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Abstract 

The study of population and its analysis using mathematical 

models have received increased interest in the mathematical 

community in recent years. It was not until the twentieth century, 

however, that the study of population, predominantly human 

population, achieved its mathematical character. 

In this thesis, we are concerned with the analysis of the 

solution to the partial differential equations in age-dependent 

population dynamics, their asymptotic behaviour, numerical 

approximations, birth control strategies and relationship between 

continuous models and discrete models. 

In the first part (Chapter 1-5)， we study the linear 

McKendrick type equations of population dynamics with 

instantaneous time delay in the birth rate and a population model 

with age-size dependence and spatial diffusion in the semigroup 

framework. The infinitesimal generators are identified and the 

growth indices and the asymptotic expression of the solutions are 

determined explicitly. We also investigate the large time 

behaviour of the nonlinear population equation with a general 

logistic term. It is proved that the solution must have a limit 

when time becomes infinite and in general no oscillation is 

possible for the total number of population. This is in sharp 

contrast to the linear case. Furthermore, we study a semi-discrete 

model and a finite difference model obtained from the 
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corresponding continuous one. Properties of their solutions are 

investigated and the relationship between the finite difference 

model and the continuous model is established. 

The second part (Chapter 6-10) is devoted to the control 

problems of population dynamics, particularly to the optimal birth 

control policies of equations of McKendrick types. These are 

distributed parameter systems involving first order partial 

differential equations with nonlocal bilinear boundary control. 

The functional analytic approach of Duboviskii and Milyutin is 

adopted in the investigation. Maximum principles for problems with 

a free end condition and fixed final horizon, time optimal 

control, the problem with target sets and infinite planing horizon 

are developed. Results in problems with free final time, phase 

constraints and mini-max costs are presented. Furthermore, we also 

deal with the unbounded time control problem and obtain the 

minimum principle in the overtaking sense. The Pareto optimal 

problem and the problem with nonsmooth criteria are also 

investigated. Finally, we develop viable controls for the logistic 

population equations. 
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Introduction 

The interest in the study of human population or demography, in 

terms of its growth and decay, fertility and mortality and its 

relative mobility, can be traced back to ancient times. The first 

published table of mortality was attributed to the Roman Macer 

while a truly substantial work [1] in demography was published by 

Graunt in 1662， a study in the city of London in 1658. His work is 

regarded as a masterpiece in the field of demography. In 1760, it 

was Lenoard Euler [2] who introduced, in a virtually unknown 

article, the concept of a stable age structure in which 

proportions in all age categories would remain fixed if the 

population experienced no abrupt changes in migration, and if 

mortality were constant and births increased exponentially over 

time. This paper, anticipating important parts of modern stable 

population theory for a one-sex population closed to migration, is 

a cornerstone in mathematical demography. In 1798 Thomas Maithus 

[3] published his famous work which hypothesized that 

• food is necessary for existence with only a finite amount of 

land on which to grow it; 

• the rate of human reproduction remains constant. 

From this Maithus established a (originally discrete) growth 

model of the human race implying really that the rate of 

population growth is proportional to the size of the population, 

^ which could be described by the ordinary differential equation 

^ ^ ^ ^ AN(t), t>0, (1) 
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where N(t) represents the total population size at time t, A is 

the Malthas parameter of the given population, ？i=(3-fi, (3 is the 

birth rate and JJL is the death rate. 

Perhaps the most sensational message of Maithus， model was that 

under normal circumstance (e.g. no famine, plagues, wars etc.) the 

size of the human population would increase geometrically 

(exponentially) whereas food supply would increase at best only 

arithmetically (linearlly). 

Neglecting the difference among individuals and the negative 

feedback-effects existing in most biological world, Maithus' model 

was so simple that it resulted in, on one hand, both praise and 

censure of himself in the scientific world, and on the other hand, 

the further investigations on the population research. A singular 

achievement which links it with the stable population theory put 

forward by Euler was due to Alfred Lotka [4] and four years later 

to Sharp and Lotka [5]. From their realization, the population 

could be represented as a renewal process displaying some 

stability. They considered the age distribution of population and 

developed the following population model 

p(r,t)=c(r)N(t)=B(t-r)q(r), 

pM 

B(t)= B(t-r)q(r)dr, (2) 

Jq 

where q(r) is the probability at birth that a male shall reach the 

age r, B(t) is the male birth rate, M is the age at which a male 

reproductive ends, (3 is the rate of male birth, p(r, t) is the age 

distribution of male, N(t) is the total number. From 1922 to 1939, 

they studied the stability problem of stable age distribution. But 
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the rigorous mathematical proof was not completed until Feller，s 

paper [6] appeared in 1941 in which the following renewal equation 

was studied 

pt 

</>(t)=L(t)+ p(r)m(r)0(t-r)dr (3) 

J q 

where <pit) are births at time t, and are composed of births to the 

population alive at time zero [L(t) ] and births to those born 

since： t-r) is the number of persons born t-r years ago and, 

subject to their survival probability p(r), currently at the age 

r; m(r) being their chance of giving birth in the interval x to 

r+dr. From which, it was deduced, under reasonable assumptions, 

that the age density distribution p(r，t) has the asymptotic 

property 

* xt 
p ( r ， t ) 〜 ( r ) e , as t — > oo, 

* 

where C^ is a constant, 0 (r) is the equilibrium state of age 

distribution, A is the intrinsic growth constant. All these 

efforts gave an important new impulse to the population research 

which was actually ushering in the quantitative mathematical 

research on population problem. 

Based on the works of Sharp and Lotka, McKendrick [7] developed 

a partial differential equation model for the age-distribution 

p(r,t) which Foerstor [8] presented independently later. It 

represents the change of age structure with time, and all the 

other factors affecting p(r,t), e.g. system of society, natural 

environment, living standard, war, famine, e t c .， w e r e contributed 

to the death process described by |Li(r，t), the probability per unit 

of time that an individual with age r dies, and birth process is 
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described by /3(r), the expected number of offspring per unit of 

time of an individual with age r. He deduced a partial 

differential equation with nonlocal boundary conditions: 

^ ^ + M ^ - ^ t ) p ( r ， t ) ， t > 0 ’ r > 0 ， 

‘p(r,0)=p (r), r>0, 

0 、 
00 

p(0，t)= /3(r)p(r, t)dr, t>0, ⑷ 

」0 

where ？口⑷ is the initial density distribution of the population. 

This model is essentially equivalent to the model of 

Sharp-Lotka only by letting )=p(0,t) and integrating along the 

characteristic. 

Beside, Leslie [9] formulated a fairly complete discrete 

age-dependent population model, which became the foundation of 

demography. 

m 

n F n =n , 
^ X X 0 1 

x = 0 0 

p n =n , 
0 00 11 

p n =n , 
1 10 21 

p n =n (5) 
m-l m - 1 , 0 ml, 、 ) 

where n^ ̂  is the number of females alive in the age group x to x+1 

at time t, p^ is the probability that a female aged x to x+1 at 

time t will be alive in the age group x+1 to x+2 at time t+1, F 
X 

is the number of daughters born in the interval t to t + 1 per 

female alive aged x to x+1 at time t, who will be alive in the age 
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group 0-1 at time t + 1. 

The heavy social and economical pressure in China brought about 

by a huge population over the past few years has urged a team of 

researchers under J.Song, to develop a fairly accurate model for 

the Chinese population. In Song and Yu [10], improved McKendrick 

and Leslie models were developed. In these models, the birth 

process was considered to be affected by four factors, which 

include: 

• The age distribution of the population whose age lie in the 

interval of fecundity. 

• The ratio of females aged in the fecundity periods. 

• The birth number of females. 

• The fertility pattern of females. 

They are described by (p(r,t)， k(r,t), (3(t), h(r, t)), re[r，r ], 
1 2 

the fecundity interval of females, respectively. The model is as 

follows 

f dpir, t)丄 apCr, t) M , 、 〜z 

+ d r = - / ^ ( r ) p ( r , t), t>〇，0<r<r^, 

^ p(r，0)=p (r), 0<r<r ， 
0 m 

_ p(0,t)=^(t)〜（r，t)h(r’t)p(r，t)dr， t>0. (6) 

Jr 1 

They found the critical specific fertility for the stable 

distribution of the system, and proved the existence and 

uniqueness of solutions by semigroup theory and spectral theory of 

linear operators. 
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It can be seen that all these models mentioned above assumed 

that both the birth process and the mortality process are linear 

functions of the population densities. Consequently, the equations 

of these .models are linear. In spite of the introduction of the 

age structure, they predict the population tends to infinity when 

the intrinsic parameter is greater than zero. i.e. no negative 

feedback-effects are considered. The earlier efforts of overcoming 

this difficulty was made by the Belgian scientist Pierre-Francois 

Verhulst [13]. He formulated a mathematical model of a growing 

population with an upper limit, which allows the Mai thus parameter 

to depend upon the size of the total population itself, and 

therefore led to a nonlinear ordinary differential equation. 

^ ^ ^ ^ =AN(t)-0(N(t)). t>0. (9) 

The constant appeared in the above equation is known as the 

A 2 
intrinsic growth constant. A special case is that 0 ( N ) = — N . In 

K 

this case the solution is called the logistic growth curve, which 

can be obtained explicitly 

、Ni 入 t 、 
AN e 

N(t)= ^ ， 

KN e +入-KN 
0 0 

where N^=N(0) and K is the environmental carrying capacity. Hence 

N(t) — 

the upper limit of the population’ as t~> co. 

In 1974, M. Gurtin and R. C. MacCamy [14]， and F. Hoppenstoadt 

introduced the first models of nonlinear continuous age-dependent 

population dynamics by assuming that the functions (3 and id 

appeared in the McKendrick model (3) depend on the total 
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population size N(t). They proved the existence and the uniqueness 

of solutions and obtained local stability results for equilibrium 

distributions. Their pioneering work caused an outburst of 

publications in several variants of their models. We refer to Webb 

[15] for the general nonlinear models along this direction. 

One of the main applications of population dynamics is 

demography. But the same ideas apply to biological populations 

other than mankind, for instance insects, plants and 

micro-organisms. For such populations, age often does not give a 

satisfactory description of an individual. These ideas must have 

been in the air around 1967，because at that time there appeared 

more or less independently a number of publications concerning 

population models, in which it was argued that variables different 

from age such as size or maturity (sometimes in combination with 

age) should play a role in the considerations. In the Lecture 

Notes by Metz and Diekmann [16] a lot of such interesting examples 

can be found. 

For more detailed accounts on the mathematical treatments of 

population dynamics one may consult Smith and Keyfitz [ 17] or 

Hallam and Levin [18]. 
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Chapter 1 

Semigroups for Age-Dependent Population Equations 

with Time Delay 

1.1 Introduction 

In recent years there has been a rapid growth of interest in 

the application of the theory of semigroup to population dynamics. 

Very nice examples can be found in Song et al. [1， 2], Webb [3]， 

Metz and Diekmann [4], He i J mans [5] and Greiner and Nagel [6], to 

name Just a few. On the other hand, it is by now a firmly 

established tenet in population dynamics that time delays plays a 

very important role in the qualitative behavior of the population. 

One such model, possibly earliest, was due to Hutchisin [7]. Other 

studies include those of Gopalsamy [8]’ Gushing [9]. The purpose 

of this chapter is to study the McKendrick type models of 

age-dependent population dynamic with instantaneous time delay in 

the birth rate. These models involve first order partial 

differential equation with nonlocal and delayed boundary 

condition. This chapter consists of the following parts. In Sect. 

1.2 we define the problem and show how a semigroup can be 

associated to it. Moreover, we identify the infinitesimal 

generator of this semigroup. In Sect. 1.3， the spectral properties 

are analyzed. An interesting result is that in the general linear 

case, with delays or not, if the total population converges to an 

13 



equilibrium distribution it will converge to it in an oscillatory 

fashion, a similar phenomenon noted by Feller [ 10] earlier for 

some special cases. The last section is devoted to a logistic 

age-dependent model with delay and its associated nonlinear 

semigroup. 

1.2 Problem Statement and Linear Theory 

We are interested in the following model of population dynamics： 

fSpCr, t) 3p(r’t) , 、 , n ^ 
^ + =-fi(r)p(r,t), 0<r<r^, t>0, 

-p(r, 0)=p (r,e), 0<r<r，-T:<e<0， 
0 m 

p(0, t)=/3 k(r)h(r)p(r, t-T)dr, t>0, (1) 
Jr 

1 

where p(r,t) denotes the age density distribution at time t and 

age r, fxCr) is the relative mortality of the population, r is the 
m 

highest age even attained by individuals of the population, k(r) 

is the female sex ratio at age r, h(r) is the fertility pattern, 

[r，r ] is the fecundity period of females, (B is the specific 
丄 匕 

fertility rate of females and t is the time delay. 

Let k(r)h(r) be a continuous function in [〇，r ] with 
m 

k(r)h(r)>0, for every , fi(r) is continuous on any 

interval [0,r ], r <r . We consider the state space X defined by: 
c c m “ 

</>(r,e) 0(r,e)€C([O，r ]x[-t,0]), 
tn 

0 ( O , O ) = / 3 ^ k ( r ) h ( r ) 0 ( r , - T ) d r } - . 

Jr 1 

It becomes a Banach space with the usual norm of C([0，r ]x[-t,0]). 
m 

14 



Let the family of operators ^T(t), t>0 be defined as follows： 

T(t): X > X 

0(r,t+e)， e+t<0, 

[T(t)0](r,e)=J , r>e+t>0, 

r r 

^ f 2k(s)h(s)0(s,t+e-r-T)dse一了0"(p)dp， r<e+t, 
Jr 

1 

for 0<t<T, 

T(t)=[T(T)]^T^T(t-[i]T), f o r t>T, (2) 

where [a] denotes the integral part of the real number oc. 

T h e o r e m 1. The family of operator {T(t),t>0} defined in (2) is a 

one parameter strongly continuous (C^) semigroup of bounded 

operators in the Banach space X. 

Proof. Let t + t ^x, t.>0, i = l, 2 and take <p e X then 

I d 1 

‘0(r,t +e)， e+t ^0, 
1 1 

-si . Jiip)dp 
[T(t ) T ( t )<i6](r，e)=T(t )j0(r-t -0,O)e 卜、® , r>e+t >0, 

2 1 2 1 1 

(S k(s)h(s)0(s, t + 0 - r - T ) d s e ， r<t + G , 
」r 1 1 

1 

=T(t^)i//(r,e) 

‘0(r，t +0)， 0+t <0, 

=< ip(r-t -0,0)e 2 ， r^e+t >0, 
2 2 

(3 k(s)h(s){//(s, t +e-r-T)de ， r<t +e 
J p 2 2 

I 1 
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‘0(r,t +t +g), e +t +t <0, 1 2 1 2 

一丁二t -t 
=^</>(r-t 一t 一 e’0) e 广一 i 2+— , r^e+t +t > 0 , 

1 2 1 2 

k(s)h(s)0(s, t +t +e-r-T)dse ， r<t +t +0, 
Jp 1 2 1 2 

L 1 

=T(t +t )0(r,0), 
^ 丄 

here i//(r,e)=T(t )0(r,e) so that T(t +t )=T(t )T(t )• Furthermore, 
1 1 2 1 2 

it can readily be shown that if j//(r, e)=T(t )0(r, e), 0<t<T, then 

i/'(0,0)=/3 k(r)h(r)«//(r,-T)dr. (2') 

Jp 
1 

As for the case t.>0, i=l,2； similar calculations lead to 
T(t + t )=T(t )T(t ) 

1 2 2 1 

and a counterpart of (2) can also be deduced from definition (2) 

and (2'). 

To complete the proof, it suffices to prove that for every (f> e X, 

lim^llT(t)0(r,e)-0(r,e)II=O. 
t^o 

To this end let t<T, and we have 

IIT(t)0(r , G)-0(r , 0)ll 

^ max Il0(r, t+e)-0(r，e)丨丨 
e+t:so 

+ max 

+ max II 2k(s)h(s)<?Us，t+e-r-T)dse一丁。帅)dP-(/>(o’0)ll 

r:2t+G r 
1 

+ max !l0(r,e)-0(0,0)11 
r:st+e 

From this and the uniform continuity of 0(r,0), 

lim IIT(t)0(r,0)-0(r,0)ll=O. 

t->o 
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follows. This completes the proof. 

Let A be the infinitesimal generator of the C^ semigroup T(t), 

then we have 

Theorem 2. 

D(A)=^0(r,e) | 0eX，己勞二,®)，己公：『，〇 V ( r ) ( M r， 0 ) continuous 

and ^ ^ = - -M(r)</>(r，0)’ 

50(0,0) . , 、d(p[s，-T)j 
— ^ =玲 k(s)h(s) Y ‘ ds y 

oQ dQ 
r 1 

「 ^ ^ ^ ， e € [ - t , 0 ) , r 召[0，r ]， O0 m 

-fi(r)0(r,O), 0=0, re{0,r ], 
or m 

p 

/3「2k(s)h(s)a0(，-T)ds， 0=r=O, 
I Jp 胎 

1 

V 0 €D(A). (3) 

Proof. From the definition of A and the norm II 11, the polntwise 

丁（ t ) — I 
1 imit 1 im — e ) exists. Simple calculat ion leads to 

+ "C 

r ee[-T’0)，r^[0,r ]， 

OQ m 

lim I l ^ i l l A0= - W r ) 0 ( r , O + )， e = 0 , r ]， 
+ t or m 

4 2 k ( s ) h ( s ) 州 【 一 ) d s , G=r=0. 
、 dQ 
r 

^ 1 

We denote by Q the set on the right hand side of D(A) in the 

theorem. Then, A(p e X implies the right and left derivatives are 

equal, so that (p e Q. 

Conversely, if (p e Q and let 
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‘ ， e . [-x,0), r . [ 0 , r j , 

0 ( r , e ) = J - 时 工 - fi(r)0(r,O), e=0, r € (0，r ], 

m 

、 OQ 
r 

^ 1 

It follows that 

11 

^ m a x II勞(r’t+e?-0(r，e) _ 广,e)丨丨 

e+t匆 t 抬 

+max 丨 丨 < ? n r - e - t ， 0 ) e 一 : 一 0 ( r , 6 ) ) _a0(r，e)丨丨 
、 t 9e 
^e+t>o 

r r 

\is)h{s)(p{s, t+e-r-T)dse-丁oWP)dP-0(r,〇） 

-max 1 1 — ^ 时五 r’ 叫 1 . 
糾 t ae 

Let us examine the last term 

<f>ir, t+e)- </>(r，e) d(f>ir,Q)_ 1 f^2d(pir,o)) _d(pir,Q) 

t ^ t, , 
r 
1 

the continuity of implies the first term tends to zero 
oQ 

(t~> 0+). Similar argument gives 

lim " T ( t ) - _ 011=0, 

+ L 
t^o 

so that (f> € D(A) and A0 = ijj. This completes the proof. 

With the operator A at hand, equation (1) can be written as an 

abstract evolution equation in the Banach space X： 

dpir t+e) = Ap(r,t+e), t>0, 0<r<r ， 
I ot m 

p(r，e)=p (r, 0 ) , 0 < r < r， - x ^ e：^ 0 . (4) 

^ 0 m 
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Following [11], we have 

Theorem 3. The solution, say p(r,t+e), of equation (4) exists and 

is unique. Furthermore, 

<1> p(r,t+e) = T(t)p^(r,0), 

<2> T(t)Po € C([0’oo);X)’ V PqS X’ 

< 3 > . T ( T ) P ^ € C ^ [ 0 , c o ) ; X ) , V P qG D ( A ) , ( 5 ) 

Now, if p(r，e) € D(A) let 

g(h)=p(r^+h),t^+h), h>0. 

Hence, g(h) satisfies 

J l ^ = - 〜 h ) g ( h ) ， 

Solving the above gives 

g(h)=p(ro，to)e-T>(ro+P)dP 

and substituting (r^, h, t^) = (r-t, t, 0) and (0，r，t-r) in turn, we 

have 

p ( r - t ’ 0 ) e — C 々 ) d P , r 咖 ， 

p(r,t)=j ° 

尽「 2k(s)h(s)p(s’t-r-T)dse一丄oM(P)dP， r<t, 

L Jr 1 
so that 

f t+e)， t+e:<0, 

p(r’ t+€))=-Po(r_t一•’O)e_Jr-t-0 ’ 

/3[ 2 k(s)h(s)p(s’ t+€)-r-T:)dse-、M(P)dP，r<t+e. 

Jr 1 

Simple calculation yields 
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‘ t + e ) , t+G:<0, 

T(t)p。（r，e)=jp。（r-t-G)’o)e-Tr-t-eM(P)dP，r>t+0>O, 

E 0 k ( t + e - r - T ) e - T > ( P ) d P + 0 k ( t + e - r - T ) e - T > ( P ) d P， 

O<t+0-r<(n+l ) T , 

where 

广 r s 
0(t)=/3j 2k(s)h(s)p。（s-t，0)e-Js-t"(P)dPds， 

r 
1 

r s 

0】（t)=3「2k(s)h(s)0 (t-s-T:)e-、WP)dPds，k=l,2... k , k-1 r 1 

广 r s 
i//o(t)=/3[ 2k(s)h(s)p。（s,t)e-Js-t"(P)dPds’ 

r 
1 

- r s 

2k(s)h(s)0k_i(t-s-T)e-丄0"(P)dPds’ k=l,2. . . , (6) 
r 一 1 

• 1 

since D(A) is dense in X so that (6) is true for all p(r，e)€X. For 

(6) is the same as (2) which shows that (6) is an explicit 

representation of the C^ semigroup T(t). From the continuity of 

parameters and the recent results in [12], we have 

Theorem 4. T(t) is compact in X for t^r +T but it is not for 
m 

t<r +T and hence T(t) does not have an analytic extension. 
m 

3. Spectral Properties of the Infinitesimal Generator 

In this section we develop some spectral properties of A. 

We consider the following equation for all (//(r, e) € X and A € C: 

(A-A) </>=(// 
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or 

a^^t’®) =A0(r,e)-i//(r,e)， 0 e [-t,0), r e [0,r^], 

‘-时丄r’0) - |ii(r)0(r,O)=A0(r,O)-0(r,O), 0=0, r e (0，r ] 
cr m , 

r 

/3「2k(s)h(s)aW，-T)ds=A0(O，•)-(/;(•, 0 ) , 0 = r = o . 
OG 

r 
L 1 

Let 

F (入 ) = 1 -日 [〜 k ( r ) h ( r ) e - A ( r + T ) - ^ > P ) d P d r， (7) 

Jr 
1 

<̂、、 -入 10「〜1, s, ,、「「r … 「 〇 - A s " , , " 
g (入）=e (3 k(r)h(r) e s^ m 0)+ e i//(r，s)ds dr. 
识 Jr LJq J-tt _ 1 

Then when F ( 入 s o that 入 e p(A) and 

R(A,A)0= ^ 丁 e-s)-丄=fi(P)cip 一’ 

m ) j〇 

G 
-、e一入(®-sV(r，s)ds. (9) 
J〇 

When F (入） = 0 , (入 - A )中 = 0 has the unique solution 

.f 、 一 入 r 一 丄 入 e , m 、 
0(r,0) = e K ^e . (10) 

Applying Theorem 4， the spectral mapping theorem and in the spirit 

of [2] we have 

Theorem 5. (1). The point spectrum of A consists of distinct 

eigenvalues of geometric multiplicity 1. They consist of the zeros 

of the entire function F(A). 

(2). A has only one real eigenvalue, its algebraic multiplicity is 

1 . 

(3). There is only a finite number of eigenvalues of A in any 

finite strip parallel to the imaginary axis. 
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Let A be the real eigenvalue of A and p, its associated 
u A 

0 

projection on the eigensubspace of A^, then for any 0 e X, 

入•入 0 
o 

In view of the asymptotic formula for compact semigroup [12], we 

have 

Theorem 6. Let p^ € D(A), e > 0 be a positive number such that 

(r(A) n O I Re入 < A , ReA > 入一€： ^ = 0 , 
o 0 

then the solution of (4) can be written as 

V V r 
^f^ 4 • 丄 … _ 0 。 大 ( r _ e ) _ / V i ( p ) d p 入 t 丄 . ( A -e)t、 
p ( r， t + e ) F , ^^ ) e o cT 广 o + o(e o )， 

0 

t—> +00. (12) 

In particular, the solution of equation (1) has an asymptotic form 

g p ( V r 
‘、 0 -入 r - / V ( p ) d p A t , (A _e)t、 

p ( r , t )= F , ( 入 ） e 0 ^ ^ e o + o(e o ), 
0 

t ^ +00. (13) 

Denoting C入〇=广（入)’ then the total population N(t) at t has its 

0 

asymptotic form 

M“、-r -A r-J^/Li(p)dp,, 入 t 丄 ( ( A -e)t. 
1\1“)-0入0丨丨6 0 0 L ( O r ) e + o (e o ), 

* m 

t > +00. (14) 

Corollary 1. Let (3 be the critical fertility rate defined by 

cr 

22 



3 = [ r 2 k ( r ) h ( r ) e - 《 " ( P ) d P d r r 

cr U p -
1 

then 

<1>. when 日 > (3 ’ N(t) +co (t co)； 
cr 

<2>.when ^ = (3 , N(t) C Ile'V^^^'^'^ll ( 、（t —⑴）； 
cr 0 L(0，r ) ， 

m 

<3>. when 13 < (3 ， N( t) 0 (t — oo). 
cr 

Furthermore, if we let p*(r)=C e一 :。口⑷^口 and for ( 3 = ^ ， t h e n 
0 cr 

in view of (13), 

lim p(r，t) = p*(r), V r € [0,r ] uniformly. 
1 、 m t - ^ 

In the squeal, we are interested in the case (3 = (3 . Let 入， 
cr i 

A., Re 入 i=(x<〇，i=l, 2...n, be eigenvalues of A such that the set 

-{A I a:^ReA<0 contains no other eigenvalues except A , A . Denote 

i i 
P入 the projection on the eigensubspace of 入 . . I t can readily be 

i 1 

shown that (cf. [13]) 

T(t)Po = T(t)PoPo+T(t)5 (p^ + P^ )Po+ o ( 严 … ） 

i =1 i i 

when e >0 is such that cr( A) n 例 cc-e < Re入 < cc J- = 0 . 

Let the algebraic multiplicity of 入 be n， and g^, k = 
i i k 

1,2 ••-n be a basis of p、X， i.e. 
i ^A 

i 

(A-A.)g: = , k=l,2， ... ，n., 

1 k k-1 1 

(A-入i)g; = 0 . 
n 
i 

If p. P = V a g ， t h e n 

i k = l 
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一 -A.t A.t -A.t A.t_ 
T(t)[p. ]P = T(t)e I e 1 p、P +T(t)e ' e ' p^ P 

A A 0 A 0 A O 
i i i i 

^ , n n -1 

A t i i a 
= e i E I： ^ t X , . . 

k = l m = l 

：̂ . n n -1 — 

A t i i a 
i xp k i m i 

+e ：̂ s " i j t g入 k-m 
k=l m=l 

, 入 t 1 Rett 
o at ^ , i ^ k i . m i 

=2e cos/^ite E E t g 入 . 
k = l m = l 

Notice that here we set 入 = a + i / 3 ， so that 
k k 

来 n ^ Re a 
p(r，t+e)=p (r)+ E 2e饥cos/S^t E E +。（e(a-Ot) 

which can also be written as 

来 n M _ 

p(r,t+e)=p (rO+e^t J cos/3 t I Q (t)g' + o(e(a-⑴t) 
i ik k 

i=l k = l 

where Q (t) are polynomials of t, g^ e X and M < oo. Thus 
ik k 

p(r，t+e)=p*(r)+eat J cos/3 t J Q (t)g' + 
i i k k 

i=l k=l 

and 

N(t) = N*+ e^t J] cos^.t Q. (t) + 

i = l 

where Q. (t), i = l, 2,...n are polynomials of finite degree. Now, it 

is not difficult to see that there exist nonnegative integers k and 

m distinct (3 • • • /3 ， among the [3 ， i = l, 2, . . . n, with [3 =^0, i = l, 
1 m i i 

2,...m such that 

* , r m 1 , n 

N(t) = N y oc cos|3 t + e Th cos/3 t-t^ 
i i i i 

Li = 1 J i = 1 
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, a t . k , ((x-e)t、 、 ， 1 … 
+e t o( t ) + o(e ) (t ——> CO). (15) 

n 
Here we have assumed T(t) T [p. ]p ^ 〇，otherwise we have to 

A A 0 
i = 1 i i 

look into the projection on the third eigenvalue and so on. 

Next, if there exists t^>0, such that for t>t^, N(t )-N* does not 

r^N(T)-N* 
change sign, then F( t )= dx is monotonic in [t，⑴）so that 

、 k OCT 0 t T e 
0 

lim F(t) exists. In view of (15)， this is equivalent to the 
t-^ 

m oc 八 

i 
existence of lim T - ^ ~ s i n t = B. Moreover, if t >〇， 

^ B i 0 
t 却 i = 1 i 

00 m a. m a ^ 00 _ M O. 

八 - p E sin /3.tdt = E + 八-t一2 J — ^ o s ^ . t d t 
J t ^ 1 = 1 ' i 1 i = i t 1 ° J t i二1 f 1 

0 0 i 0 i 

r①1 
is a convergent integral, but dt is not. Thus B =〇 or 

Jt 0 

m (X. 

lim Y. - ^ s i n 〜t = 0. (16) 

t - ^ i=l i 1 

Multiplying (16) by 2sin t on both sides gives 

Qi a m p a. -. 
+ E c o s ( 〜 c o s ( 和 / S H 

1 ' 1 i = l L ' i 1 ‘ i 1 」 

> 0, as t > 00, 

since for any l:si<m, ^^-(S^^O and 0 and it follows from the 

above that 0 or 0. But this contradicts the assumption 

that a is nonzero. This concludes the oscillatory convergence of 
1 

* 

the total population N(t) to N . 

来 
Theorem 7. For (S = {3 the total population N( t) tends to N ， t h e 

c r 

equilibrium total population, in a oscillatory fashion, i.e., for 

来 来 
any a>0, N( t )-N has at least one zero in [a,+co) and lim N( t) = N . 
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N(t) 

‘、/ \ 

乙 一 一 一 — ： ^ 一 一 一 : 〜 〜 “ 
/ W 

/ 
/ 

/ 

0 、t 

Figure. N(t) oscillates about N* 

It is interesting to note that such type of oscillatory 

behaviour was uncovered by Feller earlier [ 10] and is still of 

much interest [3]. 

1.4 A Nonlinear Semigroup of the Logistivc Age-Dependent 

Model with Time Delay 

In this section the following nonlinear logistic age-dependent 

population model with delay will be considered： 

p(r, 0 ) = p (r, e), , 
0 m 

p(0,t)=日 k(r)h(r)p(r,t - T)dr, t>0, (17) 

Jr 
1 

where K>0 is an environmental parameter reflecting a depression 

of growth as the population becomes large, f(^) is a nonnegative 

continuous function, differentiable for 0 such that 

f(0)=0, f(?) > 0 , V 0. (18) 

Other parameters are Just the same as those described in section 

1. Y is a subset of X defined by: 

Y = 0 ( r , e ) 1 0 , - I f e X, ？ - W r ) 0 ( r ， O ) - K f ( N 。 ） 0 ( r ， O ) , 
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0(r,0)> 0}-, (19) 

where N = "V(r,0)dr. 

We have the following existence results 

Theorem 8. For any given p^eY, the solution p(r，t) to equation 

(17) exists and is unique with p(r,t+e) e Y V t > 0. 

Proof. Consider the nonlinear equation 

‘ t + e ) ， t+0<O, 

p ( r - t - e , 0 ) e < - t - e 辽（ N ( P ) ) d p ’ 
0 r^t+Q^O, 

p(r’t+e)=- _ 
、-广 f i ( p ) d p - 丁 K f ( N ( p ) d p , 

t+e-r)e o^ ^ ^e t+e-r ^ ^, r<t+e, 

(pit)= (S k(r)h(r)p(r, t-T)dr. (20) 

Jr 
^ 1 

We see that if N ( t i s continuous for t ^ 0 then the solution of 

(20), p(r, t+e) belongs to X for t^O, p(r, t+e)>0. Moreover, (pit) is 

continuously differentiable for t>0. In fact, for 0:^t<T, 

0(t)= (S k(r)h(r)p(r, t-T)dr. 

Jr 1 

「广2 ap(r t-T) 「厂2 (r^O) 
Thus r(t)=(3 2k(r)h(rrP^r，L "^^dr, (T)= \ ( r ) h ( r ) — ^ dr, 

Jp ae - Jp 50 
1 1 

when t^T, 

、人（V 、-/jLi(p)dp -丄t-T Kf(N(p))dp . 丄 
(p[t)= 13 k(r)h(r)0(t-r-Tje o e, t - r - x dr + 

Jr 
1 

广 2 k ( r ) h ( r ) p。 ( r - t + T’ 0 ) e - C t + T — ) d P e : < T m N ( p ) ) d P d r (^l) 

r 1 

Here we assume the functions take on zero outside their domain of 
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definition. For +t. 
1 

0(t)= / 3 j \ ( r ) h ( r ) P o ( r - t + T ’ 0 ) e - C t + T _ ) d〜 - 0 ^ ( N ( p ) ) d P d r 

r 
1 

, 「厂2 「3p(r-t+T’0) 
0 (t)= . k(r)h(r) ^ +[kf(N )-Kf (N( t-x)) ]p (r-t+T,0)-

Jp o© 0 0 
1 

• e - C t + T ^ p M P e - J 广 Kf(N(p))dPdr’ 

r 5p (r,0) 

(t)=3 dr. 
+ 、 OQ 

r 1 

Hence (pit) is continuous for O^t^r +t. If r +T:<t:52(r +t) and r€ 
1 1 1 

[r ,r ], then t-r-T<r +t, 
1 2 1 

「 
(t)=/3 k(r)h(r) (t-r-xj-Kf (N(t-x) t-r-T)+Kf (NCt-r-x)) • 

Jr L 
1 

『2 厂 dp (r-t+T,0) . 
k(r)h(r) 〇 +[Kf(N )-Kf(N(t-x))]p ( r -t + T， 0 ) ] . 

J oQ 0 0 
r • 
1 

•e r-t+T e 0 「 d r , 

so that (t) is continuous for 0<t<2(r^+T). Inductively, it is 

obvious that (t) is continuous in [0, oo). From (20) and for t>0, 

‘5Po(r，t+e) 

— ^ — — ， t 喊 

rap (r-t-e, 0) “ 

~ ~ - ^ +[Kf (N^)-Kf (N(t+e)) ] p ^ ( r - t + 0 , O ) . 

" • 

5p(r，t+e) pp (、」 p t 、 、 二 

= - S iLi(p)dp — J Kf(N(p))dp」 ^ ^ 

(t+e-r)-Kf(N(t+e))+Kf(N(t+e-r))]. 

