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Applications of Clustering Analysis to Signal Processing Problems 

Abstract 

Clustering analysis is the generic name for a wide variety of procedures that can create an 

unsupervised classification. The objective of clustering is to sort the waveform data or feature 

extracted data into groups which have a high natural association among the data members. 

This dissertation is concerned with the application of clustering to signal processing 

problems. 

The first application studied was the problem of reconstructing electrophyiological neural 

spike data. The complex networks of neural cells are studied by physiologists who record 

spike signals using a single microelectrode, Such an electrode will record the spike activities 

of several neurons and the mixed spike trains recordings need to be demultiplexed using a 

clustering analysis methodology. A quantitative comparison of clustering techniques in term 

of accuracy and computational requirements was made. 

The second application was the evaluation of headphone sound quality. A fast and reliable 

technique to identify the best sounding headphones and discover the most important 

measurable parameters was developed. Clustering analysis was applied in such a way that 

similar sounding headphones were clustered into a manageable number of group and samples 

were selected from each groups for subsequent measurement and subjective listening tests. 

Finally, the statistical relationship between perceived sound quality and measured parameters 

was discovered. 
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摘要 

〜.“類聚分析”是一种無需要管理訓練的分類方法°它的算法目的是要把有圖案 

狀態的數据重新排列成几組有高度內部連系的數据組°這論文主題是要將類聚分析方 

法應用于信號處理的問題中。 

第一個應用問題是要重新建立于生理學實驗室內收集的腦神經細胞信號。生理 

學家利用單一微電子探測器收集腦神經細胞信號,然后再用這些信號數据去進行复雜腦 

神經細胞网絡硏究。單一微電子探測器會于同一時間內收集多于一個腦神經細胞所釋 

放出的信號。類聚分析方法能夠將些混集多個腦神經細胞信號重新排列成獨立腦神經 

細胞信號。這頁論文將不同的類聚分析方法在分類腦神經細胞信號應用上的精确性和 

運算速度作深入和全面的比較。 

第二個應用問題是要評估耳机的音質。這頁論文提供了一個有效率和可靠的方 

法去分類出不同音質的耳机以及尋找出最重要的量度數据。類聚分析方法應用于從大 

量耳机中選出最有代表示性的樣品作爲隨后測量和傾听測驗的樣本。最后,本論文利用 

統計學方法尋找和表達耳机音質与耳机量度數据的關系。 
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CHAPTER 1 

Introductions 

1.1 Motivation & Aims 
The aim of this thesis was to verify the applicability of clustering analysis methods in some 

ill-posed signal processing problems in which the optimal solution is still unknown. Signal 

processing problems often involve classifying data from a pool of observations which in most 

cases contain much variability and noise. Clustering analysis can often be used in the analysis 

of such signals, either as a preprocessing step or to directly obtain information from the 

signals. Jn this dissertation, applications of clustering to two signal processing problems are 

presented. 

The first problem was the demultiplexing of mixed neural spike signals recordings into 

separate spike trains. It is an important problem for physiologists who study the complex 

assembly of biological neural network systems. Clustering was performed on the spike signals 

in order to separate the contributions from different neurons. The commonly employed 

clustering techniques include template matching, K-means and artificial neuron networks. Li 

this thesis, a quantitative comparison of different clustering algorithms for this problem was 

performed. 

Another interesting signal processing problem is concerned with quality control in headphone 

production. Headphone sound quality evaluation is a difficult problem since whether a 

headphone sounds 'good' or not is very subjective. Clustering was applied to classify similar 
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sounding headphones into a manageable number of groups so that representative samples 

could be selected for subsequent listening tests and measurements. 

1.2 Contributions 
Techniques of clustering analysis were verified for their ability to solve practical signal 

processing problems, namely the electrophysiological spike discrimination and headphone 

sound quality control problems. 

Multi-neuron extracellular recordings were collected from nervous system of monkey using 

single microelectrode. Four online clustering methods, namely K-means, simple competitive 

learning (SCL), ART2 and online template matching, were tested their ability to demultiplex 

these recordings in term of accurately and reliably. Rigorous comparisons of the clustering 

techniques was given based on their robustness to noise and ability to classify real spike data. 

Also, the feature extraction process using principal component analysis (PCA) was studied 

for its ability in improving accuracy and reliability of classifications. This is the first study in 

which a rigorous comparison of a number of standard clustering techniques was compared in 

this problem domain. It is also the first study to quantify the effects of PCA. 

A method was studied for identifying correlation between subjective listening tests and 

measurable parameters of mass produced headphones. The method can identify parameters 

which directly affect the subjective sound quality of headphones. This makes it possible to for 

a computer to measure the sound quality of headphones. Clustering techniques were applied 

so that a manageable size of representative headphone samples could be selected for listening 

tests. To the best of my knowledge, this is the first published technique for applying 

clustering analysis to help finding a direct link between measurable parameters and subjective 

sound quality. 

1.3 Structure of Thesis 
Firstly an introduction to the electrophysiological spike discrimination problem is presented 

in chapter 2. This chapter begins with an introduction to the cellular physiology, shows 
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mechanism which cause action potentials and describes the recording of multi-neuron spike 

signals using a single microelectrode. Reviews of previous work on demultiplexing mixed 

spike signal are also presented. 

bi chapter 3’ the problem commonly finding correlation of perceived headphone sound quality 

with physical parameters is described. A description of headphone characterization is also 

presented. 

Chapter 4 explains the principle and implementation detail of principal component analysis as 

well as the two categories of clustering methods namely traditional clustering methods 

(template matching and K-means) and unsupervised neural learning (simple competitive 

learning and ART2). 

The experimental setups for spike discrimination and headphone evaluation are presented in 

chapter 5. All of the experimental results are included in chapter 6. The performance of 

different clustering techniques in classifying real spike data is presented, together with results 

of correlating measurable parameters to headphone sound quality. 

Li the final chapter, a summary of the work in this thesis and directions for future work is 

presented. 
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CHAPTER 2 

Electrophysiological Spike Discrimination 

2.1 Introduction 
This chapter begins with an introduction to cellular physiology and the mechanisms 

responsible for the spiking of neurons. The current practice of physiologists in recording 

multi-neuron signals using single microelectrode is then introduced followed by the process 

of demultiplexing multi-neuron data into separate wave trains. Finally, an overview of 

previous work is given. 

2.2 Cellular Physiology 
This section provides an introduction to the cellular physiology. This description is presented 

in a very informal way with an aim to provide only enough material to achieve enough 

understanding of ideas in this thesis and explain some of the basic terminology. There are 

several good introductory textbooks on this topic (Jennett S., 1989; Vander A. J et. al., 1970). 

2.2.1 Action Potential 
The basic processing unit of the nervous system is called a neuron. There is a complex 

network inside the brain and spinal cord of animals. The neurons communicate via electric 

signals in the form of action potentials. All the action potentials starting from a particular 

neuron are identical with the same amplitude, the same duration and propagation velocity. An 

action potential is generated when some chemical component concentrations inside the cell 

reach a predominantly excitatory level. For instance, the normal electrical potential difference 
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of a cell is about -70mV (inner cell potential relative to the outer cell potential). The chemical 

movement between a cell and its surrounding is controlled by the semi-permeable cell 

membrane which is more permeable to K+ ions than to Na+ ions. The inner K+ potential is 

higher than the outside and K+ ions tend to leak out. Na+ ions are also far from equilibrium 

but its inward movement toward the cell is hindered by the low permeability of the cell 

membrane. 

r ^ 
\ neural cell \ 

body _ Na+ ions inflow 
caused by 

j increased 
y^ permeability 

_ ^ 

semi- ^ ^ \ ^ 
permeable ^ ^ . . , 
ceU ^ ^ ^ / " ^ ^ K+ ions outflow caused 
membrane bypotentialgradient 

Figure 2-1: Neural cell body showing K+ and Na+ ions 
movement during depolarization 

Given this background, a sudden increase of permeability to Na+ ions by the cell membrane 

(caused by an extemal excitatory stimulus) can cause a positive swing of charge potential 

inside the cell, which is known as a depolarization (see Figure 2-1). When the degree of 

depolarization reaches a critical level, the cell will respond with an action potential (see 

Figure 2-2). After reaching a maximum potential, the permeability to Na+ decreases sharply 

and the permeability to K+ becomes dominant again and the charge potential retums to the 

normal state. 
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/ / action potential in 
/ / the form of a spike 

inner / 1 
potential of | / 
nerve cell I j 

nonnal — / X ^ _ \ ^ / ^ 
potential 1/ 

Time 

Figure 2-2: Change of inner cell potential and spiking action potential 

2.2.2 Recording of Spikes Activities 
Spikes coming out of a nerve cell can be recorded by measuring the electrical change 

alongside or inside the nerve fibers. Some mammalian cells are large enough for spikes 

recording by inserting a microelectrode inside the cell body. This is called an intracellular 

recording (Figure 2-3). 

^ ^ j V microelectrode to 
~~>>>__________̂  \ > ^ J ^ record spikes 

~̂~~̂^ 
body \ A 

Figure 2-3: Intracellular Recording 
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microeIectrod j 

r v " ^ S ^ r ^ ^ 
neuron 3 V>̂^̂^̂  neuron 1 / 

^ ^ y - A ^ ^ ^ 

( neuron 2 [ 
^ ^ 

Figure 2-4: Multi-neuron extracellular recording using single microelectrode 

The spike activities can also be recorded with electrodes placed outside the cells. This is 

called an extracellular recording (Figure 2-4). Spikes from nearby neurons so recorded have 

to be distinguished from background neuronal activities and noises. Spiking activities from 

one or in most cases several nearby neurons may reach the electrode simultaneously. Spike 

trains recorded in this manner are called multi-neuron extracellular recordings. 

Extracellular recordings of neuronal spiking activity are becoming increasingly important in 

studies of multi-neuronal activity. An increasing number of laboratories are starting to 

conduct multi-neuron experiments in which extracellular recordings are made simultaneously 

from up to 30 individual neurons (Schmidt, 1984b). This kind of experiment provides a direct 

method to determine the basic properties and functions of neuronal assemblies in the brain. 

The neurons to be studied in this kind of experiments are generally close together, probably 

within 100* m of distance (Schmidt, 1984b). Several distinct spike trains may be recorded by 

a single microelectrode. Several neuronal signals from different neurons may enter the 

electrode simultaneously. Each neuronal signal exhibits different spike shapes. Based on 

these factors, it is possible to recognize spike signals originating from different neurons even 

though they are measured from the same electrode. 
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2.2.3 Demultiplexing ofMulti-Neuron Recordings 
If one decides to study the activity of individual neurons and possible interactions, some 

technique must be employed to separate these multi-unit records into single-unit activities. By 

demultiplexing such recordings adequately, these recordings allow the activities of multiple 

closely spaced neurons to be recorded from a single electrode as opposed to the usual case 

where only a single neuron can be monitored. This extra information may be an important 

tool for gaining improved understanding of the interactions between neurons. Also, the yield 

of experiments can be improved greatly since a given electrode can record several individual 

spike trains. 

However, all the above-mentioned improvements can be realized only when a reliable and 

computationally efficient waveform-sorting algorithm is found. It had been extremely 

difficult in the past to measure several closely spaced neurons with the use of several single 

neuron electrodes. Waveform classification is by now the only solution to monitor neuronal 

activities of several spatially contiguous neurons. 

2.3 Application of Clustering for Mixed Spikes Train 
Separation 

The most critical problem in using multi-neuron extracellular recordings is that of 

demultiplexing individual neuronal activities from the recorded spike trains. There are many 

approaches using both software and hardware as discussed in Section 2.4 of this chapter. This 

section presents the basic design principles to discriminate spike signals and discussed the 

applicability of clustering analysis techniques. 

2.3.1 Design Principles for Spike Discrimination Procedures 
Ideally a solution to this spike-sorting problem should have the following features: 

• real-time - use an efficient online computation algorithm to facilitate operation in a real 

time environment 
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• accurate - discard the occasional corrupted spike but form new templates for genuine 

spikes of a new class 

• unsupervised - operate with minimal human intervention 

• adaptive - adapt reference patterns (templates) dynamically to track changes in the shape 

of a spike over time due to movement of the electrodes or changes in the membrane 

potential. 

• cost and convenience — should mn on standard personal computers so no special 

hardware is required. 

Li this thesis, different clustering techniques were employed to demultiplex the spike signals 

in a hope to find the best algorithm satisfying the above design principles. 

2.3.2 Clustering Analysis 
Clustering analysis is the generic name for a wide variety of procedures that can create an 

unsupervised classification (see e.g. Everitt, 1974). Clustering analysis methods empirically 

form groups which have high similarity. Its objective is to sort the waveform data into groups 

such that the degree of natural association is high among members of the same group and low 

between members of different groups. 

Clustering techniques have been widely used in many engineering problems where large data 

sets are difficult to handle and so methods of summarizing and extracting relevant 

information are important. The mixed spike train demultiplexing procedure can be 

accomplished by clustering the different spikes by shape, each different shape assumed to be 

associated with a different neuron. 

When clustering data units, the similarity measure of individuals is usually expressed as 

Euclidean distance. Most traditional clustering methods (like template matching and K-

means) have operational interpretations in this similarity measure (which is the Euclidean 

measure) while others are rather less intuitive, like artificial neural networks (like simple 
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competitive learning and ART2). Refer to chapter 4 for detailed description of the above-

mentioned clustering methods. 

A substantial practical problem in performing a clustering analysis is to decide on the correct 

number of clusters in the data set. Some clustering methods give a configuration for every 

number of clusters from one cluster (the entire data set) up to the number of entities (each 

cluster has only one data member) (see Mirkin B., 1996). Other algorithms decide 

automatically a best fitting number of clusters (like ART2). Some algorithms (the best 

example is K-means) begin with a user-selected number of groups and then find the best 

fitting clustering structures with it. 

2.3.3 Comparison of Clustering Techniques 
One of the goal of this thesis is to present a comprehensive comparison of current clustering 

algorithms feasible for the sorting of spike trains from multi-neuron. Based on the above 

design criteria, four clustering techniques (namely online template-matching, K-means, 

simple competitive learning and ART2) were chosen to be compared in our experiment for 

their feasibility and suitability in sorting out wave trains from the mixed extracellular 

recordings. The comparison is based on computational cost and accuracy. 

2.4 Literature Review 
This section is aimed at provide a throughout review of previous work on discriminating spike 

data using different clustering approaches and implementation hardware. 

2.4.1 Template Spike Matching 
Many different techniques have been proposed for the automatic waveform classification of 

such signals (see Schmidt (1984b) for a review). The earliest techniques discriminated 

between waveforms based on the amplitude of several selected points (Schmidt, 1984a). 

Computer based methods have focussed on template matching in which templates which are 

representative of single neuron spikes are constructed and spikes classified by comparison 

with the templates (Schmidt, 1984b). The experimenter selects a spike as a standard or 
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averages a number of spikes from the database to form the standard spike for comparison. The 

computer then compares this standard to each spike in the record and calculate the degree of 

similarity by making out the weighted mean square difference over all the sampling point of 

the spike. Those spikes showing high similarity with the standard spike are classified as 

coming from the same neuron. For spikes vary significantly from standard spikes and appear 

with considerable frequency, new standard spikes are selected to represent their family in the 

data set. This process will be repeated until as many units as possible are classified. Both 

online and batch (offline), adaptive and non-adaptive methods have been proposed for 

producing templates. The algorithms used have included generating new templates when no 

good match with existing templates are found (Millecchia et al., 1978)，the K-means 

clustering algorithm (Salganicoff et al., 1988, Sama et al., 1988), linear filters (Gozani and 

Miller, 1994) and hierarchical clustering (Fee et al., 1996). 

2.4.2 Reduced Feature Matching 
All the data points (it can be up to 64 data points per spike) of the spikes may not be 

necessary for reliable spike sorting. One technique for reducing a spike to a smaller set of 

features is called principal component analysis. This technique constructs a set of orthogonal 

basis functions or principal components to represent the original spike with the least mean-

square error. Each spike can be represented by the first 2 or 3 principal components of the 

waveforms. Marks (1965) described the way of using a computer preprocessor that used a 3-

channel transversal filter to generate the first 3 components of the spike waveform. Other 

reduced feature matching techniques include amplitude separation (Wyss, U.R. and 

Handwerker, 1971) in which the spike is sorted in terms of peak amplitude. Fourier analysis 

(Bessou, P. and Perl, E.R., 1969) is another feature reduction technique which classifies the 

spike into different categories according to the first few (usually 8) Fourier components of 

sine series of each spike waveforms. Some techniques make use of additional spike properties 

like spike area and rms value along with peak amplitude to improve sorting accuracy. Among 

this variety of techniques, many are computationally expensive. Most of the previous 
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implementations of the system are analog in nature while some of them employ simple digital 

pre-processor before going through the processing stage in computer. The new-coming 

generation of spike sorting system will most probably rely increasingly on high performance 

digital computer systems and hence be digital in nature. 

