculated by means of Xmax, Xmin, Xcen, 
Ymax, Ymin and Ycen point.. To illustrate the 
calculation, the first corner is determined by the 
formulas shown below 

At x axis, the position of feature extraction points 

are 

XI = NT ( Xcen + .5) 
X2 = INT (Xcen - Xoffset + 0.5) 
X3 = INT (Xcen - 2 x Xoffset +0.5) 
X4 = INT (Xcen - 3 x Xoffset + 0.5) 

At y axis, the position of feature extraction points 

are 

yi = NT ( Ycen + 0.5) 

Y2 = INT (Ycen - Yoffset + 0.5) 
Y3 = INT (Ycen - 2 x Yoffset + 0.5) 
Y4 = INT (Ycen - 3 x Yoffset + 0.5) 
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d. Calculate the distance (number of dots) from the 
boundary to the character (i.e. the first change from 
white to black) in the direction from top to bottom and 
from left to right as shown in figure 2.4. 

e. Normalize the feature value with respect to the actual • .' 
size of the character. This is used to cater for the 
different size of character over the same bitmap. 
For each corner part, there will be eight corner 
features at which four features are taken at the x axis 
and four features are taken over the y axis. The 
following formulas shows the first corner features of a 
character. 

F1 = ^ P(i, Yl) / (Xcen - Xmin) 
i=l 

F2 = Y p(i, Y2> / (Xcen - Xmin) 
i=l 

I 

F3 = Y P(i/ Y3) / (Xcen - Xmin) 
i=l 

F4 = Y P(if Y4) / (Xcen - Xmin) 
i=l 

F5 = [ P(X1, j) / (Ycen - Ymin) 
1 j=l 

F6 = ^ P(X2, j) / (Ycen - Ymin) 
j=l 

F7 = ^ P(X3, j) / (Ycen - Ymin) 
j=l 

F8 = Z P(X4, j) / (Ycen - Ymin) 
j=l 

21 



The corner feature is particularly useful in our tree 

classifier because of the following merit 
a. The calculation is simple and fast. 

b. It is insensitive to the peripheral variation and thus 
can be applied to both printed and non-printed Chinese 
character. 

c. It is insensitive to the shift of the character over 
the x or y axes. 

However, the corner feature has also the following 

drawbacks 
a. It is sensitive to the rotation of the character. 

b. Characters with similar peripheral features cannot be 
identified. 

§2.3 CLUSTERING METHOD - K-MEANS & OTHER ALGORITHMS 

After appropriate features have been extracted from the 
inputted character, our next task is to find a way to 
cluster the characters into various groups based on the 
feature values just computed. Restating the problem in 
another way, our task here is, with the basis of the 
features values obtained, how can we define the likeliness 
of the objects so that individual characters can be grouped 
together? The answer to the above question is an algorithm 
we usually refer as clustering algorithm. 
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One of the most popular clustering algorithms used is the K-

f. 

MEANS algorithm [12] first suggested by Macqueen in 1967. 

This can be improved by incorporating a coarsening and a 

refining parameter. Define C to be the coarsening parameter 

for group splitting and R be the refining parameter for 
I .‘ . . . . . . . . . • 

group merging. The algorithm is summarized below. • 
‘ • - ’ . K-MEANS (with coarsening and refining) 

1. Choose x^, x 2, •••, x^ as initial k cluster centres. 

Let n. = number of data in the ith cluster 
-

Set 11 = 1 V i = 1,2,. .. . 

2. Take x from the data set, while not end of file do 

2.1 Calculate d(x/x.) V i « 1,2, k 

2.2 Find d(x,x.) such that 
J 

d(x,x.) = min d(x,x.) 
J l 1 

2.3 Group Splitting 

if d(x,xj) > C /* group splitting */ 

k < k + l 

J xk+l — X 

I nk +l > — 1 

else /* assign x to the jth cluster */ 

n. x. + x 
m̂immhmm mam âM mmm mmm mmmmm 

j n. + 1 
] 

rij < rij + 1 

2 3 

I : : ::':::•‘““‘‘......‘:':........ . 
11¾. ‘ _ ‘ : . . . . ‘ . 



m , . . • 

2•4 Group Merging 

Check whether merging between groups is possible. 
Repeat for each pair of groups 

if Xj) < R /* group merging */ 

n. x. + n. x. 
v , i i 1 1 

9 C W rnm mm mmm mmm w mtm mmt mm mm 

I 1 nj + 

n < n + n. 

k < ~ k - 1 

Relabel all cluster centres and the number of 
data in the cluster 

Until no merging has occurred.“ 

3. The classification process is repeated for the entire 
data set with the cluster centres and values of k just 
calculated. 

This algorithm can also be improved by repeating the entire 
algorithm until convergence of the number of cluster and the 
value of the cluster centres is achieved. Again such 
modification is not justified by the tremendous increase in 
the training time of the modified algorithm. 

Another implementation concern in the above algorithm is the 
choice of the values of C and R. Careful choices of C and R 
are important and one possible suggestion is to take C and R 
to be some fraction and multiple of the standard deviation. 
In our study, since the given data are of multivariate in 
nature, several values of the standard deviation have to be 
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combined as one single measure. If P is the dimension of the 
feature space and cr. is the standard deviation of the ith 
variate, then we may takes 

P 
cr = ^ cr̂  / m 

C = 0.1 cr 

R = 2 cr 

Beside K-MEANS, classically there are still quite a number 

of clustering algorithm which also have the characteristic 

of self adjustment in the number of clusters formed. These 

include the maximium-distance algorithm and the ISODATA 

algorithm [13]. They will be discussed in the appendix. 

§2.4 Pros and Cons 

All of the above mentioned clustering methods are examples 
of the algorithms we commonly used in unsupervised learning. 
There are a number of advantages. Firstly, these algorithms 
are relatively simple and are thus easier to put to 
practical implementation by computer. Their algorithmic 
nature and simple mathematical computation required render 
the coding of the algorithms fast and simple. Besides, no 
prerequisite knowledge is necessary. We need not basically 
know anything about the class membership of all the data 
before the training process begins. This distinguished 
merit is practically important since in a lot of cases 
nothing is known about the given training data set. 
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Despite of the advantages we have just mentioned, there 
are quite a number of disadvantages preventing us from 
using the approach of unsupervised learning. Inevitably 
the clustering result depends very much on the choice of 
the initial parameters such as the initial cluster 
centres, the initial number of clusters, the coarsening 
and the refining parameters. Besides, the order of the 
data arranged in the input stream will also affect the 
result since undoubtedly when the order of data is 
changed, different situations of merging and splitting 
may be resulted during every step of the algorithm. As a 
result, these algorithms are too sensitive and the result 
will be subject to fluctuation. 

The other disadvantage of these algorithms is that the 
processing time for these algorithms is usually large if 
they are to run after convergence is achieved, despite the 
relative simplicity in coding. Of course, there is also 
another difficulty as mentioned previously that there is 
no guarantee about the convergence of the algorithm. 

The most important disadvantage of the unsupervised 
approach is that the clustering result is usually not good 
enough when compared with that of the supervised approach. 
The lack of prerequisite knowledge is on one hand a 
favourable condition for implementation while on the other 
hand, renders training more difficult. The more you know, 
the more you get. Hardly can we derive extra merits if we 
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are only given very limited information and knowledge. 
Also the unpredictable nature in the resulting number of 
clusters present an additional difficulty towards the 
implementation of all these unsupervised learning 
algorithms.The above discussion reveals that the approach 
of unsupervised learning, although easy to put to 
implementation, is not reliable in its performance and is 
therefore not preferable if comparison is to be made with 
the approach of supervised learning which will be 
discussed in the next chapter. 

§2.5 DECISION TABLE 

Adopting the approach of unsupervised learning and the use 
of feature extracted from the Chinese character, we are 
going to explore in this section, how a multistage 
classifier can be built from the clustering results. 

Suppose we have adopted to use one particular clustering 

algorithm (say the K-MEANS with coarsening and refining) to 

do the clustering. Quite a large number of features can be 

extracted from a character, each may be specialized in 

distinguishing characters of some particular nature. If for 

each of the features, we perform the clustering process for 

one time, then we can develop an algorithm for the building 

up of a multistage classifier by gathering all the 

clustering results recorded. 
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Let m be the number of features used and in particular we 

designate these m features by F., F F • For each of 1 2 m 
these features, one particular clustering result is 
provided. By exploring the clustering result provided, we 
can determine which cluster is one particular character 
being classified to. If k is the number of resulting 
cluster of the ith feature, i.e. F. , and we label all 
these clusters as Fi[l], Fi[2], •••, F i [k̂ ,] f then each 
character can associate with one particular cluster for 
every feature under consideration. Viewing these cluster 
labels as some codes, a decision table can be formed which 
will summarize all the clustering results of the features 
in association with the input data. Each line in the 
decision table will just give the coding associated with the 
clustering results of all the features of one particular 
Chinese character. As a result, the table obtained will 
depict the following form. 

char—id codes 

a440 F1[2] F2[3] F3[4] •••• Fm[2] 

a441 F1[2] F2[4] [1] 
• • 

• • . 
• • 

After the decision table is formed, our next task is to 

search for a classifier with best performance from this 

table. 
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§2.6 THE OPTIMUM CLASSIFIER AND ITS IMPLEMENTATION DIFFICULTIES 

We want to construct a tree classifier from the decision 
table where every internal node will denote a decision with 
one particular feature among all available features we have 
been using. How can we quantify the optimality of such a 
classifier? 

Based on which cluster the datum is belonging, each 
character can be determined using a code which represents 
the cluster membership of the datum if all the features are 
used. Such codes have already be formed in the decision 
table. If m is the total number of features used, then the 
length of the codes will also be m. This situation can be 
pictured as a balanced tree with depth m and each terminal 
node will uniquely determine a code for characters. Of 
course, there may be redundancies in such a tree. Suitable 
rearrangement of the nodes can significantly prune 
unnecessary branches and as a result an optimal decision 
tree can be obtained. . In such an optimal decision tree, 
terminal nodes will not necessarily have a depth of m from 
the root node and the length of code will become shorter. 
Optimum code length can then be obtained. 