-广fi(p)dp Kf(N(p)dp z‘ 
^ •e 0 e t+e-r ^ ^, r<t+e. 
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Tk ap(r,t+e) ^ , 
Thus ^。， € X, and do 

「apo(r-t’o) -
^ - fi(r-t)p^(r-t,0)-Kf (N(t) )p^(r-t,0) 

匕 -

召P(r，t) ap(r，t)_ - 广 n(p)dp - / K f ( N ( p ) ) d p 
at . ~ d Q e r_t e 0 ’ r-z， 

(t-r)-Kf(N(t))+Kf(N(t-r))]• 

• Kf(N(p)dp， r<t’ 

= -冲 i『, t ) - fi(r)p(r,t)-Kf(N(t))p(r,t). 

Therefore assuming N ( t t o be continuous we have proved that a 

solution of (20) is also a solution of (17). The converse can also 

be readily shown to be true. Thus we have 

Proposition 1. If p^(r,e) g Y and N(t) is continuous for t>0 then 

equation (17) and equation (20) are equivalent. 

From the above proof, under the assumption that N ( t i s 

continuous, we see that if (20) has a solution then p(r, t+e) eX 

and p(r,t+G)>0, for all t > 0,. We can consider, for any T > 0, 

0(t) = IBN(t), D([B)=^N(t) |N(t)>0, N(t)€ C[0,T] [•, 

where B is a nonlinear operator from D([B) > D([B). Also we may 

define from D ( [ B ) > D(E) the operator 

A N(t)=「t匪（t-r)e-工 

」0 

+ 「 \ ( r - t ’ 0 ) ; C t _ ) d V 丁 一 (22) 

Let p(r, t+e) be a solution of (20) (uniquely determined and 

continuous) for K=0, and the corresponding total population N(t), 

t^O. Define a subset of D(B) by 
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Q = { N(t) I 0 ：< N(t) < N(t), 0 < t < T I、 

Then, Q is a closed convex subset of D(B). Further, AQcQ, f being 

continuous implies A is also a continuous mapping. It is not 

difficult to prove that AQ is a sequentially compact in D([B). In 

fact for t, [0,T], 

Kf(N(p))dp 

^ max Kf (?) |t-t I M = max N(t) 

？ € [ 0 , M ] t € [ 0 , T ] 

Kf(N(p))dp - / •。K f ( N ( p ) ) d p 
e t-r -e t -r 0 

^ 2max Kf(^) t-t 
^ 0 
？€ [ 0，M ] 

This implies BQ is sequentially compact and so is AQ. Apply 

Schauder's fixed point theorem, we see that A has at least one 

fixed point N(t) in Q. This N(t), together with equation (20)， 

gives a solution p(r,t+e) for equation (17). To prove the 

uniqueness of p(r,t+e) is equivalent to prove the fixed point of A 

is so. To this end, suppose N(t) and t) are fixed points of A, 

then 

N(t)-N (t) 0 

=广「 _ ( t - r ) - _ ( t - r ) ] e - 丄 一 〜 - < - r m N ( p ) ) d p 
JoL Q 」 

.['bn ( t - r ) e -丄…d p [ e < r K f ( N ( p ) ) d p _ e - J : _ r K f ( N o ( p ) ) d + r 

Jo ° L 」 

^r^m , . 。、 | L i ( p ) d p「 - j t K f ( m p ) ) d p - / K f ( N (p))dpl^ 
+ Po(r-t，0)e r-t"^ ^ e 0 严 「 - e o o ^ dr 

t L J 

=「\ n (t-r)e一丁…dp[e-jt_r[Kf(N(p))-Kf(No(p))]dp_i] 
」0 ° L J 

Kf(N (p))dp , 
e t-r 0 ^ d r 
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+ [ % (r-t，0)e-Ct—)dP「e-TS[U(N(P))-^^(VP))]dP-l. 

^t ° L -

-si Kf(N (p))dp^ 

•e t-r 0 r 「 d r 

V t € [0，T]. 

From the fact that | < |z|e ^ , we have 

- / [ K f ( N ( p ) ) - K f ( N (p)])dp 1 

S 0 0 一丄 

^ t m a x | K f ' ( C ) I -CIIN-N ” C = m a x f ( ? ) ， V t e [ 0 , t ] , 

细 0， M ] 0 U 。 , T J 细 0，M] 

and hence there exists K > 0 such that 

N(t)-N^(t) |< Kt-ll N-No"c[o t] ’ V t€ [0，T]. 

It follows that for small enough t, N(t)=N^(t). Repeated use of 

the above argument leads to the general case N(t)=No(t)， V te 

[0,T]. Condition on f to be continuously differentiable can be 

weakened to a Lipschitz type condition 

I ^ L(M) V 0< M, i = l, 2, M ^ 0. (23) 1 2 1 2 1 
We have thus completed the proof of Theorem 9. 

Since for any p^(r, e)g X n P=Z, P is the nonnegative cone of X， 

equation (20) has a unique solution p(r，t+e)€ Z V t^O therefore 

A 
we may define a nonlinear operator T： [0, oo) x Z ~ > Z by 

A 

T(t)p〇(r，e) = p(r,t+e). (24) 

Similar to T(t), the linear case, we have 

A 
Theorem 9. t), t^ 0 is a one parameter family of nonlinear 

八 

strongly continuous semigroup, its infinitesimal generator A is 

given b y 
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‘ ， e e [--’•)，r - [ O . r J , 

A0(r,e)=J-召0么二,0) - j:i(r)0(r,O)-Kf(N )0(r,O), 0=0, r€(0,r ], 
0 m 

r 
^ 1 

八 

V D(A)=Y. (25) 
A 

Using the operator A, equation (17) can be written as an 

abstract evolution equation 

dpir t+Q) = Ap(r,t+e), t>0, 0<r<r ， 
Oi^ m 

p(r,e)=p (r’e)， ，-T<e:sO, (26) 
0 m 

and Theorem 8 can be restated as 

Theorem 8，. For any p^e Z, equation (17) has a unique solution 

A 
p(r, t+e)=T(t)Po(r，e)€ C([0.oo);Z)； 

A 

if p € D(A)= Y then 0 

p(r,t+e)=T(t)Po(r，e)e C、[0,«);Z). 

来 

Earlier we have established that for any given N > 0, the set 

叫</>(r，e) 0 ， € X and V re [0,r ]， 
OO m 

is dense in X， and so is n n P in Z. Now if we take 0(r,Q)e Q n P 

and let 

‘ 「r 
0(r，e)， if G= > ( r , 0 ) d r = 0 

* 

. - ^ ( r , e ) , if G；̂  0， 

32 



then ~(r,e)e Y. Hence we have 

Proposition 2. D(A) = 2. 
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Chapter 2 

Global Behaviour of Logistic Model of Age-Dependent 

Population Growth 

2.1 Introduction 

The purpose of this chapter is to study the large time 

behaviour of the age-dependent population model with a general 

logistic nonlinearity which provides a mechanism for self-limiting 

phenomena when the total population increases. Such a model may be 

described as follows: 

Let p(r，t) be the age density distribution of the population; r 

be the age; t be the time; 0 < r < r， t>0, where r is the maximal 
m m 

age ever attained by individuals of the population. Assume that 

the specific fertility rate of females is a constant (3; the female 

sex ratio k(r) and fertility pattern h(r) are independent of time； 

h(r) satisfies 

h(r)dr=l, 

Jr 
1 

where[r^, r^] denotes the fecundity period of females; the relative 

mortality rate iJ.(r) is a function that depends on age only and 

satisfies 

「r r^m 
r < r， pt(p)dp <+00 and lim一 V(p)dp=+co. 

」0 r—r_ J〇 
m 

Let the constant K be the environment parameter； p^(r) be the 
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initial density, then the logistic growth model can be described 

by the following first order nonlinear partial differential 

equation 

+ 二 —/i(r)p(r，t)-Kf(N(t))p(r，t)，0<r<r^, t>0, 

- p ( r , 0 ) = p (r), O ^ r ^ r， 

0 m 

L p(0,t)=/3 k(r)h(r)p(r, t)dr, t>0, (1) 

Jr 
1 

「Pm 
where N(t )= '"pCr, t )dr is the total population, f (N( t)) is called 

」0 

the logistic term and f(^) satisfies 

‘f(0)=0； f ⑷ > 0 ’ V ^>0; 

L f(^) continuously differentiable. (2) 

If K=0, (i.e. independent of habitat) then system (1) will be the 

well known age-dependent linear model of McKendrick. So we assume, 

in this chapter, that K>0. 

The study of the nonlinear age-dependence dependent population 

models was initiated by Gurt in and MacCamy [4] and a recent 

monograph on the subject is Webb [6]. Global results in 

establishing the convergence of solution to equilibrium age 

distribution were given by Marcati [2] and Webb [7]. However, in 

[2] the logistic term treated was linear in the total population 

N(t). While in [7], the nonlinear term was assumed to be 

increasing. Here we relax both of these assumptions and thus the 

method employed in proving global results are different from those 

of [2] and [7]. Furthermore, we emphasize on the behaviour of the 

total population as time goes to infinity since it is perhaps a 
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more meaningful quantity than the density itself. 

The plan of this chapter is the following. We first study the 

large time, behaviour of the population density distribution for 

the general logistic model. It is proved that every solution (at 

least for the initial density p^€D(A), the domain of the 

population operator) must have a limit. We present conditions 

which guarantee the boundedness and stability of the solution. 

Finally we prove that no periodic solution exists for this system 

and no oscillation is possible for the total population about its 

equilibrium solution. This is in sharp contrast to the linear case 

where N(t) always oscillates about the equilibrium solution, as 

shown in chapter 1. 

2.2 Global Behaviour of the Solution 

Introducing the state space X =L(〇，r ) and the population 
m 

operator on X 

A0 = - fi(r)0(r), 
a t 

. p^o 
D ( A ) = 彳 0 |0，k(P e X,0(O)=/3 k(r)h(r)0(r)dr 卜， (3) 

Jp 
1 

we have as in [8]， 

Lemma 1. A is the infinitesimal generator of a one parameter 

strongly continuous semi-group of bounded operators in the Banach 

space X, and has the following asymptotic expression： 

At . ^ -A r 一 A t ( (A -e)t., 
e 0(r)=C^e o cT ^ ^[e o +o(e o ) ] (4) 

<t> 

37 



where A^ is the real eigenvalue of A, which has the maximal real 

part in the spectrum of A; C中 is a constant depending only on <p 

and e > 0 is any positive number such that (r(A)rv{入 |入o""e<Re;v<;Vo (•=0. 

Firstly, we will prove the existence and uniqueness of 

solutions to equation (1). 

Lemma 2. Let p^(r)€ D(A), p^^O, then a necessary and sufficient 

condition for the equation (1) to have a classical solution is 

that the following nonlinear equation 

N(t)=lleAtpoiie-KTif(N(P))dp (5) 

has a continuous solution in [ 0 , 0 0 ) . Furthermore, the solution is 

unique and 

, 各 、 A t , 、 - K / f ( N ( p ) ) d p … p(r,t)=ePo(r)eo ^ 、 (6) 

Proof. Write equation (1) as an abstract evolution equation in the 

state space X: 

aP • [，t) = Ap(r’t) - Kf(N(t))p(r,t), 

.p(r，〇）=Po(r). 

For the sufficient condition, we suppose the above equation has a 

classical solution p(r，t), then it is obvious that p(r,t) 

satisfies equation (6). By integrating both sides about r, we know 

that N(t) is a continuous solution of (5). For the necessary 

condition, let p(r,t) be the right hand side of equation (6), it 

can be checked directly that p(r,t) satisfies equation (1). In 

order to prove existence and uniqueness of the solution in 

equation (5)， let t>0 be an arbitrary given number, we define a 

set Qc C(0,T) by 
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Q = ^N (t) lleAtpoii，N€ C(0，T)卜 

and an operator d on C(〇，T) by 

^ N ( t ) = ll eAtp „ e - K j V ( N ( p ) ) d p 

then s^cQ and Q is a convex closed subset of C[0，T). For all 

[0,T] 

d N(t )-d N(t )= filersp " ^ 。 - 盯 ^ ^ ) d P 
1 2 

+ r - K X S f ( N ( p ) ) d p _ J - K j > f ( N ( p ) M p 丨丨 eAt “ 
- 2 J 

hence, 

Wd m t j - j N(t )ll< lle^^ip "-lleAtsp || +M[l-e"^^ 
1 2 

八 At — 
where M= max He p II, M= max f (^). 

t€[0,T] [0,M] 

Hence is a relative compact set of Q. Since the continuity of d 

is obvious by the Schauder s fixed point theorem, there exists a 

Men such that d N=N, i.e. N(t) is a solution of equation (5) in 

[0,T]. Furthermore, this solution is unique. In fact, if N (t), 
i 

i=l,2 are two solutions of equation (5)， then 

|N (t)-N ( t ) 卜 々 ’ ( V [ V 。 - V ? ) ] d t 
1 2 

z z 
By 1-e ：̂ z e and Growal 1 ‘ s inequality, we have N =N . 

1 2 

The Lemma is proved. 

Let (3 = [ [ 2 k ( r ) h ( r ) e _ T o M ( P )叫 be the critical fertility 
cr , 

L p J 
1 

rate of females, then when (3 ,入：sO in (4), and by (5) 
cr 0 

Nirf、M 入-Kf(N(p))]dp ^ ( -et、 , 
N (t J =Me 0 0 ^ + o(e ), t ~ > oo. 

The first term in the above is a decreasing function of t, and so 
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lim N(t)=c exists. As Kf(^)>0, V ^ >0, this implies c=0. Hence, we 

t确 
have 

Proposition 1. For any X, p >0, when /3</3 ， the solution of 
0 0 cr 

equation (1) p(r，t) is globally asymptotic stable, i.e. 

l im llp(r, t ) l l= l im N ( t ) = 0 . 

t询 t确 

In the following, we discuss mainly the case in which (3>(3 . In 
cr 

this case,入。>0 in (4). 

If Kf(5)<;\o， for any then by the asymptotic expression 

N(t) = [ M + 。 ( e - 〜 e 々 \ r 飾 ( P ) ) ] ， t … ， 

lim N(t)=c exists. If in addition we assume 

t确 

meas^ r | p^(r) , re [ r^, r^] }->0, 

then M >0, and c=+oo, i.e. 

l im llp(r, t)ll= l im N ( t ) = + c » . ( 7 ) 

t 却 t - ^ 

In general, there is a possibility that lim Kf(^)=+co. In this 

€确 

case, the situation like (7) can not happen. We shall discuss it 

in detail later. For the reason of continuity， we suppose that 

there exists a £ >0 such that 

Kf(?o)=Ao. (8) 

At 
For notational simplicity, we write q(r,t)=e p。(r)， 

At N ’ （ t ) 

N (t)=lle Lp ||，g(t)= 二 、 - A ， t h e n 
q 0 N (t ) 0 

q 
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'p(r,t)=q(r,t)e-灯 > ( P ) ) ， 

m t ) = N ( t ) e - 灯 (9) 
q 

First, we notice the fact that 

lim g(t)=0. (10) 
t 确 

In fact (we 
suppose that p (r)g D(A), and p 之0)， by expression (4) 

r r 

and ^ r we have 
Jr 

1 

fT 
N ‘ (t)= ""[-q'(r’t)-M(r)q(r’t)]dr 
q Jq r 

r r 

=IS \ ( r ) h ( r ) q ( r , t ) d r - f V ( r ) q ( r , t )dr 

、 0 

^ 入 ti、 A t ^ A t , (A -e)t、 
= C e o + ; V e o - C e o + o(e o ) 0 0 0 

. 入 t 丄 . ( A -G)t. 
= 入 e 0 + o (e 0 J 0 

where IIC e一V^一:o咖)^口丨丨• Then (10) follows immediately. 

Following the idea in [5] we consider the omega limit set of 

equation (5). Let 

n(N)H N* 3 t 00 such that N(t N*(n— oo) 
n n ‘ 

来 * 

Taking arbitrary N s n(N), (N may be infinite) then there exists 

t >00 such that 
n lim N(t )=N*. 

n 
n->oo 

* 来 
First , we consider the situation for which N <+oo. If Kf(N 

来 
then there exists a small number c> 0 and a neighborhood of N , 

S (N*), such that kf ( 印 入 - e > 0 provided ^eS (N*). Suppose that 
^̂  0 c 

N(t )eS (N*) for n> N , then there exists a t >N such that g(t)> 
n C G 0 e 
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一e for t之 t Choose N>N such that t 5:t for n̂ ： N then consider 
0 e n o 

the equation 

‘dN(t) 

=[A -Kf(N(t))]N(t)-GN(t), 
a L 0 一 一 一 

N(t )=N(t )， n>N. 
、一 n n 

By ^ ^ = [A -Kf(N(t))]N(t) + g(t)N(t); ^ [ N ( t ) - N ( t ) ] >0; 
UL u at 一 t=t 

n 

[N(t)-N(t) ] I =0, we have N(t)>N(t) in some neighborhood of t , 
- n 

n 

along which t is increasing. We now assert that 

N(t) > N(t), for t> t . (11) 
_ n 

A A 八 

This is because that if there is a t〉t such that N(t)= N(t) but 
n -

A 
N(t) > N(t) for all te{t ,t)， then it will lead to a contradiction 

一 n 

d 
since — [ N ( t ) - N ( t ) ] ‘ •〇， s o (11) holds. On theother hand, N(t) 

at 一 t=t -

satisfies 

N(t)=N(t ) e - < [\re-Kf(^?(P))]dP， t.t . (12) 
_ n n n 

Similar to equation (5), the N( t) satisfying equation (12) is 

uniquely determined. As Kf (N(t ) )< A -c in a neighborhood of t , 
n 0 n 

along which t is increasing, N(t) is a strictly monotonic 

increasing function, if there exists a t* such that 

Kf(N(t*))=A -e, and Kf(N(t))<A -c, for all te ( t , t * ) , then we 
- 0 - 0 n 

must have N(t)=N(t*) for t> t*; if for any t>t ， Kf (N(t) 入一̂：， 
- - n - 0 

* 

then we must have lim N( t )=+oo. In brief, we have lim N( t )>N which 
t - ^ t - ^ 

来 

leads to a contradict ion. Similarly, Kf (N ))>入。 is also 

impossible. Hence we get 

n(N)\{ CO } c 彳引 Kf(口 =；\。卜 （13) 
八 yN 八 八 

Let a=lim N(t), b=lim N(t). If a 关 b, it is apparent that for any 

t->oo t - ^ 
* 八八 来 

N e (a,b), there exists a sequence {t }, t ~>oo such that N(t )=N 
n n n 
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(notice that N(t) is continuous), so there must be an interval 

[a，b], a^tb, b<+oo and satisfies 

[a，b] c n(N)\{oo}. (14) 

Since b - a >0, we can take e >0 and $ 〇 = ( s e e Fig. 1) such 

that 

+c]c(a,b), and then take t > oo such that N(t (this 
u u n n 0 

is possible). By 

N(t) = [M+。（e-et)]/S[Ao-Kf(N(p))]dp=云（七）灯（N(P) ) ]dP 

and lim g(t)=M， we know that 

for t^t . 

° i(t) n 

If n is large enough such that for all t^t 
n 

？0 ？ 吟 ) ’ 
g(t ) 

一 n 

t) 
then N(t)= ？ 巨 - , f o r all t , and so lim N(t)=6 , this is a 

0 "rf > n 、o 
g【t J t确 

n 

contradiction. Thus b-a=0, i.e. 

n(N )={N.}. 0 

^ t Kf 

\ z 

X I I I I i 
/ 丨 i i i i 
0 """a ？ - e i b ^ 

o o 

Fig. 1 

Summari z i ng, we have 

Theorem 1. For any Kf(^) which satisfies condition (2) and p (r)€ 
0 
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D(A)nX, Pq^iO，the limit of the solution to equation (1) (i.e. 

solution of (6)) exists and equals to 

lim p(r’t) = C e - 入 q P - 丁 ( 1 5 ) 

t - ^ 

where O O may be Infinite. 

In the following we want to find necessary conditions for N(t) 

to be bounded. Suppose that 

Tim Kf(?) < A^, (16) 

and take P o ( r ) = C e _V^_V ^ ( P ) d P’ c > 0 such that 『 ( 。 〈 入 。 f o r 

？>llp (r)ll, then the solution N(t)=llp (r) II 丁 ̂ \ r 灯（N(P)) 
0 r 0 

corresponding to p^(r) is a strictly monotonic increasing function 

and lim N(t )=co. So, in order for N(t) to be bounded, it must be 

t->oo 

true that 

Tim Kf(^) > \ . 

If Tim Kf (^) and lim N(t )=oo, then take e>0 and t ^ oo such 

that Kf(N(t ))>入 +e， for this e, there is a t 2:0 such that the 
n 0 0 

corresponding g( t )<c, for all t^t . Suppose that t >t for all 

0 n 0 

n>N, and consider the limiting equations 

厂 dNft) - - -

N(t )=N(t ), n> N. 
、 n n 

Similar to the arguments in ( 1 1 )， w e can get N(t )=N(t) for all 

t^t^. But N(t) is a monotonic decreasing function, it follows that 

N( t ):sN(t t )，which is a contradict ion. Hence N(t) is bounded. 
n 

If lim K f a n d K f (作入 for all sufficiently large 己 then 
々 0 0 

>00 

the boundedness of N( t) can also be deduced； If lim Kf and 
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Kf(印入0 for all sufficiently large then like (16)，N(t) is 

also bounded. 

Summarizing the above, we have 

Proposition 2. A necessary condition forh the solution of (1) to 

be bounded is that 

Tim Kf(?) > 入0. (17) 
专">00 

Furthermore, if Tim Kf(^)>A ， no unbounded solution to (1) exists； 

if Tim Kf(?)=入 but 

€郝 

Kf(?) 2：入0 , for sufficiently large (18) 

or Kf(专） <入〇， for sufficiently large 专， （ 1 9 ) 

then no unbounded solution exists if (18) holds, and unbounded 

solution exist if (19) holds. 

The methods used in the proof of Theorem 1 demonstrate simply 

the stability of non-negative equilibrium state of system (1). 

The conclusions are quite strong and yet no linearization is 

involved. 

Proposition 3. Let €•>〇 be the non-negative equilibrium state of 

system (1) (iff m?。）：入。）’ then when Kf，（、）>0 (or Kf(?) is 

strictly monotonic increasing in a neighborhood of g。）， the system 

(1) is locally asymptotic stable in D(A) a b o u t 。 I f Kf(、）<0, 

then 6 is not stable. 

Proof. We only give the proof for N( t), since (6) tells us that 

this is equivalent to the proof for p(r,t). 
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First, let Kf,(专）<〇，then there is a A>0, such that Kf(^) is 

strictly monotonic decreasing in [？^-A,？q+A] (see Fig.2). The 

state corresponds to ^ is p (r)=C e一入0厂一丄oM(P)dP， where C>〇 is a 
0 0 

八 

constant such that llp^(r) 11=^^. Take p(r)=Cp (r), C<1, such that 

A A 八 

llp(r)丨丨 €(、-A,€o), the total number N(t) corresponding to p(r) 

satisfies 

A 八 A 

Since N(t) is a monotonic function, and Kf (llpll ) >入〇，so N(t) 

monotonically decreases to sup ^^ | K f ( ? ) =入专一 A . But C<1 can be 

八 0 0 

^<llpll 
chosen such that 1-C is small enough. Hence ^ is not stable. 

^ T 「、Kf 
i \、 

X —— 

° 丨 I 
i i i 
； ： ： 疼 

0 ^ - A C ？ +A 
0 0 0 

Fig.2 

If Kf’（€〇）>0， then Kf(^) is monotonic increasing in 

[、-A,、+A]. (see Fig. 3) Choose e>0 such that Kf (作入〇+€： has a 

solution in (€。，、+A). It is not difficult to prove that there 

A A 

exits a neighborhood of ^ such that -A, ̂  +A] and for 
C C 0 0 

A 
any N 

g(t) |<€, V t> t。， 

where t^>0 is independent of N。. By the continuous dependence of 

the solution with respect to initial values, we know that there is 

八 

a neighborhood 0， c O ^ such that for any N € 0 ^ ， the 
c c 0 c 
、o 、o 0 
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八 

corresponding solution -jN(t), t^ t k c (6 -A, ^ +A). Besides, 

0' t 0 0 
八 

the solution ^ of Kf in (专 _A,专 +A) does not belongs to 
C 0 0 0 

A 
0 • For all N^e , consider the limiting equation 
0 《0 

r dNft") - - -

N(t )=N(t ). 
0 0 

— _ 八 
As N(t )<N(t) for all t>t^, and N ( t ) 〜 ， b y comparison, we have 

A 
when t^t . Similarly, we can get ^ and a neighborhood of 

^ o ^ 

？Q such that when N^ belongs to this neighborhood, the 

A 
corresponding solution N ( t . As ^ and ^ depend continuously c c c 

A 
on e, lim ^ =0, lim ^ =0, so, ^ is stable. The asymptotic c e o 

e->o e~x) 

stability can also be deduced by Theorem 1. 

Kft Z Kf 
i 

A +e - 一二一 i 
o / : 

A 
o / 丨 I 丨 

A - I ； 

° z Z 丨 丨 丨 I 

z I I I I ! 
^ ^ ； ； ^ i ^ ^ 

^ -A C C ？ ^ +A 

Fig. 3 

2.3 Oscillatory Properties 

In this section we shall discuss the periodic and oscillation 

problem of system (1). We shall rather give a direct proof than 

rely on Theorem 1， although the periodic problem can be 

demonstrated directly by Theorem 1. 
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Theorem 2. System (1) does not have a non-trivial periodic 

solut ion. 

Proof. Suppose there exists a T>0 such that N(t)=N(t+T), for all 

t^O, then by expression (4) 

M r f 、 力 入 ( -et、八“、 
N【tje 0 0 + o(e )=g(t). 

八 A 八 * 

It is obvious that g(t)=g(t+T), V t>0. But lim g(t)=N , hence 

t却 

g ( t ) = N \ and so N(t )=N、丁 灶（N(P)) ]dP. Thus N(t) is a 

monotonic function and hence N(t )= N* and Kf (N*)=A • So for 
0 

any f(^) that satisfies ⑵， there does not exist non-trivial 

periodic solution for system (1). 

Let us recall the definition in [1] 

Definition. The population system is called oscillatory about its 

positive equilibrium position, if for any lim N(t)=N*>0, and any 

t确 

interval [a, oo) a>0, there is at least one zero point of N(t )-N* in 

[oc, oo). In other words, there exists a sequence t ——>oo (n >oo) such 
n 

that N(t )=N*； if there is at least one lim N(t)=N*>〇， but 
n 

t->oo 

来 

N(t )-N =5̂0 for t sufficiently large, then the population system is 

called non-oscillatory about its positive equilibrium state. 

We proved in chapter 1 that for linear system 

「ap(r’t) . ( . 

- : P o ⑷ ， （20) 

we have 
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Theorem 3. The total population of system (20) oscillates about 

its every positive equilibrium state (note that we must have 

I3=(3 ， i.e. A =0). 
cr 0 

But in contrast, for nonlinear system (1) we have 

Theorem 4. N(t) of the logistic population system (1) is non-

oscillatory about its positive equilibrium state (it must be that 

入o>0, and K f h a s a solution). 

Proof. Take the initial distribution p^(r) (P)dp^ c>0, 

then it is not difficult to prove that the corresponding solution 

N(t)= "V(r,t)dr satisfies 
」0 

N(t)= M 丁 : [ V ™ ( P ) ) ] d P (21) 

where M=Clle:o[入o—Kf (叫)）]dp||. we said previously that for every 

f (• ) satisfying (2), the solution N(t) of equation (21) is a 

monotonic function on [0, oo), and hence lim N( t )=N* exists (it may 

t->oo 

be infinite). Choose C>0 small enough such that 

M <N*= min ^ Kf(^)=A [• (22) 

then the corresponding solution N(t) to (21) belongs to [M,N*] for 

any t2:0, and N(t) is a monotonic increasing function over [0, oo). 

But Since Kf(^) is continuously differentiable, we write its 

来 

Taylor expansion at as 

K f K f ' + V (N*-6,N*), 6>0, (23) 

Hence there are constants <5 , c >0 such that 
0 0 
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^ =Kf,(N*) + o(l)<c , V ？€ (N*-5 ,N*), 

C-N 0 0 

i.e. K f (快入 0+ C o d N * ) for all ( N * ) . Define the function 

八 r N , Ce [0,N -6 ], 

V。。(专一N )’ “ {N*-d^,oo), 

八 

where S <8 such that 0 0 
A 

Kf(?)>0 for all ^>0, 

Kf (0)=0, Kf€C^O,c«), 

K f (印入 0 for [0，N*]. 

Hence, 

Kf(^) > Kf(?), for all [ N * ] . 

Taking M e ( N * - 〜 ， N * ] ， N ( t ) is the solution of (1) corresponding to 
八 八 来 八 来 

Kf(?). Then by N(t), N(t)e (N ) ， w e have 
八 

N(t) ^ N(t), for all t>0. (24) 

. -Kf(N(p))]dp M / - c N(p)dp c N*t . 
But N (t J =Me 0 0 厂 ^=Me o o e o , i.e. 

二 “ 、 / c N(p)dp u c N*t 
N(t)e 0 0 ^ ^=Me o . 

Integrating on both sides, we have 

八 * 

N(t)= < N*， V t^O. (25) 
米 

It follows from (24) that 

11m N(t)=N*, N(t)< N*, for all t^ 0. (26) 

t确 

来 

Thus by definition, N(t) does not oscillate about N . The proof is 

complete. 
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Chapter 3 

Semigroups for Age-Size Dependent Population 

Equations with Spatial Diffusion 

3.1 Introduction 

In the past few years many researchers have contributed to the 

application of semigroup theory to structured population dynamics 

without spatial diffusion. Nice examples can be found in Song et 

al [1], [2], Webb [3], [4], [5], Metz and Diekmann [6], He i J mans 

[ 7 ] ， G r e i n e r [8] and the Guo and Chan [9], among others. On the 

other hand the problem of spatial spread in age dependent 

population dynamics proposed by Gurtin [10] and Gurtin and MacCamy 

[11] has attracted considerable interest. Recent published works 

in this area include Busenberg and lannelli [12]， Kunisch et al 

[13]， Langlais [14] and references therein. Our purpose here is to 

study diffusion models in the semigroup framework. One of the 

advantages of such an approach is to gain information on the 

behaviour of the population by an analysis of the spectrum of the 

infinitesimal generator of the associated semigroup. Furthermore, 

it is shown that the structure of the semigroup for the population 

with diffusion is essentially determined by those of the semigroup 

for the population without diffusion and the Laplacian. To our 

knowledge, not many results along these lines are available 

presently. 

We are interested in the following McKendrick model of 
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age-dependent population moving in a limited smooth domain Q in 

[Rn，and shall be studying dynamics with linear, that is, random 

spatial diffusion processes which are applicable to many 

biological populations, including population of the microorganisms 

such as bacteria and eel Is. 

Let p(r,t,x) be the age distribution of individuals having age 

r^O at time t^O and spatial location x in Q. We assume in this 

paper that r^ is the maximum life expectancy of the 

species. The evolution of p is governed by the following 

differential equation： 

郎 （ r ^ ^ x ) + 郎 ( r ^ ^ x ) =-M(r)p(r，t，x)+KAp(r,t，x)，x€Q, t,r>0, 

p(r，0，x)=Po(r, X) , r ^O , xeQ, 

「r _ 

p(0，t，x)= '"/3(r)p(r, t, x)dr, t>0, xeQ, 

J q 

. P ( r , t , x ) = 0 , r, t>0, (1) 

where jixCr) is the death rate function which satisfies 

「r r^m 
ii{p)dp<co for r<r and "V(p)dp=oo; ⑵ 

」0 m JQ 

則 r ) is the fertility function, bounded nonnegative measurable on 

[0，rj; p^(r,x) is an initial distribution, x)>0； K is a 

positive constant； A denotes the Laplace operator in 

This chapter is organized as follows. In section 3.2 the 

infinitesimal generator A of the population operator with 

diffusion is identified. The resolvent operator R(A,A) is 

constructed and is shown to be compact. The dominant eigenvalue is 

thus determined. In section 3.3 the semigroup T(t) associated with 
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A is expressed in terms of the eigenelements of the Laplacian. An 

asymptotic expression for the solution is obtained. In section 3.4 

we consider the case when an additional internal variable in 

characterizing the population is introduced, i.e. the age-size 

dependent population model. Results in section 3.2 and 3.3 are 

extended to such a model. Finally in section 3.5 we study a 

legist ic mode1 with diffusion. A nonlinear semigroup is 

constructed to describe the evolution of the population. Existence 

and uniqueness of global solution are proved and the large time 

behaviour of solution is also investigated. 

3.2. Properties of the Infinitesimal Generator 

Introducing the state space X=L^((0,r )xQ) with the usual norm 
m 

and defining the operator A: X——>X as follows; 

A 0 ( r , x ) = -州 g广) - f i ( r ) 0 ( r , x ) + K A 0 ( r , x ) , V 0 e D U ) ， 

「r 
D U ) = y ( r , x ) | 0， A 0 € X， 0 ( r’ x ) | =0，0(0, x)= x)dr (3) 

dSZ J q 

we can write equation (1) as an evolutionary equation on the state 

space X: 

^ p(r，0，x)=po(r，x). (4) 

In the following we shall denote by (A, 0 ) the eigenvalues 

i i^O 

and eigenfunctions of the Dirichlet problem in the smooth domain Q 

of rD， namely: 

‘ - K A 0 . (x)=A.0.(X)， x€ Q, 

( 5 ) 
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、 2 
(f>, (x)dx=l, i>0； 0 (x)>0 in Q. 

We also assume that 0<A <A :<A ：<.... 
0 1 2 

Next, we denote by A the usual population operator without 

diffusion defined in L^(0,r ) (see [2])： 
m 

A0(r)=- ^ ^ ^ V 0€D(A)， 

2 「r 
D ( A ) = ^ 0 ( r ) I 0 ’ A(f>eL ( 0 , r ) ’ 0 ( 0 ) = ' " | 3 ( r ) 0 ( r ) d r k ( 6 ) 

m Jo 
A 

and 仏 } 如 the eigenvalues of A, i.e. the solution of following 

equation 

l - f S ( r ) e - A r -〈 " ( P ) d P d r = 0’ （7) 

Jq 

A 
and arrange A^ in the following way： 

八 A A 
A > Fte入 > ReA . . . 0 1 2 

We solve the following equation 

(入-幻0 = i/j, V «//€ X . ( 8 ) 

A 
If for any i, J>0, A+A , then define 

i j 

00 
0 , / ( r , x ) = 2 R ( A + A . , A ) < . / / ( r , x ) , 0 ( x ) > 0 ( x ) , ( 9 ) 

^ i=o 1 i 

% 

where <0(r,x),<^. (x)>= (x)dx, R(A, A ) = ( A - A ) " \ the 

1 Jn 1 

resolvent of A. Since A is the infinitesimal generator of a 

bounded strongly continuous semigroup, so there exist constants M, 

w>0 such that 

IIR(入’ A)ll < - 5 - ^ ， f o r Re;\>w. ( 1 0 ) 

Recall that A.^oo as i^oo and suppose that R e ( 入 w h e n i>N, 

some positive integer, we can see that 

00 

E I I R ( A + A ’ A ) < 0 ( r , x ) ’ 0 ( x ) > l l ^ 
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N _ 

^ E IIRU+X，A)<«//(r’x),0 (x)>l|2 
i=o ‘ i 

+ [ R e U + ? ) - J ^ 丨丨〈糾 r,x)，0i(x)>l|2 
L i i =N+1 

N r -,2 

^ E IIR(A+A. ,A)<./i(r,x),0. (x)>ll^+ 只㊀(入+二）一⑴丨丨训？〈⑴， 
i =0 L i 

SO 〜(r , x ) € X is well defined. Furthermore, for any n>0 

n 

(A-A) 2 R(A+A. , A)<i//(r,x),0. (x)>0. (x) 
i =0 1 1 1 

n 

= y <0(r, x), <p (x)>0 ( x ) - ^ ( r , x) in X as n - ^ . 
i i 

i =0 

Since A and A are both closed operators on X, so is A , Hence 

(入-A )〜=(// 

i.e. (r, X) is a solution of (8). 

