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摘 要 

本論文旨在探討有關多載波分碼多工（MC-CDMA)系統之傳輸優化問題，本硏 

究的主要目的在於設計出中央式（centralized)或分散式（decentralized)，並具 

有低功率消耗特性、排除訊道中之不完善處和減低多重使用者干擾（MAI)影 

響之方法。爲了達到此要求，我們提議在傳送器上的增益能隨著訊道的情形而 

作出適當的調整，而其相對應的接收器也能適當地作出改變，以增大訊號雜訊 

比（SNR)°首先被提出的是使用拉氏乘子法（LagrangeMultiplierMethods)之中 

央傳送器優化法，於其中我們假設有一中央控制器是負責此項計算，接著，我 

們提出改善之方案藉以加快其收歛至目標的速度。另外，爲了簡化使用，我們 

也提出分散式的傳送器優化法，在這類方法中，每一對傳送器和接收器是獨立 

地作出調整而不需牽涉其他傳送器和接收器的額外資料。所有以上提出的方法 

都可以改善多載波分碼多工系統的表現。當使用者的數目少於或等於載波的數 

目時，此類系統的表現就類似一個具有最優化頻率分配的分頻多工（F D M A ) 

系統°而當使用者數目多於載波數目時’此類系統通常都可以支援多出來的使. 

用者。最後，一個經過改良而在任何使用者數目多於載波數目的情形下能使訊 

號雜訊比逐漸地遞減的方法也被提出’令系統之表現自動維持最優化。 
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Abstract 

In this work, we investigate issues on the transmission optimization in multi-

carrier code division multiple access (MC-CDMA) systems. The main objective 

is to design new algorithms, either centralized or decentralized, with low power 

consumption and capability of combating channel imperfection and reducing the 

multiple access interference (MAI). To achieve these goals, we propose that the 

gains in the transmitter can be adjusted according to the channel conditions. 

The corresponding receiver is also adaptively adjusted to maximize the signal to 

noise ratio (SNR). Centralized transmitter optimization based on the Lagrange 

multiplier methods is studied. A centralized controller is assumed to handle the 

computation. Modification is made on the algorithms to improve the speed of 

convergence. Also, decentralized transmitter optimization is provided for sim-

plicity of implementations. Each pair of transmitter and receiver is updated 

independently without any information from other transmitters and receivers. 

All these schemes enhance the performance of MC-CDMA systems. When the 

number of users is smaller than or equal to the number of carriers, the systems 

appear to tend to frequency division multiple access (FDMA) systems with opti-

mal frequency assignment. When the number of users is larger than the number 

of carriers, the systems have the potential of supporting more users under some 
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circumstances. A modified scheme with graceful degradation in the SNR is then 

derived for use whenever the number of users exceeds the number of carriers. 
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Chapter 1 

Introduction 

1.1 Overview of M C - C D M A 

Multicarrier (MC) systems are proven to be more immune to much channel 

imperfection than single carrier systems [1], [2]. Given the physical nature of 

the wireless fading channel, frequency selective fading is commonly encountered. 

Multicarrier modulation (MCM) is demonstrated to be an effective way to com-

bat the negative effects of fading by dividing the frequency selective fading chan-

nel into a number of flat fading sub-channels corresponding to the carrier fre-

quencies. Let us consider the channel with a bandwidth of B Hz. The idea of 

MCM is based on dividing the bandwidth B Hz into M small sub-carriers, spaced 

t>y ff Hz. The spectrum of the different sub-carriers mutually overlaps and the 

signals on different sub-carriers are orthogonal, giving therefore an optimal ef-

ficiency with small adjacent channel interference. More and more applications, 

such as broadcasting of digital audio, digital television and wireless local area 

networks (LAN), are proposed with MCM [1]. Another advantage of MCM is 
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Chapter 1 Introduction 

the possibility of efficient fast Fourier Transform (FFT) implementations [3 . 

In this thesis, we examine the multicarrier code division multiple access (MC-

CDMA) scheme, which is a digital modulation/multiple access technique based 

on a combination of MCM and code division multiple access (CDMA), in wireless 

communication channel [4]. MC-CDMA is considered as a promising alternative 

to conventional DS (direct sequence)-CDMA. Since 1993 proposed for indoor 

wireless communication systems by Yee, Linnartz and Fettweis [4], and for mo-

bile radio systems by Fazal and Papke [5], MC-CDMA rapidly became a hot 

research topic in spread spectrum communications. MC-CDMA is a suitable 

transmission scheme in the indoor environment where the specific character of 

indoor propagation [6] allows for the exploitation of this technique. In [7], Hara 

and Prasad categorized the MC-CDMA schemes into two groups: MCM with 

frequency domain spreading and MCM with time domain spreading. In the first 

group, the spreading operation is in the frequency domain so that a fraction of 

the symbol corresponding to a chip of the spreading code is transmitted through 

a different sub-carrier. In the second group, the spreading operation is in the 

time domain so that the resulting spectrum of each sub-carrier can satisfy the 

orthogonality condition with minimum frequency separation. 

Many papers worked on the problem of enhancing MC-CDMA systems, such 

as detection, equalization, and combining techniques, as well as the performance 

evaluation in different environments [8]-[16]. The demand of good quality of 

service (QoS) requirements becomes an important issue in the development of 

MC-CDMA systems. Thus adaptive methods for the optimization of both trans-

mitter and receiver in MC-CDMA are of interest. In this work, through applying 

2 



Chapter 1 Introduction 

different optimization techniques, the QoS (signal to noise ratio, SNR) require-

ments can be met with low power consumption. 

In MC-CDMA, a data symbol is transmitted over M sub-carriers simulta-

neously, which allows one to perform simple and effective detection, to use the 

available spectrum in an efficient way, to retain many advantages of a DS-CDMA 

system, and to exploit frequency diversity. As many implementational problems 

appear solvable, MC-CDMA could be widely used and could become part of the 

standards. 

1.2 System Model 

In this section, we focus on the formulation of the MC-CDMA system model for 

analysis. In an uplink transmission scenario, optimal schemes are obtained based 

on this model. In MC technique, the total system bandwidth is divided into M 

sub-channels. We assume that there are K simultaneous users in the system 

and each user uses the same M carriers. The structure of the MC transmitter 

is depicted in Figure 1.1. 

The kth. user generates a stream of data symbols 6(於)，given by 

6 ^ = ( . . . , 6 M ) , 6 A . . . ) . (1.1) 

The data symbols b(?) are random variables with zero mean and unit variance. 

For binary communications, each b ^ is either +1 or —1. The data stream is 

duplicated to M branches. To change the transmitted power in the mth branch 

of the transmitter, for 1 < m < M, each sub-stream gets through a complex 

transmission gain. The gains for the Hh user, 1 < k < K, can be written 

as an M-dimensional vector, Ck = [c[^\ 4乂 • •.，cĵ )̂]T. The mth sub-stream 
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Figure 1.1: Block diagram of the MC transmitter 

is filtered and carrier modulated in its branch independently. The modulation 

process can be accomplished through discrete time signal processing and by 

making use of the filtering properties of the inverse discrete Fourier Transform 

(IDFT). The transmitted signal of the ^th user can be expressed as the real part 

of the following complex signal: 
M ( 00 1 

E 4 ' ) E # V < z - m ) e j - S (1.2) 
m = l [^t=-oo 1 

where Ts is the delay between consecutive data symbols,⑴饥 is the angular 

frequency of the mth carrier, and c{̂ ) is chosen by the A:th transmitter to vary 

the amplitude and the phase of the mth sub-carrier. We assume that the symbol 

waveform ^[i) is bandlimited, satisfies the Nyquist criterion for no intersymbol 

interference, and is normalized so that f : 1^(^)1¾ = Z. We also assume that 

the sub-carrier frequencies are suitably chosen so that the signals on different 

sub-carriers are orthogonal and do not interfere with one other. 
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Chapter 1 Introduction 

We now describe the channel model. We assume that the channel is a fre-

quency selective slow Rayleigh fading channel. By suitably choosing M and 

the bandwidth of ^|j(t) [17], we can assume that each sub-carrier undergoes in-

dependent frequency non-selective slow Rayleigh fading [18]. We can use the 

complex-valued impulse to show the effect of the channel response as 

hk,m{t)=^k,mS{t-Tk), (1.3) 

where Tk is the received signal delay of the kth user. We introduce the complex 

random variables ak,m, for k = 1,..., K and m = l , . . . , M , which are indepen-

dent and identically distributed (iid) complex Gaussian random variables with 

zero mean and unit variance. The amplitudes of the complex variables are, 

therefore, Rayleigh distributed. These channel coefficients are assumed to be 

invariant within the time interval for the optimization. For a particular real-

ization, if ak,m > 1, the signal quality of the mth branch for the kth. user will 

be enhanced. If ak,m < 1, otherwise, the signal quality will be degraded. Intu-

itively, much power will be placed on the sub-carriers with ak,m > 1 to achieve 

power efficiency. Moreover, the power concentration in a fraction of sub-carriers 

reduces the multiple access interference (MAI) seen by other users. We also 

assume the presence of additive white Gaussian noise (AWGN) with zero mean 

and two-sided power spectral density of iVo/2. 

We consider the MC receiver with coherent detection as shown in Figure 1.2. 

The complex envelope of the received signal r{t) is the convolution of the trans-

mitted signal and the channel response /̂ ’爪(力),which is given by 

K M f oo >1 
K, ) = E E 4 l E 軸 - n - 叫 W--^^-^^Wm + n(t), (1.4) 

A:=1 m=l 1 z'=:-oo j 
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Figure 1.2: Block diagram of the MC receiver 

where n{t) represents AWGN. The received signal is processed by a matched 

filter that coherently detects the A:th user signal. Similar to the transmitter, 

the demodulation can be performed simply with the DFT technique. Signals 

are weighted by the M-dimensional vector, W/, 二 [w;f)，wî \ . . . , w;^^]^, for the 

^th user. After combining the contributions from the M branches, the receiver 

estimates the transmitted data stream. 

The system model derived in this section is much similar to the model in the 

original work in [4]. The difference lies in the selection of c^ in the transmitter. 

N. Yee, et al. proposed that the value of c。）is chosen from { - 1 , 1 } , but we 

extend the possibility of c f to any complex number. In addition, instead of the 

simple combining methods, the weight vector Wk in the receiver is adjusted to 

achieve receiver optimization. 
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Chapter 1 Introduction 

1.3 Receiver Optimization 

The characteristics of the transmission channel, and the statistical properties 

of the noise corrupt the signals. One of the damaging impairments is linear 

(amplitude and phase) distortion introduced by the channel. This type of im-

pairment is handled by an equalizer [19], which compensates, in an adaptive 

fashion, for the linear distortion introduced by the communication link. Some 

adaptive equalizers for MC-CDMA are investigated in [8]-[13]. Moreover, a re-

ceiver optimization method for MC-CDMA systems has been provided in [18 . 

Both training with reference signal and blind adaptive methods seem to be 

well-established. In [18], a blind adaptive receiver with interference suppression 

is proposed for MC-CDMA systems. We use it as the basis for the following 

analysis. 

