
THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF INFORMATION ENGINEERING

MASTER OF SCIENCE DEGREE M INFORMATION ENGINEERING

DESIGN AND IMPLEMENTATION

OF MULTISTAGE TREE CLASSIFIER

FOR CHINESE CHARACTER RECOGNITION

YEUNG LAP KEI

JUNE 1992

V

I

PREFACE

PREFACE

The objective of the project is to design and construct a
practical off-line character recognition system for printed
Chinese character. Two approaches i.e. unsupervised learning and
supervised learning has been studied. Finally, supervised
learning approach with the basis of the 3 corner code was
adopted. The philosophy of the supervised learning is to make
use of the similar properties of the corner feature and 3 corner
input code. The corner features are first extracted and then
classify based on the knowledge given from 3 corner code. The
classification are done at various node and finally a binary
decision tree is formed.

It has been shown in the study that the construction of the
optimum decision tree belongs to the class of NP complete
problems and thus cannot be built within polynomial time. As a
result, a heuristic is introduced and suboptimal decision tree is
built.

A two stage classification procedure has been introduced where a
3-tree protocol has been developed for the first stage
discrimination process. the use of the context relationship
among inputted characters is used to serve for the second stage
classification. Random samples of both ideal type or having been
corrupted with noise have been used to test the efficiency and
accuracy of this classifier.

Simple testing has been carried out and the result shows that the
performance of the classifier is rather sensitive to the noise of
the input character. As a result, different techniques for
improving the performance of the classifier have been studied
which includes the introduction of overlapping, the technique of
back tracking for holes, the use of a fuzzy decision making use
of a tolerance limit and the idea of entropy reduction in other
tree architecture. Some of these can actually improve the
performance of the classifier to quite significant degree and
among which the 1 tree protocol which employs the use of entropy
reduction is found to be the most promising and worth future
exploration in more depth. By the time, since only 500
characters are used in the training of the classifier, it is not
reliable enough.

This thesis can be said is the combined effort of me and my
project partner Mr. Sin Ka Wai. Part of the research is actually
done by him. In order to maintain the completeness of the whole .
topics, the studies from Mr. Sin Ka Wai will be attached at the
appendix for easy reference.‘

Last but not least, I would like to take this opportunity to
thank my supervisor Dr. M. Chang for his invaluable guidance and
assistance and my project partner Mr. Sin Ka Wai for his advise,
support and coordination throughout the whole project.

Mr. Yeung Lap Kei
June 1992

ABSTRACT

DESIGN AND IMPLEMENTATION OF
MULTISTAGE TREE CLASSIFIER FOR
CHINESE CHARACTER RECOGNITION

YEUNG LAP KEI

ABSTRACT

Input has long been one of the most difficult problems faced by
most scientists in the development of practical computer Chinese
information processing systems. The intrinsic difficulties of
the input of Chinese characters has hindered the advancement of
these Chinese systems and Chinese character recognition is
thought to be the ultimate solution. Classical recognition
systems are either font dependent or not efficient enough in
terms of the recognition speed. Usually the size of the
character set under consideration is restricted to be just a
small one and cannot comprises of all the Chinese characters that
we commonly encountered.

Exploration has been made, to construct a multistage tree
classifier for printed Chinese characters based on the idea of
supervised learning. The 3 corner code has been adopted as the
basis in the construction of the tree classifier. A two staged
classification procedure is used where in the first stage, a 3-
tree protocol has been developed and used to discriminate 5400
commonly used Chinese characters. Improvement in its performance

can also be sought through the introduction of overlapping or the
technique of back tracking for holes. The result is encouraging
and an accuracy of up to 100% can be attained for ideal sample
input and around 65% for noisy sample input. The classifier is
also efficient where the average recognition time is around 0.5
second per character.

The second stage of classification explores the use of the
context relationship among the inputted characters. Again, the
performance of the classifier is good where for an ideal passage
input, about 40% of the characters can be uniquely determined,
58% recognized as a group of characters and less than 3% are
misclassified.

CONTENT

PREFACE

ABSTRACT

CONTENT

§1. INTRODUCTION

§1.1 The Chinese language 1
§1.2 Chinese information processing system 2
§1.3 Chinese character recognition 4
§1.4 Multi-stage tree classifier Vs Single-stage

tree classifier in Chinese character recognition 6

§1:5 Decision Tree

§1.5.1 Basic Terminology of a decision tree 7
§1.5.2 Structure design of a decision tree 10

§1.6 Motivation of the project 22
§1.7 Objects of the project 14
§1.8 Development environment

§2. APPROACH 1 - UNSUPERVISED LEARNING 15

§3. APPROACH 2 SUPERVISED LEARNING

§3.1 Idea 1 7

§3.2 The 3 Corner Code 2 0

§ 3 . 3 Feature Extraction & Selection 2 2

§3.4 Decision at Each Node
§3.4.1 Statistical Linear Discriminant Analysis 22
§3.4.2 Optimization of the Number of

Misclassification 24
§3.5 Implementation

§3.5.1 Training Data 36

§3.5.2 Clustering with the Use of SAS 38

§3.5.3 Building the Decision Trees 42
§3.5.4 Description of the Classifier 45

§3.6 Experiments and Testing Result
§3.6.1 Performance Parameters being Measured 47
§3.6.2 Testing by Resubstitution Method 50

§3.6.3 Noise Model 52
. — . . - : • . < ‘ , ‘ /

§4. POSSIBLE IMPROVEMENT 5 5

§5. EXPERIMENTAL RESULTS & THE IMPROVED MULTISTAGE

CLASSIFIER

§5-1 Experimental Results 5 9

§5.2 Conclusion 7 0

§6. IMPROVED MULTISTAGE TREE CLASSIFIER

§6.1 The Optimal Multistage Tree Classifier 7 2

§6.2 Performance Analysis 7 3

§7. FURTHER DISCRIMINATION BY CONTEXT CONSIDERATION
§7.1 Idea 76

§7.2 Description of Algorithm 78

§7.3 Performance Analysis 81

§8. CONCLUSION
§8.1 Advantage of the Classifier 84

§8.2 Limitation of the Classifier 85

§9, AREA OF FUTURE RESEARCH AND IMPROVEMENT
§9.1 Detailed Analysis at Each Terminal Node 86

§9.2 Improving the Noise Filtering Technique 87

§9.3 The Use of 4 Corner Code 88

§ 9 . 4 increase in the Dimension of the Feature Space 90

§9.5 1 Tree Protocol with Entropy Reduction 91

§9.6 The Use of Human Intelligence 92

APPENDICES
A.l K-MEANS

A.2 Unsupervised Learning Approach
A.3 Other Algorithms (Maximum Distance & ISODATA)
A.4 Possible Improvement
A.5 Theories on Statistical Discriminant Analysis
A. 6 Passage used in Testing the Performance of the

Classifier with Context Consideration
A.7 A Partial List of Semantically Related Chinese

Characters

A.8 An Example of Misclassification Table
A.9 Listing of the Program "CHDIS.C"

REFERENCE

CHAPTER 1 « INTRODUCTION

§1 INTRODUCTION

§1.1 THE CHINESE LANGUAGE

The Chinese language, being in use by billions of people in
the world, is different from other languages in the western
world in its representation method. They are stand alone
characters and square shaped. Unlike most of other
languages, Chinese words are not formed by sequence of
alphabets or sequence of some other symbols. Basically one
symbol will be one Chinese character. It has its own meaning
and its own pronunciation. Of course, phrases can also be
formed by combining separate characters just like other
languages.

As a result of the above consideration, we note that since
characters in Chinese exists by its own, and there is no
basic group of symbols used in forming word, the total
number of characters could theoretically be infinite. There
is no upper bound for the number of distinct characters.
Fortunately the Chinese culture tells us that there are
altogether only around 20 thousands distinct Chinese
characters and out of these, only about 5 thousands are
commonly used. However, this is already an astonishing large
number and has presented an intrinsic difficulties in
Chinese character recognition system in comparison with the
English recognition system where only tens of alphabets are
to be distinguished.

1

The astonishing large number of characters in the Chinese
language is, on one hand a problem which we have to face
while on the other hand, one of the distinguished feature
which enables a easier recognition process. It has been
claimed that since there are many distinct characters, we
can distinguish them more easily as the characters are
usually very different from one another. People may just
look at the corners or the edges before they can identify
the characters correctly. Despite of such advantages,
Chinese character recognition is still a difficult and
challenging problem for most of the scientists and has
attracted much research to be carried on this field [1].

§1.2 CHINESE INFORMATION PROCESSING SYSTEM

Chinese information processing system has been developed
rapidly in the past decades both in Taiwan and Mainland
China. Most of the commercially available Chinese systems in
Hong Kong come from Taiwan.

just like the coding system usually employed for English in
most of the computer system, there is an internal code
associated with every Chinese characters. This internal code
will just resemble the role of ASCII in English alphabet.
However, there are a large number of coding system and among
which one of the most popular system, especially in Taiwan,
is the use of Big 5 code. Basically every Chinese character
is represented by a Big 5 code of two bytes in length. So as

2

to distinguish a Chinese character from the English
alphabets, the most significant bit of all Big 5 codes will
be 1. The Big 5 code will begin at hexadecimal a440 which is
the internal code for ••—" • As a result, upon receiving an
internal code of length one byte, the computer system will
first access the most significant bit of that code. If the
bit is found to be 0, then it is a usual ASCII code and will
just be identified as usual characters. If the bit is found
to be 1, then it will be the start of a Big 5 code. The
other one byte of information will be taken and the two will
be combined to become a Big 5 code of a certain Chinese
character. In this way, Chinese characters and other usual
characters can coexist in the system.

One fundamental problem in Chinese system is about input. To
input an English alphabet is simple because the keyboard is
primarily designed for this. How can we input a Chinese
character to the computer system? In fact input has long
been a difficult task in Chinese language processing by
computer. Many different input methods have been developed.
Typical examples include:

1. The use of a combination of keys to input a Chinese

character
a. By partial forms (e.g. the Chong Qi input scheme) or
b. By the sequence of strokes in forming a character?

2. To input the phonemes which represent the sound of the

character.

3

However, the most convenient method of input nowadays still
require combination of keys to uniquely determine one single
Chinese character. Most methods cannot uniquely determine a
character. Usually they will seek the help from the user by
asking the user to select for the computer among some
possible characters displayed on the screen. These methods
are slow and require appropriate training and practice
before users can easily get along with. This intrinsic
difficulty hinders further advancement in Chinese
information processing system.

§1.3 CHINESE CHARACTER RECOGNITION

Different alternatives other than the conventional use of
the keyboard have been proposed for inputting Chinese
characters. Better solutions include the input in
handwritten form, the input in preprinted form or the input
in the form of voice. Among these input schemes, speech
recognition should undoubtedly be our ultimate choice
despite the intrinsic difficulties encountered in tackling
the problem. More acceptable solution will be the use of
the input in handwritten or preprinted forms. If handwritten
character recognition is used and characters be inputted
real time at the terminal, the system is an on-line
recognition system. If preprinted character recognition is
adopted, the system is said to be operating in off-line
mode. There are recently quite a number of researches done

4

supporting the development of practical systems both of the
type on-line and off-line.

It has been claimed that the input of on-line handwritten
characters occurs less frequently and is in some sense less
practical. Doubtless to say, Chinese characters are too
difficult to write and it usually takes time for us to
transcribe passages of Chinese characters. On the other
hand, it is also one of our main reasons for using the
computer in helping us to speed up the entire task of
Chinese information processing which includes input of
characters, process of information and output of the
results•

The development of the off-line system for recognizing
preprinted characters becomes more useful and important. It
has been noticed that in many of the applications, we are
just required to input pages of printed characters. Even
though when we are writing our own passages, handwritten
scripts can still be fed into the system for recognition if
the discriminating power of our system is large enough. This
means that the on-line system can actually be incorporated
in the off-line system. As a result, the study of a
practical off-line system is highly perferrable. However,
one point we have to bear in mind is that an off-line system
is not actually a "superset" of the on-line system. On-line
systems usually possess extra discriminating power with the
use of stroke order which off-line systems cannot have.

5

Traditional methods of thinning or stroke extracting are
either not necessary or simple in on-line systems. Maybe
the off-line system is more difficult to design due to the
limited information available for the input.

§1.4 MULTI-STAGE CLASSIFIER VS SINGLE-STAGE CLASSIFIER IN CHINESE
CHARACTER RECOGNITION

The design of a character recognition system is equivalent
to designing a classifier which can successfully
discriminate the characters. Classifier can either be
single-staged or multistaged referring to classifiers which
can successfully dicriminate a given character input to its
target by one single step decision or by multiple steps of
decision respectively.

Single-stage classifier is characterized by its simplicity
and efficiency. Since only one step decision is needed, the
output should inevitably comprise of a number of groups. In
addition, the decision function must be complicated so that
one single decision can complete the entire discrimination
process. Besides the classifier will also be severely
limited by the use of only some particular informations of
the input. As a result, the discriminating power of such a
classifier cannot be very good. Of course in practical
situation such a single-stage classifier cannot attain the
required level of performance.

6

Multistage classifier can be arranged in the form of a tree
structure so that decisions are performed in a successive
and hierachical manner. Since there are a number of steps to
go before final decision can be made, different types of
information and different discriminant functions can be
used. As a result the discriminating power of a multistage
tree classifier will usually be better than its single-stage
counterpart. However, there is a problem of error propagati-
on in multistage classifier which single-stage classifier
does not have. We will discuss the problem in detail in
later chapters.

§1.5 DECISION TREE

§1.5.1 Basic Terminology of a Decision Tree

Before we are going to describe the method of building the
tree classifier in recognizing the Chinese character, some
terminologies about the decision tree are mentioned here
first. The decision tree here means the Direct Acyclic
Graph as defined by S.Rasoul Safavian & David Landgrebe in
[2] . As mentioned in [2], the Direct Acyclic Graph would
satisfy the following properties

• There is exactly one node, called the root, which no
edges enter. The root node contains all the classes.

• Every node except the root node has exactly one

entering edge.

7

• There is a unique path from the root to each node.
Refer to figure 1.1, several terms for describing tree
are defined as follows

Root Node
.."•r—.........—.......‘...... — „ f \ Level 0
I . ED / V A ^
i Depth of ^ ^ / Internal Node

/ \ Breath of the tree
^ at level 2

R J G O T X ^ — - — - 12

J ^s^Terminal Node

J 0 0 . . . O — - ’ 1 3

Figure 1 . 1 - Schemat ic Diagram of a Decision Tree

a. Edge
The edge is the order pairs (v,w) of the node. Node v
is called the father of node w and node w is a son of
v.

b. Root node
Root node is the node where no edge enters.

8

c. Leaf node (terminal node)

The node with no proper descendant.
d. Internal node

The nodes in the tree other than root node and leaf
node.

e. Depth of a node

The depth of a node is the length of the path from root
node to that node.

f. Ordered tree

An ordered tree is the tree in which the sons of each
node are ordered.

g. Binary tree
A binary tree is an ordered tree such that
- E a c h son of a node is identified either as a left

son or as a right son.
- N o node has more than one left son or more than one

right son.

h. Node with overlap classes
Two internal nodes contain a least one common class,
then it is said that the node have overlap class.

i. Average depth of the tree
The average depth of the tree is the average number of
layers from the root to the terminal nodes.

j• Average breadth of the tree

The average number of internal nodes in each level of
the tree.

9

§1-5.2 Structure Design of a Decision Tree

Many methods about the optimal tree structure design has
been proposed in [3] [4] [5] [6]. A summary has also been
discussed in [2]. According to [2], the most common
optimality criteria for tree design are

• Minimum error rate
• Min-Max path length
• Minimum number of nodes in the tree
• Minimum expected path length
.Maximum average mutual information gain

A basic problem with these methods is their computational
unfeasibility, usually large amount of computational time
and memory storage are required, which make it difficult
to implement.

It is also shown by Hyerfil and Rivest in [7] that the
problem of constructing optimal binary trees, optimal in
the sense of minimizing the expected number of tests
required to classify an unknown sample is an NP complete
problem and thus very likely of non-polynomial time
complexity.

It is classified in [2] that there are basically four
categories for the construction of decision tree by
heuristic method i.e. Bottom-up approach, Top-down
approach, the Hybrid approach and Tree Growing-Pruning

10

approach. Each category is briefy described as follows:

a• Bottom-up Approach

In Bottom-up approach/ a binary tree is constructed
using the training set. Some distance measurement such
as Mahalanobis distance between a priori defined
classes are computed and in each step the two classes
with the smaller distance are merged to form a new
group. The mean and covariance matrix for each group
are also computed from the training samples of classes
in that group and the process is repeated until one is
left with one group at the root. This tree building
method makes use of the philosophy that more obvious
discriminations are done first and more subtle ones at
the later stages of the tree.

b. Top-down Approach
With the decision tree constructed in Top-down
approach/ an effective node splitting rule should be
determined at each internal node of the tree to split
the training set into two or more classes. A decision
about which nodes are terminal is also being
established. Each terminal node is assigned to a class
label according to some criteria such as to minimize
the mis-classification rate etc.

c• Hybrid Approach
In Hybrid approach, both Bottom-up and Top-down

11

approaches are used at the same time. The rationale for
this method is that in Top-down approach such as
hierarchical clustering of classes, the initial cluster
centers and cluster shape information are unknown.
These information can be provided by a Bottom-up
approach. With this approach, the training set are
considered using Bottom-up approach to come up with two
clusters of classes. Then the mean and covariance for
each cluster are computed. These information are then
used in Top-down approach to come up with two new
clusters.

d. Tree Growing - Pruning Approach
In Tree Growing - Pruning approach, the data set is
divided into two approximately equal sized subsets and
iteratively grow the tree with one subset and prune it
with other subset. The role of the two subsets are
interchanged successively.

A summary of some of the tree design methods in terms of

the assumptions each approach makes, their performance

criterion and special requirement can be found in table 1

at p.671 of [2]•

§1.6 MOTIVATION OF THE PROJECT

We will concentrate on the development of a off-line printed
character recognition system. We want to explore suitable

12

methods in contracting our multistage tree classifier. Our
study will emphasize mainly on accuracy and efficiency.
Since our target is only on printed characters, we are
expecting to have a recognition system with high speed. In
this way, classical recognition which involves processes of
thinning and stroke extraction may not be appropriate in our
study. Instead, we will treat the input character as a
bitmap of 0 and 1 and try to detect suitable features which
will successfully discriminate the character with one
another. As a result, a number of questions has to be
explored in our current study:

1. Which features should we use in the discrimination
process?

2• Which methods should we adopt in constructing the
multistage tree classifier?

3. What kind of tree architecture should we employ?
Is there any distinguished advantages towards the use of
such tree architecture?

4. How can we evaluate the effectiveness of the classifier?

How can we quantify such effectivness?

5 . is there any possible improvement in the classifier thus

developed? ‘

In the chapters which follow, the above questions will be

answered and practical system of Chinese character

recognition system will be developed.

13

§1.7 OBJECTIVE OF THE PROJECT

The objective of the current study is to develop a practical
off-line printed Chinese character recognition system with
high recognition rate and reasonable speed. Multistage tree
classifier will be used. We will focus on the methods
employed in constructing the classifier. The methodology
will be implemented in computer using suitable samples of
Chinese characters as testing data. The system should be
practical and hopefully it can be implemented in ordinary
microcomputer system.

§1.8 DEVELOPMENT ENVIRONMENT

Since the system is to be practical and can be implemented

in microcomputer system, the development environment is

chosen to be in ordinary IBM 386 systems. The C programming

language is used as the development tools and programs have

been written to implement the entire idea of character

recognition.

Besides, we have been continuously using the Eten Chinese
system for reference. The Eten Chinese system has provided
good resources of bit pattern of printed Chinese characters
and lookup tables for input schemes. These are indispensable
materials towards the development of the current system.

14

CHAPTER 2 - APPROACH 1 UNSUPERVISED LEARNING

§2. APPROACH ONE - UNSUPERVISED LEARNING

Unsupervised learning actually refer to the case where no
prior knowledge of the class membership of the objects in
the training sample is known to the system. The objects are
classified into clusters by some intrinsic likeliness of the
objects themselves. There is no absolute measurement of
likeliness, and the correctness of the classification.
However, the nonparametric nature renders the process to be
highly flexible and thus versatile.

The details study of the use of the unsupervised learning
approach in printed Chinese character - recognition is given
by my project partner Mr. Sin Ka Wai and therefore will not
be described in details here. In this chapter, a brief
overview is being given in order to maintain the
completeness of the thesis and the whole analysis can be
found in appendix A2.

1. several useful feature extraction methods for the input
bit pattern of the character are first developed.

2. Different unsupervised clustering algorithms are derived.

One clustering algorithm is chosen to cluster the given

training set into different groups based on the use of

one particular feature. This step will be repeated for

all other features which have been extracted from the

characters•

15

3. A decision table is then formed.

4. Based on the decision table just constructed, the optimum
decision tree is then built.

There are some problems associated with this approach in the
training up of the classifier since practically the
algorithm descirbed in (4) cannot be implemented
computationally. This belongs to the class of NP complete
problems. Details of the discussion and reasons will be
given in appendix A.2.

f

16

CHAPTER 3 » APPROACH 2 SUPERVISED LEARNING

§3 APPROACH TWO - SUPERVISED LEARNING

§3.1 IDEA

As mentioned in section 2 • 6 that the tree classifier with
unsupervised learning has several implementation
difficulties. A lot of time is required before the decision
functions can be built. It would make the classifier
inflexible especially when some new characters are added to
the training character set.

In view of this difficulty, a tree classifier with
supervised learning approach is suggested. It can maintain
the advantage of a tree classifier in reducing the
complexity of the decision making and at the same time
improve the flexibility and decrease the training time
required.

The idea of the supervised learning approach is to make use

of the similarity properties of 3 corner code input method

and the corner feature extraction ‘method (refer section

2.2.6 for details)•

In 3 corner code input method, the Chinese character is
divided into four equal parts i.e. 4 corners. Only 3 corners
are considered i.e. top left, top right and bottom left.
Based on the key strokes properties of that corner, an 3
corner code 00 - 99 would be assigned. In other words,
those Chinese characters with the same corner key strokes

17

properties would have the same 3 corner code assigned. The
details code assignment method would be described later in
the section 3.2.

Similarly, with the corner feature extraction method as
mentioned in section 2.2.6, those Chinese character with the
same corner key stroke will have the same corner features
extracted provided that the same character font is
considered.

Because of the above mentioned similiarity between the 3
corner code and corner feature, the 3 corner code is used as
a reference to assist the training of the classifier with
the corner features.

There are a lot of tree structure such as binary tree and
multi-path tree (refer section 1.5.2). Binary tree is
suggested because it is much simpler. Linear discriminant
function usually used in statistics can be used at each
decision node to divide the feature space into two regions.

It seems that everything is fine. However, the 3 corner
codes can only provide the 100 classes information about
the training characters instead of two classes. The problem
is how th 100 classes information that the 3 corner code
provided can be used to determine the linear discriminant
function? To tackle this problem, an Hybrid tree building
approach described in section 1.5.2 is adopted. The details
of the training and tree building will be described in

18

subsequent sections. The following is a brief description
of the necessary steps.

For each corner,
Step.1: Group the training characters into 100 classes

according to the 3 corner code.

Step.2: Determine the mean of each class based on the corner
features.

Step.3: Determine the class discriminant functions based on
the Mahalanobis distance

Step.4: Re-substitute the original training characters into
the discriminant functions. The degree of misclassi-
fication will be summarized in a misclassification
table.

Step. 5: An heuristic will be introduced here to combine
those 100 classes into two groups. The philosophy
of the grouping is to minimize the degree of
misclassification in step 4.

Step.6: Determine the corresponding resulting linear
discriminant function after grouping.

Step.7: Determine the number of distinct 3 corner codes
denoted by N for each group.