2.4.3 Artificial Neural Networks 
Various different types of artificial neural networks (ANNs) have also been successfully 

applied to this problem including backpropagation networks (Gozani and Miller, 1994), 

Kohonen Self Organizing Maps (SOM) (Ohberg et. al., 1996) and ART2 networks (Oghalai 

et. al., 1994). Many of these algorithms employ principal component analysis (Schmidt et al., 

1984) as a preprocessing step, serving to reduce the dimensionality of the patterns to be 

clustered as well as extract only the most salient features of the waveform. Some of ANN 

algorithms, like backpropagation, employ a supervised learning rule, which requires an offline 

training stage with a selection of training data set prior the online classification stage (Jansen 

R. F., 1990). SOM and ART2 algorithms employ self-organizing association learning rule and 

in an online fashion. 

2.4.4 Hardware Implementation 
The earliest spike sorting systems were implemented in hardware to meet real-time 

constraints and are analog in nature, however, their accuracy was limited and they did not 

adapt to changing spike pattems. A real time digital system circa 1995 (Gadicke and Albus, 

1995) used two AT&T DSP32C floating point digital signal processing chips per channel to 

demultiplex up to 8 spikes in real-time. Li the past when the speed of microprocessors in 

desktop computers was not fast enough, online computer based methods for spike sorting 

have relied on custom high-speed digital pre-processors to share part of computations so that 

the real-time requirements could be met. When high-speed computers became available to the 

neurophysiologist, numerous complex computational algorithms emerged. Recently, real-time 

implementations based solely on standard personal computers (Ohberg et al., 1996) and 

workstations (Oghalai et al., 1994) have been described. Note that a standard modem desktop 
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or laptop computer (e.g. a 450 MHz Pentium II processor) has much more computing power 

than a DSP32C. High performance computer becomes the main computing hardware for spike 

sorting and the increasing computing resource enhances the application of more sophisticated 

sorting algorithms (like ANN) in the tradeoff of speed to accuracy. 

All of the previously proposed techniques were found to have their own limitation for 

clustering spikes. They also vary in terms of classification accuracy and computational 

requirements. 

2.5 Summary 
This chapter introduced basic terminology in cellular physiology and discussed basic concepts 

in multi-neuron electrophysiological experiments. The application of clustering techniques to 

demultiplex the mixed multi-neuron spike trains was presented. Finally, relevant previous 

research work was presented to conclude this chapter. 
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Chapter 3 

Correlation of Perceived Headphone Sound 

Quality with Physical Parameters 

3.1 Introduction 
Li this chapter, the problem of general sound quality evaluation and difficulties specifically 

related to mass production headphones are presented, bnportant physical parameters for 

characterization of headphones, including frequency response characteristics, harmonic 

distortion and driver voice-coil parameters are introduced and a brief review of the technique 

of statistical correlation is given at the end of the chapter. 

3.2 Sound Quality Evaluation 
The perceived sound quality of audio equipment and its relation to various physical properties 

of audio systems has long been a subject for much discussion and debate (Garbrielsson A. et 

al., 1985 and 1990; Tsujimoto K., 1986; Nakayama Y., 1988; Yajima M., 1997; Thurmond B. 

et. al., 1992 and Tannaka Y., 1990). The sound quality of an audio system is a very subjective 

measure not easily characterized by quantitative measurements. The psycho-acoustical 

properties of sound-reproducing system like loudspeakers and headphones can be studied 

using subjective listening tests in which human subjects are invited to select the best sounding 

headphones solely based on their subjective judgements. The main psychological preference 
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among common listeners to the evaluation of sound quality can be determined by calculating 

the statistical correlation between the listening test results and measurable parameters. 

The perceived sound quality of sound-reproducing system like loudspeakers, headphones and 

hearing aids is multidimensional (Garbrielsson A. et. al., 1990). It depends on a number of 

perceptual dimensions like clarity, fullness, spaciousness, brightness versus dullness, softness 

versus sharpness, absence of extraneous sounds. One method is to use humans to assess the 

perceived sound quality. From (Garbrielsson A. et al., 1985 and 1990)，experienced listeners 

were instructed to rate the sound quality using perceptual scales and evaluative scales 

(fidelity, pleasantness). The possibility of defining a reliable and valid scale of sound quality 

rating was demonstrated. 

The complex relations between the perceived quality and various physical properties of audio 

systems are still largely unresolved. Among all the physical variables, measurement of 

frequency response is most commonly employed design technique. For audio system 

engineers, the flatness and extent of frequency response is usually considered to be critical to 

good sounding performance. There have been many studies on the importance of frequency 

response characteristics (Charles S. and Gengel R. W., 1969; Moller H. et. al., 1995; Harrison 

J., 1996; Kates J. M., 1984; Harwood H. D., 1976; Tannaka Y. et. al., 1989 and Garbrielsson 

A. et. al., 1990). Garbrielsson et. al. (1990) showed that largely different frequency responses 

can affect all perceived sound quality dimensions in his designed listening. A criterion for 

evaluating loudspeaker performance based on frequency response measure and auditory 

central spectrum model was presented by Kates (1984) and the audibility of phase-frequency 

effect in loudspeakers was studies by Harwood (1976). To date, solid evidence of the ability 

of frequency response to discriminate between good and poor sounding audio equipment has 

not been found. More research is required to show how the frequency response can affect 

their corresponding overall psycho-acoustic performance. 

Other commonly used design criteria include Thiele-Small parameters and harmonic 

distortion. The most well known technique is frequency response control of loudspeaker 
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systems using Thiele-Small parameters for vented box (Small, 1973) and closed box (Small, 

1972) loudspeakers. Following Small's work, Leach (1979) presented a technique to 

determine Thiele-Small parameters from the specifications of moving-coil drivers, that is the 

system cutoff frequencies, volume of the cavity behind driver, driver area and system 

electrical impedance. Leach's work further enhanced design of loudspeaker system from the 

specification of moving coil drivers. There are also design techniques based on minimization 

of distortion effects. Birkett and Goubran (1996) proposed a method to compensate for 

nonlinear elements in loudspeaker systems by improving the acoustic echo canellation at high 

frequencies using a nonlinear adaptive filter. Other approaches include using a second order 

Volerra compensators, a feedforward nonlinear digital inverse circuit, for reduction of second 

order harmonics (Schurer H. et. al., 1995) and distortion-canceling differential amplifier 

circuit (Goto T. et. al., 1975). 

It is very difficult to implement an efficient and reliable quality control procedure for audio 

equipment. It has in the past been done by quality control personnel listening to test signals. 

The sound quality evaluation technique by listening tests has the shortcoming that human ear 

perception has great variation among different people. Fatigue and emotional change can also 

alter the judgement result. Therefore, reliance on single person's judgement in this quality 

evaluation process is unreliable. Multiple test subjects (subject number most possibly in order 

of tens) are needed when conducting listening tests to average out individual variation among 

the test group, achieving a more reliable judgement than a single quality controller. 

Techniques to select samples precisely and highly simplify the evaluation process are 

necessary to optimize the production process. 

A factory may produce millions of headphones annually so the headphone evaluation process 

must be highly efficient and automatic with minimum human intervention. An automatic 

quality control system can speed up the feedback mechanism of the production quality status 

and other relevant information to the production line. If significant correlation between 
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subjective listening test result and some physical parameters can be found, this discovered 

knowledge can greatly improve the yield rate in further production. 

3.3 Headphone Characterization 
This section describes the basic terminology used in characterizing sound quality of 

headphones. It is aimed at providing enough information to understand the ideas of this thesis 

and many simplifications have been made in the description. 

3.3.1 Frequency Response 
Frequency response parameters are most frequently used when comparing the sounding 

quality of different audio equipment. The amplitude, phase, delay and transient response 

characteristics are interrelated and this means that changing one of the parameters can affect 

the others. For audio system engineers, the flatness and extent of the frequency responses is 

usually considered to be critical to good psycho-acoustic performance. 

Frequency response is most commonly measured by performing a Fourier transform (Kreyzig, 

1980) on the impulse response of the system (S.R.L. A., 1998). 

3.3.2 Harmonic Distortion 
Harmonic distortion parameter is a direct function of a system's non-linearity. It is one of the 

most important parameters of audio amplifiers. For a pure linear system, an input single-tone 

signal will give rise to a linearly generated output. The output signal is of the same frequency 

as the input signal. 

T ylT1fi 3JT 
s i n ( t ) • System • A s i n ( t + d ) 

A, d are constants 

Figure 3-1: Linear system 
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Figure 3-2: Non-linear system 

Non-linearity gives rise to output signal components at multiple frequencies of the input. The 

frequency component at the first multiple (2fo) of the input signal frequency (fo) is called the 

second harmonic while the component at the second multiple (3/o) is known as the third 

harmonic. The power of harmonic component with a unit power input signal is a measure of 

system distortion. The total harmonic distortion (THD) is the sum of the distortion signals at 

all harmonic frequencies. 

3.3.3 Voice-Coil Driver Parameters 
An electrical equivalent circuit of a voice-coil driver is shown in Figure 3.3. R[ is the dc 

resistance of headphone voice coil, Rg is the output resistance of power source, CMEs is the 

electrical capacitance due to the drive mass, LcEs is the electrical inductance due to driver 

compliance and Rss is the electrical resistance due to the driver suspension. 
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Rg Rn 

Opower CMES LcEs Rfis 

source ^-y^ *-y^ '-y^ 

Figure 3-3: Electrical equivalent circuit of voice-coil driver (Small, 
1972) 

The resonant frequency, F ,̂ of a voice-coil driver is the frequency at which the impedance-

frequency characteristic function (a second-order function) of the voice-coil driver in free air 

has the maximum magnitude and zero phase (Small, 1971). It is also the frequency at which 

the maximum power is output from the driver. Figure 3.4 shows a typical amplitude-

frequency plot of a driver. The acoustic output remains relatively constant at frequencies 

higher than F .̂ The acoustic output reaches a maximum value at Fs. At frequencies below F ,̂ 

the output power goes down sharply. 

^ k Resonant frequency f � 

广\ 
Amplitude / 

^ • 
Frequency 

Figure 3-4: Resonant frequency in amplitude-frequency plot 

The ratio of reactive energy to resistive (or damping) energy in an electrical system is referred 

to as Q. Driver voice-coil is partially characterized by its Q value in the electrical equivalent 

circuit. High-Q voice-coils have relatively large amounts of reactive energy and have higher 

tendency to ring. They tend to have heavy moving mass and stiff suspensions and relatively 
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small voice-coil driver. The reverse is true for low-0 drivers. Low-0 drivers tend to be 

damped and sound tight. They have lighter cones, soft suspensions, and magnetically strong 

driver. 

QEs is the ratio of voice-coil dc resistance to the reflected motional reactance of the driver 

(Small, 1972) at F^. It refers to the total Q of voice-coil driver at frequency F^ considering 

only electrical resistance in the driver electrical equivalent circuit and is given by (Small, 

1972): 

QES = 2. FsCuES^E 

Qus is ratio of driver electrical equivalent frictional resistance to the reflected motional 

reactance of the driver at F .̂ It refers to the total Q of driver at frequency F^ considering only 

non-electrical resistance in the driver electrical equivalent circuit and is given by (Small, 

1972): 

Qus - 2* Fs CMES^ES 

Qrs is ratio of driver total electrical equivalent resistance (both Rs and Rss in Figure 3.3) to 

the reflected motional reactance of the driver at F .̂ It refers to the total Q of driver at 

frequency F^ considering all system resistance in the driver electrical equivalent circuit and is 

given by (Small, 1972): 

Q _ Q-ES QuS 
'''QES^QMS 

The measurement of driver voice-coil parameters ( ¾ F ,̂ Qes，Qms , Qts , J^ik and Liok) was 

based on derivation from impedance-frequency response of the driver (Small, 1972). For 

details of the measurement system, please refer to CLIO operator's manual (A.S.R.L., 1998). 

3.4 Statistical Correlation Measurement 
This section presents the basic concept of statistical correlation relevant to this thesis. 

3.4.1 Correlation Coefficient 
When two variables are closely related, like the height and weight of a human, they are 

statistically correlated. The correlation coefficient r is a single figure of merit to measure the 
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degree of statistical correlation between two random variables. The correlation coefficient r 

between two sets of variable, X and Y is given by the ratio: 

厂 二 cov(x, y) 
^v3i(x).wax(y) 

where x and }； are samples of variable X and Y, and n is the number of samples of variable X 

and Y, and cov(x, y) 二（[ (x, - 'x){y. - y))/n 

var(_x) = ( ^ (x. - x f ) ! n 

var(3;) = ( ^ ( j , . -yY)!n 

where n is the number of samples taken for variable X and Y and 

X and y are mean of variable samples x and >̂. 

The value of r lies between -1 and 1. Statistically independent variables will yield zero for the 

covariance value, so r is zero. The absolute covariance value of a pair of linearly related 

variables can be decomposed into the product of variance of the variables. Therefore, a closer 

value of r to +1 indicates a stronger positive linear relationship between variable X and Y\ the 

closer is r to -1, the stronger is the negative linear relationship between X and Y. 

3.4.21 Test for Correlation Coefficients 
The t test is a hypothesis test for a small number of samples. From elementary statistics (e.g. 

Williams, 1996), the t test for testing correlation coefficients of a two sets of variable samples 

is given by: 

^ _ r4{n — 2) 

' V o ^ 
where n is the number of paired observations and r is the correlation coefficient. 

From the value of t thus computed, a level of significance can be found using a table which is 

included in most statistics textbooks (Williams, 1996). For n=8 and if a 95% level of 

significance two-tailed test is desired, r must be larger than 0.632 for the null hypothesis to be 

rejected (i.e. there is significant correlation between the parameter and the listening test). 
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3.5 Summary 
Li this chapter the problem of measuring sound quality of audio system quantitatively was 

presented. Standard techniques used for characterizing headphones were also presented along 

with a review of the process of statistical correlation. 
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Chapter 4 

Algorithms 

4.1 Introduction 
This chapter presents an introduction to the concepts of principal component analysis and 

some chosen clustering methods. The theory of principal axis transform, which is the core 

mechanism for PCA, is first introduced followed by an outline of how they can be applied for 

dimensionality reduction. Two categories of clustering techniques, namely the traditional 

clustering methods (including online template matching and K-means) and unsupervised 

neural learning (including simple competitive learning and ART2) are then presented. 

4.2 Principal Component Analysis 
Principal Component Analysis (PCA) is the optimal linear transform in a mean-squared error 

sense for dimensionality reduction. PCA preprocessing is often used in signal processing to 

extract the most important features from the input data while at the same time reducing the 

dimensionality of the input vector to be processed (see e.g. Jolliffe, 1986). 

This section begins with discussion of dimensionality reduction in classification problem, 

followed by explanation of principal component analysis (PCA) transformation and 

implementation details of PCA algorithm. 

4.2.1 Dimensionality Reduction 
In many practical problems, pre-processing can have a profound effect on the performance of 

a classification problem is that adding new input feature variables beyond certain point can 
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actually lead to a reduction in the performance of the final system (Jurgen S., 1996). First of 

all, it is often the case that the input variables are generally correlated in some way, so that the 

data points do not fill out the entire input space but tend to be restricted to a sub-space of 

lower dimensionality. This is the fundamental reason that dimensionality reduction is 

feasible. Secondly, the value of the input variables will not change arbitrarily from one region 

of input space to another, but will typically vary smoothly as a function of the input variables. 

Thus it is possible to infer the values of the input variables at intermediate points by a process 

similar to interpolation when there is missing data. 

Reducing the number of input variables can normally lead to improved performance for a 

given data set even though information is being discarded. The dimensionality reduction 

process can help many practical implementations of most of the signal processing system. 