Without loss of generality, we consider the optimization of the receiver for the 

first user. Receiver optimization for the first user only affects the performance 

of the first user. We consider the detection of the symbol 6&i). The output of the 

demodulator on the mth branch, due to the first user signal, is given by 6^)^¾) 

where 

赴)二 2>J^)ai,_ (1.5) 

We define an M-dimensional vector di = [ 4 ” 劣丄）.• • d^M^- The output of the 

demodulator on the mth branch of the first receiver, due to the A:th user signal, 

for k > 1, is given by 
oo 

4 ! l = 4 ^ ) e - ^ � , ^ E # ) 如 - 仏 — n ) , (1.6) 
i=-oo 

八 

where the function ¢{-) is the output of the symbol waveform through the re-

ceiver filter, i.e., ^{t) = SZoHsW\s — t)ds. We also define M-dimensional 
7 



Chapter 1 Introduction 

vectors i^” = [4:] 4^2 . . . 4:ir]T. We denote the output of the demodulator on 

the mth branch due to AWGN by n^\ and similarly define an M-dimensional 

vector rii = [r^i) ？^丄)...ri^uY- The overall output of the demodulators, in 

vector form, is given by 

zi = 6&i)di + ni + f;ii^i). (1.7) 
k=2 

Notice that the vectors i^” are uncorrelated for different k. The noise and 

interference correlation matrix is given by 

& = E + i n f + ^ i [ i ) i ^ j , (1.8) 

where Ec[-] denotes the conditional expectation given OLk,m, for k = 1,. •.，K and 

m — l，...，M, and the superscript H denotes the Hermitian operation. The 

decision statistic for the symbol 6^) is given by Z = w f z i . We assume that 

the channel coefficients ak,m and Tk vary slowly so that they effectively remain 

constant within the time interval used to determine an appropriate weight vector. 

We determine the optimal weight vector that maximizes the signal to noise ratio 

(SNR) defined by 

SNR. 二 | w W = J ^ . 
5 U | w { ^ ( n i + E f U i ^ 2 ] w f R , w , (丄-”） 

In [20], it is shown that the optimal weight vector is given by 

Wi = R - M i . (1.10) 

We assume that the receiver can estimate the desired vector di and the noise and 

interference correlation matrix R i , possibly with the help of a training sequence. 

Through a similar approach, the weight vector Wk of the receiver for the kth 

user can also be derived as 

Wfc = R f M h (1.11) 

8 



Chapter 1 Introduction 

where R̂ ： and dk are the noise and interference correlation matrix and the 

signal vector for the kth user, respectively. Based on this receiver optimization 

technique, we further the improvement for the MC-CDMA system by applying 

transmitter optimization. 

1.4 Transmitter Optimization 

A general approach to the design of multiuser communication systems is based 

on improving the performance. To get a good estimation of the received signals 

in MC-CDMA, researchers devoted much effect to the design of receivers [21], 

22]. However, research work on transmitter optimization has increased recently. 

The motivation of it is that people would like to find some way to make the re-

ceived signals more favorable for detection and estimation. The key assumption 

of transmitter optimization is that the optimization information from receivers 

can be fed back to transmitters. Sticking to the knowledge, transmitters can 

choose a more effective way for transmission. It is shown that transmitter opti-

mization in addition to receiver optimization contributes significantly to efficient 

suppression of the MAI and other channel impairments. Full optimization of 

an MC-CDMA system entails optimizing both the receiver end and the trans-

mitter end, where the second task requires optimizing the transmitted power 

subject to a certain set of QoS requirements [23], [24]. Yang and Roy proposed 

tlie joint transmitter-receiver optimization for multiuser communication systems 

with decision feedback in [25]. Other joint optimization schemes can be found 

in [26]-[28]. Transmitter precoding is also considered as an important branch of 

transmitter optimization [29]. In this work, we investigate the centralized and 

9 



Chapter 1 Introduction 

decentralized approaches to optimize the transmission gains. When the MC-

CDMA system performs receiver optimization and transmitter optimization, 

the performance of the whole system will be improved. 

1.5 Nonlinearly Constrained Optimization 

Since we will see the optimization of MC-CDMA systems as a constrained opti-

mization problem, we discuss the basic characteristics of this kind of problems 

in this section. 

There are two broad approaches to the solution of nonlinearly constrained 

optimization (minimization) problems. In the first approach, the objective func-

tion is modified so that it has an unconstrained minimum at the minimum of the 

original constrained problem. We call these techniques transformation methods. 

When the modifications are performed in sequences, we call the methods sequen-

tial^ otherwise the term exact will be used. The second approach involves linear 

approximation to the constraints followed by the application of a projection-

type method and perhaps a correction procedure to maintain a kind of active 

set strategy. We consequently call methods of this type projection methods. In 

this thesis, we only discuss the first group of methods and leave the other in [30 

for reference. 

In general, the problem is posed as 

min / ( x ) , 

subject to Qj{x) = 0 j = 1，...，J. (1.12) 

One of the implementation approaches of transformation methods is by La-

grangian. The unconstrained function constructed by the Lagrange multiplier 

10 



Chapter 1 Introduction 

methods with constraint functions of penalty type is called the Lagrangian func-

tion. It takes the form 
J 

L[x) = f [ x ) ^ Y . \ , g , [ x \ (1.13) 
j=i 

where Xj for j — 1,..., J are the Lagrange multipliers. The zero gradient equation 

of the Lagrangian function represents the necessary condition for optimality [31], 

and is iteratively solved by steepest ascent/descent. The main advantage of the 

Lagrange multiplier methods is that constraints are virtually ignored. Further-

more, the process of handling penalties is entirely automatic and the result of the 

optimization with respect to the changeable variables will automatically satisfy 

the constraints. 

1.6 Outline of Thesis 

In Chapter 2, we will look at some centralized adaptive transmission schemes 

for MC-CDMA systems. The Lagrange multiplier methods for optimizing the 

centralized constrained problem are investigated. The results show that power is 

not wasted in the deep fading carriers after applying the transmitter optimiza-

tion schemes. Working towards practicality, we will improve the centralized 

optimization schemes based on the use of power control for these systems. A 

frequency division multiple access (FDMA) system with optimal frequency as-

signment is derived for the purpose of comparison. 

In Chpater 3，we consider the problem from a different angle. We will seek 

a decentralized solution to the centralized constrained optimization problem. 

The decentralized optimization algorithms provide the merit that no central-

ized information is involved in the adaptive procedures. The optimization of 

11 



Chapter 1 Introduction 

both transmitter and receiver for different users is performed independently. 

The resultant performance shows that remarkable improvements over receiver 

optimization only will be achieved. By seeing the transmission requirement of 

multimedia communications and the service requirement of wireless communi-

cations, a multirate MC-CDMA transmission system based on the decentralized 

transmission scheme will be proposed. 

In Chapter 4, we will compare the performance of the centralized and de-

centralized adaptive transmission schemes. Also showed is the performance of 

supporting more users by the two transmission schemes after the MC-CDMA 

systems are heavily loaded. In particular, we will proposed a supplementary 

scheme for the users, in which the performance of them will descend gracefully 

as the number of users increases. It gives the results of averaging out the degra-

dation in performance and letting no user break down. 

In Chapter 5，conclusions for this work will be drawn and possible extensions 

will be discussed. 

12 



Chapter 2 

Centralized Transmitter 

Optimization for MC-CDMA 

Systems 

2.1 Introduction 

In this chapter, we consider the use of multicarrier code division multiple access 

(MC-CDMA) systems over wireless communication channel. We develop sev-

eral centralized adaptive transmission schemes for MC-CDMA systems, which 

should be well suited for wireless local area network (LAN) or wireless local loop 

(WLL) applications. We assume that there is a control unit with the centralized 

information from all users and the knowledge at a receiver can be sent back to 

the corresponding transmitter for the optimization of transmission. Instead of 

transmitting data sub-streams with uniform power through sub-channels, data 

13 



Chapter 3 Decentralized Transmitter Optimization for MC-CDMA Systems 

sub-streams are sent over sub-channels with the special power assignment adap-

tively adjusted to the fading channel characteristics. The problem of determining 

the optimal transmitted power among sub-carriers is formulated as a constrained 

optimization problem. The Lagrange multiplier methods are used to solve the 

problem. Results show that significant improvements in performance can be 

achieved. When the number of users is smaller than or equal to the number 

of carriers, each transmitter tends to concentrate its power on a distinct car-

rier which does not suffer deep fading at the receiver. The MC-CDMA system 

with centralized transmitter optimization then tends to a frequency division 

multiple access (FDMA) system with optimal frequency assignment. Then we 

formally define this optimal FDMA system for comparison. After stating some 

Lagrangian approaches to solve the optimization problem, we modify them to 

become new algorithms with improved performance. Simulation shows that 

these algorithms have the merits of fast convergence and stable performance. 

In Section Two, the problem of enhancing the MC-CDMA system with op-

timal power assignment is formulated. In Section Three, we present the La-

grangian approaches to the optimization problem. In Section Four, we derive 

the optimal FDMA system. In Section Five, we modify the algorithms to solve 

the optimization problem more efficiently. Section Six contains the simulation 

of the methods stated in the previous three sections. Finally, in Section Seven, 

we give the summary of this chapter. 

14 



Chapter 3 Decentralized Transmitter Optimization for MC-CDMA Systems 

2.2 Problem Development 

Referring to Section Two and Section Three in Chapter 1, we have already 

established the system model and derived the optimal receiver for the MC-

CDMA system. In [18], a blind adaptive receiver with interference suppression 

is proposed for MC-CDMA systems. The receiver applies 

w^ = R f d f c (2.1) 

for the ki\i user to weight the contributions from each branch. In this chapter, 

we also assume there exists a centralized controller handling the computation. 

The centralized controller will try to co-ordinate the effects of different users so 

that the required performance of each user can be achieved. In the transmitter, 

a complex transmission gain cĴ J) for the mth branch of the kth user is used to 

adjust the transmission centrally and adaptively. 

From the optimal weight vector w^, we see that the contributions from the 

sub-channels will be weighted differently according to (2.1). Assuming all users 

optimize the demodulated signals with their own W/̂ , from (1.9), the signal to 

noise ratio (SNR) for the Hh user is given by 

SNR, = d f R ^ M , , (2.2) 

where Kk is the noise and interference correlation matrix for the kth user and 

the vector dk can be expressed as 

dk = AkCk, (2.3) 

where A& is an M x M diagonal matrix whose mth diagonal element is Tsak,m. 

In multiuser communication systems, the performance of one user may affect 

the performance of others. Given a set of target SNRs, the transmission scheme 
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with the least average power to achieve the targets can be considered as opti-

mum. Using less power has the advantages of saving battery life and reducing 

the multiple access interference (MAI) in MC-CDMA. We see that the problem 

is better defined as 
1 K 

. 丄 V^ H 
mm - 2 ^ c ^ , 

k=l 
subject to d^K^^dk = jk for all k, (2.4) 

where ^ Z )^ i cfc^； is the average power and jk is the target SNR for the kth 

user. From (2.4), we see that it is a nonlinearly constrained optimization prob-

lem. In the next section, we apply different Lagrange multiplier methods to 

solve this problem. 