Step.8: Repeat step 1 - 7 for each decision node with N
classes instead of 100.

Step.9: With the above steps, a decision tree for each
corner of the character would be formed. There will
be a total of three decision trees since we will

19

consider three corners.

SteplO: A terminal code will be assigned for each terminal

of the decision tree.

Stepll: Repeat step 1 - 1 0 for the other corners.

There will be three terminal codes, one terminal code per
decision tree. The terminal codes will be combined to form
the character code for the training character. The
philosophy of this character code formation is the same as
that of the 3 corner codes mentioned in the next section.

§3.2 THE 3 CORNER CODE

The 3 corner code is developed from the traditional 4 corner
code commonly used in Chinese dictionary and in library
where Chinese books are categorized by the 4 corner codes.
It is used as one of the traditional input scheme in some of
the Chinese computer systems. The 3 corner coding scheme
tries to exploit the shape at the three corners of a given
Chinese character and encode these shapes using appropriate
number codes. The first corner refers to the top left hand
corner, the second corner refers to the top right hand
corner while the third corner refers to the bottom left hand
corner. There may be some deviation for the third corner in
the circumstances if the shape at the bottom left hand
corner has already been encountered and incorporated in the
first corner code. In such case, the bottom right hand

2a

R R T fs w w W
,^ J 1 _ A ^^

To 77-^ z, Tj tt—X3 10 _ rr-~7^~

H % \ ^
/y XZ^ ffi •

" R ^ R W " "n B r x
/ s > 5 /" m ” -

O) \ M _ _ _ _ H V ^nz J M

F X "
¥ 5 ” ,

• • H £ 0 « fi
71 73 7(i— — ‘ 7 — » 7 0 _ , 79 I
1 L-] 1 J V
i/H ” ^ ^ AMU ^ ^ ‘371^ ^ ^ m n

p ^ x C3_

Figure 3.1 - Three Corner Coding Table ,

A s a result the combined 3 corner code is a six digit
number theoretically ranging from 000000 to 999999. Of
course, not all the codes in this range are feasible and
many of them does not exist. Besides, one 3 corner code may

21

not uniquely determine one single Chinese character. There
may exist different characters having the same 3 corner code
although such case does not occur very frequently.

The 3 corner code input scheme is not actually popular.
Despite its unpopularity, the codes are useful in adopting
it as the guidelines in the approach of supervised learning.
Moreover, these codes are also commercially available in the
lookup table for the 3 corner code input scheme in Eten
Chinese system. This look up table has been decoded for our
later use.

§3.3 FEATURE EXTRACTION AND SELECTION

As explained in section 3.1, the corner properties of 3
corner code will be used as the guideline to develop the
tree classifier. Therefore the corner feature as mentioned
in section 2.2.6 will be used.

§3.4 DECISION AT EACH NODE

§3.4.1 STATISTICAL LINEAR DISCRIMINANT ANALYSIS

Since statistical linear discriminant function will be
used, a brief description of constructing this function
from the training sample will be given. More detailed
discussion on statistical discriminant analysis [14] will
be included in the appendix.

22

Consider the problem of classifying an observation vector
x into one of k groups (or populations) TT2, TT̂ .

When the parameters of the distribution in the kth
populations are unknown, the usual procedure in
classical discriminant analysis is to estimate them from
training samples x^ j, j=l,".,N from each of the
populations IT., i=l,...,k. Let

n. n. 1 xij r i _ __ -

i AND S I = L I H J - Y IXIJ _ Y J / NI

where n^ = N - 1 be the sample mean and co-variance
matrix corresponding to the training sample from TTi, and

3c r, . k -
s = [I ni si)/[[I ni J - k. i=l i=l

be the pooled co-variance matrix. Here we estimate the
population covariance matrix J by S. The usual,
estimative, approach to discriminant analysis is to
replace the parameters in the classification rules given
in the appendix by their sample estimates. Applying this
approach yields the sample based classification rule:

Assign x to TT if
(x± - x) _ x) < - x) ,S~1(5j - x)

Vj = l,..wp? j ^ i

The generalized discriminant function will then be given

23

/ …

.i - ‘ '"- .. ' ,‘. ‘‘ .. • .

by y i = ai • x + ci / where
-1 -

a. = S x. and
1 - -i -

Ci = - 2 Xi S Xi

The term (xi - x) ̂ ^ (x ^ - x) = D2(x. , x) is the sample

Mahalanobis distance between x. and x and is an estimate l
for the population Mahalanobis distance A (ju. fx) . If
unequal prior probability is assumed, then the
corresponding c. will be given by

ci = l n p± - i s 1

instead of the previous one. Of course p. may not be known
k

and is usually estimated by N. / Y N.. .a J. La 2. i=l

§3.4.2 Optimization of the number of misclassification

Optimum Grouping Analysis

The probability of misclassification under any
classification rule is a measure of the expected
performance of that rule when classifying observations of
unknown origin. This probability can be estimated through
classifying each member of the samples from according
to the discriminant function developed in the last
section. The classification table thus obtained forms our
basis for further analysis.

We define optimum grouping to be that grouping under which
the total number of misclassification to be resulted from

24

the discriminant analysis will be minimized. To start the
analysis, a preliminary multi group discriminant analysis
is performed based on the corner code values. Within this
framework, the classification table will be obtained
resembling the following:

To group
from group 1 2 3 4

1 2 0 0 1
2 0 1 2 5
3 0 1 5 0
4 1 4 5 8 • • • • •
• . . •

Our idea of optimum grouping is to choose one grouping
here such that when these groups are merged together and
treated as one group while all the others remaining
treated as another, the total number of misclassification
is minimum. Take an example that the classification matrix
is given as

2 0 0 l
0 1 2 3
0 1 5 0
1 4 5 8

where the group numbers are 1, 2, 3 and 4. Suppose group
1 and 2 are merged. Then the new classification table

becomes

25

To group
from group 1 & 2 3 & 4

1 & 2 3 6*

3 & 4 6* 18 * misclassified

Here the total number of misclassification is 6 + 6 =
12. However, if groups 2, 3 and 4 are merged together,
the new classification table becomes:

To group
from group 1 2, 3 & 4

1 2 1*

2, 3 & 4 1* 29 * misclassified

Hence the total number of misclassification decreases to
2. Our objective in the study is to find a way to obtain
such an optimum grouping when we are given the
classification table.

Formulation of Problem

Let N be the number of groups under consideration.
Therefore the dimension of the classification table is N
by N. Write the group label for the ith group as G[i].
Specifically, if the ith group represents the group of
data having corner code equal to 60, then G[i] = 60.

Suppose (cij) N x N
 = classification matrix

where c•. = number of elements from group i
classified to group j

C = set containing all the corner codes

26
^ . _ : • ‘ \ • ‘

N

= U { G[i] }
i=l

Q = a certain grouping

Of course, Q c C.

If we merge the data to two groups designated by Q and

C\Q, then after changing the rows and columns of the

original classification matrix, a new matrix can be formed

where the first appearing codes are from Q while the rest

are from C\Q, i.e.

Q c\n
t ' ^ i 1

r I
Q *

I „ „

f I
C\Q ^ * I

I I

The total number of misclassification will be represented

by the sum of all the entries in regions marked with (*).

Denote M(Q) = total number of misclassification obtained

by the partition specified in grouping Q

Then, M(Q) = X cij + I cij
GTileQ G[jl€Q
G[j]€C\Q G[l]€C\n

=11 + I I %

G[i]€Q G[j]€C\n G[i]€C\Q G[j]€n

27
1 ¾ ¾ ¾ “ .

Hence our objective is to find Q which will minimize M(Q) •
There does not seem any possible methods in finding Q and
exhaustive search appears to be the only solution.

Analysis of the Complexity of Exhaustive Search

We do not know the cardiality of Q and since |C| = Nf we
have 0 < < N. By the symmetry of the problem, |Q| >

N/2 will imply |C\n| < N/2, hence an equivalent problem
will be obtained which aims at finding C\Q. As a result,
we can restrict our search for 0 < |Q| < N/2, i.e. 1
|Q| lN/2j where Lx denotes the largest integer
smaller than or equal to x.

For each value of , we want to find the optimum Q so
that M(Q) is minimized. Since there are N different
elements in C, the total number of different combinations
will be amounted to C^ where k is the cardiality of Q.
Assuming a constant amount of computations a is necessary
in each distinct combination for Q, then the total number
of complexity of the search will be given by

LN/2J N LN/2J N y CN (X = a Y
Lu V L]c k=l • k=l K

•
I

L . I f CN
2 k

a N = - . 2 2
r N-I >

f::,:::.. ... ,. . I 2 .. . J • a . .

28
I

^^ ^H I

which shows that the job is actually not a polynomial time
problem and belongs to the class of NP complete problems.
Rough estimation reveals that even if a = lo"6 sec, N =
100, the time required for finishing the search will be
given by

-6 N-l -6 99 10 x 2 = 10 x 2
23

« 6.34 x 10 sec
16

= 2 x 10 years

which is an astronomically long period of time.
The above analysis concludes that the finding of the true
optimum is not really possible and other approaches should
be adopted so that some "nearly" optimum values can be
obtained. To tackle the above problem, the following
heuristic has been proposed.

Heuristic

The basic assumption is to assume that if Q is the optimum
grouping thus far, then M(fi U {G[k]}) will be minimized
where M({G[k]}) is the minimum for all G[i] € C\Q. This
assumption is of course not really true. Although such
heuristic cannot give the optimum solution to our problem,
we can still arrive at a "nearly" optimum solution at a
reasonably short period of time with the algorithm. The
complexity analysis of this heuristic follows.

I •
There are LN/2 passes for us to complete the algorithm

I

•
29

.........: . .::....: • • ‘

for k = 1, 2 , … lN/2j where k is the cardiality of Q.
At each pass, our job is just to find the G[k] such that
M((G[k]}) is the minimum among all G[i] € C\Q. Adopting
our previous argument,

time complexity lN/2j • N a « <x N /2
which can be solved within polynomial time. Take N = 100,

-6

oc = 10 sec, the time required will be

1002 I 10"6 sec = 5 X 10_3 sec

which is an extremely short period of time.
Implementation of the Heuristic

To formalize our discussion/ we will first define some of
our terminologies used. We define a k-grouping to be a
combination of k groups of elements merged together.
Adopting our previous notations, we have

N = total number of groups under consideration
G[i] = the group label of the ith group

N
C = U { G[i] }

i=l
q = set representing a certain k-grouping

where = k.
c = (c. .)xt ” = the classification matrix 1 j NxN

where c. . is the number of elements from
group i classified to group j

: .
To facilitate further formulation, the following

I
30

• :

..:. • • • • i

definitions will also be included.

A[k] = the group added to the "optimum" k-grouping
to make up the "optimum" (k+1)-grouping

Here "optimum" refers to the optimum claimed by the
heuristic assumption. As a result, the "optimum" k-
grouping will be given by the groups A[0], A[l], . . A [k -
1] and we will denote this as

k-1 f
A, = U - A[i] V c Q
” i=0 [

G = {1,2,•••,N}

E[A,] = the optimum number of misclassification given JC
by the k-grouping of groups as represented by

A k - : ..:

To begin, we have to calculate E[S] for all S where |S| =
1, i.e. for all singleton set S. For simplicity, if S
= { i } then E[S] will be denoted as E[i] where

E[i] the number of misclassification induced if we
parti ion the group space into two subsets
where one. subset is the ith group while the
other comprises of all the groups other than
the ith one.

Notice that

E[i] = sum of all entries of the shaded part in

matrix C of figure 3.2a.

N N
= I L CIJ + CDi

j^i j^i

31

N
= I (dij + cji) - 2 cii (3-1)

j = l

p. 1 2 • • • i • • . N

Figure 3 ,2a

To facilitate further analysis and subsequent calculation,

the following lemma is formulated.

Lemma : E[Au{i}] =̂ E[A]+E[i] - ^ (cij+cji) w h e r e A-
jeA

Proof :
Suppose we rearrange the rows and columns of C so that all
the groups represented in the set A are adjacent to one
another and i is just next to the clusters of groups
represented by A. The scenario can be illustrated by the
figure 3.2b.

32

J ^ i

TT1
T

r 1
Figure 3 .2b

E[A] = sum of all entries in the % region
E[i] = sum of all entries in the region

When the groups in A and the ith group are merged,.
E[A U {i}] = sum of all entries in the region.

» . . •

Notice that from the diagram,
E[A U {i}] = I region + region - region

= E [A] + E[i] - \ c ” - \ cji
j€A j^A

= E [A] + E[i] _ I (cij + cji)
jeA

Q.E.D.
I" " . ' . • .

T he above lemma indicates how the total number of
m i s c l a s s i f i c a t i o n can be calculated when a particular

33

I . .

group is being added to the existing grouping represented
by the set A. With this lemma, the entire problem of
finding the optimum grouping can be formulated, using the
approach of dynamic programming, as follows.

Dynamic Programming Formulation

Recall assumption:
If Â . is the optimum k-grouping then the optimum k-
grouping should contain all the groups residing in A,

1. Calculate all E[i] for i e G by the formula (3-1).

2. A[0] = j
A0 =
E[A0] = e
where e = min E[i]

ieG

and j takes the value of i chosen which corresponds to

that of e.
3. For k = 2, •••, N-l

E[A,] = min j E[Ak_] + E[i] - Y (cii + cii) ”
k - j ^ x J

A[k] = the value of i chosen
A k = A k - 1 U (ACkH

‘ . : •
In principle, we can calculate all the optimum k- •
groupings from the above heuristic for all values of k €
G, i.e. k = 1, 2, N. In practice, we want to
arrive a a certain grouping which will partition our •

I • 34
/ …

data set into two halves with roughly the same size so the
multistage tree developed will be more balanced. Then
what value of k should we choose to stop our iteration.
One obvious choice will be N/2. In such case, we are
aiming at partitioning all the groups into two equal
halves which will minimize the overall number of
misclassification with such grouping. However such
choice does not necessary guarantee that the data set
will be divided into two exactly equal halves and will
result in the formation of an unbalanced tree classifier.
As a result, a better criterion is to stop the iteration
at a value of k, with which although the partitioning of
the groups will not be exactly two equal halves, the
result of grouping will divide our data set into two
approximately equal subsets.

Let C[i] = total number of elements in group i, i e G

N N
Then C[i] = ^ c . . = cjjL

j = l . j = l

Modified Algorithm
1. calculate all E[i] for i e G by the formula (1)•

2. A[0] = j
A0 = (j)
E[A] = e where e = min E[i] 0 ieG
and j takes the value of i chosen which corresponds to

that of e.

35

3 • k = l
N

T = total number of data = ^ C[i]
i=l

Repeat
r

E[A] = min E[A] + E[i] - Y (c.. + c..)-
K i€G\A, K 1 1]i

A[k] = the value of i chosen
A k = A k_ x U {A[k]}

Until

Z c [j] > I

§3.5 IMPLEMENTATION
/

The idea of supervised learning approach has been described
in section 3.1 and the theory of the corner feature
extraction and clustering have also been illustrated in
section 3.3 and section 3.4 respectively. In this section,
the implementation details such as the creation of testing
samples, the , building of the decision tree and the
determination of decision functions will be mentioned.

§3.5.1 Training Data
The 24 x 24 dots standard character set (stdfont.24) in

Eten Chinese System is used to train up and test the

performance of the tree classifier. There is no

distinguished advantage of using this character set. The

reasons of adopting this character set as the testing

,sample are

36

. (. • • . '• •

a. It is simple and easy to obtain. No extra character
reading and prepossessing software are required and
neither of them is the main objective of our project.

b. The standard character set consists of about 13,000
Chinese characters which has already covered the
commonly used Chinese character and difficult Chinese
character.

c. Big 5 internal code is adopted in Eten Chinese system
which is very popular nowadays in Hong Kong and Taiwan.
Tree classifier based on Big 5 internal coding can
interface with Eten Chinese system more easily.

d. Many commonly used Chinese font types such as Ming,
Sung etc are available in Eten Chinese system. These
character fonts can be used to test the classifier1 s
performance or used in multi font training and
recognition.

e. The lookup table for the 3 corner coding system is
available in Eten Chinese system which can directly • ‘
match with the training character.

To prepare the training data, the corner features for each
corner of the sample characters are extracted with the
method described in section 2.2.6. As 3 corner code is
used as a mean for supervised learning in our tree
classifier (section 3.1), the corner features are then
combined with the corresponding corner code (refer section
3.2 for details of 3 corner code) and Big 5 internal code.

I' , I
37 •

Finally, three training data files, one data file per each
corner, are formed. Each training file consists of around
13,000 character records. Each character record has 8
corner features, the corner code and the Big 5 internal
code. The format of the character record is illustrated in
figure 3.3.

C h a r a c t e r Records •

, .
,i • . N

XXXX_A.AAAAAA .BBBBBB D.DDDDDD-E.EEEEEE_ H.HHHHHH_YYY |J

j Y feature 1 Y feature 2 Y fealure 4 X feature 1 X fealure 4 f
! I J I 1 j

j . 1 — s y ^ I

j Y corner features X corner fealures |

' . s , 3 Corner code
Character ID ,
(B.G 5 code) (00 - 9 9)

F i g u r e 3 .3 F o r m a t o f t he c h a r a c t e r r e c o r d s

§ 3.5.2 Clustering with the use of SAS

After the training data files have been prepared, they can
be used to train up the classifier at each node of the
tree with the clustering algorithm and linear discriminant
function as described in section 3.4.

38

It will take a long time and effort to develop the
software for clustering and tree building. In order to
reduce the development effort during the early testing
stage, a statistical package called SAS was used. This
statistical package has built-in library routines to
calculate the Mahalanobis distance and covariance matrix
which are essential in distinguishing at each internal
nodes.

To perform the clustering at each internal node with the

corner file using SAS, the' following procedures is

adopted. The corner file here refers the training data set

in each internal node as mentioned in section 3.5.1.

For each corner file

a. Group the characters according to the 3 corner codes of

each character record. The number of classes would

depend on the content of the corner file.

b. A SAS script program (CLUSTER.SAS) is written and to be

run at SAS to carry out the following sub-tasks. The

details of "CLUSTER.SAS" is shown in figure 3.4.

- calculate the mean of each class and the covariance
matrix between classes based on the corner features.

-Determine the class discriminant functions calculat
ed based on the Mahalanobis distance between classes

I 39

& .

-Re-substitute the original training characters
(corner file) into the discriminant functions. A
statistic is made to determine the degree of
misclassification within the classes•

- A table of misclassification is then printed out.
Part of the misclassification report is listed in
appendix.

data _cfont_;
inf ile "sas__datl. dat";
input id $ fl-f8 group;
run;

%macro cluster(u,1)
%do i=&u %to

data test
set —cfont 7
if nSt^groUp^evalpi)) then group=999; * 999 = others;
run;

proc discrim data=test
class group
var fl-f8;
id id;
run;

%end;
%mend cluster;
ickieie •
* Execute the macro * * * * •

%cluster(Of99);

Figure 3.4 Listing of CLUSTER.SAS

c. Reformat he misclassification report manually so as to
form a misclassification table between the classes.
Part of he misclassification table is shown in figure

3.5.

40

I • “‘. ,

I ’ . ‘ ‘ . ‘ ' .‘ • , • .

d. A C program "SPLIT.C" is written to read in the
modified misclassification table. The heuristic for
splitting described in section 3.4.2 is then used to
split the original training data set (corner file) into
two groups•

e. Afterwards, another SAS script program "TREE.SAS11 is

written to determine the linear discriminant function

for that internal node based on the splitting result in

procedure d. Part of the discrimination report is

listed in appendix for reference and the "TREE.SAS" is

also shown in figure 3.6.

data —c font 7
i n f T l e " c T \ t c \ e - 1 0 . d a t " ;
i n p u t i d $ f l - f 8 g ;
flag=l;
group=l?
if g=54 or g=45 or g=14 or g=48 or g=59 or g=94 then flag=0;
if g=55 or g=50 or g=58 or g=13 or g=36 or g=49 then flag=0;
if g=45 or g=90 or g=25 or g=29 or g=20 or g=34 then flag=0;
if g=74 or g=83 or g=88 or g=3 or g=12 or g=40 then flag=0 ;
if g=71 or g=80 or g=93 or g=7 or g=37 or g=41 hen flag=0?
if g=32 or g=l or g=77 or g=39 or g=46 or g=72 then flag=0 ?
if g=84 or g=81 or g=87 or g=44 or g=52 or g=78 then flag=0;
if g=86 or g=97 or g=23 or g=43 or g=24 or g=38 then flag=0?
if g=92 or g=33 or g=6 or g=19 or g=8 or g=22 then flag=0;
if g=28 or g=47 or g=95 or g=16 or g=70 or g=ll then flag=0;
if g=io or g=57 or g=73 or g=98 or g=21 or g=42 then flag=0;
if g=30 or g=51 or g=75 or g=53 or g=9 or g=89 then flag=0;
if g=67 or g=66 or g=64 or g=65 or g=85 then flag=0 ?
if flag=0 then group=0;
run;
proc discrim data= cfont ,•

class group
var fl-f8;
id id;
run

Figure 3.6 Listing of the TREE.SAS

41

^ft;.'.* 1 ‘ •. , .

f - The discrimination report would be generated by SAS but
it cannot be used directly. It will be reformatted
manually to erase all the dummy information as shown in
figure 3.7. Note that every nodes will be identified by
an unique label during the character recognition stage.

-13.00569 ,-12.75579
8.31453 8.02564

11.59937 11.34153
9.95468 10.53099
6.12050 4.94885

14.16205 12.86861
2.04583 -0.71325

25.90327 31.95018
-0.30411 -0.08740

Figure 3.7 Example of the Linear Discriminant Function

§3.5.3 Building the decision trees

The clustering of the training data set at each internal
node of the decision tree has already been mentioned in
section 3.5.2. In this section, the method of building
the decision tree is discussed. Binary tree structure is
used as it is simpler and easier to implement and it is
logically equivalent to the m-ary tree counterpart.

a. At the root node of the tree, we will use the training
f data set created in section 3.5.1. There will be 100

three corner classes at the root node.

42

M • . .

b. Use the procedures described in section 3.5.2 to split

the training data set into two subsets. These are the

sons of the root node. The format of the training data

subset is the same as the original training data set.

The decision function (a linear discriminant function)

for the root node is then stored and labeled according

to its position.

c. Repeat procedure b for each internal node until the

terminal node of the tree is reached. The number of 3

corner classes at each internal node would depend on

the splitting of the training character.

d. For each terminal node of the' tree, a code called

corner code is assigned for identification.

e. Three separate trees protocol is adopted in this

experiment. The entire procedure will be repeated for

other two corner files.

f. As a result, there are three terminal codes (one

terminal code per decision tree) for each training

Chinese character. A code table with the corresponding

corner code and BIG 5 internal code is formed.

g. To test the performance of the classifier, a C program

"CHDIS l.C" is developed to carry out the recognition

process. The main function of the program includes

• The discriminant functions of each internal nodes

will be stored and used in the recognition algorithm.

• Extract the corner features of an input unknown * To

invoke this program in sas/ just type character.

. 4 3

m
,¾ ‘ . .

• The corner features extracted will be passed through
the three decision trees to get the corresponding
corner codes for that unknown character. The 3 corner
codes will be combined and this single code is used
to identify the corresponding BIG 5 code. this

way, the Chinese character is recognized.

Figure 3.8 summarizes the clustering and tree building
procedure

_ 1/3
In our classifier,., only (13,000) or approximately 32
terminals per decision tree is sufficient to identify the
13,000 training characters as 3 separate decision trees

5
methodology is adopted. 32 or 2 terminals means 5 levels

in binary decision tree structure. The tree is not

perfectly balanced due to the structure of 3 corner codes.