On the other hand, it can be shown that cp is the unique 

solution of (8), and thus 入ep(A)， the resolvent set of A and 

00 

R(A, A)(//= Y. ，A)<i//(r’x)，0. (x)>0. (x). (11) 
i =0 1 1 1 

A 

If there are some i, j such that 入 = 入 ， t h e n 
i j 

0 ( r ， x ) = e 一 （ 入 丁 ( X ) ( 1 2 ) 
i i 

satisfies ( 入 一 = 0 , i . e .入 e cr(A)=cr (A), the point spectrum of A. 
i P 

Furthermore, if (入-A)0=0， then expanding the known initial 

function 0(0,x) as 
00 

0(0,x)= Y. oc.(t>. (x), in L^iQ) 
i =0 1 1 

then 

.f 、 ^ -(A+A jr-j'^jLiCpjdp , ( 、 
0(r, x)= Y. a.e i cT 产 (x), 

i =0 1 1 
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and from the condition 

「r 

0(0,x)= '"/3(r)0(r,x)dr 

J q 

we have for each i 

either a =0 or 
1 」0 

/S 

In particular, for 入。=入o一入o, which is the dominant eigenvalue of 

A, (A-A)0=O has only one independent linear solution, which is 
A 

(r，x)=e-入0厂 々 ( 口 )〜（X). (13) 

so 入0 is of geometric multiplicity one. 

For every n>0, define the operator 

n 

R^0(r,x)= Y. R(A+A. , A)<i//(r,x),0. (x)>0. (x), V ipe X. 

n i =0 1 1 1 

If R e ( 入 ) >0) when i>n then 
i 

IIR(A, A)i//-R I//II 
n 

^ ^ [ R e ( A + ? ) - J " ( r ， x ) ， V x ) > " 2 

i=n+lL i J 

I" 1 2 
「 M 1 2 

s D 、 ^ lli/zH , 
Re (入+入）-w 丫 

L n 

so lim IIR(A, A)-R 11=0. Since for every i, R(入+入，A) is compact on 
\ n i 

2 

L (0, r^), so is R^ on X. Hence it follows that R(入，幻 is compact 

on X for every 入€ p(A). 

Take (pe D(A), one has 

<A</>(r,x),0(r,x)> 
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、 d(i){r X) - � 2 
= ^ 0 ( r , x ) d r d x - /Lt(r) \(pir, x) | drdx 

(0, r )XQ J (0’ r )xQ 
m m 

+K A0(r,x)0(r,x)drdx 

(0, r )xQ 
m 

4 柳 l ^ d x 
J n乙 

1 r fr^tn 

'"/3(r)0(r, x)dr dx 

JfiLJo 」 

』 r r 1 r r " i 

1 , rn 2 广 2 

^ ^ m則r) dr "V(r，x) dr dx 
JfiLJo J LJq -

"/3(r)"2||(/>(r,x)"2， 

i.e. A is a m-dissipative operator on X. Since X is a Hilbert 

space, so D(A) =X. Thus from Pazy [15] we have 

Theorem 1. 

(1). T h e operator A defined in (3) generates a strongly 

continuous semigroup on X; 

(2). For every 入€ p(A), R(入，A) given by (9) is a compact 

operator； 

(3). cr(A) = 0- (A) -A 广 ； 
P i j 'i,j=o 

⑷ . A has a real dominant eigenvalue 入 • ， i . e . is greater than 

any real parts of the eigenvalues of A； 

(5).入0 is a simple eigenvalue of A. 

Proof. Parts (1)-(4) have been proved in the above. For part (4), 

it suffices to note that 
CO 

RCA,A) =R(A+A , A)<- (x)>0 (x)+ ^ R(A+A.，A)<.，0. (x)>0. (x) 

i =1 1 1 1 

and 
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J。 

V L^(0,r ), (14) 
m 

where 

F(入) = l - f S ( r ) e -入 r-《"(P)dPdr’ 
J q 

,、、r^m 、「「r _A(r-s)-J*rfx(p)dp"、，_， 
g (入）= /3(r) e s^ ^ K0(s)ds dr, 

识 J 0 LJ 0 」 

so 入=入0 is a pole of order one of R(入，A). The conclusion (5) thus 

follows from the closeness of A. 

3.3 Properties of the Semigroup 

In this section, we shall discuss the C^ semigroup T(t) 

generated by the operator A. For every <pe X， d e f i n e the operators 

八 

」T(t)，t2:0[> as follows： 

八 00 — 

T(t)0(r，x)= I (x)>0. (x) (15) 

i =0 
At 

where e is the semigroup generated by A. 

八 

It is obvious that T( t) is a well defined bounded linear 

n 

operator on X for every t^O and for all 0 (r，x)= Y q (r)0 (x), 
n，q . n j j j=0 

2 
q (r)€ L (0,r )， J=0，l,...n， n>0 we can directly verify that 
J m 

A A 八 

T(t+s)0 (r,x)=T(t)T(s) (p (r,x), V t,s^O. 
n,q n,q 

八 A A 

Since 入中 (r,x) is dense in X， so T(t+s)=T(t )T(s) for all t, s^O. 
n,q • 

Moreover, 

A 

lim T(t)0 = 0 
n, q n,q 

t 
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八 

and since IIT( t)丨丨她(⑴一 V 七，so 

A 

lim T(t)0 = 0 for all X. 
t^o 

A 

This shows that T(t) is also a C^ semigroup on X. A simple 

calculation shows that 

/•N 

lim (p = A0 
t n,q n,q 

A 

for all (p ， h e n c e T(t)=T(t) for all t>0. 
n,q 

Take (p{r, x)=q{r)(p (x), q(r)€ r ), then 

0 m 

T ( t ) 0 ( r , x ) = e ~ V [ e ' ^ ^ q ( r ) ] 0 (x) 

At 

T( t) is not compact when t<r， since e is not so when t<r . On 
m m 

At 2 
the other hand, when t^r ， e is a compact operator on L (0,r ). 

m m 
Let 

n At - A t 
T (t)(r,x)= Y. e e 〜[<0(r,x)，(^ (x)>0 (x) 
n i i 

i 二 0 

V (pe X, n^O, t>r ， 

m 

then T (t) is a compact operator on X for every n^O, t>r and 
n m 

A 0 0 — 

ll[T(t)-Tn(t)]0l|2 = I lleAte—入 it<0，0i>||2 

i二n+l 1 

^ [ e 一 入 n t M e 0 t ] 2 _ 2 , V 0€ X 

SO IIT(t)-T (t)ll ^ M e (⑴一 V t， f o r all n>0, t^r and 
n m 

A 

lim IIT(t)-T(t)ll =〇. 
n->oo 

We therefore have proved the following 

Theorem 2. The C。 semigroup T(t) on X generated by operator A is 

A 

compact when t^r ， but not for t<r > and T(t)=T(t) given by (15). 
m m 
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In the spirit of Yu. et al [16], we have the following 

T h e o r e m 3. 

(1). For every X， there exists a unique solution p(r，t，x) to 

equation (4), which is given by 

p(r,t’x)=T(t)Po(r,x)€ C(0,co;X)； (17) 

(2). If p^e D(A), then p(r, t, x)=T(t )p^(r, x)€ C^(0,co;X)； 

(3). p(r,t,x) has the following asymptotic expression 

八 

f , 、 , 、 一 入 r-J u(p)dp A t 」 ， 、 ，（入-e)t、 ，…、 
p(r,t，x)=C (x)e 0 ^o^ ^ ^e o 0 (x) + o(e o ) (18 

p 0 
o 

八 A 

where 入 q=入 q 一入 q is the dominant eigenvalue of A, e is a small 

positive number such that cr(A)rvi入 入 1^=0, and 
' 0 0 ' 

r r A r 

/3(r) e 0 s"̂  r<p ( s , x ) , 0 (s)>ds dr 

J 0 LJ 0 0 0 _ 
C = (19) 

0 「m 、-A r-X^/Li(p)dp , 
r/3(r)e o q产卜 ^dr 

」0 

⑷ . T ( t) is a positive semigroup. 

Proof. We only need to prove ( 4 )， s i n c e the other parts can be 

proved along the lines in [16]. Notice that T ( t ) = 6 〜 隐 ， h e r e 

eKAt is the positive semigroup generated by KA in . So the 
At 

posit iveness of T(t) follows by that of e . The proof is thus 

completed. 

3. 4. Dynamics with Age-Size Structures 

It has been recognized that age structure alone is not 

adequate to explain the population dynamics of some species (see 

[5], [6]， [17], [18]). The size of individuals could also be used 

to distinguish cohorts. In principle there are many ways to 
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differentiate individuals in addition to age, such as body size 

and dietary requirements or some other physiological variables and 

behavioural parameters. For the sake of simplicity and the reason 

of similarity of mathematical treatment we assume here that only 

one internal variable is involved. Meanwhile, we consider the 

velocity of internal variable to be constant. Note that this 

assumption is not restrictive since in [5] it was pointed out that 

the problem in which the growth of an internal variable does not 

increase at the same rate as age can be converted to the constant 

velocity case. Thus we consider the following population model 

• ¥ 、 ” ， g ) + + ¥ r 々 x ’ g ) = _ * ) p (「t， x’g ) 

+KAp(r，t，X, g)， 

p(r，0,x,g)=po(r，x，g)， 

p(0，t, X，g)= ""/3(r)p(r，t，X，g)dr, 

pb 

p(r,t,x,0)= h(g)p(r,t,x,g)dg, 
J〇 

(20) 

where g is the internal variable (e.g. size), The other 

parameters are just like those of equation (1). h(g), a 

nonnegat ive bounded measurable function, is the reproduction rate. 

Note. Here we assume that the death rate function jj. (r,g) =jLx(r) is 
d 

independent o f the internal variable g. For the case of 

fJL (r, g)=/i(r )+/j. (g), if the corresponding state is denoted by 
d s 

p(r，t，x，g)， then by making the following transformation 

p(r，t’x,g)=/>s(P)dP5(r，t，x，g)， 
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it can be verified directly that p(r.t,x,g) satisfies (20) with 

h(g) changed to and p^(r,x,g) to 

p。(r’x,g)e-T>s(P)dP, 

We consider the equation (20) in the state space X = (0,r ) 
m 

xQx(0,b)), and define the operator d： X-^X as follows： 

V 0 € Bid) 
r 

D(^)=^0(r,x,g) I 0，d<pe X, 0(O，x，g)= '"/BCrj^Cr, x, g)dr 

J q 

b 

0(r，x,O)= h(g)0(r，x，g)dg，0L =0}-. (21) 
J q ^ ^ 

With the operator d, (20) can be written as an evolutionary 
〜 

equation on X 

、 ( r ’ : ; x ， g ) 軌 t,x’g), 

^ p(r，0’x，g)=Po(r，x’g). (22) 

Consider the operators A given by (3) and B, mapping L^(0, B) 

into itself as follows 

V (Pe D(B) 

2 「b 
D(B)=^0(g) I 0，B0€ L/(0，b),(/)(0)= h(g)0(g)dg}^ (23) 

」0 

then define the operators T (t) ： X-^X for all t^O 
g 

T (t)0(r’x，g)=eBte針0(r’x，g)=e说teBt0(r，x，g)， y ĉ e X. (24) 
g 
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It is readily seen that T (t) is a strongly continuous 
g 

semigroup of linear bounded operators on X and 

T (t)-I 

lim ——0(r,x’g)=^(r’x’g)’ V D U ) . (25) 
t->o 

If is a closed operator, then (25) implies that the operator d 

is the infinitesimal generator of T (t). In order to demonstrate 
g 

the closeness of d define the operator C on (0,r )x(0,b)) as 
m 

follows 

V 0 . D(C) 

• 2 广r 
D(C)=^0(r,g) I 0，C0€ L ((O,r^)x(O,b)),0(O,g)= g)dr, 

m JQ 

「b 
0(r，O)= h(g)0(r，g)dg卜 (26) 

Solving the equation 

U-C)0(r，g)=i//(r’g)， V ipe L^((0,r )x(0，b))，AgC, (27) 
m 

i.e. 

‘ + =-A0(r，g)-M(r)0(r，g)+例r，g), 

pb 

, 0 ( r , O ) = h(g)0(r,g)dg, 
J q 

「r 
0(0,g)= "'^(r)0(r,g)dr, (28) 

L 」0 

so that 

0 ( r , g ) = e - A W r , O ) + f V A ( g - s ) e A ( g - s V ( r ’ s M s . (29) 

」0 

A necessary and sufficient condition for the equation (29) to have 

solution for all i//€L^( (0,r )x(0,b)) is that 
m 

I - f (30) 
L 」 0 
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exists in L^(0,r ). In this case Aep(C) and 

m 厂 

R(A,C)^(r,g)= e'^^e^S fl-fh(g)e'^^e^^dgl‘‘• 

L Jq J 

•、bh( g ) d g [ V入 ( g - s ) e A ( g - s、 ( 厂 s)ds 

+ [ V A ( g - s ) e A ( g - s )例 r’s ) d s (31) 

J q 

It is obvious that when Re入 is large enough then 入€ p(C), so C is 

a closed operator on (0,r )x(0，b)). A simple calculation shows 
m 

that C is the infinitesimal generator of C^ semigroup e ^ e 肌 on 

(0，r )x(0,b)). Furthermore, since e^^, e^^ are compact for 
m 

2 2 Af- TD4-
t>max(r , b) on L (0,r ) and L (0,b), respectively, so e e is 

m m 
compact for t^max(r ， b) on (0,r )x(0，b)). Hence R(A,C) is 

m m 

compact for all 入 €p(C). Denoting by /li. , i = 0 , l ， . . . ， t h e eigenvalues 

of C then similar arguments to those of previous parts show that 

if such that A+A.^^^fx. for all i, j>0 then X^pid). This shows 
� 

that is a closed operator on X. 

It is readily seen that if for some i, J2:0, here 

I A I 

> J-0 \ are the eigenvalues of B, i.e. the solution of following 

l-「h(g)e一〒dg=0， j=0，l’... (32) 

then Ae p(C) and the corresponding eigenfunction is 

,( 、 -jd g -A r-/^jLi(p)dp ,qq、 
.(r，g)=e 卜j^e i 。 0 〜 卜 . (33) 

ij 

We have the following results on large time behaviour of system 

(20) 

� 
T h e o r e m 5. For any x,g)e X， p^^O, the solution p(r,t，x，g) of 
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equation (20) has the following asymptotic expression 

= C o ( x ) e - "。 g e - V ^ - : > ( P ) d P e ( V ^ \ )〜。（ x ) +。（ e (入。 + 1。七） 

as t - ^ 00， (34) 

where 

「b 「r^ -a (s-s) 1 
h(g) e Mo、g ^^D(x,s)ds dg 

V J 

Co(x)= - 5 — — ^ — — ： (35) 

— g h ( g ) e ~ V d g 
J q 

、 “ 則 r ) 「 f W r - s ) - 0 ^ ( P ) d P < p (s,x,g),0 (s)>dsldr 
m 、」0 LJQ 0 0 」 
D(x,g)= 

八 r 

r m o ,、一入厂一 J " JLl(p)dp^ 

」0 

(36) 

Bt 

Proof. By (18) and the asymptotic expression of semigroup e on 

2 
L (0,r ) the proof can readily be constructed. 

m 
3.5. Logistic Model with Diffusion 

In the following, we shall consider a nonlinear model with a 

logistic term, namely, 

‘ M l ^ ) = - ^ ( p ) p ( p , t , x ) + K A p ( r , t , x ) - f ( N ( t ) ) p ( r , t , x ) , 

p(r,0,x)=p^(r,x), 

p(r，t，x)= "'/3(r)p(r, t,x)dr, (37) 

• p(r, t,x)I召Q =0, r, t>0, 

r r^m 

where N(t)= p(r，t,x)drdx is the total population per unit 
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volume at time t and location x in Q. The logistic term f(^) is a 

nonnegative function satisfying 

f(0)=0, f(?)> 0 for all ？>0, 

f(?) is continuously differentiable. (38) 

Let A be the operator defined by (6), P。 be the eigenprojection 

八 

of A corresponding to then we have (see [14]) 

At At_ ^ , (A -e )t, , , 、 
e = e Pq + O(e o 0' )， T^oo, (39) 

in the operator norm of L^(0, r ) ， w h e r e e is any number such that 
m 0 

A A 

cr(A)n 仏 入一e <ReA<A \=0. 
0 0 0 ‘ 

Now, take p (r’x)eD(A), p >0, then Hp (r,x)ll 2 is a 
O 0 0 L (0, R ) 

m 

continuous function of x. By (39) 

e V ( r , x ) = q ( x ) e - 入 义 o t +。（6(\^8)七） (40) 
0 A 

0 

holds uniformly for all xeQ in the sense of r ) norm, where 
m 

P R R 八 R 

「m Qfn、 「 厂 入 少 M ( P ) d p ( . , " 
pCrJ e 0 S*̂  ^ ^p (s,x)ds dr 

Jq LJQ 0 」 

C = F ； (41) 

。 r m r m r ) e - \ ) r -、 W P ) d P c i r 

」0 

Integrating with respect to r from 0 to r on both sides of 
M 

(40), we have 

Y> 八 A 

‘ ( r , x ) d r =C C; ( x ) e V + o(e(入。一^)^), (42) 

A 

uniformly for xeQ, and where C =11 e一入0广一:0厂(口)廿口|| . 
0 L(0,R ) 

M 

From [13]， it is known that KA generates an analytic semigroup 

in the space 

Y={(p{x) |0(x)€C(n), (43) 
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「r̂m At 
Since p^eDCA), so ""e x)dr€Y for all t之0， and hence we have 

N(t,x)=C ( x ) e V + 。 （ e ( \ ) — ( 4 4 ) 
0 

where e ,入 。 a r e similarly defined in (18) and 

C^(x)=C^C (x)0o(x) (45) 
Pq 

- r^m At 

For any fixed xeQ, N(t，x)= "" e p (r, x) dr is a continuous 

A KAt 
function of t and N(t,x)€Y for any fixed t, considering e as an 

analytic semigroup in the space Y, it is clear that N(t，x) is a 

continuous function of t. 

Lemma 1. For any x)€D(A), p^^O, p(r，t，x) is the solution of 

t for any fixed x in fi of the following nonlinear equation 

N ( t , x ) = l l e % (r,x)ll ( 肪 ） 
0 L ( 0，R ) 

m 

and in this case 

p ( r ， t ’ x ) = e 紅 P o ( r ’ x ) e - 丁 ( 4 7 ) 

Proof. This can be verified directly. 

The following propositions can be proved using an approach 

similar to that of Chapter 2. 

Proposition 1. For any fixed x€Q, there exists a unique 

nonnegative continuous solution to (46). 

By proposition 1 and lemma 1， we can associate a nonlinear 

semigroup 亍（t) on p =、r， x ) 10€X， J- as follows: 

〒b、 f 、 針 r 、- / f ( N ( p ) ) d p . 
T(t)p^(r,x) =e p^ (r,X)e 0 (48) 
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for all p^e P, t>0, where N(t,x) is determined by (46). 

Theorem 4. Under the hypothesis of (38), for any fixed x€Q, we 

have 

lim N(t,x)=N*(x), (49) 
t->00 

lim p(r’t’x)=Co(x)e-又or-T>(P)dP， (50) 

t - ^ 

来 

where N w, w(A^) f ( 作 入 • 卜 

Proposition 2. For every x€ a necessary condition for the 

solution of (37) to be bounded is that 

n ^ f ( 快入 0 . ( 5 1 ) 

Furthermore, if Tlmf(^)>A then no bounded solution to (37) 

€ 确 

exists； if T l i f (作入 but 

€ 确 

之入〇， for sufficiently large 专， （52) 

or f(专）<入0， for sufficiently large (53) 

then no unbounded solution exists, if (52) holds； and unbounded 

solution exists if (53) holds. 

Corollary 1. If f(^) is increasing and lim f(^)=co, then for 

every xeQ 

lim N(t,x)=? , (54) 
t->CO 

1 . , 、r^ 一入！“一/ u(p)dp 
lim p(r, t, x)=C e o o ^ ^ ^, (55) 

t 确 
where 专〇 is the unique solution of f(€)=;v〇. 
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Chapter 4 

Semi-Discrete Population Equations with Time Delay 

4.1 Introduction 

In this chapter, we are concerned with the evolution of the 

population of a relative stationary society. The population 

density p(r，t) is governed by the following partial differential 

equation with a nonlinear logistic term and time delay 

咖 ) p ( r， t ) -Kf(N(t))p(r,t), r，t>0， 

- p ( r , G ) = p ^ ( r , e ) , 0<r<r ， -T<e<0, 
0 m 

.p(r’0)=3 k(r)h(r)p(r，t-T)dr, t>0, (1) 

Jp 
1 

where r is the age; t is the time; T is the time delay； 0<r<m+L, 

t-0, where m+1 is the maximum age ever attained by individuals of 

the population. Assume that the specific fertility rate of females 

is a constant the female sex ratio k(r) and fertility pattern 

are independent of time; h(r) satisfies 

h(r)dr=l, 
Jr 

1 

where [r r ] denotes the fecundity period of females; the 
丄 ^ 

relative mortality rate fi(r) is a function that depends on age 

only and satisfies 
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「r r^m 
fi(p)dp <+00, lim一 V(p)dp=+oo; 

0 r->r~ J 〇 
m 

the constant K is the environment parameter; p^(r, 9) is the 

initial density; N(t)= ""pCr, t)dr is the total population, f (N(t)) 

」0 

is called the logistic term and f(^) satisfies 

‘f(0)=0； f(?)>0, V 5>0; 

L f(?) continuously differentiable. (2) 

If K=〇，(i.e. independent of the habitat) and t=0 (neglecting the 

effect of time delay) then equation (1) is the well-known 

age-dependent linear model of McKendrick discussed in [2]. 

pi + l 
Let X.(t) = p(r,t)dr, i=0，l，2，...m be the number of 

i 

individuals whose age is of i full years but not exceed i + 1, so 

that x^(t) is the number of infants whose age is less than one 

full year. 

Discretizing equation (1) with respect to age r but keeping 

time t unchanged, we have 

x.(t)=-(l+T7.)x.(t)+x. (t)-Kf(N(t))x (t), i = l,2, . . .m, (3) 
1 1 1 1-1 i 

pi + l 

where • |Li(r)p(r, t )dr=T7.x. (t). Similarly we discretize the 

boundary condition of (1) yielding 
r 
2 

X o ( t ) = (l_i^oo)3 2 k . h x . ( t - T ) , t > 0 , (4) 

1 

where is the infanr death rate. For notationalsimplicity we 

s e t h = 0 f o r i 茫 [ r ， r ]. 
i 1 2 

T m 
Let x(t) = (x (t), . . .X (t))， N(t)= J] X (t), b ={1-11 )k h， 

1 m ^ i i "̂ 00 i i 
i =1 
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i=0, 1，…m， 

厂 一 （ 1 + 刀 ) 0 ... 0 0 . . b b . . . b . 

1 - d + T ] ) 1 2 m 

A= • . 2 . , B= 0 0 • • • 0 ⑶ 

• . . - ( l + T ? ) 

^ 〇 • . im一 1 1 + 刀 ） j L 〇 〇 . . . 〇 J 
m 

then equation (3) can be written as 

‘ x ( t ) = A x ( t ) +阳 x ( t - T ) - K f ( N ( t ) ) x ( t ) , t>0, 

_ x ( G ) = x ^ ( e ) , -T ^ G < 0 . (6) 

4.2 Linear Semi-Discrete Population Equation with Time Delay 

Letting K=0 in equation (6) we get the linear semi-discrete 

population equation with time delay 

‘ x ( t ) = A x ( t ) + ^ B x ( t - T ) , t>0, 

x ( 0 ) = x ( e ) , -T < G < 0 . (7) 
^ o V ' / 

We introduce the state space Y=C( [-x, 0] ； r"") . It is well-known 

that (cf. [6]) there exists a unique solution to equation (7) for 

every Y such that x(t+e)€ Y for all t^O. The solution can 

be obtained by the following iterative process： 

—x(t)=e^^x (0) + � t e A ( t - s ) _ (s-T)ds， 0<t<T, 
0 JQ 0 

At p^ Aft-sl 
. x ( t ) = e Xo(nT) + e ' 卿 ( s - T ) d s , nT< t< (n+ l )T , 

nx 

n = l ， 2 ， — — （ 8 ) 

At 

It can easily be shown that e is a nonnegat ive matrix for all 

t^O, so x(t)>0 provided x^(G)>0. Let 

r X (t+e), for t+e< 0, 
r j n / I \ 一 J 0 

\ x(t+e), for t+0)> 0 . ( 9 ) 
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where x(t), t>0 are defined by (8). The following theorem is 

obvious 

Theorem 1. T(t) is a strongly continuous semigroup on Y and is 

compact for all t^x but not for t<T. The infinitesimal generator A 

of T(t) is given by 

r ( G ) , f o r - T < G ^ O , 

Ax(e)=J 
L AX(0)+/3BX(-T), for 6=0, 

D(A)=^x(e) I X， Ax€ Y}. (10) 

With T(t) and A, we can write equation (7) as an evolutionary 

equation on Y 

严 x(t+e)=Ax(t+e), t>o, 

_ x(e)=x^(e), -T<e<o. (ii) 

Corollary 1. (1). For any Y, x( t+G )=T( t (G )€ C([0,oo)； Y)； 

(2). when D(A) then x( t+G)=T( t )x^(e)G C^ ([ 0, oo) ； Y). 

We now consider the spectrum of the operator A. First, if 

(A-A)x(e)=0, x(e)€Y, x(G);t 0,入€(C， 

then 

，X⑷=x(0)e入e, 

• (A+阳e一入T)x(0)=入x(0). (12) 

So 

A(入)=det(入-A-阳e一入T)=〇 

and hence 

m 「 m m 
A(A)= J] (A+1+t)^)- I b. 17 ( 入 + 1 + T K ) /3e一入T. (13) 

k = l «-i=l ij = i+l J -

Let 
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(l+7)i ) (1+7)2). • • ( 1 + V 

〜 广 b + b i l + T ) ) + . . .+b (1+T) ). . . (1+r/ )• (14) 
m m-1 m 1 2 m 

Lemma 1. (1). When (3=^ , 0 is a simple root of A(A)=0； 
cr 

(2). when ， A ( 入 ） h a s only one positive root 入 which is 
cr 0 

simple, and for all other root A, ReA<A^； 

(3). when every root of A (入）has a negative real part; 

(4). when / 3 = 〜 , a l l nonzero roots of A(A) have negative real 

parts. 

Proof. (1). Since f3=(3 ， it is obvious that 0 is a root of A(A) 
cr 

by [5], and is a simple root of A (A) 
0 

m p m m 

A Q ( 入 ) = n ( 入 一 s b. n (入+1+刀.）, 
k = l H = 1 j = i +1 J -

Notice that A'(0)=A^(0)^0, so 0 is a simple root of A(A)=0. 

(2). Let 0<I3<(3 ， 入 b e a root of A ( 入 ） t h e n 
cr 

、T )ix+v ). . . ix+v ) 
/3e = 1 2 m 

b +b~~^ {X+v ) + . . .+b iX+v ). . . (A+i^ ) 

m m-1 m 1 2 m 

， k = l , 2，... m . ( 1 5 ) 
k k 

Let 入 + ^ ^ 二 口 让 ㊀ 丄 " ^ 、 V " … 2 + < ^ 2 ， W e can assume without 

lost of generality that (r>0 (since if A(A)=0 then A(A)=0), then 

/3e 一入 1 
K ^ -1 -1 -1 -i(0 +(p +.. .6 ) , -1 -id)， 
b p p . . . p e m +. . . +b p e 中1 

m l 2 m 1厂1 

and taking the real part, one has 

o 一 MT 1 

pe cos(rT= — — 
一 1 一 1 一 1 - 1 • 

b p p ...p cos(0 +. . . 0 ) + . . . +b p COS0 
m l 2 m 1 2 "̂ m 广 1 

If M>0 or /i=0, (r>0 (fi=(r=0 is impossible), then it follows that 
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(Be 广 costrr > . =R 
, 一 1 一 1 一 1 L 一 1 cr 
b p p ... p +...+b p 
m 1 「2 m 

which leads to a contradiction. Hence fi<0, i.e. ReA<0. 

Furthermore, when (3=13 , if A(A)=0 has a pure imaginary root, say 
c r* 

icr ( O O ) , then 

coscrr > >R ’ p = / p 
, ^ -1 -1 -1 丄 , - 1 cr "̂ k k 
b p p ... p +...+b p 
m「l 「2 「m 广 1 

which also leads to a contradiction. So (r=0, and conclusion (4) 

follows. 

(3). When I3>(3 ， since A[0)=u v . . .v il-(B(S and A(入）^oo 
cr 1 2 m cr 

as A - ^ along the real axis, so A(A)=0 must have a positive root 

入 Moreover, A ( 入 ） = ( 入) ( 入)...(入)[1— 玲6一 入1 ( 匕 （ （ 入 + 

u 1 2 m 1 1 
一 1 一 1 一 1 

b iX+u ) ( 入 . . . ( 入 + 1 ； ) ) ] is a strictly monotonic function 
m 1 2 m ^ 

for A>0, SO 入 is unique. Now, A’（入〇)=•;(入o)e一入cT̂ +g，（入〇)（1-e一入qT) • 

b (入〇)e where 

m 

g U ) = n U+i^, ) ， b U ) = / 3 [ b +b ix+v ) + ...+b ix+u )...(入+17 )] 
k^l k m m-1 m 1 2 m 

SO that A，（入〇)〉• and hence X^ is a simple root of A(A)=0. Let 

入=fx+i(r，入实入0, be another root of A U ) = 0 , let 

X+v =p e^^k, p O<0 

k K k k k 

then 

o -fXT 1 
pe coscrr = — 

V l ' V - . .Pm-lcOS( 01 + 02+. . + . . . .biPi — lcOS^i 

This is a contradiction. So /lK入，i.e. ReAfA . The proof is 
0 0 

complete. 

Take (/>, ipe Y, we solve the equation 
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(A-A)0=0. 

One has 

© 

J q 

(入-A-昨-入、)(pi0)=ip{0) +/3e一入"̂ B fe'^^ip(s)ds=g ,e 1R"\ 

Js 中 

so if A(A)^0 then A€p(A) and 

0 

^ J q 

By (14)， we see that when (3邦，入 is a pole of order one of 
cr 0 

R(入.A), and hence A^ is a simple eigenvalue of the operator A. 

Since T(t) is compact for t>T, the spectral mapping principle can 

be used to yield 

Proposition 1. (1) when ’ the operator A has only one 
cr 

dominant nonnegative eigenvalue 入 w h i c h is algebraic simple； 

(2). there is only a finite number of eigenvalues of A in every 

finite strip parallel to the imaginary axis； 

(3). cr(A)=(r^(A) consists of all the eigenvalues of A. 

Let 13绅er，『A be the eigenprojection corresponding to 入 t h e n 

f o r a n y X(G)€Y 

P. x(e)= lim (A-A )R(A,A)x(0) 
A 、 、 0 

0 入•入 0 

^ A G , 
=C^e 0 ， (17) 

where C = lim (A-A ) . 
X 、 、 0 X 

入">入 0 
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By [7], we have 

Theorem 2. When 玲 之 t h e solution to equation (7) has the 

following asymptotic form 

x(t+e)=T(t)x^(0)=C^ e V e ^ o ^ +。（e(\)-e)t), t - ^ , (18) 

where e>0 is any number such that cr(A)n^A X H a , 入 is 
0 0 ' 0 

the dominant eigenvalue of A; when 0<fB<(B ， 
cr 

-at 

H x ( t + e ) _ e , for all t^O (19) 

where a>0 is any number such that sup^ReA | A€(r(A) J'<-a. 

Note. For 0<^</3 ， there still exists a maximal real root, also 

cr ‘ 

denoted by 入 〇 ， s u c h that any other root A of A(A)=0 satisfies 

Re 入 <入0. Indeed this follows from the fact that 

MO)=v V . .V (1-/3^ )>0 and M-v )<0, v = min v , so that the 
1 2 m cr k k i 

maximal real root 入㊁ of A(A )=0 must satisfy 入 ^ ^ 入=fx+icr， 

入 5 6 入 0 ， i s another root of A(A)=0, then 

(3e Icoscrr = 
I — 1 一 1 —1 一 1 

b p p ...p cos(</> +0 +. . . 0 ) + . . . +b p COS0 
m l 2 m 1 2 ^m V l 

where A+y =p e^^k, p, 0<<p This leads to a 
k k k k k 2 

contradiction. So /^〈入。，i.e. ReA<A^. Generally 入〇 is not simple. 

Instead of (19), we have 

nx(t+e)ll他(入o+e)t，for all t>0 (20) 

where G>0 is a small number. 

M ^ c r defined by (15)， is called the critical fertility rate 
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of females (cf. [5]). When I3=(3 ’ the population density 
cr 

stabilizes to an ideal state as time goes to infinity. In this 

case, 

C = lim 

= l i m M入-A-/3 B)一ig 
、〜 cr X 
A->0 0 

� � 
<x , x> 

0 〜 
= X, 

�� 
<x,y> 

where 

X . ， . . ’ 1)1 
1 2 m m 

— ( 1 ， 〜 （ 1 + . . . + “ 9 一 \ - 1 . . . " - 1 ’ “ - 1 ) 丁， 
^ ^ m 2 3 m m m 

〜 广0 
X o = X o ( 0 ) + ~ r B Xo(s)ds. (21) 

- T 

We then have 

Theorem 3. When (3=(3 , the solution of linear system (7) has the 
cr 

following asymptotic expression 

<X ,X> 1 
“、 0 〜 ，-et、 

x ( t ) = 〜 〜 X + o(e ) (22) 
<x,y> 

and the total population N(t) is given by 

<X ,X> m 

N(t)= 5 _ _ E (1+0 b )x +。（e-et)， 
广 〜 、 。 c r k k 、 
<x,y> k=i 

��� � 丁 

x=(x X . . . X ) . (23) 
1 2 m 

Finally, we want to show that (r(A) is a infinite set. In fact, 

we have demonstrated that 入e(r(A) if and only if A(A)=0. By (13), 
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since A U ) has a pole of at most order one at A=0. We can assume 

that (otherwise we consider A(入)/入 instead of A (入））.If 

A(入）=0 has only a finite number of zeros, then by [ 8 ] 

where p(;0 is a polynomial of finite order, a, b are complex 

constants. 

