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摘要 

许多现实生活中的决策问题可以模型化为一个多项式0-1规划. 

借助二进制变量的一些特性，多项式0-1规划问题能够转换成为一个等 

价的线性主问题与多项式非线性第二约束.我们注意到多项式0-1规划 

^NP-HARD问题•根据多项式0-1规划问题的可行集是它主问题可行 

集的子集，丁入^[八[197割提出了一个著名算法，即从满足第二约束的 

主问题可行解里寻找 优解.本论文主要的研究工作是基于1八11人的 

算法和李端[1999]提出的？次范数替代约束方法，进而发展一个高效 

数值算法来解决多项式0-1规划问题• 

运用P次范数替代约束方法，多项式0-1规划中的多个约束可以 

被单一的替代约束来代替.当？充分大时，替代松驰的可行集和原问 

题可行集精确匹配.由于0-1变量的幂仍是它本身，单一替代约束的复 

杂程度和原问题在同一水平.将一个多约束多项式0-1规划问题简化成 

^单一替代约朿问题会极大便利主—问题可行解的确定.新算法利用 

这个突出的性质在搜寻过程中运用有效的“探寻”和“折返”策略.实例 

验证了？次范数替代约束算法在多项式0-1规划中的高效率.它在集合 

覆盖问题上的应用也在论文中被研究. ， 
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Abstract 

Many real-world decision making problems can be modeled by a polyno-

mial zero-one programming formulation. By some special properties of binary 

variables, a polynomial zero-one programming problem can be converted into 

an equivalent linear zero-one programming problem, called the master problem, 

with nonlinear secondary constraints representing the polynomial terms. Since 

the polynomial zero-one programming problem is NP-hard in the strong sense, 

several numerical solution algorithms have been suggested in the literature in 

solving it. Observing the fact that the feasible set of the polynomial zero-one 

programming problem is a subset of its master problem, Taha [1972], proposed 

a well-known algorithm for polynomial zero-one programming in which the opti-

mal solution is sought from among the set of the feasible solutions to the master 

problem while it satisfies the secondary constraints. The major research task in 

this thesis is to develop a more efficient numerical solution algorithm for polyno-

mial zero-one programming based on both Taha's previous work and the p-norm 

surrogate constraint method recently proposed by Li [1999 . 

Adopting_the p-norm surrogate:constraint method,. a single surrogate con- 

straint can be constructed for polynomial zero-one programming problems with 

multiple constraints such that the feasible sets in a surrogate relaxation and the 

original problem match exactly. Since a power of a zero-one variable is itself, 

the complexity degree in the single surrogate constraint is at the same level as 

in the original problem. Reducing a polynomial zero-one programming problem 

with multiple constraints into an equivalent one with a single surrogate constraint 

‘ greatly facilitates the identification of the feasible solutions in the master prob-

iii 



lem. The new numerical solution scheme proposed in this thesis has been devised 

to take advantage of this prominent feature in carrying out the "fathoming" 

procedure and the "backtrack" procedure in a searching process of an implicit 

enumeration. Numerical testing has demonstrated the efficiency of the proposed 

p-norm surrogate-constraint algorithm in polynomial zero-one programming. Its 

application in the set covering problem has been also studied. 

« 
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Chapter 1 

Introduction 

1.1 B ackground 

The literature has clearly demonstrated the importance and wide applications of 

the linear zero-one programming. "However, it is often the case that a polynomial 

(nonlinear) zero-one model more accurately reflects the real-world by allowing for 

the interaction that frequently occurs between the decision variables" [30]. Many 

real-world problems, such as scheduling, facility allocation, and capital budgeting 

11] [25] [29] [28][27] [33] [35], have been modeled by a polynomial zero-one formula-

tion. Unfortunately, the polynomial zero-one programming problem is NP-hard 

in the strong sense, i.e., no algorithm seems possible to find an exact optimal solu-

tion in polynomial time. So what we can do is to develop more efficient algorithms, 

under this limitation, to solve polynomial zero-one programming problems. 

The majority of the algorithms for zero-one programming in the literature 

is devised to solve linear zero-one programming problems in which the objective 

1 



CHAPTER 1. INTRODUCTION 2 

function and the constraints are all linear. Until recently, many of them have 

been modified to fit the need to solve polynomial zero-one programming prob-

lems which can be converted into linear zero-one programming problems with 

their polynomial constraint systems by using some special properties of binary 

variables. The fact is that each term, a cross product of several variables (maybe 

to a high power), in a polynomial zero-one programming formulation is still a 

binary variable. The Balasian-based algorithm for polynomial zero-one program-

ming proposed by Taha [31][32] in 1972 is one of the most typical and successful 

algorithms, where the additive algorithm for solving linear zero-one programming 

problem [1] was extended directly. 

1.2 The polynomial zero-one programming prob-

lem 

We consider in this thesis the following polynomial zero-one programming prob-

lem: 
/ 

2 ^ - 1 

min__„^^c^JX-yfc. Cl.U  
j==l kjEKj 

/ 

2̂  -1 , 
s.t. gi{y) - J2 a'ij n yfc j .S� ,S = l，2，...，^. 

j=l kjeKj 

where y 二 [yi,y2, • • -,yn'] ^ {0,1}^' is the vector of decision variable, Kj C 

N' 二 {1, 2，•.. ’ n'}, 2^ - 1 is the total possible number of Kj, and all a[j, i e 

{1,2,. ..，m} and j G {1, 2，. •. ’ 2几'—1}, are assumed to be integers. Without 

loss of generality, ^(y)，i = 1,2, •. .，m, are assumed to be strictly positive for all 
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y e {0,1}" ' . Problem (1.1) is referred as the general form in polynomial zero-one 

programming. 

Let n 二 2 '̂ — 1, N = {1,2,. • •, n}. Define • 

n %， i ^ J^ = {jWj > 0, j e N}, 
X, 二 'jMj (1.2) 

1 - n " V ) 6 广 二 0 1 4 < 0 ， j ^ ^ } -
. kj^Kj 

We call X = [xi,x2,..., Xn] G {0,1}" the vector of decision term. If we let 

. = : ' 3 , " … . ( 1 . 3 ) 

-c'j, j e J-， 
\ 

the general form (1.1) can then be expressed by the following form: 
n 

min z — [CjOCj, Cj > 0, (1.4) 
j=i 

n 
s.t. ^ aijXj + Si 二 bi, for i 二 1’ 2,...，m, 

j=i 

where Si, i e {1, 2, • •.，m}, are nonnegative slack variables, 0¾ and k in (1.4) are 

deduced from (1.1) and (1.2)，as well as the vector of decision term x satisfies 

(1.2). Until recently, the polynomial zero-one programming problem (1.1) has 

been transformed into an equivalent two-level problem, a master problem (1.4) 

with-(1.2) as its «5econdary c0n«stramt&-Clearly, master problem (1.4) is a linear  

zero-one programming problem while the second constraint (1.2) is a polynomial 

system. 

1.3 Motivation 

Taha once predicted in [31] that the efficiency of his algorithm may be further 

enhanced by taking the advantage of more efficient "fathoming" techniques than 
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the additive algorithm [1 . 

The p-norm surrogate constraint method has been recently proposed in 

22] for integer programming. Using the p-norm surrogate constraint method, 

a polynomial zero-one programming problem with multiple constraints can be 

converted into an equivalent one with a single surrogate constraint. Since a 

power of a zero-one variable is itself, the complexity degree in the single surrogate 

constraint is at the same level as in the original problem. The feature of a single 

constraint must greatly facilitate the identification of the feasible solutions to 

the master problem. So, it becomes possible to improve the efficiency of the 

Balasian-based algorithm by modifying both the "fathoming" procedure and the 

"backtrack" procedure. 

Based on these considerations, we have devised a new solution scheme in 

this thesis to take the advantage of this prominent feature in carrying out both 

the "fathoming" procedure and "backtrack" procedure in a searching process of 

an implicit enumeration. 

1.4 Thesis outline 
— _—: --- -- — + -- - - + + - — ++ ••"""'"‘“‘ 

The new algorithm, p-norm surrogate-constraints algorithm for polynomial zero-

one programming, is mainly based on both the strengths of the Balasian-based 

algorithm for polynomial zero-one programming [31][32] and the contributions of 

the p-norm surrogate constrain method [22]. So, these two algorithms are first 

described briefly in Chapter 3 and Chapter 4 as preliminary. Chapter 5 is the 

most important chapter in this thesis, in which the new algorithm is presented 

in detail. Chapter 6 shows us how to solve two examples step by step in the new 
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algorithm and Taha's algorithm respectively. From computation experiences, 

some comparisons are also made between them in that chapter. An application 

of this new algorithm to the set-covering problem is introduced in Chapter 7. 

Finally, Chapter 8 summarizes the thesis and gives suggestions for further study. 

- ———̂ - - - - •——~ “ "'" ~-



Chapter 2 

Literature Survey 

Depending on whether or not the problem (1.1) can be solved directly, the solution 

algorithms for polynomial zero-one programming reported in the literature can 

be classified into two groups. 

The first group, including Lawler and Bell's algorithm [21] and the cov-

ering relaxation algorithm [19][20], directly solves the problem (1.1) without any 

transformation. The second group includes the following algorithms: 

(i) The method of reducing polynomial integer problems to linear zero-one 

problems [36], 
(ii) Pseudo-Boolean programming [13], 

(iii) The Balasian-based algorithm for zero-one polynomial programming 

31] [32], and 

(iv) Hybrid algorithm for zero-one polynomial programming [30 . 

The common character of these four algorithms is that they first reduce the prob-

lem (1.1) to a master problem (linear) with its secondary constraints (polynomial) 

before tackling it. 

6 



CHAPTER 2. LITERATURE SURVEY 7 

In the following sections, we introduce these six algorithms concerned 

above in six subsections. 

2.1 Lawler and Bell,s method 

In 1966, Lawler and Bell [21] developed a method for polynomial zero-one pro-

gramming that is of a nature of implicit enumeration. Since this method directly 

solves the general form of the polynomial zero-one programming problem (1.1), 

it belongs to the first group. 

Lawler and Bell's method first converts the general form of the polyno-

mial zero-one programming problem (1.1) into a standard form with a monotone 

nonincreasing objective function subject to the constraints constructed as the 

differences between two monotone noninceasing parts, then initializes the solu-

tion vector Xo = (0, 0, •. •, 0), sets an infinite upper bound as well. Based on the 

fact that the objective function and the constraints are monotone nonincreasing, 

three rules are designed to check whether the solution vector Xs in the 5th it-

eration is a potential candidate for the optimal solution or not by the means of 

the numerical ordering. If a solution vector Xs satisfies the conditions of the rule 

1 or the rule 3, some solution vectors in the numerical ordering can be skipped 

and the algorithm goes to a more promising solution while assuring no optimal 

solutions will be by-passed. If Xs satisfies the conditions of the rule 2, i.e., if it is 

both feasible and superior than the previous solutions, it can be substituted for 

the current optimal solution, and the upper bound is updated by the value of the 

corresponding objective function associated with Xs- The procedure terminates 

when the numerical ordering of the solution vector is overflown. 
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In the polynomial zero-one programming problem, because the variables 

in a solution vector are assigned at 0 or 1 in a fixed order, the ability of excluding 

hopeless solutions and the flexibility in searching the optimal solution become 

weak. On the other hand, the nature of a fixed order simplifies the computer 

programming and saves a great amount of storage. 

2.2 The covering relaxation algorithm for poly-

nomial zero-one programming 

The algorithm in [19] [20] is a cutting plane algorithm, i.e., it is not a branch and 

bound or implicit enumeration algorithm. It especially fits to solve the polynomial 

zero-one problem with linear objective function subject to polynomial constraints 

as follows: 
n 

max z = Y^Cjyj (2.1) 
j=i 

2 -̂1 
s.t. Y1 aij n Vkj <K fori = l , 2 , . . . , m , 

i=i kjeKj 

where Cj > 0 � ~ - 2 0, and aij—t aij+i > 0. Associated with each constraint 

violated by a given solution, an ordinary cut is generated as follows: 

E 2 / . < l ^ | - l ' (2.2) 
jes ‘ 

where S = U^=ii^j for 1 is the smallest index such that J2^j=i dij > h. 