2.3 Lagrangian Optimization Approaches 

In the presence of different path losses and fading, it may be very difficult to 

obtain closed form solutions for (2.4) when K is reasonably large. Instead of 

trying to find exact closed form solutions, we consider numerical methods to 

treat the constrained optimization problem sequentially. The initial develop-

ments of transformation methods were motivated by the concept of minimizing 

the objective function with an unconstrained minimization method while main-

taining implicit control over the violations of constraints. The principle of the 

methods is to add negative effect to the constructed unconstrained function at 

points which violate or perhaps tend to violate the constraints. In general, a con-

strained optimization problem can be solved with the well-developed Lagrange 

multiplier methods [32]. The idea is to penalize constraint violation by modify-

ing the constraints as penalties to the objective function. Then, any technique 
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of unconstrained optimization may be used to solve the unconstrained problem. 

In this section we propose different Lagrange multiplier methods to solve the 

problem. Simulation results of each case will be shown in Section Six. 

2.3.1 Penalty Function Method 

First, for the constrained optimization problem of (2.4), we consider the La-

grangian and incorporate the SNR requirements as penalty functions. The idea 

underlying penalty function method is to transform the problem of minimizing 

K 
E c f c ,， （2.5) 
k=i 

where we omit ^ without loss of optimality, subject to certain constraints on c^ 

into the problem of finding the unconstrained minimum of 

K 

Lp - E [cfcA + H l k - d f R ^ M , ) ' ] , (2.6) 
k=l 

where Xk for k = 1,..., K are the Lagrange multipliers. The Lagrangian function 

Lp is considered as a function of Xk and the components of Ck for k = 1,..., K. 

If the constraints are violated, then a high value will be given to Lp so that the 

minimum of Lp will not arise outside the constrained region. 

Lp takes on values which are greater than or equal to the corresponding values 

of (2.5) (the true objective function for our problem). As Ck moves toward feasi-

ble values, the difference between Lp and (2.5) may be reduced through letting Ck 

approach to fulfil the constraints. By choosing Xk to be very large, we impose a 

very high cost for violating the constraints. On the other hand, if c^ takes on val-

ues, which though feasible, are close to the boundary of the constrained region, 

so that the constraints are satisfied or nearly satisfied, Lp and hence (2.5) will 
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become very close. The minimum of the objective function subjected to the con-
2 

straints are nearly found. Thus the operation of Xk{̂ k — d^R^^d^) with large 

Xk, for all k, is to create a steep sided ridge along each of the constraint bound-

aries. By sticking to the constraints, so that the effect of Xk{jk — d^R^^d^)^ is 

still small at the minimum point, we may be able to make this unconstrained 

minimum point for Lp coincide with the constrained minimum of (2.4). In other 

words, the overall effect of minimizing the Lagrangian function is equivalent to 

minimize the objective function subject to constraints. 

The derivative of Lp with respect to (wrt) Xk is the requirement for the A;th 

user SNR. The derivative of Lp wrt Ck can be obtained as follows. Notice that 

Flfi is not a function of Ck while R~^ for j + k can be expressed explicitly as a 

function of d̂； (and, hence, c^) via the matrix inversion lemma. 
R7i = ( ¾ , , + d , d f ) - ^ 

= R 〃 - ， h r W s ^ ^ d � d f ^ ， (2.7) 

for j • k where 

^ k , = n , n f + Y ^ d , d f . ( 2 .8 ) 
i^j,k 

where rij is the noise vector for the jth user. Therefore, the derivative of Lp wrt 

Ck is given by 

g = 2c, - 4A,(7. - d f R , - M , ) A f R , - M , + 

4 E ^ . ( 7 . - d f R - M , ) -
3^k 

{ 1 S ^ ^ AfR,- ] .d , - Id fy$d"|2 ^AfR, -^ .d4- (2.9) 
11 + d f R , ] d , � (l + d f R ^ ] d , ) ' ' ' ' J � ) 

The Lagrangian optimization problem is usually solved by finding the saddle 

point of the Lagrangian function. For Lp in (2.6), it is a minimum wrt Ck 
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and a maximum wrt \k. \k is taken to be a reasonably large number so that 

the effect on the function when a constraint is violated is to impose a penalty 

proportional to the amount of the violation. We consider an iterative scheme to 

seek a stationary point of the Lagrangian function. At each step, Ck and Xk are 

updated according to the following rules 

dLp 
Ck <- Ck - f i - ~ , 

dCk 
h — Afc + M 7 ^ d f R f M f c ) 2 , (2.10) 

i.e., a gradient descent algorithm is used to update c^ while a gradient ascent 

algorithm is used to update Xk. The gradient algorithm is the simplest one 

among many sequential methods for unconstrained optimization. jjL is the step 

size to vary the speed of convergence. 

2.3.2 Barrier Function Method 

This approach is suitable for inequality constraints only. The minimization of 

the Lagrangian function is approached from the interior of the feasible region, 

and this quantity is infinite on the boundary itself. Hence if we start with a 

feasible point and try to find the unconstrained minimum of this Lagrangian 

function, it will lie within the feasible region of the constrained problem. To 

confine the solution from the interior, any orthogonal assignment in different 

sub-channels for all users may be used. In addition, regardless of how much 

power is used initially, we can simply assign one carrier to one user to transmit 

data when the number of users is smaller than or equal to the number of carriers. 

After pouring power in the particular carrier for the user, a feasible solution from 

the interior can always be reached. We change the constraints of the problem 
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to be 

d f R f c U > 7fc for all k. (2.11) 

To minimize (2.5), intuitively, we see that the solution lies in the feasible region 

near the equalities for the target SNRs. In this part we consider the inverse 

barrier function. The Lagrangian function appears as 

K 

U = E [cfcA + A , ( d f R ^ M , - 7fc)-i], (2.12) 
k=i 

where Â  for k = 1,..., K are the Lagrange multipliers. We can interpret the 

behavior of barrier function method with (2.12) in the following way. It can 

be seen that as any constraint tends to zero, the contribution to the penalty 

term in (2.12) tends to infinity. By letting Xk to be suitably small, we avoid the 

term AA;(df^R^^dfc — -y^) ,̂ for all k, to blow up. As d^R^^d^： approaches the 

target SNR^, an unconstrained minimum has been created within the feasible 

region. For the same reason said previously, the minimization of the Lagrangian 

function is equivalent to the minimization of the objective function subject to 

constraints. The minimum of the Lagrangian function may be obtained with 

any sequential unconstrained minimization technique (SUMT). 

By using the similar approach, R~^ can be expressed as (2.7) by the matrix 

inversion lemma. To have the gradient information, we find the first derivative 

of L\y wrt Ck- It follows that 

g = 2c, - 2A,(d^^R,:M, - 7 0 " ' A f R , : M , + 

2 E A , ( d f R - M , - 7 , r ^ -
J^fc 

[ d f R ^ ^ d . _ |d fR^]d , r , H T , - 1 . 1 (? 1 ” 
11 + c i ^ ^ ^ c l . ^ ^ Rk，j�—(l+d-R-d.f^^ � ’ A } . ( 2 . 1 3 ) 
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Notice that for this case both Ck and \k are updated using gradient descent 

algorithms. X̂  decreases in each step to make the difference between L^ and 

(2.5) decrease and to refine the optimization. 

2.3.3 Powell's Method and Augmented Lagrangian Method 

In the previous two parts considerable attention has been paid to the solutions 

of the constrained optimization problem via penalty function method and bar-

rier function method. It is appropriate to consider the relative advantages and 

disadvantages of those methods [31]. The point is that both the methods have 

a tendency to involve very large numbers, namely Xk or the inverse of the con-

straints, which causes the functions that will be minimized to be very sensitive 

to changes in the variables in a way that makes them difficult to manage. There-

fore a number of methods have been proposed, whose general technique is that 

of the penalty function method, but where the functions have nice smoothness 

and boundedness properties. 

In 1969, Powell announced Powell's method [33] for equality constraints. For 

this problem, we construct the Lagrangian function in the following way 
K 

Lpru = E [cfc/c + hi^k — d f R f d f c + Okf]. (2.14) 
k=l 

The required solution can usually be obtained with moderate values of the pa-

rameters. The main improvement is the introduction of the parameters Qk, for 

all k, and these parameters satisfy the use of moderate values of Xk. Powell's 

method usually treats Xk = A as a constant and varies 6k to solve the problem. 

Rj"i is the same as (2.7), and the first order derivative of L^^ wrt Ck is 

字 = 2 c , - 4A,(7. - d fR, -M, + ^ , )AfR, -M, + 
k 
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4 E ^ . ( 7 . - d f R - M , + ^ , ) ' 
j^k 

j dfR=-c3U .jjp-i, |dfR=.dfc| . f f p - i , \,9i� 

i l + d f R - d , ^ ^ R��dj — (l + d - R - d . f ^ ^ K A | ( 2 . 1 5 ) 

By updating c^ with a gradient descent algorithm and Qk with a gradient ascent 

algorithm iteratively, we will reach a similar solution as using penalty function 

method. If the rate of reaching targets is satisfactory, Ok is updated and Â  is 

unaltered. Otherwise, \k must be increased and Ok decreased by the same fac-

tor [33]. The advantages of Powell's method are its stability and fast convergence 

near the optimal point. 

Another modified approach of the Lagrangian function is Augmented La-

grangian method. For the same problem, we have the Lagrangian function 

written as 

Lai = E [ c f c , + H l k — d f R , - M , ) + ^ . ( 7 . — d fR , -M, )2 ] , (2.16) 
k=i 乙 

where s is a reasonably large constant which makes better behavior of reaching 

targets. Similarly, we derive the derivative of Lai wrt c^ as 

吳 = 2 c , - 2A,AfR, -M, + 

2 V A. / d f % ) c U f I d f ^ > | 2 � 1 
L A l + d ^ - M ^ ^ ^^' ' — ,1 _^AHT^-lA�2八^： A,"̂ 'd& r 一 
j^k Li + aAr"t̂ fc,jCiA: (l + dfR;,jdA;) J 

Mlk - dfR,-M,)AfR,-M, + 2s YX�— dfR,-M,) • 
3弁 

I d f R : j d f c ff i |dfR:j.dfc| 、 叶 - 1 � 1 /o T7̂  
I I + d f R , - ] d / ^ R � , - (l + d f R - d . f ^ ^ R " d + (2.17) 

By using sequential technique, we update Ck with gradient descent and Xk with 

gradient ascent to let (2.16) have a stationary point which corresponds to the 

constrained minimum of (2.4). Augmented Lagrangian method is also attractive 
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because it is easy to change the parameters to generate a suitable sequence of 

unconstrained problem and only moderate values of Â  are needed. 

All these Lagrange multiplier methods are common and useful techniques 

for constrained optimization. By these methods, at least a local minimum can 

be found [32]. It is interesting to observe that all the above methods try to 

solve the problem in an FDMA way with optimal frequency assignment. Each 

transmitter concentrates almost all power in the least fading carrier, which does 

not suffer deep fading and much interference. For the case that the sub-carrier 

with the least fading characteristic for different users may be the same, the 

noise and interference correlation matrix R̂ ： is also used for the decision of 

power allocation. For comparison, we discuss the truly optimal FDMA system 

in the next section. 