Moreover, most of the computational process can be done in a much lower dimensional space, 

greatly saving computational resources. 

4.2.2 PCA Transformation 
The geometrical space of raw input data in most signal processing systems is initially 

determined by the basis vector system established incidentally during the measurement 

process. Presumably, this coordinate system may not be the optimally suitable one for 

subsequent processing. The measured data usually need to go through a transformation 

process in order to switch to a new basis vector system. The principal-axis transform fulfills 

the following optimization criterion: among all possible linear transformations, this transform 

has the property of making the individual variances of the transformed feature vector 

elements maximally non-uniform. This means most of information are stored in a few number 

of transformed vector element which can be considered as a form of information compression 

method. 

The detail of the PCA transform is explained below based on the statistical approach 

described by Jurgen (Jurgen S., 1996): 
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The source data {v} is a distribution of data point in N-dimensional space centered at the data 

mean fi and with orientations and widths given by the common covariance matrix K 

(computed by cov(v,v), refer to Section 3.4 for explanation of cov). This covariance matrix K 

determines an orthogonal system of basis vectors (the principal axes), which can be shown to 

be in the optimum coordinate system for representing the stochastic process {v}. 

w v/ A^ > J ^ ^ ^ X X 
八 八 j ^ 八 八 X X x ^ > ^ f c o M ^ X ^ ^ 

x : ^ ^ t 5 s < < 
^ > ^ ^ X 3 X X translated and rotated 

^ y ^ y ^ X 人 coordinate system 

K 
Figure 4-1: Principal axis transform, v is measured 
vector, w is transformed vector. 

The covariance matrix K can be decomposed into the product K=BDB^ of matrices B and D. 

B is the orthogonal matrix of the eigenvectors of K\ that is each column vector in B is 

eigenvector of the corresponding row vector in K. D is the diagonal matrix of the of 

eigenvalues of K, that is each element in diagonal of D is the eigenvalue of the corresponding 

row vector in K. 

B=(bi b2... b^) 

_又1 0 . 0 _ 

0 A, . 0 D= 2 

_0 0 . A^_ 
The N eigenvalue-eigenvector pairs [人力„]’ n=l,....,N, are ordered by decreasing eigenvalues. 
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Lti the given measurement geometrical space, a new coordinate system is introduced. The data 

are translated from the A -̂space origin into new center // and rotated according to the 

eigenvectors of K as represented in the matrix B of eigenvectors. 

The feature vector w is computed from the given measurement vector v by 

w=B^{v-fi). 

The new data set {w} obtained by the above-stated transformation have zero mean value and 

uncorrelated: 

fi=0 and cov{w,w)=D. 

The optimal dimensionality reduction is by truncation of matrix B to Bu which consists of the 

M dominant eigenvectors in matrix B. 

BM - (bi b2 …bM)，where M^N. 

Performing the principal-axis transform with the truncated matrix ^ , 

WM=BM^(v-fi)， 

leads to the dimensionality reduction of the transformed data set w from N to M 

The original measurement vector v can be approximately reconstructed from the feature 

vector WM by: 

A 

^=^M^M+f^ 

The resulting reconstruction error is the expected value of difference between the original 

measurement vector and the reconstructed vector: 
A 

R2 = ^ { | v - v | ' } 

The principal-axis transform is optimum with respect to the reconstruction error R̂  among all 

possible linear transformation of the coordinate system for a required dimensionality 

reduction from N to M. The mean-square reconstruction error R^ can be measured by 

accumulating those eigenvalues 人 belonging to those discarded eigenvectors bn, where 

n=M+l”“，N. The reconstruction error F? is minimum if all the column vectors in B with 

largest eigenvalues are reserved. 
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4.2.3 PCA Implementation 
The steps required to apply PCA for a set of input Nxl (N is dimensionality of input) vectors 

xf (p=l.. P) are as follows : 

STEP 1: Calculate the mean vector 

- I p 
^̂ pÊ ' 

^ i=i 
STEP 2: Compute the covariance matrix 

where 丁 is the matrix transpose function and x represents matrix multiplication. 

1 P f -\ f -\^ 
K= y x' - ; c X ;c' - X 

(p-̂ )t([ J 1 J 
STEP 3: Compute the eigenvalues and eigenvectors of K. We will call the eigenvector 

corresponding to the i'th largest eigenvalue of K as bi, the i'th principal component. The 

principal components are orthogonal vectors in that space accounting for the maximum 

amount of variance in the data. 

STEP 4 (Dimensionality reduction): 

The principal components set is used to transform the given data set in orientation 

corresponding to the maximum variation of data. By reserving those components with biggest 

variation, reduction in dimensionality can be accomplished. 

With a given input vector x, we can express it as a weighting of the first L principal 

components { L ^ ) as w. 
f _ \ 

w,=Z?f x - x i = l ,2, . . .L 
V y 

The w vector of length L is a reduced dimensionality representation of x that can be 

approximately reconstructed by: 
- L 

X ~ ;\:+^Z?.w. 
j-i 

Li the experiments detailed later, if PCA preprocessing is specified, w is used instead ofx as 

the input to the clustering routine. 
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4.3 Traditional Clustering Methods 
This section provides the information of two commonly used clustering methods: online 

template matching and K-means. bnplementation detail of these methods is also included. 

]n the following descriptions, an Euclidean distance measure is the distance between two 

vectors x and_y that is defined by: 

O v 

l " ^ i | | � E ( " ^ / _ x ) 2 

4.3.1 Online Template Matching (TM) 
The template-matching algorithm used in this thesis was an online modification of an 

algorithm proposed by Millecchia and McMyre (1978). This template-matching algorithm 

classifies on the basis of the similarity of the spike waveform with a set of previously 

determined template waveforms. 

An overview of the template-matching clustering algorithm is given below: an automatic 

online template matching procedures in which no prior assumptions are made about the 

distribution of waveform distribution within a single cluster is outlined as follows (see Figure 

4.2 for flow diagram). If an incoming waveform is less than a user-defined distance D (an 

Euclidean distance squared measure is used) from one or more templates, that spike is 

classified as belonging to that class with that closest matching template. The template is then 

adapted using a weighted average between the template and the new spike. A new template is 

generated when a spike occurs which is greater than D from all of the other templates. 

The simple clustering process is controlled by one user-set parameter: the threshold number 

for promoting new template spike. The clustering process is sensitive to the setting of this 

threshold value. Only in cases when there is dramatic change in signal to noise ratio among 

recordings, the threshold value remained unchanged after being tuned to a specific value 

suitable for subsequent clustering. The threshold value can be selected by comparing two 

known spikes form same neuron using Euclidean measure (or SUMDIF method in Rene R, 
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1991). The minimum difference that one can expect to find between two identical wave forms 

can be estimated by calculating standard deviation of the noise and multiply by the number of 

data points on a wave form (16 in our case). This minimum difference value is selected as the 

threshold and it serves to provide the noise margin for our classification. 

The template is adapted by averaging the template vector with the new coming spike with a 

adaptation factor k, that is; template vector = template vector x (l-k) + new spike vector x k. 

This adaptation reduces the chance of multiple representation of what is actually a single 

class of spikes. Normally, the adaptation factor k is a number close to zero but in the interval 

between 0 and 1, allowing for gradual modification of spike template without the risk of 

corrupting templates. 
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START 

丨 + 丨 

Assign the 1̂ ' data 
point as 1̂ ' template 

“ I 
Read the next data 

• point ^ 

i 
Find the closest 

template 

^ / ^ ^ s ^ yes 
^ / Is distance between \ ^ ； 

< f current data and closest � • • Adjust the 
^ ^ t e m p l a t e < D ? ^ ^ template vector —— 

Y no 
r — ^ ^ ^ V yes 

Assign the y ^ ^ ^v^^ 
current ^ ^ Is the number of ^ ^ 

— d a t a as ^ < ^ existing template = max � 
new ^ v number of template, N ? ^ / ^ 
temphte no \ ^ ^ ^ ^ ^ 

Figure 4-2: Flow diagram ofonline template matching 
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4.3.2 Online Template Matching Implementation 
The p'th input waveform pattem is represented by x^, a column vector of length N and l<p^ 

where P is the total number of patterns in the training set. 

The class the input x^ belong to is represented by Cp. 

The online template-matching algorithm can be expressed as follows: 

Step 1 (Initialization): 

J: number of templates = 1; 

Tj: 1st template = x^; 

C]: cluster number of thelst input vector x^ = 1; 

D: user-selectable threshold number for promoting new template; 

M: the maximum number of templates allowed. 

Li our experiment, D = 1.5. 

STEP 2 (Classification): 

For each of the J templates 2}, compute the squared distance dj to the input vector xF by; 

d. =||;c^ -r.||' 

Find the template Tk closest to the vector x^, namely the one satisfying the inequality: 

d, < d^ Vj 

In the event of more than one template obeying the above inequality, a random template is 

chosen those having shortest distance with input pattem. 

STEP 3 (Threshold test): 

If dk > D and J < M, then go to Step 4; 

Otherwise, Cp = k and retum to Step 2. 

STEP 4 (New template): 

The incoming input pattem is promoted as new template by: 

J = J+ 1; 
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Tj = x; 

and Cp = J. 

4.3.3 K-Means Clustering 
The K-means clustering algorithm (Hartigan, 1975) minimizes the sum of squared errors 

within K clusters (user-defined). This clustering method is a standard benchmark for 

comparison of various clustering techniques. It is Euclidean measure based and is intuitive in 

understanding its algorithms even for newcomer to engineering field. K-means is applied in 

both online spike discrimination problem and headphone sound quality measurement. 

The algorithms proceed as follows: the algorithm starts by performing a rough initial 

clustering based on the sum of the data points in the waveform. For the case of spike sorting 

problem, the waveform is neuron spike. For the case of headphone sound quality 

measurement, the waveform is frequency magnitude response. This sum is used to group the 

training waveforms into one of the K initial clusters, where K is a user-selected number of 

cluster to be divided among the data set. A test is performed on each waveform by moving it 

from its current cluster to every other cluster and calculating the resulting total error. The 

cluster is moved (if necessary) to the cluster which gives the smallest total error. This local 

optimization procedure is repeated for each waveform until the algorithm iterates over the 

entire training set without changing the cluster assigned to any waveform. 

The K-means algorithm proceeds as follows: Assume the initial clusters are C；, C2, ... Q 

arbitrarily. The cluster mean for each cluster are assumed asj7,力，...y,, respectively. 

The total error of the partitioning are then computed by summing up the Euclidean distance of 

each waveform from its corresponding cluster mean, that is by: 

For every cluster Q, 

Ei = ^ h - y i f 
xsCj 

Total partition error: E 二 IEi 

Assume the number of waveforms in cluster C, is Ni. 
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For every waveform in the data set, the change caused by transferring waveform from current 

L _ ^ j h - y j f ^ih-yjf 
j _ " ^ N j +1 ̂  ^ N . - 1 

cluster to every other cluster is measured, that is by: 

Lj is the error change in transferring the waveform number from present cluster C/ to cluster 
Q. 

If the minimum value of Lj is negative for all j ^ i, the waveform is transferred from cluster Ci 

to Cj. The cluster meanjj andjy are adjusted according if changes occur. 

If no movement of waveform from one cluster to another occur any more, the clustering 

process is completed. Otherwise, the comparison process repeats itself until a minimum total 

partition error E is found. 

The correct number of cluster for waveform set can be determined visually. A better 

systematic way is done by the indication of the Fratio-

E 
F — K+lclusters 

ratio 一 厂 

^KClusters 

This is a ratio of total partition error of K+l clusters over that of K clusters. If the ratio is 

above 10，then K+l or more clusters should be necessary and the calculation continues. For F-

ratio below 10, the K-clusters are adequate for waveform set. Waveform template is then the 

cluster mean of each clusters. 

42 



Applications of Clustering Analysis to Signal Processing Problems 

START 

i 
Initialize data partitioning 

* 

^ Compute the total error of current 
partitioning 

I ^ i _ ^ I / \ 
Compute error change caused by ^ ^ Is the ^ s ^ 

transferring a vector from the ^ ^ minimum ^ ^ 
r ^ current cluster to every other ^ x ^ error change ^ / ^ ~ 

cluster. ^ \ ^ negative ？ ^ ^ 

YES NO ^ T 

/ \ I ^ ^ ^ 
y / ^ \ ^ Move the vector from NO 

^ Is it end of ^ v ^ current cluster to the 
Nv record ？ y ^ “ ^ ‘ associated cluster 

YES ^ 

^ ^ Are there any data ^ v 
^ ^ movements during ^ v 
^ v last iteration of total >^ 

^ v error change > ^ 
^ v computation? y ^ 

NO 
• 

Clustering 
process completed 

Figure 4-3: Flow diagram of K-means clustering 
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4.3.4 K-Means Clustering Implementation 
The /7'th input waveform pattem is represented by x^, a column vector of length N and 1却让 

where P is the total number of pattems in the training set. 

The class the input .x̂  belong to is represented by Cp. 

The K-means algorithm can be described as follows: 

STEP 1 (Initialization): 

Each inpui patlem x^ is initialized to an initial cluster in the following uay. 

For every input x^ compute the sum of its scalar components / by: 

- v ^ - S ( - v / 0 
I 

Also compute the maximum and minimum values o f / : 

M = max(A^), 

rn = niin(i^). 

The initial clustering of each x^ is given by: 

C" 二 1 + rioor(A'(.v'' -m)/{M -m)) 

where floor(") is the lriincalcd inlcger part of a, and K is lhe uscr-selectablc nunibcr of 

cliistcrs. 

S'ri<P 2: Lct i\ bc ihc sct oC all input vectors assigned io cluster 又,M̂  bc ihc rnean vector of 

L\ and .Vi lhc iuimbcr of. vcciors iii U .̂ 

Ci)tripuic lhc error assiKiatcd u ith cach inpm r^hv: 

/:'' 二|?’ -A/^. , | | ' 

STKP 3: C'onipuie ihc total error ol thc present partitioning hv: 

/^ = S / ^ " 
p 

STK1) 4: For cach input .r^ compute ihe error l f , which would result if ii wcrc transferred 

fmm its present cluster ( Q } � o another cIustcr k. 
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Lp _ + - M j A ^ " | k - � | 

k “ Nk+l A^c"-1 “ ^ 

If the minimum of L / is negative then transfer xf from cluster Cf to cluster k and update Mcp, 

Mk,Cf and E accordingly. 

STEP 5: If there is a pass going through all ps without changing the clustering of any input, 

then stop; otherwise retum to step 2. 

4.4 Unsupervised Neural Learning 
This section begins with basic concepts of neural computational learning and artificial neural 

network (ANN) model. The theory and implementation detail of simple competitive learning 

(SCL) and adaptive resonance theory (ART) are also presented. 

4.4.1 Neural Network Basics 
As first demonstrated by McCulloch and Pitts in 1943, the interactions among neurons in a 

network can be described by a logical calculus (James A. F. and David M. S., 1991). 

Networks of interconnected model neurons can therefore be designed and utilized to perform 

complicated calculations. Although the electrical properties of the artificial neurons used in 

these neural networks are usually quite different from real biological networks, the computing 

power of such networks can be highly impressive. 

A network of artificial neurons built based on the above description can leam to associate a 

given set of different inputs with a given output. This kind of learning is called supervised 

learning. An offline training procedure with a given training data set is needed. After the 

network has leamed a set of associations, it can use this newly acquired 'knowledge' to 

evaluate and classify new sets of inputs. 

Another kind of leaming is called unsupervised leaming. During the training, no desired 

outputs are provided. The network leams automatically the associations among all the input 
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elements. This process is also referred as self-organized training or clustering, which will be 

described in more detail in later sections. 

4.4.2 Artificial Neural Network Model 
The individual computational elements that make up most artificial neural system model are 

often called nodes or processing elements (PEs) (James A. F. and David M. S., 1991). Figure 

4.4 shows a general PE model. Each PE is numbered as shown in the figure. Each PE can 

have multiple input but only one single output. Each output terminal can fan out to multiple 

PEs in the network. The input stimulus the PE1 receives from the PE2 is indicated as Xj, 

which is also the output of the PE2. Each connection to the PE1 has associated with it a 

multiplication factor called a weight. The weight on the connection from the PE2 to the PE1 

is denoted Wy. The inputs to PE are classified into various types. An input connection may be 

excitatory or inhibitory. In general, excitatory connections have positive weights and 

inhibitory connections have negative weights. 