From the concept of the ordinary cut stated above, the authors devised 

a covering relaxation algorithm dealing with the problem (2.1). The algorithm 
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starts with solving the initial covering relaxation problem, the problem (2.1) with-

out any constraint, to obtain a candidate for optimal solutions using four different 

greedy heuristic algorithms [18] [34]. If the candidate is feasible to the problem 

(2.1), it will be the optimal solution thereof and the solution process terminates. 

Otherwise, all ordinary cuts for violated constraints are constructed as (2.2), and 

a new covering relaxation problem is generated with these ordinary cuts added to 

the old covering relaxation problem as constraints. The new covering relaxation 

problem can be dealt with similarly to the initial covering relaxation problem. 

The authors have proved that, after at most 2^ iterations, the procedure will ter-

minate with an optimal solution or a certificate of no feasible solution existing. 

A promising feature of this algorithm is that no additional variable is in-

troduced in the solution procedure. In return, a nested sequence of linear covering 

relaxation problems have to be solved. As the covering relaxation algorithm has 

been derived primarily for polynomial zero-one programming problems with lin-

ear objective functions, its efficiency of solving polynomial zero-one programming 

problems with nonlinear objective function is expected to be very low. 

2.3 The method of reducing polynomial integer  

problems to linear zero-one problems 

With the improvements suggested in [16] [17], Watters [36] proposed a method to 

solve the polynomial zero-one programming problem. He designed an appropri-

ate technique, making full use of the properties of binary variables, to linearize 

the secondary constraints (1.2) such that the polynomial zero-one programming 
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problem can be equivalently transformed into a complete linear zero-one problem. 

Based on the relationships among the values of xj and yk̂  in the secondary 

constraints (1.2)，Xj = JJ % can be equivalently replaced by the following 
kjeKj 

linear constraints: 

J2 Vkj —巧 < ^ - 1, 
kjeKj 

- Y . Vkj + QjXj < 0, (2.3) 
kjeKj 

Xj,Vkj = O o r l , 

where q) is the number ofthe elements in Kj. The secondary constraint (1.2) can 

be thus enforced by the following linear constraints: 
\ ‘ 

Xn 1 j e J+, 
n ykj — (¾ - 1 ) < < 7 E % (2.4) 

¥Kj i-x,- 力树3 j e J-. 
< J ^ 

The polynomial secondary constraints are therefore linearized by the inequalities 

(2.4). The problem (1.1) is equivalently converted into a linear master problem 

(1.4) with linear constraints (2.4) and can be solved in Balasian algorithm or 

other methods for linear zero-one programming. 

The limitation of this algorithm rests on that the number of additional  

variables and the number of the inequalities (2.4), generated in the linearization 

to the secondary constraints, may often become quite large so that the trans-

formed problem becomes intractable in practice. The primary reason for this 

dimensionality problem is that the constraints (2.4) and the variables yk̂  are 

considered explicitly at the same time in the solution process. In other words, 

the size of the problem will be dictated by both the dimensions of the master 

problem and the secondary constraints. 
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2.4 Pseudo-boolean programming 

Hammer and Rudeanu [13] proposed an algorithm, termed Pseudo-Boolean pro-

gramming, for polynomial zero-one programming. 

For each constraint in the master problem (1.4), Pseudo-Boolean program-

ming starts by determining its basic solutions, and further finds the families of 

feasible solutions. The characteristic function of the master problem is denoted 

by ip, and 

^ = ^l^2 ‘ • • ^m, (2-5) 

where each Lpi, i e { l , 2 , . . . ,m} , is the characteristic function of the zth con-

straint generated from the corresponding families of feasible solutions, (p now is a 

function of decision terms Xj. The characteristic function of the original problem, 

denoted by 也 is derived from cp with Xj replaced by yi according to the secondary 

constraints (1.2). After simplification, i|; can be always expressed by 

i|; = ^1 U ^2 u ¢3 U . . . . (2.6) 

Conversely, all the families of feasible solutions for the problem (1.1) can be 

derived from 也， f̂e, . . . , among which the optimal solution can be sought by  

comparing the objective function values. 

This algorithm is not efficient in the sense that the feasibility check is not 

integrated with the optimality check, Because the objective function only plays 

a passive role in checking whether a feasible solution is optimal or not. 
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2.5 The Balasian-based algorithm for polyno-

mial zero-one programming 

Based on a result in Hammer-Rudeanu [13], Taha developed an algorithm [31] [32 

for polynomial zero-one programming by modifying Balas' additive algorithm [1 . 

After converting the original problem into the master problem with the secondary 

constraints, it becomes clear that the optimal solution to the original polynomial 

problem must be a feasible solution to the master problem. Taha's algorithm 

starts with searching the feasible solutions to the linear master problem implicitly 

by a modified Balas,s algorithm and then determines whether the current solution 

is better than the previous ones while satisfying the secondary constraints. In 

finite iterations, either an optimal solution is obtained or no feasible solution 

exists. 

This algorithm is efficient in determining whether a feasible solution to the 

master problem is optimal to the original problem, but the process in searching 

for all the feasible solutions could be very time consuming. 

2.6 The hybrid algorithm for polynomial zero-

one programming 

In 1990, having absorbed solution concepts from both the Balasian-based algo-

rithm [31] [32] and pseudo-boolean programming [13], Snyder and Chrissis pro-

posed a hybrid algorithm [30]. This algorithm is still an implicit enumeration 

algorithm while possessing two new solution strategies different from its prede-
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cessors in [31] [32] and [13]. The first is the length-one minimum cover method, 

and the second is the term ranking strategy. 

The procedure in [30] to obtain the optimal solution(s) is composed of a 

series of iterations. At each iteration, the algorithm generates a partial solution 

which fixes a subset of the decision variables at either zero or one. Simultaneously, 

the algorithm fathoms these partial solutions according to the three rules given 

by Chrissis [10]. In addition, the authors develop the length-one minimum cover 

method to incorporate with the fathoming procedure. 

Consider a modified version of the zth constraint in the master problem 

(1.4), 
n 

J 2 a i j X j 9 i , (2.7) 
j=i 

where all the coefficients a^are assumed to be strictly positive. If 0¾- > k, the 

index j is called a length-one minimum cover to the ith constraint�That is to 

say, if j is a length-one minimum cover, inequality (2.7) is only true when Xj = 0. 

If the ith constraint has no length-one minimum cover, we temporarily remove 

it from the master problem. If j is a length-one minimum cover to at least one 

constraint, the term Xj should be fixed at the level of 0 immediately; If a fixation 

is found to be inconsistent with the previous ones, this problem has no feasible 

solution. The procedure repeats until either no minimum cover remains or it can 

be concluded that no feasible solution exists. 

The computational experience in [30] has shown that the term ranking 

strategy, restructuring the polynomial zero-one programming problem according 

to a descending order of the costs, can significantly reduce the computational 

time. It seems that the hybrid algorithm is efficient for polynomial zero-one 

programming, especially in solving large-scale problems. 



Chapter 3 

The Balasian-based Algorithm 

As presented in Chapter 1, a polynomial zero-one programming problem can be 

converted into an equivalent mater problem (linear) (1.4) with its secondary con-

straints (nonlinear) (1.2) representing the polynomial terms. Observing the fact 

that the feasible set of the problem (1.1) is a subset of the master problem (1.4), 

Taha [31][32] proposed a well-known algorithm, the Balasian-based algorithm, for 

polynomial zero-one programming in which the optimal solution is sought from 

among the set of the feasible solutions to the master problem while satisfying 

the secondary constraints. Adopting the modified additive algorithm {-l] for lin  

ear zero-one programming, Taha's algorithm starts by finding out all the feasible 

solutions to the master problem, checks whether they are consistent to the sec-

ondary constraints and finally, chooses the optimal solution among both feasible 

and consistent solutions. ‘ 

To understand the Balasian-based algorithm, the additive algorithm for 

linear zero-one programming is first sketched at the beginning of this chapter. 

14 
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3.1 The additive algorithm for linear zero-one 

programming 

In 1965, Balas [1] proposed an implicit enumeration method or branch and bound 

method to solve linear zero-one programming problems directly. Since only addi-

tions and subtractions are used in the solution procedure, this method is named 

as the additive algorithm. Although Balas did not give enough evidence to prove 

its efficiency in his paper [1], many algorithms proposed later, including Taha's 

algorithm, were developed based on Balas' work. 

Consider linear zero-one programming problems of the following form, 

n 
min 2T= X c j X j , Cj > 0, (3.1) 

j=i 
n 

s.t. Y1 aijXj + Si = bi, i e { l , 2 , . . . , m } , 
j - i 

where Xj G {0 ,1} for all j G N 二 { l , 2 , . . . , n } are decision variables, and s“ 

i 二 1, 2，...，m, are nonnegative slack variables, [x1,x2, •..，工几,̂ i, ^2,. •., Sm] is 

called a solution vector, and is denoted by U. 

The algorithm starts with the solution vector “�=[工？，x^, •.., x°, 5?, s^,. . . , 5^ 

二 0,0，...，0，bi, h2r - ' , brn]. 0bviMsry7TriTX_diJL^l-feiaLMbr^s^mTi(^ l:o tKe lin-

ear programming problem corresponding to (3.1) since all Cj > 0. If all ~， 

i e { l , 2 , . . . , m } , are nonnegative, U�is the optimal solution to the problem 

(3.1); Otherwise, set Jo : 0 and introduce an index j e N, according to a certain 

mle, into Jo. 
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At iteration t, the solution vector U\ given by: 

, J — . H . - E . - ( 3 , 
0 { j e N - J t ) . 灿 

V 

is still a dual-feasible solution to the corresponding relaxation of (3.1). If there 

exists i e {1, 2 , . . . , m} such that sl < 0, form the improving set for the solution 

vector ? 7 �N t , defined as follows: 

Nt = N - { C ' u D ' u E ' ) , (3.3) 

where C^ stands for the set of those j introduced into Jk such that k < t and 

Jfc C Jt before the solution U^ is obtained; D^ is the set of those j G {N — C” 

such that, if j is introduced into Jt, the value of the objective function would 

hit the ceiling for U^; E^ is the set of those j G [N - {C^ U D^)] such that, if j 

is introduced into Ju no negative s\ would be increased in value. Thus, we can 

introduce an index j G Nt, according to a certain rule, into Jt to improve the 

solution vector Û  and a new iteration starts. 

If all slack variables s\ for i G { 1 , 2 , . . . , m} are nonnegative, U* is a feasible 

solution to the problem (3.1). Let Zt denote the value of the objective function 

corresponding to UK When Zt is less than the current optimal value, Zmin and 

Umin are replaced by Zt and U\ respectively. The solution procedure then checks 

the improving sets for the solution vector U^, left after iteration t, A^, such that 

k < s and Js C Jt in the decreasing order of the number k. N'l is defined as 

follows: 

N l ^ N , - { C l u D l ) , (3.4) 

where Cl stands for the set of those j introduced into Jk before the solution U^ 

is obtained; D{ is the set of those j e {Nk - Cl) such that, i f j is introduced into 



CHAPTER 3. THE BALASIAN-BASED ALGORITHM 17 

Jfc, the value of the objective function would hit the ceiling for UK If Nl 二 0 for 

all k such that k < t and Jk C Jt, neglect this branch and a new iteration starts. 

Otherwise, we can introduce an index j e Nl, according to a certain rule, into 

Jk to improve the solution vector Û  and a new iteration starts. 

After finite iterations, either the optimal solution vector Umin is obtained 

or no feasible solution exists. The most prominent feature of this algorithm is that 

its operations only include additions and subtractions in the solution procedure, 

so computational round-off errors are totally avoided. 

For satisfying Taha's algorithm to find all feasible solutions of the master 

problem, Taha modified this algorithm by fixing the upper bound as infinite, i.e., 

remove the set D^ and D{ form (3.3) and (3.4), respectively. 

3.2 Some notations and definitions referred to 

the Balasian-based algorithm 

Instead of the general form (1.1)，the Balasian-based algorithm only considers the 

master problem (1.4) with its secondary constraints (1.3) in the solution process 

-orthe polynomfar zero-one programming problem. 

Partial solution A partial solution Jt is defined as a permutation of a subset of 

{±j\i e N}, where + j G Jt implies that Xj 二 1 and - j G Jt implies that Xj 二 0 

in the tth iteration. So Jt assigns binary values to a par.t of Xj for j G N. 

Completion and free term A completion of Jt is any vector of decision term x 

. whose components are partially determined by Jt while the rest, called free terms, 
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are chosen arbitrarily between 0 and 1. 