It is obvious that a扣 ， a n d let a=u+iv, then 

”、、 Au ivA+b ,、、 
A(A)=e e p U ) ; 

(1). if u>0, then letting A^-co along the real axis leads to a 

contradiction； 

(2). if u<0, then letting A—>oo along the real axis also leads to a 

contradiction； 

(3). if u=0, then v^^O, we can assume without lost of generality 

that v>0. Let 入=i(r, O O , then letting again leads to a 

contradiction. 

Summarizing, we have 

Proposition 2. (r(A) is a infinite set. 

In the following, we shall study further the asymptotic 

properties of the eigenvalues of A (or the zeros of A(A)). By 

[11], the zeros of A(A) asymptotically the same as that of 

g ( 入 ) = 入 \ 入 T 一 b 阶 m - r ! ， o r e 入 W b (S, i.e. 
、 厂1 

r r r r 

，Re入=了[Ig卜卜lg|2rm|^ + — ~ ~ - c I ] +。（l) 
n T X X ^ X 

r 

L ImA^=-^[2n7i+ arga)+-|e] + o(l), n= ±1, ±2,... (25) 
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where 

r -1, if n>0; 
e= i 

L 1’ if n<0. 

Furthermore, it is also known from [11] that all the zeros, except 

for a finite number of A(A)=0, are simple. This is equivalent to 

saying that all the eigenvalues of A except a finite number of 

them are algebraic simple. Notice that (r(A)=(r (A) locates inside a 
p 

fan-shaped sector as show in Fig. 1, where 0 < G < - ^ . Thus T(t) can 

not be extended to an analytic semigroup on C(-T,0), but T(t) is 

differentiable for t>T by the previous discussion. 

,、y 

\ / 
\ e e z 

/ a �X 

/ \ 
/ (r(A) \ 

FIGURE 1 

In order to study the eigenprojection of A and some control 

problems, we need a larger space than C(-T,0). Thus we consider 

the following initial value problem: 

，x(t)=Ax(t)+/3x(t-T), t>0, 

-X(0)= X, x(G)=x^(e), -T:<0<O. (26) 

八 

Define the new state space Y=[R"'XL^(-T, 0; R"") and the operators on 
A 

Y as follows: 

T(t)(x,x^(e))=(x(t),x(t+e)), V (x,x^(e))€Y, t>0 (27) 
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A 

Y as follows: 

A 

T(t)(x,x^(G))=(x(t),x(t+e)), V (x,x^(e))€Y, t>0 (27) 

where x(t), x(t+G) is defined iteratively 

‘x(t)=e^^x (s-T)ds， 0^t<T, 

. x ( t ) = e ^ ^ x ( n T ) + ^ r eA(t_s )Bx(s-T)ds， nT<t<(n+l)T, 

^nX 

n = l ， 2 , — — (28) 

It is obvious that x(t) defined by (28) belongs to C(0’oo;[Rm), and 

satisfies (26) for t>T. When 0<t<T, x(t) is absolutely continuous 

and satisfies (24) almost everywhere. Following the definition in 
A 

[ 1 2 ] ， x ( t ) is the solution of (26) in Y (the uniqueness of 

八 

solution is apparent). Hence T(t) determines a strongly continuous 

八 

semigroup in Y, and its infinitesimal generator is given by 

八 

D(A)=^(x(0),x(e)) | X ( G ) € H ^ ( - T , 0 ) 

八 

A(x(0),x(e))=(Ax(0)+^Bx(-T),x'(G)), (29) 

A 

is identical to (r(A) and consists of zeros of A(A). The 

八 

resolvent of A is as follows 

R(A,A)(y,y(G)) 

- T � 6 

(30) 

where x=( (X-A-^e'^'^B)"^ [y+f . 

-T 

八 

T(t) is compact and differentiable for t>T but can not be extended 

to an analytic semigroup. 
A 

Let A be the dominant eigenvalue of A, then when ， the 
0 cr 

83 



A 

P (x,x(e))= lim (A-A )R(A,A)(x,x(e)) 

0 入"^入 ° 0 

=(E [ x . f e-\)(T+shs)ds ]，E)[《+「〇 e — V T + s义 ( s ) d s ] e \ ) e ]’ (31) 

0 J-T 入 0 J - T 

where E 入 = l i m (入-A-/3e一入Tb)一i. 

0 A->A 
0 

A 

Proposition 3. When / 3 < 〜 , T ( t) (x, x^ (9)) converges to zero 

exponentially as t ^ ； when 13̂ (3 ， 
cr 

T( t ) (x ,x^ (e ) )=p^ ( x , x ( e ) ) e V + (32) 
0 

A来 A来 

Define the linear operator B： Y 0； as follows： 

[B(y,y(e)) = (A*y+y(0), -y(e)), V (y, y(e) )€D([B), 

D([B)=^(y,y(e)) | y ( G ) € H ^ - T , 0 ) ,阳 *》=y(-T )卜 (33) 

Then 

A 

<A(x(0),x(e)),(y,y(e))> p q 
L XL 

=<(x(0),x(e)),B(y,y(G))>, V (x(0), x(G) )x(y, y(e) )€ D(A)xD([B), 

1 1 
where — + - ^ 1 , <•，•> denotes the inner product between L^ and l A 

O A* 

Taking ( z , z ( e ) Y and solve the equation 

(A-[B)(y,y(e)) = (z ,z (e) ) . 

If det ( ) ~ ^ = A ( A ) , then Ae p([B) and 

• * — A t 来 一 1 o r^ >o 
y=(A-A -(Be 八Ib ) [z + e z(s)ds], 

J-T 
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y(e) = [ ^ e - ^ V y + 广 e入Sz(s)dse]-入e+[V(s-e)z(s)ds. (34) 

-T J〇 

If A(入)=0，then 入e (r(IB)=cr^(B) and the corresponding eigenfunction 

( o „ - A t 一 入 6 n * o 、 , * 一 入 T * o 

(y, /3e e B y ) , (入-A -[Be 八 ̂ B )y =〇. (35) 

Since D(IB)cD(A )， and for (y, y(e)€D((B) 

[B(y, y(e))=A*(y, y(e)) 
八 八来 

On the other hand, A is a dense operator, so 入 e p U ) provided 
八 

AepCA). Take Ag p([B)np(A )， then 

(A-A*)D([B) = (A-[B)D(B)=Y*, 

so D([B) = (入一A*)Y*=D(A*)， i.e. B=A*. Hence p(A)=p(A*) and for AGp(A) 

R(入’ A)*=R(入，A*). 
A 

Let 入 be an eigenvalue of A, denote by r the circle with centre 

八 

at A and has no other eigenvalues of A inside except 入，then the 

eigenprojection corresponding to A is 

E ⑴ J J R(z,A)dz, 

* 八来 
so E ( 入 ） i s the eigenproject ion of A corresponding to 入. 

For a linear operator L with compact resolvent in a Banach 

space E, define 

cr⑴(L)— x| xeE, E(A)x=0, for all 入€(r(L)卜 

s p ( L ) — yI yeE, and there exist a complex A and 

an integer n such that (A-L)^=0 I-

then one has [13] 

Lemma. (1). (r① is a invariant subs pace of R( A, L)； 

(2). (T⑴(L)— XI X€E, and R(入，L)x is a entire function of A J-； 

(3). sp(L)=(r (L*)丄. 
00 
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八来 
Now let us consider the structure of cr (A ). Take any 

CO J 

(z, z(0) )€cr⑴(级），assume without lost of generality that z(e) is 

八来 
continuous, since otherwise we can consider RU，A )(z，z(e)) 

A来 

instead of z(e) in the following. So R(A,A )(z,z(s)) is an entire 

function of 入 in the space Y*. By (34) 

= +「。^^^(^ ) ^ ^ ] (36) 

J-T 

is a vector-valued entire function of 入 . A simple calculation 

shows that if 

* — I f 
( 入 - A * - 阶 一 入 T b * ) y = X 

2 2 • • 
• • y J L X J 
m m 

then 

r X ). . . (入+1； ) + . . . +X 
V _ 1 2 m m 

AM ， 

. y i + i = ( 入 一 入 T y i i = l,2, . . .m-l. (37) 

Let z + r e 入 S2:(s)ds=(x (入），x ( 入 ） ， . . . X (入））T， and solve the 

J 一 T 1 2 m 

equation (37)，with solution denoted by y•(入）.In order that y. to 

be an entire function of 入 we must have 

X (A) (A+i; ). . . (A+i^ ) + . . . +x ( 入 ） 

_ 1 2 m m 

y , AIA) . (38) 

o「0 As 

Notice that 
z+ e z(s)ds is at most an entire function of order 

J-T 
one in A, and so is y^ (A). When 入 goes to infinity along the 

0 As 
imaginary axis, e z(s)ds goes to zero, so that 

J-T 
^ n . 

y^(A) 1：̂ M=const. for 入=|入 |e- 2 丄. 
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and 

IA P+e 
y!(入）卜o(e 丨八 ）’ 

Applying the Phragmen-Linde1of theorem (see [8]) in the angular 

sectors and ^ A A= A 
乙 丄 2 2 • 

respectively. We know that | y U ) |:sM on the whole complex plane, and 

hence 

So Xi(入)=0, for i = l,2,...m. i.e. z =z(e)=0. 

If p=l, define the Phragmen-Linde1of function 

一 lg|y (|A|e)'® 
h(0)= T l i 

、 A 
A 

and it is obvious that 

h (7r)=h(-^)=0. 

Let H (0)=e(sine-cose), e>0, then H ( - ^ ) = e . Further let 
c G 2 

rv、、 < ^ 、 、 1 + i )入 
F(入）=yi(入）e 

H (G)|A| 
then |F(A) |=|y (A) |e . When A goes to infinity along 

乙 

F ( A )卜 o ( e - 小 丨 ) 0 ( 6小 丨 ) = 0 ( 1 ) ; 

when 入 goes to infinity along Q=n 

F(A)|=o(l). 

Applying again the Phragmen-Lindelof theorem in the angular 

sector ^ A I A= IA I e ̂  ®, ̂ - < 0 < T r it is clear that|F(A)| is bounded, and 

so 

H (e)|A 

y^(A) |=o(e ). 

But H hence 
2G 

,、、 , 2e 入 、 、 、 ie 71 , 、 
y (A)=o(e )， 入=入 e , -—:<Q:<n (39) 
1 ^ 
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Similarly, we can also show that 

y^(A)=o(e A=|A|e^®, + 邻 今 ’ (40) 

where e^>c is any number. 

Applying the generalized Phragmen-Linde1of theorem, it is known 

that is bounded uniformly on the left half plane. The 

boundedness of on the right half plane is apparent, so y^(A) 

is a bounded entire function, and hence is a constant by 

L i o u v i i r s theorem. Notice that y】（入）goes to zero along the 

imaginary axis, so 乂1(入）=〇，or 

z =z(e)=0. 

八 来 A 

Theorem 4. )=0, and hence the root subspace of A is complete 

in [R\lP(-t,0;[R''). 

八 

Let ^ be the eigenvalues of A, and 入^ be algebraic simple 

A 0 

for n>N, , <p^(0)e n J- be the corresponding eigenfunct ions, 

then the solution x(t) of equation (26) can be written as 

八 N 00 
x(t)=P T(t)[ £ p.(x,x(e))] + I C e V , (41) 

n 
1 = 0 n = N + l 

where P is the projection operator from [R'^xL'^C-x, 0； r"") to 沢 爪 ； p 

1 i 

is the eigenproject ion corresponding to 入 ； C is a constant 
i n 

depending on the initial value (x,x(e)). 

4.3 Nonlinear Semi-Discrete Population Equation with Time Delay 

In this section, we are concerned with the nonlinear equation 

(6) where f(^) satisfies the condition (2). 
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Suppose that YnP, here P is the nonnegative cone of Y, 

then N(t)=<x(t) + 阳x(t-T)，e>， e=(l，l,...l)丁， <•’.> is the 

Euclidean inner product of r"". Let x(t), N(t) be the solution to 

the linear equation (i.e. K=0 in (6)) with the same initial 

condition. Define the operator S： C[0,T)^[0,T) as follows 

o 

(s-T)，e>ds+〈阳X (t-T),e> (42) 
J Q O O 

It is obvious that SQcQ, here N(t)| N(t)e C[0,T], 0<N(t)^N(t), 

for all t€[0，T]}^ is a bounded closed convex set of C[0, T] . Take 

a n y t t € [ 0 , T ] , t < t ， o n e h a s 
1 2 1 2 

SN(t )-SN(t ) 
1 2 

’ e> + , e> G t -t 0 0 1 2 

广七1 Aft 
+ i |<e八 “2 s 細 X (s-T),e>|ds 
Jt ° 

2 

+r 1|<eA(ti-s)阳X (s-T)，e>-<eA(t2-s)阳X (s-T)，e>|ds+ 
JQ ° 0 

+ <(3Bx (t -T),e>-/3Bx (t -T)’e> + 
0 1 0 2 

+ f iG|t -t l e G l t r S l |<eA(t2-s)阳X (s-T)’e> ds (43) 
Jq 1 2 0 

where G= max_ Kf (^), M= max |fi(t)|. Notice that we have used 

0,M] t€[0,T] 

z z 

here the fact that e -1 ：̂ z e . So S is a compact operator and 

hence S has a fixed point N(t) in Q by Schauder' s fixed point 

theorem with 

o 
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+ 丁 ( s - 认 e > d s + < _ (t-x),e> 
J Q O O 

( 4 4 ) 

From this N(t) we construct 

x(t)= e-丄^ 以（N(P))dPeAtx 
0 

_jt。-«rh^(N(p))dp A ( t - s ) 如 , , 、 
+ e s "̂ e /3Bx (s-T)ds. (45) 
Jq 0 

Then x(t) is a solution of (42) in [0,T], and this solution is 

unique. In fact if N^, N^ are two fixed points then 

I d 0 

+ | V : : _ i ( P ) ) d 〜 - : : _ 2 ( P ) ) ’ < e A ( t - s ) _ (3-x),e>ds 
Jq 0 

0' 

+「t[e-T^^(%)[N2(P)-Ni(P)]dP-i]e-<Kf(N2(p))dp. 

」0 

•<eA(t-s)阳Xo(s-T)’e>ds 

where ？ is between N (p) and N (p). By | e Z - 中 |z|e ^ and the P 1 2 

Gronwal1‘s inequality it follows immediately that N (t)=N (t). So 
1 2 

S has a unique fixed point, i.e. the solution of (25) is unique. 

Considering [ n x , ( n + D x ] as [(n-l)T，nT] iteratively for n=l，2 , . . .， 

we have 

Proposition 4. For any x^(e)GYnP, there exists a unique solution 

to (42), which is given by (44) and (45). 
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Take any x^(e)€YnP, define 

T(t)x^(e)=x(t+e), for t>0, (46) 

where x(t) is the solution to (42) with the initial value x (e). 
0 

It can be verified easily that T(t) is a nonlinear strongly 

continuous semigroup in P and its infinitesimal generator A is 

given by 

〜 厂 X，（e), for -T<G<0, 

L A x ( 0 ) + _ ( - T ) - K f ( N )x , for e=0, 
o o 

D(A)=^x(0)I x g P , Axe Y卜 （47) 

〜 来 

Since D(A)=Y, so for any fixed constant N >0 

x(e)| x，x,€ Y’x’（0)=Ax(0)+/3Bx(t-T)-Kf (N*)x(0)丨-

is dense in Y. For any x(e)€P， X(G)>0, there is a sequence x (E)€n 
n 

such that IIX -xll~>0 as n~>oo, so we may suppose that x (e)€P, i.e. 
n n 

x(e)| X€P, X' € Y and x' (0)=Ax(0)+/3Bx(t-T)-Kf (N*)x(0) 

is dense in P. Let x(e)e Q^, define 

x ( e ) , w h e n G。=<x(0)+/3Bx(-t)，e>=0， 

5 ( e ) = { -
L , when G 

Lr 0 0 

then it is apparent that x(e)€D(A). So we have 

Proposition 5. Writing equation (42) as an abstract nonlinear 

evolutionary equation in Y 

‘x(t+e)=Ax(t+e), t>0, 

x(0)=x (e) , -T<0<O, (48) 
、 0 

then for any x^(e)€YnP, the solution to (48) exists and is unique 

with 

x ( t + 0 ) € C([0,oo)； P)； 
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if X €D(A) then 
o 

x(t+G)€ C^([0,co); p). 

Furthermore, D(A) is dense in P, i.e. D(A)=P. 

Next, we turn to the stability problem of the nonlinear 

population system with time delay. Since for x^(e)€YnP 

, - / K f ( N ( p ) ) d p At …、 
x(t)= e 0 ^ ^e X (〇） 0 

j t。-/ K f ( N ( p ) ) d p A(t-s).^ ( . , r 力。、 
+ e s e |3Bx(s-T)ds. (49) 

J q 

Let x(t) be the solution of the linear equation (7) with the same 

initial condition, then x(t+e):<x(t+0) for all t^O. So we have 

Proposition 6. If /3</3 ，then equation (42) is globally stable in 
cr 

PnY; when I3<(3 ， the system is asymptotically stable (or 
cr 

exponentially stable). 

If there exists a nonnegative equilibrium state for (31) (i.e. 

来 〜 来 

the state which is independent of time) x (9), then Ax (9)=0, or 

d * 来 来 

— ^ x (0)=〇 for e^O, so X ( e ) = x is a constant vector. By 
cio 

Ax*+/3Bx*-Kf (N*)x*=0, one has 

(A+|3B)x*=Kf (N*)x* 

where N*=<Ax*+/3Bx*, e » 0 . Hence (3>(3 , Kf(N*)=入 the dominant 
cr 0 

eigenvalue of A+/3B [5]. On the other hand, if (3>(3 , then the 
cr 

* 来 八 

eigenvector x which satisfies Kf(N is an equilibrium state 

of equation (48). 

Proposition 7. A necessary and sufficient condition for system 
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(48) to have a nonnegat ive equilibrium state is that there is a 

来 * A 
constant N >0 such that Kf (N ) = 入 . I n such a case, we must have 

o 

(3>(3 ， a n d the nonnegat ive state x* satisfies 
cr 

来 来 来 

N =<Ax +/3Bx ,e>. 

来 

Let x(t) be the solution of (42), x be its nonnegat ive 

* 

equilibrium state, z(t)=x(t)-x ， then 

i(t)=Ax(t)-/3Bx(t-T)-Kf (N(t))x(t) 

-Ax*(t)-阳x*(t-T)-Kf(M*(t))x*(t) 

=Az(t)-/3Bz(t-T)-Kf，(N*(t))X*z(t)-Kf(N*(t))z(t) 

-Kf，（N*(t))X*3Bz(t-T) + 。（z(t)，z(t-T)) 

=[A-Kf(N*(t))]z(t)-Kf'(N*(t))X*z(t) + 

+/3Bz(t-T)-Kf' (N*(t))X*/3Bz(t -T) + o(z(t),z(t-T) ), (51) 
* * * * 

where X =[x , x . . . x ], o(u，v) satisfies 

1 . M u，V) ^ 
lim J~n~rTi~~n =〇. 

Ilull+ll vll 
u^O 
v->0 

The first order approximation of (51) is 

i(t)=[A-Kf(N*(t))-Kf'(N*(t))X*]z(t) 

+ [I-Kf，(N*(t))X*]/3Bz(t-T). (53) 

For any real number 入功，define the matrix 

E ( A ) = A - K f ( N * ( t ) ) - K f ' ( N * ( t ) )X*+/ 3 B e 一 入 T- K f， （ N * ( t ) ) X*| 3 B e 一 入 丁 ( 5 4 ) 

When Kf' (N*(t) )<0, E(A)=E(A)+Kf (N*)+ max is a positive matrix, 
〜 

SO that E ( 入 ） h a s a maximal real eigenvalue (cf. [9 ] )， say fj.. 
A 

Define the function 

g (入）=-Kf(N*)+ max v •， V A>0. (55) 
i A 
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Then g(A) is the maximal real eigenvalue of E(入）（the dominant 

eigenvalue). Let i(入）=g(入）一入’ so that g(0)=g(0). For any 

eigenvalue A of E(A), by definition, there exists a y^O such that 

[A-Kf(N*(t))-Kf' (N*(t))X*+/3B -Kf' (N* (t) ) X*/3B] y=Ay 

入=?^0，since otherwise, taking inner product with y* on both sides 

above, one has <y+/3By, e>=0. Thus (A+pB)y=Kf (N*)y. This is a 
* 

< y y > * 

contradiction. Let z = ——x , we have 
* * ， 

<x ,y > 

(A+/3B-Kf(N*))z =入 z. 

If z关〇，then ReA<0; if z=〇 then 入=一Kf，(N*)N*>0. It can be verified 

directly that A=-Kf'(N*)N* is an eigenvalue of E(0), so 

g(0)=-Kf，（N*)N*>0， and hence g(0)>0. From [9] 

m 

E e'^E(A)e X 
1 k k 

k= 1 T 
g (入）=max min — ， x=(x，x，... x ) 

^ ^ X 1 2 m 

11x11=1 

and hence g(入） is continuous for A^O. But supll E(入）11 <+oo， so 

入2:0 

sup Ig (入）I<+00. From the fact that lin g(;v)=-co，we know that there 
A^O 入—+00 

exists a A^>0 such that g(入。）=〇，i.e. 

g ( V = V 

or det(入-E(入））=0. 
0 0 

When Kf’（N*)>〇， if x is an eigenvector of E(入），then 

[A-Kf (N*)-Kf，（N*)X*+/3Be一入T-Kf，（N* )X*/3Be一入t)x=入x 

(入-A+Kf ( N〜-阳 e 一入 T)x=-f，(N*)<x,e>x*-Kf' (N* )<Bx，e>/3e一入"V 

=-f’（N*) [<x，e>+<Bx，e>/3e一入T]x* 

= y = ( y i , y 2 ’ … V 丁. 

If (入-A+Kf (N*)-/3Be 七 ) - i exists, then a straightforward 
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computation shows that 

A 一 入 T 
‘(A+y )x -[b X +b X +. . . +b X ]/3e =y 

1 1 1 1 2 2 m m ' 1 

A 

L -X +(入+17 )x =v , *、 
i - 1 i i ^ i ’ i = 2 , 3 , . . . m , V + K f ( N ) . 

i i 

Hence 

A 

X =(入+17 )x -y 
m-l m m m 

八 A 八 

X =iX+v )iX+v )x -(A+y )y -y 
m - 2 m-l m m m-l m m-l 

• • • « « « _ • 鲁 * 

A 八 A A 

X = ( 入 ) . . . ( 入 ) x - ( 入 ) . . . ( 入 + y )y 
1 2 m m 2 m-l m 

A A A 

-iX+v)... (A+y )y . . - { X + v )y -y 
2 01-2。m-l 2 

A A A 

A(入）=y +(入+1； ) . . . ( 入 ) y 
1 2 " 2 1 m-l " m 

A 

-b y 一[b ( 入 ) + b ]y -...-
r 2 1 2 2 〜 

〜 A 八 〜 

-[b i\+v ) + ...+(入+17 ) + ...+ b ) ]y 
1 2 m-l m - l m 

~ — A t 

, ( 5 5 ) 

一入T ^ 八 

<x,e>+<Bx, e>/3e = ( 入 ) ( 入 ) . . . ( 入 ) x - U + y )... (A+y )y 
1 2 m m 1 m-l m 

A 

- (入 

A A 八 

+ [ l + ( 入 ) . . . {X+v ) + ...+(入+17 )]x 
2 m m m 

八 八 A 

-[l+(A+y ). . . (A+y ) + ...+(入+17 )]y 
2 m-l m-l m 

A 

-...-[[1 + (入+17 ) ]y -y 
2 3 2 

来 

When Kf' (N )>0, we have shown that (similar to the case of 

Kf’（N*)<0) E(0)x=0 has no nonzero solution. Since 

(-A-/3B+Kf(N*))x*=0, so when ReA>0 and A^^O,(入一A+Kf (N*) — 一 入 丁 ) 

exists. Now, we suppose that Re入之0 A^O, then <x, e>+<Bx, so we 

have 
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1 A A A A 

— = [ l + ( 入 ) . . . U + y ) + . . . +(入+1； ) ]x 
K f ’（N ) 1 m m m 

A A A 来 
一 [ l + ( 入 ) . . . ( 入 ) + … ) ] x 

1 m-1 m-1 m 

- [ ) X * -X* 
1 2 1 

八 来 A 来 A A 来 
where A(入）x =x +iX+u )x +. . . + ( 入 ( 入 ) x 

m l 1 2 1 m-1 m 

-b /3e一入T x*-[b ( 入 ) + b ]|3e一入T x* -...-
1 2 1 2 2 3 

-[b iX+v ) + ) + ...+ b 
1 2 m-1 m-1 m 

and 

1 A A A 

—{X+v ) . . . ( 入 ) + . . . + ( 入 ) 
K f ’ （N ) 1 m m 

m A 八 A 八 A 来 

+ E [ l + ( 入 ) . . . ( 入 + )](入+1； )x 
i+l m m l i+1 i 

1 = 1 

1 A 八 

= — [ b (A+i^ ) + . . . + ( 入 ) + ...+ b )] 
K f ’ （ N ) 1 2 m m 

m 八 A 来 A A A 来 

+ V ( 入 ) . . . ( 入 + y ) [X +. . . + [ l + ( 入 . . . ( 入 ) + ... +(入+1； ) ]x ] 
^ i + l m l 1 i - 1 i - 1 i 

i = 1 

m A 八 八 A A 米 

一 Y , ( 入 ) . . . (A+17 )[1 + . . . + (入 + 1 7 . ). . . (A+y ) + . . . )]x ]• 
i + l j - 1 j + 1 m m j 

•b 七 (56) 
i 

* 

If we can show under the condition K f (N )>〇 that equation (56) 

has no solution icr with cr>0, then all the eigenvalues of E(0) have 

* 

negative real parts (the case of K f (N )<〇），and hence the results 

of [15] can be applied to show that det (A-E(A) )=0 has roots with 

only negative real parts. 

Proposition 8. When Kf’ (N*)<0, system (48) is not stable about 

* 

its positive equilibrium state; when K f (N )>0, and (56) has no 
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solutions icr with (r>0, then system (48) is locally asymptotically 

stable about its positive equilibrium state in C[-T，0]nP. 
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Chapter 5 

A Finite Difference Scheme for the Equations 

of Population Dynamics 

5.1 Introduction 

We consider here a discrete population model which results from 

applying a certain finite difference scheme to the McKendrick type 

partial differential model considered in Song and Yu [ 1 ]. By 

proving some qualitative properties of this discrete system and 

the convergence of the sequence of solutions of the discrete 

problems (as the age step approaches zero), we thereby establish 

that the discrete model, indeed converges to the continuous model. 

Finite difference scheme has been presented in [2] but here our 

approach is different in that the resulting discrete system 

remains to be a population model with the important critical 

fertility index converging to the counterpart of the continuous 

model, i.e. our discretization is both mathematically and 

biologocally meaningful. 

As before, p(r,t) denotes the population density at time t and 

in the age interval (r, r+dr), 0<r:^r ， t^O, where r is the highest 
m m 

age ever attained by the individuals of the population. Let fi(r) 

be the relative death-modulus, i.e. the death-rate per unit 

population of age r, satisfying 
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M(r)>0 and is continuous on any interval [0,r ], r <r ； 
c c m 

「r。 r 
M(r)dr<+co, ( 1 ) 

Jq JQ 

Let k(r) be the female sex ratio at age r, h(r) the fertility 

pattern. We assume, through out this chapter, that 

k(r)h(r) is continuous on [r，r ], 
1 2 

k(r)h(r)>0, for k(r)h(r)=0, elsewhere； (2) 

where is the fecundity period of females. Let (3 be the 

specific fertility rate of females, p^(r) be the initial age 

distribution, then the age-dependent population model is given by 

the following first order partial differential equations 

0 < 〜 t > 0 

^ p(r，0)=p (r,t), 0<r<r ， 
0 m 

p(0,t)= k(r)h(r)p(r,t)dr, t>0. (3) 

1 

Let (0, r ) be the underlying Banach space with the usual 
m 

norm, then the associate population operator A is 

^ D(A)=^0(r) |0,A(/>€X, 0(0)= k(r)h(r)0(r)dr 卜 (4) 
Jp 

1 

The following results can be found in [1] 

Theorem 1. 

(i). There exists a unique solution p(r，t)=e虹p (r) to Eq. (3) 
At 

for any p^^X, where e is the C^-semigroup generated by A 

p(r, t)eC([0，oo);X)， 

p(r，t)eci([0,co);DU ) )，if p^gD(A). 

(i i).入€cr(A )，the spectrum of operator A, if and only if 入 is the 
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root of 

F(;0 = 1 - 一 k ( r ) h ( r ) e - A r - T > ( P ) d P d r = 0 , (5) 

\ ‘ 
(iii). The operator A has a real dominant eigenvalue A . 入 = 0 if 

0 0 
and only if IB equals to the critical fertility (3 given by 

cr 

(S =「 [ \ ( r ) h ( r ) e - T > ( P ) d P d r r i . (6) 
cr U p -

1 
When (3={3 ， 

cr 

lim p(r，t)=C e — V " ( P ) d P ， V re[〇,r ]’ （7) 
1、 0 m 
t->oo 

where 

f\(r)h(r) [fp 〈 咖 ) d P d r 
Jr U o 。 J 

C o = ~ _ i ； • (8) 

Jr 1 

r 
For a given integer M>0, let We denote by I the 

M 。 i 

(i-l)r ir 

interval [ , then a discrete system relating to Eq. (3) 

is defined as follows: 

“x.^^(j + l) = (l-6-i7.)x.(J), i=0, 1,2, . . .M-1, J=0, 1,2..., 

X (0)=x , 1=1,2,...M, 
i Oi 

M 
X q U ) E 6(kh).x.(j), J=0,l,2,... (9) 

L i = l 

where 

f 5 7 ) = 郎 （ ⑷ i=〇 1 2 M-1 
叫i 1+印(i5)，1 u，丄，乂,..』丄’ 

(kh) =k(i6)h(i6), i=l，2,...M, 
i 

r X if rel.，i = l,2,. . . M, 

Po3(r 叫 。 i 1 (10) 
- L 0， elsewhere, 
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and 

「r̂m 
m p (r) — p (r) dr—> 0, as 〇• (11) 

JQ 0 05 

Define 

P.(r,t)= X.(J), for (r，t)el xl ， 
o 1 i j 

i=l，2 M, J=0,1,... (12) 

We shall prove later that t) defined by (12) is an 

approximation of p(r’t), the solution of system (3). 

5.2 The discrete System 

W first study system (9) since it can be considered as a 

population model by itself alone. 

Let 

X (J)1 f X 1 1 01 

X ( J ) = V J ) ， X = X o 2， 
• 0 • 
• • 

• • 

x^ ( J) X 

then system (9) can be written as 

— X ( j + l ) = A X ( j ) +卿 ( J ) , J=0,1,... 

X(0)=X ， （13) 
、 0 

where 

f O 〇 . . . . 〇 0 1 f b b . . . b 1 
1 2 M 

1-67) . . . . 〇 〇 D _ 0 〇 . . . 〇 
A= 1 . ， h5= ， 

0 0 . . . . l-d-q 0 0 0 . . . 〇 
L M-l L 

h =5(1-6-0 )(kh) , i = l，2，...M. (14) 
i 0 i 

The characteristic polynomial of (13) is 
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F^(A)=det(A-A-/3B) 

M - l 

. J] (1-67).)]. (15) 

i =1 1 

Lemma 1. Let the mxm matrix E be of the form 

r * A . . . A * . 

E= * * . . 0 0 , *>0, A>0, 

L o o . . . * * Jmxm 

then there exists a positive p such that E^>0. 

proof. We employ mathematical induction. For m=l, E=(*)>0. Assume 

that there exists an integer q>0 such that for m=k, e S o , consider 

m=k+1, then 
A o r * A . . . A A 、 f A B ^ 

E = k , A = * * . . 0 0 , 
_ C D "" k • 

L o o . . . ^ ^ JmXm 

来 

B = ° , C = ( 0 , 0，…〇’”， D = ( * ) . 

- 0 -

(k +BC BD> 一 一 一 

We see that ^ , A =A^+BC, B=BD, C=DC, D=D^ have the 

LDC D^J k k 

same form as E, B, C, D, respectively. Let q be such an integer 

that a S o , then a straightforward calculation shows that 

E^- k 1 

and hence 

E2q之 f k >0. 

Thus b y induction the lemma is true for all m. The proof is 

complete. 
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Let m be such that b b =0 for i=m+l, . . . M, then for the 
m i 

matrix C=I+A+/3B, A and B defined by (14), we have 

det (A-C) = U - 1 ) M-mdet U - E ) 

where the matrix E is of the form of lemma 1. Hence from the 

theory of positive matrix, (Warge [3])’ we have immediately 

T h e o r e m 2. 

(i). The matrix A+/3B has a real dominant eigenvalue 入。吼 all the 
O o 

real parts of the other eigenvalues of A+/3B are strictly less than 

入。6; 

(ii). when 入。̂  is algebraic simple； 

( i i i ) . 入 i f and only if ’ the critical fertility of 

system (9)， given by 

⑶= 1 
cr M - 1 

b +b ( 1 - S v ) + . . .+b |7(1 -约.） 
丄 d 丄 n 1 

i = l 

M - 1 

n (i+a/i(i6)) 

= ^ ； (16) 

b +b (1+〜（（M-1)5)) + . . .+b n (l+6/i(i5)) 
M M—1 1 I • 

i = l 

In this case the unique positive eigenvector corresponding to 

入 06=1 is 

X(⑴= ( x ( & ， x ( 3 ) ’ . . . ， x ( & ) T (17) 
1 2 m 

where 

( S ) . 
X =1, 
M 

(l+6M(ia))(l+6/i(i + l)6)). . . (l+6fi((M-l)6)), i = l,2, . .M-1, 

and the solution of (13) satisfies 
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二 X U ) : C 。 , ， (IB) 

where C =3./h 
oo 

a= X 
01 

+ (1-/3 b )(l+6fi(5))x 
cr 1 02 

+ [(1-/3 b )(l+5fi(5))(l+6/i(25))-b (l-6/:i( 25) ) ] x +••• 
cr 1 「 2 03 

+ [ (i-^cpbi) ( 1 + 糾 川 … （ 1 + M ( M - m ) ) 

-f3 b (1+5/1(25))- • •(l+5fi((M-l)6)) (19) 
cr 2 

(3 b (l+5fi((M-l)6))]x ， 
cr M-1 OM 

b=(l+5/:i(6))( 1+6/1(25) )• . • (l+6):x((M-l)5))FL(l) 
o 

(iv). when 師 ⑶ ’ 入 
cr O o 

(V). when /3</3⑶，入公<1. 
cr O o 

Theorem 2 tells us that the critical fertility ⑶ plays a 
cr 

similar role as (B defined by (6) for the continuous system. It 
cr 

is an important index concerning the stability of the discrete 

system (9). The relation between the two indices is described by 

Proposition 1. Let [3 and ⑶ be defined by (9) and (16)，and 
cr cr 

let Cq^ and X ⑶ be defined by (17) and (19)，respectively, then 

(1). (S =/3(3)+o ⑷ ， (20) 
cr cr 

p r 

(ii). 「m p:(r)-c e -、 M P ) d P dr->0, as 5 - ^ , (21) 

* (5) 
where p_(r)=C _x , for re I， i = l,2,... M. 

o O o i i 

Proof. For , 
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= r 2 k ( r ) h ( r ) e - T > ( P ) d P d r = r \ ( r ) h ( r ) e -〈一) d〜 r 
cr 、 

r^ 0 

= S 3 ( k h 、 e - T 二〜…）dPclr+ o(5) 
i = l 1 

= ( 幻 + 0 ( 6 ) . 

i=l 1 

M「 灿 h). 