• 
Output 

Xi 

PE1 

Wij 

A A 牛 2 ~~ 

^j from PE2 

參眷參 

Figure 4-4: A single PE in an artificial neural network 
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Each PE determines its input value based on all input stimuli from its input terminals. In the 

absence of special connections, the net input value is given by summing all the input stimuli, 

each of which multiplied by their corresponding weighting in the synapse. 

The net input ni to the PE1 unit can be written as: 

n, ^Yj^jW,. 
J 

where the index j runs over all input connection terminals to the PE. Excitation and inhibition 

are accounted for automatically by the sign of the weightings. 

This sum-of-products calculation accounts for the core part of computation of network. 

Because there are often huge number of interconnects in a network, the speed at which this 

computation can be performed determines the network simulation performance. 

Once the net input of the PE is calculated, the output value can be determined by: 

Xi =fi(rii), 

where/ is called the output function and is generally a nonlinear function. 

4.4.3 Simple Competitive Learning (SCL) 
The neural structure model discussed in this section is known as competitive network. The 

network structure is simply composed of three layers: an input layer, a competitive layer and 

an output layer. This simple network architecture using unsupervised leaming is referred to 

as simple competitive leaming (SCL). An overview of network structure is given as follows 

(refer Figure 4.5): the input layer in our network is simply a set of pass-through units 

responsible only for distributing input data to other processing elements. The hidden middle 

layer is a set of processing elements that share the general properties of PEs discussed in 

previous sessions. This layer of processing units serve to classify all the input vectors because 

the position of the unit giving the strongest response for any given input identifies the region 

of space in which the input vector lies. M this layer, rather than examining the response of 

each unit to determine which is the largest, the task is simpler since the unit with the largest 

response is the only units to have a nonzero output. This effect can be accomplished by 
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having each unit competing with one another for the privilege of tuming on. We call this a 

winner-take-all policy. No external judge exists to decide which unit has the largest output 

value. The unit must decide among themselves who is the winner. This decision process 

requires communication among all the units on the layer. The last layer is the output layer. 

This output layer is simply for the task of transferring the output vector to the outside. The 

output of L3 node represents a specific category. 

® 0 ® Output layer, L3 (m-nodes) 
i k i L i L 

^|^^ ^ ^ ^ ^ ^ ^ J ^ Hidden competitive layer, L2 (m-nodes) 

麗广 
^ P ^ r ^ r Input layer, L1 (n-nodes) 

input patterns 

Figure 4-5: Unsupervised competitive layer structure 

There are n nodes in input layer L1 that is also the dimensionality of input data. Full 

interconnection is made between L1 and L2. Each connection from L1 node to L2 node is 

unidirectional and associated with it a weighting number W. L2 and L3 contain the same 

number of nodes m where m is a user-selected number of clusters to be divided among the 

input pattem set. Each L2 node is connected to the L3 node above it. The weighting 

associated with this connection is 1 and is unchanged, thus no leaming is allowed in L3. 

When each input pattern is presented, the network leams the associations in the input pattem 

set by adapting the weightings between L2 and L1. The winner-take-all strategy allows only 

the winning node in the competitive layer L2 to adapt its weightings. Nodes in L2 compete 

with each other by comparing the magnitude of their output activation value. Only the largest 
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response-giving L2 node send output signal to L3. If there is a tie, we randomly select one 

node from those giving the same largest value of response. 

The learning rule applied to adapt the weightings Wis: 

AW(iJ) = f]{x'U)-W(iJ)) 
where rj is a user defined constant called the "learning rate". 

77 must be chosen in the interval [0,1]. The larger the learning rate, the more sensitive the 

network to new patterns and the faster the convergence. As the learning rate approaches 0, the 

stability of old pattem associations increase, but new-coming associations are less likely to be 

discovered. 

If the weight changes AW described above are accumulated over the entire set of input 

patterns before they are applied (i.e. a batch update is performed), the SCL algorithm 

becomes identical to the K-means algorithm (see e.g. Hertz et al., 1991). Thus this version of 

SCL can be regarded as an online version of K-means. 

4.4.4 SCL Implementation 
This SCL algorithm uses a single layer competitive neural network trained using the standard 

competitive learning rule (see e.g. Hertz et al., 1991). The network model in mathematical 

terms is shown in Figure 4.6. 

The p'ih input waveform pattem is represented by x^, a column vector of length N and l<p^ 

where P is the total number of pattems in the training set. 

The class the input ^ belong to is represented by Cp. 

The algorithm proceeds as follow: the inputs pattem xF received by input layer L1 and is then 

propagated to L2 for multiplication with a weight matrix W. The product is then summed with 

a set of bias values B to give vector 0. The competitive layer L2 of the network is a winner-

take-all layer, is used to compute an output classification vector a from vector 0. a is of 

length N with exactly one output being set to 1 and all others zero and is finally passed to 

output layer L3. The cluster of the input pattem jĉ  is assigned as class Cp if cip is set. 
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Nxl weights matrix f _ | _ j _ _ _ _ ^ w ^ H 
1 - > C ^ ^ ~ " ^ ^ I 

bias matrix ^ H 
Kxl • • 

< > < X > 

Input layer (L1) Competitive Layer (L2) Output layer (L3) 

Figure 4-6: SCL network architecture 

Mathematically, W is a randomly initialized NxK matrix, where N is size of input vector and 

K is the number of output nodes of the network, b is a vector of length K. 

The output vector 0 is computed by: 
O^x'xW + b 

Vector a is computed by passing 0 through a "winner take all" function which satisfies 

— 1 if V; Uj^ > a. 
以 众 一 

0 otherwise 

In the event of a tie, a random number is chosen among those satisfying the above function, so 

that there is only one nonzero value in a. 
After each presentation of an input pattern, the following learning rule is used to update W 

AW(/, j) = 7](x' U) -W(i, j)) if a(i) = 1 
where rj is a user defined constant called the "learning rate", rj lies in the interval [0,1]. 

M our experiments, rj was chosen to be 0.3. 

4.4.5 Adaptive Resonance Theory Network (ART) 
Adaptive resonance theory (ART) (Carpenter and Grossberg, 1987) is a neural computational 

algorithm designed for real time self-organizing stable pattem recognition codes in response 
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to arbitrary sequences of analog input patterns. The self-organizing ART networks were 

developed based on studies of brain mechanism. 

There is a series of ART networks. ART1 is the simplest and is purely binary in operation, 

while ART2 processes analog input data. ART networks contain a number of adjustable 

parameters that allow the categorization to be adjusted over a range from fine to coarse and 

enhance the features in the input patterns. This can be a disadvantage since the parameter 

tuning procedure is complicated. 

The ART2 network is shown in Figure 4.7. There are two fields of nodes F1 and F2 that are 

interconnected by top-down and bottom-up weighted links. The F1 and F2 fields, the bottom-

up and top-down adaptive filters are contained within the attentional subsystem. ART2 adopts 

a competitive learning model in which a stream of input patterns to a network can adapt the 

Long-Term-Memory (LTM) values that multiply the signals in the pathways between F1 and 

F2. Layer F2 is a competitive network capable of choosing the node that receives the largest 

total input (this corresponds to the closest matching template stored in the LTM). Each F2 

node represents a specific category so a top-down signal indicates a particular category is 

activated. The competitive learning method also appears in other artificial neural network. M 

ART，the second top-down adaptive filter serves to self-stabilize the association leaming 

process in response to an arbitrary input environment. There is also an auxiliary orienting 

subsystem that will be activated when the top-down expectation from F2 cannot match with 

input pattem. 

The ART2 algorithm proceeds as follows: in an ART2 network, an input pattem is applied to 

the F1 layer. The criterion for an adequate match between an input pattem and a chosen 

template is adjustable by the vigilance parameter p. An auxiliary orienting subsystem 

becomes active when a bottom-up input to F1 fails to match the leamed top-down expectation 

read-out by the active template representation at F2. The orientating subsystem is activated 

and causes a reset of the active template. Alternative templates are tested in the hope of 

51 



Applications of Clustering Analysis to Signal Processing Problems 

finding an adequate match. When the right template is found, the leamed top-down 

expectation resonates with the input pattem. The search time constant is short in comparison 

with the leaming time so significant changes in LTM are possible only after the searching 

stops. The bottom-up forward and top-down feedback structure in the F1 layer encodes the 

input in the amplitude independent resonant state via interaction with the F2 layer. If there is 

no successful match, the cycle will end by selecting an uncomrmtted node of F2, then the 

bottom-up and top-down adaptive filters linked to this node leam the F1 activation pattem 

generated directly by the input. If the full capacity of the system is used, the system will not 

be able to accommodate new input pattem. 

Reset ca^gory 
representation 

Output layer F 2 field 

0 " V V 
J ̂  I ^ P ' LTM 

feature 
representation 

r layer tiput layer F1 field 

< 

• 
Input pattern x^ 

Orienting Subsystem Attentional Subsystem 

Figure 4-7: Block diagram of the ART2 network 
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4.4.6 ART2 Implementation 
The complete ART2 algorithm is expressed mathematically below. 

Parameter selection constraints: 

The constraints applying to the constants used in the ART2 algorithms are defined below: 

一 a, b > 0 

0<d<l 

cd/(l - d) < 1 

o<e<i 

0<p<l 

Li our experiments, the above constants are set as follow: 

a = 20, b = 20, c = 0.1，d = 0.9, G = 0.38 and p = 0.9. 

STEP 1 (Initialization): 

All the top-down weights are initialized to zero: 

zf = 0 

Bottom-up weights are initialized according to: 

Zji = 0.5/(l-d)^M 

All the following equations describe the steady-state values of a corresponding system of 

differential equations (Carpenter and Grossberg, 1987). The interconnection between sub-

layers inside F1 is shown in Figure 4.8. The reader should refer to Figure 4.8 while reading 

the description below. 

Preprocessing on feature representation field F1 (steps 2- 7) 

STEP 2: At the lower layer o f F l , vector w is the sum of an input vector x^ and the internal 

feedback signal vector au where a is a constant, so that 

w = ji^ +au 

STEP 3: w is normalized to yield 

X 二 N(w) 
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where the operator N, 

N(W) = M^/||>v||, 

carries out an Euclidean normalization. 

STEP 4: X is transformed to v via a nonlinear signal function defined by 

V = F(x)+bF(q), 

where q is defined in step 7 and function F is defined as: 

F(Xi) = Xi if Xi > 6，or 0 otherwise; 

STEP 5: V is normalized 

u=N(v) 

Vector u is the output vector from F1 to the orienting subsystem. 

STEP 6: The top F1 layer p sums both the intemal F1 signal u and all the F2 to F1 filtered 

signals. That is: 

p = u + Z i j X y , 

where y is the output signal from the F2 node computed in step 9 and zij is the LTM trace 

computed in steps 11 and 12. 

STEP 7: p is normalized to give vector q 

q = N(p) 

Category Representation Field F2: (steps 8-9) 

STEP 8: Output of the p sublayer is propagated to the F2 layer. Net inputs T of F2 is 

determined by 

T = Zji xp 

STEP 9: T undergoes the winner-take-all selection and produces the F2 output vectorj. 

y = g(T)-, 

where g(T) is function to select and amplify the maximum element in T and is defined as: 

g(Tj) = dTj = max{TkJ; or 0 otherwise. 
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Any nodes marked as ineligible by previous reset signal from orienting subsystem do not 

participate in the competition. 

Orienting Subsystem: (steps 10-11) 

STEP 10: Vector r supervises the degree of match between the F1 bottom-up input and F2 

top-down input. 

Output of the r layer is: 

M,. + cp. 
^ = 1 u +c p 

where u and p are sub-layers in F1 layer and c is constant. 

STEP11: System reset if 

\r\\ <p; 

where p is the vigilance parameter. If the system resets, the current active F2 node will be 

marked ineligible for future competition and then retum to step 1. In this way，the system 

reset will make ART2 activate the node with the next highest input in next iteration. 

STEP 12: Adjust bottom-up weights on the winning F2 unit by: 

Zji = u/(l-d) 

STEP 13: Adjust top-down weights coming from the winning F2 unit by: 

Zij = u/( l-d) 

STEP 14: Restore all inactive F2 units and go back to step 2 with new input pattem x^^^. 

4.6 Summary 
In this chapter, an introduction to the relevant aspects of principal component analysis, 

traditional clustering methods and clustering by unsupervised neural leaming was presented. 

An overview of implementation details of PCA and the four chosen clustering techniques 

(namely online template matching, K-means, simple competitive leaming and ART2) was 

also presented. 
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Figure 4-8: Layers, sublayers and interconnections inside ART2 
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CHAPTER 5 

Experimental Design 

5.1 Introduction 
The objective of this chapter is to describe the experimental setups for the two problems 

introduced in chapters 2 and 3. The first problem is to demultiplex the electronically recorded 

neural spike signals into separate clusters where each cluster represents signals coming from a 

particular neuron. The second part of this chapter presents an approach to test mass produced 

headphones in a hope to find the crucial parameters affecting sound quality of a large batch of 

headphones in production line. 

5.2 Electrophysiological Spike Discrimination 
5.2.1 Experimental Design 
The experimental design for the automatic online clustering of extracellular multi-neuron 

recordings from the nervous system is described in this section. The spike train are first 

processed by a Schmitt trigger threshold detector and optionally, principal component 

analysis (PCA). A clustering was applied to reconstruct separate spike trains from 21 different 

multi-neuron recordings. Quantitative measurements of the efficiency and utility of the 

algorithms were performed. Using these measurements, the performances of the four 

algorithms with and without PCA preprocessing were compared in terms of accuracy and 

efficiency. 
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5.2.2 Extracellular Recordings 
The analysis of the spike waveform discrimination algorithms was performed on real 

physiological data obtained from the lateral geniculate nucleus^ of the common marmoset, 

Callithrix jacchus, a small South American monkey. Callithrix jacchus has a visual system 

similar to that of humans and other primates. The signals from the extracellular electrodes 

were amplified by a factor of 50000. After passing through an anti-aliasing filter, they are 

digitized with a 12 bit National Listruments NI-MIO-16H data acquisition card at 22.5 kHz 

and the resultant data were saved to disk. All experiments described were performed off-line 

from recorded data. All algorithms were implemented using the Mathworks bic. MATLAB 

version 5.0, running on an Ultra-Sparc 5 workstation. MATLAB provides a fast prototyping 

language for expressing computations, good data plotting facilities and an interactive 

environment for testing different algorithms. 

Figure 5.1 illustrates the software implemented Schmitt trigger used to identify spikes. Two 

user-defined threshold values are used namely the spike recording trigger threshold 61 and 

spike recording enable threshold 52. A spike is triggered by an excursion of the input signal 

above 51. The first 6 data points taken before the triggering point and 19 points at and after 

the trigger point are collected to form the spike vector. Before a new trigger can occur, the 

signal must pass below the second threshold 52’ implementing a hysteresis effect to reduce 

false triggering in the presence of noise. 

1 Part of the visual pathway between the retina and the visual cortex. 

58 



Applications of Clustering Analysis to Signal Processing Problems 

spike recording trigger | I i 
threshold 51 / I A 

� | _ ‘ 
spike recording enable \ | V 
threshold 52 \ 

N">H H 
6 data 19 data points 
points 

Figure 5-1: Schmitt trigger to record spikes 
5.2.3 PCA Feature Extraction 
All of the experiments were performed with and without a PCA preprocessing step and the 

effect of PCA on the computational requirements and accuracy of the results were also 

measured. PCA preprocessing is applied optionally to reduce the dimensionality of spike data 

from 25 to 2. 

Refer to chapter 4 for detailed description of how PCA is implemented. The PCA 

preprocessing was performed on the entire data set if there are less than 1000 data. Otherwise, 

the first 1000 spikes were selected to compute the PCA parameters. 
5.2.4 Clustering Analysis 
Four clustering algorithms (template matching (TM), K-means, simple competitive leaming 

(SCL) and ART2) were compared for accuracy and computational requirements. K-means is 

the standard clustering technique for multineuron spike sorting (Schmidt, 1984b; Salganicoff 

et. al., 1988; Sama et. al., 1988) and used as a benchmark for comparison. Template matching 

is well known for its simplistic algorithmic design and computational efficiency. SCL and 
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ART2 were chosen as being representative of the relatively new nonlinear neural computation 

models that are becoming increasingly prevalent in contemporary signal processing systems. 