Take an example, consider the case of classifing 4 

characters with 3 different features. Suppose the following 

decision table which summarize the clustering results has 

been found. 
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character id code 

1 ~ F i f 3 ] F2[2] F3[l] 
2 FJ1] F2[2] F2[3] 
3 ^[1] F2[2] F3[2] 
4 Ft[2] F2[l] F3[2] 

As shown in figure 2.5a, feature 1 (Fl) is being considered 

first and then feature 2 (F2) and feature 3 (F3) and the 

resulting decision tree is constructed as shown in the 

figure, the total number of nodes will be 7. 

However, if feature 3 is considered before feature 2, then 

the structure of the decision tree will be different as 

shown in figure 2.5b. It is noticed that the total number of 

node in this case is reduced to 6. 

^ ^ ‘ 
© © © 

i/ 0 Q 

I . ^ T v 
X Mo. of Nodes = 7 

m m 

a. F1 - F2 - > F3 

I ’ 
[3] (¾ No. of Nodes = 6 

b. F1 - > F3 - > F2 

F igu re 2 . 5 
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Following the above argument, we can claim that the optimum 
tree classifier is one which has the least number of nodes, 
both internal and terminal added together. The smaller the 
number the nodes, the least amount of computation and the 
least number of features are required in the discrimination 
procedure. To facilitate the search for the optimum, the 
following dynamic programming model is constructed. 

Dynamic Programming Formulation 

Let n = the total number of features used 

S = initial data set for classification 
A = {0,1} 

v = (0,0, ..., 0) e A n 

=initial status of the features used 
r 1 ith feature has not been used 

where the ith entry = -
u 0 ith feature has aleady used 

e i = ( 0 , 0 , … 1 , … 0) € A n 

ith position 
indicates that the ith feature has been used while 
all others still remain unused. 

0 

Q = set of clusters formed by using the ith feature O 

on S c T(S) which is the power set of S 

Assumption: 

If every subtree contains the minimum number of nodes 
(both internal and terminal), then the whole tree contains 
the minimum number of nodes. 
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Note that this assumption is actually valid. 
Let f (S,v) minimum number of nodes both internal and 
terminal, needed in the optimal decision tree for 
classifying data set S given that the status of features 
already used is represented in v. 

Then V S c S , v € A n 

r . … . • -

f(S,v) = min 1 + Y f(T,e. v v) 
i€{i:e.Av=0} V 1 

S 

where A, denotes the logical and operator and 

v denotes the logical or operator. 
Boundary conditions: 

f(S,v) = 1 if |S| = 1 or v=(l,l, l) 

Our target is to find f(S,v)• 

Although the problem of obtaining the optimal decision tree 
can be formulated in the above format, the time complexity 
for arriving at the optimum requires exponential time and 
belongs to the class of NP complete problems. As a result, 
practically the above problem is actually unsolvable. 

Due to the abovementioned implementation difficulties 
especially when all the character set (i.e. 13,000) are to 
be recognized, another approach i.e. Supervised learning 
approach will be studied in more detail. 
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A.3 Other Algorithms (maximum-distance & ISODATA) 

MAXIMUM-DISTANCE Algorithm 

The maximum (maximum-minimum) distance algorithm is another 
simple heuristic procedure based on the Euclidean distance 
concept. In the first step, we arbitrarily choose one object 
to be the first cluster centre. Next, we determine the 
farthest sample from this cluster centre and let it be the 
second cluster centre. In the third step we compute the 
distance from each remaining objects to these two clusters. 
For every pair of these computations we save the minimum 
distance. Then we select the maximum of these minimum 
distances. If this distance is an appreciable fraction of 
the distance between original two cluster centres, the 
object will form a new cluster centre. Otherwise, the 
algorithm will be terminated. 

In the next step, we compute the distance from each of the 
three established cluster centres to the remaining objects 
and save the minimum of every group of three distances. 
Then, we again select the maximum of these minimum 
distances. A new cluster centre will be formed if this 
distance is an appreciable fraction of the "typical" 
previous maximum distances• Otherwise the algorithm is 
terminated. A useful measure of the typical previous 
distances is the average of these distances• The entire 
process will be repeated again until the condition for 
termination is reached. 
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ISODATA Algorithm 

The Isodata (abbreviation of Iterative Self-Organizing Data 
Analysis Techniques A) algorithm presented in this section 
is similar in principle to the K-MEANS procedure in the 
sense that cluster centres are iteratively determined sample 
means. Unlike the latter algorithm, however, Isodata 
represents a fairly comprehensive set of additional 
heuristic procedures which have been incorporated into an 
interactive scheme. 

Before executing the algorithm it is necessary to specify a 
set N of initial cluster centres z ” z 0 / … z T and K 

2 N c 

to be the number of desired clusters. The algorithm can be 
described as follows. 

1. Distribute objects among the present cluster centres by 
choosing that cluster which corresponds to the minimum 
Euclidean distance. 

2. Discard clusters with fewer than 0.T members where a„ is 
N N 

predetermined. 
3. Update all cluster centres. 

4 • Compute the average distance Dj of data from their 
corresponding cluster centres• 

5• Compute the overall average distance D of data from their 
respective cluster centres. 

6. If this is the last iteration, set lumping parameter Q = 
c 

0 and go to step 9. 
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If N c ^ K/2, go to step 7. 

If this is an even-numbered iteration or if N 2K, go 
to step 9? otherwise continue. 

j 7 • Find the standard deviation vector or • for each clusters 
and find the maximum component of each cr • and denoted it 
as a. . jmax 

8' I f ^jmax > es where e g is a prespecified standard 
deviation parameter and 

a. D. > D and N. > 2 (axT+l) or J N ' 
b. N c ^ K/2 

then cluster j is splitted. 

If splitting took place in this step, go to step 1; 
otherwise continue. 

9. Compute pairwise distances between all cluster centres. 
10.Compare all pairwise distances against lumping parame 

Arrange the L (L being a preassigned value) smallest 
distances which are less than 0 in ascending order. 

11.Pairwise lumping is performed for the smallest dista 
in step 10. 

12. If this is the last iteration, the algorithm terminates. 
Otherwise, go to step 1 for the next iteration. 

It should be noted that Isodata is an extremely complex 
algorithm and in general requires extensive experiment-ation 
before we can arrive at any meaningful conclusion. 
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A4 POSSIBLE IMPROVEMENT 

§4.1 TRAINING AND TEST SAMPLE REDUCTION 

One possible improvement for the multistage tree classifier 
developed is to reduce the number of training sample items. 
We have been using the entire dictionary of the Eten Chinese 
system which composes of around 13,000 Chinese characters. 
However it has been noted that many of these characters are 
actually 

very seldom used • Coiniiion Chinese characters only 
amounts to about 5,000 Chinese characters. As a result, it 
would be better for us to choose a smaller set of characters 
in our stage of training. The use of a smaller training data 
set will significantly reduce our training time required. On 
the other hand, it also increases the discriminating power 
of the classifier since the number of characters of similar 
shape decreases at the same time. 
Besides, the testing sample can also be reduced so that 
statistic on the performance of the classifier can be 
evaluated more easily in a shorter period of time. In fact, 
if the testing sample items are randomly selected, the 
result will still be reliable and the performance of the 
classifier can accurately be evaluated. 

§4.2 NOISE FILTERING 

As mentioned in section 3.6.3, the performance of the 
recommended tree classifier under noisy sample is rather 
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poor when compared with the original training character. One 
of the possible reasons may be due to the sensitivity of the 
corner feature to noise (both random noise and printed 
noise)• Therefore, reduce the noise of the noisy sample may 
improve the performance of the classifier. 

To reduce the noise, two noise filtering algorithms has been 

derived. They make use of the fact that the probability of 

white noise generated in the character bit pattern is 

independent to its neighbourhood bits, with the noise 
generated of this nature, there will be three possible 
cases. 

C a s e — T h e noise is generated near the character key 
stroke. In his case, one or more black dot/s will 
occur at the neighbour of the noise bit as shown in 
figure 4.1. 

Noise bifs ear 
c h a r a c l e r key j ""' — 
s f r o k e s . " ' ^ ^ H H 

―ri 

: : : m 
F igu re 4 . 1 Case 1 : Noise bif n e a r Ihe c h a r a c l e r 

key slrol<es 
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Case 2: The noise is generated ^ … “ yeneranea at the area other than the 
k S y S t r ° k e i n a that no other noise bit occurs 
a t t h Q

 0 of the noise bit as shown in figure 
4 . 2 . 

Noise bils 

Figure 4.2 Case 2 : Noise bif generofe ol (he area 
olher fhon key slrokes 

C a s e - 3 : T h e n o i s e is generated at the area other than the 
key stroke. At the same time, another noise bit/s 
occurs near the noise bit as shown in figure 4.3. 

Noise bils occurs 
'he same fime ^ ^ 

••111111 H I 

Figure 4.3 Case 3 : Noise bif occurs 
al. Ihe same lime 
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It can be shown that the noise generated in case 1 and case 
3 are difficult to remove as there is not enough information 
to determine whether the neighbouring black dots are the 
actual key stroke or just another noise bit(s). 

ALGORITHM 1 

This filtering algorithm provides the capability of 
eliminating a single bit random noise (case 2) over the 
character bit pattern. By adjusting the values of the 
threshold 8, some special noise in case 3 can also be 
eliminated. But error may also occur, in removing the black 
dot of the key stroke which is not desirable in the 24 x 24 
character dot pattern. 

The details of the filtering algorithm is explained as 

follows. 

Let A(i,j) be the character bit pattern such that 

• . r 0 for white dot 
A(i'j) = t i . f o r black dot 

where 1 ^ i, j ^ 24. 