2.4 Optimal FDMA System 

In a pure FDMA system, each user gains access to a distinct carrier for transmis-

sion. In wireless communications, it is common that different carriers undergo 

different level of fading process. If carriers are assigned randomly to users, some 

deep fading sub-channels will probably be used, resulting that much more power 

is needed to meet the least acceptable performance. To avoid this situation, we 

consider a new FDMA system with optimal frequency assignment. We assume 

an FDMA system with K users and M carriers where K < M. We define the 

optimal system as an FDMA system where the minimal average power is used 

to achieve the target SNRs for all users. Given the sub-channel coefficients ak,m^ 
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the problem of finding the optimal FDMA system can be identified as an as-

signment problem, and can be solved by the well-known Hungarian method [34], 

which is also given in Appendix A. 

For simplicity of illustration, we assume equal number of users and carriers, 

for k,m = 1,..., n. The problem is usually described in terms of matching n 

objects with n other objects in a one-to-one fashion. For the fading behavior of 

different carriers for different users, we can build a matrix with fading coefficients 

as its entries 
ai’i ai’2 . . . tti,M 

0^2,l OL2,2 : , \ 
a = . , (2.18) 

: • • . OLK-l,M 

OCK,l . . . <^K,M-1 OLK,M 

where K — M — n. Under perfect power control, we also know the equation 

between cxk,m and the target SNR̂ ； as follows 
C(_&) 2 

9 772/ 

l w ’ A � ^ ^ = t ^ t S N 〜 ， （2.19) 

where m is the carrier chosen for transmission, and W is the bandwidth of the 

sub-channel. Therefore the relationship between ak,m and the transmission gain 
(k). 

4 z lS 

c!̂ )| c< 丄 ， （2.20) 
C^k,m 

where the target SNR；； is assumed fixed. 

We now introduce the general model. Let 

n be the number of carriers (which is also assumed to be the number of users), 

/h,m be proportional to the corresponding transmission gain to achieve the 
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target SNR&, and thus the cost matrix is written as 

A,i ^i,2 •. • Pl,M 

々二 々“々2,2 ; ， (2.21) 

: •• i^K-l,M 

pK,l . . . fh<,M-l i^KM 

where |3k,m 二 -̂—. 
O^k,m 

The problem is to 

min E L i E5=i lh,mXk,m, 

subject to Em=l k̂,m = 1, k = l , . . . ,n, 
1 Lt . LjLd j 

Ylk=l k̂,m — 1, 爪—1, ..., n， 

where Xk,m = 0 or 1, k, m = 1,..., n. 

It is a standard assignment problem, and we solve it with the Hungarian method. 

We can view it as a kind of centralized optimization approach which also let the 

system obtain good performance to some extent. When K < M, this optimal 

system still works. Instead of using a K by M cost matrix, we still construct an 

M by M matrix with ~ - ~ " in the normal entries and infinity in other indefinite 
"fc,m ^ 

entries. 

2.5 Modified Centralized Optimization Schemes 

In Section Three of this chapter, we studied the Lagrange multiplier methods. 

Actually, they are slow in reaching targets. On the other hand, the computa-

tional time of the ideal FDMA system with optimal frequency assignment is still 

quite large through using the Hungarian method. Actually, optimal FDMA is 
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not optimal in all cases (i.e., K > M, to be considered in Chapter 4). In this 

section, we modify the methods in Section Three to solve the problem more 

efficiently. This alternative approach is taken toward the aim of increasing the 

speed of reaching targets. The system can still be implemented iteratively by 

the sequential techniques of the Lagrange multiplier methods. The idea of the 

modified algorithms is that after a new Ck is updated in the gradient process, we 

add a brute force step to make the Ck approach the target SNR much faster. It 

is implemented as power control in wireless communication systems. The new 

Ck is scaled by the following equation 

c , = " c y ^ ~ • (2.23) 
V < R ^ 

To avoid abrupt changing in Ck, we may apply power control with graceful 

steps. For example, we use a sequence of targets ^k(^) in (2.23) to compute 

the corresponding kth gain vector in the nth iteration. The value of 7^(n) 

changes, and the final value will be the ultimate target for the kth user to arrive 

at eventually. For penalty function method, Powell's method and Augmented 

Lagrangian method, the sequence of target SNRs is set in ascent order. For 

barrier function method, the sequence of target SNRs is set in descent order. 

So, a simple and fast recursive algorithm is designed in this way: 

1. In the nth iteration, from the estimation of d “ n ) and R/^(n), the optimal 

weight vector Wk�n) is computed based on (2.1). 

2. For the formulated Lagrangian function, i.e., with penalty function method, 

the Ck{n) is updated by a gradient method. Thus the new Ck[n + 1) is 

found. 
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3. Power control is applied to scale the Ck[n + 1) vector according to (2.23). 

2.6 Performance 

In this section, the system performance is evaluated using Monte Carlo simula-

tion. By simulation, we demonstrate the behavior of the proposed centralized 

MC-CDMA transmission schemes and investigate the performance of those al-

gorithms. In the first part, we analyze the typical behavior of each adaptive 

scheme and in the second part, we run a mass of simulation to show the average 

performance and draw conclusions from them. 

2.6.1 Typical Behavior 

First, we see the situation of only one user in the centralized MC-CDMA system 

with 8 carriers. The signal to thermal noise ratio (STNR) is fixed at lOdB and 

each carrier undergoes independent Rayleigh fading process. We set the target 

SNR for the user to be lOdB. Using the Lagrangian function of penalty type 

for the optimization, the typical behavior of the MC-CDMA system is shown in 

Figure 2.1. We see that much more power will be assigned to the least fading 

carrier after the user reached the target SNR. 

Next, the behavior of the Lagrange multiplier methods is studied by the fol-

lowing figures. In this set of simulation, we assume that 8 users transmit data 

using 8 carriers and the fading pattern is assumed to be the same throughout 

the analysis for different methods. Again, the target SNRs are all lOdB. We 

apply each Lagrangian and show the behavior with the power allocation under 

the same fading process in the figures. From Figure 2.2 to Figure 2.5, penalty 
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Figure 2.1: Centralized transmission scheme with a single user 
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Figure 2.2: Centralized scheme incorporating penalty function method 
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Figure 2.3: Centralized scheme incorporating barrier function method 
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Figure 2.4: Centralized scheme incorporating Powell's method 
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Figure 2.5: Centralized scheme incorporating Augmented Lagrangian method 

function method, barrier function method, Powell's method and Augmented 

Lagrangian method are shown one by one. We see that all the Lagrangian 

functions have the performance in which every user in the system reaches the 

target SNR and the power settles down. On the average, the time for reaching 

targets is about 120 iterations for penalty function method, Powell's method 

and Augmented Lagrangian method. It takes more iterations for the users to 

reach targets with Barrier function method. We also see that each user tries 

to place all power in one specific carrier when M < K. While migrating to 

multiuser communications, this characteristic of power concentration by using 

the Lagrangian functions for the optimization provides the advantage of reduc-

ing the MAI. We will give a more thorough description about this interesting 

resultant behavior in the next part of this section. 
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Figure 2.6: Modified centralized algorithm with barrier function 

In Figure 2.3, with barrier function method, each user seems to place less 

power in the carriers other than the least fading carrier than the other three 

methods. At this stage, from the point of power consumption, barrier function 

method appears to be the most attractive one in the Lagrange multiplier meth-

ods since the least average power is used comparing the others. Therefore we 

choose it to check the typical behavior of the modified centralized optimization 

schemes. The result is shown in Figure 2.6. Based on the Lagrangian algorithm 

incorporating barrier function, the modified one shortens the time needed for 

reaching targets successfully, but results in a bit more power assigned in other 

carriers, which suffer more channel impairments than the least fading carrier. 

For the large number of iterations needed for reaching targets of algorithms 

proposed previously, it can be viewed as a trade off to give quite remarkable 
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Figure 2.7: Average performance bound of two users with different optimization 
schemes 

improvement in speed. 

2.6.2 Average Performance 

After illustrating the typical behavior of the methods for the optimization pro-

posed in this chapter, we evaluate the average performance of them in this part. 

All figures shown are the results of 500 realizations. 

For simplicity, we first consider the two-user case to give a rough picture 

of the improvement. We propose another criterion which suits the comparison. 

From the point of view of the first user, we would like to maximize SNRi without 

using more total power. We can define the problem as 

max df^R7^d1, 
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subject to d^R2^d2 = 72, 

(2 • 24) 

l(cfc1 + cfc2) = 1, 

where 72 denotes the second user's target SNR. c^ck, for k 二 1 or 2, is the 

power used by the A;th user and the average power of the two users is unity. 

As a centralized optimization scheme, this criterion is another viewpoint of the 

optimization problem of (2.4). We can use it to show the improvement over the 

cases of receiver optimization only and no optimization. Figure 2.7 presents, 

after performing receiver optimization, the achievable average SNR of the two 

users with the centralized transmitter optimization. The figure also shows the 

reference points of the cases of receiver optimization only and no optimization in 

both transmitter and receiver for completeness. The x and y axes show the SNRs 

of the first and second user, respectively. The number of carriers is fixed at M = 

4 and each respective carrier of the three schemes suffers the same independent 

Rayleigh fading in the same realization. The sum of the two users' power is 2. 

The transmission gains for transmitter optimization are obtained via penalty 

function method. In this figure, we observe that the average SNR performance 

of the centralized transmitter optimization is better than the other two cases. 

We also see the relations of the performance of the two users. The centralized 

transmitter optimization provides an easy way to achieve multitargets. The 

users in the system can compromise with each other to give the desirable SNRs 

effectively. 

We evaluate the power consumption of the Lagrange multiplier methods for 

reaching targets. In Figure 2.8 and Figure 2.9, we fix M = 8 and let K increase 

from 2 to 8. Again, we see that penalty function method, Powell's method and 

Augmented Lagrangian method have similar performance. The performance of 
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Figure 2.8: Power consumption for different centralized schemes without restric-
tions in iterations 

barrier function method looks different. We know that the number of iterations 

and power needed for reaching target SNRs is affected by the initial conditions 

and parameters in the adaptive procedure. In Figure 2.8, we disregard the 

iterations needed for different centralized transmission schemes to reach targets 

and fine-tune the parameters to minimize the power consumption. The power 

shown in the figure is normalized to additive white Gaussian noise (AWGN). 

In terms of power needed, barrier function method is the best among the four 

methods. 

In Figure 2.9, we try to confine the number of iterations needed for reaching 

targets to be around 80 in all cases. After running 500 realizations, the number 

of iterations in each realization for the four methods to reach targets is between 

65 and 95. Some interesting results arise. When the number of carriers is much 
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Figure 2.9: Power consumption for different centralized schemes with restrictions 
in iterations 

more than the number of users, barrier function method does not appear as 

a good choice for the optimization. In this case, it requires more power than 

the other three methods. With small number of users, Augmented Lagrangian 

method is the best choice for centralized adaptive transmission with the least 

power consumption and most stable performance. When the number of users 

approaches the number of carriers, barrier function method is very attractive 

for power saving. As the number of users increases, penalty function method, 

Powell's method and Augmented Lagrangian method will need more iterations 

for reaching targets. On the other hand, the behavior of barrier function method 

looks different. For barrier function method, the number of iterations does not 

increase as the number of users increases. Therefore, in this situation, barrier 

function method is the best. 
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In Table 2.1 and Table 2.2, with 8 carriers and 8 users in each Lagrange 

multiplier method and its corresponding modified version, the performance is 

presented. Again, regardless of the speed, we show the power consumption 

for each method and its modified version in the first table. The respective 

number of iterations required is showed is the second table. We see that by 

sacrificing power, relatively speaking, about half of the iterations are saved for 

reaching targets in each Lagrange multiplier method. Modified algorithm based 

on barrier function seems to be the most attractive one because only very little 

additional power is needed for the improvement in iterations. 