二 [(l+6|Lt(5))( 1+5/1(26)). . . (l+5/i(i5))' 1 一 1 

.^[o(/i(5))+o(/:i(25)) + . . .+o(|Li(i5))]l 0(3) 

M 5(kh). 

(l+a/:x(5))(l+5j:x(25)). . . 
1 一 1 

M 5(kh) + y ^ 

1 一 丄 

r [o(fi(6))+o(fi(25)) + . , .+o{fJi{i8))] f 又、 
• e - i + o i o j 
_ • 

叫 - 1 + o(6). 

cr 

Notice that we have used in the above the facts that 

log[(l+6fi(6))(l+5/Li(25)). . . (l+6fi(i5))] 

and 

and (kh) =0 when id^ [r , r ]. This can also be shown to be 
i 1 2 

true for any r <r , 
c m 

e 一 丁 1 - 3 7 7 ]il-8n ) . . . ( 1 - 3刀. ) + o ( 5 ) 
0 1 i -1 

for all reI Q[0,r ]. (22) 
i c 

This completes the proof of part (i). The second part is 

similar but involves some tedious computations which we omit. 
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「r 
Lemma 2. Let N(t)= V ( r , t)dr, then for all te[0，r ] 

J q d m 

N(t)<Const. • _ ) . (23) 

Proof. Let t€l , then 
j+i 

M 

N(t)=N(J+l)=5 2 j+1) 

i =1 

M M 

i =1 i =1 

J)+N(J)<[a m p ( k h ) . + l ] N ( J ) 

•-^[1+8 kh]^N(0), 

khr 一 一 

and hence N(J)<N(0)e ^ C o n s t • • N ( 0 )， h e r e kh= max k(r)h(r). 
r € [ r ，r ] 

1 2 

5.3 The Main Result 

Our main result is the following 

Theorem 3. Let p石（r,t) be defined by (12) and let p(r,t) be the 

solution of Eq.(3) then we have 

「『m 
p^(r, t )-p(r, t) dr—>0, as S ^ , 

J q ^ 

which holds in any finite interval t€[0，T]，0<T<co, as S goes to 

zero. 

Proof. It is sufficient to prove it for t€[0，r ]. Since if (22) 
m 

holds in [0,r ] then 
m 

「 m̂ 
r )-p(r，r ) dr—>0, as 6 ^ 0 . 

‘ O m m 0 
We can consider r ) and p(r,r ) as the initial conditions 

d m m 

with the starting point t=r of (13) and (3)， respectively, and 
m 
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deduce that (12) holds in [r ,r ]. Hence the general situation 
m 2m 

follows. Furthermore, by lemma 2, we only need to prove that for 

any fixed r <r 
c m 

「r。 
c p_(r, r )-p(r, r ) d r — a s 6—> 0. 

J ̂  O m m 

The reason is that we want to use the estimate (22)， but for 

convenience, we consider (22) still holds in [0,r ]. 
m 

t 
个 

M5=r 
m 

飞 X I . 

Jf 麵 一 1 J 
t - ； •/••； .<:-/: ( r , t) 

: 厂 乂 • • 
• 一"i 
2 6 i 

i 
6 i 

j 
U ^ p 

6 25 •••• t J5 ••• M5=r m 
m 

Figl. The Finite difference scheme for the 
populat ion system in [0, r ]x[0,r ] 

m m 

For r>t, t€ Ij, J = l , 2 ,… M 

m p (r，t)-p(r,t) dr 

Jt ^ 

p p 
=「m|ps(r’t)-p (r-t)e-丁 
Jt ^ ° 

< r " | p ^ ( r , t ) - p dr +llp -p Jl 

=广 |p^(r,t)-p s ( r - t ) e - C t咖) d P j d r 
Jt ^ 

M r 

+ E J |p3(r’t)-Po3(r-t)e-Tr-tWP)dP|dr+IIPo-Po3ll 
i =q I. 

1 
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J6 r 

= r |p^(r,t)-p 又 ( r - t ) e - : r - t " ( _ dr 
Jt a 06 

i=j I ( ( r - t ) € I ) 
i i - j 

+ E J |p (i’J)-p ( i - J - l， 0 ) e - C t " ( P ) d P | d r 
i=j I ( ( r - t ) € I ) 

i i - j - 1 

" " V P o a " = K + V V " V P o 6 " > 

1 Jt S 06 

=」, p , J’J ) - P o S ( l ) e - T r ' - t W P ) d P | d r 
t 

= J p 又（1) )(1-57] )1 dr 
J ̂  Oo L 1 2 j -1 J 

^ 「 X 一（ 1 一 3 刀 ) ( 1 - 6 t ? )...(1一37? )1 dr 
J ^ 0 1 1 2 j - 1 

j 

= o ( a ) X dr < o(6)llp ^(r)ll ； 

� 1 01 
j 

、 = E J | p , ， J ) 、 ( i - J ’ 0 ) e - C 々 ) d P | d r 
i =j I ( ( r - t ) € I ) 

i i - j 

= E f |ps(i，j)-p,i-j’0)e-丁;; 
i=q (t+i-j)6 

M A 8 

= E I p ^ d - J ) ' 

i = q J ( t + i - j 

e — 丄 ) ( 1 - 5 7 ) )••-(1-6-0 )1 dr 
i i - 1 i - j J 

M id 

=o(6) 2 |p^(i-J) |dr< o(6)llp^(r)ll; 

i = q J (t + i - j ) 3 
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M (t + i - j r ( . , 

H t + i - j )6 r f . , 

M (t+i-j)6 

+ E |p.(i-J,0)-p_(i-j-l,0)|dr 

M (t+i-j)6 

i=j ( i - l ) 5 

^o(6)[llp 公（r)ll + l]+2llp (r)-p。（r)ll; 
Oo 0 Oo 

and hence "" p (p, t)-p(r, t) dr<3llp -p J + o ⑷ lip 11—^ for all 
J ^ o 0 oo 0 

t€[0,r ] uniformly when 6 tend to zero. 
m 

For r<t, t€ Ij， J=l,2,...M 

‘p》 （ r， t ) - / 3「2 k ( s ) h ( s ) p公 （ s’t - r ) d s e -了 d r 
」0 s Jp ^ 

1 

= 、 p.(r,t)-^f 2 k ( s ) h ( s ) p 公 （ s ’ t - r ) d s e - 丁 d r 

J ( j - m ^ J p i ^ 

p(J-l)5 r _ r . . 

」0 S J r ^ 
1 

= ‘ p 又（j，J)-3「2k(s)h(s)p》（s，t-r)dse 一 工 d r 

j - l ( t + i - j ) 6 M _ p r . . 

+ E J)- E 13 k(s)h(s)P3(m’ J-i + l M s e — J o "…川 P | d r 
i 二1 ( i - 1 ) 6 m = l I 

tn 

j - l pi 5 M _ r . . 

+ E I P g d , J)- E ^ k(s)h(s)p3(m’ j - i ) d s e _ J o M P川 P | d r 
i = 1 (t + i - j ) 6 m = l I 

m 

= M +M +M , 
1 2 3 

t r r 

M = 「 PxU，j)-/3「2k(s)h(s)Px(s，t-r)dse-、WP)dP dr 

1 J(j-m ^ Jri ^ 
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_ t J-« 

^ |p.(J, J)- E ^a(kh) p j i ， l ) e - 丄 d r 

pt M 

+ I E IB [ k ( s ) h ( s ) - ( k h ) ] d s p ^ ( i , 1 ) dr 

i=i J 、 i ^ 

J ( j - m ° ^ 

pt M 「 

+ E 刺 k h ) X +x dr 

M 

+6- 0(6) J] p ( i，l)ds 
i=l」I 

i 
绍-o⑷-lip _ll +6-Const, - lip 6-o(6)-llp J 

00 00 o5 
=0(6) -llp^^ll 

j-l (t + i-j)5 M _pr , . 

E J)- E IS k(s)h(s)p义(m，j-i + l ) d s e - J o帅 j a p ^^ 
m 

j-l (t + i-j)3 厂 rr M J 1 

= E f I (1-67, ) - e - 丄 • 
( i - i ) 5 L 0 1 - 1 -

r M -| 
. J - i ) - J] 13 k(s)h(s)p^(m, J-i + l)ds |dr 
- m=l I J 

m 

j-l (t + i - j )6 M 

=o(6)- Z |p^(0, J-i)- Z k(s)h(s)p^(m, j-i + l)ds|dr 

i =1 ( i -1 ) 6 in=l I 
m 

「 j-l ( t + i - j M 

=0(6) • 2 I E [k(s)h(s)-(kh) ]p.(m, J-i-l)ds dr 
L i = l ( i - l ) 5 m = l I 

m 

j - i ( t + i - j ) a M 1 

+ E I E IS (kh) [p_(m, J-i-l)-p.(m, J-i)]ds dr 
, „ » m o o 

i =1 (i-1)6 m=l I 」 
m 

「 j-l ( t + i - j M 

^0(5)• o(6)- Z I I J P^(m,j-i-l)dsdr 
- i =1 ( i - 1 )6 in=l I 

m 

j-l (t+i-j)5 M 

+ V Z ^ (kh) [p.(m,J-i-l)-p_(m-l,J-i-l)]ds dr , 
」 m o o 

i =1 ( i -1 )5 in=l I 
m 
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j - 1 ( t + i - j ) 5 M . 

+ E E (3 (kh) dv p.(m-l, J-i-l)dsdr 
i 二 lJ(i-l)5 m=l」1 m m - " J 

m 

「 j - 1 t + i - j )6 M 

^ o ( d ) • 0 ( 8 ) • 2 E Pg(m,J-i-l)dsdr 

m 

j - 1 ( t + i - j ) 6 M 

+ E E (kh) -5(kh) p又（m-l, J-i-l )dsdr 
. 1 J , . X ^ - J t m m-1 O 
1 = 1 ( 1 - 1 ) 0 m = l I 

m 

j - 1 ( t + i - j M 1 

+ E E (kh) dv p.(m-l, J-i-l)dsdr 
in=l」1 m m-1 6 J 

m 

j - 1 ( t + i - j ) 6 M 

^ 0 ( 6 ) - 0 ( 6 ) • 2 E J-i-l)dsdr 

i=l ( i - 1 ) 6 m=l I 
m 

M j - 1 

^o(6)-o(6) J] 6- J-i-1) 

m = l i = 1 

r^Const. - 0 ( 6 ) •o(6)=o(5). 

The estimate about M is similar to that of M . Here it is 
3 2 

omitted. So we have proved that for t^^r 

「「m 
m p (r，t)-p(r，t) d r — 

Jt 3 

、p义（r，t)-3「2k(s)h(s)p义（s，t-r)dse-、WP)dP d r ^ 0’ 

」0 S J r ^ 
1 

as 0， 

u n i f o r m l y for te[0,r ]. Observe that 
m 

pt 

p_(r,t)-p(r,t) dr 
J o 谷 

t r r 

^ 「 p又 （ r， t ) - 3 「 2 k ( s ) h ( s ) p义 （ s , t - r ) d s e - 丄 d r 
Jo S Jr ^ 

1 

pt「厂2 
+ (3 k(s)h(s) p_(s, t-r)-p(r, t-r) dsdr 

Jo Jr ^ 
1 

<o(6)+Const. Ilp-p J 
O o 
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pt r r 

+ (3 k(s)Ms) ^k(T)h(T) p“T , t - r - s ) - p ( T , t-r-s) dxdsdr 
」0 Jr Jr ^ 

1 1 

• •<o(6)+Const. Ilp-p J 
Oo 

「t r'̂ 2 
+ (3 k ( S ) h ( S )〜( T ) h ( T )… 〜(T)h(T). 
」0 Jr Jp Jr 

1 1 1 

• t-r-s-T- • • • )-p(e, t-r-s-T- • • • ) dxcls • • • dedr 

^o(6)+Const. Ilp-p Jl~ ^ ， (5—>0). 
oo 

In the last step above, we stop the process until t-r-s-x- • • • :<r^. 

The proof is now complete. 

Theorem 3 tells us that the discrete p^(r,t) can be considered 
o 

as the age distribution of the population if the initial discrete 

Pq石（r) is, or in fact p^(i, j), can be considered as the total 

number of individuals aged in [ (i-l)5, 16) and in time period 

[ ( j - 1 J 6 ) if the initial condition i) is the number aged 

between (i-l)5 and id in the time period [0,5). 

5.4 A Finite Difference Scheme for the Logistic Population Model 

In this section we shall design a finite difference scheme for 

the following logistic population model 

aP ir，t) f r，t)-_Wr)pL(r,t)_Kf(N(t))pL(r,t)，〇<r<r，t>〇， 
ot or m -

'pL(r，〇）=p (r), ， 

0 m 

L L 

p (0,t)=^ 〜(r)h(r)pL(r，t)dr, t>0. (24) 
L Jr 1 

where 

pr 

N ( t ) = V ( r， t ) d r， 

J q 
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K is the environmental constant and the logistic function f(^) 

satisfies 

f(?) is continuous differentiable for ^>0； 

f(0)=0, f(?)>0 if ^>0. (25) 

The difference scheme is defined as follows： 

， 

n (l+6Kf(N^(m))) 

m=0 

Pv(i>J) 
PL3(i，J)= , i, J=0, 1, . . .M-1, (26) 

n (l+6Kf(N^(m))) 

^ m = 0 

where t) is defined by (12) and 

M-1 

N°(J)=5 (27) 

i = 0 

Define similarly 

「 P L 3 ( r’ t ) = P L 3 ( i 』 ， f o r (r,t)€l.xl., 

^ N°(t)=N°(J), N ^ U s N ^ J ) ， f o r tel.. (28) 

By lemma 2， for any T>0, there exists a constant C independent of 

6 such that 

t€[0，T]. (29) 

For tel., imitating the proof of proposition 1 we have 

今 ) e - 丁 > (々 P 〜 ( 6 ) . (30) 

Furthermore, if e<5， then 

N^(t)-N^(t) ：̂ N°(t)-N°(t) +o(5) 
o € o e 

丄 p - / K [ f ( N ^ ( p ) ) - f ( N ^ ( p ) ) ] d p 1 
+C e 0 5 c r-1 . 
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t 

^ N°(t)-N°(t) + o ( a ) + C o n s t .「 N H P ) - N L ( P ) dp. 
3 c J 〇 6 P e P P 

Notice that we have used the differentiability of f(?) and the 

z z 

fact that e -1 ：< z e for all complex z. We then can 

establish, by an application of the Gronwal1‘s inequality, that 

|N^(t)-N^(t) ^Const. N°(t)-N°(t) +o(6). (31) 
‘ o c 5 e 

By theorem 3 

lim N°(t)-N°(t) =0， lim N°(t)=N°(t), 

uniformly for t€[O.T ]， and hence 

lim N^(t)-N^(t) =0， lim (32) 

e，办 0 S e ^ 

uniformly for t€[O.T]. Then the Lebesgue dominant theorem shows 

that 

「t L 「t L 
f(N ( p ) ) d p > f(N (p))dp, as 0, V te[O.T]. 

Jq JQ 

Hence t) satisfies 

N L ( t ) = N O ( t ) e - : > ^ ( N L ( P ) ) d P， f ^ r t^[O.T]. (33) 

This means that t) is a continuous function since t) is. We 

know that (33) has only one nonnegat ive continuous solution, so 

N^(t)=N(t) for all t€[0,T]. From theorem 3 and (26), we therefore 

have 

Theorem 4. Let (26) be the difference scheme for equation (23) 

then 

m p -(r,t)-p (r，t) dr as (34) 
J q 

u n i f o r m l y in any bounded time interval, where p(r，t) is the 

solution of (23). 
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5.5 Numerical Simulation 

Take /3=2.2 and the parametric functions are as follows: 

l+sin(^7r)+700000000, 0<x:220, 

p。（r)=- 2 - 1 5 0 ( ^ ^ -0.2) ̂ /9+0. 3xsin(^^^tt) +700000000, 20<x<50, 

2 
I X 2 5 

一 + f +700000000, 50<x<100. 

h ( r 叫 ^ 訓 ， k ( r ) = 0 . 5 . 

L 0， elsewhere. 

r (-15000+-^)x+15, 0<x<10, 

100 
L j ® ^ ’ 10<x<100. 

We obtain the corresponding approximate distribution for 

6=1/30, 1/60, respectively and the approximate critical fertility 

(N=10,1000; step=100, 6 = 1 / N ) .曰 = 6 . 1 9 7 3 7 1 0 

cr 
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C r c r c r 

7.5000000 1.3026290 

6. 3313280 1.339569E-001 

6.2687690 7.139778E-002 

6.2460580 4.868650E-002 

6.2342960 3.692532E-002 

6.2270930 2.972174E-002 

6.2222920 2.492094E-002 

6.2187850 2.141380E-002 

6.2161520 1.878119E-002 

6.2141400 1.676893E-002 
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(1 ) . 

10) 

0 T m ^ r 

Fig.1. p(r,10) for r>10 

(2). 6=1/30 

卞p石（r，10) 

0 100 ^ r 

(3). 6=1/60 

P.(r,10) 
个 d 

—-mm-

— — 

0 100 、 r 
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Chapter 6 

Optimal Birth Control Policies I 

6.1 Intruduction 

A wide variety of problems dealing with biological populations 

and resource management have been formulated in an optimal control 

setting [1,2]. Much work has been done on models described by 

ordinary differential equations. On the other hand, age-structured 

population models involving partial differential equations are 

becoming increasingly emphasized [3-5]. Analysis of such 

distributed systems in the optimal control theory framework has 

only recently been reported [3,6]. In this chapter we shall work 

in the spirit of [3] on optimal birth control policies of the 

human population using the McKendrick type model. We adopt 

Dubovitskii and Milyutin's functional analytical approach [7] in 

the optimization yielding more transparent results. We first study 

the "standard" problem with a free end condition and fixed final 

horizon (time). Other aspects which are not treated in [6], such 

as the time optimal control problem, the problem with target sets 

and the infinite planning horizon case are investigated. The role 

of controllability [9,10] is also discussed. 

6.2 Fixed Horizon and Free End Point Problem 
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Consider the control of the following population distributed 

parameter system [3] 

+ = -/.(r)p(r,t), 0<r<r^,t>0, 

-p(r，〇）=p (r), 0<r<r ， 

0 m 

p(0，t)=/3(t) (r)h(r)p(r’ t)dr， t^O (1) 

L Jr 

1 

in which p(r,t) is the population density, r denotes age, t 

represents time, r ^ is the maximum age, /3(t) is the specific 

f e r t i l i t y rate of females at time t; k(r) and h(r) denote 

respectively, the female ratio and the fertility pattern and 

「r 

is the fertility interval with h(r)dr=l. The initial 

Jr 
1 

population density p^(r) and the mortality rate id(r) satisfy 

「r r^m 
/-i(p)dp< +00 for r< r ， a n d "V(p)dp = +oo. 

」0 m J〇 

General ly speaking, the population parameters jLi(r), k(r) and 

h(r) are time dependent. Here we assume that they are time 

independent functions in order to simplify arguments. However, 

under suitable smoothness assumption, the results obtained for the 

optimal control problems continue to hold. 

For the population dynamical system there are two independent 

controlling variables /3(t) and h(r) (may be h(r，t) and can be 

combined into one ). The latter reflects the fertility pattern of 

the female such as late marriage and fertility. t) reflects an 

average birth rate. We study here under certain demands of the 

society, what the optimal birth policy is. This is an optimal 
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control problem in control theory. We determine necessary 

conditions for the optimal control, extending Pontryagin's maximum 

principle to population systems with distributed parameters. 

Assume that the population parameters in equation (1) are 

nonnegative and are measurable functions. Furthermore, let (3, h, 

and k be bounded functions whose values outside their domain of 

definition are zero. 

By the method of characteristics, the solution of equation (1) 

can be written (formally) as 

「 P o ( r - t ) e - C t " ( P ) d P ， p ^ t , 

p(r’t)二 
p r 

_ |3(t-r) [ 2k(s)h(s)p(s’ t - r M s e — V ( … d p， r < t， （2) 

Jr 

1 

The classical solution of (1) is a solution of ⑵ . U n d e r certain 

smoothness conditions on the population parameters, the two are 

equivalent. For a detailed discussion, see [3]. 

For an arbitrary p (r)€L^(0,r )， equation (2) in r ) has a 

0 m m 

unique solution p(r, t)e C(0, oo； L(0, r ) ； moreover, 
m 

f p(r,t)=Po(r-t)e-Ct_)dP + J t-r 
k = 0 

P s 
0^(t)=/3(t) [ 2 k ( s ) h ( s ) P o ( s - t ) e - : s - t…)dPd s , 

• r 
1 

0 (t)=/3(t)「2k(s)h(s)0 (t-s)e -丁o"(P)d/^ds，k=l,2. . . (3) 
k I k - 1 

r 
1 
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and 0k(t) does not vanish only in [kr^,(k+l)r^]. 

Because of the above reasons, we call the solution of equation 

(2) a weak solution of equation (1). Unless otherwise stated, in 

what follows when we speak of a solution of equation (1) we shall 

mean the weak solution. 

Consider now the optimal control problem： to determine 

来 来 来 
， p ), /3 (•)€ U such that 

ad 

J O ^ P * ) = min J O , p ) , 
I3( • )eU 

ad 

广T r r 

J ( h p ) = m L(p(r，t),射 t)，r，t))drdt + _ ⑴[p(r, T)-p(r) ]^dr 

(4) 

where p(r,t) is the trajectory of the control /3(t)’ p(r)€ L^(0, r ) 
m 

is an arbitrary fixed function and L is a functional defined on 

L^(0,r )x[3 lx[0,r ]x[0,T] satisfing the following conditions： 
m O 1 m 

f 1 ̂  aL(p(r)，口，r，t) aL(p(r)，/3’r’t) . . . r r ^ ^ ^^ 
⑴ . ^ ， 耶 exist for every (p(r),/3，r, t )€ 

L^(0,r ， ] x [ 0， r ]x[0,T] and L is continuous about its 
m O 1 m 

variables. 

⑶ f m aL(P(r)’3，r’t) f m aL(p(r)’/3，r，t) , ^ ^ ^ ^ ^ 
J. a ar, … dr are bounded for te 

J。 冲 J。 叩 

[0,T] and any bounded subset of L^(0,r )x[/3 ’ (S ]x[0,r ]x[0,T]. 
m 0 1 m 

U = i (3(t) 0绍祁（ t )邓， t € [ 0 , T ] a.e, 
ad 0 1 

/3(t) is measurable on [0，T]卜 (5) 

* * 

Let (/3 , p ) be an optimal solution of problem (4) and define 
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the adjoint equation of equation (1) to be 

来 * 

广 dq{r,t) dair t) * ^^^P >，七） 
f - ^ ^ + ， = fi(r)q(r,t)-/3 (t )k(r)h(r)q( t)+ — ， 

‘q(r，T)= p(r)-p*(r,T), 

_q(0,t)= q(t). (6) 

As with equation (1)， we call solutions (weak solutions) of 

equation (6) to be the solutions of the following equation： 

- 工 : - V ( p M p T _ s-t 来 

q(t)=e q(T-t，T)+ e 」0 ⑷ P ^ a p ^ (s)k(s-t)h(s-t)q(s)ds 
n 

「T - 广 V ( p M p 孔 ( P 〜 / ^ V , . ) 
一 e 0 广 r r̂  d s ， 

J ^ 5 p ( s - t , s ) 

q(r,t)=e q(r+T-t,T) 

T r+s-t 

+ r e一丁r M(P)dp3*(s)k(r+s-t)h(r+s-t)q(s)ds 
Jt 

「T ( dUp\fB\-,-) 
- e r r r ds 

」七 5 p ( r + s - t , s ) 

〇 <t< T, 0 r , (7) 
m 

2 
In L (0,r ), equation (6) has a unique solution. 

m 

Firstly, we have the following 

Lemma 1. The solutions of equation (1) and its adjoint equation 

(6) satisfy the following relation： 

「r ^ 

\(r,T)[p(r,T)-p (r，T)]dr 

0 
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「T . 
= q(t)k(r)h(r)p(r，t)[則t)-/3 (t)]drdt 
」oJr 

1 

T r a U p *’ 广 r’t) 耗 
m w 

+ ^ [p(r’t)-p (r,t)]drdt (8) 

」0」0 P 

pr 

Proof. Vr’T)p(r，t)dr (T >r) 
」0 

=，mq(r’T)則T-r) r \ ( T ) h ( T ) p ( T , 
J Q Jr 

1 

T r T-t 

= q(T-r，T)則 t )、\ ( T ) h ( T ) p ( T , t )dTe"^o "(P)dPdt 
Jt_p Jp 

1 

T r T-t 
=‘q(T-r , T ) ^ ( t ) f \ ( T ) h ( T ) p ( T , t ) d T e " ^ o "(P)dPdt 
」0 Jr 

1 

=、[q(t)-r M(P)dp3*(s)k(s-t)h(s-t)q(s)ds 

Jq Jt 

J ̂  9p (s-t,s) 

•/3(t)〜（r)h(r)p(r，t)dr 

Jr 
T 1 
「T A 

= q ( t ) / 3 ( t ) k(r)h(r)p(r, t)dr 
」0 Jr 

1 
+「 T「 T - 产 M P 孔(P〜口*’•，.) , 
+ e 0 广 r r 5 ds 

J QJ^ op (s-t,s) 

•/3(t) k(r)h(r)p(r,t)dr 

Jr 
1 

- 、 r e — 、 "（P)dp3*(s)k(s-t)h(s-t)q(s)ds 
」oJt 

•/3(t) k(r)h(r)p(r, t)drdt 
Jp 

1 
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「T 
= q ( t ) 3 ( t ) k(r)h(r)p(r,t)dr 
Jq Jr 

1 

「T * 「厂2 
/3 (s)q(s)ds k(r)h(r)dr 

」0 Jr 
1 

• ^ "(P)dP|3(t)k(s-t)h(s-t)p(r’t)dt 

」0 

「T 

+ ds k(r)h(r)dr 
Jq Jr 

1 

f - 广 t ( M p S U p〜曰 * ， . ， • ） 
. e 0 h … P ^ , ‘ 8(t)k(s-t)h(s-t)p(r,t)dt 
J Q CP (s-t ,s) 

「T 
= q ( t ) ^ ( t ) k(r)h(r)p(r,t)drdt 

」0 Jp 
1 

T S t 

-‘3"^( s ) q ( s ) d s「e_、 W P ) d P k ( t ) h ( t ) d t 

•/3(s-t) k(r)h(r)p(r,s-t)dr 

Jr 
1 

「T r^ u(p)dp .,•) r 
+ ds e」0 ⑷ ⑷ “ ^ “ B(s-t) \ ( r ) h ( r ) p ( s - t ) d t 
」0 Jq ^P “，S) Jp 

1 

pT pr 

= q ( t ) ^ ( t ) k(r)h(r)p(r,t)drdt 

Jq Jr 
1 

pT * 

- q ( s ) / 3 (s) k(r)h(r)p(r,s)dr 

」0 JQ 

T s aL(p*,/3*, •) 
+ ds — p(r,s)dr 
J 。 J q 冲 （t，s) 

so '"qCr, T) [p(r, T)-p (r,T)]dr 

Jq 
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「T 「厂2 「T * 「s 
= q ( t ) / 3 ( t ) k(r)h(r)p(r, t)drdt - q(s)日（s) k(r)h(r)p(r, s )dr 

0 」0 Jp 

「T * 

- q ( t ) 3 (t) ^k(r)h(r)p(r,t)drdt 

J〇 Jr 
1 

T s aL(p*,^*, •) 

+ ds 5 , 、p(r，s)dr 
Jo Jq 冲 （r’s) 

+ f q(s)3*(s)「k(r)h(r)p*(r,s)dr 
」0 Jr 

1 

T s a L ( p *， 3 *’ •’ •） * 

- d s — p (r，s)dr 

JQ JQ 冲 （。S) 

「T 「T * r^p * 

= q ( t ) / 3 ( t ) k(r)h(r)p(r, t)drdt- q(t)/3 ( t )〜 （ r ) h ( r ) p (r’t)drdt 
」0 Jr JQ Jr 

1 1 
T r 

- q ( t ) | 3 * ( t ) r \ ( r ) h ( r ) [ p ( r , t ) - p * ( r , t ) d r d t 
Jq Jr 

1 

T r aL(p*,3*，•，.） ^ 

+ J 丄 m ^ ^ (… [ P ( r , t ) - p ( r， t ) M r 

T r . 

= ^q(t)k(r)h(r)p(r,t)[/3(t)-^*(t)]drdt 
」oJr 

1 

T r a U p . , 广 • ’ . ） * 

+ m ——^ (r t)[P(r’t)-P (r，t)]dr 

」0」0 冲 （r，t) 

This is Lemma 1. 

It can be easily deduced from Lemma 1 that 

JO,p)-J(/3*,P*) 
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「T「r a L ( p * , / 3 * , . ) 
m 来 

= ^ , , dr [mt)-/3 (t)]dt 

JqLJo 叩 J 

「T 「̂ 2 * * 
- q ( t ) k(r)h(r)p (r, t ) d r [ t ) ( t ) ] d t 
」0 Jr 

1 

「T * * 
- q ( t ) k(r)h(r)[p(r,t)-p (r，t) ]dr[/3( t (t)]dt 
Jq Jr 

1 

4 f m [ p ( r , T ) V ( r， T ) ] 2 d r 

pT r^ , I 

+ [。（p(r,t)-p (r’t))+ o(/3(t)-/3 (t))]drdt. (9) 
」〇」0 

From equation (3), we can show that for T>0 there exists M >0 
1 

such that 

^r T 

m * p p 来 9 

[p(r，t)-p (r,t)]^dr r̂ M (t)]^dt 

Jq IJ〇 
V (/3,p)e U . t€ [〇，T]. (10) 

ad 

In (9)， substitute e/3( t) + ( 1 — ( t ) ， e €(〇，1)， for /3(t)； paying 

attention to (10)， we obtain immediately that (note that the 

integrand is bounded and measurable) 

「 * r^ 3L(p*，广.，.） . 
q ( t )〜 （ r ) h ( r ) p (r，t)dr- m dr 
- Jp 」0 办 （。t)-

1 

• 0， V (Be [/3o，/3i]，t€ [〇，T] a . e ( 1 1 ) 

T h e o r e m 1. The solution of the problem (4) satisfies the maximum 

principle: 

^*(t)H(t)= max /3H(t), V te [0，T] a.e. 

(3 难(3 
0 '1 
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r ^ P * 孔 ( p * ’ / 3 来 ， . ， . ） 

H ( t ) = q ( t )〜 ( r ) h ( r ) p (r’t)dr- dr, (12) 
Jp Jq Ofd ( r， t ) 

1 

from which we have 

「(3。， H ( t ) <0’ 

/ 3 ( t ) -〜， H(t) >0， 

L indeterminate, H(t)=〇， 

H(t) is the switching function. 

6.3 Time Optimal Control problem 

We consider the time optimal control problem for system (1); 

来 来 来 一 

that is, determine T > 0 and ((3, p )e U such that 
ad 

T*=min 川 p(r’T)n V (/3’p)e U 
ad I 

p*(r’T*)n V ^ 0, 

V Il0(r)-p(r)ll ^M, 0, p €L^(0,r ) 
m 

Uad=^(/3,p) I 0< (/3,p) satisfies ( 1 ) 卜 ( 1 3 ) 

来 * * 

If ((3 , p , T ) is the solution of the time optimal control problem 

(13)， then in [9] it is shown that 

f m * * - * * * 
[p (r’T )-p(r)][p (r，T )-p(r，T )]dr >0 

」0 

V 0 , p ) € U a d . ( 1 4 ) 

Define the adjoint equation 

‘ + ^ ^ = ^ ( r ) q ( r , t ) - M t ) k ( r ) h ( r ) q ( t ) , 

^ q(r,T)=p (r,T)-p(r), 

_ q(0,t)= q(t), (15) 

its solution is understood to be as in (7). Combining (14) and 

L e m m a 1, we obtain 
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Theorem 2. (Maximum principle for Time optimal control) The 

time optimal control satisfies the following maximum principle 

/3*(t)H(t)= max /3H(t), V te [0，T] a.e. 

(S啦0 
0 ‘ ' 1 

H ( t ) = q ( t )〜 ( r ) h ( r ) p (r’t)dr. (16) 

Jr 
1 

6.4 Infinite Horizon Problem 

We consider further the optimal control problem on an infinite 

time interval 

pW r 
Min J(/3，p)= Min '"LCpCr, t), t), r, t )drdt, (17) 

I3( • )eU fS[ • )€U」0」0 

ad ad 

with other conditions similar to (4). We will assume that L is 

continuously differentiable with respect to its arguments. 

Moreover, for each admissible (/3, p), the integral in (17) is 

convergent. 

米 * 

Lemma 2. Let O , p ) be the solution of the optimal control 

problem (17). Then for each arbitrary T>〇， (/3*,p*) is a solution 

of the following optimal control problem： 

‘ J r 

J O , p ) = Min ""LCpCr, t),^(t),r, t)drdt, 
(3( ‘ )eU」〇」〇 

ad 

+ = • ) p ( r ， t ) ， 0<r<r^,t>0, 

- p ( r， 0 ) = p (r), 0<r<r ， 
0 m 
* 

p(r，T)=p (r,T), 

p(0, t)=/3(t) (r)h(r)p(r, t)dr, t>0, 

Jr 
1 
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U =j/3(t) 0< (3 ^ /3(t)<^ , t€[0,T] a.e. k (18) 

ad 0 1 • 
A A 

Proof. If not, let 0 , p ) satisfy equation (18), and 

pT r ^ . T r , 

mL(p(r’ t),/3(t)，r, t)drdt < '"LCp^r, t),/3*( t), r, t )drdt, 
」0」0 J〇Jo 

then define 

A 
* r /3(t), 

13 (t)=J , 

_ IS (t), t>T, 

八 

八来 f P(r，t), 0<t<T, 
P ( r ， t 叫 来 

^ p (r,t), t>T. 