For each value of i and j (refer figure 4.4) , if A(i, j) = 
1, then the black intensity over its neighbour is 

i I(i,j) = 1/9 {ocA(i,3) + A(i-l,j) + A(i+l'j) 
+ A(i,j-1) + A(i-l,j-l) + A(i+l,j-l) 
+ A(i,j+1) + A(i-l,j+l) + A(i+l,j+l) 
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1 + , ) A(!, i + 1 ) A( l+1 , i + J ) 

Figure 4.4 

If i,j) 5 , A(i,j) may be the noise bit and will be 
eliminated. Otherwise, A(i,j) remain unchanged• 

ALGORITHM 2 

As xaentioned in previous paragraphs, algorithm 1 can only 
filter the single bit noise (case 2) • To filter the noise 
bit in case 3 with algorithm 1, there will be a probability 
of filtering the character key stroke instead of the noise 
bit. To improve the suitation, this algorithm is suggested. 

With this algorithm, the consecutive noise bits and single 

noise bit as shown in figure 4.3 can be filtered• 

In this algorithm, two change counters i.e. horizontal 
change counter and vertical change counter are introduced. A 
change here refer to the change from white dot (bit 0) to 
black dot (bit 1) or vice versa. For each bit in the 
character bit pa tern, the surrounding bits in figure 4.5 
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are being considered. The horizontal change counter will 
store the number of changes in the horizontal direction and 
the vertical change counter will store the number of changes 
in the vertical direction• 

I “ “ 
j Ver t ica l 

‘ Change 
counter 

Change No ” 
Change 

j 
j Change | 

) Hor izonta l 
j Change 

counler 
i 

; F igure 4 .5 Noise Fi l ter ing A l g o r i t h m 2 

To filter the mentioned noise bits, the following conditions 
has to be satisfied. 

a. The horizontal change counter l and the vertical change 
counter ^ 2. 

b. The horizontal change counter a 2 and the vertical change 
counter ^ 1. 

Even with this noise filtering algorithm, the noise coherent 
to the character key stroke cannot be eliminated. 
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The performance parameters described in section 3.6.1 will 
be measured with the noisy samples being filtered by each 
algorithm so that the degree of improvement after the noisy 
sample has been filtered can be determined. 

§4.3 DECISION WITH OVERLAPPING 

Our previous approach in clustering the Chinese character 
set has been relying heavily on the corner codes of the 
character. Basically classification to and from groups are 
based on the corner codes and misclassification actually 
refers to the state of misclassifying the character with 
some other corner code other than its own one. Errors are 
measured in terms of such misclassifications and it has been 
pointed out that as the depth of the tree grows such errors 
will be propagated and magnified. How such errors are 
tackled is the theme of this section. 

Although errors will be propagated to the terminal nodes of 
our tree classifier, such errors are not actually real 
errors. Notice that our objective here is only to cluster 
the original data sets into some numbers of groups. Corner 
codes have been helping in the process of building the 
classifier but we are not using the corner codes in our 
future discrimination process. Characters at each of our 
terminal nodes do not necessarily have the same corner code 
but they should be similar in the sense that the feature 
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values are very close to each other. As a result to the 

above arguments, no error handling procedures have to be 

taken. 

Based on he above approach, tree classifier has been 

• • 

constructed which shows that Chinese characters associated 

with each terminal node are really very similar in shape. 

However we can still explore some error handling steps so 
. 

that the similarity provided by the corner code can be 

maintained and even improved. As a result the idea of 

overlap has been proposed. With the idea of overlap, we will 

simply duplicate those data items which have been found to 

be uncertain in the decision and are sources of errors, They 

will be classified to both of the subnodes of the parent 

node. 

Consider a scenerio designated by figure 4.6. 

2 ¢ / ^ ) 3 

Figure 4.6 
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Suppose x has to be classified to either node 2 or node 3. 

Suppose the corner code of x belongs to the grouping 

revealed in node 2, then.x should be classified to node 2 if 

no error is to be committed in the classification. However 

if it just happens that the use of the discriminant function 

classifies x to node 3, misclassification occurs. In such 

case we will duplicate x to node 2 since the position of x 

is uncertain. It can be in node 2 or in node 3 reflecting 

the situation of overlapping as illustrated by figure 4.7. 

: G D 
Node 2 Node 3 

.C /'- . . . • . . . . . • . . . . . . . . . - / 

f i g u r e 4 . 7 

Overlapping will delay the committing of errors to 
... . . . . . ' ' . . 

subsequent stages of classification and will on the other 
hand increases the number of data items residing in the 
subsequent nodes in the tree. If the depth of the tree 
classifier is large, such technique is not feasible and a 
relatively large number of data items will be associated 
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with all the terminal nodes. However, as we have been 
adopting a tree classifier with depth less than ten which is 
actually not quite a large value, the use of the idea of 
overlap is justified and has been implemented. 

IMPLEMENTATION REMARKS 

It has been noticed that when overlapping is introduced, one 
single character can exist at more than one terminal node. 
Since each terminal node will be designated by a unique 
code, this single character will be represented by more than 
one code. Such increase in the number of distinct codes in 
the system will not be too difficult to manipulate when only 
one single tree is under consideration. When three separate 
trees are used, if for one particular character which has n 
distinct codes in the first tree, n in the second tree and n 
in the third tree, then the total number of distinct codes 
corresponding to this character will become n x n x n which 
will be too large for easy manipulation. Take an example 
when there is 2 codes (say 01 and 02) in the first tree, 2 
codes (say 01 and 03) in the second tree and 1 code in the 
third tree (say 04)• The possible combined codes include: 

010104 010304 020104 020304 

which amounts to 2 x 2 x 1 = 4 • As have been pointed out 
previously in section 3.5.4, the lookup code table will be 
read in during run time and the codes will be stored in an 
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array and sorted in ascending order so that subsequent 
searching by binary search can be done. However, since in 
our case here the number of codes is too large, we cannot 
store all of them in a single array. As a result, we have 
to use a file in the hard disk as the storage. The codes 
will be sorted and stored in an file permanently before the 
program is executed. Constant lookup from this file is 
required for searching. Of course, such constant lookup from 
file in . the. hard disk will increase the processing speed 
significantly. The experimental results will be given in 
chapter 5. 

§4.4 BACK TRACKING FOR HOLES 

We have been using three separate trees in our training 
process, each of which animating one of the corner of the 
three corner code. Suppose we are only interested in 
discriminating the around 5,400 commonly used Chinese 
characters. In our study tree architecture of three separate 
trees each with a depth level of four has been adopted. We 
can calculate the total number of distinct codes which can 
be formed within such framework. Follow similar argument 
given in section 3.5, the total number of distinct codes can 
be amounted to 16 x 16 x 16 which is 4,096. Of course, if 
each code is only associated with one character, we can 
notice that all these 4,096 codes are not enough and 
theoretically they should all be used up and some codes 
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should even have to represent more than one character. To 
represent more than one character by one code is really not 
a problem since as we have suggested in previous chapters, 
the decision associated with this multistage tree classifier 
is only our first stage of classification and further 
discrimination is required. What really concern us is that 
not all the 4,096 codes will be consumed by the 5,400 
Chinese characters. Instead some codes may be left untouched 
by the characters which we can refer them as holes". It can 
easily be noticed that holes are , inevitable since similar 
characters will be clustered together, and get the same 
code. In Chinese character recognition system, there are 
quite a number of different groupings of similar characters. 
As a result, the actual codes used will drop drastically 
resulting in the emergence of a large number of holes. 

Hole is both a good and a bad feature in our discrimination 

process. The bad thing of hole is that if errors have been 

made in determining the code in each of the three tree 
• • . . •• . 

classifier, the outcoming code may not be a realistic one. 

In other words, the code calculated may not exist and 
correspond to any particular group of characters. As a 

result, no decision can be made and it seems that the entire 
classification process will be a failure. On the other hand, 

the existence of such holes is beneficial to us since it 

provides a channel for trapping errors which are unavoidable 

in usual discrimination system. Whenever unrealistic code is 
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computed, errors must have been committed in our previous 
stages of classification. This is regarded as a good feature 
since it provides a signal for us to signify the committing 
of errors. 

One should note that errors can still be committed and 
remained unnoticeable to us. Codes for the three tree 
protocol may be incorrectly computed independently while the 
final combined code still remains realistic and corresponds 
to some particular characters. The presence of holes cannot 
capture this type of error and we can by no means correct 

such mistake since we do not simply reckon its presence. In • • -
section 4.5, we will describe one method which will reduce 
the probability of the emergence of such mistake• Meanwhile, 
let1s concentrate ourselves on the problem of holes. 

We have claimed that hole is a good feature, but it will I 
still not be good if the bad feature of uncertainty in terms 
of the recognition result has not been solved. As errors has 
been occurred, we may wish to fix the errors so that codes 
can be corrected. The search for such mistake can easily be 
achieved through the idea of back tracking. Since three 
separate trees have been used, back tracking on all these 
three trees is required. Assuming that errors committed at 
greater depth are more likely than errors committed at the 
top levels, we can devise a back tracking algorithm which 
will back track on the three trees successively for an 
increasing number of levels until a realistic code is 
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obtained. To simplify the actual searching time of the 

algorithm, only one error is assumed. The complete algorithm 

can be described as follows. 

1- Repeat for back track level i = 1, 2, 3, 4 

/* only 4 levels in the tree*/ 

2 - Repeat for corner j = 3, 2 , 1 

2.1 Back track for i levels of the tree corresponding to 

corner j by going up for i levels and assuming 

decision has been made wrongly at that node. 

2.2 Tree code for other corners remain unchanged. 

2.3 Get the new code and determine if this code is 

realistic. 

2.4 If it is a hole, continue by going to step (2) 

again. 

2.5 Otherwise, exit the algorithm and report the new 

code. 

. .¾ . . . • . . 

The above idea has been implemented and tried out in the 

computer. 

§4.5 FUZZY DECISION FUNCTION WITH TOLERANCE LIMIT 

This section wants to tackle the problem of unnoticeable 

errors which may have committed during the process of 

classification. The entire idea lies in the use of a fuzzy 
J , . 

decision based on the introduction of tolerance limit. 
ft-

Our previous discussion has been completely based on the use 
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of a multistage tree classifier. By a multistage classifier, 
complete decision is to be made by a number of successive 
decision which in our case is represented as the linear 
discriminant function at each of the internal nodes of the 
tree. For simplicity, we will consider only the case of one 
single tree and the problems associated with the three 
separate tree protocol will follow in the same way. 