It is noticed that three 32 terminals in the binary

decision tree has a total of 32x32x32 character codes

which is much greater than 13,000. As a result, many holes

(i.e. character code which do not correspond to any

Chinese character) are formed.
4

If 4 levels are used instead of 5 levels, a total of 2 =

16 terminals per decision tree which corresponds to

16x16x16 = 4096 distinct character codes outputted. It

means that there will be an average of 3 characters for

each character code.

I 44

Start

r e a d - i n the
corner f i le

Using SAS to cal.
Mahalanobis distance

between classes

Produce mis — c l a s s i f i c a -
t ion table f o r the class

“ “ .Using the heur is t ic to
combine the classes
into 2 g roups

Using SAS to produce
the d isc r im inan t fn .
fo r he node

L x i x
I X N o d e ? Z

N y ^ Figure 3.8
Jk Schematic f low

Z of cluster ing &
A " tree bui ld ing

\ Corner? / ,

Form the character
code tab le

To solve the problem of the existence of holes, back
tracking is introduced. The idea of back tracking will be
discussed in section 5.4. In addition to back tracking
method, the holes can also be reduced by using other tree
architecture such as single decision tree instead of three
decision trees. The details of this method is illustrated
in section 5.6 and 5.7.

§3.5.4 Description of the classifier

After completing the training process, we will have

obtained

1. the discriminant, functions of all the nodes of the

three separate trees which correspond to the three

corners

2. the code corresponding to every character in the

training data set.

To facilitate the construction of the classifier, we will
store all the discriminant functions in the program. The
number of codes is very large and will be stored in a file

in the format:
012011 < code of the first character in stdfont.24
020306 <- code of the second character in stdfont.24

120314

030915 < code of the ith character in stdfont.24

.

45

‘

[,' .•

The steps to be performed by the classifier for the

purpose of recognizing an inputted passage of characters
will be given as:

a. Read in the codes for each characters from file. These

codes will be sorted in ascending order by the use of

radix sort and stored in an array so that subsequent

searching using binary search can be performed. Besides

the big 5 codes corresponding to each characters have

also been calculated for later reference.

b. The bit pattern of an inputted character is read into
the system.

c. The three corner feature values will be extracted.

d. Using the discriminant functions stored and the feature

values just calculated, the code for the character will

be computed.

e. This code will be used as the key for searching in the
array formed in (1). Binary search will be used so
that only a few comparisons are needed even with a
sample of size around 13000. If there is a match, the
corresponding big 5 code will be taken. This is the
big 5 code of the resulting character being recognized.

f. The character with this big 5 code will be displayed.

g. The entire process is repeated for another inputted

character.

46
I '

I '''if' •
i L . , ” .,V - ; ' ' - " ,.•..

§3.6 EXPERIMENTS AND TESTING RESULT

I §3.6.1 Performance parameters being measured

To access the performance of the classifier, several

performance parameters are measured. For easy

understanding, the tree classifier can be considered as a

single decision node with many terminals. Each terminal

node corresponds to a single character code with either

one Chinese character, no Chinese character (i.e. holes)

or more than one Chinese characters.

As illustrated in figure 3.9, a 5 level decision tree can

have a maximum of 32x32x32 = 32768 terminal nodes. In our

test, he upper bound for the number of terminal nodes

will be 13,000. However, some characters may appear in

groups residing in the s a m e terminal node. As a result,

the actual number of terminal nodes should be less than

this upper bound. Refer to figure 3.9,

. c h o r o c i e r) 1 3 , 0 0 0 t ra in ing
\ set J Chinese charac te rs

V • I

Mut i -s tages Tree Classif ier

^ , Termina l
Termina l Chinese C h a r a c l e r s Node n
Node 1 wilh Node 0 0 0 0 0 1

Figure 3.9 Mul t i -s tages Tree Classifier

I 47

I I I , ‘ - , 1 hi,.. . . , • ' .

Let N be the number of terminal nodes where N :s 13000

n be the total number of Chinese character to be
recognized

n. be the number of characters at terminal node i
where 1 i N

The following performance measures are proposed :

a. The mean and standard deviation of the number of

Chinese character per character code

The mean number of the character per terminal node is

1 N
MEAN = - Y n.

M 1 N i=l

The Standard Deviation (SD) of the number of characters

per terminal node is

N p
SD = -) (n. - MEAN)

I::: . J . N i=l 1

b. The coefficient of variation, i.e. MEAN / SD

c. The entropy reduction
Let Pj = the probability of occurrence of character j,

where 1 ^ j ^ n

V p. = 1 0 ^ P. V 1 ^ j ^ n]
Based on the Shannon's entropy calculation as proposed

by Wang and Suen in [15], the entropy of these n

characters is

48

'^ilt'y^ “ . . . ,. . .

n
Hn(Pl, P2, P3 ... Pn) = - Y P. log0 P.

] 2 D =1
For N terminal nodes,. the reduction of entropy due to
the classifier is

A H = - Z V ^ k - [- L [- 1 pj] 2[- I]] k=l i=l jeQ^ jeQ.

d. The accuracy of the classifier

An input unknown character is said to be accurately

recognized if the expected Chinese internal code can be

found at the resulting terminal node. The accuracy of

the classifier is the percentage of the characters

correctly recognized over the total no. of characters

being tested.

Number of characters correctly recognized
Accuracy =

Total number of characters being tested

Note that even when the internal code of the testing

character is not uniquely determined, it is also

counted as accurately recognized if the expected

internal code is residing in the group of codes in the

terminal node.

e. Recognition Speed
The recognition speed measured in our experiments is
the total time required to give the deduced internal
code from an unknown character bit pattern. It includes
the time for corner features extraction, character

49

I • ‘.-

,

codes formation and the time for other improvement such
as context consideration, back tracking etc. The
average recognition speed per character for the testing
sample will be calculated.

§3.6.2 Testing by resubstitution method

One direct and easy way to estimate the performance of the
classifier is the resubstitution method. In this method,
the original design/training samples are resubstituted
into the classifier for testing. This method has the
advantage of maintaining the size of the design set.
However, the independent issues between the design
character set and test character set is ignored and is
often criticized for being biased.

A program has developed to read in the corner features of

the training characters, have these feature values fed

into the decision trees for each corner and finally output

character codes thus formed. The character code is then

used as an key to search for the corresponding Chinese

internal code. If this character code corresponds to a

group of internal codes, all these internal codes will be

displayed.

Several test parameters related to the performance of the

tree classifier is measured (refer section 3.6.1). The

result can be tabulated as follows

50

.
1 .. ,

(A) General Statistic

-Total number of distinct codes = 8759

- M e a n number of characters per code = 1.49

-Standard deviation for the number of characters per

code = 1.10

-Coefficient of variation = 1.36

-Original entropy = 13•68

-Final entropy = 0.83

Reduction in entropy = -12.85

(B) Testing of efficiency and accuracy

As will be described in section 5.1, it is not

necessary that all the data from the training set

should be resubstituted to the classifier for testing.

Random sample of size 500 is chosen for testing and

the results are as given.

.Average processing time per character = 0.54 second

.Accuracy = 100%

The recognition speed and accuracy of this classifier is

quite attractive. Very high accuracy is guaranteed just

because we use the training character set for testing.

However, the use of the training character set for testing

may not too appropriate in real life situation. No input

device can read in the ideal bit pattern of the character

that matches perfectly with the training character without

any discrepancy or noise.

51

in section 3.6.3, the performance of the classifier will
also be tested with the bit pattern of the noisy
character instead of the training bit pattern.

§3.6.3 Noise Model

In real life, there is no perfectly printed Chinese
character that can be obtained through the input device
such as OCR, scanner etc. So, it is not quite realistic to
use the original ideal sample characters to test the
performance of the classifier (resubsitution method as
described in section 3.6,2).

To simplify the analysis, the noisy Chinese character bit

pattern is not directly generated from the OCR or the

scanner. It is generated randomly from the ideal character

bit pattern using a noise model proposed in [16].

Assume the ideal Chinese character bit pattern is

represented by a 0-1 matrix. The noise model proposed in

[16] can be briefly described as follows.

Let A be the 0-1 matrix (24x24 bit pattern in our case)

of the ideal Chinese character.

B be another matrix in such a way that
B(i, j) = random number uniformly distributed

between 0 and 1 for each (i,j).
N be the noise model matrix such that

52

I . J:') ‘ •. . . . ‘ . ’ •

I

r 1 if condition is satisfied
N(i, j) = \

L 0 otherwise

Noise is added to different points (i,j) of A in a way
that

r A(i, j) is changed either from if N(i, j) = 1
0 to 1 or from 1 to 0

H

L No change if N(i, j) = 0

Two noise models are described in [16], they are

I. WHITE NOISE MODEL

In white noise model, the noise matrix is represented

by
r 1 if B(i, j) ^ a

N(i, j) = -
„ 0 otherwise

where a is some preassigned threshold value which

determine the noise level. The noise points generated

by this noise model are independent from each other.

Character of this type of noise can easily be removed

by simple prepossessing.

.PRINTED MATERIAL NOISE MODEL

As mentioned in [16] the white noise model do not
totally reflect the noise characteristic of printed
character. The noise generated in printed material is

53

I

f

not independent to the neighboring point. They cannot

be easily removed at the prepossessing stage. The

noise matrix in this noise model is represented by

r 1 if n ^ a
N(i, j) = j

L 0 otherwise

where n = j3B(i, j) + B(i-1, j) + B(i+1, j)
+ B(i, j-1) + B(i-1, j 1) + B(i+1, j-1)
+ B(i, j+1) + B(i-1, j+1) + B(i+1, j+1)

13 = Threshold constant

The degree of noise affecting the character bit pattern

depends on the values of a and /3 in the formulas above.

The white noise model is adopted and testing samples with

extra noise incorporated have been generated. By the

reason to be given in section 4.1, only 500 characters

with appropriate noise added are randomly selected and

used for testing. The results for different values of

threshold is tabulated below.

Noise Level Accuracy with noisy sample
0.005 0.474
0.01 0.396
0.02 0.282
0.03 0.230
0.04 0.132
0.05 0.070

Table 3.1

54

I•'“ lie. _.. ,".

CHAPTER 4 - POSSIBLE IMPROVEMENT

§4 POSSIBLE IMPROVEMENT

The idea of supervised learning with the help of 3 corner

codes has been discussed in chapter 3 and a multistage

decision tree classifier has also build. The result shows

that a high accuracy (« 100%) can be obtained if the ideal

sample is used for testing. However, the accuracy of the

classifier is rather sensitive to noise (refer section 3.6.2

for the performance of the classifier) • To improve the

accuracy of the classifier, several possible ways of

improvement are suggested by my project partner Mr. K W Sin,

the details are depicted in the appendix A. 4. In order to

maintain completeness for the presentation, a summary of the

possible improvement is described in the following

paragraphs.

a. Reduce the training and testing samples

5000 commonly used Chinese character is used instead of

the 13,000 training samples. The reduction of the number

of Chinese characters with similar shape would reduce the

training time required and at the same time increase the

discriminating power of the classifier.

b. Filter the noise of the input characters
Two noise filtering algorithms has been recommended. These
algorithms can eliminate the single bit noise and double
bit noise occurs at the character bit pattern. However,
the noise bit adhere to the character key stroke cannot be

55

:‘,';..' '- ,. . . . -m " .

eliminated as there is no knowledge to clarify whether it

is noise bit or the actual bit pattern of the character.

c. Decision with overlapping

During the construction of the decision tree, the training

characters will be classified at each node of the tree.

Any error occurs during the classification may resulting

in a wrong character being recognized. As the depth of

the tree grows, such misclassification error will be

propagated and magnified.

Such misclassification error can be eliminated by

duplicating those uncertain items in the decision. At a

result, they will be classified to both of the sub-nodes

of the parent node. Overlapping will delay the committing

of errors to subsequent stages of classification but

increases the number of data items residing in the

subsequent nodes in the tree. If the depth of the tree

classifier is large, such technique is not feasible and a

relatively large number of data items will be associated

with all the terminal nodes.

d. Backtracking for holes.
"Holes" here refer to those terminal nodes of the decision
tree without any training characters assigned. If an
ideal character is inputted to the classifier, the
corresponding corner code will be obtained. However, if
there is some error occurs during the recognition, a

56

A
,.. .. • . ‘ ‘

I “

corner code without any character i.e. holes will result
and no character can be recognized.

As errors has been occurred, we may wish to fix the errors
so that codes can be corrected • The search for such
mistake can easily be achieved through back tracking.
Assuming that errors committed at greater depth are more
likely than errors committed at the top levels, we can
devise a back tracking algorithm which will back track on
the three trees successively for an increasing number of
levels until a realistic code is obtained. Refer to
appendix A. 4 if you want to understand the whole details
of back tracking algorithm.

e. Fuzzy decision function with tolerance limit

To tackle the problem of unnoticeable errors which may-
have committed during the process of classification, fuzzy
decision with the tolerance limited is being studied. As
we have pointed out previously, committing error is
inevitable. So as to reduce the chance of obtaining
unnoticeable errors, it will be better if we do not
provide such a definite decision for the internal nodes.
If the distance between an object and the hyperplane is
smaller than a preassigned threshold value which we will
call the tolerance limit, then decision of classification
to which region is not made. Rather the decision will be

delayed.

57
I ; :.

I'' “
L’‘‘ ’’ ,

f. Different tree architecture

Another way to improve the performance of the classifier
is to explore other type of tree architecture. One of the
possible alternatives is to combine the three trees to a
single one. Suppose the tree for the first corner has been
constructed. We can further develop at the terminal nodes
of the first tree for a few levels of depth by the
consideration of the second corner feature. Similarly the
final tree will also be further extended at the terminal
nodes by the consideration of the third corner feature.
The 1-tree protocol is simple and straightforward although
there is no guarantee that it is a good one.

g. Building decision tree by entropy reduction method

It makes use of the 1-tree protocol as describe in item f.

Instead of just allowing the use of one particular feature

successively at some levels of the tree classifier, the

best corner feature is used at every internal nodes of the

tree. The best feature here means the corner feature among

the three corner features that can gives the most drop in

the system entropy or in other words the most negative

value of AE.

58

.‘•“ —.'.’ .,- . .- .‘

I ff'

I CHAPTER 5 « EXPERIMENTAL RESULTS

« , • ' • . •

•’ K:''
•''' ... , . • :. . .. • •‘ ..'

I ,.

§5 EXPERIMENTAL RESULTS & THE IMPROVED MULTISTAGE CLASSIFIER

§5.1 EXPERIMENTAL RESULTS

Experiments have been carried out to test the performance of

the classifier of different protocols as described in

chapter 4. Parameters of those described in section 3.6,1

are measured and the results are given as follows.

I) 3-trees protocol

• trained with 13,000 Chinese characters

• without overlapping

This original protocol as develpped in section 3 is

tested with filtered noisy samples. Two different case

are considered, one with back tracking while the other

does not.

(a) Without back tracking

Table 5.1 shows the accuracy of the classifier

without back tracking under different noise level

threshold a. ,

Noise Noisy I with filtering with filtering
level Sample by algorithm 1 by algorithm 2

0.05 0.436 0.506 0.262
0.1 0.354 0.424 0.220
0.2 0.248 0.332 0.190
0.3 0.184 0.310 0.142
0.4 0.094 0.174 0.108
0.5 0.050 0.140 0.102

Table 5.1

59

I v ^ , , . > i .:¾ . . ; : :. .,:... •

jj: " . • , f ' ' - . ' • . • - • .

(b) With back tracking

Table 5.2 shows the accuracy of the classifier with
back tracking under different noise level threshold
a.

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2
0.05 0.474 0.534 0.296
0.1 0.396 0.464 0.264
0.2 0.282 0.360 0.220
0.3 0.230 0.346 0.178
0.4 0.132 0.222 0.138
0.5 0,070 0.170 0.120

Table 5.2

II) 3-trees protocol
• trained with 5400 commonly used Chinese characters

• without overlapping

A. General Statistic
-Total number of distinct codes = 2507
-Mean number of characters per code = 2.15
-Standard deviation for the number of characters per

code = 1.60
-Coefficient of variation = 1.35
-Original entropy = 12.40

Final entropy = 1-42
-Reduction in entropy = -10.98

B. Testing of efficiency and accuracy
1. with ideal sample -

60

I mi'
I MM . ‘ • ‘

...’..:',v.. ,.
I , . . . ‘ ’ :.. If'

(a) without back tracking

• Average processing time per character =
0.052 sec

• Accuracy = 0.998
(b) with back tracking

• Average processing time per character =
0.052 sec

.Accuracy = 0.998

2. with noisy samples -

(a) without back tracking

Table 5.3 shows the accuracy of the classifier

without back tracking under different noise

level threshold a.

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2
0.5 0.482 0.544 0.296
0.1 0.418 0.476 0.258
0.2 0.284 0.390 0.206
0.3 0.222 0.336 0.184
0.4 0.142 0.252 0.168
0.5 0.082 0.182 0.118

Table 5.3

(b) with back tracking
Table 5.4 shows the accuracy of the classifier

with back tracking under different noise level

threshold a.

61

i n

1«;

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2
0.05 0.4 88 0.550 0.302
0.1 0.424 0.480 0.260
0.2 0.288 0.392 0.210
0.3 0.224 0.336 0.186
0.4 0.148 0.258 0.170
0.5 0.084 0.186 0.120

Table 5.4

Effect of Back Tracking on the Classifier Recognition Accuracy
For Three Separate Trees Protocol

0.6

0.5 - A

0.1 - • *

0 ‘ J 1 1
o 0.1 0.2 0.3 0.4 0.5 0.6

Noise level threshold

N o i s y sample w/o back tra Noisy sample with back tr Filter 1 w/o back tracking

p Pi! , c r l with back racking FHlcr2 w/o back tracking Filicr2 with back tracking

Figure 5•1

Comparing the results of (a) and (b) (refer to
figure 5.1, it is noticed that the introduction of
backtracking can slightly improved the performance
of the classifier. It is also noticed that the
filtering algorithm one has continuously performed
much better than algorithm two and is useful in

62

I IMl '

I :.

improving the accuracy of the classifier. It may
due to the fact that some bits belongs to the
character key strokdes are being eliminated by
this filter algorithm. Later results will also
confirm with such finding.

3 • with the introduction of tolerance limit c and
tested with noisy sample

no back tracking is introduced

-Different values of c are used and tested. The

performances of the classifiers are as follows.

a. c = 0.001

ideal sample : accuracy = 0.992

the accuracy of the classifier is shown in

table 5.5

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2
0.05 0.480 0.542 0.296
0.1 0.420 0.478 0.258
0.2 0.284 0.390 0.208
0.3 0.224 0.336 0.184
0.4 0.140 0.250 0.168
0.5 0.082 0.180 0.118

Table 5.5

b. c = 0.005
ideal sample : accuracy = 0.964
Table 5 .6 shown the accuracy of the
classifier under different noisy level

I 63

I {"
I)^1 ‘ “

N°ise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2

0.05 0.464 “ ‘""“0.522 0.288
0.1 0.410 0.470 0.252
0.2 0.278 0.380 0.202
0.3 0.218 0.328 0.178
0.4 0.136 0.248 0.162
0.5 0.084 0.180 0.118

Table 5.6

c . c = 0.01

ideal sample : accuracy = 0.930

Table 5.7 shown the accuracy of the

classifier

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2

0.05 0.446 0.502 0.274
0.1 0.394 0.446 0.238

I 0.2 0,268 0.368 0.196
0.3 0.214 0.318 0.170
0.4 0.130 0.244 0.154
0.5 0.082 0.178 0.118

Table 5.7

4. c = 0.05

ideal sample : accuracy = 0.654

Table 5.8 shown the accuracy of the

classifier

I 6 4

1 ¾ ^ ‘ . ‘

I

Noise Noisy with filtering I with filtering
level Sample by algorithm 1 by algorithm 2
0.05 0.324 0.346 0.226 “
0.1 0.266 0.310 0.186
0.2 0,204 0.272 0.162
0.3 0-162 0,246 0.146
0.4 0.094 0.206 0.148
0.5 0.066 0.158 0.102

Table 5.8

In figure 5.2, the accuracy is plotted against the noise
level for different values of e. It is noticed that the
smaller the value of c, the higher the value of the
accuracy. Since when c = 0, the case will just
degenerate to the case where no tolerance limit is added
and is just the original protocol. As a result, we can
conclude that the introduction of tolerance limit does
not improve the accuracy of the classifier.

i. Effect of Tolerance Limit on the Classifier Recognition Accuracy
For Three Separate Trees Protocol

0.5 I -

s 0 I 1 1 1 I
0 0.1 0.2 OJ 0.4 0.5 0.6

Noisy Sample with different Noise level
e = 0.001 e = 0.005 e = 0.01 n ft = n ns

Figure 5.2

I 6 5

_ ‘ . , ’ ‘

. “ . . . ’ .

3-trees protocol

• trained with 5,400 commonly used Chinese characters

• with overlapping

A. General Statistic

-Total number of distinct codes = 4,096

-Mean number of characters per code = 13.63

-Standard deviation for the number of characters

per code = 7.22

Coefficient of variation = 1.89

-Original entropy = 15.79

-Final entropy = 3.96

-Reduction in entropy = -11.81

B. Testing of efficiency and accuracy

1. with ideal sample
(a) without back tracking:

• average processing time per character =

0.404 sec
• accuracy = 100%

(b) with back tracking
• average processing time per character =

0.394 sec
• accuracy = 100%

As mentioned in section 4.3 that due to the
limitation of memory area, the sorting and
searching during the character recognition is

66

• > -Ifl •

H

done through file in disk. As a result the

recognition speed in overlapping case is much

I

larger than that of no overlapping case. In fact,

the recognition speed should for these two cases

should be closed as the number of decision nodes

is more or less the same.

2• with noisy samples

(a) without back tracking

Table 5.9 showing the accuracy of the

classifier

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2

0 . 0 5 0.592 0 . 6 4 6 0 . 3 7 8
0.1 0.542 0 . 6 0 2 0.362
0.2 0 . 4 3 4 0.536 0.316
0 . 3 0 . 3 8 2 0 . 5 0 4 0 . 2 6 6
0 . 4 0 . 2 6 0 0 . 3 9 4 0 . 2 3 4
0.5 0.194 0.314 0.210

Table 5.9

(b) with back tracking

Table 5.10 showing the accuracy of the

classifier

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2

0 . 0 5 0 . 5 9 2 0 . 6 4 6 0 . 3 7 8
0.1 0.542 0.602 0.362
0.2 0.434 0.536 0.316
0 . 3 0 . 3 8 2 0 . 5 0 4 0.266
0.4 0 . 2 6 0 0 . 3 9 4 0 . 2 3 4
0.5 0.194 0.314 0.210

I /¾̂1

Table 5.10

67 *.
I ; -
• ’...
I f c I '

I
1 f) ...

Again, the results show that filtering algorithm one
is helpful in improving the performance of the
classifier but it is not much contribution in back
tracking case since back tracking is not necessary
in overlapping case.

Comparisons on the accuracy of the classifier in (II)

and (III) with the introduction of back tracking and

filtering algorithm one are made. The accuracy has been

plotted against different values of noise level as shown

in figure 5.3. From the graph, it is noticed that the

introduction of overlapping has added extra merits to

the performance of the classifier.

Effect of Overlapping on the Classifier Recognition Accxiracy
For Three Separate Trees Protocol

0.7 p

0.6 - ^^^^

_ • I T • : . . . • . •
0.2 -

0 1 ‘

0 0.1 0.2 0.3 0.4 0.5 0.6
Noise level threshold

, • Filter 1. without overlap , • „ niter I with overlap

Figure 5.3

68

IV) 1-tree protocol

• trained with 500 randomly chosen commonly use Chinese
characters

• use entropy reduction to select corner features at
every node

• with overlapping

• no back tracking for holes is necessary since there is
merely no holes with one single tree classifier

A. General Statistic

-Total number of distinct codes = 64

-Mean number of characters per code = 42.83

-Standard deviation for the number of characters per

code = 15.33

-Coefficient of variation - 2.79

-Original entropy = 11.42

Final entropy = 5.24

Reduction in entropy =-6.18

B. Testing of efficiency and accuracy
1. with ideal sample

• average processing time per character = 0.038

sec
• accuracy = 0.998

2. with noisy sample
Table 5.11 showing the accuracy of the classifier

I 69
’ • . _

1 i -• a : . „ . . .