The correct number of cluster for waveform set was determined by a systematic way using the 

indication of the f V - . 

F 
F — K+lclusters 

ratio 一 厂 
^KClusters 

This is a ratio of total partition error of K+1 clusters over that of K clusters. If the ratio is 

abovelO, then K+l or more clusters should be necessary and the calculation continues. For F-

ratio below 10, the K-clusters are adequate for waveform set. 

la order to tune the clustering routines to give the desired number of cluster, the parameters of 

all clustering techniques (threshold value D for TM, leaming rate parameter r| for SCL and 

vigilance parameter p for ART2) were selected using a bisection search. By this bisection 

search method, experiments with labeled and noise-corrupted data were performed with 

parameter values adjusted linearly until the best results were obtained. There were no tunable 

parameters for K-means except the number of clusters K so no parameter tuning was 

necessary. 

All the input patterns are normalized to ease the task of tuning the parameter values. Training 

was performed in an online manner for all clustering methods except K-means. Li the case of 

K-means, the training step was performed over the entire data set. K-means is normally an 

offline clustering method. K-means is normally applied to spike sorting (Salganicoff et al., 

1988) by clustering an initial representative data set to compute cluster means which are then 

frozen in value, real-time clustering being performed by assigning the spike to the nearest 

cluster mean. 
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5.3 Correlation of Headphone Sound Quality with 
physical Parameters 

5.3.1 Experimental Design 
This section presents an approach to test mass produced headphones in a hope to find the 

crucial parameters affecting sound quality of a large batch of headphones in production line. 

This proposed approach can be summarized as follow. 

1. Li order to reduce the number of headphones to undergo subjective listening tests, a large 

number of headphones are clustered based on frequency response into a small number of 

clusters. A few samples of headphones are selected from each cluster to form a reduced 

headphone test set. 

2. Listening tests are conducted with each headphone being tested several times and 

compared against several different headphones by different people. 

3. Jn order to simplify the task of the listener, each human sample is asked to grade 4 

randomly selected headphones by making three simple binary comparisons. 

4. All the measurable parameters of the headphones tested are measured to ensure 

comprehensive analysis is performed. 

5. Correlation coefficient between measured parameters and the listening test scores is 

computed to provide a single figure measure of the ability of parameters to predict the 

listening test result. 

6. The preliminary correlation result is applied to select new headphone samples for further 

confirmation tests. 

This approach can be used to identify those parameters directly affecting the sound quality of 

the headphones (if any exist) in a production line. This makes it possible to automate the 

quality control process and allows design and manufacturing changes, which can lead to an 

overall improvement in the sound quality of the product. 
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5.3.2 Frequency Response Clustering 
52 mass produced headphones of the type typically supplied with portable tape recorders and 

CD players were studied, la order to minimize the manufacturing variations, all of the 

headphones were of the same model produced on the same production line on the same day. 

The frequency response for each headphone was measured using Audiomatica Srl's CLIO 

system (Audiomatica, 1998). A plot of the frequency response of all headphones is shown in 

Figure 5-2. 

It can be seen from the frequency response measurements of Figure 5-2 that the low 

frequency gain varies dramatically between headphones. We believe this was due to the 

mechanical device used to hold the headphones and the low frequency measurements should 

not be regarded as being accurate. 

A clustering technique was applied to group headphones with similar frequency response into 

clusters. The procedure proceeds as follows: 

1. Principal component analysis (PCA) was applied to the magnitude of the frequency 

response to extract the salient features from the data and achieve dimensionality reduction 

(Jolliffe, 1989) by choosing the first two principal components from the magnitude 

frequency response of each headphone. 

2. This reduced dimensionality data set was then clustered using the K-means algorithm 

(Hartigan, 1975) to group them into clusters. 

The above clustering technique was applied to cluster the frequency responses of the 52 

different headphones into 4 clusters. 

The result of this clustering process is shown in Figure 5-3 and Figure 5-4. Figure 5-3 shows 

the clustered plot of the first two PCA components of the clustered data set and Figure 5-4 

showed the clustered frequency response plot of headphones. The frequency distribution of 

the clustering results is shown in Table 5.1. 
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Cluster Frequency 
1 — 23 
2 19 -
3 8 -
4 2 

Table 5.1: Frequency distribution of headphone clusters 

If frequency response were a good measure of headphone quality, one might expect that a 

single cluster would contain a disproportionally high number of similar sounding headphones. 

Since listening tests based on 52 different headphones would be too large an undertaking, a 

subset of these headphones based on the clustering results was selected. 

Random samples were taken from each cluster to represent the cluster with the number taken 

dependent on the number of headphones in the cluster. Since cluster 1 had the most 

headphones, three samples were taken from it. Two headphones were taken from clusters 2 

and 3 and one sample from cluster 4. This subset of 8 headphones was chosen as a 

representative set of the different characteristics of the original 52 headphones to be used in 

the listening tests. Figure 5-5 shows the frequency response plot of the 8 selected headphones. 

A sample size of 8 headphones was selected since it made the number of listening tests small 

enough to be feasibly conducted in our laboratory using a simple randomly drawn listening 

test. A much larger sample size would increase our confidence in the results but would 

require an enormous number of listening tests. It is also possible to perhaps use a smaller 

number of listeners and ask them to assign a numerical score to each headphone. This 

procedure would enable a much larger number of headphones to be tested, however, listener 

fatigue and personal preference may lead to unreliable results. It must be remembered that the 

goal of the headphone industry is to produce headphones that sound good to the majority of 

listeners rather than satisfy a small number of critical headphone reviewers. 
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Figure 5-2; Frequency response of all headphones 
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Figure 5-3: PCA components plot of spike data 

65 



Applications of Clustering Analysis to Signal Processing Problems 

110| . . i 110| i 

*:T̂  ifTX̂  
5o' ‘ • ‘ 50' • 

0 0 . 5 1 1.5 2 0 0 . 5 1 1.5 2 

Frequency (Hz) x i � < Frequency (Hz) xic)4 

110| . 110| . . . 

• 三 “ ^ ^ : |^'^^\ : 

星： ^ ^ ^ ： 晏 ： 『 、 ： 
5 0 ： ‘ ‘ 5 0 • ‘ ‘ 

0 0 . 5 1 1.5 2 0 0 . 5 1 1.5 2 

Frequency (Hz) x i o ^ Frequency (Hz) x i o ^ 

Figure 5-4: Frequency response plot of clustered headphones 
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Figure5-5: Frequency response of the selected headphones 
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5.3.3 Additional Parameters Measurement 
Additional parameters of the 8 selected headphones were also measured using Audiomatica 

Srl's CLIO system. The first set of parameters, A46Hz, AikHz, An547Hz were taken from the 

frequency response and correspond to the nominal low, midrange and high frequency 

responses of the headphones. The second set of measurements were D2 and D3 which 

correspond to the distortion levels of the headphones to a 1kHz sinusoidal input signal. 

Finally, the voice-coil driver parameters (R[, F$, Qes，Qms，Qts，Ĵ ik and Lwk) were measured 

which relate directly to the voice coil. The symbols of each parameter are listed below with 

brief note of their physical meanings: 

Frequency Response Parameters: 

A46Hz Gain at 46 Hz 

AjkHz Gain at 1 kHz 

A11547Hz Gain at 11547 Hz 

Harmonic Distortion Parameters: 

D2 Second harmonic distortion (l~kHz input signal) 

D3 Third harmonic distortion (l-kHz input signal) 

Voice-coil Driver Parameters: 

Rn DC resistance of the voice coil 

Fs Resonant frequency of driver 

Qes Total Q of driver at F^ considering only electrical resistance 

Qms Total Q of driver at F^ considering only non-electrical resistance 

Qts Total Q of driver at F^ considering all system resistance 

Ljk Liductance of voice coil at l-kHz 

Ljok Liductance of voice coil at 10-kHz 

5.3.4 Listening Tests 
The system used to evaluate the headphones was typical of the type of system with which 

such headphones would be used. It comprised of a Sony D-465 Discman CD player connected 
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to a distribution amplifier. The amplifier, constructed from Burr-Brown OPA604 opamps 

with a gain of 2, was used so that the 4 headphones could be evaluated simultaneously 

without disconnecting headphones. The song "Desafinado" from the CD "Jazz Samba" (Verve 

records 810 061-2) was used for all of the evaluation tests. This piece was selected for its 

transient nature, being a mix of drums, tenor sax, bass and guitar. 

Hp 1 

comparison 1 

Hp 2 ^ winner 1 

^ final winner 

Hp 3 2̂  winner 2 

^ comparison 3 

comparison 2 

Hp4 一 

Figure 5-6: Listening test based on 3 binary comparisons 

Using the clustered set of 8 headphones, a simple informal listening test (see Figure 5-6) was 

conducted in the following manner: a computer program was used to randomly draw four 

headphones in a random order. Each subject was asked to choose their preference between the 

first and second headphones and then the third and fourth headphones on the list. Then the 

subject was asked to select between the two winning headphones which determined the 

headphone they most preferred. Li this manner, a winning headphone was selected from 4 

different headphones based on three simple binary comparisons. 

5.3.5 Confirmation Test 
The correlation coefficients between test scores of headphones and measured parameters are 

found using the t test, which is a standard statistical test for correlation measurement. Those 

parameters with the highest correlation are used as criteria for further selection of headphones 

in confirmation test. A new test batch is formed by randomly choosing 4 from the original test 

batch and selecting 4 headphones from production line that pass the selection criteria 
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concluded from last listening test. The same listening test is performed on this new test set. 

This selection process itself is another form of binary clustering procedure since the 

headphones are divided into groups, one group selected according to their parameters 

similarity with headphones scoring high marks in previous listening tests and one group 

randomly selected with prior requirements to their parameters values. The correlation 

measurement is done again to confirm the validity of the previously concluded criteria for 

headphone selection. 

5.4 Summary 
Li this chapter, the experimental setup for the two signal processing problems (namely, 

electrophysiological spike discrimination and headphone sound quality measurement) was 

described in detail. Clustering analysis methods had been applied to help solving the 

problems. The mixed spike signals were separated into separate spike-trains using four 

different clustering methods. Clustering was applied to help selecting the representative 

headphone sample for listening tests. 
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CHAPTER 6 

Results 

6.1 Introduction 
h\ this chapter, the experimental results from both problems: (electrophysiological spike 

discrimination and headphone sound quality measurement) are presented. For spike 

discrimination, a comparison of four clustering techniques is given based on their robustness 

to noise and ability to achieve good convergence when applied to real spike data. The 

proposed experimental procedures to control headphone sound quality with high efficiency 

are also verified. 

6.2 Electrophysiological Spike Discrimination: A 
Comparison of Methods 

Quantitative measurements of the four clustering techniques (TM, K-means, SCL and ART2) 

for the automatic online clustering of extracellular multi-neuron recordings from the nervous 

system were made in terms of efficiency and accuracy. Rigorous comparison was performed 

based on their robustness to gaussian noise and convergence ability on real spike data. 

The main theme of this thesis was to provide a quantitative analysis of various clustering 

techniques to facilitate future spike discrimination experiments in physiological laboratories. 

Readers should always bear in mind that real problem of electrophysilogical spike 

discrimination demands a real time classification process. Supervised leaming methods like 

MLP with backpropagation leaming (Jansen R.F., 1990) which require offline human 
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intervention are not an adequate method to fit in real spike discrimination situation so it is not 

chosen for comparison in this thesis. 

6.2.1 Clustering Labeled Spike Data 
Data set preparation 

The first set of data was a set of labeled spike data. It was aimed to test the accuracy of 

clustering algorithms and was generated by adding different levels of white noise to human-

clustered results. Four clearly differently shaped spikes were taken from a clustering of 

recorded electrophysiological data. Different amounts of Gaussian noise were added to each 

waveform to form a test set. For each of the 4 spike shapes, 30 corrupted versions were 

generated to form a test set of 120 spikes. This test set was generated at noise levels 

corresponding to 1%, 20%, 40%, 60% and 80% of the maximum amplitude (see Figure 6-1) 

to test robustness of the four clustering algorithms. The originality of each spike in this data 

set was well defined and this made a quantitative comparison of various clustering algorithms 

feasible. 

Robustness to noise 

The performances of each algorithm for the labeled test set described (with and without PCA 

preprocessing) were shown in Table 6-1. From Table 6-1, it could be seen that for a noise 

level less than 20%, all algorithms were able to cluster the data with no errors. This showed 

an overall robustness to noise, mainly due to the spikes being very different in shape. It also 

demonstrated the correctness of our clustering algorithm implementations. At 40% noise and 

above, K-means and SCL algorithms remained accurate whereas ART2 showed a somewhat 

degraded performance. Worst of all in performance was the TM algorithm without PCA 

preprocessing. TM without PCA collapsed at 40% noise level and its problem was mainly due 

to its simplistic method of creating new templates. Li every case, PCA preprocessing has 

improved the accuracy of the clustering algorithms. 

Efficiency comparison of clustering algorithms 
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The number of floating point operations (FLOPS) and the actual runtime (as measured using 

the built-in measurement facility in MATLAB) required to execute the algorithm running on 

an isolated Sun Ultra-Sparc workstation (CPU speed: 140MHz; operating system: Solaris 

2.5.1; 64MB memory) were recorded for the 1% noise level case and the result were shown in 

Table 6-2. PCA computation was performed only once per data set and did not need to be 

computed for subsequent inputs. All 120 spikes were used to compute the PCA parameters for 

clustering. Thus comparison of the algorithms with PCA preprocessing was best made on the 

"Relative FLOPS / Runtime(sec) (CLUSTEfONG)，’ column in Table 6-2. 

The three columns correspond to the number of floating point operations required and runtime 

to perform PCA, clustering and PCA + clustering. Figure 6-2 compared the efficiency of PCA 

+ clustering in term of FLOPS consumed and Figure 6-3 compared efficiency of PCA + 

clustering in term of actual runtime. The comparison results based on FLOPS and runtime 

were similar because the targeted algorithms were all highly computational with critical 

routines performing mostly floating point operations. FLOPS was suggested as a better 

measure of computational efficiency than actual runtime measurement since it was machine 

independent and could be used as criteria for selecting computer platforms feasible for real 

time spikes classification. The actual runtime were included to give reader a concrete idea of 

how fast those clustering algorithms could perform in nowadays high-speed computer 

platforms. 

The algorithms in order of computational efficiency in terms of FLOPS (most efficient first) 

were SCL, TM, SCL + PCA, TM + PCA, K-means + PCA, ART2 + PCA, K-means and 

ART2. The decreasing order of efficiency of cases using PCA was the same as the non-PCA 

case. Li the case of no PCA preprocessing, SCL and TM had approximately the same 

computational requirements whereas K-means and ART2 requires 6 and 12 times more 

FLOPS and runtime than SCL respectively. PCA preprocessing reduced dimensionality of 

data set from 25 to 2, thus reducing the number ofFLOPS required for clustering by factors of 

3，4, 3 and 7 over the non-PCA case for TM, K-means, SCL and ART2 respectively. 
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For the case of running SCL and TM with PCA on selected machine platform, the 

classification rate is 17 spikes/sec. The computing facility is capable of handling real-time 

spike classification as the normal spike firing frequency is below 10 Hz. For both K-means 

and ART2, the spike classification rate is about 4 spikes/sec so the algorithms may fail for 

cases with spikes firing rate higher than 4 Hz. 
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Number of Number of Number of Number of Number of 
Errors (1 % Errors (20% Errors (40% Errors (60% Errors (80% 
noise) noise) noise) noise) noise) 

l M 0 0 90 90 90 

TM + PCA 0 0 8 15 17 

K-means 0 0 1 7 U 

K-means + PCA ~0 0 8 7 15 

SCL 0 0 To n 2l 

SCL + PCA 0 0 5 I4 1^ 

ART2 0 i Tl 29 3l 

ART2 + PCA 0 0 9 ^ 26 

Table 6-1: Results for selected data corrupted with noise. The entries correspond to the number of 
incorrectly classified data in a 120 point test set. 