Feasible and Consistent If the completion of Jt with all corresponding free terms 

set at zero constitutes a/an feasible/infeasible solution to the master problem 

(1.4), Jt is called feasible/infeasible. If there exists a completion of Jt satisfying 

the secondary constraints (1.2)，Jt is called consistent; Otherwise, Jt is called 

inconsistent. 

Fathoming Fathoming in [31] is a process that checks whether the branch repre-

sented by Jt is needed to be considered further. If (i) a given Jt is infeasible and Jt 

has no feasible completion, or (ii) a given Jt is feasible and any augmentation to 

Jt by one or more free terms set at one will invite an infeasibility, Jt is fathomed 

and the corresponding branch will be removed. 

3.3 Identification of all the feasible solutions to 

the master problem 

In the process of searching for all the feasible solutions to the master problem,  

the fathoming procedure is applied on-line. 

When a given partial solution, Jt, is infeasible, the modified additive al-

gorithm [1] is used to find a new feasible partial solution Jt+i by augmenting Jt 

with a subset of {+j|j G N — J j on the right, i.e., fixing some free terms at 

1. If no feasible partial solution exists, Jt has no feasible completion and Jt is 

fathomed in case (i). 
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When Jt is feasible, a set is defined as follow: 

Qt = { j e {N — Jt) I aij < sl for all i e N}, (3.5) 

where s- is the ith slack variable at the tth iteration. If Qt + 0, a new feasible 
Z 

partial solution Jt+i can be achieved by augmenting Jt with {+k\ck = minc^}. 
^ 3^Qt 

m 
If Qt = 0，Jt is augmented by {+k\wl = max {^|^j- 二 X^min(0,6'J - c^ ) } } , 

3^^-^t i=i 

resulting in an infeasible partial solution, and the modified additive algorithm is 

performed again to find a new feasible partial solution Jt+i. In case that Jt+i 

doesn't exist, any augmentation to Jt by one or more free terms set at one will 

invite infeasibility and Jt is fathomed in case (ii). 

A fathomed partial solution Jt indicates that its remaining completions 

are entirely infeasible. A "backtrack" procedure [15], changing the rightmost 

positive element of Jt into a negative one and then deleting all the elements to 

its right (if any), is carried out to abandon this useless branch and generates a 

nonredundant one. When no element left in a partial solution Jt is positive, all 

2^ possible solutions to the master problem have been implicitly checked so that 

the feasible solutions to the master problem have been founded out completely. 

Thus, the fathoming process terminates. 

3.4 Consistency check of the feasible partial so-

lutions 

When a feasible partial solution, Jt, is achieved, its consistency should be checked 

according to the secondary constraints� 
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If Jt is inconsistent, any augmentation to Jt also leads to inconsistency. 

The "backtrack" procedure is performed to generate a new partial solution which 

will be checked by the next round of the fathoming procedure. 

If Jt is consistent, some of the decision variables yk for k e N' are fixed 

at either 0 or 1 by both Jt and the secondary constraints. Conversely, these fixed 

variables can determine a set Bt = {+j\xj is fixed at l,j e N-Jt}. Bt 二 0 means 

Ĵ  with all free terms set at 0 is a feasible solution to the original problem, and the 

current optimal solution is updated if the objective function value corresponding 

to Jt is better than the current optimal value. The "backtrack" procedure will 

be performed on Jf When Bt • 0, Jt U Bt is still a consistent partial solution, 

and its feasibility will be checked again. 

In finite iterations, either an optimal solution is obtained or it can be 

concluded that no feasible solution exists. 



Chapter 4 

The p-norm Surrogate Constraint 

Method 

4.1 Introduction 

The p-norm surrogate constraint method has been recently proposed by Li [22] for 

integer programming. Using this method, a polynomial zero-one programming 

• . problem with multiple constraints can be always converted into an equivalent 

polynomial zero-one programming problem with a single surrogate constraint if a 

positive integer p is selected to be large enough. One of the prominent properties 

of this method that is different from other surrogate constraint methods is that 

no assumption of convexity is required. ‘ 

For a positive integer _p, the p-norm surrogate constraint formulation of 

21 
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the problem (1.1) is given as 

2 打 ' - 1 

min Y1 c; n ykj, (4.1) 
j=i kjeKj 
m rn 

s.t. J 2 M y ) f < Y：[̂ ^̂ b'if, 
i=l i=l 

or 
t 

2 " — 1 

min Y^ Cj n ykj, (4.2) 
j=l kjeKj 

/ 

m 2̂  -1 rn 一 

s.t. 5 > i E ( % n % ) F < E [ M A F , 
i=l 3=1 kjEKj i=l 

where all /î  > 0, i = 1, 2, .. ” m, and satisfy the following two constraints: 

Ml̂ l 二 iM'2 = . . . 二 lMnb'm, (4.3) 
m 

E " — . (4-4) 
i=l 

Denote by S the feasible region of the original problem (1.1) and Sp the 

feasible region of the problem (4.1), 

S = {y I gi{y) < 6；,，i = 1,2，•.., m, y e {0,1广'}, (4.5) 
m m 

Sp = {y I j : M y ) r < E i ^ i b i Y r y M O ， i r }• (4-6) 
i=l i=l 

Lemma 1 [22 

S = Sp (4.7) 

if we select , 

P = �l n ( : ) 1 ， (4.8) 
1 ( . \ + 1、 ln( mm ~-,~~) 

h<z<m b^ 
where �gl denotes the integer that is greater than or equal to q. 
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We can conclude from Lemma 1 that the problem (1.1) and the problem 

(4.1) or (4.2) are exactly the same when p is chosen according to (4.8). Thus, 

in the following discussion, we only need to consider problem (4.2) and take the 

advantage of the prominent feature of a single constraint. 

In the next section, an example will be solved to demonstrate how the 

p-norm surrogate constraint method reduces a polynomial zero-one programming 

problem with multiple constraints into a one with a single surrogate constraint. 

4.2 Numerical example 

Example 1 Consider the following polynomial zero-one programming problem 

with three constraints in [31]: 

min z = 3y4y5 + ^ym + y2y4 + ^ymvs + 8y2y3y5, (4.9) 
( 

gi[y) = -y4y5 +y1y2 -ym +y1y2y3 -y2y3y5 < 1 

s.t. ^2(y) 二 -7^42/5 +3y2^4 -%1y2y3 -^y2y3y5 < - 2 , 

gs{y) 二 8y4y5 -^ym -y2y4. -^y1y2y3 -^y2y3y5 < —1 
V 

where y = ["1,"2,"3，"4,"5] € {0,l>^ iVote that giQ，—g2iA，-0>n4—m[d j^r^i  

strictly positive. To use the p-norm surrogate constraint method, a positive integer 

needs to be added to both sides of each constraint in (4.9) such that the constraint 

can satisfy the requirement of being strictly positive. After this kind of treatment 

is performed, the problem (4.9) becomes the following form: 

min z = 3̂ 4̂ 5 + ^ym + y2y4 + 2̂ 1̂ 2̂ 3 + 8^2^3^5, (4-10) 
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-ym +ym -y2y4 +ymy3 -y2y3y5 +4 < 5 

S.t. -7y4?/5 +3^2y4 - 4 y m y 3 -^y2y3y5 +15 < 13 • 

Sym - ^ y m -y2y4 - ^ y m v s -^2yzVh + i 4 < i3 
V 

Using (^.3), (44), and (4.8), we have 例 二 碧，^2 = Ms == ^； and p 二 15. 

Applying the p-norm surrogate constraint method we yield an equivalent problem 

ofU.lO)， 

min 2; = 3y4y5 + 2yi2/2 + y22M + 2yi^y3 + ^/2y3y5, (4.H) 
13 15 s.t. [—(-y4y5 + ym — ym + ymvs — my3y5 + 4)] + ^ 

- ( -7y42/5 + 3̂ 2̂ 4 — ^y1y2y3 一 3̂ 2̂ 3̂ 5 + 15 )p + 

5 55 
-(8^4^5 — 6yi2/2 — y2y4 — ^ymvz — ^y2y3y5 + 14)]15 < 3(—)^^ 

Essentially, we testify Lemma 1 with the results in Example 1, i.e., we 

testify whether the feasible region of the problem (4.9) is equal to that of the 

problem (4.11). Example 1 has 5 variables such that y 二 bi,"2,2/3,"4,2/5] has 32 

(=2^) combinations listed in Table 4.1. 

In Table 4.1, the first column is the number of solutions, the second column 

shows us all 32 solutions. "F" means feasible and "I" means infeasible. In the 

column of the P-norm Surrogate G o n s t r a i n t s Problem are the values of p from 1  

to 15. O.P. stands for the original problem (4.9). 

From Table 4.1, we can easily make a conclusion that if the problem (4.9) 

is feasible, the p-norm surrogate constraint problem is feasible no matter what 

value p is chosen. If the problem (4.9) is infeasible, only when p > 5 the p-norm 

surrogate constraint problem is infeasible. Thus, we have that, when p > 15, the 

feasible region of the problem (4.9) is equal to that of the problem (4.11), and 

Lemma 1 is testified to be right again in practice. 

• * • •‘ 
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T h e P - N o r m Surrogate Constraint P r o b l e m (p:) 

N o . yi V2 V3 V4 V5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 〇• ^' 

1 0 0 0 0 0 I I I I I I I I I I I I I I I I 
2 0 0 0 0 1 I I I I I I I I I I I I I I I I 
3 0 0 0 1 0 I I I I I I I I I I I I I I I I 
4 0 0 0 1 1 F I I I I I I I I ^ I I 1 1 I I 
5 0 0 1 0 0 I I I I I I I I I I I I I I I I 
6 0 0 1 0 1 I I I I I I I I I I I I I I I I 
7 0 0 1 1 0 I I I I I I I _̂  I I I 1 I 1 I I 
8 0 0 1 1 1 F I I I I I I Ĵ _̂_I I I 1 I 1 I I 
9 0 1 0 0 0 I I I I I I ^ I I I I 1 1 1 I I 
10 0 1 0 0 1 I I I I I I I I _J I I 1 1 r I I 

11 0 1 0 1 0 F I I I I I I ^ I I I 1 I 1 I I 
12 0 1 0 1 1 F I I I I I I I I I I I _J I I I 
13 0 1 1 0 0 I I I I I I I _J I ^ _ J I 1 1 I I 

14 0 1 1 0 1 F F J ^ ^ ^ ^ | ^ _ F ^ ^ F ^ ^ ^ F ^ ^ ^ F ^ ^ ^ ^ _ ^ _ _ F _ _ F _ _ F ^ ^ ^ ^ ^ F F F 

15 0 1 1 1 0 F I I I__l_J^__I__I__1 ^ I 1 1 1 I I 
16 0 1 1 1 1 F F F ^ I ^ _ I I I I I I 1 ] 1 I I 

17 1 0 0 0 0 I I I I I I I I I I I _̂ ^ I I I 
18 1 0 0 0 1 I I I I I I _J I__I I 1 I 1 1 I I 
19 1 0 0 1 0 I I I I I I I I I I I I I 1 I I 
20 1 0 0 1 1 F I I I I I I I ^ 1 ^ I I 1 I I 
21 1 0 1 0 0 I I I I I _̂  I I I I I 1 ] 1 I I 
22 1 0 1 0 1 I I I I I I I I I _J I I 1 1 I I 
23 1 0 1 1 0 I I I I I I I I _J ^ ^ 1 1 1 I I 

24 1 0 1 1 1 F I I I I I I I I I _J I I [ I I 
25 1 1 0 0 0 F F F F I I I I I I I I I I I I   
26 -1 t - 0——0 -1 P - F F F I I I I r r I I ' I I 1 —I —… .一 -

27 1 1 0 1 0 F F I I I I I I I I I I I I I I 
28 1 1 0 1 1 F F F F F F F F F F F F F F F F 

29 1 1 1 0 0 F F F F I I I I I I I I I _ J I I 

30 1 1 1 0 1 F F F F F F F F F F F F F F F F 

31 1 1 1 1 0 I I I I I I I I I I _J I I I I I 
32 1 1 1 1 1 F F F F F F F F F F F F ^ ^ _ F F F 

Table 4.1: Compare the feasible region of the p-norm surrogate constraint problem 

and the original problem 



Chapter 5 

The P-norm Surrogate-constraint 

Algorithm 

5.1 Main ideas 

The Balasian-based algorithm [31][32] is efficient in determining whether a feasible 

solution to the master problem is optimal to the original problem, but the process 

in searching for all the feasible solutions, using the additive algorithm [1], could 

be very time consuming. An important reason for this because the total amount 

of computation in the additive algorithm depends linearly on both the number 

of constraints and the number of variables, i.e. m x n. 