Noise Noisy with filtering with filtering
level Sample by algorithm 1 by algorithm 2
0.05 0.788 0.812 0.634

_ 0.758 0.776 0.612
0.2 0.664 0.720 0.562
0.3 0.652 0.724 0.540
0.4 0.550 0.618 0.488
0.5 0.528 0.612 0.500

Table 5.11

§5.2 CONCLUSION

Based on the above experimental results, the following

points can be concluded.

1. Back tracking for holes can improve the performance of
the classifier to a certain extent. At the same time, we
have also noticed that the increase in the average
processing time for each character is only negligible.

2. The introduction of the tolerance limit does not help in
improving the performance of the classifier. It has been
noticed that when c is set to zero, this protocol will be
degenerated to the ordinary protocol where there is no
fuzzy decision by tolerance limit.

3. The use of overlap can improve the performance of the
three separate trees protocol. Perhaps the extra costs
to pay for such an improvement will be the increased
average processing time per character (from

approximately 0.05 second to 0.4 second). Besides,

70

the mean number of characters per distinct code has also
increased from 2.15 to 13.63. Of course, if this
classifier serves only as the first stage of our
discrimination process, such an increase in the mean
number of characters will not bother us much. Rather the
increase in the accuracy should be our major concern. As
a result, despite all these drawbacks, the use of
overlapping should still be adopted.

4. The one single tree protocol with overlap has found to be
quite promising in its discriminating power as compared
with other protocols. However, since only 500 characters
are used in training up the classifier/ the good
performance of such classifier will not be guaranteed for
a larger training set (say with 5400 commonly used
Chinese characters)• Experiments should be performed to
confirm the above finding.

5. Concerning the filtering algorithms, we have noticed that
the filtering algorithm one has continuously better
performance than the algorithm two. As a result, we can
conclude that inputted characters should be filtered by
algorithm one before they are fed into the recognition
system.

71

CHAPTER 6 - IMPROVED MULTI-STAGE TREE

I CLASSIFIER

§6 IMPROVED MULTISTAGE TREE CLASSIFIER

§6.1 THE OPTIMAL MULTISTAGE TREE CLASSIFIER

The results discussed at chapter 5 reveal that the three
separate tree protocol should be adopted. The idea of
backtracking for holes should also be incorporated. As a
result, the improved multistage classifier recommended is:

• trained with 5,400 commonly used Chinese characters

• idea of the backtracking is incorporated

• with overlapping

The classifier will follow the following sequence of steps
in classifying the characters inputted.
1. The codes for all the 5,400 characters are inputted

through a file. These codes will be sorted in ascending
order with the use of radix sort. The sorted codes,
together with the corresponding Big 5 codes, will be
stored in an array for later reference.

2 • The bit pattern for the characters are inputted to the
system for classification. They will be inputted to the
system one by one • For every character inputted, the
corner features at the three corners will be extracted
first.

3. The discriminant functions at every nodes of the tree
classifier have already been stored in the program. With
these functions, the code for the character will be

72

calculated. Of course, if it is a character from the
ideal training sample, the code computed should exactly
match with actual code for that character. There may be
deviation if this character is from some noisy sample.

4. The code will be used as the key to search for the
corresponding Big 5 code for that character inputted.
Binary search will be used.

5. The inputted character will be recognized as that
character having the Big 5 code as that found in (4) •

6. The process will be repeated for another character
inputted.

§6.2 PERFORMANCE ANALYSIS

Classifier based on the improved multistage tree idea has

been constructed and being tested with ideal samples, noisy

samples and samples which have been filtered using filtering

algorithm one. Again, only random samples of size 500 are

generated for the purpose of testing. The results are given

as follows.

(A) The Recognition Rate
Four categories can be identified in terms of the

recognition result. They are the percentage of

characters
1. correctly recognized as a single unique character;

2 . correctly recognized as a group of characters

3. incorrectly recognized as another character or

73

another group of characters;
4• having not been recognized as any characters..

Both (1) and (2) belongs to the class of success while
cases (3) and (4) lead to errors. In particular, case
(3) will incur unnoticeable error and is most
undesirable. The results of the classification is given
in table 6.1.

% ideal Noisy sample Filtered sample
sample at noise level 0.005 at noise level 0.005

1 0% 0% 0%
2 79.6% 59,2% 64.6%
3 0.2% 40.8% 35.4%
4 0% 0% 0%

Table 6.1

(B) Recognition speed
Since idea of overlapping has been incorporated and the

total number of codes is large, we have to use file to

hold the sorted during run time. This has significantly

increased the average processing speed of the

classifier. However, the speed is still small enough to

be implemented in the microcomputer environment. Upon

testing, the average processing time per character is

found to be.

74

t ’

Ideal Nosiy sample at Filtered sample at
Sample noise level 0.005 noise level 0.005

Processing
Speed (sec) 0 - 5 °- 5 °- 5

Table 6.2

Besides, the performance of other protocol has also been
studied for referece and the recognition rates can be
tabulated below: 1
I. 3-trees protocol

. trained with 5400 commonly used characters

. without overlapping

. with back tracking

% ideal Noisy sample Filtered sample
sample at noise level 0.005 at noise level 0.005

1 20.2% 8.8% 10.8%
2 79.6% 40% 44.2%
3 0.2% 51% 45%
4 0% 0 .2% 0%

Table 6.3

II. 1-tree protocol
.with overlapping

I I % ideal Noisy sample Filtered sample
sample at noise level 0.005 at noise level 0.005

~ o% “ 0% ~ ~ 0%
2 99.8% 78.8% 81.2%
3 0.2% 21.2% 18.8%
4 0% 0% [__ 0%

Table 6.4

75

J CHAPTER 7 “ FURTHER DISCRIMINATION BY CONTEXT

CONSIDERATION

I

§7 FURTHER DISCRIMINATION BY CONTEXT CONSIDERATION

§7.1 IDEA

The multistage tree classifier developed in the previous

chapters only provide a partial discrimination of all the

Chinese characters into a number of clusters, since global

feature (the corner feature) is used, we cannot expect

discrimination to be complete just with the tree classifier
developed. Although we can .increase the depth of the trees
so that data in each clusters can be further discriminated

. » *

into smaller clusters. However, this , increase in depth is
not justified in light of the additional error encountered
for a tree with greater depth as pointed out in [15]. As a
result, further exploration should be sought so as to
completely discriminate the characters.

It has been suggested that since only global features have
been used in the first stage of our decision, local feature
may help in further classification in our second stage of
decision. Local features including the search for a dot
around certain position, search for a stroke at the corner,
a slanted stroke at the right edge and the like, have been
recommended. In this way, rules can be set up for this
second stage discrimination. However, there are some
drawbacks to this approach. Since we have left with quite a

. ,. '. ,

large number of clusters from our first stage of work, may
be up to hundreds or thousands of rules are needed so as to

76

further discriminate these clusters of characters. This is

time consuming and laborious. Moreover, there is no general

strategy for the setting up of such rules. We cannot decide

whether one setting is better while compared with another

setting.

To tackle the entire problem, we decided to use the semantic
of the language. It has been noticed that in every
application of Chinese character recognition, the input to
the system should be in the form of a passage. This means
that characters will be grouped in phrases and be fed into
the recognition system successively. Suppose a certain
character has been recognized. Then we can guess the next
character to come and have hem be confined to only tens of
characters which are semantically related to the previous

character. For instance," " ‘ “ t " "may follow the
character " "• Hopefully, based on such consideration of
context, we can discriminate every character uniquely when
the whole passage is fed into the system.

I T here is a difficulty in grouping all the semantically

I I related words in Chinese since such grouping done manually

I i s time consuming and laborious. Fortunately, help can be
I sought from commercially available Chinese system. The Eten

Chinese system is one which provides an input method by the
I consideration of context. T h e lookup table for this input

method actually groups together related words of a character

s o a s to facilitate subsequent searching more easily.

77

Converting this file to a file with coding in Big 5, we can

store the lookup table in a particular file, the format of
which is

<Big 5 of 1st character list of semantically related words>
<Big 5 of 2nd character list of semantically related words
<Big 5 of 3rd character <list of semantically related words

The first character on each line will be served as the key
j during subsequent searching. A partial listing of this
I table has been included in the appendix for reference.

§7.2 DESCRIPTION OF ALGORITHM

The implementation of the idea in computer is simple. All we
have to do is to store the previously recognized character
and look for the corresponding lis of seman ically related
characters which are to be stored in an array. The bitmap of
the next character will then be inputted to the system. With
the use of the multistage tree classifier developed
previously, the first stage discrimination is performed and
a group of characters is obtained. To choose he most likely
character among this particular group of words, the second
stage discrimination process will be performed by context
consideration. The list of semantically related characters
corresponding to the previously recognized character is
sought and be compared with each of the character in the

78

I r.

1 g r o u p o f characters left after the first stage of
classification. If a match can be found, then the character

_ has been uniquely recognized. If a match cannot be obtained,
decision cannot be made at this moment. Further decision has
to be made and there are various methods in tackling the
situation which are to be discussed later in this section.

To summarize the above discussion, the following algorithm
has been suggested.

1. Store the previously recognized character to variable

pre char. •• !•
2 • G e t he list of semantically related characters of

pre char.

3. Read in bitmap of next character.

4. Multistage tree classifier is used and a group of
characters is concluded. These possible characters are
stored in array pos_char[] and the total number of
characters is stored in variable max—pos—char

5. For i=0 to max—pos—char-1

5.1 Check whether pos_char [i] is in the list of the
semantically related characters of pre_char.

5.2 If found,

k < i
Report the finding
pre—char < pos_char[k]

5.3 Otherwise, Uncertainty Tracking algorithms
6. Go to step (1).

79

UNCERTAINTY TRACKING ALGORITHM

Our final task is to find methods to deal with the case of
I : .» ..

uncertainty. Obviously there exists a number of algorithms
to tackle the problem.

The first method tries to defer the decision in later stages
of classification. When any uncertainty is encountered we
simply do not decide and try on every possibilities until
any one such path, upon completion of subsequent stages of
classification, : gives a definite decision to the
classification. In other words, we wait until one such path
gets a match. This approach, although sounds sensible, is
not practical for implementation. Obviously the number of
possible paths will be booming due to the large number of
semantically related characters at each level of
classification. Such depth first search of solution will be
very time consuming. On the other hand, there is no
guarantee that a feasible solution should be obtained even
after prolonged search..

Breadth first search may be another solution but still the
exponentially growing number of possible paths also hinders
the implementation of the algorithm. Searching does not
seem to be a good method. May be the introduction of a
suitable heuristic function will render selective search to
be a better way. But how can we choose the heuristic
function? There is simply no easy method.

80

The next method is simply to ignore that character. Whenever
uncertainty arises, we simply admit that our system fails
to recognize correctly this character and leaves the answer
untouched. The system will then proceed to recognize the
next character coming into the system. However, such method
is definitely not good since our recognition system depends
very much on the previously recognized character if context
is to be used as a classification criterion. Any characters
having left to be unrecognizable will make the entire system
to fail in subsequent stages of classification for other
characters.

Then we see that the most straightforward way to tackle
I • / . . . ' • "‘

uncertainty should be to let the user to make the decision • - ̂ «•
for us. In such case, when uncertainty arises, all
possibilities will be displayed to the user and the user
will make the decision for the system before the system goes
on. This method, though a little subtle, should be the
simpliest and the best that we can have.

§7.3 PERFORMANCE ANALYSIS

Adopting the improved multistage tree classifier as
developed in chapter 6 as the first stage of discrimination
and the idea of context consideration as the second stage, a
final multistage tree classifier can be constructed.

81

f [w

We cannot test the performance of this classifier by inputs
which are not realistic and cannot suit the requirement for
context consideration. Characters used in the testing
samples of our previous work are merely not semantically
related in any way. As a result, we have to choose a passage
to serve as the testing sample. Again ideal sample, noisy
sample and filtered noisy sample are fed into the system and
tested successively.

Similar to the four categories for the recognition result
discussed in section 6.2, there will also be categories of
outcome in our case.

1. Characters to be correctly recognized as a single unique

character.

2• The first stage of classification leaves a group of

characters and the second stage of classification cannot

successfully select the correct character from this

group. In this case, the result will still correspond to

a group characters•.

3. Character has been incorrectly recognized either as

another character or as residing in another group of

characters.
4• Charac ers cannot be recognized as any known character

even at the first stage of classification. Again, we
have also assumed that the character has been uniquely
recognized so as to facilitate further classification

I 82

Adopting the four categories, the performance of this
classifier can be demonstrated as follows.

Percentage being classified to Ideal Sample
category 1 38.44%
category 2 58.75%
category 3 2.81%
category 4 0%

Table 7.1

Despite of the lower accuracy of the 3-tree protocol without
overlapping, it has been found that the percentage of
characters which can be uniquely recognized, that is. those
being classified to category 1, is to some extent greater
than that with overlapping. The following table summarizes
the performance of such classifier.

Percentage being classified to Ideal Sample
category 1 51.56%
category 2 46.88%
category 3 1-56%
category 4 0%

Table 7.2
I

f> . ..

I I.
I I'
I Si '

I • .
J

|: F: . : . , .
I I

83

..::.::-.1. •

m \f

S

CHAPTER 8 ” CONCLUSION

I i
• ’

1 • . 9 f 1 -¾ I m-

§8 CONCLUSION

§8.1 Advantages of the classifier

The advantages of the classifier thus developed can be
summarized as follows• • .
1. It is fast and efficient when passage of moderate size is

inputted for recognition.
2. If ideal sample is used, the accuracy of the classifier

is very high and is approaching 100%.
3. The use of three separate decision trees has make

possible the use of distributed processing where one
processor will be responsible for one decision tree.

4. Practically we have included all commonly used Chinese
characters in our system and there is little chance of
getting a character input which is unknown to the system.

5. If a new character is added to the system, we can define
a new code for this character based on the existing
classifier by allowing this character to go through our
system and have this result be written on our code file.
However since our code file has already been sorted, it
will take some time for this new code to be inserted at a
proper position in the file.

6. Since we have been making use of Big 5 as the internal
coding system, the chaaracters being recognized will all
be coded in Big 5. As a result, the output from our

: recognition system can easily be interfaced with all
Chinese systems commonly used in Hong Kong,

84

i ‘

§8.2 Limitations

There are some limitations to our classifier and they are
H

listed below.
I • •

‘ ‘ ‘ . . •

1. The performance of the classifier degenerates with noisy
sample input at larger noise levels. This is not
desirable since noisy sample input is more realistic than
the ideal one.

2. The classifier is font sensitive. The performance will
degenerate when tested with characters of other font
type, e.g. Ming font.

3. This is not fast enough when long passages are inputted
to the system for recognition. This is a problem
originated from the large number of codes generated as a
result of overlapping.

4. There is still a small probability of unnoticeable error
which is highly undesirable since these errors can hardly
be detected and located.

.

.•' ..:. .
‘. - . I,., ; ‘ •

:... “ • __
...’.. ‘

I : . - . .

. . . .• .
85

CHAPTER 9 -- AREA OF FUTURE RESEARCH AND

IMPROVEMENT

.•. : : . _ .. . •

I . ’ ’

I , .
1 .
I • /̂.

1
ÎR:1 '/'/ . • , . .
I S .-. • • •

:..........
I " ,.. .
I 7 .

I .:¾ ...

ll fe .

§9. AREA OF FUTURE RESEARCH AND IMPROVEMENT

§9.1 DETAILED ANALYSIS AT EACH TERMINAL NODE

In the tree classifier recommended in chapter 6, the number
of levels in the decision tree is quite large in order to
make the number of Chinese characters at each terminal node
reasonably small. To fulfil this requirement, a lot of mis-
classification occurs.

The mis-classification error can be reduced by several
techniques which includes overlapping the critical
characters (refer section 4,3), back tracking for holes
(refer section 4.4) and use of fuzzy decision function with
tolerance limit (refer section 4.5). However, all the
technique mentioned cannot make a great improvement due to
the nature of corner feature which can only discriminate
the Chinese characters with different corner styles. It is
quite obvious that the recommended tree classifier can only

m ‘
be used as the first stage classification which roughly
classifies the character set into groups with similiar

•

corner styles. In this way, the number of levels in the

decs ion tree can be reduced in order to reduce the error

incurred.

The actual identification is done at the second stage
classification where special discrimination techniques on

I i?... '
particular set of character(s) are used. One example of
this second stage classifier is the use of context

86

I ,

consideration as that used in Eten Chinese System (refer

chapter 7 for details)• However, this method is only useful

if a large database with context relation is maintained.

Furthermore, the Chinese character which has no context

relation with the other Chinese character or is the first

character of the sentenses may not be recognized.

§9.2 IMPROVING THE NOISE FILTERING TECHNIQUE

It is shown in section 4.2 & 5 that a good noise filtering

technique can improve the recognition rate of the tree

classifier. In section 4.2, two noise filtering algorithms

has been recommended. However, both of the algorithms can

only eliminate a single noise bits and two consecutive

noise bits. The noise bits that are closed to the character

key stoke or closed to other noise bits cannot be filtered.

. . -

s It is recommended to derive an effective noise filtering

technique that can eliminate the unnecessary noise bits
.:. - .

especially in the feature extraction regions. This noise

filtering algorithm can be included into the feature

extraction program at which more analysis at the feature

extraction region is done before extracting the corner
I '^M^- •
I)

features.

' 1 . .—

I

8 7

I -̂-¾¾.
I r̂K̂-; , : •
I
I

§9.3 THE USE OF 4 CORNER CODE

In approach 2, three corner codes are used to assist the
training of the tree classifier in recognizing the Chinese
character. It can shorten the training time and improve the
flexibility of the tree classifier especially when the
training character set is changed. However, several
characteristics of three corner codes also degrades the
performance of the classifier i.e.

a. In three corner code, there are 100 classes (i.e. 00 -

99 classes) per each corner. For supervised learning,

the training character set is divided into 100 classes
*

according to the three corner code. It is then combined

into two groups based on the minimum clasification error

in the covariance matrix. However, to minimize the

global classification error of an 100 classes decision

tree is a very difficult task. A lot of calculation is

required which makes the implemenation impossible. As a

result, making use of the heuristic proposed in section

3.4, we only got the local minimum at each level of the

tree classifier instead of the global minimum of the

whole tree.

Furthermore, the 100 classes requirement would increase
the number of levels for each decision tree. The mis-
classification error accumulate from level to level and
the overlapping requirement will then drastically

88

L m

increase.
i

I 4
I -r

b. Only the features of the three corners are used for the

training of the tree classifier which is insufficient to
10¾ .

distinguish a large character set.

I 'l̂r
I ,

The problems mentioned greatly increase the error of the

tree classifier or reduce the performance of the

classifier. However, it can be improved with the use of 4

corner code instead of 3 corner code.

Four corner code is similiar with three corner code as have

been mentioned since section 3.2. But,, in 4 corner code,

only 10 classes (i.e. 0 - 9) for each corner is used

instead of 100 classes. The computational requirement in

getting the global optimum decision tree is geatly reduced

when compare with 3 corner code method.

With 10 classes per each corner, the number of levels, and

thus the error accumulated in each level and the number of

overlapping are greatly reduced.

Furthermore, with the features at four corners of the

character instead of three corners, the power of

discrimination will be improved.

However, the following implementation difficulties will be

encountered•

a # i n the existing Chinese Systems available in the market

like Eten Chinese System, KC Chinese System, there is no

89

Î K, : . \ ... _

four corner code table available. A lot of
implementation effort will be required to build this
four corner code table as there are over 13,000 Chinese
characters.

b. In four corner code Chinese character input method, one
four corner code may corresponding to more than one
Chinese characters.

c. If four corner code is adopted, four decision trees are
required instead of three decision tree. The increase in
the number of decision trees would increase the
probability of classification error and complicate the
back traking effort. However, it can reduce the number
of levels in each decision tree.

To conclude, it is worthwhile to implement with four corner .
code instead of three corner code. A more practical
approach is to train up the classifier with reduced
training character set and compare the peformance with that
of the three corner code.

§9.4 INCREASE IN THE DIMENSION OF THE FEATURE SPACE

As described in section 2.2.6, there are a total of 24
feature points (8 feature points i.e. 4 at the x axis and 4
at the y axis for each corner of the character) used in the
training of the tree classifier to discriminate up to
13 f ooo Chinese characters. However, at each internal node
of the corner decision tree, all the 8 feature points of

90

the corner are used up in determining the leaves of the
node. It is not preferrable according to the argument of
C.Y. Suen & Q.R.Wang in [15].

According to Suen1s argument in [15], those features which
have been used in the parent node will not be used in the

child nodes again because these features become less

informative. It is obvious since similiar classes are

assigned to the same child node after clustering using
these features, thus they have less discriminative power in

” ..: , v. • , : ‘ i
this child node than that of the parent node.

I . '
t . •

Because of this philosophy, it is recommended to increase
the number of feature points at each corner, say 16 points
instead of 8 points. At each decision node, only the best
feature points are used. Different feature points may be
used at different decision nodes. To select the best
feature points, the feature merit measures like information
content measure or Fisher's criterion are suitable for
feature selection in a multiclass problem.

§9.5 1-TREE PROTOCOL WITH ENTROPY REDUCTION

The idea of single tree protocol with overlap and entropy
reduction has already explored in section 4.7, test with
small training character set (500 training samples) have
also been done and the result is quite promising (refer
chapter 5) • Due to the limitation of the memory and

91

processing power in PC environment, this approach was not
further elabolate in our project. However, it is worthwhile
to have some further research in this area.

One of the most significant advantage of 1-tree protocol
over the 3-trees protocol is the reduction of the
overlapping element at the terminal nodes. The details has
already mentioned in section 4.3.

§9.6 THE USE OF HUMAN INTELLIGENCE

It has been mentioned in the section 10.1 that two stage
tree classifier is better than one stage classifier in high
speed, large character size, character recognition process.
However, mis-classification still happen in two stage
classifier, a lot of effort such as overlapping or back
tracking method should be used to reduce the error. To
further improve the classifier performance, a most straight
forward way is to display all the possible Chinese
character when an unlogical Chinese character is detected.
The unlogical Chinese character here mean that there is no •
context relation with the neighbour characters. Human

I /-
I 'ji-'

intelligence has to be used to select the right character.
I

. .,. , ,.‘ : . : . \ • . . •

92

I —

F . “ . , / . . : … : . ’ •

n

APPENDICES

: . . I . .. I I I . I I
1 • • • ‘

‘ • •

^ •. / ‘ ‘ , K

•

• v.. :

m
A.l K-MEANS

The original K-MEANS algorithm uses the arithmetic mean
(i.e. the centroid) of the data as the cluster centres and
based on a group of preassigned k initial cluster centres as
seeds to classify the entire data set into these k clusters.
The usual Euclidean distance is used as the distance measure
between individual object and a given object will be

I classified to any particular cluster if its distance to that

cluster centre is the minimum. During the classification
•

process, the cluster centres will be continuously updated
and the number of objects in the clusters incremented. The
algorithm can be summarized as follows.

ORIGINAL K-MEANS

1. Choose x , x 2 , x^ as the initial k cluster
centres.

Let =number of data in the ith cluster
Set n^ = 1 V i = 1,2,...

2. Take x from the data set, while not end of file do

2.1 Calculate d(x,x^) V i=l,2r.",k
where d(x,y) = Euclidean distance between x and y

2.2 Assign x to the jth cluster such that
) = min d(xfx.) J l 1

2.3 Update cluster centre x, of the jth cluster by

n .X. + X
x • = —
J n. + 1

1

2.4 Update the number of data in the jth cluster by

n. = n. + l 3 J

3. Repeat the classification process by feeding the data
into the system based on the k cluster centres just
calculated in (2).