The decision at each node has been characterized by a linear 
discriminant function which is actually representing 
hyperplane dividing the feature space into two regions, one 
representing the left subnode of the. parent node while the 
other the right subnode. Here the decision is definite and 
clear cut and object has to be classified to either one of 
these two regions even when the distance of the object from 
the hyperplane is very small. As we have pointed out 
previously, committing error is inevitable. So as to reduce 
the chance of obtaining unnoticeable errors, it will be 
better if we do not provide such a definite decision for the 
internal nodes. If the distance between an object and the 
hyperplane is too small, preferably smaller than a 
preassigned threshold value which we will call the tolerance 
limit, then decision of classification to which region is 
not made. Rather the decision will be delayed. But when can 
we decide and how should we decide? 

Denote the tolerance limit by c. The previous argument 
claims that decision cannot be finalized if the object lies 
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within a distance of c from the hyperplane. Three regions 
will be resulted as shown in figure 4.8. The shaded region 
corresponds to the region where decision will be delayed. To 
determine the decision in this region, we will choose to 
quantify an error measure. The object will be classified to 
the region if the subsequent total error accumulated is a 
minimum. We will define error to be the distance be ween the 
object and. the hyperplane if the object is residing in the 
"not-yet-determined" region. However, if the object is just 
inside one of the "decided" regions, no error will be taken. ‘ ‘ • _ , - • 

"Not yet dec ided" 
region 

:. ,vx" _ / \ •••. / 

O-1 \ V ] Hyperplane 

F igure 4 .8 

I , 
_: . ‘ . ‘ • “ . . ‘ ... .. . ‘ ‘ - -
:. ... . . . . . . . . . .. 
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With the basis of the above discussion, the following 
algorithm can be formulated. 

Let any particular node be designated as n. Suppose 

Yn(x) = linear discriminant function associated with node n 
x 0 = object vector 
E(n) = error measure associated with the node n. 

We will define a recursive procedure named Error(.) which 
takes a node as input and returns the error associated with 
this node. 

procedure Error(n) 
{ 

If n is a terminal node then 

return 0 
else 
{ ’ • 

If y (x ) < c• then /* not-yet-decided region */ 

left < left subnode 
Eleft < Error (left) 

right <- right subnode 

Eright < Error(right) 

return min(Eieft/Eright) + f Y (x ) I 

else if y (x ) > e then /* left subnode */ 

left < left subnode 

, return Error(left) 
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else if y (x ) < -e then /* right subnode */ 

right <- right subnode 

return Error (right) 

1:.. } 
} ’ 

§4.6 DIFFERENT TREE ARCHITECTURE 

By the way, we have been using the three separate tree 
protocol in our analysis. In this section, we will explore 
some other tree architecture which may be more favourable in 
our current situation. 

One of the possible alternatives to our present three 

separate tree protocol is a tree architecture which will 

combine the three trees to a single one. Suppose the tree 

for the first corner has been constructed. We can further 

develop at the terminal nodes of the first tree for a few 

levels of depth by the consideration of the second corner 

feature. Similarly the final tree will also be further 

extended at the terminal nodes by the consideration of the 

third corner feature. This 1-tree protocol is simple and 

straightforward although there is no guarantee that it is a 

good one. Figure 4.9 shows the configuration of the 1-tree 

protocol. 
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F igure 4 .9 1 Tree Pro toco l 

To improve the 1 tree protocol, we can also consider the 
case where the use of the second corner features can be 
varied and the order which corresponds to the best 
discriminating power is chosen. Despite its intrinsic 
simplicity, 1-tree protocol is prone to error since such an 
increase in the depth of the tree will inevitably increase 
the chance of committing error. 

There is another tree architecture using the idea of entropy 

as given in the next section. 
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§4.7 BUILDING DECISION TREE BY ENTROPY REDUCTION METHOD 

The 1-tree protocol discussed in previous section can be 
further improved if the best corner feature is used at every 
internal nodes of the tree instead of just allowing the use 
of one particular feature successively at some levels of the 
tree classifier. How can we quantify the "best" and how can 
we select the "best"? The question can be answered by 
defining the concept of the Shannon1s entropy measure. 

SHANNON'S ENTROPY MEASURE 

Shannon1s entropy is basically a * measurement of the 

information level for a particular group of objects within a 

cluster. If a certain cluster consists of n objects where 

each object has a probability of p of being residing in the 

cluster, then the Shannon1s entropy, denoted by E, is 

defined as 
n 

E = X ~Pilo92PiV 
i=l 

The performance of a classifier can then be measured in 

terms of the difference between the entropy level before and 

after the classification process. It is usually referred as 

the information gain by the classifier. In symbol, the 

difference in entropy is 

AE s E n e w - E0riginal • 

What does the value of the entropy tell us? Is a large value 
or a small value favourable? To answer the above questions, 

5 5 
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we will consider an example. In a scenerio where a 
classifier classifies n distinct objects into only one 
cluster. 

T h e n Pi = J V i=l,2, .",n • 

n 
Therefore Entropy = ^ p log2Pi 

i=l 

n 
= I H l o^2 n 

i=l 

I = n • H l o g 2 n 

=log 2n • (4-1) 

In another scenerio where a classifier can classify n 

distinct objects into k clusters with n objects residing in 

each of them. 
k 

Then Y nj[ = n. 
::: i=l 

For the ith cluster, since there are n distinct objects and 
• 

p• for each object will be — • Therefore the corresponding 

entropy by (4-1) will be Ei = log ni. 

Hence, the total entropy, being weighted by the correspondi-

ng fractions of population shared, is 

k ni 
E 2 = ^ — log2ni. (4-2) 

i=l 

56 



k • 
Obviously, E 2 = V ^ log0ni 

L̂k n 2 
i=i 

k r . 
= H Z l o^2 n i n i 

i=l L J 

= H lo^2 \ n, 1 n2
n2 • … n ) ^ j 

^ H l og 2 f n ni n n2 • • • • ! ! 
v. j 

since rij_ < n Vi 
1 

r 

= l o g n +112+ +nk n 

V. “ 

1 
= i o g 2 [* n n 1 H 

V. j 
=log n 

= E i 
i.e. E 2 ^ E! 

The final scenerio shows n distinct objects being classified 

successfully to n distinct clusters with only one object 

residing in each of them. 

Then k = n and n-j[ = 1 V i=l,2, •••, n • 
k 

By (4-2), the entropy E3 = ^ — log2 1 = 0 ‘ 
i=l 

Hence, 0 = E3 ^ E2 ^ Ex = log2 n • 

The above inequality shows that the smaller the value of the 
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entropy, the higher the information level the cluster 
possesses. It also reveals that the upper bound and the 
lower bound for the entropy measure are log n and 0 
respectively. 

As a result of the above discussion, AE should be chosen as 
negative as possible so that the classifier is favourable. 

TREE CLASSIFIER WITH ENTROPY REDUCTION 

We want to use the idea of entropy reduction to improve our 
1-tree protocol. As we have already mentioned, at each 
internal node of the tree we are free to choose among, the 
three corner features any one particular feature. Decision 
is to be made so that there is the largest increase in the 
information gained. With the concept of entropy at hand, 
this actually refers to a classifier which gives the most 
negative value of AE. 

In the current situation, characters are to be classified 
according to the three corner codes. Since all these three 
corner codes may be used at every step, three different 
classifications are possible. Suppose the first corner 
feature is selected, the entropy gain is reflected by the 
value of AE based on the classification given by the first 
corner feature. As a result/ AE may not reflect the actual 
information gain very well since the original entropies, 
being calculated for the three different classifications 
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based on the three different corner features, are all 
different. In view of this, the entropy, which is the actual 
information level of a particular scenerio, will be adopted. 
The smaller the value the entropy, the higher is the 
information level. All three corner features will be tried 
at each internal node and the resulting entropy values are 
compared. The smallest among these three entropy values will 
be chosen and based on such corner feature the group of 
objects will be classified into smaller subgroups. The 
entire algorithm can be formulated as follows. 

Since it takes a long time to train up this classifier, only 
500 commonly used Chinese characters are randomly chosen for 
training so that we can arrive at meaningful results at a 
relatively short period of time before we can proceed 
further. As a result, a depth of seven levels is assumed in 
our 1-tree protocol. 

Repeat for tree level i = 0, 1, 2, •••, 6 
Repeat for every internal node n at level i 
1. Repeat for corner value j = 1, 2, 3 

1 . 1 cluster the node n using the jth corner feature 

1.2 Calculate the entropy of the clustering result 
2 choose the corner feature c which corresponds to the 

smallest entropy values. 
3 Repeat the classification process using the cth corner 

feature. 
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A.5 THEORIES ON STATISTICAL DISCRIMINANT ANALYSIS 

I. The General Method of Classification 

Consider the problem of classifying an observation (vector) 

x into one of k groups (or populations) IT” TT,, • " TTV 
Z JC 

where TT. is characterized by a probability density function 

. Suppose further that the observation has a prior 
k 

probability p. of coming from TT., where V p. = l, and that 
X X La A i=l 1 

the cost associated with classifying it into TT. when it has 
actually come from IT. is c^j . 

Within this framework, the conditional probability of 

classifying x to TTj[ given the observation x is thus 

Pifi(x) . i = l, 2f k k 
I P.ftCx) 
i=l 1 1 

and hence the expected costs of misclassification are 

k k 
I Pifi(x)cii / I P i f i ( x ) - " 1 fk(x)cik / 1 Pifi(x) 
i 1 i=l i^k i=l 

k 
where the term ^ p.f. (x)^. / ^ Pifi(x) i s the expected 

i^j J i=l 
cost when misclassifying rule chosen should be one which 
minimizes the expected cost of misclassification. Thus, we 

k 
assign observation x to ITi if ^ P r

f
r( x) cir / I Pj_fi(x) i s 

i=l ~ ‘ 
minimum, i.e. if E pr fr ( x ) cir i s minimum. This is 

r^i 
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equivalent to assigning observation x to T\± if 

k k 
I p

r
f
r( x) cir < I P r

fr( x) c
j r r=l r=l 

Vj = 1, 2, ...f k; j ^ i (A5.1) 
since c = 0 Vj = 1, 2, •••, k. 