Table 2.1: Power needed for centralized schemes and their modified versions 
(500 realizations) 
Different method Power (original) Power (modified) Power increased 
Penalty function 8.42 dB 9.34 dB W % 
Barrier function 7.70 dB 7.73 dB 7 % 
Powell's method 8.38 dB 9.09 dB 18 % 
A L method 8.31 dB 9.08 dB 19 % 

Table 2.2: Iterations needed for centralized schemes and their modified versions 
(500 realizations) 
Different method Iterations (original) Iterations (modified) Iterations saved 
Penalty function IM 69 H 54 % 
Barrier function 199 84 58 % 
Powell's method 138 68 51 % 
A L method ^ ^ 47 % 

For all centralized transmission schemes shown above, we observe that every 

transmitter tends to select one carrier for transmission. In Section Four, we 

define an ideal FDMA system with optimal frequency assignment. We use it as 

the basis to evaluate the average power consumption of the centralized methods 
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Figure 2.10: Power needed for the centralized MC-CDMA system and the opti-
mal FDMA system (K=M) 

in Figure 2.10 and Figure 2.11. We assume the same number of carriers and 

users in Figure 2.10 and 8 carriers in Figure 2.11. From these figures, we see 

that the performance of the MC-CDMA system with the centralized transmis-

sion scheme via modified version of barrier function method is nearly as good as 

the optimal FDMA system. In terms of power consumption, the new central-

ized transmission schemes are very attractive for use in implementation of real 

systems. 
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Figure 2.11: Power needed for the centralized MC-CDMA system and the opti-
mal FDMA system (K=2 to 8, M=8) 

2.7 Summary 

In this chapter, joint optiinizatioii of the M C - C D M A transmitter aiicl receiver is 

l)ropose(l. Wc use the Lagrange multiplier methods to solve the constrained op-

timization problem. When I\ < M , t he goal of reaching targets can be achieved 

l)y thc four Lagrangian functions. Then, modified schemes are derived to rcducc 

thr iiuniber of iterations ncecled to rcach targets. Pcrfonnaiice of the proposed 

crntralizecl transmission scheines is compared with an optimal M ) M A system. 

B(�sid(�s ai)proaching lhe l)ehavior of llic powrr ronccnlralion of KI).MA. wc fiir-

ther clenioiistrates that t h ( � p o w e r roiisuiiij)tion of thcsc contralizefl algorithms 

is fairly as good as lhe optimal F l )MA syslrm. 
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Chapter 3 

Decentralized Transmitter 

Optimization for MC-CDMA 

Systems 

3.1 Introduction 

In this chapter, we consider the decentralized transmitter optimization for mul-

ticarrier code division multiple access (MC-CDMA) systems. We focus on the 

scenario that multiple users communicate through the same set of parallel sub-

channels with different fading in different sub-carriers and users. Power is as-

signed to any of the sub-carriers depending on the state of the fading process 

among the sub-carriers. Through suitably choosing the weight for each branch 

in the receiver and the gain for each branch in the transmitter, the system tries 

to achieve the target signal to noise ratio (SNR) for each user with the minimal 

amount of average power. 
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In Chapter 2, we assume there exists a centralized controller handling the 

computation. Centralized knowledge is needed in the adaptation process. In this 

chapter, a different approach in which only decentralized information is needed 

for transmitter optimization is employed. The optimization process for each pair 

of transmitter and receiver is performed adaptively and independently. It offers 

the same advantages of the proposed centralized adaptive transmission schemes 

in terms of power consumption and multiple access interference (MAI) reduction, 

and it has the major improvement in performance over the conventional MC-

CDMA system. Similar to the previous chapter, we observe the interesting 

result: the MC-CDMA system with the decentralized adaptive transmission 

scheme tends to an FDMA system with optimal frequency assignment in many 

cases. 

Also consider that wireless communication systems of future generations are 

expected to support multimedia applications; thus, MC-CDMA systems should 

be able to serve integrated traffic generated by different types of sources, such as 

voice, video, and data. It is essential that this integrated traffic should be accom-

modated in a transmission efficient manner with the Quality of Service (QoS) 

requirements of various types of applications [35], [36]. A multirate MC-CDMA 

system based on the decentralized transmission scheme is proposed to provide 

multimedia services with graceful variation in the QoS for different usage. 

A brief outline of this chapter is as follows. In Section Two, we establish the 

system model suitable for the following analysis. In Section Three, we study the 

optimization process. We consider both receiver optimization and transmitter 

optimization from a single user's point of view. Then we develop the decen-

tralized adaptive transmission scheme. The modification for the decentralized 
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Figure 3.1: Block diagram of the MC transmission scheme 

transmission scheme to support multirate services is discussed. Thus the MC-

CDMA system can be used in wireless multimedia communications. Simulation 

results are shown in Section Four. Summary is drawn in Section Five. 

3.2 System Model 

In this section, we describe the model of the MC-CDMA system. We assume 

that there are K simultaneous users in the system, and each user uses the same 

M carriers. 

We use the same system model derived previously for analysis. An adaptive 

transmission scheme for the kth user, for 1 < k < K, of the system is shown 

in Figure 3.1. The input data stream is copied to all M branches. The data 
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sub-stream in the mth branch, for 1 < m < M, is multiplied by the gain 

factor c&) on each branch before it modulates the corresponding sub-carrier. 

For convenience, we define an M-dimensional vector 

k̂ — [̂ i \ C2 \ . . . , (̂ MV (3.1) 

for the kth user. 

Each receiver consists of M branches. Each branch consists of a demodulator, 

which is responsible for the demodulation of the sub-carrier, and an appropriate 

weight. We define the weight vector 

Wfc = [w[^\wi^\ . . . , i4?]T (3.2) 

for the kth. user. It is an M-dimensional vector that combines the contributions 

from the M branches of the A:th user to give the decision statistic. 

3.3 Optimization 

We first consider optimizing the receiver for the kth user by choosing an ap-

propriate weight vector w^. We then consider optimizing the transmitter of the 

kth user from his own point of view by choosing an appropriate (complex) gain 

vector Ck. The decentralized transmission scheme is obtained when all users per-

form the same transmitter and receiver optimization independently. Multirate 

transmission with this decentralized transmission scheme is derived, and will be 

presented in the last part of this section. 
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3.3.1 Receiver Optimization 

Notice that optimization of the receiver for the first user only affects the perfor-

mance of the first user, and does not affect the performance of other users. Since 

we are considering the first user, we can assume the delay To of the first user 

to be zero. We use the method from [18] to optimize the output signals from 

the demodulators. Similar to the previous chapters, we consider the detection 

of b^\ The overall output of the demodulators, in vector form, is expressed by 

zi = 6&i)di + ni + f ; i l i ) , (3.3) 
k=2 

where di = [c^” ^4” . . . <4^严 is the vector which summarize the total trans-

mission effects in the transmitter and channel, rii = [ n ^ ？^卫)...n^M^ is the 

AWGN noise vector and i^” = [4:! 4¾ • •. 4:1 ]̂了 is the interference contributed 

by the kth user seen by the first user. At this stage, we construct the noise and 

interference correlation matrix 

R i = E . [ n m f + f : i i ^ H , (3.4) 

- Aî 2̂ _ 

where E^J.] denotes the conditional expectation given ak’m, for k 二 1 , . . . , K 

and m 二 1 , . . . , M, and the superscript H denotes the Hermitian operation. We 

can express the SNRi in the following manner 
• - |wfdi|2 _ |wfdiP 

_ E.[|wf(n, + EL,il^^)P] = < R ^ - (3.5) 

Again, 

wi 二 R - M i (3.6) 

is the result that we arrive at. 
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3.3.2 Single-user Transmitter Optimization 

We consider optimizing the transmitter of the first user from the point of view 

of the first user only. With the optimal weight vector, the SNR for the first user 

is given by 

S N R i = d f R r M i . (3.7) 

The desired signal vector di can be rewritten as 

di - AiCi, (3.8) 

where Ai is an M x M diagonal matrix whose mth diagonal element is Tsai,m. 

Therefore, the SNR at the receiver of the first user depends on the gain vector 

Ci according to the relationship 

SNRi = c fCiCi , (3.9) 

where Ci : AfR]"^Ai . From the point of view of the first user, we would like 

to maximize SNRi without using more power. We can define the problem as 

follows: 

max c^Ci Ci, 

subject to c f c i = 1. (3.10) 

By the method of Lagrange multiplier, we obtain the following equation whose 

solution solves the optimization problem 

Cici .= Aci, (3.11) 

where A is the Lagrange multiplier. It shows that Ci should be chosen as the 

eigenvector associated with the largest eigenvalue of Ci. 
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In many cases, the first user only requires a certain target SNR. Alternatively, 

we may try to minimize the power needed to achieve the target SNR. Therefore, 

we can, instead of maximizing the SNR with fixed power, consider the following 

optimization problem: 
• H mm Ci Ci, 

subject to c f C i C i = 7 i , (3.12) 

where 71 is the target SNR of the first user. Essentially, the same solution is 

obtained for this optimization problem. The gain vector Ci should be chosen as 

the eigenvector associated with the largest eigenvalue of Ci . The only difference 

is that Ci should be scaled to satisfy the target SNR instead of being normalized. 

Physically, the solution of the optimization problem in (3.12) can be consid-

ered as a two-step process. In the first step, the eigenvector Ci that maximizes 

the SNR is determined up to a constant. An iterative approach to compute the 

eigenvector is the well-known power method [37]. At the nth iteration, the gain 

vector is updated as follows: 

ci(n + 1) = (1 — /i)ci(n) + / /Cici (n) , (3.13) 

where ^ is a constant. In the second step, power control is applied to scale the 

gain vector so that the target SNR is achieved with the minimum power: 

Cly/^ 
Cl - l~Hp ~ • ( 叫 

VcfCiCi 

3.3.3 Decentralized Transmission Scheme 

In a multiuser environment, we would like to have all of the users admitted to 

the system to achieve their target SNRs. (We would need to limit the number 
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of users that can be admitted to the system.) One possible criterion for trans-

mitter optimization is then to use the least average power to achieve the target 

SNRs for all users. The optimal solution to this problem would necessarily in-

volve a centralized algorithm with co-operation from different users. While the 

optimal solution can be of interest, a decentralized scheme based on single-user 

transmitter optimization with good performance is often desirable for simplicity 

of implementation. 

We propose the following decentralized scheme where each user adopts a 

greedy approach. At each iteration, each user tries to achieve his own target 

SNR with the minimum amount of power. More precisely, at the nth itera-

tion, the following steps are performed by each pair of transmitter and receiver 

independently. 