Algorithm Relative FLOPS / Relative FLOPS / “Rela t ive FLOPS / “ 
Runtime (sec) Runtime (sec) Runtime (sec) 

(PCA) (CLUSTERING) (TOTAL) 

TM 0 ^ 3.6/20 3.6/20 

TM + PCA 8.5/60 L W 9.8/67 

K-means 0 ^ 22/180 22/180 

^ K - m e a n s + PCA 8.5/60 4.9/41 13/101 

SO^ m 3.4/24 3.4/24 

SCL + PCA 8.5/60 1 {FLOPS=13,168} 9.5/67 
n 

ART2 0?0 41/211 41/211 

ART2 + PCA 8.5/60 ^ 15/94 

Table 6-2: Comparison of the efficiency of the algorithms for the 1% noise level case of Table 6-1. All 
FLOPS results are expressed relative to the most efficient algorithm, SCL+PCA, for which the absolute 
number of flops is given (i.e. RELATIVE FLOPS(X) = FLOPS(X)/FLOPS(SCL+PCA)). The results in 
the first column show the relative number of FLOPS required to perform PCA, the second column are 
the relative number of flops required to perform the clustering and the final column is the total relative 
FLOPS for PCA plus clustering. 
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level 1 ^ % m 0 » ^ % 8 | g 0 T V ^ ^ r ^ i t m 

80% noise 她 J L ^ ^ 

0 ^ ^ m 0 tt^^ n f S 0 ^ n ^ ^ m m 

Figure 6-1: Selected data sets corrupted with 1%, 20%, 
40%, 60% and 80% noise. 
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Figure 6-2: Comparison of efficiency of clustering algorithm on 
artificial generated data in term of relative flops 
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Figure 6-3: Comparison of efficiency of clustering algorithm on artificial 
generated data in term of runtime measurement 

77 



Applications of Clustering Analysis to Signal Processing Problems 

6.2.2 Clustering of Unlabeled Data 
The second data set consisting of unlabeled spikes taken from various multi-neuron 

recordings were used to make quantitative measurements of the efficiency and utility of the 

algorithms. For detail of electrophysiological spikes recordings preparation, please refer to 

section 5.2.2. The four classification algorithms were also tested on a set of real recordings 

taken from electrophysiological experiments. Li total, 25150 spikes were classified from 21 

different recordings. 

Number of cluster definition and parameter tuning for individual recordings 

The correct number of cluster for each spike recording was determined by a systematic way 

using the indication of the Fmuo accompanied with K-means clustering. 

F 
F — K+ldusters 

ratio — 厂 

KClusters 

This is a ratio of total partition error of K+l clusters over that of K clusters using the K-means 

clustering method. There were no tunable parameters for K-means except the number of 

clusters K so no parameter tuning was necessary. By using K-means, the number of 

cluster can be easily determined by parameter K. If the F ratio is above 10，then K+l or more 

clusters should be necessary and the calculation continues. For Fratio below 10，the K-clusters 

are adequate for waveform set. Each spike recording were clustered into a desired number of 

cluster using this Fratio value. The numbers of cluster formed for each recording were shown 

in the last column of TableA-1. 

All the input pattems were normalized to ease the task of tuning the parameter values, bi 

order to tune the clustering routines to give the predetermined number of cluster, the 

parameters of all clustering techniques (threshold value D for TM, leaming rate parameter rj 

for SCL and vigilance parameter p for ART2) were selected using a bisection search. By this 

bisection search method, experiments with labeled and noise-corrupted data were performed 

with parameter values adjusted linearly until the data set were divided into the predetermined 

number of clusters. 
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Quantitative comparison of clustering techniques 

The TDIST value for each algorithm is the total Euclidean distance between the template for 

each cluster (defined automatically by the clustering algorithms) and each spike in the data 

set. The TDIST value is a measure of its convergence properties, a smaller value being more 

desirable. 

Figure 6-4 compared the average convergence result (TDIST) of clustering methods over the 

21 recordings with and without PCA preprocessing. Figure 6-5 compares the average 

efficiency {FLOPS) of clustering methods with and without PCA. Figure 6-6 compares the 

average efficiency (Runtime) of clustering methods with and without PCA. The runtime were 

taken from computer platform Sun Sparc Ultra (CPU speed: 140MHz; Memory: 64MB; 

Operating system: Solaris 2.5.1). Figures 6-7 and 6-8 showed the result of the dividing the 

data set T21 into 4 clusters with and without PCA respectively. (Table A-1 shows the results 

of the experiments without PCA preprocessing and Table A-2 shows the results with PCA 

preprocessing.) 

Referring to Figure 6-4，the order of clustering methods in increasing TDIST value 

(decreasing convergence) is K-means, SCL, TM and ART2 for both cases with and without 

PCA preprocessing. The experimental result using PCA preprocessing showed a high degree 

of similarity with those without using PCA. PCA preprocessing had proved its significance to 

improve the convergence ability of all the four clustering algorithms. 

Again, it can be shown from Figure 6-5 and Figure 6-6 that the comparison of computational 

efficiency using actual runtime measurement and FLOPS is very similar. It is clear from 

Figure 6-5 and Figure 6-6 that the TM and SCL algorithms are the most efficient, followed by 

K-means and then ART2 for both cases with and without using PCA. Using PCA analysis 

prior to clustering reduced the amount of computation required for performing clustering 

alone since the reduction in data meant less computation was needed. TM, K-means, SCL and 

ART2 enjoyed a 7，17’ 4 and 11 times speedup respectively (see Table A-2 for detail). 
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K-means algorithm produced the smallest value of TDIST for both case of with and without 

PCA preprocessing. This reflects the fact that K-means could optimize its distance measure 

using all of the input patterns whereas the other, online algorithms could only update based on 

the current pattem (to put it another way, K-means was applied in an off-line fashion whereas 

the others were online algorithms). A direct result of this global optimization was that the K-

means without PCA was the slowest among all of the other algorithms (see Figure 6-5 and 

Figure 6-6). The computational loading of K-means without PCA was disproportionally 

greater than other algorithms (about 63 time of SCL without PCA). PCA preprocessing highly 

improved the efficiency of K-means, but K-means + PCA was still the second slowest 

clustering methods among all. 

The SCL algorithm managed to achieve the next best TDIST measure, an average 2% higher 

than K-means (refer to Tables A-1 and A-2 in Appendix A.1) while SCL without PCA was 

the fastest algorithms. The TM algorithm requires 30% more FLOPS than SCL but achieving 

a poorer TDIST measure than SCL. The ART2 algorithm achieved a TDIST measure similar 

to TM but requires about 5 times more FLOPS than SCL. 

. : ¾ ! . - - I 
I i . o 5 _ 1 P ^ z “： ^ m = m 

fe i . o o Z f :; ^ ^ m ^ • ^ 
H 0.95-^H i • I • I • : • BTDIST(w/o PCA) 
.> . H • I • 1 • nTDIST(w PCA) 

^ : : | : | j ! | ! 
0.80 J ^ ^ g « ^ ^ ^ W » ^ K » ^ r ^ f ^ ^ f c ^ ^ 

TM K-means SCL ART2 

Clustering methods 

Figure 6-4: Comparison of performance measure {TDIST) of clustering 
algorithm with and without PCA preprocessing on real spike data 
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Figure 6-5: Comparison of efficiency {FLOPS) of clustering algorithm with and without 
PCA preprocessing on real spike data (operation of PCA included in FLOPS if needed) 
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Figure 6-6: Comparison of efficiency (Runtime) of clustering algorithm with and without PCA 
preprocessing on real spike data (operation of PCA included in FLOPS if needed) 
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Figure 6-7: Comparison of clustering performance without PCA 
preprocessing on recorded electrophysiological data set T21. 
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Figure 6-8: Comparison of clustering performance with PCA 
preprocessing on recorded electrophysiological data set T21 
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6.2.3 Remarks 
Principal Component Analysis 

It had been established that applying principal component analysis to the waveforms before 

clustering was beneficial in terms of convergence (see Figure 6-4) in the presence of noise. 

The computational efficiency of performing clustering algorithm alone (without including the 

cost of PCA) was also improved. The first two PCA components accounted for 75% of 

variance of the original spikes with dimensionality reduced from 25 to 2 (8% of original 

dimensionality). The selection of number of PCA components L used in our analysis was 

justified as reasonable since clustering with 2 PCA component had improved convergence 

ability of all the four selected clustering techniques accompanied with a favorable linear 

dimensionality reduction of 92%. 

It was envisaged that the PCA be performed in an off-line manner before the real-time 

clustering of spikes. Though the convergence performance was improved, PCA was 

considerably computationally expensive as a feature extraction method for SCL and TM 

(computing the covariance coefficients for 1000 spikes for dimensionality reduction was more 

computationally expensive than performing SCL/TM clustering of original spikes). The 

whole clustering process for SCL and TM became significantly slower when PCA was 

included (see Figure 6-5). PCA was always recommended for K-means and ART2 since it 

improved convergence performance slightly with a high reduction of total computational cost. 

However, memory requirement of PCA was high. Although this was not a problem for a 

standard personal computer, it could be a problem for some memory constrained DSP 

systems. Another possible problem was that eigenvectors were computed from a data set 

which should be representative of the actual spike data's covariance. If the actual data being 

clustered changes significantly during the clustering process, the principal components will 

no longer point in the directions of greatest data variance and the efficiency of the 

compression would be reduced. Jn such cases it would be prudent to use a larger value of L in 

the dimension reduction step of the PCA algorithm. 
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K-means Clustering 

K-means was found to be the most reliable clustering algorithm with the best convergence 

result. It main advantage was that it could update the templates based on the global spike 

population while other templates update was based on current incoming spike data for other 

clustering methods. K-means employed a global optimization policy in which all the spike 

waveforms participated in the decision process in order to make the best partitioning. 

However, the main problem of K-means was that it cannot work in an online manner and had 

computational requirements much greater than other clustering techniques. Adaptation 

process was slow and involved much computation. This explained why K-means performed 

well in clustering convergence but was inefficient in term of consumed computational 

resources. There was no tunable parameter in K-means except the user needed to decide the 

number of cluster. K-means was highly unsupervised to use with the minimum human 

intervention required among the four clustering methods. Therefore, K-means could be the 

best choice for off-line clustering if speed of execution was not important, but not in real 

situation where speed was a critical factor. 

Due to its global optimization of partitioning policy, training of all the K-means clustering 

algorithms was performed in an off-line manner in contrary to other clustering methods. M K-

means, the training step was performed over the entire data set. Therefore, K-means is 

normally applied to spike sorting (Salganicoff et al., 1988) by clustering an initial 

representative data set to compute cluster means which are then frozen in value, real-time 

clustering being performed by assigning the spike to the nearest cluster mean using Euclidean 

distance comparison. 

Simple Competitive Learning (SCL) 

The SCL algorithm was found to be faster, more accurate and had better convergence 

properties than the TM and ART2 algorithms. SCL was the fastest because of its simplicity in 

algorithmic design as a single layer of neural computational network. The convergence 

performance of SCL and TM was similar and was close to K-means which had been 
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recognized as the most accurate clustering algorithm. Since SCL was reasonably fast and 

accurate accompanied with its unsupervised and online nature, it was fulfilling most of the 

requirements that were specified before for an ideal spikes discrimination algorithm. The SCL 

clustering performance showed a successful application of simple unsupervised neural 

network leaming in real time signal recognition problem. 

Although SCL was found to be a fast and accurate algorithm for the clustering of these data, 

its neural leaming algorithm was much less intuitive and its convergence ability was highly 

sensitive to selection of the leaming rate parameter value 7]. This made it difficult for users to 

understand how a particular clustering was derived. Jn contrast, TM and K-means used simple 

Euclidean distance comparison and were more intuitive algorithms than SCL. This made it 

easier for physiologist to tune the input parameters in order to obtain a desired clustering 

result. 

Online Template Matching 

Template matching had similar convergence and efficiency performance with SCL from the 

analysis. It employed a simple computational algorithm by comparing the Euclidean distance 

of incoming spike with current template set. This implementation of online template matching 

was unsupervised in nature. The only tunable parameter D controlled the convergence ability 

in an intuitive way and users could tune to the desired result without much difficulty. The 

convergence of TM was much less sensitive than the case of SCL, which was a clearly 

desirable property as a solution to real time spike discrimination as users could control the 

clustering performance easily. For classifying the highly spontaneous spike firing activities, 

TM appeared as an another adequate clustering method beside SCL. TM required close to 

zero knowledge about the waveforms to be sorted and its implementation was easily 

manageable. This explained why it was one of the earliest applied classification techniques 

applied to the problem. The low memory requirement of TM enhanced its applicability since 
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we had to handle a large number of spikes with shape having multiple inflections which could 

drought memory resource of the system if memory was not utilized efficiently. 

ln some definitions, template matching is a supervised leaming technique in which the 

templates are chosen prior to real time classification. However, the implemented online 

template matching technique used in this thesis does not require any prior knowledge of data 

set and all the templates are defined and modified during runtime of the experiments without 

human intervention. No prior training epoch is necessary and the incoming data are assigned 

to various clusters in an unsupervised manner without prior teaching. Therefore, this version 

of template matching can be reasonably justified as an unsupervised leaming method. 

ART2 

ART2 had the worst convergence result among the four selected clustering algorithms and 

also the second most computational expensive algorithm. Li aspect of ease of handling to 

users, the ART2 algorithm was the hardest of all. The main problem of ART2 was its 

parameter tuning difficulty had greatly limited its ability to achieve highly convergent result 

when the same parameter tuning effort was placed as applied to other clustering methods. 

ART2 had not only the vigilance parameter p which was adjusted in our experiments, but also 

a, b, c, d and 6 which were kept as constants but could conceivably cause dramatic change the 

clustering results. All these factors made ART2 limited in its applicability to sort spike trains 

signal. Other experimenters may question on this unfavorable result of ART2 since ART2 had 

been successfully applied to other field of pattem recognition problems. These unfavorable 

remarks on ART2 were aimed at arousing attention that the clustering convergence control of 

ART2 was distributed among the whole parameter set. To tune ART2 to the best performance 

is a very complicated issue and its parameters tuning problem has limited ART2 to 

application of spike discrimination problem when compared with other clustering techniques 

using the same parameter tuning method. Based on spike discrimination algorithm design 

criteria stated in section 2.3.1, the most favorable clustering algorithm should be highly 
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unsupervised with minimum human intervention. Obviously, the parameter tuning procedure 

required much human intervention if satisfactory clustering result was to be found using 

ART2. Therefore ART2 was remarked as unfavorable clustering solution for real-time spikes 

discrimination problem in this analysis. 

ART2 is more computational complex than SCL. ART2 incorporates more functionality to 

give solutions to some difficult tradeoff in pattem recognition problems like the stability-

plasticity tradeoff. Orientating subsystem processing and the repeated signal back-propagation 

procedure from F2 layer to F1 layer in case when a spike from a new family was handled 

consume much computational resources. Based on other successful works of ART2 in other 

pattem recognition problem, it is still believable that this increased computational loading can 

be a good tradeoff in order to gain better clustering convergence performance. This would 

require the parameters set in ART2 to be feasibly finely tuned to give a desirable result using 

a reasonably unsupervised parameters-tuning method. Since lengthy analysis of parameters 

tuning in ART2 was out of scope of this thesis, the parameter tuning aspect of ART2 was left 

as further research work to other interested experimenters. 

Applicability of clustering analysis to spike discrimination 

Clustering analysis techniques were to be a successful solution to electrophysiological spike 

discrimination problem. A rigorous comparison all of the algorithms had been made in terms 

of their convergence performance and computational efficiency. K-means was found to be the 

most accurate but consuming much heavier computational loading than other methods. SCL 

was found to successfully trade off some accuracy but achieving much better efficiency. The 

overall performance of clustering analysis method for spike discrimination was promising. 

Computers continue to improve in speed at an exponential rate and real-time implementations 

of most of the algorithms have already been reported. It is believed that as both electrode and 

computer technology advances, electrophysiologists will increasingly make simultaneous 

extracellular recordings from multiple sites to gain a more global view of neuronal 

computation. M order to discriminate spikes from tens to hundreds of probes in real-time, 
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clustering systems would require the most computationally efficient algorithm that does not 

sacrifice accuracy. 

6.3 Headphone Sound Quality Control 
Experimental results in listening tests, statistical correlation measurement and confirmation 

tests of designed headphones sound quality control method are presented in this section. 