(/3*(t),p fr，t)) is admissible and 

This is a contradiction. So, Lemma 2 holds. 

Let X=C(0,T;L^(0,r^) jxL'^CO,!). We consider the necessary 

conditions that must be satisfied for the optimal control problem 

(18). From the definition of solution (2)， each admissible control 

(p,/3)€ X. Define 

n^=^(p(r,t),/3(t))G X te [0,T] a.e. 

广「2 
f2Q=1(p(r’t),/3(t))€ X p +p =-/ip, p(0’t)=/3(t) k(r)h(r)p(r，t)dr, 
2 t r J p 

1 

p(r,0)=p。（r)， p(r，T)=p*(r，T)卜 （19) 

Then problem (18) is equivalent to finding (p，(3 )e Q^nQ^ such 

that 

min (20) 

(p, Q n Q 

This is a minimum problem formed by the inequality constraint 
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and the equality constraint We can use the general theory of 

Dubovitskii and Milyutin for extremum problems. 

Theorem 3. [7]. Let the functional J ^ O , p) assume a local minimum 

at the point (p，/3 ) in Q n n . Assume that J ((S’p) is regularly 
1 2 T 

来 * 

decreasing at (p ,(3 ) with directions of decrease cone K^； assume 

that the inequality constraint is regular at (p*, (3*) with feasible 

directions cone K^, and that the equality constraint is also 
来 来 

regular at (p ,(3 ) with tangent directions cone K^. Then there 

exist continuous linear functionals f^,f^, f^, not all identically 

zero, such that f.€ K. , i=0, 1, 2， a n d satisfy the condition 

fo+ 『2= •• (21) 

We will now determine systematically the corresponding cones 

in problem (20). Under the assumptions for p), the functional 

J ^ O , p) is differentiable at any point ((3^, p^) and 

j"(/3n’pj(p’幻=「YmpL(Po(r，t )，〜(t )，r，t) f t、 

J〇J〇 L ^ 

rp 
+ 「 ^ m 3L(Po(r，t)，/y t)，r，t) 

J〇j〇 耶 m u j d r d t . 

* * 

Since is regularly decreasing at (p , (B ), its directions 

of decrease cone is 

K o H ( P ， 灿 X | J^' 0 卜 (22) 

来 

If K ^ 0, then for arbitrary f G K ， there exists 入之〇 such that 
0 0 0 0 
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f (p 8)=-A「T^mpL(p*(r’t)’/3*(t )，r,t) 
0 ， oJQJO L ^ P (「t) 

+ f f - aL(p*(r,t)./3*(t),r,t) 

」•」• 耶 m u j d r d t . 

Note that Q =C(0,T;L^(0,r ))xQ , ^̂  t )€L~(0，T) (8 J-

1 m 1 1 ' 0 1 • 

is a closed convex subset of L①（0,T). Thus, Q =Cx Q ^ 0, and for 

1 1 
n， a t the point (p ,(3 ) the feasible directions cone is 

I A > 

For an arbitrary f^eK*, if there exists a(t)eL(0,T) such that [7] 

「T 
f (p，/3)= a(t)/3(t)dt (24) 

」0 

then 

a(t)[/3-/3*(t)]>0, V (3€ [/SQ,〜]，t€ [〇，T] a.e. (25) 

In order to determine the tangent directions cone, we define 

the operator 

G : X ~ > C(0,T;L^(0,r )xL^(0,r ))’ 
m m 

by 

「 「 P o ( r - t ) e - C t " … ) d p ， 吼 

G(p，/3)= p(r’t)’ 

_ [_ ̂ t - r ) [ 2 k ( s ) h ( s ) p ( s ， t - r ) d s e - 丄 r < t , 

1 

p ( r , T ) - p * ( r , T ) , 

B y G(p, (3), we can write 

幻 e X|G(p，幻=0 卜 ( 2 6 ) 
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C(P。+仏/3。+g)-G(p。’/3。） 

厂 r 〇， r>t, 
A 

= p ( r， t ) -

r r 

/3o(t-r)J^ 2k(s)h(s)&s，t-r)dse-丄 

- r 
1 

A r p 

m t - r ) J 2k(s)h(s)Po(s，t-r)dse-丄oM(P)dP，r<t, 

r 
、 1 

P (r’T)， 

「 f 〇， r>t, . 

A r r 

+ "] /3(t-r) [ 2 k ( s ) h ( s ) ; ( s , t - r ) d s e - : o W P ) d P， r < t，0， 

Jr 
1 

from which G，（p ,(3 ) exists and 
0 0 

G,(Pq，玲o)(二 h 

「 「 0， 

A 
= p ( r , t ) -

p ^ p 

_ ^^(t-r)J 2k(s)h(s)“s’t-r)dse-T(/(P)d〜 
- r 

1 

/V . r r 
i(t-r) [ ^k(s)h(s)g (s,t-r)dse--^)WP)dP，r<t, 

r 
^ 1 

P ( r， T )， 

Let (p*,/3*) be the solution of (20). Then G(p*,/3*)=0. Choose 

a r b i t r a r y (q(r，t)，g(r))€C(0，T);l2(〇，r )xL^(0,r )， and solve the 
m m 

equation 

G’ (p*，/3*)(p’；) = (q，g). 

Then 

134 



八 

r P(r’ t)=q(r,t), r>t, 

p(r, t )-/3*(t-r) [ \ ( s ) h ( s ) p ( s , t-rOdse—丁 

— 1 

=q(r’t)， r<t, 

A 

. p ( r , t ) = g ( r ) . (27) 

Assume that the linearized system 

「ap(r,t) ^ ap(r，t) r H 4_、 ^ … 
+ ——=-fx(r)p(r, t), 0<r<r^, t>0, 

p(r,0)=0, 0<r<r ， 
- m 

p(0，t)=/3*(t) [ ^k(r)h(r)p(r, t)dr+/3(t) f ^k(r )h(r)p*(r, t )dr, (28) 

、 1 1 

八 

is controllable. Then choose t )=口（ t ⑴ such that 

八 

p(r,t)=g(r)-f(r,T), and let p(r,t)=p(r,t)+f(r,t), here 

* r^p 

f (r, t)=q(r, t) for r>t, and (3 (t-r) k(r)h(r)f (r, t-r)dr for r< t， 
Jr 

1 
八 八 

(p,/3) satisfies equation (27). Now the tangent directions cone K^ 

is formed by the kernel of G，（p’/3). In other words (p,/3), 

satisfying the following equation, belongs to X 

+ ^ E ^ — ^ p ( ⑶ ’ 0<「<、，t>0, 

‘p(r,0)=0， 0 < r ^ r， 
m 

r r 

p(0, t)=/3*(t) f ^k(r)h(r)p(r, t)dr+/3(t) f ^k(r)h(r)p*(r, t )dr, (29) 

L Jp Jp 
1 1 

P(r,T)=0. (30) 

Define 

Kii—(p(r，t)，則t))€X I (p,/3) satisfies equation (29) 

Ki2=H(P(r,t)， |3(t))€X I (p,/3) satisfies equation (30)卜 

Then the tangent direct ions cone 
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K =K +K (31) 
2 11 12 

and 〖11，K^^ are linear subspaces of X. Because 

* * 来 

K =K +K , 
2 11 12 

for arbitrary f € K* f =f + f ， f G K* , i = l , 2 , f = (f，，0)， 
2 2 2 11 12 li 12 12 12 

f： (p(r,t))=0 and for all p(r’t)e C(0,T;L^(0,r )) satisfying 

id m 
p(r,t)=0, there exists a(r)€ L^(0,r ) such that 

m 

‘ r ^ 

f (p，/3)= '"p(r,T)(x(r)dr. (32) 

」0 
From Theorem 3, there exists in X not identically zero linear 

functional f ， f ， f , f such that 
0 1， 11’ 12 

f +f +f +f =0. 
0 1 11 12 

In particular, for /3(t)e L①(〇，T), select p such that (p，/3) 

satisfies (29). Then (p,(3)e K ” and from which 

fi(p，幻=-f。（p，/3)-fi2(P，/3) 

「T 广 m p L ( p * ( r’ t)，3*(t)，r，t) 

一 。」 •」 • L ^ P…，t) 

+ r^r^m aL(p*(r,t),/3*(t),r, t) 

」•」• 耶 日（t)jdrdt 

r 
- m p ( r’T ) a ( r ) d r . (33) 

Jq 

Define the adjoint system 

+ g ^ ^ M ( r ) q ( r ， t ) - / 3 * ( t ) k ( r ) h ( r ) q ( t ) + A : “ : ; ; ， t ) ， 

^ q(r，T)= a(t), 

, q ( 0 , t ) = q(t). (34) 

As in Lemma 1, we can prove 

Lemma 3. The fol lowing relation holds between the solution (p,/3) 
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of equation (29) and the solution of (34)： 

A「T「rm^(p*(r’t)，/3*(t)，r，t) 厂① 

OJQJQ ^ p(r, t )drdt- ""pCr, t )a(r)dr 

JQ 

「T r^o * 

= - q ( t ) | 3 ( t ) k(r)h(r)p (r,t)drdt. (35) 
Jq Jr 

1 

From L e m m a 3, (33) can be written as 

f (p (3)=「Tfx r'^maL(p^r,t),/3*(t),r,t) 

1 , J o L o J q 耶 dr 

* 1 
-q(t) k(r)h(r)p (r，t) |3(t)dt. (36) 

Jr -
1 

Then inequality (25) states that 

^^mT a L(p*(r, t),/3*(t),r,t) ^ 来 

、0 L 。 耶 q(t)k(t)h(t)p*(r, t) >0 

V t€ [0,T] a.e. (37) 

We claim that there can not exist situations in which A^, a(r) 

are simultaneously zero. For then f^=0, q(r, t )= 0， f^=0, 

from which f =0. This contradicts the fact that f， f , f ， f 
11 0 1 11 12 

are not all identically zero. 

O n the other hand, if K^=0 then for arbitrary (p, f B ) e X. 

\「T 广 mpL(p*(r，t)，|3*(t)，r，t) 

oJqJo L ^ P (「t) 

aL(p、r，t),/3*(t)，r,t) 

+ ^ /3(t) drdt=0. 

In particular choose 入 Q = 1， a(r)=〇； then (35) shows that 

137 



A 广广maL(p"V’t),/3"^(t)’r，t) 

oJ。」。 ^ p(r，t)drdt 

「T r^o * 
= - q(t)/3(t) ^k(r)h(r)p (r,t)drdt. 

J Q Jr 
1 

Thus, 

J「「rmaL(p*(r,t)，/3*(t)’r,t) 

JoL」。 d^ 

「广2 * 1 
-q(t) k(r)h(r)p (r,t)dr |3(t)dt=0, V /3(t)e L⑴（0，T)， 

Jp 」 
1 

from which 

J。[ 耶 

r 1 

- q ( t ) [ ^k(r)h(r)p*(r, t) dr=0, V te [〇,T] a.e. 

1 

Therefore, (37) still holds. 

Finally, if the adjoint system 

‘ , M ^ ^ ( , ) q ( r , t ) - M t ) k ( r ) h ( r ) q ( t ) , 
-

八 八 

. q ( 0’t ) = q ( t ) (38) 

A A 
has a nonzero solution q(r,t) (in which case q(r,T)去〇）such that 

八 r 

q(t) [ 2k(r)h(r)p*(r，t)dr=〇， V te [0’T] a.e. 
Jp 

1 
八 

then choose 入o=0， a(r)=q(r，T); we know (37) is still valid. 

八 

Otherwise, if for an arbitrary nonzero solution q(r,t) of 

e q u a t i o n (38) we always have 

p 
八 r 2 * 
q(r，t) k(r)h(r)p ( r , t 〇 ， （39) 

Jr 1 

138 



in which case we say the situation is nondegenerate, then the 

linearized system (28) is controllable. For if not there exist 

a(t)€ L^(0,r ) such that 
m 

pr^ 

"'a(r)p(r,T)dr=0, 〇. 
」0 

A 
Then selecting 入〇=〇 and the solution q(r’t) of equation (34) 

corresponding to a(r) (note that it is also a solution of 

(35)), we have from Lemma 3 

pT A r * 
q(r，t)|3(t) k(r)h(r)p (r，t)dr= 0, V 則 t ) e L⑴（0，T)， 

Jq Jr 
1 

from which 

q(t) k(r)h(r)p (r,t)dr= 0， V t€ [〇，T] a.e. 
Jr 

1 

This is a contradiction. So under assumption (39)the linearized 

system is controllable. 

Under all circumstances, we obtain 

来 来 

Theorem 4. Assume that (p ) is the solution of the optimal 

control problem. Then there exist A > 0, a(r)e L^(0,r )， not 
0 m 

identically zero, such that the following maximum principle holds: 

/3*(t)H max 

‘ (3 P 
0 1 

r^P 

H(p,幻=q(t)/3(t) k(r)h(r)p(r，t)dr-A。L(p，/3,r, t), 
r 

1 

(4。） 

Note. In reference [9]， it is shown that for an arbitrarily given 
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ideal situation p*(r) and e> 0 ， i f the initial function p (r) 
0 

satisfies suitable conditions and provided 

>/3 = r 2 k ( r ) h ( r ) e一 : ( 咖 ^ d r " ! , there exist a control |3(t)eU 

1 cr LJp 」 ad 

1 

and a time T> 0 such that llp(r, T)-p*(r) ll< e. This suggests us to 

pose the following optimal control problem. 

Determine the optimal control (p*,(S*)e X such that 

‘ 来来 T r 
J(p!^*)= Min r r "'L(p(r,t),|3(t),r, t)drdt, 

{3( . JeUacf^O-^O 
5 p ( r , t )丄 ap(r,t) , 、 r 1、 ^ 丄 八 

^ — — d r = -/i(r)p(r, t), 0<广〜，七>〇 

-p(r，〇）=p (r), 0<r<r ， 

O tn 

p(r’T)€ V=^p(r) |llp(r)-p°(r)ll< 

p(0’t)=/3(t) ^k(r)h(r)p(r, t)dr, t>0, 

Jr 
1 

L U 0< ^ /3(t)</3， t€[0,T] a.e. (41) 

a d ‘ 0 1 I 

The assumptions on L are the same as before. Let 

〒 化 ( r , t)，|3(t)€ Xj/B。邓(t)邦 1, t€ [0,T] a.e. 

Q^=^(p(r,t),/3(t))€ X|p(r,T)e 

Q =^(p(r,t),^(t))€ X|p +p =-iLip, p(r，t)=p (r)， 
o t r 0 

p(0, t)=|3(t) k(r)h(r)p(r，t)dr 卜. (42) 
Jr 

1 

Now, the directions of decrease cone and its adjoint are as in 

(22) and (23). Corresponding to Q^ the feasible directions cone 

and its adjoint are as in (24) and (25). Because Q is a closed 
2 
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convex set and 〜 相 ， t h e dual f^ corresponding to its feasible 

directions is a supporting functional, that is, 

f^P，/^) - fgCP*，/^*), V P(r，T)€ V. 

Thus, there exists a(r)e L^(0,r ) such that 
m 

pr 

f ( p’幻 = " W r ) p ( r’T ) d r (43) 
Jq 

Therefore, 

八 来 八 

a ( r ) = 入 0 [ ?。 ( 小 P (r,T)], 入•之〇. 

For Q define the operator G： X > C ( 0 , T； L^ (0, r )) by 
3 m 

「 P o ( r - t ) e - C t W P ) ， r ^ t , 

G(p,^)= p(r，t)’ 
p r 

則t-r)「2k(s)h(s)p(s’ t - r ) d s e - V P ) d P ’ r<t, 
Jr 

1 

(44) 

then Q (p,^) |G(p,^)=Ok As before, 

G，{p* fB*){p,h 

「 0， rst, 

r r 

. /3*(t-r) r 2k(s)h(s)“s，t-r)dse"•丄。M(P)d〜 
= p ( r , t J r 

1 

p r 

m t - r ) r 2k(s)h(s)p*(s,t-r)dse-、M(P)dP，r<t, 

Jr 

L 1 

For an arbitrary g(r，t)e C(0,T;L^(0,r ))， the 
m 

equation 

G, (p*，/3*)(p’0)=g(r, t) 

has a unique solution. Thus, G'(p*,/3*)X=C(0, T; r )). 
m 

Therefore, for Q the tangent directions cone 
3 

K — (p，/3) |G, (p*,/3*)(p,/3)=0[s from which we have 
3 
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来 * 

Theorem 5. Assume that (p ,(3 ) is the solution of the optimal 

A 

control problem (41). Then there exist A^>0, not identically 

zero, such that 

+ g ^ ^ =价 ） q ( r’t ) - / 3 * ( t ) k ( r ) h ( r ) q ( t ) + A : P * ; f ,r’t)’ 

^ q(r,T)=A^[p°(r)-p*(r,T)], 

.q(0’t)=q(t). (45) 

来 * 

(p，/3 ) satisfies the maximum principle 

(p*,/3*)= max /3H 

3。气 (46) 

Here, H曰 is as shown in (40). 

Return to the infinite time problem (17). Assume that 

A +llq (t)ll 2 = 1 . ( 4 7 ) 
OT ^T L (0，T) 、 ) 

The subscripts show the relationship to T. Take T ——> oo such that 
N 

入爪 ^ 入.From ( 6 ) and for fixed t and T sufficiently large t, 
Ui N CO N 

T s-t 

"n Jt ^N 

- 入 「 T ‘ 广 . ， . ) ds 
TN J ^ d p (s-t,s) 

It is easily proven that 

q ——、q( t), as N ——> oo, 

N 

and q(t) satisfies 

q ( t ) = r M(P)dP|3*(s)k(s-t)h(s-t)q(s)ds 

Jt 

,「T - 广 V ( p M p 孔 ( P \ A . ， . ） , 
-A e 0 产 r 卜 5 ds. 

M j ^ d p (s-t,s) 
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Theorem 6. For the optimal control problem on an infinite time 

interval, there exist 入① >0 and q(t), both not identically zero, 

such that 

(p*,/3*)= max /3H (p*,/3*), V t€ [0,T] a.e., 

‘ IS。啊 1 ” 

r^o 

H(p,/3)=q(t)^(t) k(r)h(r)p(r, t)dr-A L(p，/3，r，t), 

Jp 00 

1 

v “ 、 ^ ^ . 

The function q(r，t) satisfies 

+ M £ ^ M ( H q ( r， t ) - / 3 _ ( t ) k ( r ) h ( r ) q ( t ) + A ^ t i p ! / ^ , 
5r at dp 

- q ( r , oo)=0, 

_ q(0,t)= q(t). (48) 

6.5 Results of the Nolinear System with Logistic Term 

In this section we will discuss the control problem of the 

following logistic population distributed parameter system 

aP;[’ t) + 郎 i『’ t) = -/:x(r)p(r,t)-Kf(N(t))p(r,t), 0<r<r^，t>0， 

- p ( r， 0 ) = p (r), 0<r<r ， 

0 m 

「厂2 

p(0,t)=^(t) k(r)h(r)p(r,t)dr, t>0, (49) 

L Jr 
1 

where N(t)= '"p(r, t)dr is the total population at t, K is 

J Q 

an environment constant and the logistic function f(^) satisfies 

f(0)=0, f(?)>0 for ？>0； 
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f(5) is continuously differentiable. (50) 

Since the methods are very similar, we omit the proof and only 

list the results 

It was proved in chapter 2 that for an arbitrary 

p (r)€L2(0,r )， equation (49) in L^(0,r ) has a unique solution 
U m m 

(weak solution exactly) p(r,t)€ C( [0, oo) ； L^ (0, r ) ； moreover, 

m 

'p。（r-t)e-j;;-tW …dPe-J^iKf(mp))dp’ 「之七’ 

p(r，t)=, p 

/3(t-r)[\(s)h(s)p(s’t-r)dse-丄 一 e—丄 2 K f ( N ( p ) ) d p，厂 <七， 
Jr 

、 1 
or 

「p(r， t ) = [ p。 （ r - t ) e - C t W P ) d P （ 卜 广 叫 e—丁 一 

L k = 0 -

r s 

0 力 ) = 則 t ) 「 2k(s)h(s)p (s-t)e-Ts— 

r 
1 

r s 

J ^k(s)h(s)0^_^(t-s)e k=l,2. . . (51) 

r 
_ 1 

and <f) (t) does not vanish only in [kr , (k+1 )r ]. 
k 1 2 

米 来 来 

The optimal control problem is to determine ((3 ,p )’ 曰(• )€U , 
a d 

s u c h that 

J(l3*p*) = min J(/3,p)， 

(3( • )€U 
ad 

「T「r . .r 

J(队 p) = m L(p(r，t)，/3(t)，r，t))drdt + _ ①[p(r, T)-p(r) 

(52) 

As before p(r，t) is the trajectory of the control t), p(r)€ 
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2 
L (0，Pm) an arbitrary fixed function, L is a functional defined on 

2 
L (0,r )x[/3 ]x[0,r ]x[0,T] satisfying the same condition as 

m u 1 m 

previous sections. 

Uad = -j I 3 ( t ) I te[〇，T] a.e, 

^(t) is measurable on [〇，T]卜 （53) 

The adjoint equation of equation (49) is 

来 * 

r aa(r t) d a ( r t) * ^^(p， ( 3 ,r,t) 
q f J + ^ g t = fx(r)q(r，t)-|3 (t)k(r)h(r)q(t)+ 

r 

, +Kf(N*(t))q(r, t)+Kf' (N*(t)) f V ( r , t )q(r, t )dr, 

J〇 

q(r,T)= p(r)-p*(r,T), 

• q(0,t)=q(t). (54) 

As with e q u a t i o n (49)， we take solutions (weak solutions) 

of equation (53) to be the solutions of the following equation 

一 -vf jLx(p)dp _ T _ s-t , . ^ _ 
q(t)=e q(T-t,T)+ e — 」 • … P ) 印 (s)k(s-t )h(s-t )q(s)ds 

Jt 

「T —广 T( M p 产 L(P*，|3V’-) 
- e 0 5 
J ^ L 5 p (s-t,s) 

r -, 
米 rn 米 — 

+Kf，（N (t)) (r,t)q(r,t)dr ds, 
」0 」 

_ -丄Ĵ  + T-t咖 )dp一 
q(r,t)=e q(r+T-t,T) 

T pP+s-t ( ̂  

Jt 

「T - r + s - v ( p ) d p r ^ L ( p * ， / 3 V， . ） 
- e r ^̂  

、t L 召P (r+s-t,s) 
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* 「r * - 1 
+f，（N (t)) (r,t)q(r,t)dr ds, 0<t^T, r ， （55) 

Jq 」 m 

q ( r， t ) = 5 ( r , t ) / > f ( N ( P ) ) d P , t t ⑷ ） d p . 

2 
In L (0,r^), equation (54) has a unique solution. 

Theorem 7. The solution of the problem (52) satisfies the maximum 

principle: 

/3*(t)H(t)= max /3H(t), V t€ [0’T] a.e. 

0 ' 1 

广r。 * 「r 5L(p，(3 , . ) 
H ( t ) = q ( t )〜（ r ) h ( r ) p (r’t)dr- m dr, (56) 

J p J Q o(3 (r，t) 

1 

from which we have 

「 〜 H(t) <0’ 

/S(t)二 /̂ i， H(t) >0, 

L indeterminate, H(t)=〇. 

H(t) is the switching function. 

Lastly we discuss the fixed horizon and target set problems. It 

was proved in chapter 2 that if 射 t)=/3 then there exists a 

constant c such that 

every solution p(r，t) of (49) converges to 

-f /ii(p)dp . . . . .. 
c^e 0 as time goes to infinity 

1im p(r，t)= c e cT t ^ 

t - ^ 

and when lim f(^)=oo, c <oo. This suggests us to pose the following 

optimal control problem： 
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‘ T r 

米 * p p 
J丁(p ’(B )= Min ""LCpCr, t),/3(t),r,t)drdt, 

ad 

+ = -M(r)p(r，t)-Kf(N(t))p(r，t)， 

^ p(r，0)=Po(r)’ 

p(r’T)e V=^p(r) |llp(r)-p°(r)ll< 

「厂2 
p(0，t)=/3(t) k(r)h(r)p(r，t)dr， 

Jr 
1 

L U = 恤 t ) | 0< S < /3(t)</3，t€[0,T] a.e. k (57) 
ad 0 1 堀 

Define the adjoint system 

‘ 时 ⑷ q ( r , t ) + K f ( N * ) q ( r ’ t ) + K f ， （ N * ) f V q ( r ， t ) d r 

JQ 

^ pT ^ aL(p*,/3*,r,t) 

+ K f ’（ N ) q(s)p (0’t) -(S (t)k(r)h(r)q(t)+A ， 

- t ° 昨 

q(r,T)= ^。[p。（r)-p*(r,T)], 

_ q(0’t)= q(t). (58) 

* * 

Theorem 8. Assume that (p ,(3 ) is the solution of the optimal 

A 

control problem. Then there exist 入QZO,入。之。not identically zero, 

such that the following maximum principle holds： 

/3*(t)H max ^H 

丨 3。邓祁1丨 

H(p’ 日）=q(t)/3(t) k(r)h(r)p(r，t)dr-A。L(p’3，r,t)， 

r 
1 

1 * ， 。 ， ( 5 9 ) 

where q(t) is the solution of adjoint equation (58). 
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Chapter 7 

Optimal Birth Control of Policies II 

In chapter 6 we discussed optimal birth control of population 

systems of McKendrick type. The present chapter presents further 

results of current interests. These include problems with free 

final time, of which the minimum time problem is a special case 

(but relaxing many convexity assumptions). Systems with phase 

constraints are also studied. Finally, mini-max control for 

population regulation is characterized. 

7.1 Free Final Time Problem 

Consider the free final time optimal control problem of the 

population control system 

「t r 

Problem (P): Minimize J ( & p ) = "^LlpCr, t),/3( t) )drdt 

J〇J〇 

subject to 

「 a p ( r， t )丄 a p ( r , t ) f ^ r z ^ ^ ^ 
— ^ — — + ——=-/i(r)p(r, t), 0<r<r^, t>0， 

p(r，0)=p (r), 0<r<r ， 
0 m 

p(〇’t)=/3(t) k(r)h(r)p(r, t)dr， t^O, 

Jr 
1 

. p ( r， t i ) = p O ( r ) ， t ^ > 0， / 3 ( t ) € M c 1R+ (1) 
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where L is a function defined on r )xlR+ satisfying 
m 

(1). L(p(r) ,(3) is continuous in (3, 

( 2 ) . is bounded for every bounded subset of 

L^(0,r )x[R+. 
m 

For any measurable function v(s)>0, define the time 

transformation 

pT 

t ( T ) = v(s)ds, t(l)=t , (2) 
」0 1 

and let p(r,T)=p(r,t(x)), 

r /3(t(T))， T€ S ， 

L arbitrary, T€ S^ (3) 

then (p(r, X), /3(T) ) satisfies the following equation 

郎 + v(T)aP •『’ T) = -|^(r)v (T)p(r ,T ) , 0<r<r^, 0<T<1, 

p(r,0)=p (r), ， 

0 m 

V(T)P(0，T)=V(T)/3(T) k(r)h(r)p(r，T)dr, 0<T<1, 

1 

.p(r’l)=p。(r)， (4) 

where | T€[0, 1 ], V(T)>0 

S T € [ 0 , 1 ] , v ( T ) = 0 卜 （ 5 ) 

Conversely, if (p(r, x), (3(T) ) solves equation (4), define 

p(r，t)=p(r，T(t))，^(t)=/3(T(t)), 

T ( t ) = i n f ^ T | t ( T ) = t } ( 6 ) 

then (p(r,t),/3(t)) satisfies equation (1) for t = t ( T ) ， V ( T ) > 0 , but 

pT 

for the monotone function t(T)= V(S)ds, mesj t=t(T) V(T)> 0卜t 
Jo 1 
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� 1 
= v ( s ) d s , so (p(r,t),/3(t)) satisfies equation (1) for t€[0,t ] 
Jq 1 

a. e. 

Based on the above arguments, we consider the optimal (fixed 

final time) problem 

广七1「r 
Problem (Q): Minimize J(/3,p)= "'L(p(r, t), t) )drdt 

Jq J〇 

subject to equation (4) 

来 来 

If (p , (S , t^) solves problem (P), then for any v (T)^0 

p i来 来 

satisfying v (s)ds = t， (3 (x) defined similar to (3), 
」0 1 

来 来 来 

(p (r，T)，3 ( T ) , V ) solves problem (Q). By this /3(T) , we put 

forward another problem as follows 

* A r^ 

Problem (L)： Minimize J(|3，p，v)= 「mv(T)L(p(r, T) ,(ir) M r d i 

subject to 
‘9p(r,T) , 、3p(r，T) , 、 / 、 / 、 ^ 八 . 
^ + v(T) = -iLi(r)v(T)p(r，T)， 0<r<r^, 0<T<1, 

p(r，〇）=p (r), 0<r<r ， 
0 m 

— 来 「 r 

V(T)P(0，T)=V(T)/3*(T) 2 k(r)h(r)p(r,T)dr, 0:£T<1, 
Jp 

1 

.p(r,l)=p。(r )， (7) 

* * 

and (p , V ) solves problem (L). Consider the solution of (7) a s 

that of the integral equation 

r r T r 

• R p ( s ， T ) d s - 「 P (S)DS+R F \(r)h(r)p(r, 
J〇 」0 ° 」0 Jr 

1 

‘ 「r pT 
+ v(^)|Li(s)p(s,C)dsd?, (8) 

- p ( r， l ) = p O ( r ) . (9) 
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Similarly, we consider that the solution of the differential 

e q u a t i o n is equivalent to that of the corresponding integral 

equation. 

Simple arguments can be found that the equation (8) has a unique 

s o l u t i o n on C(0, l;L^(0,r )) and so we take X=C(0, l;L^(0,r ) )x 
m m 

L°°(0，1) as the state space. Define the inequality constraint 

(p(r,T), V(T) )€X|V(T)>0, for T€[0, 1] a. e. }• (10) 

and the equality constraint 

〜H(P(I-，T)，V(T))€X|(P，V) satisfies (8) and (9) [ (11) 

Under these notations, we can write problem (L) as 

* 「1 r̂ ni 来 

f Minimize J(/3 ,p，v)= v(T)L(p(r, T) ,(T) )drdT 
」0」0 

L subject to (p(r，T)，v(T))€ Q^n Q^c X. (12) 

来 A A 
J [(3 ,p，v) is Frech6t different iable at any point (p，v) and 

T W O * w …「l「rm「 3L(p (r,T),3*(T)) 
J O ,p ’ V ) (p, M 0 , 、 

o o J q J O 卜 0 “ ） ^ 

+V(T)L(PO，/3*) drdx ( ⑶ 

* * * 

and so the decreasing direct ion cone of J，（|3，PQ，v。）at (p，v ) is 

K O H ( P ， V ) |J，（/3*,p*,/)(p，v)< Oj^ (14) 

* 

If K ̂  0, then for any f € K , there exists a constant A ̂  0, such 
0 ^ 0 0 0 

that 

f (p,v)=-A ( Y m 〜、「 孔 ( P * ( 口 ) ， 曰 、 , , 
0 0」0」0 V (T) L 而 P(r，T) 

+L(P*，3*)V(T) drdx. (15) 

A 八 

Notice that Q =C(〇，1;L (0，r ) )x Q , Q = 、V(T)€ L'̂ CO, 1) V(T)之 0[ 
1 m 1 1 ' 

o 
八 00 , o 

is a closed convex subset of L (〇，1)， Q =C x Q and so the 
1 1 
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feasible direction cone of at (p*’v*) is 

I A> •卜 （16) 

For any f^e K*, if c(t)€ L(0,1) such that 

� 1 
f (p,v)= c(T)v(T ) d T (17) 

Jq 

then [1] 

C(T) [ V - V * ( T ) ]> 0 , V v € ( 0 , 0 0 )， T € [ 0 , 1 ] a . e . ( 1 8 ) 

In order to determine the tangent direction cone of Q^ at 
来 * 

(p ,v ) ， w e define the operator as follows G: X — — > X 

G(p,v)= 

「「r 「r 「T * r^o 
p(s,T)ds- p (s)ds+ v(?)[p(r,e)-/3 (?) k(r)h(r)p(r,e)dr]d? 

LJo 」0 」0 Jr 
1 

r^r" 0 1 
+ v(?)fi(s)p(s,C)dsd^, p(r，l)-pU(r) (19) 

」0」0 」 

then Q (p, v) | G(p，v)=〇卜 （20) 

* * 

Now G’（p，V ) (p, v)= 

「r T「 

「p(s,T)ds+f [ v (。p * ( r , ? ) + / ( C ) p ( r，⑶ 
LJ 0 J 0 L 

r -| 

Jr -
1 

r T 1 

+ r r iLi(s)[v(?)p*(s,?)+v*(C)p(s,?)]dsde, p(r, 1) (21) 
JqJ 0 」 

and we solve the equation 

G，（p*，v*)(p,v)=(q,g)€ X 

i . e . 
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「r , 「T「 * * 
p(s . T)ds+ [v(C)p (r.C)+v (^)p(r,C)] 

Jq J〇 L 

r 

Jr 」 
1 

「r「T * . 
+ fx(s)[v(^)p (s,^)+v (C)p(s,^)]dsd?=q(r , T ) , 
」0」0 

Lp(r’l)=g(r) (22) 

If the linearized system 

' 5 p ( r , T ) 丄 * ( 、AP(R，T) 广、r , 、 、 、 , 、•！ 
^ ^ + V ( T ) r 朴 ’ = - F I ( r ) [ V ( T ) P (r，T)+v ( T ) p ( r , T ) ] 

* 
(、3p (r，T) 

dr 

‘p(r, 0 ) = 0 , 

r 

V ( T ) P * ( 0 ,T ) + V * ( T ) P ( 0 ,T ) = V ( T ) ^ * ( T ) r ^k(r)h(r)p*(r , T)dr 

Jr 
1 

r 

+V*(T)/3*(T) r ^k(r)h(r)p(r , T)dr (23) 

Jr 
^ 1 

八 

is controllable, then let p(r，T)=p(r,T)+d(r,T)， d(r,T) is 

determined by 

rP 「T * * r^p 
d ( s , T ) d s + V (?) ^k(r)h(r)d(r,?)dr]d? 