1. The receiver collects the required statistics (the desired vector dk(n) and 

the noise and interference correlation matrix Rk(n)) from the received 

signal, and computes the optimal weight vector Wk(n) = R]^^(n)dk(n). 

2. The information is also used to update C^:(n), which is, in turn, used to 

update the gain vector. 

Ck(n + 1) = (1 一 M)ck(n) + fxCk(n)ck(n), (3.15) 

where C “ n ) is the current estimate of Ĉ：, which is the corresponding 

matrix that determines the SNR for the kth user. 

3. Power control is applied to try to achieve the target SNR 7^ based on the 

current estimate of C^. 
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3.3.4 Multirate Transmission with Decentralized Trans-

mission Scheme 

In multimedia applications, video, audio and data communications are inte-

grated. Different applications may require different data rates for transmission. 

In practical considerations, it is very common that some users in the system 

need to have higher data rates to maintain the communication quality. The 

decentralized transmission scheme has the behavior of choosing a least fading 

carrier for transmission when K < M. A least fading carrier for the kth user is 

described as the carrier which suffers the smallest amount of fading and inter-

ference. In this part, we modify the decentralized transmission scheme to make 

it suit the use of supporting multirate transmission for MC-CDMA systems. 

Since we see that the decentralized transmission scheme tends to concentrate 

the power on a single carrier, the case that a user needs higher data rate can 

be engineered as more than one user in the adaptive process. For mathematical 

simplicity, we define r as the basic rate for transmission. The term transmission 

rate represents the multiple number of r can be supported by a transmitter, i.e., 

lr, 2r,... . In other words, different types of traffic in the MC-CDMA system will 

be accomplished with different number of the decentralized adaptive resources. 

Multiple streams of data are generated according to the traffic and QoS. Thus 

multirate can be viewed as more adaptive resources are applied to the users who 

need higher data rates, i.e., if a user wants to double the data rate, not exceeding 

the system capacity [38], this user can induce the decentralized transmission 

schemes of two users to meet this goal. The multirate MC-CDMA system can 

dynamically configure the transmission to meet the QoS needs. In addition, 
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admission control is used in order not to overload the system. To support 

multirate services, we assume the transmission rate of the possible kih. users 

to be Tk — rikr, where n^ is any positive integer. We define N to be the feasible 

number of users supported provided that 
N 

Y . n k < M . (3.16) 
k=l 

By satisfying (3.16), the decentralized MC-CDMA system with the additional 

modification can work with multiple transmission rates without difficulty. Sim-

ulation of this characteristic can be found in Section Four. 

3.4 Performance 

In this section, we consider the performance of this MC-CDMA system via 

Monte Carlo simulation. We assume that each carrier of the user undergoes 

independent Rayleigh fading. The signal to thermal noise ratio (STNR) is lOdB 

throughout the simulation. 

First, we consider the advantage of both transmitter and receiver optimiza-

tion over receiver optimization only. We consider a system with 8 users and 8 

carriers. The first user performs both transmitter and receiver optimization. The 

other users perform receiver optimization only. These users without performing 

transmitter optimization are assumed to distribute their power uniformly across 

all carriers. All users transmit with unity power. The average result of 500 

realizations is shown in Figure 3.2. The average SNR of the first user is shown 

dashed-dotted line while the average SNR of other users is shown in dotted line. 

It can be seen that with transmitter optimization the SNR is improved by almost 

6 dB. 
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Figure 3.2: Average SNR of a single user with transmitter optimization 

Again, to evaluate the performance of the MC-CDMA system with the de-

centralized transmitter optimization, we consider the optimization problem in 

(3.10) for a single user for the use of multiuser communications. The criterion 

for the kth user is written as 

max c^Ck Ck, 

subject to cfcfc = 1 for all k. (3.17) 

The optimization is that each user applies the same algorithm and tries to 

achieve the SNR as high as possible while holding the same amount of indi-

vidual power. Ck should be chosen as the eigenvector associated with the largest 

eigenvalue of Ĉ ： and then scaled to give unity power. To compare the SNR 

performance, we assume there are three MC-CDMA systems, in which the first 
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Figure 3.3: Average SNR for the users with different optimization schemes 

one works with the decentralized transmitter optimization, the second one op-

erates with receiver optimization only and the third one does no optimization in 

both transmitter and receiver. Figure 3.3 shows the average SNRs of the users 

for the three different schemes. The number of carriers is fixed at M = 16 and 

all gain vectors are normalized for a fair comparison. By letting the number of 

users in the systems increase from 2 to 16, we have the achievable mean SNRs 

over 500 realizations showed in the figure i. As expected, the MC-CDMA sys-

tem with the decentralized transmitter optimization outperforms the other two 

systems, even the one with the well-established receiver optimization case for at 

least 5dB. In Table 3.1，we present the mean and standard deviation of the SNR 

performance for the three different schemes. We observe that the decentralized 

iFrom the decentralized scenario, other users in the system can be treated as interferers. 
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transmitter optimization scheme has the largest mean SNR value, and so it is 

attractive for use in MC-CDMA systems with the remarkable improvement. 

Table 3.1: Mean and standard deviation of the SNR for different schemes (500 
realizations) 

Decen. tx optimization Rx optimization only No optimization 
( " , ^ ) ( " , ^) ( " , cr) 

K=2 34.51, %M 9.38, ^ 6.71, ^ 
(15.38dB) (9.72dB) (8.27dB) 

K=4~~~33.57, K n K U , I ^ i 3 ^ f M 
(15.26dB) (9.21dB) (5.93dB) 

K=8~~~32.89, ^ 6 ¾ T M 2 M , ^ 
(15.17dB) (8.Q9dB) (3.21dB) 

K=16 28.64, K ^ 2 ¾ L06 E02^ 037 
(14.57dB) (4.65dB) (Q.Q8dB) 

The transient behavior of the mean SNRs of all users for the three schemes 

is presented in the following two figures. Again, we consider the three systems 

with 8 users and 8 carriers. After running 500 realizations, for the same no-

tations, Figure 3.4 and Figure 3.5 show the mean SNR performance with and 

without narrowband interference. The interference is assumed to corrupt the 

same carrier. We see that the decentralized transmitter optimization is still the 

best among all the three schemes. 

Next, we consider the case when all users perform both transmitter and re-

ceiver optimization according to the decentralized adaptive transmission scheme. 

The typical behavior of each user is shown in Figure 3.6. Regarding to the op-

timization criterion, the target SNRs for all users are 10 dB and the number 

of users and carriers is 8. All users achieve their target SNRs in just a small 

number of iterations. Another merit of the decentralized transmission scheme is 

the support of multitarget performance. In Figure 3.7, there are 8 carriers and 
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Figure 3.5: Average SNR performance with NB interference 
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Figure 3.6: Typical behavior of the MC-CDMA system with 8 carriers and 8 
users 
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Figure 3.7: Typical behavior of multitarget transmission 
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Figure 3.8: Typical behavior of multirate transmission 

8 users in the MC-CDMA system. We assume different users require different 

target SNRs. In this case, a 0.5dB difference is set for different users. Using 

the simple decentralized adaptive transmission scheme, this special task can be 

fulfilled successfully. In the two situations shown above, an interesting behavior 

is observed. Each user tends to concentrate his power in a distinct carrier which 

does not suffer deep fading. The system then behaves like an FDMA system. 

In this part, the performance of the multirate MC-CDMA with the modified 

decentralized adaptive transmission scheme is analyzed. We assume M = 10, 

N = 4 and the target SNRs are all lOdB. User 1, user 2, user 3 and user 4 require 

lr, 2r, 3r and 4r data rates for transmission, respectively. The admission control 

of (3.16) is satisfied with this multirate service. In Figure 3.8, the system is 

modeled and simulated. Also showed is the amplitude of the transmission gains 
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for each user. We observe that power is mainly allocated to some carriers. 

This behavior indicates the multirate QoS is achieved. This modification gives 

much flexibility in frequency planning for different multimedia applications. In 

Table 3.2, the percentages of power in the carriers for multirate transmission is 

shown. It is the result of 500 realizations. By observation, the users with data 

rates that are multiples of the basic rate will utilize multiple carriers to meet 

their transmission requirements. The number of carriers allocated much power 

is proportional to the data rate needed. We define them as the main carriers. 

We see that almost all power is assigned to these main carriers after applying 

the modified decentralized adaptive transmission scheme. With satisfaction of 

(3.16), no main carrier will be used by more than one user for transmission. 

Models derived in this chapter is useful for further improvement of the multirate 

MC-CDMA transmission system. 

Table 3.2: Percentages of power assignment in the carriers of the multirate MC-
CDMA system (500 realizations) 
Data rates Power in the main carriers (in descent order) Power in other carriers 

u ^ (%) 
lr 87.24 12.76 
2r 63.77 25.73 1 ^ 
3r . 52.29 24.72 14.88 ^ 
4r 48.49 24.88 14.44 8.89 ^ 

Due to observation, it is of interest to compare the MC-CDMA system em-

ploying the decentralized transmission scheme with an FDMA system. We con-

sider a system with K users and M carriers where K < M. In an FDMA system, 

each user is assigned a distinct carrier. We define the optimal FDMA system 

as an FDMA system where the minimum average power is used to achieve the 
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Figure 3.9: Power needed for the decentralized MC-CDMA system and the 
optimal FDMA system (K=M) 

target SNRs for all users. We compare the power consumption of these two sys-

tems. Firstly, we consider the performance of the systems as both the number 

of users and carriers increases simultaneously. The average result of 500 realiza-

tion is shown in Figure 3.9. The power shown is normalized to additive while 

Gaussian noise (AWGN). When the number of users (carriers) increases, the 

average power needed to achieve the target SNRs decreases. With the increased 

number of choices of carrier assignment, the transmitters can avoid deep fading 

more effectively. Secondly, we consider another situation that M is fixed at 8 

and K increases from 2 to 8. Figure 3.10 is the average performance of this case. 

The average power required increases because the number of choices of carriers 

decreases. While it is not easy to conclude that the MC-CDMA system with the 

decentralized transmission scheme will always yield the optimal FDMA system 
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Figure 3.10: Power needed for the decentralized MC-CDMA system and the 
optimal FDMA system (K=2 to 8, M=8) 

(although it does appear so), the results show that its performance is essentially 

the same as that of the optimal FDMA system. 

The decentralized transmission scheme provides advantages of fast conver-

gence, no centralized information needed and performs nearly as well as the 

optimal FDMA system. 

3.5 Summary 

In this chapter, we have developed some decentralized transmitter optimization 

schemes for MC-CDMA systems in frequency selective fading channels. The 

transmitter of each user is optimized from the point of view of the user by suit-

ably choosing a gain vector which determines the power allocated to different 
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carriers. Simulation shows significant improvements over receiver optimization 

only. When the number of users is smaller than or equal to the number of car-

riers, the MC-CDMA system with the decentralized transmission scheme tends 

to an FDMA system with optimal frequency assignment. We also analyzes the 

performance of the MC-CDMA system with the modified decentralized trans-

mission scheme. Multirate transmission is achieved. 
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Chapter 4 

Performance Evaluation of 

Various Adaptive Transmission 

Schemes 

4.1 Introduction 

In chapter 2 and chapter 3, we approached joint optimization of transmitter and 

receiver for multicarrier code division multiple access (MC-CDMA) systems from 

two different viewpoints: centralized and decentralized. By observation, both 

schemes tend to assign power in a frequency division multiple access (FDMA) 

way. In this chapter, we compare the performance and give comments to the 

advantages and disadvantages of them. 