The p-norm surrogate constraint method [22] can.reduce the multiple con-

straints of the polynomial zero-one programming problem to a single one while 

the number of the decision terms in the master problem (1.4) is enlarged up to 

“ n*. In general, 1 x n* < m x n such that the efficiency of the searching process 

26 
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could be enhanced. When the general form of the polynomial zero-one program-
/ 

ming problem (1.1) has all the 2^ — 1 decision terms, the number of the decision 

terms will remain unchanged after the transformation in the p-norm surrogate 
constraint method. 

In addition, the prominent feature of a single constraint would assist us 

to devise a more efficient method searching all the feasible solutions than the 

additive algorithm in the Balasian-based algorithm and even would improve the 

"backtrack" technique [15 . 

Based on the above considerations, a new algorithm is sketched for poly-

nomial zero-one programming. The original problem (1.1) is first reduced to an 

equivalent master problem with its secondary constraints. Then the algorithm 

searches a feasible solutions to the master problem using an improved "fathom-

ing" technique and checks its consistency. A modified version of "backtrack" 

technique is adopted on the "fathomed" solution to generate a new nonredun-

dant solution to the master problem and the algorithm goes to the next round of 

the iterations. 

In the following sections, the new algorithm, the p-norm surrogate-constraint 

algorithm, will be presented in detail. 
. —— - -- - --- . - …- - - -_ “ 

5.2 The standard form of the polynomial zero-

one programming problem 

Now, we reconsider the general form of the polynomial zero-one programming 

problems (1.1) with multiple constraints. It can be reduced to an equivalent 
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polynomial single-constraint zero-one programming problem (4.2) by using the 

p-norm surrogate constraint method. 

Since all yi, i = {1, 2 , . . . , n ' } , are binary, the surrogate constraint in (4.2) 

can be simplified to the following form after expansion and combining the similar 

terms, 

^ E s n ^ < ^ ' ' (5-1) 
j=l kjeKj 

where a) and b' are new constants generated in the process of simplification. 

Using the definitions of (1.2) and (1.3), the problem (4.2) can be now expressed 

by the following form: 
n 

min z — ̂ CjXj, Cj > 0, (5.2) 
j=i 

n 
S.t. ^CLjXj + s — b, 

j=l 

where s is a nonnegative slack variable, a) and b are deduced from (5.1) and (1.2)， 

and X satisfies (1.2). Up to this stage, the problem (4.2) has been transformed 

into an equivalent two-level problem referred as the standard form, a master 

problem (5.2) with its secondary constraints (1.2). Clearly, the master problem 

(5.2) is a linear zero-one programming problem with a single constraint while the 

secondary constraints (1.2) is a polynomial system. 

In the following, we will concentrate on developing a numerical algorithm 

of a partial enumeration nature for the master problem (5.2) with secondary 

constraints (1.2). 
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5.3 Definitions and notations 

This section will give a set of definitions and notations used in the statements 

of the new algorithm. Some of these concepts, similar to those adopted in the 

additive algorithm [31][32], have been redefined in this thesis while the others 

have been introduced for the first time. 

5.3.1 Partial solution in x 

A partial solution in x, denoted by Jt, is a permutation of a subset of {± j| j G N}. 

The decision term xj is set at 1 in the tth iteration if +j G Jt, while xj is set at 0 

if - j e Jt. Essentially, Jt determines an assignment of binary values to a subset 

of the decision terms. 

5.3.2 Free term 

We define an index set of Jt to be I{Jt) 二 { j | + i or — j G Jt}. The free term of 

Jt is any decision term xj whose index j is not included in I{Jt)- Since all Cj > 0 

for j G N in the master problem (4.4), the free terms are always set at 0. 

‘ ！ - . - -- --.. --•.- --. - -_ - • — 

5.3.3 Completion 

A completion of Jt is any vector of decision term, x, in which a part of components 

are determined by Jt while the rest, all the free terms of Jt, are chosen arbitrarily 

between 0 and 1. 

The partial solution, Ĵ , behaves exactly as its completion in which all the 

free terms equal zero. So, we use the partial solution Jt instead of its completion 
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such that the solution process can be simplified. 

5.3.4 Feasible partial solution 

If the completion of Jt with all corresponding free terms set at zero value consti-

tutes a feasible solution to the master problem (1.4)，Jt is called feasible. 

If the completion of Jt with all corresponding free terms set at zero value 

constitutes an infeasible solution to the master problem (1.4)，Jt is called infea-

sible. 

5.3.5 Consistent partial solution 

A feasible partial solution, Jt, is said to be consistent if Jt determines a feasible 

solution in y to the secondary constraints in (1.2). 

A feasible partial solution, Jt, is said to be inconsistent if Jt leads to an 

infeasible solution in y to the secondary constraints in (1.2). 

If Ĵ  is inconsistent, no matter how it is augmented by its free terms, Jt will 

remain inconsistent. This feature can improve the efficiency of the "fathoming" 

procedure since Jt is inconsistent indicates that it is fathomed. So, a new case is - - + - ••———-- -— • - _— "'" """ ‘ • ―“ ‘ “ ‘“ “ “ _ “ . “‘ . • “ . “― • 
added as Case (iii) of the "fathoming" conditions in the new algorithm. 

5.3.6 Partial solution in y 

A partial solution in y, denoted by Dt, is a permutation of̂ a subset of {±1，±2，. • ’，士几‘} 

and it is determined by Jt via the secondary constraints. The decision variable 

yj is set at 1 in the tth iteration if +j G Dt, while yj is set at 0 if - j G A -
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Dt, similar to Ĵ , determines an assignment of binary values to a subset 

of the decision variables. If Jt can generate a Dt via the secondary constraints, 

Ĵ  is consistent. In other words, to check the consistency of Jt is equal to check 

the existence of Dt-

5.3.7 Free variable 

We define an index set of Dt to be / ( A ) 二 {^ | +i or —i G A } - The free variable 

of Dt is any decision variable yi whose index i is not included in / ( A ) -

5.3.8 Augmented solution in x 

An augmented solution in x, denoted by Bt, is a subset of {+j\j G N — I(Jt)} 

and it is determined by Dt via the secondary constraints. 

Augmented by Bt, the partial solution Jt must be consistent, but it may 

be infeasible. 

Example 2 A polynomial zero-one programming problem has been converted into 

the standard form, a master problem, 
丽 _ . . . . _ __ - -. — — — • -- -- “ “ -• “ •“‘ “ 

min 2；二/(工1,0：2,他“)， (5-3) 

S.t. Xi + 3X2 + Xs — 4X4 + 5 = —2， 
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and the secondary constraints, 
f 

^1 = y1y2, 

^2 = y2, 

< (5.4) 

x^ = y2y3y4, 
x4 = i-ymys' 

V 

Clearly, J+ = {1,2，3} and J_ = {‘}• 

At the iteration t, the feasible partial solution Jt 二 {+1, - 3 , + 4 } with X2 

as a free term determines a following assignment of the decision terms, 
f 

xi 二 1, 

^ ^3 - 0, (5.5) 

^4 = 1, 

and it further determines a following assignment of the decision variables, 
f 

yi = 1, 

< "2 二 1， （5-6) 

^ 3 _ ^ ^ . ^  
\ 

So the partial solution in y, Dt = {+1, +2, - 3 } and y4 is a free variable. Jt is a 

consistent solution. 

Since X2 二 V2 in (5.6) and +2 G Dt, the free term X2 is fixed to be 1. 

Thus, the augmented solution Bt = {+2}，but {+1, -3, +4, +2}, generated from 

Jt augmented by Bt, is infeasible. 

Another feasible partial solution, Jt 二 { + l , + 3 , + 4 } , can not satisfy the 

secondary constraints simultaneously. So it is an inconsistent partial solution. 
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5-4 Solution concepts 

The feasible solution set of the master problem (5.2) is a relaxation of S. All 

the optimal solutions to the original problem (1.1) must be feasible to the master 

problem (5.2). Thus, we are going to develop an approach to find the optimal 

solution to the problem (1.1) by searching for the best solution among the feasible 

solutions to (5.2) that satisfy the secondary constraints (1.2). The key point is 

how to implicitly enumerate the feasible solutions to (5.2). We have shown that, 

Using the p-norm surrogate constraint method [22], any multiple-constraint poly-

nomial zero-one problem can be reformulated as an equivalent single-constraint 

one. Making use of this prominent result, we will develop a novel efficient search 

method that especially suits for singly-constrained polynomial zero-one problems. 

5.4.1 Fathoming 

Let Jt be a partial solution in x at iteration t. The concept of fathoming is 

redefined here as follows: 

Jt is fathomed if one of the following conditions is satisfied: 

(i) Jt is infeasible and Jt has no feasible completion; or 

(ii) Jt is both feasible ancTconsistent, and no Bt exists; or 

(iii) Jt is feasible, but inconsistent. 

In case (i), Jt is infeasible and there does not exist an augmentation to 

Jt such that the feasibility of the master problem (5.2) can be achieved. In case 

(ii), Jt with all free terms set at zero is a feasible solution to the original problem 

(1.1). No Bt exists implies that no necessary augmentation is needed. Since all 

Cj > 0, any augmentation to Jt will result in an objective function value which 
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is no better than Zt, the current objective function value associated with Jt. In 

case (iii), Jt is inconsistent. So are all its completions. 

In case where Jt is fathomed, it implies that there is no need to investigate 

further the remaining completions of Jt, and the "backtrack" process will be 

performed to generate a new nonredundant partial solution Jt+i from Jt. 

The "fathoming" process consists of three stages: feasibility checking, con-

sistency checking, and augmenting the partial solution in x. In the fathoming 

process, Jmin and Zmin denote the current incumbent solution in x and the corre-

sponding optimal value of the objective function, respectively. At the beginning, 

set Jmin = 0 and 2Wn = oo. 

Feasibility checking 

At iteration i , the partial solution, J^ is given and St denotes the slack variable. 

The "fathoming" process starts with the feasibility checking. 

If st is less than zero, Jt is infeasible and we have case (i); Otherwise, Jt 

is feasible and we have cases (ii) or (iii). 

In case (i), a criterion is easy to be constructed to determine whether Jt 

has any feasible completion. When St is less than the summation of all negative _ _ - - - — - •   
coefficients of free terms, the slack variable cannot become nonnegative even we 

assign all free terms with negative coefficients at one. More specifically, if 

E min(0, aj) > Su (5-T) 
jeN-Jt 

Jt has no feasible completion and Jt is fathomed. 

If the inequality (5.7) does not hold, Jt has at least one feasible completion. 

Let Ht 二 0; find the most negative 〜，j G N - Jt - i^t,; and augment Ht by 
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{+j}. This process repeats until ^ aj < St is satisfied. Thus, a new feasible 
jeHt 

partial solution, Jt U Ht, is formed and the situation is converted to either case 

(ii) or (iii). 

Consistency checking 

If a partial solution, J^ is feasible, we need to check its consistency for determining 

which case is used to fathom it. To test whether a partial solution in x, J^ is 

consistent or not is equivalent to test if an associated partial solution in y, Dt, 

can be found. 

A two-stage approach is designed to find Dt, which is closely related to 

the computer program that I coded. In the approach, some of components in Dt 

can be identified by directly checking both Jt and the secondary constraints and 

the others need to be identified by iteration. 

Stage I. Direct fixation. 

If +j e Jt and j e J+, 

Vi = 1 for all i e Kj • (5-8) 

If —j e Jt^nd j e J-, 

Vi = 1 for all i e Kj . (5.9) 

Stage II. Indirect fixation. 

Step 0. 

Set all ^i-variables not fixed at Stage I at an initial value of 2. 

Step 1. 
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Calculate all the values of xj, ±j G Jt, according to the secondary con-

straints (1.2). 

Step 2. 