Jq JQ Jr 
1 

pr T 来 

+ V (^)/i(s)d(s,^)dsdC=q(r,T) 

」0」0 

八 A A 

(p,/3), (3=曰 solves equation (23) and p(r, 1 )=g(r)—d(r, 1), so (p,/3) 

solves equation (22). In this case, the tangent direction cone of 

来 来 
Q at (p ，v )is determined by 

K — ( p， v ) |G, (p*，/)(p，v)= • 卜 

i . e . 
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+ = -"(r)[v(T)p、r,T)+v*(T)p(r,T)] 

or 
p(r，0)=0， 

P 

- V ( T ) P*(0,T ) + V * ( T ) P(0,T ) = V ( T)/3*(T) f ^k(r)h(r)p*(r, T)dr 

Jr 
1 

r 

+V*(T)^*(T)r ^k(r)h(r)p(r,T)dr 

Jr 

1 

. p ( r , 1 ) = 0 . (24) 

K = K n K , K =•{ (p, v) |p(r, 1 ) = 0 L K consists of such (p’v)€X 

2 1 1 X 2 J. 2 11 

such that 

‘5p(r, T ) 丄 .DPIR, X) 、来,、, 、•！ 

^ ^ V (T) G P ^ = -/I(r)[v(T)p (r，T)+v (T)p(r,T)] 
来 

( . d p (r,T) 
-V ⑴ ar ’ 

^ p(r,0)=0, 

r 

V(T)P*(0,T)+V*(T)P(0,T)=V(T)/3*(T) F ^k(r)h(r)p* (r, T)dr 

Jr 
1 
r 

. +V*(T)/3*(T) r 2K(r)h(r)p(r，T)dr ( 2 5 ) 

Jr 
1 

For any fe K * , f=f +f , f .G K*. , i = l , 2 , 
J 2 11 12 11 11 

r^m P 

f (p,v)= (X(r)p(r, D d r , a(r)€ 1). (26) 

By the Dubovitskii-Milyutin Theorem, there exist functionals f 
* 

K^, i=0, 1, 2, not all identically zero such that 

f +f +f +f = 0. (27) 
0 1 11 12 

In particular for any (p, v) satisfying (25), v)=0, and so 

fi(p，v)=-fo(P’v)-fi2(P’v) 
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「丫mpL(p*(r ,T ) , / 3 * ( T ) ) 年 

。」0」0 L ^ V (T)p(r,T) 

-i r 

+ L ( P* , ^* ) V ( T ) drdx-F "'A(r)p(r, l)dr (28) 
」 」0 

where the solution of (25) is considered as that of the integral 

equation 

「P 「T「 * * 
p(s，T)ds+ [v(^)p (r，e)+v 

」0 」0 L 

r 1 

I ^k(r)h(r)[v(?)p^r,^)+v*(?)p(r,C)]dr d? 
Jp -

1 

fP「T * * 
+ jLt(s)[v(^)p (s,?)+v (^)p(s,^)]dsd?=〇， （29) 

Define the adjoint equation 

‘ + V * ( T ) -^5^^^=v * (T)JLI(r)q(r ,T)-/3 * (T)k(r)h(r)q (T) 

^ +入 0 ， 

q(r,l)=a(r), 

_ v*(T)q(0，T)=v*(T)q(T)， (30) 

and 

m q(s，T)ds=q(r，T). (31) 
Jr 

As lemma 1 of chapter 6， we have 

Lemma 1. The solution of equation (25) and the solution of 

equations (30), (31) have the following relation 

pi fT ^ ^ 
\ m「孔（p (r,T)，(3 (T) ) *(、( 、L 
oJoJo L""“- V (T)P(r，T) drdt 
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- ' ^ a ( r ) p ( r , 1 )dr 

Jq 

A r^r A r 

厂 厂 m 来 八 * r 2 来 
= p (r, T)q(r, T)+/3 (T) k ( r ) h ( r ) p (r，T)q(T) 
J 0 LJ 0 J r 

1 

+ fi(r)p (r，T)q(r’T)dr v(T)dT. (32) 

」0 」 

L e m m a 1 together with (28)and (18) imply that 

、 厂 ① * A 来 * 

p (r, T)q(r, T)drdT+/3 (x) k(r)h(r)p (r, T)q(T)drdT 
1"」0 Jr 

1 

r r -, 
m 来 m 来 

+ M(R)p (r,T)q(r,T)dr—入 L ( p ,(3 )dr [v-v ( T ) ]> 0 
」0 0J〇 」 

for all v> 0. (33) 

It follows from (33) that 

r r 

' m * 八 * r 2 来 
p (r,T)q(r,T)+/3 ( T ) k ( r ) h ( r ) p (r，T)q(T)dr 

Jq Jr 

rn 来 m 来 来 

+ fx(r)p (r’T)q(r,T)dr-A L(P，(3 )dr=0, V T€ S , (34) 

J 0 OJ 〇 1 

r r 
f m * A * r 2 * 

p (r,T)q(r，T)+/3 (T) \ ( r ) h ( r ) p (r，T)q(T)dr 
」0 Jr 

r r 
m 来 rn 来 来 

+ /i(r)p (r,T)q(r,T)dr-A L(p ,(3 )dr>0, V xe S . (35) 
J 0 OJ 0 2 

We say that 入。 and a(r) can not be both zero, since 

otherwise, f =〇，q(s，T)=0， f =〇，f =0 and hence f =0. This 
0 12 1 11 

contradicts the Dubovitski i-Milyutin Theorem. Furthermore, if 

K。=0， take a(r)=0, then (32) implies (33) and hence (34) and 

(35) are valid. Finally, if equation (30) has a nonzero solution 

q(r，T) such that 
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r r 
、m * A * 「 i ? * 

p (r，T)q(r,T)+/3 (T) k(r)h(r)p (r , T)q ( T)dr 
」0 Jp 

1 

pP * 
m * 

+ fi(r)p (r，T)q(r，T)dr=〇， (36) 
JQ 

then take and (33) is also valid. On the other hand, for any 

nonzero solution of (30) 

米 A 来 * 

p ( r’ T ) q ( r， T ) + / 3 ( T ) ^ k ( r ) h ( r ) p ( r ， T ) q ( T ) d r 

」0 Jr 
1 

m * 
+ /^(r)p (r,T)q(r，T)dr* 0, (37) 

Jq 

we call this situation the nondegene r ate case, since here the 

1inearized system must be controllable. This is because 

r 

otherwise there exists a(r)€ L (0, r ) such that '^a(r)p(r, 1 )dr=0, 

and taking 入Q=0，we have a contradiction to (36). Hence, 

no matter what happened, (33) and hence (34) and (35) are always 

valid. 

八 八 

Define q(r,t)=q(r,T(t)), q(r,t)=q(r,T(T)), q(T)=q(0,T(t))， then 

(34) can be written as 

r r 

「m来 八 * r o * 
p (r, t)q(r, t)+/3 (t) k(r)h(r)p (r，t)q(t)dr 

」0 Jr 
1 

r r 
rn 奈 rn 来 来 

+ /^(r)p (r, t)q(r, t)dr-A L(p ,(3 )dr=〇， 
JQ OJQ 

for all te[〇，t^] a. e. (38) 

Choose S^ to be a perfect nowhere dense subset of [0,1] (see 

[1]) and define 
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t 

v * ( x ) = | ^ , Si， 

L 0, xe S =[0,1]\ S . (39) 
2 2 

N o w， a n a l y z i n g the condition (35) as in [1], we can define 

来 

(T) on S^ and get (with the same notation as before) 

m * C P * 

p (r,t)q(r, t)+/3 k(r)h(r)p (r’t)q(t)dr 

」0 Jr 
1 

「r * r ^ 
+ V ( r ) p (r，t)q(r’ t)dr-;v )dr^O, V (Be M, (40) 
」0 OJq 

for all t€ [0,t^]. We have thus proved the following 

T h e o r e m 1. (Maximum Principle) Under the conditions on L mentioned 

in the beginning of this chapter, and let (/3*, p*, t^) be a solution 

of problem (P), then there exist q ( r ， t ) , 入 〇 ， n o t both zero, 

such that 

r r 
「m 来 A 来 广 9 * 

p (r，t)q(r，t)+/3 (t) ^k(r)h(r)p (r, t)q(t)dr 

」0 Jr 
1 

r r 

+ [ "V(r)p*(r，t)q(r，t)dr-A「爪1(口*，|3*)dr=0’ V te [0, t ] a.e. 
J 0 OJ 0 1 

来 来 

！“-入「m[L(P “3 ) + k ( r ) h ( r ) p V , t ) q ( t ) ] d 小 0 ， 
L °」0 L 叩 」 _ 

V (Be M, t€ [〇，t ] a.e. 
1 

where 

^(Hq(r,t)-/3*(t)k(r)h(r)q(t).A 孔(f,口 、 ， 
or ot 0 op 

‘q(r，11 )=(x(r)， 

^ q(0,t)=q(t), (41) 

「 P m 八 
q(r,t)= m q(s,t)ds. 

Jr 
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Note. If the end point condition p ( r , p ° ( r ) is imposed instead 

of 

p(r，ti)€ 〗p(r) I llp(r)-p°(r)ll< (42) 

then a(r) should be taken as a(r)=p*(r,t )-p°(r) and A can be set 
1 0 

to 1. 

Corollary 1. If L=l, then problem (P) is the time optimal control 

problem considered in chapter 6 and the time optimal control 

satisfies the maximum principle 

/3*(t)H(t)= max /3H(t), V t€ [〇,t ] a.e., 
(Be M 1 

P * * p 

H ( t ) = A「 m 孔 ( L ， 3 )-q(t) r 2 k(r)h(r)p*(r，t)dr， (43) 

Jq ‘ Jr 

1 

where t^ is the minimum time. q( t) is the solution of adjoint 

equation (41). 

The result is the same as that of chapter 6 but here the 

convexity assumption on M is not assumed. 

7.2 System with Phase Constraints 

In this part, we consider the optimal control problem of a 

population system with phase constraints 

八 「T r 
Problem (Q): Minimize J(/3’p)= ""QCpCr, t),/3( t), t )drdt (44) 

」〇」0 

under the constraints: 
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r gp(r，t) + ap(r,t) r 、 r _u、 ^ 1 。 

p(r,0)=p (r)， , 
0 m 

p(r, T)=pO(r) ’ 0:^r<r , 
m 

-p(0,t)=/3(t) k(r)h(r)p(r,t)dr, t> 0, 
Jr 

1 

/3(t)e [/^o，〜]for t€ [0,T] a.e. 

「r̂m 

""GCpCr, t), t)dr^ 0, t> 0. (45) 

L」0 

in the class of 

(p(r,t),3(t))e X=C(0,T;L^(0,r ))x L⑴（0，T) (46) 
m 

The time T is fixed. 

Define 

Q ^ H (p(r,t),^(t))€ X I [/3o’~], te [0，T] a.e. ^ (47) 

Q^=^(p(r,t),^(t))€ p(0, t)=/3(t) k(r)h(r)p(r，t)dr， 

r 
1 

p(r,0)=p。（r)，p(r,T)=pO(r)卜 (48) 

广r 

Q =^(p(r,t),/3(t))€ X "t(p(r，t)’t)drs 0 [ (49) 

3 Jo 

T h e n problem (Q) is equivalent to finding (p*，/3*)e Q n Q n Q 
1 2 3 

such that 

J 0 * , p * ) = min J 0 , p ) . (50) 

(P，/3)€ Q n Q n Q 

X ^ «3 

This is a minimum problem formed by the inequality constraints Q^, 

Q and the equality Q . We can use again the general theory of 
3 2 

Dubovitskii-Milyutin for the extremum problem. 

We had already investigated the corresponding cones of Q and 
1 
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Qg of the Dubovitski i-Mi lyut in theorem. Now we need only to consider 

constraint Q Notice that Q can be written as 
3 3 

Qg:朴(r,t),/3(t))€ X| F(p)< 0\- (51) 

where F(p)= max ""cCpCr, t), t )dr and we assume 

0 

(1). ""cCpCr), t)dr is a continuous functional on L^(0,r )x [0 , o o ]； 

fT .r 

(2). '"GCp (r),0)dr< 0’ '"cCp^ (r), T)dr< 0； 

Jo o 」0 

「『m 
(3). G, (p(r),t)dr is also continuous on 0 , r )x [0. co) and 

Jq P m 

G, (p(r),t)dr实 0 if '"G(p(r),t)dr= 0. 
」0 P 」0 

来 来 îf 

Let (13 ,p ) solve problem (Q), then we consider F(p )=0. Since 

otherwise, the feasible direction cone K of Q at (/3*,p*) is the 

3 3 
whole space, i.e. K =X. S o Q — ( p ( r , t ) , 則 t ) ) e X F(p)< F(p*) k 

o o • 

Applying arguments as in [1] we can prove that 

Lemma 2. F(p) is different iable at any point in any direction and 

r 
A pi A 

F，（p ，p)= max "b’（p(r,t),t)p(r,t)dr (52) 
t € S P 

r ^ 

where t€ [0,T] | f "^GCpCr, t), t )dr=F(p) 

」0 

Furthermore, F(p) satisfies a Lipschitz condition in any ball. 

Notice that F，（p*,G’（p*，t))< 0, we know that 
p 
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〖3=仰’/3)€ X| F’（p*,p)< o y (53) 

Define the linear operator A：x~>C[0, T] by 

「r * 
Ap(r’t)=- "b，（p (r，t)，t)p(r,t)dr (54) 

JQ P 

and 

K — y ( t ) e C[0,T] | y(t)之 0, V te S 

then K =^p(r,t)6 X| Ap€ K卜 Since A(-G’（p*(r, t), t) K , S O 
p 

来 来 * . « 

K =A K ’ i.e. for any f€ K there exists a measure dm(t), 

nonnegative and with support on S, such that 

T 
f(p(r,t))= Ap(r, t)dm(t ) =r Ap(r’t)dm(t) 

0 Js 

P pr 
m * 

=- G’（p (r，t),t)p(r，t)drdm(t) (55) 
JsJq P 

Based on t h e previous results, there exist 0, a(r)€ 

L^(0,r ) such that 
m 

UJqJq L 叫 叩 _ 

r"m 「T「r * 
- p ( r , T ) a ( r ) d r + (p (r, t), t )p(r, t )drdm( t) (56) 
Jq 」0」0 P 

where ( p , s a t i s f i e s 

f ap(r,t) ‘ ap(r,t) , , , _ 

- p ( r , 0 ) = 0 , 

p (0’t)=3*(t)r ^k(r)h(r)p(r, t)dr+^(t)f ^k(r)h(r)p*(r,t)dr, (57) 

with the assumption that the decreasing direction cone of J at 

来 来 

(p ) is not empty and system (57) is controllable. 

Define the adjoint system 
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- + G， （ p V， t ) ， t ) ^ ^ ^ , 
p a t 

q(r,T)=a(r), 

^ q(0,t)=q(t). (58) 

The solution of equation (58) should be considered as that of 

the following integral equation 

「R 「R 「r「T r^「T 

- q ( s , t ) d s = - ( x ( s ) d s - [q(s’ T ) - q ( T ) ]dsdT+ / i ( s ) q ( s ’ T ) d s d T 
0 Jq J〇Jt J〇Jt 

r ^ pT * p r T 

- k ( s ) h ( s ) d s (3 ( T ) q ( T ) d T + A ^ dsdx 
Jo Jt oJoJt ap 

pr J 头 m * 
+ G’（p (s，T)，T)dm(T)dr. (59) 

J〇 Jt P 

As before, we have 

Lemma 3. The solution of equation (57) and the adjoint equation 

has the relation 

A 广 广 “ a Q ( p ， t ) p ( r > ’ t ) d r d t - [ ^ ( r , T)a(r)dr 
」0」0 P Jq 

pT r * 
rrj 

+ G，(p (r，t)，t)p(r,t)drdm(t) 
JqJO P 

T p * * P 

= 、 「 m 入广P』，t) - q(t) r 2k(r)h(r)p*(r，t)dr"|/3(t)dt. (60) 
」0匕」0 L o丨 Jp -

1 

Same reason as before, whether or not the decreasing direction 

* * 

cone of J at [p , (3 ) is empty a n d the system (57) is 

controlIable, we always have 

* 来 

T h e o r e m 2. (Maximum principle) Let (p , /3 ) solves the problem 
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(Q), then there exist 入〇-〇，q(t) not both zero, such that 

j-k 来 来 

r m「、aQ(p ，t) ,、广厂2 * 1 * 
. 入 0 d ( S ~ q ⑴ k(r)h(r)p (r’t)dr [ " (t)]> 0 ， 

V t€[〇’T] a.e. (61) 

We can also consider the free final time problem with phase 

constraints 

- 「七1「r 
Problem (W)： Minimize J(/3,p)= ""wCpCr, t ) , t ) , t )drdt 

Jq J〇 

under the constraints: 

+ ^ ^ = — f ^ ( r ) p ( r， t ) , 0<r<r^,t > 0 , 

p(r,0)=p (r), 0<r^r ’ 

0 m 

p ( r , t ) = p O ( r )， 0计计， 
1 m 

‘ p ( 0 , t)=/3(t) k(r)h(r)p(r, t)dr, 0， 
Jr 

1 

/3(t)e M, for te [0，t ] a.e. 
1 

「『m 
""GCpCr, t),t)dr< 0’ t^ 〇. （62) 

L」• 

in the class of 

(p(r，t)，/3(t))eX=C(0，t ；L^(0,r ))xL①（0，t ) (63) 
1 m 1 

The time t is free. 
1 

Following the same lines of reasoning of section 5， we can prove 

* * 

Theorem 3. Let (p , (S , t^) solve the problem (W), then there exist 

2 广r A 
入0，a(r)€ L (0，rj with support on S — t€ [0,T] | ""cCpCr, t), t )dr= 

m JQ 

A 
F(p) J- and a nonnegat ive measure dm(t) such that 
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来 A * f^^ 来 

P (r’ t)q(r, t)+|3 (t) k(r)h(r)p (r’t)q(t)dr 

1 

「『111 * r 
+ "V(r)p (r,t)q(r,t)dr-;\「"V(p*’/3*)dr=0, V te [0,t ] a.e. (64) 
」0 oJq 1 

「 r 「 广 * * 
[日-3、t)] -AQJ^ m )+k(r)h(r)p*(r’t)q(t)]dr>0’ 

L 0 L J 

for all /3€[0o，/V，and te [0’t ] a.e. (65) 

where 

- + G ， ( p * ( r， t ) ’ t ) T 
P at 

q(r, t^ )=(x(r)， 

.q(0’t)=q(t) (66) 

「r̂m 八 

q(r,t)= m q(s,t)ds. 
Jr 

7.3 Mini-Max Problems 

The min-max control problem of population control system can be 

stated as 

广r 

Problem (Y): Minimize F(p)= max "t(p(r，t)，t)drdt (67) 

o<t^t J〇 
1 

with respect to (p(r, t), /3(t) )€ X and t^ under the constraints： 

— ^ — — + = -fi(r)p(r，t)， 0<r<r^, t>0, 

p(r，0)=p (r), 0 < r < r， 
0 m 

- p ( r , t )=pO(r)， 0<r<r ， 
1 m 

p(0,t)=3(t) k(r)h(r)p(r,t)dr, t^ 0, 

Jp 
1 

_ /3(t)e M, for te [0, t J a.e. (68) 
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We only state the results since the proof is similar. 

「r̂m 
Theorem 4. Let "^GCpCr), t )dr be continuously different iable with 

JQ 

「r 
respect to p(r), 0 when G(p(r), t)；^ 0. Let t ) 

Jq P 1 

solve problem (Y), then there exist q(r, t), a(r)€ L^(0,r ) 
m 

and nonnegative measure dm(t) with support on the set 

, r^m * .r 
S — t€ [0,t J I G(p (r,t)，t)dr= max "^GCp (r，t)，t)drdt 

0 o<t<t 」0 
1 

such that 

r r 

「 m * 八 * r p * 
p (r, t ) q ( r , ( t ) k(r)h(r)p (r，t)q(t)dr 

Jq Jr 
1 

+ V ( r ) p (r, t)q(r, t)dr=0, V t€ [0, t ] a.e. (69) 

Jq 1 

r 

f \ ( r ) h ( r ) p * ( r , t ) q ( t ) d r > 0 , 
Jr 

1 

V M, t€ [0, t J a.e. (70) 

where q(r,t) is the solution of the adjoint equation 

- q ( r , t ^ ) = a ( r ) , 

. q ( 0 , t ) = q ( t ) , (71) 

q(r，t)= ^ q(s，t)ds. 

Jr 
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Chapter 8 

Pareto Optimal Birth Control Policies 

8.1 Introduction 

It is well known that multicriteria optimization provides the 

mathematical framework to accommodate the demands of decision 

making when conflicting criteria are involved. In this chapter we 

shall study multicriteria optimization of birth control policies 

for age-structured population system of McKendrick type. It 

involves a distributed parameter system described by a first order 

partial differential equation with nonlocal bilinear boundary 

control. Single objective optimization i.e. optimal control 

problems concerning age-dependent population system have been 

discussed in chapter 6 and chapter 7 (see also [1]). Here we 

incorporate the multicriteria aspect in the optimization. 

The multicriteria optimization problem of population control is 

to determine a weak Pareto minimum of the following criteria, i.e. 

J r 
W-Pareto minimize J.(/3，p)= "̂ L. (p(r, t),/3( t), r, t )drdt 

1 J Q J Q 1 

i=l,2...m, (1) 

for all O , p ) satisfying 
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「 ap(r’t) 5p(r.t) M r “ 
^ + ^ = - ^ i ( r ) p ( r , t), t>〇’ 

p(r,0)=p (r), 0<r<r ， 
0 m 

- P ( r , T ) € Q^ ， 

「广2 

p(0，t)=則t) k(r)h(r)p(r，t)dr， t>0, 
Jr 

1 

L/3(t)e Q =作 （t)|。 邓0雄 （t)绍1，te[0,T] a.e, /3(t) measurable 

( 2 ) 

where p(r，t) denotes the age density distribution at time t and 

age r, is the relative mortality of the population, r is the 
tn 

highest age even attained by individuals of the population, k(r) 

is the female sex ratio at age r, h(r) is the fertility pattern, 

[厂1 r^] is the fecundity period of females with 

h(r)dr=l, 
Jr 

1 

^ is the specific fertility rate of females. The initial 

population density p^(r) is a nonnegative measurable function and 

the mortality fx(r) satisfies 

「r r^m 
fi(p)dp<+co for r<r and "V(p)dp=+oo; 

」0 m JQ 

fi is a convex subset of L^(0,r )• Taking X=C(0,T；L(0,r ))x 

丄 m m 

L⑴(0,T) as the state space, and for a given /3(t)€ Q the solution 

of (2) is considered to be the solution of the integral equation 

「 P o ( r - t ) e - T ! ; - t W P ) d P , r^t, 

p(r, 

^(t-r) r ^k(s)h(s)p(s, r<t, (3) 

Jr 
1 

then p(r，t)e X as long as p { r ) e L^(0,r )，/3(t)€ L⑴(〇，T). We also 
0 m 

170 



assume that 

「r 

(1) t)dr are continuous on (p(r),/3)€ L^(0,r )x R, 

0 m 

r 5L (p(r),/3,r, t) r SL (p(r),/3, r, t) 
f o i J m i 
⑷ ^ clr, dr are bounded for 

Jq dp Jq d(B 

all bounded (p(r)’/3)€ L^(0,r )x[R. In section 8.2 the analytic 

m ^ 

approach of Dubovitskii and Milyutin is adapted for the 

multicriteria optimization. In section 8.3 weak Pareto minimum 

principle for problem with target set and fixed finite horizon is 

developed. New results on problem with nonsmooth criteria are 

presented in section 8.4. 

8.2 Dubovitskii-Milyutin Theorem [2] 

H e r e， w e first generalized the Dubovitski i-Milyut in theorem to 

handle vector minimization problem. 

Theorem 1. Let the vector functional F(x)=(f (x),f (x)，...f (x)) 
1 2 m 

assume a weak Pareto minimum on Q= "^n^Q, at a point x € Q (i.e. 

j = 1 j o 

there is no x€ Q such that f. (x)< f. (x^) for every i-1,2, . . .m). 

Assume that for anyl<i<m, f.(x) is regularly decreasing at x。， 

with directions of decrease K°； the inequality constraints Q ， 
1 j 

J=l， 2，...n， are regular at x , with feasible directions K ; the 
0 j， 

equality constraint Q^^^ is also regular at x。， with tangent 

direction K . Then there exist continuous linear functionals 
n+l 。丄， 

i=l,2,...m, gj, J=l, 2,...n+l, not all identically zero, such that 

0 0* * 

g.€ K. ， Kj， which satisfy the Euler-Langrange equation 
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g? + g二 •.+ g二 + + + + g 。. (4) 
i d m 1 2 n+l 

Proof. We shall first prove that a necessary condition for the 

vector functional to have a weak Pareto minimum at x is (""n^K ) 

0 j=l 
( m yO、 
i S i V = 0. Suppose that this is false, so that there exists he 

K ? ， i = l, 2’...m, he K」，j=l, 2，.. . n+l. By the definition of K。， 

K j， t h e r e exists a neighborhood U of the vector h such that, 

whenever 0<e<e any vector x + eh, heU, lies in n Q and 
0 0 j=l j 

satisfies inequalities f. (x +eh)< f (x )+ea, here a =a (f，x ’ h)’ 

1 0 i 0 i i i，0 

a.<0. Now consider the vector x(e) =x +ch+r(e)€ Q as in the 
1 0 n+l 

definition of tangent direct ions, and let c be such that — r (e) € 
1 G 

- I _ 
U _ h， o r h ( e ) = h + — r ( e ) G U for 〇<e<e . The vectors x(e)=x +ch are, on 

c 1 0 

the one hand, in .n Q., and on the other hand, in Q . I n other 
J=1 J n+l 

words， these vectors satisfy all the constraints. But they also 

satisfy inequalities： 

f. (x + c h ( G ) )< f. (x )+ca < f (x ), i = l’2，...m, 
1 0 i 0 i i 0 

which contradicts the assumption that x。 is a weak Pareto minimum 

point. Thus ('^AJK. )n( .n K°) =0. Now, by definition, K are 

j=i J 1=1 1 ^ i j 

convex open cones with vertex at 〇，and K is a convex cone. 
n+l 

Dubovitskii-Milyutin theorem is therefore applicable, and this 

implies the required result. 

8.3 Weak Pareto Minimum Principle 

Coming back to the problem (1), we consider the situation where 

= i P (r) I P丁（r)e L^(0,r ). (5) 
T ' T ‘ T m 

Define 

172 



Q i H (P(r’t),mt))e X I m t ) e [3o’3i]，t€ [0,T] a.e. 

r 
Q2H(P(r，t),/3(t))€ X|pt+pr=-fip，p(0,t)=^(t) \ ( r ) h ( r ) p ( r , t)dr, 

r Jr 
1 

p(r,0)=po(r)’ p(r,T)=p^(r) }•. (6 ) 

J O , p ) = (J . . . J (/3’p))’ then problem (1) can be state as 

丄 m 

W-Pareto minimize J(/3, p), 

subject to (P,/3)€ Q N Q . (7) 

, 来 来 
Let (/3 ,p ) solves problem (7)，then we have 

Theorem 2. There exist A°>0, i=l,2,...m, q(r,t), which satisfy 

the adjoint equation 

i = l 1 P 

‘q(r , T ) = a ( r ) , 

. q ( 0 , t ) = q ( t ) , (8) 

m 

and X；入0 + lla(r)ll 2, such that 
1 L (O’R ) 

1 — 1 m 

max /3H (/3*,p*), V t€ [0,T] a.e., 

‘ 13 啦(3 
0 ‘ ‘ 1 

广r m r 

H(^,p)=q(t)^(t) \(r)h(r)p(r，t)dr - 則 t ) £ (p，3，r’t)dr’ 

i = i iJq 1 

H (R* n*卜 冊 ( 口 〜P.) ,。、 
V 日 ’ p ) — ^ — • ⑶ 

Proof. We only notice the fact that under the assumptions 

o n J. O , p), i = l,2’...m, J. (/3, p) is regularly decreasing at 

来 来 0 
(p ’ 3 ). Let K. be the directions of decreasing cone of J., then 

173 



if then for arbitrary f°€ there exists a such that 
1 1 i i 

、 o f V m「孔 i ( P， 3， r， t ) * * aL.(p，/3，r，tf * . 
断 P ( r ， t ) + 日 

i = l，2,...m. 

The determination of feasible direction cone of Q^ and the 

tangent direction cone of Q^ are the Just the same as that of 

chapter 6. Proceeding the same lines as in chapter 6, we know 

that there exists a K*, the dual of the feasible direction 

* * m 
cone of Q at (p , (S ), and a(r)€ L^(0,r )， J]入。+ ||“（广）|| 2 ；eo 

1 i L (o，r ) 
1 — 1 m 

such that 

m 。rTrrm「^JP*，0*,r，t) 5L. ( p * , r , t) 

fi(P’幻二！：人^ P ( r , t ) + / 3 ( t ) d r d t 

广r 

- m a ( r ) p ( r , T ) 
Jq 

for all O , p ) satisfying the following controllable system 

r ap(r,t) i ap(r.t) r 、 r P 。 , ^ 

^ p(r,0)=0, 0^r<r ， 
m 

r r 

p ( 0 , t ) = ^ * ( t ) r \ ( r ) h ( r ) p ( r , t ) d r + ^ ( t ) r ^k(r)h(r)p*(r,t)dr, t>0. 

Let q(r，t) be the solution of (8), then (see chapter 6 Lemma 3) 

the following relation holds 

* 来 

m pT r aL. (p ’/3，r’ t) r 

E A" m 1 p(r，t)drdt - V ( r ) p ( r , T ) d r 
i = i 1」0」0 P Jq 

= - q ( t ) 則 t ) 〜 （ r ) h ( r ) p (r,t)drdt. 
」0 Jr 

1 
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Hence we have 

T 「 m r aL (p*’/3*，r’t) 

VP’/3)=J E 入 J m ^ ^ ^ d r 
JQL i = i IJQ ‘ 

* 1 
-q(t) k(r)h(r)p (r，t)dr /3(t)dt. 

Jr -
1 

Since K*, it follows from [2] that 

「 or^m ’ pr * 
E 入， ^ dr -q(t) \ ( r ) h ( r ) p (r’t)dr . 

L i = i IJq 叩 J p -
1 

• [/3-/3*(t)>0, V t€ [O.T] a.e. 

This leads to (9). Following the arguments in chapter 6, we can 

prove that the minimum principle (9) always hold whether or not 

K 卜 0 and the linearized system is controllable. The proof of the 

theorem is thus completed. 

Next, for the situation where 

Q^ is a convex set with ^ 0, (10) 

similar to the optimal control case, we can shown that the minimum 

principle (9) still holds, and the a(r) in the adjoint equation 

(8)， is a supporting functional of convex set Q^ at p*(r,T), i.e. 

r r 
"'a(r)p(r)dr > " V r ) p * ( r , T)dr’ V p(r)e Q , (11) 

JQ JQ T 

and at the same time, we can choose 0 such that 

m 

E 入卜 1. (12) 
i=l 

8.4 Problems with nonsmooth criteria 
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In general, the assumptions (1) and (2) for L. (p(.)，/3), 

i = l,2,...m, may not hold. We are interested in the case that J 
i 

satisfies the Lipschitz condition 

J. 0 , p ) - J , (3,p) |< M [ IIp-pll+11^-^11]. 

Generally, a real-valued function F on a Banach space X is said 

to be locally Lipschitz if any point in X admits a neighborhood U 

such that, for some constant K, for all y and z in U, we have 

f (z)-f (y) I s Kllz-yll. 

For a locally Lipschitz function F and for x。， x in X, F°(x^;x) 

defined as follows is said to be the generalized directional 

derivative in the direction x at x : 
0 

^ F(x +h+tx)-F(x ) 

FO(XO;X) = T H ~ ° _ _ - ° , 

t^o 

h 

we denote by a*F(x^) the subdifferential of the convex continuous 

function •) at 0, that is 

€ X*|F°(x^;x)> 0(x), V x€ X|、 

We call it the Clarke [3] gradient of F at x . 
0 

Lemma 3. [4] Let F: X > IR̂  be a locally Lipschitz function and 

0 — — 
XqG X. If F (x^;x)<0, then x lie in the direction cone of decrease 

of F at X . 0 

Lemma 4. [4] Let F: X > be a locally Lipschitz function and 

X. Define X |fO(XO; x)<0 and assume 5*F(x^), then 

入 y |入之0’ y€ a*F(x^) 
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By Lemma 3 and Lemma 4, we have 

Proposition 1. Let the vector functional F(x)=(f (x) f (x)) 

1 m 
assume a weak Pareto minimum on Q = ""n^Q, at a point x eQ. Assume 

J = 1 J O 

that for any l^i^m, f J x ) are locally Lipschitz function 

O^d f (x ). Let C g°€ a*f,(x ) k then there exist A°>0, 

1 1 1 1 1 1 0 ' I 

• 0 * * 

i = l,2, . . .m, g.€ d f. (x^), g , Kj, the cone defined on theorem, 

such that 

+ V二 + … + 入 m g 二 + g , + …+ gn+1 =。， （ ⑶ 

where 仏 g 》 ^ g . K i = l，2,...m, J = l , 2 , … n + 1 are not identically 

zero. 

As application of these results to the population control 

system we consider the following problem： 

W-Pareto minimize J. O , p ) = G . (p(r, T)), i=l,2, . . .m, 

subject to (2)， (14) 

where G^ is a functional on which satisfies the locally 

Lipschitz condition: 

G . ( p ( r ) ) - G j p ( r ) ) KJIp(r)-p(r) II, (15) 

V p°(r)€ L^(0,r ), p’ p € U， s o m e neighborhood of p°. 

m i r 

By (15), J. is also locally Lipschitz, and by virtue of the 

definition 

J°0*,p*;/3,p)=G°(p*(r,T);p(r,T)), for all (p,/3)e X. 

For any €来€ a*J°(/3*, p*), then for all (p，/3)€ X, 
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In particular t a k i n g p(r，t) with p(r，T)=〇， then ？*(p,/3)<0, and 

hence Since p(r，t) = p(r,T) + (p(r’t) - p(r，T)), so 

€*(p,^)=C*(p(r,T),/3). This says that 

5J°(^*,p*)=aG°(p*(r,T)). (16) 

For any g*e aG°(p*(r, T)), there exists a(r)€ L^(0,r ) such that 
1 m 

* r^m 
g (p)= "'a(r)p(r)dr, for all p(r)€ L^(0,r ). 

JQ tn 

At the same time we see that a{r)e aG°(p*(r, T)). Proceeding same 

as in p r o b l e m ( 1 ) ， w e can deduce the necessary conditions for 

来 * 

， p ) to be a weak Pareto optimal solution of problem (14) as 

follows 

* 来 

Theorem 4. Let ((3 ,p ) be the solution of problem (14), suppose 〇茫 

5G°(p*(r,T)), i = l，2，...m, then there exist A°>0,(x(r)€N , N is 
i • 2 • 2 

T T 

the normal cone of Q at p*(r,T) and a (r)e L^(0,r )’ i = l,2, . . . m, 

T i m 
such that 

玲*(t)H(t)= max /3H(t), V t€ [〇’T] a.e. 