A practical problem to ask is whether the two new MC-CDMA transmission 

schemes can have an improvement over conventional FDMA in terms of system 

capacity. It is known that one possible disadvantage of an FDMA system is 
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that it is not flexible when the system is already fully loaded. No more user can 

be admitted for communication after all carriers are already used. While the 

proposed MC-CDMA systems behave like the optimal FDMA system when the 

number of users is smaller than or equal to the number of carriers, they have 

the additional potential of supporting more users. We evaluate the two adaptive 

transmission schemes when the number of users exceeds the number of carriers. 

Of course, each user no longer concentrates his power on just one carrier. 

If the number of users is over the system capacity, what we want to see is 

that the performance of the MC-CDMA system will degrade gracefully just like 

most code division multiple access (CDMA) systems. CDMA can average out 

the degradation. For this important feature, based on the decentralized trans-

mission scheme, we develop another new algorithm which needs some degree of 

centralized information to fulfil this task. For this novel transmission scheme, 

it has good performance of maximizing the signal to noise ratio (SNR) for each 

user with some limitations, and is more flexible to the changes of environment, 

such as more users entering the system or sub-channels breaking down. 

In Section Two, we compare the power consumption and speed of adap-

tation of the centralized and decentralized adaptive transmission schemes. In 

Section Three, we discuss the situation of adding users to the MC-CDMA sys-

tems after the available carriers are fully occupied. Simulation shows that the 

two proposed transmission schemes still work under this un-desirable circum-

stance. In Section Four, a novel adaptive transmission scheme is derived to 

support more users at the expense of the average performance. Summary of this 

chapter is presented in Section Five. 
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Figure 4.1: Power consumption for the centralized and decentralized schemes 
(K=M) 

4.2 Comparison of Different Adaptive Trans-

mission Schemes 

From the previous two chapters, simulation results show that both the central-

ized (modified algorithm with barrier function) and decentralized transmission 

schemes approach the power allocation and consumption of ideal FDMA sys-

tems with optimal frequency assignment. We further our comparison which is 

focused on the two adaptive schemes in this section. 

In this section, the simulation is the average of 500 realizations and other 

crucial assumptions are the same as used in previous chapters. Figure 4.1 and 

Figure 4.2 show the power needed of the two transmission schemes in different 

situations. For the two systems, we assume equal number of carriers and users 
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Figure 4.2: Power consumption for the centralized and decentralized schemes 
(K=2 to 8, M=8) 

in Figure 4.1 and 8 carriers in Figure 4.2. The signal to thermal noise ratio 

(STNR) is fixed at lOdB. The power shown in the figures is normalized to 

additive white Gaussian noise (AWGN). We tune the parameters in the two 

adaptive processes to let the MC-CDMA systems consume as little power as 

possible. The two figures present that both the modified barrier function method 

and decentralized adaptive transmission scheme for MC-CDMA have similar 

low power consumption. Thus, in the view of power consumption, the two 

transmission schemes are equally good and give near optimal performance like 

the optimal FDMA scheme. 

When comparing the iterations needed for reaching targets, we have differ-

ent results. In this case, we let the two systems adapt to their targets as fast 

as possible while having power settlement at the same level. In Figure 4.3 and 
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Figure 4.3: Iterations needed for the centralized and decentralized schemes 
(K=4) 

Figure 4.4, we assume M = 8 and evaluate the iterations required when K — 4 

and K = 8. In these histograms, we see that the number of iterations needed 

for the decentralized transmission scheme to reach targets is much less than 

the modified barrier function method. When K < M and the number of users 

increases, the number of iterations needed for the decentralized transmission 

scheme to adapt to the surroundings increases but the modified barrier function 

method does not. When K approaches M, the number of iterations required 

for this centralized transmission scheme to reach targets is kept at the similar 

level with increasing variance. After checking the limit K = M, we see that 

the decentralized transmission scheme still needs smaller number of iterations 

for settlement than the centralized one. Also considering no centralized infor-

mation is needed for the decentralized transmission scheme, we conclude that 
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Figure 4.4: Iterations needed for the centralized and decentralized schemes 
(K=8) 

the decentralized transmission scheme is better than the centralized modified 

barrier function method in practical implementations. 

4.3 Adaptive Transmission Schemes with K > M 

In multiuser environment, either centralized Lagrangian or decentralized adap-

tive transmission scheme for MC-CDMA systems can be used to combat im-

perfection in parallel fading sub-channels and eventually the processes arrive at 

tlie similar near optimal solution. They avoided the deep fading carriers and 

concentrate the power in the least fading carrier when K < M. Using the same 

system and channel model described before, when the kth receiver employs its 

optimal weight vector w^, which is calculated according to (1.11) in chapter 1， 
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its output SNR is given by 

SNRfc = d f R ^ M , , (4.1) 

where Hk is the noise and interference correlation matrix for the kth user. The 

desired vector d^ in the above equation is 

dk = AkCk, (4.2) 

where Ak summarizes the fading characteristics seen by the kth. user. We con-

sider transmitter optimization by choosing the transmission gain vector c^ for 

k = l,...,_fC, so that the average transmitted power for all users achieving the 

target performance is minimized. The problem is formulated as 

1 K . 丄 V^ H 
mm - 2 ^ c ^ c^, 

k=l 

subject to d fRfdA； = k̂ for all k, (4.3) 

where k̂ is the target SNR for the A;th user. From [39], the necessary and 

sufficient condition for the existence of a feasible solution for this optimization 

problem is found and the simplified version of it is stated here again for com-

pleteness 
^ 7, 
S l ^ ^ < l (4.4) 

Notice that if K < M, the condition is always satisfied. If (4.4) is satisfied, there 

exists a feasible solution even when K > M. We apply the centralized and de-

centralized transmission schemes studied in chapter 2 and chapter 3 respectively 

to the situation K � M . When the condition (4.4) is satisfied, users can reach 

targets in many cases. After analyzing the adaptive behavior of both schemes 

in this situation, we see that more power is needed than the case K < M and 
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Figure 4.5: Typical behavior of the centralized MC-CDMA system with 8 car-
riers and 9 users 

each user no longer focuses his power on just one single carrier. Moreover, the 

number of iterations for reaching targets increases significantly. 

We consider a distinct case that there are 8 carriers and 9 users in the two 

MC-CDMA systems where the target SNRs for all users are 8dB. Obviously, 

the number of users exceeds the number of carriers, but (4.4) is satisfied. Other 

assumptions are the same as said in previous chapters. Under the same fading 

process, simulation of the typical behavior for the two adaptive transmission 

schemes is shown in Figure 4.5 and Figure 4.6. From the performance of the 

MC-CDMA systems with either centralized (co-operated with penalty function) 

or decentralized transmission scheme presented in the figures, we see that the 

target SNRs can be reached as expected. However, from these simulation fig-

ures, it is easily seen that the decentralized transmission scheme performs better 
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Figure 4.6: Typical behavior of the decentralized MC-CDMA system with 8 
carriers and 9 users 

than the centralized penalty function method. Again, given that both schemes 

consumes similar amount of power, the decentralized one is attractive because 

all users achieve their target SNRs within a reasonable number of iterations. In 

practical implementations, it is common to encounter the situations that more 

users get into the system temporarily or sub-channels fail due to narrowband 

interference. For the unpredictable environment, it is wasteful to introduce more 

bandwidth. Therefore, the two adaptive transmission schemes have additional 

merit in capacity which makes the MC-CDMA systems with adaptive transmis-

sion schemes better than the optimal FDMA system remarkably. 
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4.4 Modified Adaptive Transmission Scheme with 

Graceful Degradation in the SNR 

The previous section shows that our centralized and decentralized transmission 

schemes can possibly let users reach targets as the necessary and sufficient con-

dition (4.4) is satisfied. Sometimes the system has to use the target SNRs to 

compromise the way of reaching targets without over using the power. Before 

we present the solution, it is instructive to review the characteristics of a con-

ventional CDMA system. For CDMA, the performance of all users will descend 

gracefully as the number of users increases. It is what we want to see in design-

ing multiuser communication systems with soft behavior [40]. A novel adaptive 

transmission scheme, which can meet this demand, is discussed in this section. 

We already demonstrate that the decentralized adaptive transmission scheme 

for MC-CDMA systems is the best among all the methods studied previously. 

We can use this decentralized transmission scheme in either centralized or de-

centralized system implementations. In centralized applications, if the condition 

(4.4) is not satisfied, to allow users' performance to degrade gracefully, we mi-

grate the transmission scheme to a supplementary algorithm, which makes the 

MC-CDMA system work. To derive the algorithm, we have to assume, to some 

extent, that centralized information can be fed back to transmitters for the op-

timization. When the condition (4.4) is violated, the performance (target SNRs 

or total power consumption) of the users in the novel transmission scheme will 

impoverish a little. One specific solution is by allowing the total power used to 

be known as the centralized information. Description of the algorithm is shown 

as follows. 
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In the designing process, we pay much attention to the total power consump-

tion for approaching the target SNRs as close as possible. In some sense it is 

unacceptable that the power used will be unreasonably large. Thus we modify 

the decentralized transmission scheme and let it suit this criterion. By giving 

a limit to the total power needed, we can develop a more practical iterative 

algorithm, which is stated as 

1. In the nth iteration, the receiver formulates the desired vector dk(n) and 

the noise and interference correlation matrix Rfc(n) to calculate the opti-

mal weight vector w^(n) based on 

Wk(n) = R^'(n)dk{n). (4.5) 

2. From the knowledge in the previous iteration, Ck(n) is updated as the 

eigenvector associated with the largest eigenvalue of Ck(n). 

h ( n + 1) = (1 一 |ii)ck(n) + fxCk(n)ck(n), (4.6) 

where Ck(n) is the nth estimate of A^R^^A^. 

3. Power control is applied to Ck according to 

(11、 Ck{n + l)yj^k{n^l) 
Ck{n + 1) = > ̂  � = (4.7) 

^ c f ( n + l )C , (n ) c , (n + l ) 
to achieve the target SNR jk-

4. If the total power used is above the upper limit, the gain vectors will be 

automatically multiplied by S, which is 

^ upper bound of the total power , � 
^ = - ^ . , . . ., , . ~ ~ . 4.8 

total power m tms iteration 
Repeat the procedure and adapt to the new targets again. 
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Figure 4.7: Typical behavior of the novel transmission scheme with 8 carriers 
and 10 users (uniform target) 

In the computer simulation, we assume there are 8 carriers for serving 10 

users and the target SNRs for the users are all lOdB. The maximum allowable 

average power consumption is limited to 2. It is the case that the condition (4.4) 

is violated. Figure 4.7 shows the typical behavior of this novel transmission 

scheme which maximizes the achievable SNRs without over using the power. It 

is clear from the figure that the system sacrifices about 2dB in the SNRs after 

the power settlement. We also test this algorithm in the multitarget situation. 