In the situation where the costs of misclassification are 
all equal, this rule reduced to assigning x to TT if 

p i f i ( x ) = . n ? a x v P if i (x) (A5.2) 3 —X 9 2̂  9 • % ̂  JC J J 

Assignment rules (A5,1) and (A5.2) have been derived by 
considering the discriminant analys-is problem from a 
decision theoretic viewpoint. Viewing it form a purely 
probabilistic viewpoint instead, the optimal rule is to 
assign x to that group TTi for which the posterior 
probability is the greatest. Now, using the Bayes theorem, 
the posterior probability rule is also (A5•2)• So when the 
costs of misclassification are all equal, the optimal 
decision theoretic and probabilistic classification rule are 
equivalent. 

In practice, the probability density function f^(x), i = 1, 
2, . • • / k are seldom known. Usually one assumes that they 
have some particular parametric form (e.g. multivariate 
normal distribution) which depends on some unknown 
parameters. Usually, random samples consisting of 

• 

observations known to have come from each specific one of 
the k populations are used to construct sample based 
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classification rules corresponding to (A5.1) and (A5.2) 
above. 

II. Classification using Distance Measure 

We are now going to devise another set of classification 
rules and will see later, under certain circumstances, these 
rules and our previous ones are actually equivalent. For 
simplicity, let's treat the case when k=2 first and assume 
also that the underlying probability distributions of the 
two populations are multivariate normal with common co-
variance matrices. As a result, we are in the situation 
where we have an individual with observation vector x = 
(xlfx2, • • • ,x ) 1, and we wish to classify it into 
N (ii1 , J) o r into TT N (M D on the basis of x, where M. 
P P 1 

=(Mi]L/ Mi2/ - - M i p) 1 . for i=l/ 2. 

In order to develop the classification theory, we first 

assume that the parameters m2 and J] are known. Here J 

is a p x p symmetric matrix represented as J = (0^), i,j = 

1 , 2 , . . . I n t u i t i v e l y , it seems reasonable to find a 

linear combination of the observations, called a 

discriminant function, given by 

y = al xl + a2 x2 + … • + ap xp 
= a » x (A5.3) 

where a ^ s are some constants and to classify x into ITi if y 
‘> c a nd into TT2 if y < c where c is another constant. The 

62 



problem then reduces to determining the values of a. »s and c 
which minimize the probabilities of making an incorrect 
classification. 

If x is from TTlf then y will be univariate normal with mean 

* p P P 
= ajMij = a, a n d variance v2 = ^ ^ a^^.a. = a'J a. 
j = 1 i=lj=l 

Similarly if x is from IT2 , then y will be univariate normal 
• lu * p 

with mean m 2 = a'ju and the same variance v • An intuitive 
criterion for choosing a is hat to separate u as far from 
ie 9 U 2 as possible, relative to v • To achieve this, we 

define the Mahalanobis distance between 11̂  and 11̂  to be 
1 2 

* * 2 
a2, (“1' “2) A (“ M ) = 2 v 

and this quantity is supposed to be a measure of the 
"distance" between the two populations. Thus, we are going 
to find a so that in this y-scale where y = afx, A will be 
maximized. 

* * 2 2 
2 M2) [a'(H^, U2)] 

A M2) = 2 ~ = 
v a'E a 

Using the Cauchy-Schwartz inequality, we have 

a' (/Lt1, [i0) , 1 1/2 
^ ~ ^ ― ^ [(^1 - ^ E ( ^ - / ^ ) ] 

(a'E a ) 1 " 
—1 

and equality holds if and only if a a J - 2) 
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I . . • 2 
A < H2) 'I “ 1 (M- l “ 2 ) . 

I 
Therefore, he maximum of A2 is attained when a = X

 1( 1_ ) 
I 1 2 
I and in such case, 
II 

A 2 ( i, 2 ) = ( ^ M2) fE 1 H2) (A5.4) 
‘ 

I 
Once the a. !s have been found, evaluation of (A5.3) for an 
individual whose measurements are xn , • • • , x yields the 

P I discriminant score y for that individual. 
I 
I To determine the constant c , we examine the following figure 

X ifT i X i i r 2 

I • C j 1 “ . . . . . 

I . 1 1 
: ~ / \ : 

1 Pr(2!1) Pr( 112) 1 * * 
u 2 u 1 

Figure A 
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which shows the two distributions of y along with an 
arbitrary constant c. If x is from J]2 but y ^ c, then we 
would classify x into \]lr thus committing an error. The 
probability Pr(l|2) of making this error is shown in the 
figure. Similarly Pr(2|l) is also shown. Intuitively, we 
would like to find c such that the sum of these 
probabilities Pr(l 2)+Pr(211) is minimized. In this simple 
case, it is obvious that this will be achieved by choosing c 
half way between the two means, that is, 

1 , * * 
\ C = 2 (M1 * “2) 

1 * • * 
=-(a7^ _ a'u2) 

= E , 1 ( “ l - “2)(“1 + 2) 

Thus the empirical rule of classification is 

Assign x to TTi if 

E “ 1 ( M2)X > - E “ 2 ) + M2) 

i . e ( - fE “ 1 x "1(M1+M2) (A5.5) 

or equivalently (after some strict forward manipulation), 

^ if (M-x) -x) > (M -x)\l -x) (A5.6) 

The last assignment rule simply says that we will classify x 

to TTi if the Mahalanobis distance between and x is 

smaller. 
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1; 

To extend this approach to the case when k > 2, it should 

sound obvious then that the classification rule is to assign 

x to TTi if the Mahalanobis distance between and x is the 

minimum among all the others, that is, if 

I A2 … x) < A2(Mj , x ) vj = 1,.. w p j i 

i . e . ( i - x ) fE x) > x) 'J ^ ( m . - x) 

Vj = l,.",p; j ^ i (A5.7) 

or equivalently if 

( i - ^ j ) l x > \ - M j ) E " ^ ( M i + Mj ) V j ^ i (A5 .8 ) 
• ... • 

No ice that 

(Mi - x) ^(Ua - x) < (]Lt. - x) 'I x) J J 

+ x'j - • 1 

> / V E + x'E - -E V ^ J J J J 

I • “i'E 1 - 2x'E > Mj fE -1Mj ""Vj 
. 

I “ i ? " ^ i X T 1 > I Mj'E - x'E ""Vj 
|w . . . ‘ ‘ ....... • j 

‘ . Hence a generalization of the discriminant function can be 
• . . I e ' 

taken as 
I I . . . . . 

y = a. 'x + c. , i = (A5.9) 

where = E 1 ( A 5 . 1 0 ) 

and c L = § j/E 1 & 
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$: . . . 

The equivalent classification rule in terms of the 
discriminant function will then be: 

Assign x to if 

yi > Yj v j yi_yj > 0 V j ^ i (A5.ll) 

i-e- Yi = max y i (A5.12) 

We have assumed a common covariance matrices for all the 
groups. However if the group covariance matrices are not 
equal and suppose these matrices be denoted as . The 
Mahalanobis distance can be modified as A2 (/Lt. ,x) 

… - ) / [ - • Then the quadratic .term x'J cannot be 

canceled in the above calculation and as a result, a 
quadratic discriminant function will come out. 

The foregoing discussion based on the discriminating 
criterion is really a special case of that treated in I. 
Under the framework developed in I, if we assume the costs 
of misclassif ication are all equal, the classification 
procedure of (A5.2) gives assigning x to TTi if 

P ^ ^ ) > Pjfj(x) Vj ^ i. 

If we further assume multivariate normal distributions with 

common covariance matrix J] and equal prior, that is, 

I fi( x) = [ 2n 2 \ A " ^ 2 e x p [ 5(x i ) T “ 1 ^ - ^ ) ] v 1 

and p. = p. V then (A5.2) can be further reduced to 1 

f.(x) > fj(x) V j ^ i 
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^ [ 2I ) P / |s|"1/2 exp[- ^(x-M.)] 

I > ( 2I ] P / 2|l|" 1 / 2 P[_ T ^(X-M.)] Vj i 

^ ( x - "1(x _ U±) > (X _ iUj) 'J "1(x iu.) Vj ^ i • x) 'J … _ x) > x) 'J - x ) Vj ^ i 

which is exactly the same as (A5.2). Thus our previous claim 
is justified. 