I -'
I

The above K-MEANS algorithm has been criticized that
there seems do not have an easy way of obtaining the initial
k cluster centres as the seeds. One possible improvement is
then to repeat the above algorithm until the cluster , - •. . . ’
centres become stable. In that case, the algorithm is
said to have converged. As a result, the modified K-MEANS
algorithm is:

MODIFIED K-MEANS
1. Choose X p x 2, x^ as initial k cluster centres.

Let n. = number of data in the ith cluster l
Set n^ = 1 V i=lr2,...

2• Repeat
0 • • ,

2.1 Save x^ = x^ for 1=1,2, • • •
2.2 Take x from the data set, while not end of file do

2.2.1 Calculate d(x,xi) V 1=1,2,...
where d(x,y) == Euclidean distance between x and
y

2.2.2 Assign x to the jth cluster such that
d(x,x.) = min d(x,x.) J l 1

2

2.2.3 Update cluster centre x. of the jth cluster by
n.x. + x

zn
3 n. + 1 D

2.2.4 Update the number of data in the jth cluster by

n. = n. + 1 J J
0 Until I x. - x. j < e for all i where e l l •

is some preassigned tolerance value.

The modified K-MEANS algorithm, though more robust to the

initial choice of cluster centres, is complicated and takes .' • ‘
time for it to converge. Since convergence is not .

guaranteed and it usually takes quite a long time for us to
notice the convergence or divergence of the Algorithm, the
above modified algorithm is usually not recommended.
Practically the original K-MEANS algorithm is more
preferable•

Apart from the criticism for the difficulties in choosing

the initial k cluster centres, another major problem

associated with the algorithm is the choice for the value of

k. what value of k should we choose? This is actually a

dilemma for us. One possible solution is the K-MEANS with

coarsening and refining parameters.

In this new algorithm, the number of clusters is not fixed ‘ ‘
and will be changed during the training period. There are mSK''. • ‘ .

two possible changes in the number of clusters, one for
cluster splitting and the other for cluster merging. When

3

the radius of a certain cluster is too large, that cluster

will be split into two individual clusters, thus increasing

the total number of clusters by one. On the other hand, when

the distance between any two clusters is too small, the two

clusters will be merged together to form one single cluster,

thus decreasing he total number of clusters by one. Such

splitting and merging processes can help to stabilize the

final groupings of the clustering result in a more

preferable way. * .
• • ’ • .

How can the "large" and "small" in the process of splitting
• • • ' .

. • . • —

and merging be characterized? Here we will use a coarsening
-

parameter C and a refining parameter R specified before the
start of the training. For simplicity, the splitting rule
will only be applied when a certain object is being assigned
to one particular cluster. If the distance between that
object to that particular cluster is greater than C, then
group splitting occurs and that object will individually
form a new cluster. For merging of clusters, we will merge
any two clusters if the distance between the two cluster
centres is less than R. The entire algorithm has already
been summarized as the K-MEANS with coarsening and refining
as discussed in section 2.3.

4

A2 • APPROACH ONE - UNSUPERVISED LEARNINGS

§2.1 IDEA

In choosing the approach towards the construction of a
classifier, we seek for different ways to classify our
objects. Of course, training samples are provided. Depending
on the nature of the samples given, two different approaches
exist, here, we will call unsupervised learning and

.supervised learning.

By supervised learning, we mean that the actual class
membership of the objects are known and we can base on such
knowledge of class membership to group the objects into some
clusters. In this way, the classifier can then be
constructed. More details of this approach will be given in
the next section.

By the term unsupervised learning, we actually refer to the
case where no prior knowledge of the class membership of the
objects in the training. sample is known to the system. We
can classify the objects into clusters by some intrinsic
likeliness of the objects themselves. For instance, in
classifying a given basket of fruit, the likeliness may be
measured by the external colour of the object so that all
objects appeared red come together, so do green objects,
blue objects and the like. Of course there is no absolute
measurement of likeliness. Colour is one way in the above
example while weight may be another. Then how can we decide

5

whether to use colour or weight as the measurement? This
forces us to define clearly the goodness of the

measurements f which is actually quite a difficult task.
Besides, there is also no absolute measurement in the
correctness of the classification since we merely do not

. .

know which object belong to which class as class membership
l. v .

is unknown to the system.
[« " ,

The two problems stated above present the intrinsic
difficulties in the implementation of unsupervised learning.
However, unsupervised learning still has its own distinguis-
hed advantages. Since no prior knowledge is required in the
entire process of the classification, this provides a
suitability for most of our everyday life problems since
usually such prior knowledge is not known beforehand. This
non-parametric nature renders the process to be highly
flexible and thus versatile. As a result, most of the
research in pattern recognition are done based on this
approach.

In this chapter, we are going to explore how the technique
of unsupervised learning can be used in the training of a
Chinese character recognition system. Like the usual step
in most of other recognition systems, features are first
extracted from input characters. After going through a
clustering algorithm, objects will be clustered into groups
which separate them into one another. The final stage will
be to construct the tree classifier and form the optimum

6

decision tree. The most distinguished differences between
supervised and unsupervised learning are in the use of the
clustering algorithm and. the method of constructing the
decision tree classifier. All these details will be
discussed in detail in the sections following. Here, an

I |. -
overview is given.

1- Several useful feature extraction methods from the input
bit pattern of the character will be discussed.

2• Different unsupervised clustering algorithms will be
described. We will choose one clustering algorithm to
cluster the given training set into different groups
based on the use of one particular feature. This, step
will be repeated for all other features which have been
extracted from the characters.

3. A decision table as will be formed, details of which
will be discussed.

4. From the decision table just constructed, we will show
how the optimum decision tree can be built.

There are some problems associated with this approach in
the training up of the classifier since practically the
algorithm described in (4) cannot be implemented
computationally. This belongs to the class of NP complete
problems. Details and reasons will be given in section
2.6.

7

§2.2 FEATURE EXTRACTION

I •’
The idea of he unsupervised learning has already been

mentioned in section 2.1. To star with the classifier
1.1

development, feature selection pay a very important role in

determining the performance of the classifier. Feature is
the measurement of likeliness we have mentioned in section
2.1. If a good feature is selected, the unknown object can
easily be identified. In this section, the feature selection
criteria will first be discussed. Different feature
extraction methodologies that are favourable for this
approach will also be described.

§2.2.1 Feature Selection Criteria

The most distinguished advantage of the tree classifier

recommended in section 2.1 is to break down the most

complicated decision into a tree of many simple, easy to

obtain decisions.

Based on this philosophy, the feature extracted should

satisfy the following feature selection criteria

a. The feature should be as simple as possible so that the

time required to extract the feature is reduced to

minimum.

b. The feature can effectiveity classify a particular set

of Chinese characters.

8

I . , ‘ .. .

1 . . , .

c- T h e feature selected should provide maximum
I \<s

separability.

d. The feature should be insensitive to noise, rotation,

shift etc.

e. The feature should require as minimum memory as

possible.

It is the fact that no single feature can satisfy all of
the above selection criteria, which means that measures
such as the probability of error, the reduction in entropy
etc should be calculated in order to determine which
feature is the best choice. The one with the maximum
advantage like separability, number of resulting classes
etc. will be selected.

Furthermore, it is also mentioned in [2] that the size of

the feature to be used at each node should be limited to

be much smaller than the total number of available

features. The sections follow will describe some of the

most common features used in recent research of Chinese

character recognition. Of course, it is by no means a

enhaustive list but only provides an overview of the

methods used in the extraction of useful features from the

character.

.9

§2.2.2 4C Code

"4C" actually refers to the four corners of a Chinese

character. It has been argued that in the Chinese

language, the shape of the corners can provide us much
- . . . ' . . s

information. As a result the 4C code can be used as a
fc'

feature for classification.

The 4C code is defined by encoding the four corner square
zones of a character according to the size of the black
points. To. make the feature value more robust to the
total number of pixels in the given character, the four
black to white ratios are calculated. The respective
order of the codes taken is illustrated in figure 2.1.

F i g u r e 2 . 1 The Order of the 4 Corne r Code
t a k e n f r o m a Ch inese C h a r a c t e r

10

For a 24 x 24 bitmap, each corner consists of a 6 x 6
bitmap which will, be amounted to 36 dots. We refer black
dot as "1" and white dot as "0". Therefore the 4C code
will be defined as a vector x of dimension four where

I ‘

X = (X1 X2 X3 X4)
I

and x, = black-to-white ratio of the kth corner. k

To formalize the calculation, denote

B = (b^.)24x24 = bitmap of the Chinese character
' • -

••

where b. . = 0 or 1 V i,j

Then
6 6

1 I i=l j=l x =. 1 36

6 24

I l…
i=l j=19 x = 2 36

24 6

I 1 I ^
i=19 j=l

x =
3 36

11

24 24
1 I bij

x =
 i = 1 9

4 36

Such ratios calculated are insensitive to noise and is
robust with respect to the change in the pixel size of the
character.

I

§2.2.3 Regional Code

The regional code is defined by encoding the four corner
square zones and the two central strips of a character
according to the size of the black points. Similar to the
4C code discussed previously, the six black to white
ratios are calculated so as to make the feature more
robust to the total number of pixels in the character.

The first four values of the feature vector are just those
of the 4C code. The fifth value corresponds to the
vertical central strip while the sixth value corresponds
to the horizontal central strip. Just like the 4C code,
each corner consists of a 6 x 6 bitmap. The two central
strips will be a 5 x 24 bitmap which is just 120 dots.

Specifically, if x = (x x x x x x) and B = ‘ 1 2 3 4 5 6
fb. .) = bitmap of the Chinese character where b.. v lj'24x24
= 0 or 1 V i, j •

12

I . '

Then

6 6 .' I I b ..
l.J

i=l j=l
x -

1 36

6 24

I I b ..
l.J

i=l j=19
x -

2 36

24 6

I I b ..
l.J

i=19 j=l
x -

3 36

24 24

I I b ij
i=19 j=19

36

24 14

I I b ..
l.J

i=l j=10
X5 -

120

24 14

I I b ..
l.J

j=l i=10
X6 -

120

13

§2.2.4 Walsh Transform

Walsh transform has been claimed to be a simple, fast and
reliable method for separating complex Chinese characaters
[8]. Two dimensional Walsh transform will be discussed
here.

.

. •‘ .

Walsh transform involves only 1 or -1 operation and thus
is a fast computation. It distinguishes from the
conventional Fourier transform in that the former has
"sequency" property and the latter has "periodicity"
property. It is suitable for the analysis of the central

portion of the characters.

1 .1 Walsh function [9] WAL(n,0) , - - < 0 s -, are defined
2 2

recursively as follows:

r 1 if 1 < e 1
WAL(0,e) = , 2 2 and

w 0 otherwise

I : .:: • LIJ+Q r . : .: .. ! . .
WAL(2j+q/0) = [-1] WAL(jf2(0 + -)) + 4

j+9 1 1 • [-1] WAL(j,2(0 - -)) , q = 0 or 1; ^=0,1, .., n. * 4 J

If a is not in (- -), then WAL(j ,0) = 0. The ordering
2 2

of Walsh functions is sequency (Walsh) ordering:

WAL(0f9), WAL(l/e), W A L (2 f 9) , …

As usual, suppose the input character is represented by an

I' : . .. 14

® ‘ ,

\~m ,
H^H

M x M bitmap (yi;j)MxM i = 1,2,..., M; j = 1,2,", M and
let the origin of the coordinate system be translated to

M M the centre of the character. The central - x - submatrix
2 2

centred at the origin is extracted •
M

Let N = - •
2

1. When N is odd, say N = 2k+l, we extract N equally
1 1 spaced points from interval [- - , -] and they are
2 2

k-1 k-2 1 ! k-1 !
MM mm am^mm^mmmtmmm ^m^^m^mmmmm mm ^^mmmmmm f | mmm^^^m,

/ / / • • • • / / ^ / / / / 2 2k 2 k 2k 2k 2k 2
2. When N is even, say N = 23c, then the N equally spaced

points are

2 k-1 2k-3 3 1 1 3 2k-l
4k 4k 4k 4k 4k 4k 4k

Substituting these N points into Q of WAL(n,e) given

above, we get sequence of values of WAL(n,i), 1=0,1,2,...,

N-l.

Now rename the extracted central portion as (xij)NxN'
i=0,1,2,.", N-l ; j=0,1,2,… N-l • Then the two dimensional

Walsh transform of (x..) is
]

± N-l N-l
C = ~ Y Y x.. WALCm/i) WAL(n,j) mn z i-i N i=0 j=0 XJ

where C is called the Walsh coefficient, mn

We have noticed that since x. . and Walsh functions have J
values 1 or -1 so that the above calculation can be

15

performed in "and or" circuit which is very fast, resides

it has been suggested that in Chinese recognition system,

only those C ^1 s with 2 ^ m ^ 6 and 2 ^ n ^ 6 are
lulx

necessary for consideration of feature selection.

§2.2.5 Black Dot Density Projection Profile

The bit pattern of a printed Chinese character can be
represented by black dots and white dots matrix as shown
in figure 2.2. The black dot density projection profile
over the x and y axis shows the complexity of the
character and can be used as an feature for character
recognition.

To determine the black dot density projection profile, the

total number of black dots projected to x axis and y axis

are first calculated (figure 2.3). The mean, 1st, 2nd and

3rd moment of the black dot density projection profile

are also calculated. The calculation is formulated as

follows .

If P(i,j) is the bit map of the Chinese character such

that
r 1 for black dot

r P (i , j) = -
‘ 0 for white dot

where 1 i 24 and 1 ^ j ^ 24 for a 24 x 24 dot Chinese

character bit pattern.

_ : 1 6

Black dot wwH

^ f f i n H r a H M

J ^ b s F F F "" .
TECZRJFFL—>

i d d y ± I J
a. The b lack do l & wh i fe do l of a

Chinese c h a r o c l e r

0 0 0 1 0 0 0 0 “
0 0 0 1 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 "
1 0 0 0 0 0 1 1.

b. The b i l pa l f e rn of a Chinese cha rac te r

Figure 2.2 Matrix Representation of a
Chinese Character

axis

0 2 4 6 8

I N R R
_ " m " — — ^ ^ mmw^mm
_ H B

_ B H H H H z m
Black dot densi ty . • X OX IS
p ro jec t ion over
the Y ax is 4

0
Black do densi ly p ro jec t ion
over he X ax is

Figure 2.3 The black dot density projection
profile over fhe X <& Y axis

For x projection

the projection, profile over x axis is

24
X(i) = ^ P(i,j) i = 1 to 24

j=l

the mean value of the black dot density is

24
X = — Y X(i)

OA La ^ 4 i=l

the kth moment of the projection profile are

24 , _ JC
m k = Z (X(i) - X) . k=l,2,3 moment

i=l
Similarly, for y axis projection

the projection profile over y axis is

24
Y(j) = [P(i,j) j = 1 to 24

i=l

the mean value of the black dot density is

- 1
Y = ^ I Y (J)

the kth moment of the projection profile are

:. 24 _ k
m k = Z (Y(j) - Y) k=l,2,3 moment

j=l

I 1 7 ..

• M H

§2.2.6 Corner Feature

One of the characteristic of a Chinese character is its
outline figure which can be used as a preliminary
classification of the printed Chinese characters. The
peripheral feature is to represent this outline figure for
an input pattern.

There are many types of peripheral feature extraction
methodology suggested in [10] [11] and each has their own
advantage for a particular application. The 4C code
described previously is one of an example.

In this project, another type of peripheral features
called Corner Feature is suggested. The features are
extracted in the following way

a. Determine the boundary of the character in the

character bit map (figure 2.4).

b. Within the character boundary, dividing the character

frame into four equal parts i.e. corner part.

c. For each corner part, sub-divide the frame into four

line parts both horizontally and vertically from the

character boundary. Since the distance of the character

boundary (both horizontal and vertical) is not the same

for each character, the following calculation should be

adopted to determine the suitable feature positions.

Refer to figure 2.4.

18

ill .

1st CORNER X m i n = X4 X3 X2 Xcen = X I Xmax

• i i t
I “ .

min = 4 J | j | X ax i s

,—.....”... ..
Y2 _I_ZBffiPBLHBL = = :

1 .".-.~.~—-. -__- ._„ —j,— „._. „_„ jMBM ~ ~ ~ ~ ~ ~

Ycen = Y1 | H L

: H M f f [“ y B o u n d a r y

_ $
H 9 —

Ymax ^ H H D s o r -
— — I I I I I I I I I I I I I I I I I I I axi “ •••••••

‘ X B o u n d a r y

Figure 2.4 Corner Feature Extraction of a Chinese Char

If P(i, j) is the bit pattern of the Chinese character,
then let

Xmax the distance from the edge of the character bit

pattern to the right boundary of the character.

Xmin the distance from the edge of the character bit

pattern to the left boundary of the character.

Ymax the distance from the top edge of the character

bit pattern to the bottom boundary of the

character.

Ymin the distance from the top edge of the character

bit pattern to the upper boundary of the racter.

19

Therefore,

„ r (Xmax + Xmin) 1 Xcen = INT — + 0.5 L 2 J

Ymax + Ymin) Ycen = INT + 0.5
L 2 J

" (Xcen - Xmin) Xoffset = INT — — + 0.5 L 3
((Ycen - Ymin) 1

Yoffset = INT — — + 0.5
3 J

For each corner part, the position of each feature
point can be calculated by means of Xmax, Xmin, Xcen,
Ymax, Ymin and Ycen point.. To illustrate the
calculation, the first corner is determined by the
formulas shown below

At x axis, the position of feature extraction points

are

XI = NT (Xcen + .5)
X2 = INT (Xcen - Xoffset + 0.5)
X3 = INT (Xcen - 2 x Xoffset +0.5)
X4 = INT (Xcen - 3 x Xoffset + 0.5)

At y axis, the position of feature extraction points

are

yi = NT (Ycen + 0.5)

Y2 = INT (Ycen - Yoffset + 0.5)
Y3 = INT (Ycen - 2 x Yoffset + 0.5)
Y4 = INT (Ycen - 3 x Yoffset + 0.5)

20

d. Calculate the distance (number of dots) from the
boundary to the character (i.e. the first change from
white to black) in the direction from top to bottom and
from left to right as shown in figure 2.4.

e. Normalize the feature value with respect to the actual • .'
size of the character. This is used to cater for the
different size of character over the same bitmap.
For each corner part, there will be eight corner
features at which four features are taken at the x axis
and four features are taken over the y axis. The
following formulas shows the first corner features of a
character.

F1 = ^ P(i, Yl) / (Xcen - Xmin)
i=l

F2 = Y p(i, Y2> / (Xcen - Xmin)
i=l

I

F3 = Y P(i/ Y3) / (Xcen - Xmin)
i=l

F4 = Y P(if Y4) / (Xcen - Xmin)
i=l

F5 = [P(X1, j) / (Ycen - Ymin)
1 j=l

F6 = ^ P(X2, j) / (Ycen - Ymin)
j=l

F7 = ^ P(X3, j) / (Ycen - Ymin)
j=l

F8 = Z P(X4, j) / (Ycen - Ymin)
j=l

21

The corner feature is particularly useful in our tree

classifier because of the following merit
a. The calculation is simple and fast.

b. It is insensitive to the peripheral variation and thus
can be applied to both printed and non-printed Chinese
character.

c. It is insensitive to the shift of the character over
the x or y axes.

However, the corner feature has also the following

drawbacks
a. It is sensitive to the rotation of the character.

b. Characters with similar peripheral features cannot be
identified.

§2.3 CLUSTERING METHOD - K-MEANS & OTHER ALGORITHMS

After appropriate features have been extracted from the
inputted character, our next task is to find a way to
cluster the characters into various groups based on the
feature values just computed. Restating the problem in
another way, our task here is, with the basis of the
features values obtained, how can we define the likeliness
of the objects so that individual characters can be grouped
together? The answer to the above question is an algorithm
we usually refer as clustering algorithm.

22

One of the most popular clustering algorithms used is the K-

f.

MEANS algorithm [12] first suggested by Macqueen in 1967.

This can be improved by incorporating a coarsening and a

refining parameter. Define C to be the coarsening parameter

for group splitting and R be the refining parameter for
I .‘ •

group merging. The algorithm is summarized below. •
‘ • - ’ . K-MEANS (with coarsening and refining)

1. Choose x^, x 2, •••, x^ as initial k cluster centres.

Let n. = number of data in the ith cluster
-

Set 11 = 1 V i = 1,2,. .. .

2. Take x from the data set, while not end of file do

2.1 Calculate d(x/x.) V i « 1,2, k

2.2 Find d(x,x.) such that
J

d(x,x.) = min d(x,x.)
J l 1

2.3 Group Splitting

if d(x,xj) > C /* group splitting */

k < k + l

J xk+l — X

I nk +l > — 1

else /* assign x to the jth cluster */

n. x. + x
m̂immhmm mam âM mmm mmm mmmmm

j n. + 1
]

rij < rij + 1

2 3

I : : ::':::•‘““‘‘......‘:':........ .
11¾. ‘ _ ‘ : ‘ .

m , . . •

2•4 Group Merging

Check whether merging between groups is possible.
Repeat for each pair of groups

if Xj) < R /* group merging */

n. x. + n. x.
v , i i 1 1

9 C W rnm mm mmm mmm w mtm mmt mm mm

I 1 nj +

n < n + n.

k < ~ k - 1

Relabel all cluster centres and the number of
data in the cluster

Until no merging has occurred.“

3. The classification process is repeated for the entire
data set with the cluster centres and values of k just
calculated.

This algorithm can also be improved by repeating the entire
algorithm until convergence of the number of cluster and the
value of the cluster centres is achieved. Again such
modification is not justified by the tremendous increase in
the training time of the modified algorithm.

Another implementation concern in the above algorithm is the
choice of the values of C and R. Careful choices of C and R
are important and one possible suggestion is to take C and R
to be some fraction and multiple of the standard deviation.
In our study, since the given data are of multivariate in
nature, several values of the standard deviation have to be

24—

combined as one single measure. If P is the dimension of the
feature space and cr. is the standard deviation of the ith
variate, then we may takes

P
cr = ^ cr̂ / m

C = 0.1 cr

R = 2 cr

Beside K-MEANS, classically there are still quite a number

of clustering algorithm which also have the characteristic

of self adjustment in the number of clusters formed. These

include the maximium-distance algorithm and the ISODATA

algorithm [13]. They will be discussed in the appendix.

§2.4 Pros and Cons

All of the above mentioned clustering methods are examples
of the algorithms we commonly used in unsupervised learning.
There are a number of advantages. Firstly, these algorithms
are relatively simple and are thus easier to put to
practical implementation by computer. Their algorithmic
nature and simple mathematical computation required render
the coding of the algorithms fast and simple. Besides, no
prerequisite knowledge is necessary. We need not basically
know anything about the class membership of all the data
before the training process begins. This distinguished
merit is practically important since in a lot of cases
nothing is known about the given training data set.

25

Despite of the advantages we have just mentioned, there
are quite a number of disadvantages preventing us from
using the approach of unsupervised learning. Inevitably
the clustering result depends very much on the choice of
the initial parameters such as the initial cluster
centres, the initial number of clusters, the coarsening
and the refining parameters. Besides, the order of the
data arranged in the input stream will also affect the
result since undoubtedly when the order of data is
changed, different situations of merging and splitting
may be resulted during every step of the algorithm. As a
result, these algorithms are too sensitive and the result
will be subject to fluctuation.

The other disadvantage of these algorithms is that the
processing time for these algorithms is usually large if
they are to run after convergence is achieved, despite the
relative simplicity in coding. Of course, there is also
another difficulty as mentioned previously that there is
no guarantee about the convergence of the algorithm.