For —j e Jt and j e J+, 
f 

> 2, none to be fixed, 

= 2 , yi is fixed at 0 for yi 二 2 {i G Kj) , 
If Xj (5-10) 

二 1, Jt is inconsistent and terminate, 

= 0 , none to be fixed. 
k 

For +j e Jt and j G J—, 
f 

< —1，none to be fixed, 

= - 1 , yi is fixed at 0 for yi 二 2 {i G Kj), 
If Xj (5-11) 

二 0, Jt is inconsistent and terminate, 

= 1 , none to be fixed. 
V. 

Step 3. 

If no fixation of yi happens in the current iteration, the procedure termi- 

~nates;0therwise�go4mck4oS^epl. 口 

At Stage I，+j G Jt and j G J+ imply that Xj = JJ 队 = 工 . S � a l l yi, 
ieKj 

i e Kj, can be fixed at 1, or an inconsistency occurs, —j G Jt and j e J— 

imply that Xj = 1 — J[ Vi 二 0. So all " “ i G Kj, can be also fixed at 1，or an 
i^Kj 

inconsistency occurs. 

At Stage II, some other decision variables, ŷ , can be fixed at zero by 

iteration. In Step 0, all yi which have not been fixed at Stage 1 are set at 2. In 
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other words, yi 二 2 indicates that it has not been fixed. So far, all of the decision 

variables have been fixed at 0, 1, or 2. Based on these new values of ŷ , all the 

values of xj, ± j G Jt, are updated in Step 1 of every iteration, which could be 

different from those determined by Jt. 

In Step 2, —j e Jt and j G J+ imply that Xj = JJ V^ = � • If the value 
ieKj 

of Xj, calculated in Step 1, is larger than 2，at least two yi 二 2 for i G Kj, i.e., 

they have not been fixed. Then, none can be determined; If the value of xj is 

equal to 2, only one yi = 2, i.e., it has not been fixed. Then, it will be set at zero, 

or an inconsistency occurs; If the value of xj is 1, inconsistency occurs and the 

procedure of consistency checking terminates; If the value of Xj is 0, at least one 

y- 二 0 for i e Kj. Then, no more yi can be determined. 

In Step 2, +j e Jt and j G J' imply that Xj = 1 - H Vi 二 工.If the 
ieKj 

value of ccj, calculated in Step 1, is less than —1，at least two yi = 2 for i G Kj, 

i.e., they have not been fixed. Then, none can be determined; If the value of Xj 

is equal to - 1 , only one yi 二 2, i.e., it has not been fixed. Then, it will be set at 

zero, or an inconsistency occurs; If the value of Xj is 0, inconsistency occurs and 

the procedure of consistency checking terminates; If the value of Xj is 1, at least 

one yi = 0 for i e Kj. Then, no more yi can be determined. 
- - - -. •“ 

j^ Step 3, no fixation of yi in the current iteration indicates that no fixation 

will happen in the following iterations. So, the procedure of consistency checking 

terminates. 

Thus, the partial solution in y of Jt is generated in the two-stage approach 

as follows: 
Dt = {+i{-i)\yi = 1(0) according to (5.8), (5.9), (5.10) and (5.11)}. 
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Example 3 Consider a partial solution Jt 二 { - l，+3} with the secondary con-

straints of (54) of Example 2. 

Since +3 G Jt and x^ = y2ym, V2 二 Vs 二 "4 = 1 is gotten from (5.8) at 

Stage I directly. Only yi has not been fixed. 

At stage II，yi is first set at 2 in Step 0. Then Xi 二 侧2 = 2 x 1 二 2 is 

calculated in Step 1. Since - 1 G Jt and 1 G J+，yi is fixed at 0. So far, all yi for 

i e N' have been fixed, the procedure of consistency checking terminates. 

When Jt is feasible, if Dt does not exist, Jt is inconsistent and Jt is fath-

omed in case (iii). Otherwise, Jt is consistent and we have case (ii). 

Augmenting the partial solution in x 

In case (ii), Jt is both feasible and consistent. When no Bt exists, no necessary 

augmentation on Jt is needed and Jt is fathomed. Now the completion of Jt with 

all its free terms set at 0 is a feasible solution to the original problem (1.1). If 

Zt < Zrnin, set incuHibent ^ n = Zt and J-^n = Jt- When Bt exists (there could 

be more than one Bt), Jt has to be augmented by Bt. A new partial solution, 

Jt U Bt, is formed for another round of checking.  

An approaeh suitable to computer program is proposed for determining 

the augmented solutions in x. 

We follow the data in two-level approach that some 队 are fixed at 0, some 

are fixed at 1 and the rest are equal to 2. 

Step 0. ‘ 

Set k 二 1. Determine the following three sets: 

î = {+jlTj = Ue#-lW)}, 



CHAPTER 5. THE P-NORM SURROGATE-CONSTRAINT ALGORITHM27 

E^^ = {jlxj = 2,jeJ^n[N-i(Jt)]}, 

E； = {j\x^ 二 -I,j e J- n [iV — i{Jt)]}. 

If Et + 0 and E^ • 0, go to the next step. Otherwise, the approach terminates. 

Step 1. 

Choose an index u from E^. Find v such that v e Ku and y^ = 2. 

Step 2. 

Delete u from Ef' and set y” 二 0. 

Step 3. 

Calculate Xj, j G Ef, in accordance with the secondary constraints. 

Step 4. Determine the set Gu defined by 

Gu == { + J > j = 1, and j G E^}. 

If Gu + 0, then B\ 二 B^ U Gu, and go to the next step. Otherwise, go to Step 6. 

Step 5. 

Set k = k + 1. B�二 B^ U {+n} . 

Step 6. 

If Et 二 0, the approach terminates. Otherwise, set k = k + 1 and go back 

to Step 1. 口 — ---...-- — — 

Obviously, E^ C J+ and E^ C J— are two index sets of the terms Xj, 

which only contain one yi that is not fixed. If Gu ̂  0, either Xu or Xj for j G Gu 

is set at 1 since ŷ  is binary. ^ 

Example 4 Consider Jt = {+3} with the secondary constraints of (54) of Ex-

ample 2. Dt 二 { + 2 , + 3 , + 4 } is obtained easily hy the two-stage approach, in 
* 

which yi is set at 2. 
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Step 0. 

Set s 二 1； and 

Ri — 19； J^t — l̂ J5 

丑 广 = { + 1 } / 0, 

E； = { + 4 } ^ 0. 

Step 1. 

Choose u = 1 and find v = 1. 

Step 2. 

E^ 二 0 and yi 二 0. 

Step 3. 

X4 = 1. 

Step 4. 

Gi = { + 4 } / 0. 

B l = Bl U Gi = { + 2 , + 4 } . 

Step 5. 

k = 2 and B^ = B] U { + 1 } 二 { + 2 , + 1 } . 

Step 6. 

Since Et = ^, the approach terminates. 

Having used the above approach on Jt, either k augmented solutions in y, 

denoted by B^, are identified or no B^ exists. In the former case, although Jt is 

feasible and consistent, the completion of Jt with all free terms set at zero is not 

feasible to the secondary constraints until Jt is augmented by B^. 

Jt+i，generated from augmenting Jt with B^, is obviously consistent and 

if it is feasible, then its completion with all the free terms set at 0 is a feasible 
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solution to the original problem (1.1). If Zt+i < Zmin, set incumbent m̂in = ^t+i 

and Jmin 二 Jt+i. Since no B^_^^ exists, Jt is also fathomed in case(ii). If Jt+i is 

infeasible, the feasibility checking will go into the next iteration. 

5.4.2 Backtracks 

When the current partial solution Jt is fathomed, a modified version of Geoffrion's 

implicit enumeration technique [15] is used to generate a new potential partial 

solution in x. 

The procedure of "backtrack" in the Geoffrion's method [15] makes the 

most-right positive element in Jt negative and then deletes all the elements to 

its right. When all the elements of a fathomed partial solution are negative, it 

means that all 2" possible solutions to (5.2) have been checked implicitly. One 

simplification which this algorithm adopts is the treatment of the augmentation 

B^ in Jt at iteration t with r < t. We recognize that B�is added to make the 

partial solution J” which consists of the components on the left of B^ in Jt, 

consistent. Changing any element of B � f r o m positive to negative while keeping 

人 unchanged will result in an inconsistent solution. Thus, we should select the 

most-right element in Jt from among the elements which do not belong to any 

B�with r < t. This modification leads to a significant saving in computation. 

When all the elements of a fathomed partial solution are negative, the 

fathoming process terminates. The optimal partial solution in x is Jmin-
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5.4.3 Determination of the optimal solution in y 

In finite iterations, either an optimal value 2̂ min is obtained or it can be concluded 

that no feasible solution exists from Zmin 二 � .T h e optimal partial solution in x 

is Jmin associated with 2̂ min. According to the secondary constraints and Jt, we 

can determine the partial solution(s) in y, i^nin, by the two-stages approach. 

When N' = /(Anin)，i.e., no free variable exists, the original problem has 

a single optimal solution in y determined by Anin exactly. When N' C /(Anin), 

we choose a group of free variables and set them at 0 or 1 such that all other 

free variables can be fixed by indirect fixation in the two-stage approach, an 

optimal solution in y is achieved from the partial setting and the partial fixation. 

We repeat the above procedure until no such group exits. Finally, the optimal 

solutions are fully determined. 

5.5 Solution algorithm 

A polynomial zero-one programming problem has been converted into the stan-

dard form, the master problem (5.2) with the second constraints (1.2). The 

following new algorithm, p-norm surrogate-constraint algorithm, for polynomial • .̂  • . — ----•. - — • -. - . • .— . • •.- ‘ ‘ 一 

zero-one programming is proposed based on the discussion in the previously sec-

tions. The detailed steps can be also followed on the flow chart in Figure 5.1. 

Step 0. Initialization. Set t 二 0, 2;min 二 oo, ^min = Jo 二 0. 

Step 1, Feasibility check. If St > 0 go to Step 4. 



CHAPTER 5. THE P-NORM SURROGATE-CONSTRAINT ALGORITHM43 

Step 2. If 

J2 min(0,aj) > St, 
jeN-Jt 

go to Step 11. 

Step 3. Find the set of Hf Augment Jt by Ht on the right. 

Step 4. Consistency check. If Jt is inconsistent, go to Step 11. 

Step 5. Find all the sets B�.If B: exist, go to Step 7. 

Step 6. If zt < Zmin, replace 2;min by Zt and Jmin by Jt. Go to Step 11. 

Step 7. If 

Zt " f " �: Cj ^ m̂1n5 
jeB� 

go to Step 10. 

Step 8. If 

St - E ^ > 0, 
jeB^ 

replace Zmin by Zt + Y1 Cj and augment Jt on the right by B^, and go to Step 
j^B^ 

10. 
. . .. . .--.-•- -.- -. -丽 --- -. 

Step 9. Augment Jt on the right by B^, then go back to Step 2, 

Step 10. Set k = k — 1. If k > 0, return to Step 7. 

Step 11. If all the elements in Jt are negative; terminate. Otherwise, 

perform a backtrack step and go back to Step 1. 

Step 12. Determine all the optimal solutions. If 2:min is still equal to infinity 
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when the procedure terminates, the original problem has no feasible solution. 

Otherwise, those corresponding to 2̂min is the optimal solutions. 口 

The p-norm surrogate-constraint algorithm is coded in Visual C + + 5.0 for 

Pentium 166 CPU. The code of the new algorithm consists of two parts. The first 

1 part transforms a general polynomial zero-one problem into its standard form and 

the second part is the implementation of the above algorithm. 

- - - - -- • + - - -... -- - - - - - + - — . • 
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Figure 5.1: The flow chart of p-norm surrogate-constraint algorithm 
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Numerical Examples 

6.1 Solution process by the new algorithm 

6.1.1 Example 5 

We re-consider the polynomial zero-one programming problem which Taha [31] [32 

designed for illustrating the Balasin-based algorithm. The following is the general 

form of this problem: 
— 冊丽 + • + + - - - - - - - - + — “ •" 

min z 二 3腳5 + 2y^y2 + y2y4 + ^VmV^ + 8y2y3y5 (^-l) 
f 

—•5 +ym -ym +ymys -y2y3y5 < 1 

s.t. S -7y4y5 +3^2^4 -4ymys -^y2y3y5 < - 2 , 

8y4y5 -^ym -V2VA -^my3 -̂ y2y3y5 < - 1 
V 

where yi G {0 ,1 } for i e {1,2, 3,4, 5}. 