When our assumption of equal prior probability is not true, 
the classification rule based on (A5.2) and the normality 
assumption will lead to 

pi [ 2S ] P / 2 W 1 / 2 exp[- i(x_“i) ̂  ^ ( ^ i ) ] 
P/ 2 

> Pj [ 2n ) \A"L Y 2 E X P [ "^"(^j)] 
vj i 

• 

P ± exp[- |(x-Mi) fJ ^(x-n^J 
> Pj exp[- i(x—Mj”E "1(x-/ij)] Vj ^ i 

, I n p ± _ |(x - ^ i) ""1(x - iui) 
> In Pj - |(x Mj) 'I - 1(x - Mj) Vj ^ i (A5.13) 

In such case, an extra term In p. is added and in the 

terminology of our generalized discriminant function, only 

the terms c i is changed. The new c i is increased by the 

term In p^ 

i.e. c± = In - I V i (A5.14) 
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A.7 A PARTIAL LIST OF SEMANTICALLY RELATED CHINESE CHARACTERS 
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A.8 AN EXAMPLE OF MISCLASSIFICATION 
TABLE SAS 17:50 Saturday, December 7, 1991 i 

Discriminant Analysis 
13093 Observations 13 092 DF Total 

8 Variables 12993 DF Within Classes 
100 Classes 99 DF Between Classes 

SAS 17:50 Saturday, December 7, 

Discriminant Analysis 
Class Level Information 

GROUP Frequency Weight Proportion Probab 

0 33 33.0000 0.002520 0.0 
1 117 117.0000 0.008936 0.0 
2 192 192.0000 0.014664 0.0 
3 152 152.0000 0.011609 0.0 
4 26 26.0000 0.001986 0.0 
5 19 19.0000 0.001451 0.0 
6 273 273.0000 0.020851 0.0 
7 36 36.0000 0.002750 0.0 
8 70 70.0000 0.005346 0.0 
9 156 156.0000 0.011915 0.0 

10 99 99.0000 0.007561 0.0 
11 39 39.0000 0.002979 0.0 

SAS 17:50 Saturday, December 7, 
Discriminant Analysis 

Class Level Information 

GROUP Frequency Weight Proportion Probab 

12 76 76.0000 0.005805 0.0 
13 51 51.0000 0.003895 0.0 
14 236 236.0000 0.018025 0.0 
15 151 151.0000 0.011533 0.0 
16 184 184.0000 0.014053 0.0 
17 33 33.0000 0.002520 0.0-
18 106 106.0000 0.008096 0.0 
19 96 96.0000 0.007332 0.0 
20 57 57.0000 0.004353 0.0 
21 129 129.0000 0.009853 0.0 
22 443 443.0000 0.033835 0.0 
23 82 82.0000 0.006263 0.0 

SAS 17:50 Saturday, December 7, 
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Discriminant Analysis 

Class Level Information 

GROUP Frequency Weight Proportion Probab 

84 80 80.0000 0.006110 0.0 
85 63 63.0000 0.004812 0.0 
86 12 1 2 . 0 0 0 0 0 . 0 0 0 9 1 7 0 . 0 
87 71 71.0000 0.005423 0.0 
88 38 38.0000 0.002902 0.0 
89 46 46.0000 0.003513 0.0 
90 39 39.0000 0.002979 0.0 
91 10 10.0000 0.000764 0.0 
92 5 5.0000 0.000382 0.0 
93 282 282.0000 0.021538 0.0 
94 72 72.0000 0.005499 0.0 
95 17 17.0000 0.001298 0.0 

SAS 17:50 Saturday, December 7, 

Discriminant Analysis 

Class Level Infoinnation 

GROUP Frequency Weight Proportion Probab 

96 82 82.0000 0.006263 0.0 
97 5 5.0000 0.000382 0.0 
98 236 236.0000 0.018025 0.0 
99 24 24.0000 0.001833 0.0 

SAS 17:50 Saturday, December 7, 

Discriminant Analysis Pooled Covariance Matrix Informatio 

Covariance Natural Log of the Determinant 
Matrix Rank of the Covariance Matrix 

8 -26.321635 
SAS 17:50 Saturday, December 7, 

Discriminant Analysis 

Pairwise Generalized Squared Distances Between Groups 

2 - 1 
D (i| j) = (X — X ) • COV (X — X ) 

i j i j 

Generalized Squared Distance to GROUP 
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—• — •••••••' ••—nTn^TBfr^ypg^nryi^ygyyu^i^jypg 

From GROUP o 1 2 3 

0 0 15.86808 40.92412 39.86166 
1 15.86808 0 19.62421 12.63673 
2 40.92412 19.62421 0 11.27509 
3 39.86166 12.63673 11.27509 0 
4 17.58963 3.24730 10.53914 9.52195 
5 27.90833 7.16681 11.71902 7.88185 
6 16.87428 3.85443 16.66425 11.07530 

SAS 17:50 Saturday, December 7, 
Discriminant Analysis 

Pairwise Generalized Squared Distances Between Groups 
Generalized Squared Distance to GROUP 

From GROUP 0 1 2 3 
7 23.06894 6.65154 8.95407 8.95160 
8 18.36506 4.23422 13.57648 11.39801 
9 24.12825 . 11.11577 17.40203 14.25962 

10 25.64130 1.66880. 18.08759 9.12688 
11 26.74619 3.74048 13.46667 8.91385 
12 40.34600 12.65124 • 14.97727 4.20880 
13 28.18604 4,10865 15.30706 3.81119 
14 23.55590 4.35870 15.53312 3.65341 
15 25.09215 11.13224 21.40302 12.08586 
16 27.14399 4.71385 15.91768 3.29132 
17 21.37768 10.90931 7.12406 16.21537 

SAS 17:50 Saturday, December 7, 
Discriminant Analysis 

Pairwise Generalized Squared Distances Between Groups 
Generalized Squared Distance to GROUP 

From GROUP 0 1 2 3 
18 34.26650 6.49275 19.55515 4.91344 
19 23.55241 7.91028 15.30755 10.91255 
20 28.47814 12.85073 13.30639 11.15935 
21 14.89187 13.90955 9.83616 17.25501 
22 27.18039 16.48131 5.89629 20.25172 
23 24.42650 10.28278 11.29767 11.61187 
24 20.08855 9.39867 7.81337 14.47392 
25 23.40343 12.89247 9.76770 12.80159 
26 35.77803 26.58990 7.81313 25.86069 
27 34.09364 18.52761 2.64013 14.51358 
28 19.27517 10.49412 8.42766 16.00337 
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Ir 

^ Program for the improved multistage tree c lassi f ier 
V with context consideration 
" .3-tree protocol 
^ • trained with 5400 characters A . 9 LISTING OF THE PROGRAM 
k . with overlapping 
^ . code file stored in testdata 
k • character bit pattern stored in c:\et\stdfont.24 
k • input passage stored in c:\sin\data\chfont.dat • 
" • only the big 5 codes are stored in input passage 

. t h e words which are semantically related are stored 
in file c:\sin\data\word 

Ir 

Ir 
k To invoke the program, type 
k chdis c:\sin\data\chfont.dat 
k 
f 
include <stdio.h> 
include <dos.h> 
include <alloc.h> 
include <string.h> 
include <stdlib.h> 
include <graphics.h> 
include <io.h> 
include <fcntl.h> -
include <math.h> 
include <float.h> 
include <time.h> 

define M 24 
define N 3 
define MAXRECS 55833 

ime_t * t 1 # * t 2 ; 
ouble d i f f=0; 
at recog,n; 
^ar * lcx; 
Nar * lcy; 
nt choice,y1 fy2; 
ong pre_char; /•* previously recognized character */ 
ong add; 
ong pos; 
har id [10]; 
ong coun, lc__count; 
r»t cat_1, cat_2f cat__3, cat_4; 

int x,n,fp; 
fnt Xmin; 
int Xmax; 
int Xpt; 
int Xuidth; 
int Xcenpt; 
int Ymin; 
int Ymax; 
int Ypt; 
int Ywidth; 
int Ycenpt; 
f loat Xcen; 



• f loa t Xof f ; 

f l oa t Ycen; 

f loa t Yof f ; 

int Yfeapt C4]; 

int Xfeapt[4] ; 

f l 0 3 t prof U e [24]; 

unsigned char buf[N*M]; 

uns*gned Iong bi t [M] ; 

unsigned long k; 

int node; 

int co [3 ] ; 

char *code1 

long code; 

f loa t resul t ; 

FILE * f p 2 , * f p 3 , * f i n , * f p 1 , * f c o d e , * f o p e n O : 

/ * discriminant functions * / 

f loa t disc fen[45][9] 

(0.259918,0.621660,-0.770455,0.258583,0.994533,-0.370675,-0.853918,2.393407,-1.525431 

C-0.3816A3,0.884263,1.696303,-0.510696,-0.522009,0.706840,-0.605000,0.562136,0.368424>, 

{0.315879,1.177575,0.656201 , -1 .491476,1 .217296, -0 .0^9149, -0 .175298, -0 .574729, -1 .040982} , . 

C-0.353333,-0.268644,0.338642,-0.406490,-1.517231,-0.124308,0.693505,1.508993,1.7A5559># 

¢-0.671441,0.646147,1.347479,0.605567,0.421958,-0.222858,-0.001174,-0.505027,0.0153370, 

C-1.008538,-0.664718,-0.932718,0.331255,-0.536410,-0.344057,-0.210009,2.403167,2.47374^, 

C-1.374422 ,-0.773219,-1.275659,0.490463 ,-0.583687, - 0.556719, - 0.307605,1.434989,2.65948A}, 

(:-0.268457,0.586162,0.913754,0.426680,1.027468,0.388865,0.628954,-0.488123,-1.526237^, 

(0 • 496920,0 • 056958,0 • 612463 ,-1.384370,0.250985 # - 0.822307,2.185022 # -1.193536, -1.129769), 

{1.473582,-1.503900,-0.078670,-1.137006,-0.969084,-0.871575,-0.094717,0.640670,0.13931^, 

CO.199512,0.057929, • 0.072065 ,-0.147075,0.449750,0.522399, - 0.760808 ,-0.690857, - 0.529508) • 

€-0.272413,1.423927,0.783386,2.132299,-0.236750,0.567282,0.057778,0.467315,-1.309404}, 

<0.311660,-0.912036,1.163019,-1.730857,1.351861 ,-0.441743,1.094023,0.900912,-2.145466>, 

0.192975,1.036124,0.721519,1.531767,0.449841,1.463854,-0.282628,-0.329865,-2.663348}, 

<0.118644 ,-0.990489 ,-1.962845 ,-0.114584,0.036559 ,-0.481495,0.679746,1.805248,0.297864) f 

(:-0.351202,0.424194,0.492202,0.348260,-1.063629,-0.381929,1.349759,0.007510,0.71021^, 

<-1.269880,0.652559,0.122311,0.289565,0.265075,1.038581,0.968956,1.412551,0.H8753>, 

C-0.594417,0.690181,0.987203,0.936801,-0.028701,0.467359,0.422616,-0.095399,-0.534935># 

<1.663410,-1.208385,-0.538888,-0.184842,-0.638519,0.123112,-0.07 72,-0.851112,-0.249387>, 