The most important disadvantage of the unsupervised
approach is that the clustering result is usually not good
enough when compared with that of the supervised approach.
The lack of prerequisite knowledge is on one hand a
favourable condition for implementation while on the other
hand, renders training more difficult. The more you know,
the more you get. Hardly can we derive extra merits if we

26

‘ •, • ’ ‘

‘• ^ .

are only given very limited information and knowledge.
Also the unpredictable nature in the resulting number of
clusters present an additional difficulty towards the
implementation of all these unsupervised learning
algorithms.The above discussion reveals that the approach
of unsupervised learning, although easy to put to
implementation, is not reliable in its performance and is
therefore not preferable if comparison is to be made with
the approach of supervised learning which will be
discussed in the next chapter.

§2.5 DECISION TABLE

Adopting the approach of unsupervised learning and the use
of feature extracted from the Chinese character, we are
going to explore in this section, how a multistage
classifier can be built from the clustering results.

Suppose we have adopted to use one particular clustering

algorithm (say the K-MEANS with coarsening and refining) to

do the clustering. Quite a large number of features can be

extracted from a character, each may be specialized in

distinguishing characters of some particular nature. If for

each of the features, we perform the clustering process for

one time, then we can develop an algorithm for the building

up of a multistage classifier by gathering all the

clustering results recorded.

27

llv ‘

Let m be the number of features used and in particular we

designate these m features by F., F F • For each of 1 2 m
these features, one particular clustering result is
provided. By exploring the clustering result provided, we
can determine which cluster is one particular character
being classified to. If k is the number of resulting
cluster of the ith feature, i.e. F. , and we label all
these clusters as Fi[l], Fi[2], •••, F i [k̂ ,] f then each
character can associate with one particular cluster for
every feature under consideration. Viewing these cluster
labels as some codes, a decision table can be formed which
will summarize all the clustering results of the features
in association with the input data. Each line in the
decision table will just give the coding associated with the
clustering results of all the features of one particular
Chinese character. As a result, the table obtained will
depict the following form.

char—id codes

a440 F1[2] F2[3] F3[4] •••• Fm[2]

a441 F1[2] F2[4] [1]
• •

• • .
• •

After the decision table is formed, our next task is to

search for a classifier with best performance from this

table.

28

I ‘ , . , •

§2.6 THE OPTIMUM CLASSIFIER AND ITS IMPLEMENTATION DIFFICULTIES

We want to construct a tree classifier from the decision
table where every internal node will denote a decision with
one particular feature among all available features we have
been using. How can we quantify the optimality of such a
classifier?

Based on which cluster the datum is belonging, each
character can be determined using a code which represents
the cluster membership of the datum if all the features are
used. Such codes have already be formed in the decision
table. If m is the total number of features used, then the
length of the codes will also be m. This situation can be
pictured as a balanced tree with depth m and each terminal
node will uniquely determine a code for characters. Of
course, there may be redundancies in such a tree. Suitable
rearrangement of the nodes can significantly prune
unnecessary branches and as a result an optimal decision
tree can be obtained. . In such an optimal decision tree,
terminal nodes will not necessarily have a depth of m from
the root node and the length of code will become shorter.
Optimum code length can then be obtained.

Take an example, consider the case of classifing 4

characters with 3 different features. Suppose the following

decision table which summarize the clustering results has

been found.

29

I ’ . : .

I •

»

character id code

1 ~ F i f 3] F2[2] F3[l]
2 FJ1] F2[2] F2[3]
3 ^[1] F2[2] F3[2]
4 Ft[2] F2[l] F3[2]

As shown in figure 2.5a, feature 1 (Fl) is being considered

first and then feature 2 (F2) and feature 3 (F3) and the

resulting decision tree is constructed as shown in the

figure, the total number of nodes will be 7.

However, if feature 3 is considered before feature 2, then

the structure of the decision tree will be different as

shown in figure 2.5b. It is noticed that the total number of

node in this case is reduced to 6.

^ ^ ‘
© © ©

i/ 0 Q

I . ^ T v
X Mo. of Nodes = 7

m m

a. F1 - F2 - > F3

I ’
[3] (¾ No. of Nodes = 6

b. F1 - > F3 - > F2

F igu re 2 . 5
30

I , 1 . : I . _ •

I ‘

Following the above argument, we can claim that the optimum
tree classifier is one which has the least number of nodes,
both internal and terminal added together. The smaller the
number the nodes, the least amount of computation and the
least number of features are required in the discrimination
procedure. To facilitate the search for the optimum, the
following dynamic programming model is constructed.

Dynamic Programming Formulation

Let n = the total number of features used

S = initial data set for classification
A = {0,1}

v = (0,0, ..., 0) e A n

=initial status of the features used
r 1 ith feature has not been used

where the ith entry = -
u 0 ith feature has aleady used

e i = (0 , 0 , … 1 , … 0) € A n

ith position
indicates that the ith feature has been used while
all others still remain unused.

0

Q = set of clusters formed by using the ith feature O

on S c T(S) which is the power set of S

Assumption:

If every subtree contains the minimum number of nodes
(both internal and terminal), then the whole tree contains
the minimum number of nodes.

31

Note that this assumption is actually valid.
Let f (S,v) minimum number of nodes both internal and
terminal, needed in the optimal decision tree for
classifying data set S given that the status of features
already used is represented in v.

Then V S c S , v € A n

r . … . • -

f(S,v) = min 1 + Y f(T,e. v v)
i€{i:e.Av=0} V 1

S

where A, denotes the logical and operator and

v denotes the logical or operator.
Boundary conditions:

f(S,v) = 1 if |S| = 1 or v=(l,l, l)

Our target is to find f(S,v)•

Although the problem of obtaining the optimal decision tree
can be formulated in the above format, the time complexity
for arriving at the optimum requires exponential time and
belongs to the class of NP complete problems. As a result,
practically the above problem is actually unsolvable.

Due to the abovementioned implementation difficulties
especially when all the character set (i.e. 13,000) are to
be recognized, another approach i.e. Supervised learning
approach will be studied in more detail.

32

I • ' . . 1 .

; . : . . . ' . , ' I i.fe '

A.3 Other Algorithms (maximum-distance & ISODATA)

MAXIMUM-DISTANCE Algorithm

The maximum (maximum-minimum) distance algorithm is another
simple heuristic procedure based on the Euclidean distance
concept. In the first step, we arbitrarily choose one object
to be the first cluster centre. Next, we determine the
farthest sample from this cluster centre and let it be the
second cluster centre. In the third step we compute the
distance from each remaining objects to these two clusters.
For every pair of these computations we save the minimum
distance. Then we select the maximum of these minimum
distances. If this distance is an appreciable fraction of
the distance between original two cluster centres, the
object will form a new cluster centre. Otherwise, the
algorithm will be terminated.

In the next step, we compute the distance from each of the
three established cluster centres to the remaining objects
and save the minimum of every group of three distances.
Then, we again select the maximum of these minimum
distances. A new cluster centre will be formed if this
distance is an appreciable fraction of the "typical"
previous maximum distances• Otherwise the algorithm is
terminated. A useful measure of the typical previous
distances is the average of these distances• The entire
process will be repeated again until the condition for
termination is reached.

33

m • ,. ! 1,..

- .

ISODATA Algorithm

The Isodata (abbreviation of Iterative Self-Organizing Data
Analysis Techniques A) algorithm presented in this section
is similar in principle to the K-MEANS procedure in the
sense that cluster centres are iteratively determined sample
means. Unlike the latter algorithm, however, Isodata
represents a fairly comprehensive set of additional
heuristic procedures which have been incorporated into an
interactive scheme.

Before executing the algorithm it is necessary to specify a
set N of initial cluster centres z ” z 0 / … z T and K

2 N c

to be the number of desired clusters. The algorithm can be
described as follows.

1. Distribute objects among the present cluster centres by
choosing that cluster which corresponds to the minimum
Euclidean distance.

2. Discard clusters with fewer than 0.T members where a„ is
N N

predetermined.
3. Update all cluster centres.

4 • Compute the average distance Dj of data from their
corresponding cluster centres•

5• Compute the overall average distance D of data from their
respective cluster centres.

6. If this is the last iteration, set lumping parameter Q =
c

0 and go to step 9.

34

I ,1'il..… .…-• ‘ .

If N c ^ K/2, go to step 7.

If this is an even-numbered iteration or if N 2K, go
to step 9? otherwise continue.

j 7 • Find the standard deviation vector or • for each clusters
and find the maximum component of each cr • and denoted it
as a. . jmax

8' I f ^jmax > es where e g is a prespecified standard
deviation parameter and

a. D. > D and N. > 2 (axT+l) or J N '
b. N c ^ K/2

then cluster j is splitted.

If splitting took place in this step, go to step 1;
otherwise continue.

9. Compute pairwise distances between all cluster centres.
10.Compare all pairwise distances against lumping parame

Arrange the L (L being a preassigned value) smallest
distances which are less than 0 in ascending order.

11.Pairwise lumping is performed for the smallest dista
in step 10.

12. If this is the last iteration, the algorithm terminates.
Otherwise, go to step 1 for the next iteration.

It should be noted that Isodata is an extremely complex
algorithm and in general requires extensive experiment-ation
before we can arrive at any meaningful conclusion.

35

f m
W

A4 POSSIBLE IMPROVEMENT

§4.1 TRAINING AND TEST SAMPLE REDUCTION

One possible improvement for the multistage tree classifier
developed is to reduce the number of training sample items.
We have been using the entire dictionary of the Eten Chinese
system which composes of around 13,000 Chinese characters.
However it has been noted that many of these characters are
actually

very seldom used • Coiniiion Chinese characters only
amounts to about 5,000 Chinese characters. As a result, it
would be better for us to choose a smaller set of characters
in our stage of training. The use of a smaller training data
set will significantly reduce our training time required. On
the other hand, it also increases the discriminating power
of the classifier since the number of characters of similar
shape decreases at the same time.
Besides, the testing sample can also be reduced so that
statistic on the performance of the classifier can be
evaluated more easily in a shorter period of time. In fact,
if the testing sample items are randomly selected, the
result will still be reliable and the performance of the
classifier can accurately be evaluated.

§4.2 NOISE FILTERING

As mentioned in section 3.6.3, the performance of the
recommended tree classifier under noisy sample is rather

36

I .n. , _ •

%
.m

poor when compared with the original training character. One
of the possible reasons may be due to the sensitivity of the
corner feature to noise (both random noise and printed
noise)• Therefore, reduce the noise of the noisy sample may
improve the performance of the classifier.

To reduce the noise, two noise filtering algorithms has been

derived. They make use of the fact that the probability of

white noise generated in the character bit pattern is

independent to its neighbourhood bits, with the noise
generated of this nature, there will be three possible
cases.

C a s e — T h e noise is generated near the character key
stroke. In his case, one or more black dot/s will
occur at the neighbour of the noise bit as shown in
figure 4.1.

Noise bifs ear
c h a r a c l e r key j ""' —
s f r o k e s . " ' ^ ^ H H

―ri

: : : m
F igu re 4 . 1 Case 1 : Noise bif n e a r Ihe c h a r a c l e r

key slrol<es

:: 37

\w 1 \m •
•I •
4 ,

. . . • . . -

Case 2: The noise is generated ^ … “ yeneranea at the area other than the
k S y S t r ° k e i n a that no other noise bit occurs
a t t h Q

 0 of the noise bit as shown in figure
4 . 2 .

Noise bils

Figure 4.2 Case 2 : Noise bif generofe ol (he area
olher fhon key slrokes

C a s e - 3 : T h e n o i s e is generated at the area other than the
key stroke. At the same time, another noise bit/s
occurs near the noise bit as shown in figure 4.3.

Noise bils occurs
'he same fime ^ ^

••111111 H I

Figure 4.3 Case 3 : Noise bif occurs
al. Ihe same lime

38

I .::::., .:...: •‘

I. .?

It can be shown that the noise generated in case 1 and case
3 are difficult to remove as there is not enough information
to determine whether the neighbouring black dots are the
actual key stroke or just another noise bit(s).

ALGORITHM 1

This filtering algorithm provides the capability of
eliminating a single bit random noise (case 2) over the
character bit pattern. By adjusting the values of the
threshold 8, some special noise in case 3 can also be
eliminated. But error may also occur, in removing the black
dot of the key stroke which is not desirable in the 24 x 24
character dot pattern.

The details of the filtering algorithm is explained as

follows.

Let A(i,j) be the character bit pattern such that

• . r 0 for white dot
A(i'j) = t i . f o r black dot

where 1 ^ i, j ^ 24.

For each value of i and j (refer figure 4.4) , if A(i, j) =
1, then the black intensity over its neighbour is

i I(i,j) = 1/9 {ocA(i,3) + A(i-l,j) + A(i+l'j)
+ A(i,j-1) + A(i-l,j-l) + A(i+l,j-l)
+ A(i,j+1) + A(i-l,j+l) + A(i+l,j+l)

39

)AO, A()

) A(l. I) •)

r — P f H
1 + ,) A(!, i + 1) A(l+1 , i + J)

Figure 4.4

If i,j) 5 , A(i,j) may be the noise bit and will be
eliminated. Otherwise, A(i,j) remain unchanged•

ALGORITHM 2

As xaentioned in previous paragraphs, algorithm 1 can only
filter the single bit noise (case 2) • To filter the noise
bit in case 3 with algorithm 1, there will be a probability
of filtering the character key stroke instead of the noise
bit. To improve the suitation, this algorithm is suggested.

With this algorithm, the consecutive noise bits and single

noise bit as shown in figure 4.3 can be filtered•

In this algorithm, two change counters i.e. horizontal
change counter and vertical change counter are introduced. A
change here refer to the change from white dot (bit 0) to
black dot (bit 1) or vice versa. For each bit in the
character bit pa tern, the surrounding bits in figure 4.5

40

f'v .
1 . : : :. . .

. ‘ 1

are being considered. The horizontal change counter will
store the number of changes in the horizontal direction and
the vertical change counter will store the number of changes
in the vertical direction•

I “ “
j Ver t ica l

‘ Change
counter

Change No ”
Change

j
j Change |

) Hor izonta l
j Change

counler
i

; F igure 4 .5 Noise Fi l ter ing A l g o r i t h m 2

To filter the mentioned noise bits, the following conditions
has to be satisfied.

a. The horizontal change counter l and the vertical change
counter ^ 2.

b. The horizontal change counter a 2 and the vertical change
counter ^ 1.

Even with this noise filtering algorithm, the noise coherent
to the character key stroke cannot be eliminated.

I -' 41 ,

The performance parameters described in section 3.6.1 will
be measured with the noisy samples being filtered by each
algorithm so that the degree of improvement after the noisy
sample has been filtered can be determined.

§4.3 DECISION WITH OVERLAPPING

Our previous approach in clustering the Chinese character
set has been relying heavily on the corner codes of the
character. Basically classification to and from groups are
based on the corner codes and misclassification actually
refers to the state of misclassifying the character with
some other corner code other than its own one. Errors are
measured in terms of such misclassifications and it has been
pointed out that as the depth of the tree grows such errors
will be propagated and magnified. How such errors are
tackled is the theme of this section.

Although errors will be propagated to the terminal nodes of
our tree classifier, such errors are not actually real
errors. Notice that our objective here is only to cluster
the original data sets into some numbers of groups. Corner
codes have been helping in the process of building the
classifier but we are not using the corner codes in our
future discrimination process. Characters at each of our
terminal nodes do not necessarily have the same corner code
but they should be similar in the sense that the feature

42 . . .

values are very close to each other. As a result to the

above arguments, no error handling procedures have to be

taken.

Based on he above approach, tree classifier has been

• •

constructed which shows that Chinese characters associated

with each terminal node are really very similar in shape.

However we can still explore some error handling steps so
.

that the similarity provided by the corner code can be

maintained and even improved. As a result the idea of

overlap has been proposed. With the idea of overlap, we will

simply duplicate those data items which have been found to

be uncertain in the decision and are sources of errors, They

will be classified to both of the subnodes of the parent

node.

Consider a scenerio designated by figure 4.6.

2 ¢ / ^) 3

Figure 4.6

4 3

Suppose x has to be classified to either node 2 or node 3.

Suppose the corner code of x belongs to the grouping

revealed in node 2, then.x should be classified to node 2 if

no error is to be committed in the classification. However

if it just happens that the use of the discriminant function

classifies x to node 3, misclassification occurs. In such

case we will duplicate x to node 2 since the position of x

is uncertain. It can be in node 2 or in node 3 reflecting

the situation of overlapping as illustrated by figure 4.7.

: G D
Node 2 Node 3

.C /'- . . . • • - /

f i g u r e 4 . 7

Overlapping will delay the committing of errors to
... ' ' . .

subsequent stages of classification and will on the other
hand increases the number of data items residing in the
subsequent nodes in the tree. If the depth of the tree
classifier is large, such technique is not feasible and a
relatively large number of data items will be associated

44

f
I
I

with all the terminal nodes. However, as we have been
adopting a tree classifier with depth less than ten which is
actually not quite a large value, the use of the idea of
overlap is justified and has been implemented.

IMPLEMENTATION REMARKS

It has been noticed that when overlapping is introduced, one
single character can exist at more than one terminal node.
Since each terminal node will be designated by a unique
code, this single character will be represented by more than
one code. Such increase in the number of distinct codes in
the system will not be too difficult to manipulate when only
one single tree is under consideration. When three separate
trees are used, if for one particular character which has n
distinct codes in the first tree, n in the second tree and n
in the third tree, then the total number of distinct codes
corresponding to this character will become n x n x n which
will be too large for easy manipulation. Take an example
when there is 2 codes (say 01 and 02) in the first tree, 2
codes (say 01 and 03) in the second tree and 1 code in the
third tree (say 04)• The possible combined codes include:

010104 010304 020104 020304

which amounts to 2 x 2 x 1 = 4 • As have been pointed out
previously in section 3.5.4, the lookup code table will be
read in during run time and the codes will be stored in an

45

array and sorted in ascending order so that subsequent
searching by binary search can be done. However, since in
our case here the number of codes is too large, we cannot
store all of them in a single array. As a result, we have
to use a file in the hard disk as the storage. The codes
will be sorted and stored in an file permanently before the
program is executed. Constant lookup from this file is
required for searching. Of course, such constant lookup from
file in . the. hard disk will increase the processing speed
significantly. The experimental results will be given in
chapter 5.

§4.4 BACK TRACKING FOR HOLES

We have been using three separate trees in our training
process, each of which animating one of the corner of the
three corner code. Suppose we are only interested in
discriminating the around 5,400 commonly used Chinese
characters. In our study tree architecture of three separate
trees each with a depth level of four has been adopted. We
can calculate the total number of distinct codes which can
be formed within such framework. Follow similar argument
given in section 3.5, the total number of distinct codes can
be amounted to 16 x 16 x 16 which is 4,096. Of course, if
each code is only associated with one character, we can
notice that all these 4,096 codes are not enough and
theoretically they should all be used up and some codes

|;i 46

should even have to represent more than one character. To
represent more than one character by one code is really not
a problem since as we have suggested in previous chapters,
the decision associated with this multistage tree classifier
is only our first stage of classification and further
discrimination is required. What really concern us is that
not all the 4,096 codes will be consumed by the 5,400
Chinese characters. Instead some codes may be left untouched
by the characters which we can refer them as holes". It can
easily be noticed that holes are , inevitable since similar
characters will be clustered together, and get the same
code. In Chinese character recognition system, there are
quite a number of different groupings of similar characters.
As a result, the actual codes used will drop drastically
resulting in the emergence of a large number of holes.

Hole is both a good and a bad feature in our discrimination

process. The bad thing of hole is that if errors have been

made in determining the code in each of the three tree
• • . . •• .

classifier, the outcoming code may not be a realistic one.

In other words, the code calculated may not exist and
correspond to any particular group of characters. As a

result, no decision can be made and it seems that the entire
classification process will be a failure. On the other hand,

the existence of such holes is beneficial to us since it

provides a channel for trapping errors which are unavoidable

in usual discrimination system. Whenever unrealistic code is

47

computed, errors must have been committed in our previous
stages of classification. This is regarded as a good feature
since it provides a signal for us to signify the committing
of errors.

One should note that errors can still be committed and
remained unnoticeable to us. Codes for the three tree
protocol may be incorrectly computed independently while the
final combined code still remains realistic and corresponds
to some particular characters. The presence of holes cannot
capture this type of error and we can by no means correct

such mistake since we do not simply reckon its presence. In • • -
section 4.5, we will describe one method which will reduce
the probability of the emergence of such mistake• Meanwhile,
let1s concentrate ourselves on the problem of holes.

We have claimed that hole is a good feature, but it will I
still not be good if the bad feature of uncertainty in terms
of the recognition result has not been solved. As errors has
been occurred, we may wish to fix the errors so that codes
can be corrected. The search for such mistake can easily be
achieved through the idea of back tracking. Since three
separate trees have been used, back tracking on all these
three trees is required. Assuming that errors committed at
greater depth are more likely than errors committed at the
top levels, we can devise a back tracking algorithm which
will back track on the three trees successively for an
increasing number of levels until a realistic code is

48:

obtained. To simplify the actual searching time of the

algorithm, only one error is assumed. The complete algorithm

can be described as follows.

1- Repeat for back track level i = 1, 2, 3, 4

/* only 4 levels in the tree*/

2 - Repeat for corner j = 3, 2 , 1

2.1 Back track for i levels of the tree corresponding to

corner j by going up for i levels and assuming

decision has been made wrongly at that node.

2.2 Tree code for other corners remain unchanged.

2.3 Get the new code and determine if this code is

realistic.

2.4 If it is a hole, continue by going to step (2)

again.

2.5 Otherwise, exit the algorithm and report the new

code.

. .¾ . . . • . .

The above idea has been implemented and tried out in the

computer.

§4.5 FUZZY DECISION FUNCTION WITH TOLERANCE LIMIT

This section wants to tackle the problem of unnoticeable

errors which may have committed during the process of

classification. The entire idea lies in the use of a fuzzy
J , .

decision based on the introduction of tolerance limit.
ft-

Our previous discussion has been completely based on the use

49

of a multistage tree classifier. By a multistage classifier,
complete decision is to be made by a number of successive
decision which in our case is represented as the linear
discriminant function at each of the internal nodes of the
tree. For simplicity, we will consider only the case of one
single tree and the problems associated with the three
separate tree protocol will follow in the same way.

The decision at each node has been characterized by a linear
discriminant function which is actually representing
hyperplane dividing the feature space into two regions, one
representing the left subnode of the. parent node while the
other the right subnode. Here the decision is definite and
clear cut and object has to be classified to either one of
these two regions even when the distance of the object from
the hyperplane is very small. As we have pointed out
previously, committing error is inevitable. So as to reduce
the chance of obtaining unnoticeable errors, it will be
better if we do not provide such a definite decision for the
internal nodes. If the distance between an object and the
hyperplane is too small, preferably smaller than a
preassigned threshold value which we will call the tolerance
limit, then decision of classification to which region is
not made. Rather the decision will be delayed. But when can
we decide and how should we decide?

Denote the tolerance limit by c. The previous argument
claims that decision cannot be finalized if the object lies

50

... ‘ / .

within a distance of c from the hyperplane. Three regions
will be resulted as shown in figure 4.8. The shaded region
corresponds to the region where decision will be delayed. To
determine the decision in this region, we will choose to
quantify an error measure. The object will be classified to
the region if the subsequent total error accumulated is a
minimum. We will define error to be the distance be ween the
object and. the hyperplane if the object is residing in the
"not-yet-determined" region. However, if the object is just
inside one of the "decided" regions, no error will be taken. ‘ ‘ • _ , - •

"Not yet dec ided"
region

:. ,vx" _ / \ •••. /

O-1 \ V] Hyperplane

F igure 4 .8

I ,
_: . ‘ . ‘ • “ . . ‘ ‘ ‘ - -
:.

51 .

With the basis of the above discussion, the following
algorithm can be formulated.