(3 啦(3 
0 ' ‘ 1 

where 

H ( t ) = q ( t )〜 ( r ) h ( r ) p (r,t)dr, 

Jr 
1 

q(t) satisfies adjoint equation 

^ ( r ) q ( r , t ) - M t ) k ( r ) h ( r ) q ( t ) , 

m 

- q ( r， T ) = - X!入.a. (r)+a(r), 
i =1 

_ q(0,t)=q(t), (17) 
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(r), a(r), q(t) can not be identically zero. 

Corollary. If m=l, and p(r，T) is free, then (17) becomes 

M ( r ) q ( r , t ) - M t ) k ( r ) h ( r ) q ( t ) , 

‘q( r , T ) € -3G(p*(r，T)), 

_ q(0,t)=q(t). 

Next, we come back to the problem (1), but now we assume that 

for all there exist functions M (r,t)€ X such that 
i 

L. (p,/3,r,t)-L. (p,/3,r, t) |< M.(r,t)[ | p-p | + | | ] 

for all p,3，p，/3 € [R\ (r，t)€ [〇，r ]x[0,T], (18) 
m 

Under these assumptions J. p), i = l, 2, . . . m satisfy the global 

Lipschitz condition 

J. (p,/3)-J. (p,^) |< K [ (19) 

B y definition 

。 * * — J.(/3+A/3，p+Ap)-J.(/3，"pf 

J . O ,p ；/3,p)= TT¥ . 
1 八 

A A • 来 

(P’/3B(P ) 
入N 0 

T r L. (p+Ap，/3+A队 r，t)-L (p，引 
— m i 1 , 

= lim drdt. 
- - * * J〇J〇 

(P,^)->(P，(S ) 
0 

It is obvious that 

T r r 1 
广广 m f ) 来 米 * * 

L (p (r, t);p(r, t),|3 (t))+L _(p (r’t)，|3 (t);/3(t)) drdt. 

」0」0 L iP 
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Following arguments in [3], we can show that 

* * T r「 

SJ c f f m (p 来 ， a L * (p*,/3'^)ldrdt, (20) 
JqJO L ip 1 0 」 

and hence we have the following 

Theorem 4. Suppose the condition (18) is satisfied, then if (p*,/3*) 

solves problem (1)， then there exist A > 0, i=l’2,...m， e (r t)€ 
• i ip , 

来 * 

aLip(p (r，t)’3 (t))’ aL.^(p^r,t),/3*(t)), a { r ) e such 

that 

r aq(r, t) d q { r , t ) , � ， * m 
^ + gt 二 M(r)q(r,t)-/3 (t )k(r)h(r)q(t)+ I (r.t), 

i = l 1 iP 

‘q(r，T)=a(r)， 

. q ( 0 , t ) = q ( t ) , 

and 

^ * ( t ) H O * , p * ) = max 阳J(3*>p*)’ V t€ [0，T] a.e. 

‘ 13 华 13 口 
0 ‘ 1 

* * r^p * m r̂  
H (/3 ,p )=q(t)〜(r)h(r)p (r,t)dr - Z ^ '"e ̂ (r,t)dr. (21) 

J p i i = i i J Q 
1 
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Chapter 9 

Overtaking Optimal Control Problems with Infinite Horizon 

9.1 Introduct ion 

The problem of controlling and managing age-dependent 

biological population has been studied in an optimal control 

setting in chapter 6 and chapter 7 with a finite or infinite time 

horizon and various terminal conditions (see also [1], [2]). The 

aim of this chapter is to study conditions under which the optimal 

birth control over an infinite time horizon of the McKendrick 

model has a stabilizing effect. As opposed to chapter 6, here, we 

do not a priori assume that the cost functional, an improper 

integral, converges. This leads us to consider a weaker type of 

optimality， known as the overtaking optimality. Such a concept has 

a long history in the economic and operation research literature. 

It is hoped that our study will lead to a proper understanding of 

the open-endedness of the future in age-dependent population 

management. 

Recently in [3], the overtaking optimal control of an infinite 

dimensional linear control system with unbounded time interval has 

been considered. However, the results there cannot be applied 

directly to our situation since the McKendrick model involves a 

bilinear (nonlinear) boundary birth control of a distributed 
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system described by a first order partial differential equation. 

We are, in fact, extending some of the results of [2] to a 

nonlinear case. 

The chapter is organized as follows. In section 9.2 the optimal 

birth control problem is formulated. In section 9.3 the minimum 

principle which must be satisfied by the overtaking optimal 

control is established via an associated finite horizon optimal 

control problem. Section 9.4 deals with the large time behaviour 

of the overtaking optimal trajectory, i.e., the turnpike property. 

Generally speaking, this property says that an optimal trajectory 

on any finite horizon will stay most of the time in the vicinity 

of an extremal steady state and wi 11 ultimsitely converge to it if 

the time interval becomes unbounded. Finally in section 9.5, some 

existence results for overtaking optimal control are presented. 

9.2 Problem Statement 

we consider the population evolution system described by the 

following first order partial differential equation with boundary 

control 

r 5p(r,t) 5p(r，t) 广、, 
+ gp = -/^(r)p(r,t), 0<r<r^,t>0, 

-p(r，〇）=p (r), 0<r<r ， 
0 m 

L p(0，t)=/3(t) k(r)h(r)p(r, t)dr, t>0 (1) 

Jr 

1 

in which p(r，t) is the population density, r denotes age, t 

represents time； r is the maximum age； /3(t), the control 
m 
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variable, is the specific fertility rate of females at time t; 

k(r) and h(r) denote, respectively, the female ratio and the 

fertility pattern； is the fertility interval with 

h(r)dr=l. The initial population density p (r) is a nonnegative 
Jp 0 

1 

function and the mortality rate fi(r) satisfies 

「r 「r 
fi(p)dp <+00 for r< r and V ( p ) d p = +co. 

」0 m J。 

Assume that the population parameters in equation (1) are 

nonnegative and measurable functions. Furthermore, let (3, h, and k 

be bounded functions whose values outside their domain of 

definitions are zero. 

As in chapter 6， we consider the solution of equation (1) to be 

「 P o ( r - t ) e - C t " … ) ， r ^ t , 

p(r，t)二 

r r 

/3(t-r)「\(s)h(s)p(s，t-r)dse -、"（P)dP, r<t. (2) 
Jr 

1 

Then for an arbitrary p (r)€L^(0,r ), equation (2) in L^(0,r ) has 

0 m m 
a unique solution p(r，t)€ C( [ 0, co) ； L^ (0, r )). Unless otherwise 

m 

stated, in what follows when we speak of solution of equation (1) 

we shall mean the weak solution (2). 

Consider now the optimal control problem. The performance of 

the system on any interval [0, t ] is evaluated by the cost 

functional 

「t r 

J O , p , t ) = m L(p(r, t)，/3(t))drdt (3) 

」0」0 
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where L: L^(0,r ) x [ 0 , c o ) > L ^ ( 0 , r ) is a continuously differential 

function. We call 御 〇 ） t h e set of pairs (/3,p) which satisfy 

(1) 气 d 唯 ⑴ I 邦 1, t€[0,co) a.e. ,/3(t) is measurable 

o n [0,oo) y. 

⑵ p(.,•) is given by (2). 

Then /3( • ) is called an admissible control at p。， and p( • , . ) is the 

associated trajectory. 

In this chapter, we consider our problem on an infinite 

horizon, and 

we do not a priori assume the convergence of (3) as 

t " ^ 00. Hence we need to consider the following weaker notions of 

optimality. 

Definition 1. (/3*，p*)e dip^) is overtaking optimal at p^ if for 

any other pair (曰，p)eJ(p。) 

lim [JO,p,t)-J(/3*,p*,t)]> 0. (4) 
t->00 

In other words, for every (p，/3)€ ^^(p^), any fixed T> 0, and every 

c> 0, there exists t with t> T such that 

JO*,p*, t)< J(/3,p, t)+G. (5) 

For any fixed T and an overtaking optimal control pair (/3，p )， 

define the finite horizon optimal control problem： 

Minimize J(/3, p, T), 

subject to 
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r dp{r,t) ^ ap(r，t) r ^ r r. 

p(r,0)=p (r), ， 

O m 

r^o 

p ( 0 , t ) = ^ ( t ) k(r)h(r)p( r ’t)dr, t>0, 
Jr 

1 
^ P(r,T)=p*(r,T)’日（.）€ U . (6) 

ad 

For notational convenience, we denote the infinite horizon 

problem the IHP problem, and the associate finite horizon problem 

the FHP problem. First, we have the following apparent result: 

Proposition 1. If (/3 ,p ) is optimal for I HP, then it is optimal 

for FHP. 

Proof. If (/3*,p*)is not FHP optimal for I HP, then for some 

八 

satisfying (6 )，則•）€ U ’ and some e> 0 we have 
ad 

T r 八 X r 

r m L(p(r,t),^(t))drdt < f「 m L(p*(r,t),/3*(t))drdt-e. 
0」0 J 0 J 0 

Let (/3,p) be defined by 

(/3(t),p(r,t)) = (/3*(t),p*(r,t)) for all t€ (T,oo), 

A A 

= Wt)’p(r，t)) for all te [0,T’],. 

We then have (/3，p)€ dip^) and 

pt r 入 t r ^ * 
L(p(r,t),/3(t))drdt < L(p (r, t),/3 (t))drdt-c 

J qJ 0 J 0 J 0 

for all t^ T. This last statement contradicts the optimality of 

, * 来 

O ，p ). This concludes the proof of the proposition. 

We proved minimum principle for FHP problem in chapter 6 

186 



来 来 

Theorem 1. Let ((3 ,p ) be the solution of FHP, then there exist 

入OT之 0 ,〜 (『) € L ( 0 , r j， n o t both zero, such that the following 

minimum principle holds 

^*(t)H (/3*,p*)= max /3H (/3*p*), V te [0，T] a.e. , (7) 

‘ [3 难 
0 ‘ ‘ 1 

where 

「厂2 
H(/3,p)=q^(t)/3(t) k(r)h(r)p(r, t)dr-A L(p,|3), 

r 
1 

H (R* n Y 洲 ( 广 P*) 
V 曰 ’ p ) — 耶 , 

q丁（t) is the solution of the adjoined equation 

+ ^ ^ ^ = f^(r)q(r，t)-/3*(t)k(r)h(r)q(t)+Ao/L(P 二 p 日、， 

^ q(r,T)= a^(r), 

q(0,t)= q^(t). (8) 

As with equation (1)， we call solutions (weak solutions) of 

equation (8) to be the solutions of 

TT 一 t 
- S ~ f i ( p ) d p T 一 「 s - t * 

q^(t)=e a^(T-t)+J " … 川 P/s (s)k(s-t )h(s-t )q^(s)ds 

-A f ' e - 0 ( p ) d p 孔 〒 I ds， 
OTj^ 5p (s-t’s) 

- , + T - V ( p ) d p 

q(r,t)=e 广 a (r+T-t) 
T 

T 一 「 r + s - t ( . 

+ W p j ^/3*(s)k(r+s-t)h(r+s-t)q (s)ds 

, 「 T + ( ) 
一八一 e r d s , 

OTj ̂  dp (r + s-t , s) 
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0 T, 0 r . (9) 
m 

Proposition 1 tells us that if 0 * , p * ) is optimal for IHP, then 

it must satisfy the minimum principle (7) on [0,T]. (7) is 

equivalent to 

「 * pr 
q丁 ( t )〜( r ) h ( r ) p (r’t)dr- m ———— dr 
_ T JP JQ dp (r,t) _ 

• [/3-/3*(t)]< 0， V I3e [/3，[3 ]，t€ [0，T] a.e. (10) 
0 1 

Since can not vanish simultaneously, so we may 

assume that 11 (入 p (r,0))ll, as T co to be a monotone 
OT T . i 

increasing series, such that 入 " ^ 入 and p (r)—^ a(r) (in the 
OT 00 T 

i i 

weak sense). By (9)， it can be shown easily that 

q^ - > q(t), 

i 

t+r _ ps-t ( . 

q(t)= "" i^o " ⑷ 川 P ^*(s)k(s-t)h(s-t)q(s)ds 
JQ 

.t+r pS-t ( . - aL(p*,/3*) 
- A e 0 d s 

w J t dp 一 s-t，S ) 

t+r -r 一 「 r + s-t f ) 

q(r,t) = e—Jr " … 川 ( s )k( r+s-t )h(r+s-t )q(s )ds 
Jt 

* * 
广 t + r - r pp + s-t (、』aL(p , (3 ) 

- A e r ——；r a s 
CO J t op ( r+s-t，s) 

(11) 

Under the assumption that 

Assumption 1. 
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f m - A U p M P 孔 
J q C 0 I ^ ( r , t ) c i r < c o ’ V t “ 0 , . ) a . e . ， （12) 

equation (11) has a unique solution and q(r, t) is the mild 

solution of adjoint system 

+ = ^ ( r ) q ( r , t ) - M t ) k ( r ) h ( r ) q ( t ) . A ^ ^ t i P ^ 

L q(0’t)=q(t). 

(13) 

Furthermore, if we assume 

Assumption 2. 

1. f m - / ^ ( p ) d p 孔 ( P * ， 口 ^ 
lim e JQF P P ^ ― , “dr = 0. (14) 

t 却 J。 郎 （ r “ ） 

then there is a transversality condition 

q(r,oo)= 0. (15) 

Theorem 2. (minimum principle) Under assumptions 1 and 2, the 

来 * 

overtaking optimal control (/3 , p ) satisfies 

^ * ( t ) H O * , p * ) = max P* )， V t€ [0,oo] a.e., 

‘ {3 难(3 
0 ‘ ' 1 

where 

H(/3,p)=q(t)|3(t) k(r)h(r)p(r, t)dr-A L(p,幻， 

Jr ~ 
1 

H (R* 洲 ( 广 P*) 
V 曰 ， p ) — 耶 ^ , 

and q(t) is the solution of the adjoint equation 
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* 来 

r 5q(r，t) 5q(r,t) , 、 * 己L(p ,(3 ) 
— ^ + g t = l^(r)q(r,t)-/3 (t )k(r )h(r )q( t )+A — — — ， 

‘q( r , oo)=0, 

q(0,t)= q(t), 

where 入 吼 q(t) are not both zero. 00 

9.3 The Turnpike Property 

In this section we investigate the asymptotic convergence 

properties of overtaking optimal trajectories. In the literature 

these are the so-called turnpike properties. We assume the 

following： 

Assumption 3. L(p( • ),/3) satisfies the following growth condition： 

there exist K^>0 and K>0 such that 

r 

K "l(p(r),^)dr ^ K( llp(r) (16) 

Jq 

and L(p( • ),(3) is convex on r )x[/3 , ]. 
m 0 1 

Assumption 4. There is an unique constant c ^ 0, B <8</3 such that 

0 1 

( ‘ 丄 引 d r = min f ^ ^ t c e — 丄 > ( " ) 」 " ， ( 1 7 ) 

JQ C>0 」0 

0 ' 1 

We can now establish the weak turnpike theorem 

Theorem 3. Under Assumptions 3 and 4 if (5(r, t),玲(t) )€54(p〇） is 

such that 
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广 Y m 〜 〜 八 一 

lim ""[LCpCr, t),^(t) )-L(p(r),^) ]drdt=a<oo, (18) 

T 确 0 0 

then necessarily 

r T 
l「m 〜, i、i A, 、 I P - -

p ( r , t ) d r > p(r), — ^(t)dt > (3 (19) 

」0 丄」0 

where ‘ ) = e 々 ( P ) d P . 

Proof. First we show that there exists a constant M >0 such that 

pr^ 〜 一 

p(r, t)dr ^ M , V t>0. (20) 

In fact, by (2) for T >r 
m 

r r r* 

, m p ( r , T ) d r = r m 2 k ( s ) h ( s ) R s , T - r ) d s e - T > ( P ) d P d r 

Jq JQ Jr 
1 

T p T-1 

= 、 m t ) r \ ( r ) h ( r ) p ( r , t ) d r e ~ ^ o "(P)dPcit 
Jt-r Jr 

m 1 

^T-r 」0 
m 

pT _r 
M 〜 

M p(r，t)drdt 
^T-r JQ 

m 
jr � 

where M is a constant. If T >oo such that 爪 )dr—> oo, then 
k 」0 k 

the above expression says that 

k in 〜 
p(r，t)drdt +co as k oo. (21) 

J"! -r J Q 
k m 

Using Jensen's inequality on L 

1 r^v 「r 
+ "^L(p(r,t) J ( t ) ) d r d t 

m Jt -r Jq 
k m 
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r T T 

f k p ( r , t ) d t , 丄 「 k 玲（t)dt)dr 
0 m ^T -r Pm Jt 一 厂 

k m k m 

r . T 1 
^K I I — k p(r,t)dtll^ -> CO, as k CO, 

L tn JT -r 」 
k m 

• ic in 〜 〜 
I.e., lim L(p(r, t),/3(t))drdt=+oo. This contradicts (18)， 

k - ^ ^T - r」0 
k m 

and hence (20) holds. 

A 

Secondly, we show that there exists a constant M such that 

T 
1「上〜 八 

II 〒 p(r，t)dtll < M , V T>0. (22) 
」0 

Suppose the contrary, that there exists a sequence {T } ， T — > oo 
k k 

such that 

T 
1 r k〜 

II J p(r, t )dtll +00, as t — ^ CO. 
」0 

Using Jensen's inequality again on L 

1 「T 广 r 

+ k '"L(p(r,t),g(t))drdt 

k」0」0 

广r T T 

^ p(r,t)dt, -4- m t ) d t ) d r 
」0 k JQ k JQ 

T 
^K 1 1 + r k p(r,t)dtll^ ’ 

L ic」0 J 

we obtain 

「 T ^ r ^ 

K I I 4 -「 k p(r,t)dtll^ - f )dr 
L Tk Jq J Jq cr 

1 r ^ k f r ^ 「 r 八 1 
K "^LCpCr.t) J ( t ) ) - ) drdt. 

丄k」0 LJQ JQ cr J 

This contradicts (18) and so (22) holds. 

Finally, for every z(r)€ C^(0, r ), z(r)=0 on (r ,r ) ， f o r some 
tn C m 
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r <r ’ it can be shown that 
C m 

<p(r,t)-p^(r),z(r)> 

pt^ t 〜 t 

= p ( 0’T ) d T Z ( 0 ) - <M(r)p(r,T),z(r)>dT+ <p(r,T),z'(r)>dT (23) 

0 Jq JQ 

so 

1 〜 

-<p(r,t)-p^(r),z(r)> 

T r 

射 t ) f \ ( r ) h ( r ) p ( r , t)drdt-z(O) 
JQ Jr 

1 
1「T 〜 1「T〜 

-〒 <^(r)p(r,T),z(r)>dT + - <p(r,t)’z’（r)>dT (24) 
0 丄JQ 

来 来 
Suppose (p ) is a weak cluster point of the set 

「1「T〜 1「T 〜 1 
\ (于 p(r,t)dt,+ m t ) d t ) 卜 
L 0 J 

When T goes to infinite in (24)， we have 

</^(r)p*(r)，z(r)> +<p*(r)’z’ (r)>=0 

for all z(r)€cj(0,r). So p * ( r c > 0 . By (18); Jensen's 

「r 
inequality and the continuity of "l(p(r), we see that 

」0 

r r 

"l(p*(r), A d r ^ 办 ) ， 加 r. 

」0 」0 

Therefore, by the uniqueness of (p,引 ，we have 

来 来 _ 

p (r)=p(r), 13 =否， 

and this completes the proof. 

Define the operator A： r ) L^(0, r ) by 
m m 

D ( A ) = U ( r ) 0(r),A0(r)€ L^(0,r ) k (25) 
m • 

then it follows that 
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(r)+/i(r)i//(r), 

D(A*)=^i//(r) |iA(r), A*j//(r)€ L^(0,r ) k (26) 

m ‘ 

By the assumptions already made on L, we know that there exists 

a i/Kr)€ D(A*) such that 

「r 一 一 r 
"l(p(r),^)dr-<p(r), A V ( r ) > , 

」0 」0 

for all p ( r ) > 0 , 辟 ( 2 7 ) 

Let L (p( • >[0,oo) be defined by 
u m 

r「r pP _ _ 

mL(p(r),/3)dr- "^LCpCr), ̂ )dr-<p(r), A*i//(r)>, 
Jq 」0 

L (p( •)，幻二 
0 for all p(r)>0, (3e 

L + 00， otherwise. (28) 

Then L^(p(•),^)=0. Furthermore, L。 also satisfies the growth 

condition: 

K L (p(.)’幻 ^ (29) 

Lemma 1. If an admissible pair ( p ( • , 御 〇 ） s a t i s f i e s 

pW 〜 
L (p( • , t),^(t))dt <00, (30) 

Jo 

then necessarily lip(•，t)ll is bounded for t^O. 

Proof. As in [3], we define 

Q H t ^ T llp(-,t)ll^>K 

T 2 

for each T>0 and similar arguments show that 

lim mes(n )=0. 
T 

T->oo 

Choose t>l sufficiently large so that 

mes(Q )<1. 
T 

Then for each te Q， there exists he [0,1] so that t-h^ Q . Let 
T T 
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(r=t-h, then 

p(r, t)=p(r,cr+h)=S(h)p(r, cr) 

？ ( r - h ’ c r ) e _ C h … ) ， r 也 

r r 
户（h-r)[ 2k(s)h(s)[S(h-r)hs’(r)]dse一丄oWP)dP，r<h. 

Jr 
1 

By this we can show easily that 

llp(-,t)ll < Mllp( • ,(r)ll, M=const. 

This is the desired result. 

Remark. It can be shown that under the condition (18) and the 

assumption of Theorem 2 it follows that 

00 、 

L (p(-,t),g(t))dt < 00 
Jq . 

� 
and therefore llp( • , t) II is bounded for t^O. 

We introduce the set 

G — p ( r ) e L^(0,r ) 3 [口，/3 ] s.t.L (p( • ),/3)=0 J- (31) 
m 0 1 0 

and the following 

Definition 2. Let 歹 be the family of all trajectories p(r,.)之0 

such that 

p(•，t)e G a . e . o n [0，oo). 

w 一 

We say that G has property (for convergence) if p(•，t)— p( • ) as 

t > CO uniformly in 萝. 

The following results are true. 

Theorem 4. Under Assumption 4， if G has the property 罗 and if a 
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feasible pair (p,^) is such that 

「00 

L (p(-,t) J(t))dt<co, (32) 
Jq U 

then, necessarily, p(•，t) converges weakly to p( • ) as t — ^ oo. 

Corollary. In addition to the hypotheses given in Theorem 3, let 

us suppose that there exists a pair (p, d(p^) such that (32) 

holds, then if in the class of all bounded trajectories there 

A 八 

exists an overtaking optimal solution, say (p，/3)，it follows that 

A 

lim p(•，t) = p(.) in the weak sense, 
t - ^ 

Remark. If the system (1) is controllable, i.e. there exist /3(t )€ 

U, and T>0, such that the corresponding trajectory p(r，t) satisfy 

p(r,T)=p(r) 

and define 

「（p〔r，t)，/3(t))， 0<t<T, 
(p(r, t) _ _ 

L (p(r),^), t>T. 

then condition (32) is satisfied. 

9.4 Existence of Overtaking Optimal Solutions 

� ~ 
Assumption 5. There exists (p(r, t), t ^4(p。）such that 

「⑴「Fm〜 〜 
mL(p(.，t)，日（t))dt<c«. (33) 

」0」0 

Theorem 5. Under Assumption 5 there exists an overtaking optimal 

A A 

solution (p，/3). 
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Proof. Let 

^ = inf i "'L(p(r,t),|3(t))drdt, 刺 p ) I. 
L」0」0 0 J 

By assumption, $ is finite. Let (p ,/3 )e dip ) be a minimizing 
n n 0 

sequence. For any fixed T>〇’ since (3 (t)€ ,(3 ] for t之0’ we may 
n 0 1 

八 

extract, if necessary, a subsequence /3(t) such that 

IB ( t ) > / 3 ( t ) weakly in L^(0,T). 
n 

Since 例t)|/3(t)e te [〇，T] a.e. [ is a closed convex 

2 八 

subset of L (〇，T)， it is weakly closed, and hence /3(t)€ [6 , (B ] 
‘ 0 1 

八 

for t€ [0’T] a.e. By (2) p(.’t) > p(.’t) weakly in 
n 

L^(0,T;L^(0,r ) and (p,/3)e ^(p ). By convexity 

m 0 
J r 

mL(p(r，t)，/3(t))drdt 
」0」0 

is weak l.s.c. over T; r ))xL^(0,T). This shows that 
m 

pco r 八 

"'L(p(r,t),/3(t))drdt ^ $ 

」0」0 

A A 
and (p, (3) is an overtaking optimal solution. 
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Chapter 10 

Viable Control Policy in Logistic Population Model 

10.1 Introduction 

Denoting by r the age of some population, 0:^r<oo，t the time, 

p(r,t) the age distribution, /3(r) the fertility function, fx(r) the 

age -dependent mortality function, N(t) the total population, 

f(N(t)) the contribution from population pressure and c(t) the 

age-indiscriminate culling control, which is associated with the 

amount of culling or harvesting in the population system. We are 

concerned with the evolution of the following logistic population 

system with culling control 

p(r,0)=p^(r)， 

、 pOO 
p ( 0， t ) =則 r ) p ( r , t ) d r , 

J〇 

P<» 
N(t)= p(r,t)dr. (1) 

」0 

Firstly, we consider the problem which has been investigated in 

[1], i.e. to determine the conditions under which the population 

system may be steered to a specified population level and held 

there. However the study in [1] appears to be incomplete. 

Specifically, apart from the assumption that ji(r)=a^ is a steady 
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death rate it is asserted that the fertility function ^(r) can be 

approximated by a function of form in the sense that 

• 一 ctr 

|g(r)e -^(r)\<c for all r>0 and the given positive number e>0. 

Here g(r) is a suitable nth degree polynomial and a>0. We know 

that this is possible only for /3(r) decaying to zero exponentially 

as r goes to infinity. In fact it was also stated that fBir) and 

all its derivatives rapidly tend to zero beyond a certain value of 

r. Furthermore, it was claimed that p(t)>p(t) and p (t)<p(t) for 
b 

all t€[0，ti] as obvious facts in the proof of (16) in page 304, 

lines 13 and 18. But these are Just facts required to be proved 

since they are only equivalent to (16). 

10.2. Viable Control 

In view of the above shortcomings, we will approach the problem 

via another route, namely, methods developed in chapter 2. It is 

assumed here that the fertility function /3(r) is a bounded 

measurable function in [0,co) and j i i r ) is locally integrable and 

pOO 

/i(r)dr=oo. ( 2 ) 

Let X=L(0,00) be the state space with the usual norm, the 

population operator A is defined by 

‘ ( r ) - j L i ( r ) 0 ( r ) , V </>€D(A), 

pOO 

• |0’ A<?!>€X, 0(0)=則r)(/>(r)dr}•， （3) 

then the following proposition was proved in Yu et al [2] 

Proposition 1. 
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(i). The operator A is the infinitesimal generator of a semigroup 

of bounded linear operators on X. 

(ii). The spectrum of A consists of eigenvalues of A, i.e. 

(r(A)=(r^(A), which are the zeros of following equation 

1 - (4) 
」0 

(iii). k has only one real eigenvalue A^ great than any real part 

of the other eigenvalues of A. 

(iv). The following asymptotic expression holds 

V (5) 

where C^^O depends only on the initial condition (/>(r) ； C^>0 

provided that meas^r (r)5t0, re[0，oo) }o>0’ and e>0 is a positive 

number such that j 入。-̂ 幼6入<入0 卜 ( 幻 = 0 . 

For the bounded nonnegative measurable control function c(t) 

and differentiable function f(?), using the same arguments as in 

[2], we can prove 

Proposition 2. For any nonnegative initial p^eX, there exists a 

unique solution to equation (1) 

p(r, t)€C(0,co;X) if PQCX; p(r, t)€C^(0,co;X) if where N(t) 

is the unique continuous solution of 

Proposition 3. If 
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lim c(t)=c (8) 

t 却 

and f(^) is continuously differentiable 

f(0)=0, f(?)>0 for ？>0, (9) 

then for all initial value N >0 
0 

lim N(t)=0, if 入 - c 观 （10) 
t->00 

lim N ( t ) = 专 ， i f A -c>0; (11) 

t 咖 

w h e r e 代 丨 f 入o-c 卜 ― 卜 

For P〇€D(A)， (7) implies that 

^ ^ ^ =[g(t)-f(N(t))-c(t)]N(t), (12) 

where g(t)=N^' (t)/N^(t), and we know from [2] that 

lim g(t)=入。 (13) 
t->00 

in a oscillatory fashion. 

Equation (9) is equivalent to (1) through (6) and (7), this is 

the same as that of [1] but it is simple and some strong 

assumptions are avoided. 

In the following， physical requirements lead us to assume that 

the control c(t) is bounded, i.e. 

0<c(t)^b V t>0, (14) 

and f(^) is an increasing function of 良. 

In order to choose the control which bring the population from 

N^>0 to a specified value N >0 in a finite time t and hold it 

steady at that value, we define similarly as in [1] 
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「 c (t) for te[0，t ], 
1 1 

c ( t ) -

_ c (t) for t>t ， (15) 
2 1 

where t and c , c are as yet unspecified. 
1 1 2 

It follows directly from (12) that if N(t)=N* for all t>t , 
1 

then the control c (t) is determined uniquely by 
2 

c。（t)=g(t)-f(N"y (16) 

This is a viable control iff 

0^g(t)-f(N*)<b (17) 

Noticing (13), we see that 

0 “ -f(N*)处 
0 

or 

f(N*) (18) 

This can be considered as a restrict ion on N*. 

Since usually, g(t) tend to A^ in a oscillatory fashion, so we 

only consider the situation 

入o-b< f(N*) <入0. (19) 

If (19) is satisfied, then the possible minimum time in which 

the system can be brought to the level N and held there can be 

chosen to be the largest solution of 

g(t)-f(N*)=0, g(t)-f(N*)-b=0. (20) 

Having determined c (t) and t we now turn to the control which 
2 1 

will bring the population from N^ to N* in a t i m e 、 ( o r longer 

perhaps). 

* 

We assert that it is always possible to choose t ^t^ and a 

来 来 

admissible control Ci(t) bring the state to N in time t . In 
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f a c t， s i n c e A^-b< f(N*)〈入。and f(^) is an increasing function of 

C, there exists a b>0 such that 

0< 入•一5< f(N来） <入0. 丁 

入 T 

i 
f ( N ) T j 

入—b ：： 
° i 丨 i 

丨-z : + 

Firstly, take c^(t)=0, if the corresponding state N(t^)<N* then by 

proposition 3， N ( t ) tends to as t goes to infinity, here 

入 0 (see figure), ^"^N*. By the continuity of N(t), there 
* 

exists t such that 
1 

N(t*)=N*. 

Therefore, the viable control c(t) can be chosen as 

‘ 0 , for t€[0,t*], 

c(t)=-

_g(t)-f(N * ) ， for t>t* (21) 

Secondly, if for c^(t)=0, the corresponding state N(t^)>N*, then 

take A^-b to be the control in t^t^, by proposition 3 the 
* 来 

corresponding solution tends to ^ <N . Hence there exists a t 

such that N(t )=N . In this case the viable control is taken to be 

‘ 0 , 0<t<t , 
1 

c(t)=J A -b, t <t<t*, 
0 1 ， 

、g(t)-f(N〜， t>t*. (22) 

Summarizing, we have proved 

* 

Theorem 1. Let N >0 be a specified value satisfying (19), a 

continuously differentiable increasing function of f(0)=0, then 

for any initial value p eD(A), N >〇，there exist an admissible 
0 0 
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culling control c(t), i.e. c(t) is measurable and 0<c(t)<b for all 

t-0> and a time t such that the corresponding total population 

N(t)=N*, for all t>t*. (23) 

10.3. Minimum Time Problem 

Now, we are interested in the minimum time t* in which the 

population system (12) can be brought to the level N* and held 

there under the assumptions of theorem 1. The existence of t* have 

been proved in theorem 1 and we know from previous discussion that 
* 

t is not less than the largest solution t^ of 

g(t)-f(N*)=0, g(t)-f(N*)-b=0. (24) 

This problem can be written as a standard time optimal control 

problem described by ordinary differential equation： 

minimize J(N(T),T) 

J(N(T),T)=T (25) 

subject to 

^ ^ ^ ^ =[g(t)-f(N(t))-c(t)]N(t), m O ) = N。， 

- g ^ ( N ( T ) , T ) = N ( T ) - N * = 0 ; g^(N(T),T)=T-t^>0, 

.c(t)€[0’b], V t€[0,T]. (26) 

The Hamiltonian function of (26) is 

H ( N ， ^ ’ t，c)=^^. [g(t)-f (N)-c]N. (27) 

In order to apply the Pontryagin's maximum principle [3], we 

assume in the following that the initial value , so that 

g(t) is continuously differentiable. So for the optimal solution 

来 • * 

(T ,c (t),N (t)) of (25)-(26), we deduce from the Pontryagin 

maximum principle a nonzero function 机），te[0，T*]， and constants 

i^o, P， not all identically zero, satisfying 
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r d̂ f̂ t) 来 来 米 来 

(i). I =-[g(t)-f(N (t))-c (t)-f' (N (t))N ( t ) W t ) ’ 

L 少 ( T * ) = - / Y 

来 

(ii). n^c (t)= max fi c; 

ce[o，b] 1 

(iii) -fxJg(T*)-f (N*)-c*(T*) ] ； 

(iv). i^(T*-ti)=0; 

(V). ^(t)[g(t)-f (N*(t) )-c*(t) ]N*(t)=)Li +1； +「*少（s)N*(s)g，（s)ds. 
0 Jj* 

Since 少（t)去0, so ii^^O. A computation shows that (v) is a 

d * 

equivalent to ^ ^ (t)=0 and hence is a consequence of (ii). By 

(ii), the optimal control 

c*(t)=0, for all t€[0,T*] 

or c*(t)三b for all te[0,T*], (28) 

according to or 
来 

If v^O, then the optimal time T we may, through computing 

the values of solutions corresponding to the controls c(t)=0 and 
来 来 

c(t )=b at t^ respectively, determining c (t )=0 or c (t)三 b to be 

the optimal control. 
Considering the situation of v=0, if u =0 then T*=t since in 

0 1 
this case (iii) becomes 

g(T*)-f(N*)-c*=〇， c*=0 or b. 

Reasons same as above lead us to the optimal control. Otherwise, 

来 

we can assume ⑶ a n d (iii) becomes 

g(T*)-f(N*)-c*=C, c*=0 or b. (29) 

* 

This is a necessary condition for T to be the optimal time, but 

unfortunately, we can not determine T* definitely from (29)， the 

reason is that (v) is a consequence of (ii). The only information 

we have is that the optimal culling control is 0 or b. 
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Theorem 2. Under the assumptions of theorem 1’ if the initial 

2 

value P̂ €D(A )， then the optimal culling control which bring the 

total population from N。to N in minimum time is either 0 or b. 
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