We assume that 10 users have different SNR requirements and only 8 carriers 

are available. The original targets for the 10 users are from 3dB to 12dB with a 

ldB difference. Also, the condition (4.4) is violated. In Figure 4.8, it shows that 

the novel transmission scheme settles the performance in less than 30 iterations, 
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Figure 4.8: Typical behavior of the novel transmission scheme with 8 carriers 
and 10 users (multitarget) 

and there is about 1.5dB degradation in each user's SNR. The MC-CDMA sys-

tem with the novel adaptive transmission scheme is flexible to the surrounding 

changes and performs well in some un-desirable environment. 

4.5 Summary 

In this chapter, we have compared the performance of the centralized and de-

centralized adaptive transmission schemes. Both schemes have similar power 

consumption, but the decentralized transmission scheme is better than the cen-

tralized one because of the small number of iterations needed to reach targets. 

The capability of the centralized and decentralized transmission schemes for 
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MC-CDMA to support users when K > M is investigated. It makes these adap-

tive transmission schemes more attractive than the optimal FDMA scheme. In 

addition, we modify the decentralized transmission scheme to meet the perfor-

mance with gradual degradation as the number of users increases. Centralized 

information, such as the total power, is required to fulfil this task. This novel 

algorithm is proposed to work whenever K > M. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this thesis, we have investigated the centralized and decentralized adaptive 

transmission schemes for the optimization of MC-CDMA systems. The Lagrange 

multiplier methods, possibly with power control, are used in the centralized 

environment to optimize the performance. On the other hand, a decentralized 

scheme with good performance is provided for simplicity of implementation. 

When the number of users is smaller than or equal to the number of carriers, 

the results of both kinds of schemes are that each user tends to allocate power 

in the least fading carrier for communication. In other words, they solve the 

transmission optimization problem approaching the behavior of FDMA systems 

with optimal frequency assignment. By doing so, we can provide an MC-CDMA 

system with low power consumption. 

An immediate question to ask is which of the two schemes to an MC-CDMA 

system should be employed for a specific communication channel with better 
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performance. Because of its practical significance, some form of answer to this 

question is necessary. There are at least three aspects, namely, power con-

sumption, number of iterations needed for reaching targets and requirement of 

knowledge. The analysis in Chapter 4 indicates that both schemes approach the 

power consumption of optimal FDMA systems and perform almost equally well 

in that aspect. For the other two aspects, we have different results. The decen-

tralized transmission scheme needs fewer iterations than the centralized trans-

mission scheme to reach targets. Another benefit of the decentralized transmis-

sion scheme is that no centralized knowledge is required for the whole process of 

adaptation. Overall, with the decentralized transmission scheme, the proposed 

MC-CDMA system becomes a simple and practical choice for use in wireless 

communications. Furthermore, we present the capability of supporting more 

users after the system is already heavily loaded. In this case, the decentralized 

transmission scheme is still superior in the evaluation. We conclude that the 

decentralized transmission scheme derived in this work is more attractive than 

the centralized one and is useful for further improvement of the MC-CDMA 

system. 

Since the decentralized transmission scheme outperforms the centralized La-

grangian methods, even in the centralized environment, the decentralized trans-

mission scheme can also be applied effectively without violating the implemen-

tation principles of centralized systems. When the necessary and sufficient con-

dition for the users to reach targets is violated, if the MC-CDMA system allows 

some centralized knowledge to be sent back to the transmitters, we can add a 

supplementary adaptive scheme to let the users approach their targets as close as 

possible. With this novel transmission scheme, to some extent, the MC-CDMA 
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system performs like a DS-CDMA system with graceful degradation. 

5.2 Future Work 

We have repeatedly mentioned that both transmitter optimization and receiver 

optimization provides improvements to the communication systems. Our future 

work will be placed on the question: what is the optimal transmission scheme? 

It is interesting to find the optimal solution given the number of users, the 

number of carriers and the fading coefficients in the MC-CDMA system. For 

K < M, the results of the adaptive transmission schemes proposed in this work 

all approach the behavior of optimal FDMA. We try to find out whether this 

FDMA system with optimal frequency assignment is truly optimal. 

Our research work is focused on the indoor environment, and the proposed 

algorithms are more suitable for indoor applications. One possible extension 

is the exploitation of our work to outdoor applications, i.e., cellular mobile 

communications. 

On the other hand, transmitter optimization is an important research topic 

and much attention has already been drawn recently. Further research is def-

initely needed. An interesting topic will be extended to apply our results to 

find the signature sequences for spread spectrum communications. Also, we 

can study the effect of different chip waveforms on the performance of the MC-

CDMA system. Investigation can be done on using antenna array, different 

modulation and channel coding schemes to the system too. Further improve-

ments are expected with these considerations. 
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Appendix A 

The Hungarian Method for 

Optimal Frequency Assignment 

For the ideal FDMA system with optimal frequency assignment, it means from 

the cost matrix /?, we should only choose one particular sub-carrier (sub-channel) 

for one user such that the combinatorial effect (total power needed) is minimized. 

One obvious, but inefficient way, to solve such a problem is to consider the n\ 

possible permutations and find the smallest. However, because of the special 

structure, it can be solved more efficiently by a specialized algorithm, called 

the Hungarian method [34], in order to avoid examining such a large number. 

In [41] and [42], it is showed that the Hungarian method correctly solves this 

kind of assignment problem for a complete bipartite graph^ with 2n nodes in 

0{n^) arithmetic operations. The computational complexity grows polynomially 

rather than exponentially with respect to the size of the input. 

One way of looking at the Hungarian method for the assignment problem is 

iA graph is bipartite iff it has no circuit of odd length. Because there are disjoint subset 
carriers and users in this frequency assignment problem, it is complete bipartite. 
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in terms of a matrix. We let the cost matrix |3 二 {|3ij) be such that |3i,j > 0 

for all iJ — 1, ...,n - the assignment of the carriers of its row to the users of 

its column. The chosen entries are marked by asterisks. These entries must 

be that (i) there is exactly one asterisk entry in each row and (ii) exactly one 

asterisk entry is in each column. Among all valid sets of asterisk entries, we 

seek the set with the minimum sum. Here we state the general outline of the 

Hungarian method. The method is iterative in the sense that it progressively 

defines a series of complementary matrices with 1 and 1* as their entries until 

a solution can be identified. The algorithm is required to find a minimum cost 

assignment with each carrier serving a different user. 

It is well known that when the assignment problem is primal, the linear 

programming (LP) dual of it can be stated [42], [43 

max E L i Ui + E^=i Vj, 
. (A.lJ 

subject to Ui + Vj < |3i,j, 

where Wi,..., Un and z;i,..., Vn are non-negative numbers. From the Primal-Dual 

Algorithm [43], we try to find a feasible solution to the dual problem instead 

and fit it to the primal problem. 

For the assignment at hand, we solve it through the following steps: 

Initiation Let ai = minj |3ij and bj = min̂ - ^i j for i,j = 1,..., n. Also let 

a = Y^^=i cLi and b = J2]=i ^j- Then we define ui and Vj using the following 

rule 

• If a > 6, Ui = ai and Vj = 0 for i , j = 1,..., n. 

• If a < b, Ui = 0 and Vj = bj for z, j = 1,..., n. 
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For the u:s and Vj's at hand, we construct a matrix Q = (qi,j) where 
f 

1 if Ui + V̂  = A j , , A M 
fe 二 • （A.」J 

0 otherwise. 
、 

To provide a first guess of the assignment, we mark the entries by asterisks. 

If a > b, the rows are examined in order and the first 1 in each row without 

a 1* in its column is changed to a 1*. If a < b, the same instructions are 

used with rows and columns exchanging their roles. 

Routine 1 In this stage, we examine the matrix Q according to the flow di-

agram shown in Figure A.1, where k and 1 are temporary valuables for 

storage. The values of the quantities for the input of Routine 1 are 

i = j = k = l = l, iy = Cj, = 0, for p = 1,..., n, (A.3) 

and 
‘ 

1 if row i is essential, 
e. 二 （A.4) 

0 if row i is inessential. 
>» 

We can determine whether a row is essential by the flow diagram in Fig-

ure A.1. Moreover, a column is essential if it contains a 1* in an inessential 

row. 

Routine 2 For all inessential rows i and columns j, we compute d, which is the 

minimum of |3ij — {u{ + Vj). If there are no such (z,j) , the set of 1* in Q 

is the positions referring to the optimal assignment. Otherwise, d > 0 and 

there are two mutually exclusive cases to be considered. 

Case 1 For all inessential rows i and U{ > 0, calculate the minimum 

among d and 11“ taken as m. Then 
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• Ui ̂  Ui + m for all inessential rows i, and 

• Vj ^ Vj — m for all essential columns j. 

Case 2 For some inessential row i and Ui — 0, calculate the minimum 

among d and V j , taken as m. Then 

• Ui ~> Ui — m for all essential rows i, and 

• Vj — Vj + m for all inessential columns j. 

Repetition After changing Ui and Vĵ  the process should return to Routine 1. 

Routine 1 and Routine 2 are the two basic routines of the algorithm and 

the iterative procedure can be predicted according to Figure A.2 

From the above iterative steps, we roughly see that the iteration takes the 

0{n) order operations and each search and modification takes 0{n^) time. So, 

the bound is roughly seen. It is a quite significant improvement when n is large. 
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Input 
““r^^ 

- ^ j ->j+i 
,r 丨‘ yes 

I * 1 yes I I no 
l * i n ( i j ) ? ! p ^ j < n ? \ ^ 

"no . 1 
yes 1 -> 1 

i ->i+1 卜 i <n? |j-> 1 
,rno 1 ‘ 

i = n -> 1 Ib 
^ i -> i+1 

.[ ‘‘yes 
no no 

1 in (i,j)? - ^ i < n ? 
^ yes 

i k -> i 
J k-i - > j 

j - > 1 

j - > j + l ^ 

‘yes I f 
no 

j < n ? - l * i n ( i , j ) ? 
^1 no ’, yes 

i(�’j?)->i*i [77n 
k->k- l i ->0 ~ T ^ 

_ ^ — — ^ «• i -> i+1 
yea ’， ‘ ‘ yes 

(i ’ j ) - > l -*— k> 1? no no r ^ yes 
“ ^ T ^ 1 i"(ij)? h n H i<n?|~~H £^v>o?h 

7^^ ~ ~ ~ [ ^ ~ ~ > 0 

寧 r ^ 
JL̂  

yes 1 r , r 1 r 
k->k+l ^ ~ ~ k<n? ~ ~ ~ ： ~ ^ 

^ i ^ k - > k + l i - > 、 r~*~i j->jk-, i -> 1 i -> 0 
I ^ k 

< j -> 1 j ->0 
J J k-l 
k-> 1 ~ ~ 

，- i_i 7 ye! yes no 
i - i / - | ~ L k - > k - l - * ^ k > l ? 

Ia lno H yes 
/-> l+l — ^ /<n ？ 

no 
/ . > 1 

Figure A.1: Flow diagram of routine 1 [From [34] 



Problem 

. r > 小 ^ 
V ̂ ^^--___ Routine I 

[̂  / 
/ IIa 

n ^ y 
Routine II Z 

IIb 

I 
Solution Figure A.2: Schematic description of the repetition [From [34] 
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