6.3.1 Headphones Frequency Response Clustering 
52 headphones of the same model were clustered into 4 groups using K-means algorithms 

based on frequency response parameters. The number of cluster was determined by the Fratio 

indication method as described in section 4.3.3. Frequency response parameters were chosen 

to cluster the headphones because it had been a well-known criterion to compare sounding 

quality of different audio equipment or audio headsets from different models. The headphones 

in our analysis were all manufactured with the same model, coming from the same production 

line and produced on the same day. Classification of headphones with close inherent physical 

properties based on frequency parameters is still a method with unproven success and 

applicability. If frequency response were a good measure to classify headphone quality, one 

might expect that a single cluster would contain a disproportionally high number of similar 

sounding headphones. However from Table A-3, it was found that headphones with the 

highest listening score and lowest score came from the same cluster. It could be concluded 

that frequency response was not a good indicating measure to classify headphone sound 

quality for headphones with close inherent physical properties. 

Li order to reduce the sample size for making subsequent listening test and parameters 

measurement feasible, the previous clustering result of 52 headphones using K-means 

algorithms based on frequency response parameters were used for sample selection. Selection 

of a small number of samples from each cluster then followed to form a new test set with 

greatly reduced sample size. This selection procedure based on clustering result of frequency 

response parameter of headphones helped to ensure that the whole spectrum of headphones 
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frequency parameter property had been included in the selected sample set. A good analogy to 

explain this methodology is that it is a commonly well established statistical technique to 

perform population census based on samples taken from clustered population groups 

according to the age range of the whole population. 

6.3.2 Listening Tests 
Listening tests were then performed on the new test sets to determine subjective sound quality 

ofthe headphones. A total of 51 different people were used as test subjects. A single figure of 

merit was derived from the listening results by assigning a score of 3 to each occurrence of a 

first place, 1 for a second place and 0 for a third place result and then dividing by the total 

number of results to normalize the data. The resulting scores are shown in Figure 6-8 (the 

frequency distributions are shown in Table A-3.) 

Looking at the scores associated with each headphone, they are grouped around three values. 

G was clearly superior to the other headphones. Headphones C, D, A and B followed although 

their differences in score were not large. The worst scoring (and presumably the worst 

sounding) headphones were F, H and E. 

The four most favored headphones according to score (G, C, D and A) originated from four 

different clusters. This again indicated that a strong relationship between frequency response 

and listening test preference did not exist as predicted. 

6.3.3 Correlation with Measured Parameters 
Correlation test at 95% significance level was performed to determine correlation between all 

the measured parameters with listening test scores. Measurable parameters from headphones 

are often adjusted by engineers in the hope that optimization in these parameters can directly 

improve the sound quality of the headphones. Common design criteria include wide frequency 

response and low distortion. Such an assertion can only be convincible if the parameters are 

strongly correlated with a listener's perceived sound quality of that headphone. The measured 

parameters were all tested for their correlation with the score obtained from listening tests. 

The correlation coefficients of frequency parameters and distortion parameters were shown in 
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Figure 6.9 (or refer to Tables A-5 and A-6, in Appendix A.2) while those of voice-coil driver 

parameters were shown in Figure 6.9 (or refer to Tables A-7 and A-8, in Appendix A.2). 

Frequency Parameters 

Figure 6.9 showed the correlation of each of the 8 headphones gain at low, midrange and high 

frequencies with listening test scores. It had been observed that none of the correlation values, 

r, were greater than 0.632. Thus testing the correlation coefficients for significance at the 

95% level, we cannot reject the null hypothesis and thus cannot find significant correlation 

between these parameters and the score. This confirmed the findings in Section 6.3.1 that 

frequency response was not a good measure for determining the sound quality of these 

headphones. 

Distortion Parameters 

Distortion was a commonly used measure of the non-linearity of a system. The measurements 

shown in Figure 6.9 showed measurements of the 2nd and 3rd harmonic distortions. For the 8 

headphones measured. As with the frequency parameters, none of these measurements were 

correlated with the listening test results. (The total harmonic distortion (THD) was not 

obtained because our version of the CLIO software did not support this measurement.) 

Voice-coil Driver Parameters 

The values of driver resonance frequency and Q values measured in Figure 6.10 did not show 

good correlation with the listening test scores. However, all of the measurements of dc 

resistance and inductance ( ¾ Lj^ and Ljok) had correlation coefficient r > 0.632 and hence 

showed a statistically significant correlation (at the 95% level) with the listening test scores. 

These driver parameters (Rs, Ljk and Ljok) were all derived as a function of the voice coil 

impedance. Strong correlation of sounding performance with voice coil impedance is 

reasonable in the sense that voice coil impedance is the basic quality-governing parameters in 

headphone production. Production of these headphones was done in a very manual fashion 

and variations in the coil wire length and inductance could result simply from the manner in 

which the components were placed in the coil-winding machine. That meant sound qualities 
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of headphones were highly sensitive to quality control in voice coil production stage. This can 

be a very valuable information to production engineers since they know how to allocate 

resource for quality improvement in the most sensible and efficient way. However, this 

correlation result is still a preliminary one. The following confirmation test serves to test 

validity of this result. 

6.3.4 Confirmation Listening Test 
More headphones from the same batch which had Rs, Ljk and Lwk parameters similar to those 

of headphone G were selected for further listening tests. This confirmation test was applied in 

an effort to determine whether for this particular model of headphone, the sound quality was 

indeed directly related to the parameters ( ¾ L；̂  Ljok) found in previous test. The same 

listening test was performed on a new test set. The new test set was again of sample size 8. It 

was formed by selecting 4 new headphones with similar parameter values as the headphones 

scoring the highest marks in the previous test together with 4 headphones randomly from the 

last test set. The same 52 people were invited to act as subjects in the listening tests. 

The newly selected headphones were named AA, BB, CC and DD. As shown in Figure 6.11 

(or refer to Table A-4, in Appendix A.2), those new headphones showed disproportionally 

higher scores than the rest of the set. The correlation measurement results were shown in 

Figures 6-12 and 6-13 (or refer to Table A-9, A-10, A-11 and A-12, in Appendix A.2). Figure 

6-13 showed that the correlation of the three selected parameters (/?£, Ljk and Ljok) all attained 

95% significance level, which was highly consistent with previous correlation test results. All 

the eight headphones came from the same batch of production. The result indicated the 

preference of listener towards headphones set with specific Rg, Lî  and Lwk value. The 

confirmation test results reinforced the reasoning foundation of previous listening test. The 

listening test accompanied by statistical correlation measurement process made out the 

relationship between listener's preference and specific measurable parameters ( ¾ L；̂, Ljoî  of 

headphones in our batch. 
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6.4 Summary 
Li this chapter, the experimental results of two problems namely: electrophysiological spike 

discrimination and headphone sound quality evaluation, were presented. K-means was found 

to be the most accurate algorithm for sorting spike signal whereas SCL was the most 

computationally efficient while showing convergence ability close to K-means. A 95% 

significant correlation was found between physical parameters Rs, Ljk, Ljok and subjective 

perceived sound quality of headphones. 
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Applications of Clustering Analysis to Signal Processing Problems 

CHAPTER 7 

Conclusions 

The aim of this thesis was to study clustering analysis on practical signal processing 

problems. The first application, electrophysiological spike discrimination is a natural 

application for clustering analysis. For this problem, a rigorous comparison of the standard 

algorithms was made. Jn the headphone sound quality problem, a novel application of 

clustering for choosing headphones was developed to find the relationship between sound 

quality and measured result. 

Techniques for the automatic online clustering of extracellular multi-neuron recordings from 

the nervous system were compared in terms of their efficiency and accuracy. The 

experimental setup to record electrophysiological spike wave-train signal and extract 

individual spike waveforms was described in Section 5.2. After identical preprocessing using 

a Schmitt trigger threshold detector and optionally, principal component analysis (PCA), the 

template matching, K-means, competitive leaming and ART2 algorithms were applied to the 

data sets. All clustering methods had been successfully applied to the problem with 

satisfactory overall convergence. Among all the methods, SCL was found to be the most 

successful clustering method considering the tradeoff between computational efficiency and 

accuracy. Preprocessing of spike data with principal component analysis can also help in 

speeding up the clustering process and improving overall accuracy. Although many different 

algorithms had been proposed in the past (Millecchia et. al., 1988; Gozani and Miller, 1994; 

Marks, 1965; Wyss, U.R. and Handwerker, 1971; Oghalai et. al., 1994; Gardicke and Albus, 
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1995), this study was the first to quantitatively compare clustering algorithms for 

electrophysiological spike sorting, and the first to quantify the benefits of PCA preprocessing. 

A method was presented in Section 5.3 for identifying correlation between subjective 

listening tests and physical parameters. Clustering analysis had been applied in such a way 

that a large batch of headphones produced from the same production line were clustered so 

that a manageable number of headphones can be selected for subjective listening tests. A 

score related to the subjective sound quality of the headphone was determined from these 

tests and its correlation with measurable parameters was determined. Confirmation tests were 

performed to validate any statistical findings. The presented approach had successfully 

identified parameters directly affecting the subjective sound quality of the headphones, 

showing the reliability of clustering for sample selection. Using the t test for testing 

correlation coefficients, correlation at the 95% significance level with parameters related to 

the dc resistance and impedance of the voice-coil driver were identified. The approach 

developed, to the best of my knowledge, is the only one reported which can directly identify 

the measurable parameters in headphone design which directly affect the sound quality, and 

the only study to successfully predict the subject sound quality from measurements in 

headphones. This problem has applications not only in quality control but can also provide 

feedback to the headphone designer. 

7.1 Future Work 
7.1.1 Clustering Analysis 
The presented works on spike discrimination and headphone sound quality measurement, of 

course are not the final words on these problems. Future works can surely further improve the 

present spike classifier and measurement of headphone sound quality. 

Simple competitive learning (SCL) requires the least computational resource while 

accomplishing the second best convergence result next to K-means. The tradeoff of accuracy 

when applying SCL in real spike discrimination system can be minimized by fine tuning the 
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parameters in the ANN model including the leaming rate, number of neuronal units and 

layers. More sophisticated ANN models also have the potential to achieve better clustering 

results. 

Clustering analysis helped in choosing headphone samples in listening tests but it was later 

shown that frequency response was not strongly correlated with subjective sound quality. It is 

also feasible to classify the headphone set according to other physical parameters like sound 

field characteristics (Tannaka Y. et. al., 1989), sound level, cutoff frequency, Thiele-Small 

parameters, intermodulation distortion and harmonic distortion etc. Different optimization 

criterions and parameter weightings may also help improving the automatic headphone sound 

quality clustering performance. Regarding the physical parameters measurements, there are 

potential problems in the measurement set-up in this analysis that can affect the accuracy of 

correlation test result. The measurement problems can be readily addressed by repeating the 

tests using dummy heads which are sophisticated model resembling human heads. Also, 

multiple repeated listening tests can be done in order to account for random errors likely 

involved in subjective listening tests. 

It should be noted that the presented method for classifying headphones with good sounding 

quality is not yet a generalized method. It is still arguable that this method can only classify 

headphones manufactured successfully in the same way as those samples used in the test. Li 

order to generalize this proposed method to other headphone models, further research work is 

necessary. 

7.1.2 Potential Applications of Clustering Analysis 
Besides those methodologies presented in this thesis, there are many clustering analysis 

techniques like exchange algorithm, seriation and graph partitioning (Mirkin B., 1996) which 

are potentially applicable in many other disciplines of science, such as biomedical 

engineeering, automatic analysis of images and signals and other industrial problems. 

One potential application of clustering is structure and substructure searching in chemical 

information systems. The two dimensional chemical structure diagram is the prime means of 
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communication between chemist and is the basis for computerized systems that deal with 

storage and retrieval of chemical information. One way to improve the searching mechanism 

is to rank the compounds according to the degree of similarity to the targeted compound 

(Willett P., 1987), that is to cluster the output from a structure search. Clustering methods can 

also be used when compounds are being chosen for random testing against primary biological 

screening by clustering the entire collection of compounds so as to identify the main classes 

in the data (Willett P., 1987). Compounds may then be selected systematically from the 

clusters so that all types of structure can be tested for activity in the screening. 

Another potential application of clustering analysis is image segmentation. Lnage 

segmentation is a basic problem in scene analysis and machine vision. Essentially, image 

segmentation is to divide image pixels into different categories so that pixels of each category 

are relatively identical and similar in certain properties whereas two adjacent pixels of 

different categories shows evidently different properties. It is known that image segmentation 

is still a difficult problem and that performances of various algorithms are data dependent. 

Clustering analysis is one of the potential solutions to give a stable segmentation 

methodology and is widely applied in computer vision. 

7.2 Closing Remarks 
The aim of this thesis was to verify the applicability of clustering analysis methods in new 

domains of signal processing problems. Techniques for the automatic online clustering of 

extracellular multi-neuron recordings from the nervous system were studied. The presented 

headphone evaluation approach had succeeded in identifying parameters directly affecting the 

subjective sound quality of the headphones with the help of clustering analysis. The clustering 

approach was shown to be an elegant method of classifying a pool of neural spike data and 

headphone frequency response data into groups of high associations. This kind clustering 

approach should also be suitable for many other signal processing applications. 
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Appendix 

A.1 Tables of Experimental Results: (Spike 
Discrimination) 

Table A-1 and A-2 shows the experimental result of different clustering methods on real spike 

recordings. The rows of tables correspond to the different recordings and the average and 

standard deviation are given in the bottom two rows of the table. The average value gives a 

single figure of merit, summarizing the performance of each algorithm over all of the 21 

different recordings. The entries of the SCL case are absolute measured figures whereas the 

other table entries show results that were normalized to the SCL results and expressed as 

percentages according to the formulae given in the figure caption. 

The results in Table A-2 show the performance of each algorithm with PCA preprocessing, bi 

the first column, the computational requirements of PCA as a percentage of the FLOPS of the 

SCL clustering algorithm on the reduced data set is shown. PCA computation is performed 

only once per data set and does not need to be computed for subsequent inputs. Thus its 

relatively large computation (10 times the cost of computing SCL), mostly in computing the 

eigenvectors of the covariance matrix, is not included in the FLOPS measures for each of the 

algorithms. 
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r ™ |K-means [ ^ |ART2 ~~No of 
(all entries X 10̂ ) Clusters 

FLOPS(%)/ |TDIST(%) FLOPS(%)/ |TDIST(%) FLOPS/ |TDIST~~FLOPS(%)/ |TDIST(%) 
Runtime(sec) Runtime(sec) Runtime(sec) Runtime(sec) 

xI B ^ Ts 20,433%/ :5 {17.1}/ {11.9} 451%/ 15 4 
925 16345 2 ^ 1 ^ 

T2 Jm/ To 7,993%/~~~l {4.86}/ {6.89} 567%/ 11 3 
978 7 ^ ^ ^ 

T3 4 ^ l 2 1 ,182%/~~l {1.11}/ {1.39} 572%/ 7 3 
n ^ 9 ^ 78 ^ 

T4 ^ H 16,235%/~~飞 {14.5}/ {11.1} 450%/ 21 4 
^ 15655 ^ ^ 

T5 84W 3 4 ,848%/~飞 {4.51}/ {7.22} 569%/ 1 3 
2 ^ 4 ^ ^ 8 ^ 

T6 3 m 3 45%/ ~Z {0.667}/~{0.907} 577%/ -3 3 
J ^ 2 0 ^ 45 ^ 

T7 MW ^ 651%/ ^ {0.440}/~"{0.572} 583%/ 22 3 
2 ^ 5 ^ M 5 ^ 

T8 T ^ l 5 13,488%/ ^ {11.9}/ {9.64} 566%/ 28 3 
9 ^ 10256 7 ^ 5 ^ 

T9 43%/ n 4,431%/~"~1 {4.71}/ • {6.61}~567%/ 10 3 
2 ^ 15215 ^ 5 ^ 

f I o T w 2 1,207%/~~^ {1.45}/ {1.96}~~~571%/ 12 3 
m 12567 85 5873 

TH 38%/ 1 7 ,195%/~~T" {8.04}/ {9.76}~452%/ 0 4 
^000 18956 ^ 5 ^ 

x H 49%/ ^ 4,738%/ ^ {6.73}/ {8.02}~453%/ -6 4 
1200 40563 ^ 4456 

x B 47%/ Ts 7,388%/ 0 {9.22}/ {5.55}~~567%/ 14 3 
1000 6567 ^ 5623 

xl4 46%/ 3 1,886%/ ^ {2.01}/ {2.71}~~569%/ 3 3 
9 ^ 18652 2 ^ 5 ^ 

x I s 39%/ 0 497%/ 0 {0.504}/ {0.829} 746%/ 0 2 
20^ 4 ^ ^ 5 ^ 

m Tsw 7 7,334%/~~^ {5.92}/ {6.50}~~453%/ 7 4 
^ 56321 ^ 5 ^ 

TT7 36%/ n 10,129%/ 1 {13.1}/ {8.39}~451%/ 8 4 
20^ 8 ^ 7^ 5 ^ 

f I s 6 ^ Ts 7,063%/ ^ {8.91}/ {4.82}~~452%/ 16 4 
^ 56235 ^ 5632 

x l9 39%/ ^ 8,368%/ ^ {10.2}/ {6.06}~452%/ 42 4 
1265 84561 ^22 5687 

T20 2I^ / Te l , O i 2 % / ~ ^ {0.796}/~{1.14}~~575%/ Ts 3 
9 ^ 8 9 ^ 46 4 ^ 

T2I 12%/ 4 5 ,808%/~~^ {10.7}/ {8.03}~~452%/ 5""" 4 
863 45614 600 5867 

Average 31%/ TI 6,282%/~~^ {6.54}/ {5.71}~~ 528%/ TI 
^ 16012 4 n 2 ^ 

Std 20%/ To 5 , 2 9 2 % / ^ 3 {4.98}/ {3.51}~~76%/ 11 
| j ^ |4ii75 1 ^ 1 ^ 

Table A-1: Comparison of efficiency and performance measure of algorithms without PCA for 
clustering spike data. SCL is used as a reference and its actual values of FLOPS and TDIST are 
enclosed in parentheses. A percentage comparison for the other algorithms computed by 
TDISTx(%)=100(TDISTx-TDISTscL)^DISTscL 2LndFLOPSx(%)=100(FLOPSx-FLOPSscL)/FLOPSscL 
appears in the other columns. The bottom rows are the average and standard deviation over the 21 test 
cases. 
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|PCA pTM |K-means |SCL ART2 
(all entries x 10̂ ) 