<-0.217317,-0.034913,-0.104038,-0.533322,2.984313,1.114763,1.312663,-5.038081 ,-0.628A84># 

C-0.077140,-0.000843,-0.A53704,-0.186843,0.615515,0.863985,5.162472,-2.568067,-0.983720>, 

¢-0.451112,0.650777,-0.650523,1.989002,-0.666488,0.267559,1.178607,-0.482039,1.153759), 

£-1.328029,2.494712,0.581879,0.284973,0.140345,-0.378698,0.321152,-0.634000,0.864982), 

CO.720861,-0.889762,-0.328747,0.214968,1.507224,0.794815,-0.345885,-2.011523,-0.509573}, 

^-0.072493,0 • 694930,0 • 444604 ,-0.565087,-1.485905,3 • 948742 ,-0.934063,5.600830 #0.051008># 

C-1.469259,1 • 137459,-0.147181,-0.249946,3.194611,3.577985,2.072181,2.827119,-0.207754 • 

<0.754033,-0.596174,0.410781 #-0'.240091 ,-0.409267,-1.452092,4.983140,-5.328596,0.27A952>, 

CO.005162,-0.186474,-0.084109,-0.156268,-0.516985,3.953562,12.674566,-4.120590,0.107159>, 

CO.217346,-0.050913,-1.181020,-0.397353,-0.699470,0.742753,0.956275,-2.399568,1.155229}, 

C-1.195769,2.686259,1.819948,0.751346,0.323224,0.886600,-2.458093,-0.890145,2.797885># 

<0.799554,-0.457612, -0.191509,0.170058,-0.358146, -0.707604,-0.877927,-0.149762, -0.2774A9># 

¢-0.856249,0.428454,0.150868,-0.193337,0.597869,1.193256,1.701772,-0.053726,0.304037^, 

C-1.027854,0.358235,-0.108164,-0.219415,0.390514,0.911118,0.743459,0.129462,0.596922># 

(0.043969,0.276587 0.413063,0.811957,0.245773,-0.795320,-0.619921,-0.098472,0.156250 ' 

CO.551382,-0.707475,0.319712,0.041579,-0.656943,-2.1204A5,-1.448657,0.260004,0.039185>, 

C O . 7 4 2 4 0 7 , - 0 . 1 7 1 0 7 4 , 0 . 6 2 3 6 9 7 , 0 . 0 7 5 6 6 8 , 0 . 0 0 6 9 8 8 , - 1 . 0 9 6 4 6 2 , - 0 . 3 1 2 3 5 4 , - 0 . 1 5 5 7 9 0 , - 0 . 4 4 6 3 1 0 } , 

C0.200289,-0.222659,0.175490,-0.551110,0.392352,-0.832383,0.210715,-0.122989,-0.097940, 

{-0.674960,0.895881,0.016432,-0.056803,0.003973,0.851943,1.022395,0.407195,0.151322># 

(0.130038,-0.568141,0.176819,-0.842862,-0.765515,0.195519,1.058933,0.371929,-0.439006), 



I'S . 
It , 

C-0.055000,-0.295540,-0.784643,-0.080401,0.629070,2.934311,-0.526669,-0.222740,0.007183>, 
C-0.594109,1.041155,-0.796324,-0.076152,0.964087,1.871607,1.052036,-0.429614,-0.231278>/ 

1 ( : -0 .910578 ,0 .600164 , -0 .237956 , -0 .271938 , -0 .035004 ,1 .963163 ,0 .702298 ,0 .204623 , -0 .0116601 
<1.222852,-0.814026,-0.992097,0.345090,-0.662208,0.268078,-1.141079,0.030397,-0.A34030>/ 
C-0.637045,0.774197,-0.050094,0.751595,-0.434984,2.389400,0.142221,0.424816,-0.017703>/ 
<-0.081660,0.076773,-0.361142,0.118932,-0.603035,0.996723,-0.875674,0.354863,0.323429>' 

> 
m . . . 

long begin,end; 
j long address,cc,c; 
I int f ind ,c1 ,c2; 

in t front [10] , rear [10]; 
long e x , f i r s t , p , q , k k ; 
long countfnn#m; 
long low,high,mid,y; 
char in code [10] 
long char id; 
long true_5; 

struct Icrec 
C long Ickey; 

in t begin; 
i n t end; 

> huge * l c ; 

long huge *lcword; 

long 

num(char *x ) 

C 

int f l a g , i ; 
char d i g i t ; 
int y1 fy2; 
long id 1=01; 
long n,d; 
for ( !=0 ; i<4 ;++ i ) 

C 
d i g i t = * ( x + i ) ; 
swi tch(dig i t ) 

< 

case ' a ' : d=10; break; 
case "b1: d=11; break; 
case ' c ' : d=12; break; 
case • d ' : d=13; break; 
case ' e ' : d=14; break; 
case ' f ' : d=15; break; 
defaul t : d=ato i (&dig i t ) ; 

> 
i d j + - ( d « ( 4 * ( 3 - i ) ) ) ; 

t > 

true 5 = id 1; - — 

calculate the posit ion of the character in the f i l e * / 

i f ( i d j >= 0xC940) 
C 



id 1 -= 0x300; II ~ ‘ flag = 1 
> 

n = id_1 - OxAAAO +1; 
I y1 = n/256; 

y2 = n • 256 * y1; 
n 157 * y1 + y2; 

I if (y2 > 63) 
n -= 34; 

I if (flag == 1) 
n +=63; 

return((3*24)*(long)(n-1)); 
M > ' 

5 long . 
| big_5(number) 
long number; 

long offset; 
long c1; 
int q,c2; 
offset = 0xA440; 
if (number > 5401). 

C 
offset = 0xC940; 
number -= 5401; 

> 
q = (number-1)/157; 
c2 - number - q*157; 
c1 = q*256 + offset - 1; 
if (c2 > 63) 
c2 += 34; 

return( c1 + c2 ); 
} 

/* Binary seach Function */ 
long 

binary(long key) 
C 

long loUfhighfinid; 
long char_id; 
char in__code[10] 
long c; 
low = 0; 
high = MAXRECS - 1; 
while (low <= high) 
C 

mid = (low+high)/2; 
fseek(fin,13*mid#0); 
fscanf(f i nr"%Ix %s»,&char_i d,&ln̂ code); 
c = atol(in_code); 
if (key < c) 

high = mid-1 I 
I •. . 



else f f (key > c) 
low = mid+1; 

else 
returnCmid); 

> 
return -1 

> 

/ * Binary seach Function for I c l i s t * / 

long 
bin(long max, long key, struct Icrec huge * tab) 
C 

long low,high,mid; 

low : 0; 
high = max - 1; 
while (low <= high) 
i 

mid = (low+high)/2; 
i f (key < (tab+mid)->lckey) 
high = mfd-1 . 

else i f (key > (tab+mfd)->lckey) 
low = mid+1; 

else 
return(mfd); 

> 
return - 1 ; 

> 

int 
c o m p ( i n t a , i n t b ) 

C 
i f (a == b ) 

return - 1 ; 
else 

return 1; 
> 

mafn(iirgc, argv) 

int argc; 
char *argv[] 

C 
long i , j , c , d ; 

/ * read in the look-up table for semantically related characters * / 

t1 = mal loc(sizeof( t fme_t) ) ; 
t2 = malloc(sizeof (time__t)); 

fp2 = f open( "c: \ \ s f n\ \da t aWword. cw i" # " r " ) ; 
lex = (char * )ca l loc (s i zeof (char ) ,3 ) ; 
I c y s ( c h a r * ) c a l l o c ( s i z e o f ( c h a r ) , 2 ) ; 

Ic = (struct Icrec huge *)farcalloc(sfzeof(*lc),3800); 
l e w o r d = ( l o n g h u g e * ) f a r c a l l o c C s f z e o f ( l o n g ) , 2 0 6 3 1 ) ; 

cc.un = 0; 
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lc__count = 0; 
while ( (n=fread(lcx#2#1,fp2)) > 0 ) C 
y1 = *lcx t 256; 
y2 = *(lcx+1); 
if ( y2 < 0 ) 
y2 += 256; 
(tc+coun)->lckey = (long)y1*16*16+y2; 
fread(lcy,1#1,fp2); /* space */ 

;(lc+coun)->begin = lc_count; 
while ( (n=fread(lcy,1,1#fp2)) > 0 ) < 
t y1 = *lcy; 
if ( y1 == 10 ) /* carriage return */ 
break; 

else { 
y1 += 256; 
fread(Icy,1,1,fp2) 
y2 = *lcy; 
if ( y2 < 0 ) 
y2 += 256; 

lcword[lc count] = (long)y1*16*16+y2; 
lc_count++; 

> 
) 
(lc+coun)->end = lc__count-1; 
coun++; 

> 

coun--; 

/* read in the look-up table for code conversion */ 

fin = fopen(,,testdata,,,"r"); 

fp=open( »c: WetWstdfont. 24", 0_BINARY | 0_RD0NLY); 

fp3 = fopen(argv[argc-1]#"r"); 
cat_1 = cat 2 = cat_3 = cat_4 = 0; 
count = 1; 
while ( fscanf(fp3,"%s "(&id) = EOF ) < 

time(t1); 

pos = num(id); 
n = lseek(fp,pos,0); 
read(fp,buf/M*N); 

/* Calculate the profile features of the inputted character */ 

for (y=0;y<M;y++) 
C 
bit[y]=0; 
for (c=0;c<N;c++) 

bi t Cy] =bi t Cy]+< (I ong)buf [N*y+c]«(8*CN-c-1))>; 
> 

/ * Calculate the X, Y max. and min * / 

Xmin = 23; 
Xmax = 0; 



Ymin = 23; 
Ymax = 0; 

for (y=0;y<M;y++) 
€ 

k=bit[y]; 
for (x=8*N-1;x>=0;x--) 
C 
if Ck & 1) < 

if (x>Xmax) 
Xmax = x; 

if (x<Xmin) 
Xmin = x; 

if (y>Ymax) 
Ymax - y; 

if (y<Ymin) 
Ymin = y; 