46 
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Transformation 

Using the p-norm surrogate-constraint method [22], the problem (6.1) can be 

equivalently transformed into the surrogate-constraint formulation (4.11). After 

expanding and combining the similar terms, (4.11) can be expressed as a polyno-

mial zero-one programming problem with a single surrogate constraint, 

min z = 3y4y5 + ^yiV2 + ym + ^yiy2V3 + &my3y5 

s.t. + 4159083994664864490489637859956 y m 

-32393713291612264534830143 y m 

+189287953090993896892225750581 y2^4 

+926771450508181032738885152 y1y2y3 

-17567584010676854145371905669 y2ysy5 

-208904320886271705520390478550 y m v m 
(6.2) 

+2064378995459173208634429626250 y m y s V m 

-5063591504562018163218117738 y1y2y3y5 

+1731680080924936319574704562 ymv^ 

-2064056286984483290942550140946 y m v m 

-1855595870738783215333277428950 y2y3y4y5 

-2287482270124103212658524077804 y2y4y5 

< -134797744487362861440560220768.‘ 

Since the operations of the new algorithm to be carried out at each iter-

ation consist solely of additions and subtractions, divided by a large integer, all 

the coefficients on both sides of the constraint in (6.2) could take the only integer 
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parts without an impact on final result. Thus, the stand form of the problem 

(6.1) is given by a master problem, 

min z 二 3a;i + 2x2 + ^3 + 2x4 + 8x5 

s.t. 41590a;i — 32x2 + 1893^3 + 93x4 — i76a;5 — 2089:^6 + 20644xr ( 6 . ¾ 

- 5 0 x 8 + 17^9 — 20640xio — 1 8 5 5 5 x n — 22874xi2 < —134, 

and its second constraints, 
‘ 

^\ = 2/42/5 

X2 = ym 

Xs = V2VA 

X4 = yly2y3 

X5 二 y2y3y5 

^6 = ymysVA , ,̂ 
< . (6.4) 

007 = ymy^Vh 

工8 二 ymysVb 

• ^9 = ymy4   
- - — 

^10 = ymym 

ooii 二 y2y3yAy5 
x12 二 y2VAy5 

‘ ^ 

Iteration 

To clearly illustrate the new algorithm, we shall concentrate on the procedure of 

solving this example and the details of determining Dt and B^ will not presented 
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here. 

Step 0. Set Zmin 二 oo, zo = 0, J—n 二 Jo 二 0, 5o = -134. 

Iteration 0. 

Step 1. Feasibility check. So = -134 < 0. 

Step 2. 

Y^ min(0, CLj) 二 -32—176—2089—50—20640—18555—22874 = —64416 < 5o 二 —134. 
jeN-Jo 

Step 3. Ho = {12}, Jo = {12}, and 2¾ 二 0，5o = 22740. 

Step 4. Consistency check. Jo is consistent and Do = {2 ,4,5} . 

Step 5. Bl 二 { l , 3 } . 

Step 7. 

2；0 + X ) Cj 二 0 + 3 + 1 二 4 < Zmin = � . 
j^Bl 

Step 8. 

so — Y^ aj = 22740 — 41590 - 1893 = -20743 < 0� 

j^Bl 

Step 9. Ji = Jo U Bl = {12，1, 3}, 2；1 = 4，and 5i 二 -20743. Go back to 

Step 2 

Iterationl  

Step 2. 

Y^ min(0, aj) = -32-176-2089-50-20640-18555 = -41542 < 5i = -20743. 
jeN-Ji 

Step 3. Hi 二 {10,11}，Ji = {12，1,3,10，11}, and zi 二 4，si = 18452. 

Step 4. Consistency check. Ji is consistent and Di 二 {1,2，3,4，5}. 

Step 5. Bl 二 {2,4,5,6,7,8，9}. 



CHAPTER 6. NUMERICAL EXAMPLES . 50 

Step 7. 

Zi + Y^ Cj 二 4 + 2 + 2 + 8 = 1 6 < Zmin = o o -

jeBl 

Step 8. 

5i — Y, Qj = 18452 — 32 + 93 - 176 - 2089 + 20644 - 50 + 17 二 36859 > 0, 

jeB} 

Zmin = 16 and Jmin = h U B\ = {12,1,3,10,11，2,4，5,6，7,8，9}, goto Step 10. 

Step 10. k 二 1 — 1 二 0. 

Step 11. All the elements in Ji are not negative, backtrack, h 二 

{12,1，3,10, —11}, 2；2 = 4, 52 = —103. Go to Step 1. 

Iteration 2. 

Step 1. Feasibility check, s2 二 一103 < 0. 

Step 2. 

Y, min(0, CLj) 二 - 3 2 - 176 — 2089 — 50 二 -2374 < s: 二 —103. 
jeN-J2 

Step 3. H2 二 {6}，J2 二 {12,1,3,10, —11，6}, and z) 二 4，s) = 1986. 

Step 4. Consistency check. J2 is inconsistent, go to Step 11. 

Step 11. All the elements in J2 are not negative, backtrack. J3 = 

{ 1 2 , l , 3 , 1 0， - l l , - 6 } ; - ^ = 1 7 ^ = - T 0 3 : G o l ; o ^ ; e p ^ 

Iteration 3. 

Step 1. Feasibility check, s3 = -103 < 0. 

Step 2. 

Y^ min(0,〜）二 - 3 2 — 176 — 50 = -258 < 53 = -103. 
jeN-Js 

Step 3, Hs 二 {5} , Js = {12,1,3,10, —11, —6, 5}, and z3 二 12, 53 = 73. 

Step 4. Consistency check. J3 is inconsistent, go lo Step 11. 
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Step 11. All the elements in J3 are not negative, backtrack. J4 二 

{12,1，3,10, - 1 1 , - 6 , _5}，2:4 = 4, 54 = -103, Go to Step L 

Iteration 4. 

Step 1. Feasibility check. 54 二 —103 < 0. 

Step 2. 

Y , min(0, aj) = - 3 2 — 50 = - 8 2 > 54 = -103, 
jeN-JA 

go to Step 11. 

Step 11. All the elements in J4 are not negative, backtrack. J5 二 

{12,1, 3，-10}, 5̂ 二 4, 55 = -20743. Go to Step 1. 

Iteration 5. 

Step 1. Feasibility check, s5 = -20743 < 0. 

Step 2. 

Y^ min(0, aj) 二 - 3 2 — 176 - 2089 — 50 — 18555 二 -20902 < 55 = -20743. 
jeN-Js 

Step 3.丑5 二 {11,6,5}, J5 二 {12,1,3，-10,11,6, 5}, Z5 = 12, 55 二 77. 

Step 4. Js is inconsistent, go to Step 11. 

Step 11. All the elements in J5 are not negative, backtrack. Je 二 

{12,1 ,3 , -10,11,6 , - 5 } , 2：6 二 4rs6 =_-997Go to^tep 1. 

Iteration 6. 

Step 1. Feasibility. Se 二 - 9 9 < 0. 

Step 2. 

J2 min(0, aj) = - 3 2 — 50 二 - 8 2 > se = -99 , 
jeN-Je 

go to Step 11. 
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Step 11. All the elements in Je are not negative, backtrack. J7 = 

{12,1，3, -10 ,11, - 6 ) , 2;7 二 4, S7 二 -2188. Go to Step 1. 

Iteration 7. 

Step 1. Feasibility check, s7 = -2188 < 0. 

Step 2. 

^ min(0, aj) = —32 — 176 - 50 二 - 258 > 5r = -2188, 
3eN-j7 

go to Step 11. 

Step 11. All the elements in J7 are not negative, backtrack. Js = 

{12,1,3, - 1 0 , —11}, 8̂ = 4, 58 = -20743. Go to Step 1. 

Iteration 8. 

Step 1. Feasibility check. 5g = -20743 < 0. 

Step 2. 

Y , min(0, aj) = - 3 2 — 176 - 2089 — 50 = -2347 > sg = -20743， 

jeN-J8 

go to Step 11. 

Step 11. All the elements in Js are not negative, backtrack. J9 二 { - 1 2 } , 

Zg 二 0, Sg 二 -134. Go to Step 1. 

Iteration 9. 

Step 1. Feasibility check. S9 = -134 < 0. 

Step 2. 

Y^ min(0, Gj) = - 3 2 - 1 7 6 - 2 0 8 9 - 5 0 - 2 0 6 4 0 - 1 8 5 5 5 = -41542 < 59 = —134. 
jeN—Jg 

Step 3. Hg = {10}, J9 - { - 12 ,10 } , 2¾ = 0，59 二 20506. 

Step 4. Consistency check. J9 is inconsistent, go to Step 11. 
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Step 11. All the elements in Jg are not negative, backtrack. Jio 二 

{ - 1 2 , - 1 0 } , zio = 0, sio = -134. Go to Step 1. 

Iteration 10. 

Step 1. Feasibility check, sio 二 —134 < 0. 

Step 2. 

Y^ min(0, aj) = - 3 2 — 176 - 2089 一 50 - 18555 二 -20902 < Sio 二 -134. 
jEJV-Jio 

Step 3. Hio = {11}, Jio = {-12，—10，11}，z!�= 0, 5io = 18421. 

Step 4. Consistency check. Jio is inconsistent, goto Step 11. 

Step 11. All the elements in Jio are not negative, backtrack. Jn 二 

{—12, - 1 0 , - 1 1 } , 1̂1 二 0, 5ii = -134. Go to Step 1. 

Iteration 11. 

Step 1. Feasibility check, sn = —134 < • � 

Step 2. 

J2 min(0, aj) = - 3 2 — 176 — 2089 — 50 = -2347 < Sn = —134. 
jeN-Jn 

Step 3. Hu 二 {6} , Jii = { - 1 2 , - 1 0 , —11,6}，2;11 二 0, 5n 二 1955. 

Step 4. Consistency check. Jn is consistent and Bn = {1, 2, 3, 4}. 

Step5.Bl^ = {2,3,4,9}. 

Step 7. 

^11 + J2 Cj 二 0 + 2 + 1 + 2 + 0 二 5 < Zmin = 1 6 . 

綱 1 

Step 8. 

5ii — Y . cLj = 1955 + 32 — 1893 - 93 — 17 二 - 1 6 < 0. 

• 綱1 
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Step 9. Ji2 二 Jii U Bl = { - 1 2 , - 1 0 , - 1 1 , 6 , 2 , 3 , 4 , 9 } , Z12 = 5, and 

s12 二 —16. Go back to Step 2. 

Iteration 12. 

Step 1. Feasibility check. S12 二 - 1 6 < 0. 

Step 2, 

Y , min(0, aj) 二 —176 - 50 = -226 < 5i2 = - 1 6 . 
jeN-J12 

Step3. Hu = {5} , J12 = {-12，—10,-11，6，2，3,4,9,5},奶 二 13，5i2 二 

160. 

Step 4. Consistency check. Ju is inconsistent, goto Step 11. 

Step 11. All the elements in Ju are not negative, backtrack. J13 = ' 

{ - 1 2 , —10，-11,6,2,3,4，9, - 5 } , 2;13 = 5, 513 = -16 . Go to Step 1. 

Iteration 13. 

Step 1. Feasibility check. 513 二 —16 < 0. 

Step 2. 

23 min(0, aj) = - 5 0 < S13 = -16 . 
jeN-Ji3 

Step 3. Hu 二 {8}，Ji3 = { - 1 2 , - 1 0 , - 1 1 , 6 , 2 , 3 , 4 , 9 , - 5 , 8 } , 2;13 二 5， 

513 = 34. — — — 

Step 4. Consistency check. J13 is inconsistent, go to Step 11. 

Step 11. All the elements in J13 are not negative, backtrack. Ju = 

{—12, - 10 , -11 ,6 ,2 ,3 ’ 4,9, - 5 , —8}, 2;u 二 5, 5u = -16 . Go to Step 1. 

Iteration 14. 

Step 1. Feasibility check, su = —16 < 0. 

Step 2. 

. ^ min(0, aj) 二 0 > Su 二 _16, 
jeN-Ji4 
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goto Step 11. 

Step 11. All the elements in Ju are not negative, backtrack. J15 二 

{—12, - 1 0 , -11，—6}, 2；15 = 0，515 二 - 134 . Go to Step 1. 

Iteration 15. 

Step 1. Feasibility check. S15 二 —134 < 0. 

Step 2. 