Let any particular node be designated as n. Suppose

Yn(x) = linear discriminant function associated with node n
x 0 = object vector
E(n) = error measure associated with the node n.

We will define a recursive procedure named Error(.) which
takes a node as input and returns the error associated with
this node.

procedure Error(n)
{

If n is a terminal node then

return 0
else
{ ’ •

If y (x) < c• then /* not-yet-decided region */

left < left subnode
Eleft < Error (left)

right <- right subnode

Eright < Error(right)

return min(Eieft/Eright) + f Y (x) I

else if y (x) > e then /* left subnode */

left < left subnode

, return Error(left)

: 52

else if y (x) < -e then /* right subnode */

right <- right subnode

return Error (right)

1:.. }
} ’

§4.6 DIFFERENT TREE ARCHITECTURE

By the way, we have been using the three separate tree
protocol in our analysis. In this section, we will explore
some other tree architecture which may be more favourable in
our current situation.

One of the possible alternatives to our present three

separate tree protocol is a tree architecture which will

combine the three trees to a single one. Suppose the tree

for the first corner has been constructed. We can further

develop at the terminal nodes of the first tree for a few

levels of depth by the consideration of the second corner

feature. Similarly the final tree will also be further

extended at the terminal nodes by the consideration of the

third corner feature. This 1-tree protocol is simple and

straightforward although there is no guarantee that it is a

good one. Figure 4.9 shows the configuration of the 1-tree

protocol.

53

A
, V \ 1st co rne r

..... f .••••J A (\ (\ dec i s i on f ree
v j •”“ v*** "“y"—"V-•••••—.........j…”…••.•…-——

L \ f \ f \ f \ dec i s i on f ree

I •.— ••..••. -. — U

r j f ^ i . .
Ji 3 r d c o r n e r

/ ^ Z T S dec i s i on f ree
I — — — U . . ‘ , . . ’ U — — -

F igure 4 .9 1 Tree Pro toco l

To improve the 1 tree protocol, we can also consider the
case where the use of the second corner features can be
varied and the order which corresponds to the best
discriminating power is chosen. Despite its intrinsic
simplicity, 1-tree protocol is prone to error since such an
increase in the depth of the tree will inevitably increase
the chance of committing error.

There is another tree architecture using the idea of entropy

as given in the next section.

54 , . ,

• ’ .

§4.7 BUILDING DECISION TREE BY ENTROPY REDUCTION METHOD

The 1-tree protocol discussed in previous section can be
further improved if the best corner feature is used at every
internal nodes of the tree instead of just allowing the use
of one particular feature successively at some levels of the
tree classifier. How can we quantify the "best" and how can
we select the "best"? The question can be answered by
defining the concept of the Shannon1s entropy measure.

SHANNON'S ENTROPY MEASURE

Shannon1s entropy is basically a * measurement of the

information level for a particular group of objects within a

cluster. If a certain cluster consists of n objects where

each object has a probability of p of being residing in the

cluster, then the Shannon1s entropy, denoted by E, is

defined as
n

E = X ~Pilo92PiV
i=l

The performance of a classifier can then be measured in

terms of the difference between the entropy level before and

after the classification process. It is usually referred as

the information gain by the classifier. In symbol, the

difference in entropy is

AE s E n e w - E0riginal •

What does the value of the entropy tell us? Is a large value
or a small value favourable? To answer the above questions,

5 5

| ’ ‘

|

we will consider an example. In a scenerio where a
classifier classifies n distinct objects into only one
cluster.

T h e n Pi = J V i=l,2, .",n •

n
Therefore Entropy = ^ p log2Pi

i=l

n
= I H l o^2 n

i=l

I = n • H l o g 2 n

=log 2n • (4-1)

In another scenerio where a classifier can classify n

distinct objects into k clusters with n objects residing in

each of them.
k

Then Y nj[= n.
::: i=l

For the ith cluster, since there are n distinct objects and
•

p• for each object will be — • Therefore the corresponding

entropy by (4-1) will be Ei = log ni.

Hence, the total entropy, being weighted by the correspondi-

ng fractions of population shared, is

k ni
E 2 = ^ — log2ni. (4-2)

i=l

56

k •
Obviously, E 2 = V ^ log0ni

L̂k n 2
i=i

k r .
= H Z l o^2 n i n i

i=l L J

= H lo^2 \ n, 1 n2
n2 • … n) ^ j

^ H l og 2 f n ni n n2 • • • • ! !
v. j

since rij_ < n Vi
1

r

= l o g n +112+ +nk n

V. “

1
= i o g 2 [* n n 1 H

V. j
=log n

= E i
i.e. E 2 ^ E!

The final scenerio shows n distinct objects being classified

successfully to n distinct clusters with only one object

residing in each of them.

Then k = n and n-j[= 1 V i=l,2, •••, n •
k

By (4-2), the entropy E3 = ^ — log2 1 = 0 ‘
i=l

Hence, 0 = E3 ^ E2 ^ Ex = log2 n •

The above inequality shows that the smaller the value of the

57

entropy, the higher the information level the cluster
possesses. It also reveals that the upper bound and the
lower bound for the entropy measure are log n and 0
respectively.

As a result of the above discussion, AE should be chosen as
negative as possible so that the classifier is favourable.

TREE CLASSIFIER WITH ENTROPY REDUCTION

We want to use the idea of entropy reduction to improve our
1-tree protocol. As we have already mentioned, at each
internal node of the tree we are free to choose among, the
three corner features any one particular feature. Decision
is to be made so that there is the largest increase in the
information gained. With the concept of entropy at hand,
this actually refers to a classifier which gives the most
negative value of AE.

In the current situation, characters are to be classified
according to the three corner codes. Since all these three
corner codes may be used at every step, three different
classifications are possible. Suppose the first corner
feature is selected, the entropy gain is reflected by the
value of AE based on the classification given by the first
corner feature. As a result/ AE may not reflect the actual
information gain very well since the original entropies,
being calculated for the three different classifications

I 58

based on the three different corner features, are all
different. In view of this, the entropy, which is the actual
information level of a particular scenerio, will be adopted.
The smaller the value the entropy, the higher is the
information level. All three corner features will be tried
at each internal node and the resulting entropy values are
compared. The smallest among these three entropy values will
be chosen and based on such corner feature the group of
objects will be classified into smaller subgroups. The
entire algorithm can be formulated as follows.

Since it takes a long time to train up this classifier, only
500 commonly used Chinese characters are randomly chosen for
training so that we can arrive at meaningful results at a
relatively short period of time before we can proceed
further. As a result, a depth of seven levels is assumed in
our 1-tree protocol.

Repeat for tree level i = 0, 1, 2, •••, 6
Repeat for every internal node n at level i
1. Repeat for corner value j = 1, 2, 3

1 . 1 cluster the node n using the jth corner feature

1.2 Calculate the entropy of the clustering result
2 choose the corner feature c which corresponds to the

smallest entropy values.
3 Repeat the classification process using the cth corner

feature.

59

A.5 THEORIES ON STATISTICAL DISCRIMINANT ANALYSIS

I. The General Method of Classification

Consider the problem of classifying an observation (vector)

x into one of k groups (or populations) IT” TT,, • " TTV
Z JC

where TT. is characterized by a probability density function

. Suppose further that the observation has a prior
k

probability p. of coming from TT., where V p. = l, and that
X X La A i=l 1

the cost associated with classifying it into TT. when it has
actually come from IT. is c^j .

Within this framework, the conditional probability of

classifying x to TTj[given the observation x is thus

Pifi(x) . i = l, 2f k k
I P.ftCx)
i=l 1 1

and hence the expected costs of misclassification are

k k
I Pifi(x)cii / I P i f i (x) - " 1 fk(x)cik / 1 Pifi(x)
i 1 i=l i^k i=l

k
where the term ^ p.f. (x)^. / ^ Pifi(x) i s the expected

i^j J i=l
cost when misclassifying rule chosen should be one which
minimizes the expected cost of misclassification. Thus, we

k
assign observation x to ITi if ^ P r

f
r(x) cir / I Pj_fi(x) i s

i=l ~ ‘
minimum, i.e. if E pr fr (x) cir i s minimum. This is

r^i

60

equivalent to assigning observation x to T\± if

k k
I p

r
f
r(x) cir < I P r

fr(x) c
j r r=l r=l

Vj = 1, 2, ...f k; j ^ i (A5.1)
since c = 0 Vj = 1, 2, •••, k.

In the situation where the costs of misclassification are
all equal, this rule reduced to assigning x to TT if

p i f i (x) = . n ? a x v P if i (x) (A5.2) 3 —X 9 2̂ 9 • % ̂ JC J J

Assignment rules (A5,1) and (A5.2) have been derived by
considering the discriminant analys-is problem from a
decision theoretic viewpoint. Viewing it form a purely
probabilistic viewpoint instead, the optimal rule is to
assign x to that group TTi for which the posterior
probability is the greatest. Now, using the Bayes theorem,
the posterior probability rule is also (A5•2)• So when the
costs of misclassification are all equal, the optimal
decision theoretic and probabilistic classification rule are
equivalent.

In practice, the probability density function f^(x), i = 1,
2, . • • / k are seldom known. Usually one assumes that they
have some particular parametric form (e.g. multivariate
normal distribution) which depends on some unknown
parameters. Usually, random samples consisting of

•

observations known to have come from each specific one of
the k populations are used to construct sample based

61

classification rules corresponding to (A5.1) and (A5.2)
above.

II. Classification using Distance Measure

We are now going to devise another set of classification
rules and will see later, under certain circumstances, these
rules and our previous ones are actually equivalent. For
simplicity, let's treat the case when k=2 first and assume
also that the underlying probability distributions of the
two populations are multivariate normal with common co-
variance matrices. As a result, we are in the situation
where we have an individual with observation vector x =
(xlfx2, • • • ,x) 1, and we wish to classify it into
N (ii1 , J) o r into TT N (M D on the basis of x, where M.
P P 1

=(Mi]L/ Mi2/ - - M i p) 1 . for i=l/ 2.

In order to develop the classification theory, we first

assume that the parameters m2 and J] are known. Here J

is a p x p symmetric matrix represented as J = (0^), i,j =

1 , 2 , . . . I n t u i t i v e l y , it seems reasonable to find a

linear combination of the observations, called a

discriminant function, given by

y = al xl + a2 x2 + … • + ap xp
= a » x (A5.3)

where a ^ s are some constants and to classify x into ITi if y
‘> c a nd into TT2 if y < c where c is another constant. The

62

problem then reduces to determining the values of a. »s and c
which minimize the probabilities of making an incorrect
classification.

If x is from TTlf then y will be univariate normal with mean

* p P P
= ajMij = a, a n d variance v2 = ^ ^ a^^.a. = a'J a.
j = 1 i=lj=l

Similarly if x is from IT2 , then y will be univariate normal
• lu * p

with mean m 2 = a'ju and the same variance v • An intuitive
criterion for choosing a is hat to separate u as far from
ie 9 U 2 as possible, relative to v • To achieve this, we

define the Mahalanobis distance between 11̂ and 11̂ to be
1 2

* * 2
a2, (“1' “2) A (“ M) = 2 v

and this quantity is supposed to be a measure of the
"distance" between the two populations. Thus, we are going
to find a so that in this y-scale where y = afx, A will be
maximized.

* * 2 2
2 M2) [a'(H^, U2)]

A M2) = 2 ~ =
v a'E a

Using the Cauchy-Schwartz inequality, we have

a' (/Lt1, [i0) , 1 1/2
^ ~ ^ ― ^ [(^1 - ^ E (^ - / ^)]

(a'E a) 1 "
—1

and equality holds if and only if a a J - 2)

63

I . . • 2
A < H2) 'I “ 1 (M- l “ 2) .

I
Therefore, he maximum of A2 is attained when a = X

 1(1_)
I 1 2
I and in such case,
II

A 2 (i, 2) = (^ M2) fE 1 H2) (A5.4)
‘

I
Once the a. !s have been found, evaluation of (A5.3) for an
individual whose measurements are xn , • • • , x yields the

P I discriminant score y for that individual.
I
I To determine the constant c , we examine the following figure

X ifT i X i i r 2

I • C j 1 “

I . 1 1
: ~ / \ :

1 Pr(2!1) Pr(112) 1 * *
u 2 u 1

Figure A

64

which shows the two distributions of y along with an
arbitrary constant c. If x is from J]2 but y ^ c, then we
would classify x into \]lr thus committing an error. The
probability Pr(l|2) of making this error is shown in the
figure. Similarly Pr(2|l) is also shown. Intuitively, we
would like to find c such that the sum of these
probabilities Pr(l 2)+Pr(211) is minimized. In this simple
case, it is obvious that this will be achieved by choosing c
half way between the two means, that is,

1 , * *
\ C = 2 (M1 * “2)

1 * • *
=-(a7^ _ a'u2)

= E , 1 (“ l - “2)(“1 + 2)

Thus the empirical rule of classification is

Assign x to TTi if

E “ 1 (M2)X > - E “ 2) + M2)

i . e (- fE “ 1 x "1(M1+M2) (A5.5)

or equivalently (after some strict forward manipulation),

^ if (M-x) -x) > (M -x)\l -x) (A5.6)

The last assignment rule simply says that we will classify x

to TTi if the Mahalanobis distance between and x is

smaller.

65

1;

To extend this approach to the case when k > 2, it should

sound obvious then that the classification rule is to assign

x to TTi if the Mahalanobis distance between and x is the

minimum among all the others, that is, if

I A2 … x) < A2(Mj , x) vj = 1,.. w p j i

i . e . (i - x) fE x) > x) 'J ^ (m . - x)

Vj = l,.",p; j ^ i (A5.7)

or equivalently if

(i - ^ j) l x > \ - M j) E " ^ (M i + Mj) V j ^ i (A5 .8)
• ... •

No ice that

(Mi - x) ^(Ua - x) < (]Lt. - x) 'I x) J J

+ x'j - • 1

> / V E + x'E - -E V ^ J J J J

I • “i'E 1 - 2x'E > Mj fE -1Mj ""Vj
.

I “ i ? " ^ i X T 1 > I Mj'E - x'E ""Vj
|w . . . ‘ ‘ • j

‘ . Hence a generalization of the discriminant function can be
• . . I e '

taken as
I I

y = a. 'x + c. , i = (A5.9)

where = E 1 (A 5 . 1 0)

and c L = § j/E 1 &

66

$: . . .

The equivalent classification rule in terms of the
discriminant function will then be:

Assign x to if

yi > Yj v j yi_yj > 0 V j ^ i (A5.ll)

i-e- Yi = max y i (A5.12)

We have assumed a common covariance matrices for all the
groups. However if the group covariance matrices are not
equal and suppose these matrices be denoted as . The
Mahalanobis distance can be modified as A2 (/Lt. ,x)

… -) / [- • Then the quadratic .term x'J cannot be

canceled in the above calculation and as a result, a
quadratic discriminant function will come out.

The foregoing discussion based on the discriminating
criterion is really a special case of that treated in I.
Under the framework developed in I, if we assume the costs
of misclassif ication are all equal, the classification
procedure of (A5.2) gives assigning x to TTi if

P ^ ^) > Pjfj(x) Vj ^ i.

If we further assume multivariate normal distributions with

common covariance matrix J] and equal prior, that is,

I fi(x) = [2n 2 \ A " ^ 2 e x p [5(x i) T “ 1 ^ - ^)] v 1

and p. = p. V then (A5.2) can be further reduced to 1

f.(x) > fj(x) V j ^ i

67

^ [2I) P / |s|"1/2 exp[- ^(x-M.)]

I > (2I] P / 2|l|" 1 / 2 P[_ T ^(X-M.)] Vj i

^ (x - "1(x _ U±) > (X _ iUj) 'J "1(x iu.) Vj ^ i • x) 'J … _ x) > x) 'J - x) Vj ^ i

which is exactly the same as (A5.2). Thus our previous claim
is justified.

When our assumption of equal prior probability is not true,
the classification rule based on (A5.2) and the normality
assumption will lead to

pi [2S] P / 2 W 1 / 2 exp[- i(x_“i) ̂ ^ (^ i)]
P/ 2

> Pj [2n) \A"L Y 2 E X P ["^"(^j)]
vj i

•

P ± exp[- |(x-Mi) fJ ^(x-n^J
> Pj exp[- i(x—Mj”E "1(x-/ij)] Vj ^ i

, I n p ± _ |(x - ^ i) ""1(x - iui)
> In Pj - |(x Mj) 'I - 1(x - Mj) Vj ^ i (A5.13)

In such case, an extra term In p. is added and in the

terminology of our generalized discriminant function, only

the terms c i is changed. The new c i is increased by the

term In p^

i.e. c± = In - I V i (A5.14)

68

A.7 A PARTIAL LIST OF SEMANTICALLY RELATED CHINESE CHARACTERS

t

X

f ^ i i _

‘

, % 11
‘

M I S • • I G G I S M G
I

x 5

|

I I J | -I U S AC 70

A.8 AN EXAMPLE OF MISCLASSIFICATION
TABLE SAS 17:50 Saturday, December 7, 1991 i

Discriminant Analysis
13093 Observations 13 092 DF Total

8 Variables 12993 DF Within Classes
100 Classes 99 DF Between Classes

SAS 17:50 Saturday, December 7,

Discriminant Analysis
Class Level Information

GROUP Frequency Weight Proportion Probab

0 33 33.0000 0.002520 0.0
1 117 117.0000 0.008936 0.0
2 192 192.0000 0.014664 0.0
3 152 152.0000 0.011609 0.0
4 26 26.0000 0.001986 0.0
5 19 19.0000 0.001451 0.0
6 273 273.0000 0.020851 0.0
7 36 36.0000 0.002750 0.0
8 70 70.0000 0.005346 0.0
9 156 156.0000 0.011915 0.0

10 99 99.0000 0.007561 0.0
11 39 39.0000 0.002979 0.0

SAS 17:50 Saturday, December 7,
Discriminant Analysis

Class Level Information

GROUP Frequency Weight Proportion Probab

12 76 76.0000 0.005805 0.0
13 51 51.0000 0.003895 0.0
14 236 236.0000 0.018025 0.0
15 151 151.0000 0.011533 0.0
16 184 184.0000 0.014053 0.0
17 33 33.0000 0.002520 0.0-
18 106 106.0000 0.008096 0.0
19 96 96.0000 0.007332 0.0
20 57 57.0000 0.004353 0.0
21 129 129.0000 0.009853 0.0
22 443 443.0000 0.033835 0.0
23 82 82.0000 0.006263 0.0

SAS 17:50 Saturday, December 7,

71

Discriminant Analysis

Class Level Information

GROUP Frequency Weight Proportion Probab

84 80 80.0000 0.006110 0.0
85 63 63.0000 0.004812 0.0
86 12 1 2 . 0 0 0 0 0 . 0 0 0 9 1 7 0 . 0
87 71 71.0000 0.005423 0.0
88 38 38.0000 0.002902 0.0
89 46 46.0000 0.003513 0.0
90 39 39.0000 0.002979 0.0
91 10 10.0000 0.000764 0.0
92 5 5.0000 0.000382 0.0
93 282 282.0000 0.021538 0.0
94 72 72.0000 0.005499 0.0
95 17 17.0000 0.001298 0.0

SAS 17:50 Saturday, December 7,

Discriminant Analysis

Class Level Infoinnation

GROUP Frequency Weight Proportion Probab

96 82 82.0000 0.006263 0.0
97 5 5.0000 0.000382 0.0
98 236 236.0000 0.018025 0.0
99 24 24.0000 0.001833 0.0

SAS 17:50 Saturday, December 7,

Discriminant Analysis Pooled Covariance Matrix Informatio

Covariance Natural Log of the Determinant
Matrix Rank of the Covariance Matrix

8 -26.321635
SAS 17:50 Saturday, December 7,

Discriminant Analysis

Pairwise Generalized Squared Distances Between Groups

2 - 1
D (i| j) = (X — X) • COV (X — X)

i j i j

Generalized Squared Distance to GROUP

72

—• — •••••••' ••—nTn^TBfr^ypg^nryi^ygyyu^i^jypg

From GROUP o 1 2 3

0 0 15.86808 40.92412 39.86166
1 15.86808 0 19.62421 12.63673
2 40.92412 19.62421 0 11.27509
3 39.86166 12.63673 11.27509 0
4 17.58963 3.24730 10.53914 9.52195
5 27.90833 7.16681 11.71902 7.88185
6 16.87428 3.85443 16.66425 11.07530

SAS 17:50 Saturday, December 7,
Discriminant Analysis

Pairwise Generalized Squared Distances Between Groups
Generalized Squared Distance to GROUP

From GROUP 0 1 2 3
7 23.06894 6.65154 8.95407 8.95160
8 18.36506 4.23422 13.57648 11.39801
9 24.12825 . 11.11577 17.40203 14.25962

10 25.64130 1.66880. 18.08759 9.12688
11 26.74619 3.74048 13.46667 8.91385
12 40.34600 12.65124 • 14.97727 4.20880
13 28.18604 4,10865 15.30706 3.81119
14 23.55590 4.35870 15.53312 3.65341
15 25.09215 11.13224 21.40302 12.08586
16 27.14399 4.71385 15.91768 3.29132
17 21.37768 10.90931 7.12406 16.21537

SAS 17:50 Saturday, December 7,
Discriminant Analysis

Pairwise Generalized Squared Distances Between Groups
Generalized Squared Distance to GROUP

From GROUP 0 1 2 3
18 34.26650 6.49275 19.55515 4.91344
19 23.55241 7.91028 15.30755 10.91255
20 28.47814 12.85073 13.30639 11.15935
21 14.89187 13.90955 9.83616 17.25501
22 27.18039 16.48131 5.89629 20.25172
23 24.42650 10.28278 11.29767 11.61187
24 20.08855 9.39867 7.81337 14.47392
25 23.40343 12.89247 9.76770 12.80159
26 35.77803 26.58990 7.81313 25.86069
27 34.09364 18.52761 2.64013 14.51358
28 19.27517 10.49412 8.42766 16.00337

73

Ir

^ Program for the improved multistage tree c lassi f ier
V with context consideration
" .3-tree protocol
^ • trained with 5400 characters A . 9 LISTING OF THE PROGRAM
k . with overlapping
^ . code file stored in testdata
k • character bit pattern stored in c:\et\stdfont.24
k • input passage stored in c:\sin\data\chfont.dat •
" • only the big 5 codes are stored in input passage

. t h e words which are semantically related are stored
in file c:\sin\data\word

Ir

Ir
k To invoke the program, type
k chdis c:\sin\data\chfont.dat
k
f
include <stdio.h>
include <dos.h>
include <alloc.h>
include <string.h>
include <stdlib.h>
include <graphics.h>
include <io.h>
include <fcntl.h> -
include <math.h>
include <float.h>
include <time.h>

define M 24
define N 3
define MAXRECS 55833

ime_t * t 1 # * t 2 ;
ouble d i f f=0;
at recog,n;
^ar * lcx;
Nar * lcy;
nt choice,y1 fy2;
ong pre_char; /•* previously recognized character */
ong add;
ong pos;
har id [10];
ong coun, lc__count;
r»t cat_1, cat_2f cat__3, cat_4;

int x,n,fp;
fnt Xmin;
int Xmax;
int Xpt;
int Xuidth;
int Xcenpt;
int Ymin;
int Ymax;
int Ypt;
int Ywidth;
int Ycenpt;
f loat Xcen;

• f loa t Xof f ;

f l oa t Ycen;

f loa t Yof f ;

int Yfeapt C4];

int Xfeapt[4] ;

f l 0 3 t prof U e [24];

unsigned char buf[N*M];

uns*gned Iong bi t [M] ;

unsigned long k;

int node;

int co [3] ;

char *code1

long code;

f loa t resul t ;

FILE * f p 2 , * f p 3 , * f i n , * f p 1 , * f c o d e , * f o p e n O :

/ * discriminant functions * /

f loa t disc fen[45][9]

(0.259918,0.621660,-0.770455,0.258583,0.994533,-0.370675,-0.853918,2.393407,-1.525431

C-0.3816A3,0.884263,1.696303,-0.510696,-0.522009,0.706840,-0.605000,0.562136,0.368424>,

{0.315879,1.177575,0.656201 , -1 .491476,1 .217296, -0 .0^9149, -0 .175298, -0 .574729, -1 .040982} , .