> 
k »= 1; 

> 
> 

/* First Corner Feature */ 

/* Calculate the feature extraction points on Y-axis */ 

Ycen = (Ymax+Ymin)/2.0; 
Yoff = (Ycen-Ymfn)/3.0; 
Xcen = (Xjnax+Xmin)/2.0; 
Xoff = (Xcen-Xmin)/3.0; 
Xcenpt = (int)(XcerH-0.5); 
Xwidth = Xcenpt-Xmin; 
Ycenpt = (int)<Ycen+0.5); 
Ywidth = Ycenpt-Ymin; 

for (c=0;c<4;c++) 
C 

Yfeapt[c]=0; 
Ypt=(int)(Ycen-c*Yoff+0.5); 
for <d=8*N-Xmin-1;d>8*N-Xcenpt-1;d--) 
C 

k=bit[Ypt]»d; 
if ((k&1)!=1) 

++Yfeapt[c] 
else d=-1; 

> 
profile[c]=(ftoat Yfeapt [c]/Xwidth; 

> 

/* Calculate the feature extraction points on X-axis */ 

for (c=0;c<4;c++) 

XfeaptCc]=0; 
Xpt=(i nt)(Xcen-c*Xoff+0.5); 
for (d=Ymi n;d<Ycenpt d++) 
C 

k=b i t Cd]»(8*N-Xpt-1); 



if ((k&1)!=1) 
+ + X f e a p t [ c ] 

e l s e d = Y c e n p t + 1 ; 

> 
profile[c+A]=(float)XfeaptCc]/Ywidth; 

> 

/ * 2 n d C o r n e r F e a t u r e s * / 

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s o n Y - a x i s * / 

Y c e n = ( Y m a x + Y m i n ) / 2 . 0 ; 

Y o f f = ( Y c e n - Y m i n ) / 3 . 0 ; 

X c e n = ( X m a x + X m i n ) / 2 . 0 ; 

X o f f = ( X m a x - X c e n ) / 3 . 0 ; 

X c e n p t = ( i n t ) ( X c e n + 0 . 5 ) ; 

X w i d t h = X m a x - X c e n p t ; 

Y c e n p t = ( i n t ) ( Y c e n + 0 . 5 ) ; 

Y w i d t h = Y c e n p t - Y m i n ; 

f o r ( c = 0 ; c < 4 ; c + + ) 

C 

Y f e a p t [ c ] = 0 ; 

Y p t = ( i n t ) ( Y c e n - c * Y o f f + 0 . 5 ) ; 

f o r ( d = 8 * N - X m a x - 1 d < 8 * N - X c e n p t - 1 d + + ) 

C 
k = b i t [ Y p t ] » d ; 

if ((k&1)!=1) 
+ + Y f e a p t [ c ] 

e l s e d=8*N; 

> 
p r o f i l e C 8 + c ] = ( f l o a t ) Y f e a p t [ c ] / X w i d t h ; 

> 

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s on X - a x i s * / 

f o r ( c = 0 ; c < 4 ; c + + ) 

C 
X f e a p t C c ] = 0 ; 

X p t = ( i n t ) ( X c e n + c * X o f f + 0 . 5 ) ; 

f o r ( d = Y m i n ; d < Y c e n p t ; d + + ) 

C 
k = b i t t d ] » ( 8 * N - X p t - 1 ) ; 

i f ( ( k & 1 ) ! = 1 ) 

+ + X f e a p t [ c ] ; 

e l s e d = Y c e n p t + 1 ; 
> 

p r o f i I e [ c + 1 2 ] = ( f I o a t X f e a p t C c ] / Y w i d t h ; 

/ * 3 r d C o r n e r F e a t u r e s * / 

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s o n Y - a x i s * / 

Y c e n = ( Y m a x + Y m i n ) / 2 . 0 ; 

Y o f f = ( Y m a x - Y c e n ) / 3 . 0 ; 

X c e n = ( X m a x + X m i n ) / 2 . 0 ; 

X o f f = ( X c e n - X m i n ) / 3 . 0 ; 



Xcenpt = ( int)(Xcen+0.5); 
Xwidth = Xcenpt-Xmin; 
Ycenpt = Cint)(Ycen+0.5); 
Ywidth : Ymax-Ycenpt; 

for (c=0;c<4;c++) 
C 

Yfeapt Cc]=0; 
Ypt=( nt)(Ycen+c*Yof f+0 .5 ) ; 
for (d=8*N-Xmin-1 d>8*N-Xcenpt-1 d - - ) 
< 

k=bi t [Ypt ]»d; 
i f (Ck&1)!=:1) 

++Yfeapt[c] 
else d=-1; 

> 
profile[c+163=( f loat)Yfeapt[c]/Xwidth; 

> 

I * Calculate the feature extraction points on X-axis * / 

for (c=0;c<4;c++) 
i 

Xfeapt[c]=0; 
Xpt=(i nt)(Xcen-c*Xoff+0.5); 
for (d=Ymax;d>Ycenpt d - - ) 
C 

k=bi t [d] » (8*N-Xpt -1 ) ; 
i f ((k&1)!=1) 

++Xfeapt[c]; 
else d=Ycenpt-1; 

> 
profile[c+20]=(float)XfeaptCc]/Ywidth; 

> 

/ * To calculate the code for the inputted character * / 

code = 0; 

for (c=0;c<3;++c) / * 3 corners * / 
C 
node=1 / * the root node * / 

for ( j=0; j<4;++j ) / * 4 levels in the tree c lassi f ier * / 

C 
result = disc__fcn[c*15+node-1] [0] ; / * constant terra * / 
for ( i=0; i<8;++f) 

result += disc_fcn[c*15+node-1]Ci+1] * prof i le [c*8+i ] ; 

i f ( result >= 0 ) 
node = 2*node; / * l e f t son * / 

else 
node = 2*node + 1; / * right son * / 

> 

coCc] node - 16; 
code += coCc] * pow(100,2-c); 

> 



cc=c=true_5; 
c1=cc»8; 
c2=c-(c1«8); 
printf("%ld %c%c count,c1,c2 
printf("%ld\n"fcode); 

address = binary(code); /* binary search */ 
find = 1; 
if (address ==-1) < 

find = 0; 

/* Back-Tracking */ 

printfC'No find: back-tracking …"); 
find = 0; 
i = 0; 
while ( find == 0 && i<4 ) C 
c = 2; 
while ( find == 0 && c >= 0 )( 
node = co[c] + 16 ; 
for (j=0;j<=i;++J) 
node « node/2; 

for (j=i;j>=0;--j) C 
result = disc_fcn[c*15+node-1][0]; /* constant term */ 
for (k=0;k<8;++k) 
result += disc_fcnCc*15+node-1][k+1] * profile[c*8+k]; 
if ( compCi,j)*result >= 0 ) 
node = 2 * node; /* left son */ 
else 
node = 2*node + 1; /* right son */ 

> 
code += (node-16-co[c])*pow(100fc); 
address » binary(code); 
if (address = -1) 
find = 1; 

> 

> 
> 

if (find == 0) 
printf("Still no find \n"); 

else < 
/* output the big_5 code */ 

fseek(fin#13*address,0); 
fscanf(fin,"%Lx %s",&char_id,&in_code); 
cc = atol(fn__code); 

/* downward search */ 

i=1 
do C 
fseek(f i n,13*(address+i),0); 
fscanf(fin,"%lx %s",&char_id,&in code); 



c = atol(in_code); 

> while ( c == cc && (address+i <= MAXRECS ) ; 

end = address+i; 

/ * upward search * / 

i=1; 
do C 

fseek(f in ,13*(address- i ) ,0) ; 
fscanf(fin#"%lx %s",&char_id,&in code); 
c = atol(in__code); 

> while ( c == cc && (address-i) >= 0 ) ; 
begin = address-i; 

for ( i =beg i n; i <=end;++ i ) C 
fseek ( f in ,13* i , 0 ) ; 
fscanf(fin,"%tx %s»,&char_id,&in_code); 
cc=c=char_id; 
c1=cc»8; 
c2=c- (c1«8) ; 
prfntf("%d. »#f-begfn+1); 
printf(»%c%c »,01,02); 

> 

printfC'Xn"); 

recog = 0; 

i f ( begin == end ) < / * only one single character * / 
pre_char = char id; 
i f ( char_id == true_5 ) 

cat_1++; / * unqiuely determined the character * / 
else 

cat 3++; / * incorrectly recognized the character * / 
> 
else / * get the semantically related words and make the decision * / 

i f ( count > 1 ) C 
add = bin(coun,pre_char# tc ) ; 
i f ( add -1 ) 

for ( j=( lc+add)->begin; j<=(lc+add)->end && recog==0;++j') 
for (i=begin;i<=end && recog==0;++i). C 
fseek( f in # 13* i f 0) ; 
fscanf(fin#"%lx %s",&char_id,&in code); 
i f ( IcwordCj] == char id ) C 

recog = 1; 
pre char = char_id; 

> 
> 

i f ( recog == 1 ) 
i f ( pre_char == true_5 ) 
cat_1++; 

else 
cat_3++; 

> 
i f ( count == 1 11 recog == 0 ) < 

printfC'Please enter a number for your choice ==> " ) ; 
scanf("%d",&choice 
fseek(fin#13*(begin+chofce-1) /0); 
fscanf(fin,"%tx %s"/&char_fd/&fn_code); 

• • i 



pre_char = char id; 
cat_2++; 

> 

> 
t ime(t2) ; 
d i f f 4m d f f f t i m e ( * t 2 , * t 1 ) ; 
++count; 

> 

count--; 
printf("Percentage in category 1 = %f\n",(fIoat)cat_1/count>; 
printf("Percentage in category 2 = %f\n" f(f Ioat)cat_2/count) 
printf("Percentage in category 3 = %f\n",(f loat)cat_3/count) 
printf("Average processing time per character = %f \n" , ( f loat )df f f /count ) ; 
farfree(tcword); 
fa r f ree ( tc ) ; 
close(fp); 
fc tose( f in) ; 
return 0; 
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