Y , min(0, aj) 二 - 3 2 — 176 - 50 = -258 < Si5 二 —134. 
jeN-Ji5 

Step 3.丑15 = {5} , Ji5 = { - 1 2 , —10,-11, - 6 , 5 }，尔 - 8 , si5 - 42. 

Step 4. Consistency check. J15 is consistent and Dis 二 {2 ,3 ,5} . 

Step 5. No 5f5 exists. 

Step 6. Zi5 二 8 < 2:min, 2̂ min 二 ̂ 15 二 8, Jmin 二）15 二 { — 12，一10, —11, —6, 5}. 

Go to Step 11. 

Step 11. All the elements in J15 are not negative, backtrack. Jie 二 

{ - 1 2 , -10，—11, - 6 , —5}，ziG = 0, 516 = -134. Go to Step 1. 

Iteration 16. 

Step 1. Feasibility check. Sie 二 -134 < 0. 

Step 2. 
_ — ._ • —. _ - --- ；._ -- - . . - _. ““. ‘ ‘ 

^ min(0, aj) = - 3 2 — 50 = - 8 2 > 5ie = -134, 
jeN-Ji6 

goto Step 11. 

Step 11. All the elements in Jie are negative, terminate. 

Step 12. Zmin = 8, Jmin 二 {_12, —10, —11, —6,5}, the optimal solution is 

y2 = ys = Vb = 1 and yi 二 y^ 二 0. 

The solution process is summarized in Table 6.1: 
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Iteration 。 1 2 3 4 ^  

•“ J； 0 i^yiTs 12,1,3, 1 0 , - 1 1 12,1,3,10, 12,1,3,10,-11, 12, 1 , 3 , - 1 0 

- 1 1 , - 6 - 6’ - 5 

zt 0 4 4 — 4 4 4 

~ 1 ^ - 2 0 7 4 3 - 1 0 3 - 1 0 3 - 1 0 3 - 2 0 7 4 3 

_ ~ [ m i n ( 0 , a , . ) ^ ^ ^ " " - 4 1 5 4 2 - 2 3 7 4 - 2 5 8 - 8 2 - 2 0 9 0 2 

j&N-Jt  
^ 12 10,11 6 5 Infeasible 11,6,5 

B ^ 2, 4’ 5 1, 2, 3, 4, 5 Inconsistent Inconsistent Inconsistent 

‘ B 》 1,3 “ 2,4,5,6,7,8,9 

q+X^Cj 4 16 
_ _ i e B f c _ _ _  

st — ~̂̂  aj -20743 36859 
i&B^  
J ~ 0 12,1,3,10,11, 12,1,3, 10,11, 12,1,3,10,11, 12’1’3，10’11’ 12,1,3,10,11, 

min 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 

—.^in oo 16 16 16 16 16 ； 
Iteration 6 7 8 9 10 U  

7t 12,1,3,-10,11 ~~12，1,3,-10, 11 12,1,3,-10, -12 -12, -10 -12,-10,-11 

6, - 5 ^ - 1 1 

• zt 4 4 4 — 0 0 0 j 
“ 1 ^ -2188 -20743 -134 -134 —134 ！ 

^ m i n ( 0 , a , 0 - 8 2 - 2 5 8 - 2 3 4 7 - 4 1 5 4 2 - 2 0 9 0 2 _ 2 3 4 7 

jeN-Jt  
W t Infeasible Infeasible Infeasible ^ JJ； ®  

n Inconsistent Inconsistent 1,2,3,4 

JJt  
J k 2,3,4,9 

^ + S�• ‘ 
jgBfe ； 

V ^ —16 st - 2^ «i 
j&B^  
7 ~ 12,1,3,10,11,~~12,1,3,10,11,~~12,1,3,10,11, 12,1,3,10,11, 12’1,3，10，11’ 12’1’3’10’11’ 

2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 

‘ n 16 16 16 16 16 16 
Iteration 12 13 | 14 15 16  

T 7^ in _ n _ 1 2 - 1 0 - 1 1 - 1 2 - 1 0 - 1 1 , 6 - 1 2 , - 1 0 , - 1 1 , - 1 2 , - 1 0 , - 1 1 , 

Jt _1>̂，_丄0，一丄丄’ 丄>̂， lU’ 丄1， �— iU， 丄丄，" ’ ’ 

6,2,3,4,9 6,2,3,4,9,-5 2,3,4,9,-5,-8 ^ —6，—5 

；； 5 5 — 5 — 0 0 -

“ “ 1 ^ - 1 6 - 1 6 ~ - 1 3 4 — - 1 3 4 
““ ^ m i n ( 0 , a , ) - 2 2 6 - 5 0 0 - 2 5 8 - 8 2 

jeN-Jt  
^ 5 8 Infeasible 5 Infeasible  

D t Inconsistent Inconsistent 2, 3, 5  

• gj= — 0  
�+X) ci 

jSB^      

st - [ ^^ 
ieB^  
J ~ 12’ 1,3,10,11,““12,1,3,10,11, 12,1,3,10,11, - 1 2 , - 1 0 , - 1 1 , - 1 2 , - 1 0 , - 1 1 , 

2,4,5,6,7,8,9 2,4,5,6,7,8,9 2,4,5,6,7,8,9 - 6 , 5 - 6’ 5  

:min 16 16 16 8 8  

Table 6.1: The iterative solution process of the problem of example 5 
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6.1.2 Example 6 

Now we solve another polynomial zero-one programming problem using the p-

norm surrogate-constraint algorithm. The problem is given as follows: 

min z 二 3yi + 2ys + 3ys + 2yi^2 + 8y1y3 + _ s + ymVz (6-5) 
f 

—yi +y2 -ys +ym -ym +ymvs < i 

s-t. yi +3ys -4ym +^ViVs +^y2y3 -ymvs < - 2 , 

2yi +%2 -ys -̂ y1y2 +̂ ym +mys +̂ ymvs < -1 
� 

where all 饥 e {0 ,1 } for i G {1,2,3, 4,5}. Note that this problem has 3 variables 

and all 2̂  — 1 = 7 terms. 

By the proposed equivalent transformations developed in this thesis, (6.9) 

is converted into a master problem, 

min z = 3xi + 2^2 + X3 + 22;4 + 8x5 + 4xe + X7 , � 
(6.6) 

s.t. lOxi + 36x2 + 34:r3 — 33x4 + 480x5 + 115xe — 78x7 < - 2 , 

and its second constraints, 
f 

^1 = yi 
— -. - - -- — - — - --•----—---. …_— - - -_ .—__ “ . 

X2 = V2 

^3 二 VZ 

< 2:4 = ym . (6-7) 

0c5 二 ym 

^Q = y2y3 
‘ xj 二 ymvz 

V 
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Step 0. Set Zmin 二 oo, ô = 0, Jmm 二 Jo 二 访,如 二 —2-

Iteration 0. 

Step 1. Feasibility check. 5o = —2 < 0. 

Step 2. 

^ min(0, aj) = —111 < so = _2. 
jeN-Jo 

Step 3. Ho = {7} , Jo = {7 } , and ô 二 1， ô = 76. 

Step 4. Consistency check. Jo is consistent and Do = { l , 2 , 3 } . 

Step 5. Bl - { l , 2 ,3 ,4 ,5 ,6 } . 

Step 7. 

Zo + Y1 Cj 二 < z—n = oo. 
J€5j 

Step 8. 

So — Y , CLj = -466 < 0. 
jeBi 

Step 9. Ji 二 Jo U Bl 二 {7 , l ,2 ,3 ,4 ,5 , 6}, zi = 21, and si = —566. Go 

back to Step 2 

Iteration 1. 

Step 2. 

^ min(0, aj) = 0 > si = —566. 
jeN—Ji -—-- --

Step 11. All the elements in Ji are not negative, backtrack, h = {—7}, 

2̂ = 0, 52 二 —2. Go to Step 1. 

Iteration 2. 

Step 1. Feasibility check. S2 = —2 < 0. , 

Step 2. 

y^ min(0, CLj) = —33 < 52 = —2. 
jeN-J2 

Step 3. H2 = {4} , J2 = { - 7 , 4}，and z�二 2, 52 二 31. 
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Step 4. Consistency check. J2 is consistent and D2 = {1,2} . 

Step 5. Bl = { l , 2 } . 

Step 7. 

2:2 + X) Cj 二< Zmin 二 00. 

jeBl 
Step 8. 

52 一 ̂  CLj = —15 < 0. 
jeBl 

Step 9. Js = J2 U Bl = { - 7 , 4 , 1 , 2 } , 2:3 二 7, and s3 二 —15. Go back to 

Step 2 

Iteration 3. 

Step 1. Feasibility check. 53 = —15 < 0. 

Step 2. 

Y2 min(0, Qj) 二 0〉Ss 二 - 1 5 . 
jeN-Js 

Step 11. All the elements in J3 are not negative, backtrack. J4 = 

{ - 7 , - 4 } , 2:4 = 0, 54 = - 2 . Go to Step 1. 

Iteration 4. 

Step 1. Feasibility check, s4 二 —2 < 0. 

Step 2. 
_ ... ’_•— — — -• • • . ‘ ‘ _. —丽_ 

y^ min(0, Gj) = 0 > 54 = —2. 
jeN—Ji 

Step 11. All the elements in J4 are negative, terminate. Since Zmin = 00, 

the problem has no feasible solution. 

The solution process of Example 6 is summarized in Table 6.2. 
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Iteration 0 1 2 3 4 

Jt 0 7,1,2,3,4,5,6 - 7 - 7 ,4 ,1 ,2 - 7 , - 4 

zt 0 21 0 7 0 

ŝ  - 2 -566 - 2 - 1 5 - 2 

X;min(0, aj) -111 0 - 3 3 0 0 
jeN-Jt  

Ht 7 Infeasible 4 Infeasible Infeasible 

Dt 1,2,3 1,2 

B � 1,2,3,4,5,6 1,2 

^ t + E ^ . 21 5  
2^ ： 

st — Y^ aj -466 - 1 5 
jeB^  

j - • 

^ " ^ 0 ^ 『— 0 0 

2W oo OQ � QQ ^ 

Table 6.2: The iterative solution process of the problem of example 6 
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6.2 Solution process by the Balasian-based al-

gorithm 

In this section, the Balasian-based algorithm will be used to solve Example 5 for 

comparing with the p-norm surrogate-constraint algorithm. We first transform 

(6.1) into a master problem, 

min z = 3a;i + 2a;2 + ^ + 2:c4 + 8 ^ , (6.8) 
Z 

- X i +X2 -X3 +^4 -X5 < 1 

S’t, - 7 x i +3^3 -4x4 -3^5 < - 2 , 

Sxi -QX2 -Xs -3X4 -3X5 < —1 
V 

and its secondary constraints, 
f 

^\ = y4y5 

002 二 yiV2 

( X z = y2"4 , (6-9) 

, ^4 二 ymy3 
— — -• - •-— - ——— 

x5 二 y2y3y5 
K 

where Xi for i G {1, 2, 3，4,5} and yj for j e {1, 2, 3, 4，5} are binary. 

Step 0. Set Zmin = co, Jo = 0, ô 二 •, 5° 二（1, - 2 , - l f . 

Iteration 1. , 

Step 1. Applying the additive algorithm to (6.8), the first feasible partial 

solution is given by Ji = {5 } with Zi 二 8 and 5^ 二（2,1, 2)了. 

Iteration 1.1 
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Step 1. 5? < 0 for i = 2,3. 

Step 2. C^ = Do 二 Eo = 0, No = N — {C' U Do U Eo) 二 N 二 

{1,2,3,4,5} . 

Step 3. We check the following relations for i = 2,3 : 

^ a2j 二 a2i + a2A + ^ 5 = —7 — 4 - 3 = - 1 4 < s^ 二 -2， 

jeNo 
^ asj 二 而2 + 石33 + ^4 + ^5 = - 6 - 1 - 3 - 3 二 - 1 3 < ŝ  = - 1 . 

jeNo 
Since all relations hold as strict inequalities, compute the values Vj for 

j ^ No： 

vl = E (̂ ? -。“) 二 -9 , 
ieM^-

巧0 = E (^° - 贴 ) = - 2 ， 

ieM^-

v| = E (̂？ - � i 3 ) 二 - 5 , 
ieM^-

vl = E i'i - î̂ ) = 0, 
ieM^~ 

v| = E ( ^ ? -。仍 )二 0. 
ieM5O-

We have v2 二 max{w?} = 0, so cancel it and pass to ^ jeNo ^ 3 J 

Step 8.- Ji — Jo LL{5}  

5} = 5? - ai5 二 2, 

sl = sl — a25 = 1， 

53 = S3 - a35 = 2. ‘ 

s| > 0 for i == 1, 2, 3, we then get a feasible partial solution {5} . • 

Step 2. Ji is consistent. The corresponding solution in yk^ is y2 = ys 二 

V5 = 1 and yi 二 y4 = 0. 
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Step 3. From the solution in Step 2, all the free terms are equal to zero. 