C-0.353333,-0.268644,0.338642,-0.406490,-1.517231,-0.124308,0.693505,1.508993,1.7A5559>#

¢-0.671441,0.646147,1.347479,0.605567,0.421958,-0.222858,-0.001174,-0.505027,0.0153370,

C-1.008538,-0.664718,-0.932718,0.331255,-0.536410,-0.344057,-0.210009,2.403167,2.47374^,

C-1.374422 ,-0.773219,-1.275659,0.490463 ,-0.583687, - 0.556719, - 0.307605,1.434989,2.65948A},

(:-0.268457,0.586162,0.913754,0.426680,1.027468,0.388865,0.628954,-0.488123,-1.526237^,

(0 • 496920,0 • 056958,0 • 612463 ,-1.384370,0.250985 # - 0.822307,2.185022 # -1.193536, -1.129769),

{1.473582,-1.503900,-0.078670,-1.137006,-0.969084,-0.871575,-0.094717,0.640670,0.13931^,

CO.199512,0.057929, • 0.072065 ,-0.147075,0.449750,0.522399, - 0.760808 ,-0.690857, - 0.529508) •

€-0.272413,1.423927,0.783386,2.132299,-0.236750,0.567282,0.057778,0.467315,-1.309404},

<0.311660,-0.912036,1.163019,-1.730857,1.351861 ,-0.441743,1.094023,0.900912,-2.145466>,

0.192975,1.036124,0.721519,1.531767,0.449841,1.463854,-0.282628,-0.329865,-2.663348},

<0.118644 ,-0.990489 ,-1.962845 ,-0.114584,0.036559 ,-0.481495,0.679746,1.805248,0.297864) f

(:-0.351202,0.424194,0.492202,0.348260,-1.063629,-0.381929,1.349759,0.007510,0.71021^,

<-1.269880,0.652559,0.122311,0.289565,0.265075,1.038581,0.968956,1.412551,0.H8753>,

C-0.594417,0.690181,0.987203,0.936801,-0.028701,0.467359,0.422616,-0.095399,-0.534935>#

<1.663410,-1.208385,-0.538888,-0.184842,-0.638519,0.123112,-0.07 72,-0.851112,-0.249387>,

<-0.217317,-0.034913,-0.104038,-0.533322,2.984313,1.114763,1.312663,-5.038081 ,-0.628A84>#

C-0.077140,-0.000843,-0.A53704,-0.186843,0.615515,0.863985,5.162472,-2.568067,-0.983720>,

¢-0.451112,0.650777,-0.650523,1.989002,-0.666488,0.267559,1.178607,-0.482039,1.153759),

£-1.328029,2.494712,0.581879,0.284973,0.140345,-0.378698,0.321152,-0.634000,0.864982),

CO.720861,-0.889762,-0.328747,0.214968,1.507224,0.794815,-0.345885,-2.011523,-0.509573},

^-0.072493,0 • 694930,0 • 444604 ,-0.565087,-1.485905,3 • 948742 ,-0.934063,5.600830 #0.051008>#

C-1.469259,1 • 137459,-0.147181,-0.249946,3.194611,3.577985,2.072181,2.827119,-0.207754 •

<0.754033,-0.596174,0.410781 #-0'.240091 ,-0.409267,-1.452092,4.983140,-5.328596,0.27A952>,

CO.005162,-0.186474,-0.084109,-0.156268,-0.516985,3.953562,12.674566,-4.120590,0.107159>,

CO.217346,-0.050913,-1.181020,-0.397353,-0.699470,0.742753,0.956275,-2.399568,1.155229},

C-1.195769,2.686259,1.819948,0.751346,0.323224,0.886600,-2.458093,-0.890145,2.797885>#

<0.799554,-0.457612, -0.191509,0.170058,-0.358146, -0.707604,-0.877927,-0.149762, -0.2774A9>#

¢-0.856249,0.428454,0.150868,-0.193337,0.597869,1.193256,1.701772,-0.053726,0.304037^,

C-1.027854,0.358235,-0.108164,-0.219415,0.390514,0.911118,0.743459,0.129462,0.596922>#

(0.043969,0.276587 0.413063,0.811957,0.245773,-0.795320,-0.619921,-0.098472,0.156250 '

CO.551382,-0.707475,0.319712,0.041579,-0.656943,-2.1204A5,-1.448657,0.260004,0.039185>,

C O . 7 4 2 4 0 7 , - 0 . 1 7 1 0 7 4 , 0 . 6 2 3 6 9 7 , 0 . 0 7 5 6 6 8 , 0 . 0 0 6 9 8 8 , - 1 . 0 9 6 4 6 2 , - 0 . 3 1 2 3 5 4 , - 0 . 1 5 5 7 9 0 , - 0 . 4 4 6 3 1 0 } ,

C0.200289,-0.222659,0.175490,-0.551110,0.392352,-0.832383,0.210715,-0.122989,-0.097940,

{-0.674960,0.895881,0.016432,-0.056803,0.003973,0.851943,1.022395,0.407195,0.151322>#

(0.130038,-0.568141,0.176819,-0.842862,-0.765515,0.195519,1.058933,0.371929,-0.439006),

I'S .
It ,

C-0.055000,-0.295540,-0.784643,-0.080401,0.629070,2.934311,-0.526669,-0.222740,0.007183>,
C-0.594109,1.041155,-0.796324,-0.076152,0.964087,1.871607,1.052036,-0.429614,-0.231278>/

1 (: -0 .910578 ,0 .600164 , -0 .237956 , -0 .271938 , -0 .035004 ,1 .963163 ,0 .702298 ,0 .204623 , -0 .0116601
<1.222852,-0.814026,-0.992097,0.345090,-0.662208,0.268078,-1.141079,0.030397,-0.A34030>/
C-0.637045,0.774197,-0.050094,0.751595,-0.434984,2.389400,0.142221,0.424816,-0.017703>/
<-0.081660,0.076773,-0.361142,0.118932,-0.603035,0.996723,-0.875674,0.354863,0.323429>'

>
m . . .

long begin,end;
j long address,cc,c;
I int f ind ,c1 ,c2;

in t front [10] , rear [10];
long e x , f i r s t , p , q , k k ;
long countfnn#m;
long low,high,mid,y;
char in code [10]
long char id;
long true_5;

struct Icrec
C long Ickey;

in t begin;
i n t end;

> huge * l c ;

long huge *lcword;

long

num(char *x)

C

int f l a g , i ;
char d i g i t ;
int y1 fy2;
long id 1=01;
long n,d;
for (!=0 ; i<4 ;++ i)

C
d i g i t = * (x + i) ;
swi tch(dig i t)

<

case ' a ' : d=10; break;
case "b1: d=11; break;
case ' c ' : d=12; break;
case • d ' : d=13; break;
case ' e ' : d=14; break;
case ' f ' : d=15; break;
defaul t : d=ato i (&dig i t) ;

>
i d j + - (d « (4 * (3 - i))) ;

t >

true 5 = id 1; - —

calculate the posit ion of the character in the f i l e * /

i f (i d j >= 0xC940)
C

id 1 -= 0x300; II ~ ‘ flag = 1
>

n = id_1 - OxAAAO +1;
I y1 = n/256;

y2 = n • 256 * y1;
n 157 * y1 + y2;

I if (y2 > 63)
n -= 34;

I if (flag == 1)
n +=63;

return((3*24)*(long)(n-1));
M > '

5 long .
| big_5(number)
long number;

long offset;
long c1;
int q,c2;
offset = 0xA440;
if (number > 5401).

C
offset = 0xC940;
number -= 5401;

>
q = (number-1)/157;
c2 - number - q*157;
c1 = q*256 + offset - 1;
if (c2 > 63)
c2 += 34;

return(c1 + c2);
}

/* Binary seach Function */
long

binary(long key)
C

long loUfhighfinid;
long char_id;
char in__code[10]
long c;
low = 0;
high = MAXRECS - 1;
while (low <= high)
C

mid = (low+high)/2;
fseek(fin,13*mid#0);
fscanf(f i nr"%Ix %s»,&char_i d,&ln̂ code);
c = atol(in_code);
if (key < c)

high = mid-1 I
I •. .

else f f (key > c)
low = mid+1;

else
returnCmid);

>
return -1

>

/ * Binary seach Function for I c l i s t * /

long
bin(long max, long key, struct Icrec huge * tab)
C

long low,high,mid;

low : 0;
high = max - 1;
while (low <= high)
i

mid = (low+high)/2;
i f (key < (tab+mid)->lckey)
high = mfd-1 .

else i f (key > (tab+mfd)->lckey)
low = mid+1;

else
return(mfd);

>
return - 1 ;

>

int
c o m p (i n t a , i n t b)

C
i f (a == b)

return - 1 ;
else

return 1;
>

mafn(iirgc, argv)

int argc;
char *argv[]

C
long i , j , c , d ;

/ * read in the look-up table for semantically related characters * /

t1 = mal loc(sizeof(t fme_t)) ;
t2 = malloc(sizeof (time__t));

fp2 = f open("c: \ \ s f n\ \da t aWword. cw i" # " r ") ;
lex = (char *)ca l loc (s i zeof (char) ,3) ;
I c y s (c h a r *) c a l l o c (s i z e o f (c h a r) , 2) ;

Ic = (struct Icrec huge *)farcalloc(sfzeof(*lc),3800);
l e w o r d = (l o n g h u g e *) f a r c a l l o c C s f z e o f (l o n g) , 2 0 6 3 1) ;

cc.un = 0;

-•—"•"•"•"""""vMwaaiHnuirafflHiHWMfflBMaHŴ Si

lc__count = 0;
while ((n=fread(lcx#2#1,fp2)) > 0) C
y1 = *lcx t 256;
y2 = *(lcx+1);
if (y2 < 0)
y2 += 256;
(tc+coun)->lckey = (long)y1*16*16+y2;
fread(lcy,1#1,fp2); /* space */

;(lc+coun)->begin = lc_count;
while ((n=fread(lcy,1,1#fp2)) > 0) <
t y1 = *lcy;
if (y1 == 10) /* carriage return */
break;

else {
y1 += 256;
fread(Icy,1,1,fp2)
y2 = *lcy;
if (y2 < 0)
y2 += 256;

lcword[lc count] = (long)y1*16*16+y2;
lc_count++;

>
)
(lc+coun)->end = lc__count-1;
coun++;

>

coun--;

/* read in the look-up table for code conversion */

fin = fopen(,,testdata,,,"r");

fp=open(»c: WetWstdfont. 24", 0_BINARY | 0_RD0NLY);

fp3 = fopen(argv[argc-1]#"r");
cat_1 = cat 2 = cat_3 = cat_4 = 0;
count = 1;
while (fscanf(fp3,"%s "(&id) = EOF) <

time(t1);

pos = num(id);
n = lseek(fp,pos,0);
read(fp,buf/M*N);

/* Calculate the profile features of the inputted character */

for (y=0;y<M;y++)
C
bit[y]=0;
for (c=0;c<N;c++)

bi t Cy] =bi t Cy]+< (I ong)buf [N*y+c]«(8*CN-c-1))>;
>

/ * Calculate the X, Y max. and min * /

Xmin = 23;
Xmax = 0;

Ymin = 23;
Ymax = 0;

for (y=0;y<M;y++)
€

k=bit[y];
for (x=8*N-1;x>=0;x--)
C
if Ck & 1) <

if (x>Xmax)
Xmax = x;

if (x<Xmin)
Xmin = x;

if (y>Ymax)
Ymax - y;

if (y<Ymin)
Ymin = y;

>
k »= 1;

>
>

/* First Corner Feature */

/* Calculate the feature extraction points on Y-axis */

Ycen = (Ymax+Ymin)/2.0;
Yoff = (Ycen-Ymfn)/3.0;
Xcen = (Xjnax+Xmin)/2.0;
Xoff = (Xcen-Xmin)/3.0;
Xcenpt = (int)(XcerH-0.5);
Xwidth = Xcenpt-Xmin;
Ycenpt = (int)<Ycen+0.5);
Ywidth = Ycenpt-Ymin;

for (c=0;c<4;c++)
C

Yfeapt[c]=0;
Ypt=(int)(Ycen-c*Yoff+0.5);
for <d=8*N-Xmin-1;d>8*N-Xcenpt-1;d--)
C

k=bit[Ypt]»d;
if ((k&1)!=1)

++Yfeapt[c]
else d=-1;

>
profile[c]=(ftoat Yfeapt [c]/Xwidth;

>

/* Calculate the feature extraction points on X-axis */

for (c=0;c<4;c++)

XfeaptCc]=0;
Xpt=(i nt)(Xcen-c*Xoff+0.5);
for (d=Ymi n;d<Ycenpt d++)
C

k=b i t Cd]»(8*N-Xpt-1);

if ((k&1)!=1)
+ + X f e a p t [c]

e l s e d = Y c e n p t + 1 ;

>
profile[c+A]=(float)XfeaptCc]/Ywidth;

>

/ * 2 n d C o r n e r F e a t u r e s * /

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s o n Y - a x i s * /

Y c e n = (Y m a x + Y m i n) / 2 . 0 ;

Y o f f = (Y c e n - Y m i n) / 3 . 0 ;

X c e n = (X m a x + X m i n) / 2 . 0 ;

X o f f = (X m a x - X c e n) / 3 . 0 ;

X c e n p t = (i n t) (X c e n + 0 . 5) ;

X w i d t h = X m a x - X c e n p t ;

Y c e n p t = (i n t) (Y c e n + 0 . 5) ;

Y w i d t h = Y c e n p t - Y m i n ;

f o r (c = 0 ; c < 4 ; c + +)

C

Y f e a p t [c] = 0 ;

Y p t = (i n t) (Y c e n - c * Y o f f + 0 . 5) ;

f o r (d = 8 * N - X m a x - 1 d < 8 * N - X c e n p t - 1 d + +)

C
k = b i t [Y p t] » d ;

if ((k&1)!=1)
+ + Y f e a p t [c]

e l s e d=8*N;

>
p r o f i l e C 8 + c] = (f l o a t) Y f e a p t [c] / X w i d t h ;

>

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s on X - a x i s * /

f o r (c = 0 ; c < 4 ; c + +)

C
X f e a p t C c] = 0 ;

X p t = (i n t) (X c e n + c * X o f f + 0 . 5) ;

f o r (d = Y m i n ; d < Y c e n p t ; d + +)

C
k = b i t t d] » (8 * N - X p t - 1) ;

i f ((k & 1) ! = 1)

+ + X f e a p t [c] ;

e l s e d = Y c e n p t + 1 ;
>

p r o f i I e [c + 1 2] = (f I o a t X f e a p t C c] / Y w i d t h ;

/ * 3 r d C o r n e r F e a t u r e s * /

/ * C a l c u l a t e t h e f e a t u r e e x t r a c t i o n p o i n t s o n Y - a x i s * /

Y c e n = (Y m a x + Y m i n) / 2 . 0 ;

Y o f f = (Y m a x - Y c e n) / 3 . 0 ;

X c e n = (X m a x + X m i n) / 2 . 0 ;

X o f f = (X c e n - X m i n) / 3 . 0 ;

Xcenpt = (int)(Xcen+0.5);
Xwidth = Xcenpt-Xmin;
Ycenpt = Cint)(Ycen+0.5);
Ywidth : Ymax-Ycenpt;

for (c=0;c<4;c++)
C

Yfeapt Cc]=0;
Ypt=(nt)(Ycen+c*Yof f+0 .5) ;
for (d=8*N-Xmin-1 d>8*N-Xcenpt-1 d - -)
<

k=bi t [Ypt]»d;
i f (Ck&1)!=:1)

++Yfeapt[c]
else d=-1;

>
profile[c+163=(f loat)Yfeapt[c]/Xwidth;

>

I * Calculate the feature extraction points on X-axis * /

for (c=0;c<4;c++)
i

Xfeapt[c]=0;
Xpt=(i nt)(Xcen-c*Xoff+0.5);
for (d=Ymax;d>Ycenpt d - -)
C

k=bi t [d] » (8*N-Xpt -1) ;
i f ((k&1)!=1)

++Xfeapt[c];
else d=Ycenpt-1;

>
profile[c+20]=(float)XfeaptCc]/Ywidth;

>

/ * To calculate the code for the inputted character * /

code = 0;

for (c=0;c<3;++c) / * 3 corners * /
C
node=1 / * the root node * /

for (j=0; j<4;++j) / * 4 levels in the tree c lassi f ier * /

C
result = disc__fcn[c*15+node-1] [0] ; / * constant terra * /
for (i=0; i<8;++f)

result += disc_fcn[c*15+node-1]Ci+1] * prof i le [c*8+i] ;

i f (result >= 0)
node = 2*node; / * l e f t son * /

else
node = 2*node + 1; / * right son * /

>

coCc] node - 16;
code += coCc] * pow(100,2-c);

>

cc=c=true_5;
c1=cc»8;
c2=c-(c1«8);
printf("%ld %c%c count,c1,c2
printf("%ld\n"fcode);

address = binary(code); /* binary search */
find = 1;
if (address ==-1) <

find = 0;

/* Back-Tracking */

printfC'No find: back-tracking …");
find = 0;
i = 0;
while (find == 0 && i<4) C
c = 2;
while (find == 0 && c >= 0)(
node = co[c] + 16 ;
for (j=0;j<=i;++J)
node « node/2;

for (j=i;j>=0;--j) C
result = disc_fcn[c*15+node-1][0]; /* constant term */
for (k=0;k<8;++k)
result += disc_fcnCc*15+node-1][k+1] * profile[c*8+k];
if (compCi,j)*result >= 0)
node = 2 * node; /* left son */
else
node = 2*node + 1; /* right son */

>
code += (node-16-co[c])*pow(100fc);
address » binary(code);
if (address = -1)
find = 1;

>

>
>

if (find == 0)
printf("Still no find \n");

else <
/* output the big_5 code */

fseek(fin#13*address,0);
fscanf(fin,"%Lx %s",&char_id,&in_code);
cc = atol(fn__code);

/* downward search */

i=1
do C
fseek(f i n,13*(address+i),0);
fscanf(fin,"%lx %s",&char_id,&in code);

c = atol(in_code);

> while (c == cc && (address+i <= MAXRECS) ;

end = address+i;

/ * upward search * /

i=1;
do C

fseek(f in ,13*(address- i) ,0) ;
fscanf(fin#"%lx %s",&char_id,&in code);
c = atol(in__code);

> while (c == cc && (address-i) >= 0) ;
begin = address-i;

for (i =beg i n; i <=end;++ i) C
fseek (f in ,13* i , 0) ;
fscanf(fin,"%tx %s»,&char_id,&in_code);
cc=c=char_id;
c1=cc»8;
c2=c- (c1«8) ;
prfntf("%d. »#f-begfn+1);
printf(»%c%c »,01,02);

>

printfC'Xn");

recog = 0;

i f (begin == end) < / * only one single character * /
pre_char = char id;
i f (char_id == true_5)

cat_1++; / * unqiuely determined the character * /
else

cat 3++; / * incorrectly recognized the character * /
>
else / * get the semantically related words and make the decision * /

i f (count > 1) C
add = bin(coun,pre_char# tc) ;
i f (add -1)

for (j=(lc+add)->begin; j<=(lc+add)->end && recog==0;++j')
for (i=begin;i<=end && recog==0;++i). C
fseek(f in # 13* i f 0) ;
fscanf(fin#"%lx %s",&char_id,&in code);
i f (IcwordCj] == char id) C

recog = 1;
pre char = char_id;

>
>

i f (recog == 1)
i f (pre_char == true_5)
cat_1++;

else
cat_3++;

>
i f (count == 1 11 recog == 0) <

printfC'Please enter a number for your choice ==> ") ;
scanf("%d",&choice
fseek(fin#13*(begin+chofce-1) /0);
fscanf(fin,"%tx %s"/&char_fd/&fn_code);

• • i

pre_char = char id;
cat_2++;

>

>
t ime(t2) ;
d i f f 4m d f f f t i m e (* t 2 , * t 1) ;
++count;

>

count--;
printf("Percentage in category 1 = %f\n",(fIoat)cat_1/count>;
printf("Percentage in category 2 = %f\n" f(f Ioat)cat_2/count)
printf("Percentage in category 3 = %f\n",(f loat)cat_3/count)
printf("Average processing time per character = %f \n" , (f loat)df f f /count) ;
farfree(tcword);
fa r f ree (tc) ;
close(fp);
fc tose(f in) ;
return 0;

REFERENCE

[1] Tappert, Suen & Walahara, "The State of the Art in On-Line
Handwritting Recognition," IEEE Transaction on Pattern
Analysis and Machine Intelligence, Vol. 12 No.8 August 1990.

[2] S.Rasoul Safavian and David Landgrede, "A Survey of Decision
Tree Classifier Methodology,11 IEEE Transactions on Systems,
man, and cybernetics Vol.21 No. 3 1991.

[3] R. Ahlsmede and I. Wegeru, Search Problems. New York: Wiley
Interscience. 1987.

[4] P. Argent iero, R. Chin, and P. Beaudet, "An automated
approach to the design of decision tree classifiers, "IEEE
Trans. Pattern Analysis Machine Intelligent Vol. PAMI-4, pp.
51-57, 1982.

[5] L.A.Bartolucci, P.H.Swain, and C.Wu, "Selective radiant
temperature mapping using a layered classifier," IEEE Trans.
Geosci Electron., vol. GE-14, pp. 101-106, 1976.

[6] R.C.Casey and G.Nagy, "Decision tree design using a
probablistic model," IEEE Trans. Information Theory, vol.
IT 30, pp. 93-99, 1984.

[7] L Hyafil and R.L.Rivest, "Constructing Optimal Binary
Decision Tree is NP-Complete," Inform. Processing Lett.,
Vol 5 No. 1 pp 15-17 1976.

[8] K.G. Beauchamp, "Walsh Functions and Their application.

Academic Press, New York 1975

[9] Jun S. Hung & Ma-lung Chung, "Separating Similar Complex

Chinese Characters by Walsh Transform," Pattern Recognition

Vol 20 No. 4 1986.

,..6.: •

[10] Shu wenhao, Chi Guo-Wei7 Zhao Ri-hua, "An accurate method
for recognition of Printed Chinese characters, IEEE 1988.

[11] Michio Umeba, "Recognition of Multi-font Printed Chinese
characters", IEEE 1982.

[12] Michael R. Anderberg, "Cluster Analysis for application,“
1973.

[13] Tou and Gonzalez, "Pattern Recognition Principles,» Addison-
Wesley Publish Co.

[14] Bryan F.J.Manly, "Multivariate Statistical Methods, A
Primer," Chapman and Hall.

[15] Q.R.Wang & C.Y.Suen, "Analysis and Design of a Decision Tree
Based on Entropy Reduction and its Application to large
character set recognition,11 IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. PAMI-6, No. 4, July, 1984.

[16] Y.X.Gu, Q.R.Wang, and C.Y.Suen, "Application of a Multilayer
Decision Tree in Computer Recognition of Chinese
Characters," IEEE Trans. on Pattern Analysis and Machine
Intelligence vol. PAMI-5, No. 1, January 1983.

• S

1 - •

• .

.

• • - ‘ ‘‘
/

• v

• • •
® . . s .

.

-

-
• .

' .

„ . / ' • • ' . ' • ' ‘ s . . , “

• i _: • ‘’ ” . • , ., * . %

• •
s

• J^

‘

2.

• .

. ‘
‘

• ¢-

CUHK L; bra r; es

111

000360223