FLOPS(%)/ FLOPS(%)/ |TDIST(%) FLOPS(%)/ |XDIST(%)~~FLOPS/ IXDIST~FLOPS(%)/ IXDIST 
Runtime(sec) Runtime(sec) Runtime(sec) Runtime(sec) Runtime(sec) 

Tl 3 3 ^ T ^ 6 4,669%/~~~l {4.27}/ {11.4} 173%/ 6 
9S2 265 12563 ^ ^ 

T ^ - 1,069%/~H%/ 1 1,690%/~~0 {1.37}/ {6.86} 191%/ 1 
m §9 2 ^ 78 165 

T3 M W V7%/ 飞 2 ^ 1 {0.315}/~{1.42} 190%/ 0 
^ ^ 74 28 ^ 

T4 3 9 ^ I w 4 2,916%/~~^ {3.61}/ {10.9} 173%/ 5 
1024 245 6 ^ 2 ^ 5U 

T5 1,081%/~~~Ts^ 1 820%/ ^ {1.28}/ {7.09}~~191%/ 2 
897 74 1_^ 78 j ^ 

^ 1,779%/~JE^/ 4 1 ^ 0 {0.189}/~~{0.907} 190%/ 4 
^ U j5 22 26 

T7 2 , 1 9 9 % / ~ ~ ~ l 4 W 1 367%/ 1 { 0 . 1 . 2 5 } / ~ ~ { 0 . 5 7 2 } 189%/ 4 
165 8 ^ 8 n 

T8 4 3 ^ T s ^ 3 1,837%/~~0 {3.38}/ {9.51} 191%/ 3 
1035 256 4U3 j ^ ^ 

1^ 1,072%/~~TI^ 0 1,314%/~~1 {1.33}/ {6.61}~191%/ 0 
S76 78 2 0 ^ ^ 297 

f l 0 1,321%/~~~Tow 3 340%/ 0 {0.409}/~{1.94}~191%/ 0 
^ 26 j ^ ^ ^ 

TU 736%/ 21%/ 0 1,873%/ 4 {2.00}/ {9.75}~~173%/ 0 
9U m 2m U2 ^ 

x B 886%/ 22%/ ^ 1,006%/ ^ {1.68}/ {7.47}~173%/ 0 
^ ^08 9U 93 ^ 

l B 562%/ 18%/ l2 489%/ 0 {2.61}/ {5.57}~~~191%/ Ts 
945 m m j45 ^ 

Tl4 1227%/ 16%/ 6 417%/ 0 {0.569}/~{2.59}~191%/ 5 
^ ^ H5 35 §2 

T I i 1,931%/~~~nW 0 6 ^ 0 {0.168}/~{0.829} 211%/ 0 
2 ^ U n 9 25 

Xl6 1,002%/ 11%/ 2 2,166%/ 0 {1.47}/ {6.34}~173%/ 1 
^ 90 m o ^ 2 ^ 

TT7 444%/ 21%/ 2 2,392%/ ^ {3.26}/ {8.08}~~173%/ 3 
1025 216 4 ^ ^ ^ 

^ 8 657%/ 22%/ 1 2,080%/ ^ {2.22}/ {4.70}~173%/ 3 
1025 158 2785 ^5 3 ^ 

Tl9 570%/ 2 I w 2 2,384%/~~1 {2.55}/ {5.81}~173%/ 6 
^ m 3 ^ 2^ ^ 

T ^ 1,617%/ T ™ 1 344%/ ^ {0.225}/~{1.12}~190%/ 1 
^ 20 74 n ^ 

f n 544%/ 21%/ ~l 3,070%/ ^ {2.66}/ {7.88}~173%/ 2 
^ 2U 57^ m ^ 

Average 1,014%/ 18%/ 2 1,453%/ ^ {1.70}/ {5.59}~"184%/ 3 
^ J^2 2088 90 2 ^ 

Std 529%/ 3%/ 3 1,192%/ 1 {1.25}/ {3.42}~10%/ 3 
1 ^ 1^ |2623 [^ [ m 

Table A-2: Comparison of efficiency and performance measure of algorithms using PCA for clustering 
spike data. SCL is used as a reference and its actual values of FLOPS and TDIST are enclosed in 
parentheses. A percentage comparison for the other algorithms computed by 
TDISTx(%)=100(TDISTx-TDISTscL)^DISTscL SindFLOPSx(%)=100(FLOPSx-FLOPSsaJ/FLOPSscL 
appears in the other columns. Also, efficiency of PCA component extraction is compared in the same 
way with SCL execution time as a reference by FLOPSpcA(%)=100(FLOPSpcA-FLOPSscL)/FLOPSscL-
The bottom rows are the average and standard deviation over the 21 test cases. 
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A.2 Tables of Experimental Results: (Headphones 
Measurement) 

# Cluster r'place 2^place 3'^place Score 

A i 8 4 M — LOS 

B 4 5 9 m LOO 

C 3 7 7 n U 2 

5 2 7 4 n L09 

_ 4 7 5 2 0 0 ^ 

F 2 3 7 9 0 ^ 

G i l0 8 l3 L ^ 

H 1 4 7 I2 0 ^ 

Table A-3: Frequency distribution of listening test results. The first column is the headphone 
identification letter, the second column is the cluster number from which it was selected, the 3^ -̂5^ 
columns represent the frequency of a l̂ -̂3'̂  ranking respectively and the last column represents the 
normalized score given to that headphone. 

# l"place replace 3'^place Score 

A 9 7 Is i 

D 5 3 n ^ 

F 3 6 n 0 ^ 

G 6 Io n i 

AA 6 5 n 0 ^ 

BB 6 6 9 U 4 

^ n 6 6 L75 

DD 5 9 4 L33 

Table A-4: Frequency distribution of confirmation listening test results. The first column is the 
headphone identification letter, the 2"^-4^ columns represent the frequency of a l̂ '-3^^ ranking 
respectively and the last column represents the normalized score given to that headphone. 
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# Score A46Hz A46kHz AikHz Aimz Aii57Hz Aii57Hz 

(left, dB) (left, dB) (right, dB) (left, dB) (left, dB) (right, dB) 

G L23 80.23 77.67 85.71 85.71 68.14 76.09 

C U 2 K~l 8 4 ^ 88.02 88.42 79.63 7 5 . 5 7 ~ ~ 

D L09 7 ^ 8 L ^ 8 ^ 8 ^ 6 ^ ^ 

A T m 84.63 84.63 87.51 87.51 80.02 80.02 

B LOO 84.84 86.48 88.72 88.42 81.25 83.61 

F 0 ^ 82.42 84.15 84.77 87.69 77.93 ^ 

H 0 ^ 84.27 82.21 87.69 87.15 76.37 70.82 

E 0 ^ 77.29 ^ 86.68 85.32 75.27 71.98 

r 0.0195 0.0212 0.0843 -0.286 -0.344 0.280 

Table A-5: Measured frequency response parameters from the 8 headphones (sorted by score). The 
bottom row is the correlation (r) of the parameter with the listening test score. 

# Score D^ D^ D^ D^ 

(left, dB) (right, dB) (left, dB) (right, dB) 

G L ^ 49.68 33.24 29.81 20.72 

C r i 2 41.45 41.47 25.36 27.05 

D L09 30.19 31.08 24.76 31.54 

A LOS 37.25 37.25 28.52 28.52 

B LOO 39.76 42.17 26.12 22.97 

F 0 ^ 38.87 40.31 25.77 1 ^ 

H 0 ^ 39.21 40.46 33.64 ^ 

E 0 ^ 28.87 TE7l 23.95 25.31 

r 0.528 0.219 -0.008 0.376 

Table A-6: Measured distortion parameters from the 8 headphones (sorted by score). The bottom row is 
the correlation (r) of the parameter with the listening test score. 
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~ ^ ~ ~ Score ~ ~ ^ ~ ~ ~ ~ ^ ~ ~ ~ ~ ^ ~ ~ ~ ~ ^ ~ ~ ^ ^ Ps ^ 

(left) (right) (left) (right) (left) (right) (left, Hz) (right, Hz) 

~~G L ^ 054 0 ^ ^ ^ 0 5 l 0 ^ 128.72 140.33"~ 

~ C 1.12 0 ^ 058 ^ T?f9 0 6 054 144.14 133.65~~ 

~ ~ D L09 a ? 7 ^ S M r n a ^ a ^ 139.12 i 3 2 . 4 8 ~ ~ 

~ ~ k L ^ 0 6 053 ^ 7 ^ 0 ^ 0 ^ 136.34 129.85"~ 

~ B LOO L ^ 0 ^ ^ 7^1 U i 0 ^ 139.95 140.33~~ 

^ F 0 ^ 0 ^ ^53 11.06 ^ ^ 0 3 141.56 1 ^ " " " 

~ H 0 ^ 0 ^ o 3 s ^ ^ 0 l ^ 134.85 141 .56^ 

~~E 0 ^ OM 0 ^ ^ T ^ 0 ^ 0 4 139.12 131 .34^ 

^ r -0.0739 0.185 -0.430 0.0325 -0.0834 0.164 -0.315 0.201~~~ 

Table A-7: Measured voice-coil driver parameters (I) from the 8 headphones (sorted by score). The 
bottom row is the correlation (r) of the parameter with the listening test score. 

# Score Rfi Rs Lik Li^ Liok Liok 

(left, Q) (right, Q) (left, mH) (right, mH) (left, mH) (right, mH) 

~~G L ^ 34J 3 ^ YW n ? 0 l ^ OT/ 

~~C U 2 ^ 343 L08 LM o l ^ o l 6 

~~D L09 34^ 343 L09 L U o l ^ OJ^ 

~ A r ^ 35 34^ n T B a l 6 o l 6 

~~B LOO 343 34^ L05 U 7 o l 6 oT6 

~ F OM y ^ 33 0 ^ n 0 l 5 o l 5 

~~H o ^ 3^ ^ 0 ^ Tm 0T5 Ku 

~~E 0 ^ 344 3 I 2 L03 L ^ o l 5 0.15 

" ~ r 0.660 0.995 0.822 0.735 0.916 0.918 

Table A-8: Measured voice-coil driver parameters (H) from the 8 headphones (sorted by 

score). The bottom row is the correlation (r) of the parameter with the listening test score. 
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# Score A46Hz A46kHz AikHz AikHz All57Hz All57Hz 

(left, dB) (left, dB) (right, dB) (left, dB) (left, dB) (right, dB) 

A 1 84.63 84.63 87.51 87.51 80.02 8 0 . 0 2 ^ 

"""_D 0 ^ 78.41 81.28 85.49 86.18 69.83 ^ 

F 0 ^ 8 ^ ^ k B 84?n K i m 77.93 ^ 

G 1 80.23 77.67 85.71 85.71 68.14 76.09 

^ A A 0 % 95.29 95.29 96.55 96.55 77.35 77.35 

^ B B r i 4 84.64 84.64 93.76 93.76 79.74 79.74 

^ ^ r ? ^ 89.13 89.13 96.45 96.19 79.14 7 9 . 1 4 " ^ 

~ D D L ^ 89.06 89.06 94.00 93.88 78.49 78.49 

r 038 ^ 0 ^ 0 ^ ^ ^ 

Table A-9: Measured frequency response parameters from the new headphones test set. The bottom row 
is the correlation (r) of the parameter with the listening test score. 

# Score D^ D^ D^ D^ 

(left, dB) (right, dB) (left, dB) (right, dB) 

A i 37.25 37.25 28.52 28.52 

D 0 ^ 30.19 31.08 24.76 31.54 

F 0 ^ 38.87 40.31 25.77 10.13 

G i 49.68 33.24 29.81 20.72 

AA 0 % 48.24 52.29 42.15 51.20 

W r i 4 47.26 45.22 37.16 24.71 

^ L75 38.57 40.12 29.24 32.46 

~ ~ D D L33 41.64 50.58 37.89 34.87 

T 0 ^ 0 l 7 0 ^ 038 

Table A-10: Measured distortion parameters from the new headphones test set. The bottom row is the 
correlation (r) of the parameter with the listening test score. 
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~ 1 " " " Score ~ ~ ^ ~ ~ ~ ~ ^ " " " ~ ~ ^ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~ ^ ~ ~ ^ ^ ^ 

(left) (right) (left) (right) (left) (right) (left, Hz) (right, Hz) 

~ ~ k i 0 6 a ^ 8 ^ T M 0 5 6 0 4 9 136.34 129.85~~ 

~ D 0 % a ? 7 0 ^ ^ r n 0 ^ 3 059 139.12 132.48 

F 0.58 067 ^ rT06 ^ 0 ^ o J " 141.56 1 ^ ~ ~ 

~~G 1 054 048 ^ ^ 0 ^ ^ 128.72 140.33~~ 

~ T k ^ L38 0 ^ 29.54 1 ^ O l 0 ^ 132.58 127.17"~ 

~ B B L U L38 0 ^ 29.54 M?78 o I 0 ^ 132.58 1 2 6 . 9 4 ^ 

CC L75 i 0 ^ K ^ J m 0 ^ o ^ 137.68 125.i6~~ 

DD L33 L ^ L ^ 29.73 28.59 L ^ L^V 138.58 124.78~~ 

~ ~ r 0 ^ 0 ^ 0 J 7 ^ 0.38 0 ^ ^ ^ ^ ^ ~ ~ 

Table A-11: Measured voice-coil driver parameters (I) from the new headphones test set. The bottom 
row is the correlation (r) of the parameter with the listening test score. 

# Score R_E Rn ^4k Eik Liok L!ok 

(left, Q) (right, Q) (left, mH) (right, mH) (left, mH) (right, mH) 

~~k i ^ ^ n r i 3 o i ^ o i ^ 

~~D 0 % Sk9 S 3 L09 m 0 l 6 0.16 

~~F 0 ^ ^ 33 0 ^ n ^ o H 

~~G i 3 4 J ^ L09 U 7 o l ^ oT? 

A A 0 ^ 36 35 L09 H s 0 0 6 o 1 ^ 

BB U 4 36 3 ^ L09 L02 o l 6 K u 

CC r ^ ^ 35^ L5 L52 0 ^ 0 

DD L ^ ^ 3 ^ U 5 L ^ OT? 008 

^ r 0 ^ 0 ^ O m 0 ^ 0 ^ 0?78 

Table A-12: Measured voice-coil driver parameters (II) from the new headphones test set. The bottom 
row is the correlation (r) of the parameter with the listening test score. 
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