Hence Bi — 0 �T h u s Zmin = 8 and 

J* = {5} , 

V2 = vl = y| = 1. y*i = yl =^ o^ 

S* = (2 , l，2f . 

step 9�J2 = {—5}，^ = 0, 52 = (1, - 2 ， - l f . 

Iteration 2. 

Step 1. Applying the additive algorithm to (6.8), the next feasible partial 

solution is given by J3 = { - 5 , 4 } with z3 = 2 and S^ 二 (0，2,2)^. 

Iteration 2.1 

Step 1. 5° < 0 for i = 2,3. 

Step 2. C �二 Do = Eo = 0, No = N - (C^UL>oUEo) = N 二 {1, 2，3,4}. 

Step 3. We check the following relations for i = 2，3 : 

Y^ a2j = a21 + a2A = -7 - 4 = —11 < s^ — - 2 , 
jeNo 

Y^ a^j 二 在32 + ^33 + 吞34 二 _ 6 — 1 — 3 = —10 < 53 二 _1. 
jeNo 

Since all relations hold as strictinequalities，compute—the —values 4;tfor  

J ^ No： 

V? = E (̂？ - ^^i) = - 6 , 
ieM^-

v'2 = E “0 - a,2) = - 2 , 
ieM°- ‘ 

”3�二 E (^i -贴)=-5， 
ieM3O-

• v'4 = E (̂ ？—彻)二 -1. 
ieM^-
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We have vl = m ^ { v ^ } = —1, so cancel it and pass to 

Step 8. Ji = Jo U {4} . 

s\ = Sl — ai4 二 0, 

52 = 52 — a24 二 2, 

5^ = 5g — a34 = 2. 

s} > 0 for i — 1,2,3, we then get a feasible partial solution { - 5 , 4 } . • 

Step 2. J3 is consistent. The corresponding solution in yk̂  is yi = y2 = 

ys 二 1 and y4 = m = 0. 

Step 3. From the solution in Step 2, X2 二 yim 二 1- Hence, B3 = {2} . 

Step 4. Z3 + C2 = 2 + 2 < Zmin 二 8. 

Step 5. 

sl - a12 = 0 - 1 = —1 < 0, 

sl — a22 二 2 - 0 = 2 > 0, 

sl — a32 = 2 + 6 = 8 > 0. 

Hence augmentation of J3 by {2 } can not result in a feasible partial solution to 

(6.8). ——: 

Step 6. 

xi : 2:3 + ci = 2 + 3 < 8 ( = 2 w ) ， 

X2 ： 2:3 + C2 = 2 + 2 < 8, ， 

X3 : 2:3 + c3 = 2 + 1 < 8. 

Hence i ^ = {l,2，3} = 0. 

Step 7. 
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x i : a 3 1 = 8 > S 3 = 2 , 

X2 ： ai2 = 1 > sl 二 0， 

Xs ： a23 二 3 > 2̂ 二 2. 

Hence Qs 二 0. 

Step 8. 

Xi : wf = 0 + 0 + (2 - 8) = —6, 

X2 : w| = (0 — 1) + 0 + 0 二 回， 

X 3 ： w| = 0 + (2 - 3) + 0 二_1‘ 

Thus r = 2 and J4 二 { - 5 , 4 , 2} with ^ = 4 and S^ = (—1,2,8)� 

Iteration 3. 

Step 1. Application of the additive algorithm yields a new feasible partial 

solution, /5 二 { - 5 , 4, 2,1} with 2¾ 二 7 and S^ = (0, 9, 0广 

Iteration 3.1 

Step 1. s° < 0 for i = 1. 

Step 2. No 二 N — (C^ U Do U 五。）=N = {1,3}. 

Step 3. We check the following relations for i = 1 : 

^ a i j = a i i + a i 3 = — 1 一 1 二 一 2 < 5 ¾ 二 一 1 . 

jeNo 

Since the relation holds as a strict inequality, compute the values Vj 

for j e No： 

. 4 = : E ( s ? — ‘ = o, 
i e M ° -
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巧。=E ( ^ ? -贴 ) = - !• 
ieM^-

We have Ŝ = max{^?} = 0, so cancel it and pass to 
^ jeNo ^ ] 

Step 8. Ji = Jo U {1} . 

s{ 二 Si — au = 0, 

4 二 sg — ¢̂ 21 二 9, 

4 二 古^ — ^ 3 1 二 0 . 

s| > 0 for i = 1, 2, 3, we then get a feasible solution {-5，4, 2,1}. • 

Step 2. J5 is inconsistent. 

Step 9. Je = { - 5 , 4 , 2 , - 1 } with 2:5 二 4 and 5® 二（-1,2,8)了。 

Iteration 4. 

Step 1�Application of the additive algorithm can not find any partial 

feasible solution for Je. 

Iteration 4.1 

Step 1. sl< 0 for i 二 1. 

Step 2. No = N - {C^ U Do U 丑。）二 N = {3}. 

Step 3. We check the following relation for i = 1 : 
— - - - . - - - '• • ... “ - ‘ • •“‘ 

Y1 ^ 二 ^11 二 —1 二 "̂ ? 二 _ i . 
jeNo 

Step 4. We cancel it and get a partial solution Ji 二 {3} . 

s{ = s ? - a i 3 = 0 , , 

4 — ̂ 2 - «23 二 —1， 

sl 二 sl - a 3 3 = 9. 
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Iteration 4.2 

Step 1. sj < 0 for i = 2. 

Step 2. Ni 二 0. 

Step 5. No feasible partial solution. Backtrack and get J2 二 { - 3 } with 

^ = ( - l , 2 , 8 ) T 

Iteration 4.3 

Step 1. s f < 0 for i - 1. 

Step 2. N2 = 0. 

Step 5. No feasible partial solution. The process terminates. 口 

Step 9. Backtrack and get a partial solution Jj 二 { - 5 , 4 , - 2 } with zj 二 2 

and 5^ = (0,2, 2 f . 

Iteration 5. 

Step 1. Jj is a feasible partial solution. 

Step 2. Jj is inconsistent. 

Step 9. h = { - 5 , —4} with 8̂ = 0 and S^ = (1，-2, - l f . 

Iteration 6. 

Step 1. Application of the additive algorithm can not find any feasible 

partial solution for Jg. Since all the elements in Js are negative, the procedure 

terminates. 

Iteration 6.1 

Step 1. 5? < 0 for i = 2,3. 

Step 2. No = N — (C° U L>�U Eo) 二 N = {1，2,3}. 

Step 3. We check the following relations for i = 2,3 : 

Y ^ a 2 j = 而 1 二 - 7 < s l 二 - 2 , 

jeNo 
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Y ^ a s j = a s 2 + ^ 3 = - 6 — 1 = _ 7 < 5 ° = — 1 . 

jeiVo 
Since the relation hold as strict inequalities, compute the values 

v\ for j e No： 

y ' i = E ( ^ i - ^ a ) - - 9 , 

ieM^-

v'2 = E (̂ i -。口) 二 回， 
^ e M j -

”卜 E ( “ i 3 H - 5 . \ 
i G M ° -

We have Vn = max{t'?} = - 2 . So, cancel it and pass to 
^ jeNo L 3 J 

Step 8. Ji = Jo U {2} = {2}. 

s{ = s5 — a12 — 0, 

^ 2 = ^ 2 — a 2 2 = — 2 , 

4 二 ^3 - <̂ 32 = 5. 

Iteration 6.2 

Step 1. s] < 0 for i = 2. 

Step 2. Ni = { l , 3 } . 

Step 3. We check the following relation for i = 2 : 
•+ + -- - .. _墨+ -

- .. -_. _—+• - + -- --— -.-.--— 

J2 ^ = ^21 二 —7 < 4 二 - 2 . 
jeNi 

Since the relation holds as a strict inequality, compute the values vj 

f o r j eNi： ， 

^1 = J2 “1 - an)=回， 
ieMiO-

. 3̂ = E ( 4 - ^is) = - 5 . 
ieM3O-
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We have v] = max{^;H = - 3 , so cancel it and pass to 
丄 jeNi ^ ] J 

Step 8. J2 = JiU{l} = {2,l}, 

5? = s\ - au 二 1, 

sl = sl — tt2i 二 5, 

sl = sl — a31 = —3. 

Iteration 6.3 

Stepl. s f < 0 f o r z - 3 . 

Step 2. N2 = {3} . 

Step 3. We check the following relation for i 二 3 : 

X) asj = a33 = - 1 > 53 二 - 3 . 

jeN2 

Step 5. No feasible partial solution. Backtrack and get a partial solution 

J3 = {2, - 1 } with 5^ = (0, - 2 , 5)T 

Iteration 6.4 

Step 1. sl < 0 for i : 2. 

Step 2. Ns 二 0. 

Step 5. No feasible solution. Backtrack and get a partial solution J4 二 

{-2} with S^ = (1, —2，—l)T. 

Iteration 6.5 

Step 1. s| < 0 for i = 2,3. 

Sf;ep2.iV4 = { l , 3 } . ^ 

Step 3. We check the following relations for i = 2,3 : 

. X ) % = a21 = - 7 < 52 = -2， 
jeN4 
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J2 ^3j = 3̂3 = - 1 = 3̂ = - 1 . 
j e N 4 

Step 4. We get a new partial solution, J5 = { - 2 , 3 } , with S^ 二 

( 2 , - 5 , 0 r . 

Iteration 6.6 

Step 1. s f < 0 f o r i = 2 . 

Step2.N5 = {l}. 

Step 3. We check the following relation for i = 2 : 

J2 % 二 2̂1 = - 7 < 2̂ = - 5 . 
jeNs 

Since the relation holds as a strict inequality, compute the values v^ 

for j e i V 5 : 

vl = E ( � -a n ) = - 8 . 
ieM^-

So, cancel it and pass to 

Step 8. Je = J5 U {1 } = { - 2 , 3,1}. 
sl = 5i — au = 3, 

s\ = 52 — a21 二 2, 
„ _ —一 - - - - - ― ― … … — - … … — . … — - — - - - —-

5 3 二 S 3 — tt3i = — 8 . 

Iteration 6.7 

Step 1. s| < 0 for i = 3, 

Step 2. Ne = 0. ‘ 

Step 3. No feasible partial solution. Backtrack and get J7 = { - 2 , 3， - 1 } 

with S7 = (2，—5,0)T 

Iteration 6.8 
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Step 1. sJ < 0 for i 二 2. 

Step 2, Nj = 0. 

Step 3. No feasible partial solution. Backtrack and get Jg = {—2, —3} 

with 5^ = ( l , - 2 , - l f . 

Iteration 6.9 

Step 1. s| < 0 for i 二 2,3. 

Step Z Ns = {1}. 

Step 3. We check the following relations for i 二 2,3 : 

[ a 2 j 二 石21 = —7 < 52 = -2, 
jeNa 

E %• 二 0 > ŝ  二 - 1 . 
jeNs 

Step 5. No feasible partial solution. The process terminates. 口 

Zmin = 8, J* = {5}, the optimal solution is y； 二 "• = yJ = 1 and 

y! = y*4 = 0. 

6-3 Comparison between the p-norm surrogate 

constraint algorithm and the Balasian-based 

algorithm 

We have solved the polynomial zero-one programming problem (6.1) using both 

the p-norm surrogate-constraint algorithm and the additive algorithm. We have 

also solved the problem (6.9) using the p-norm surrogate-constraint algorithm. 

. Now, we will make some comparisons between these two algorithms. 
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The new algorithm solves the problem (6.1) within 16 iterations and the 

Balasian-based algorithm solves the problem (6.1) within only 6 iterations. It 

seems that the latter algorithm is much better than the former in the view of the 

number of iterations. However, each iteration in the Balasian-based algorithm 

except iteration 5 needs to apply the additive algorithm [1] to search for a feasible 

solution to the master problem. There are 17 iterations to be counted in for this 

purpose. Essentially, the Balasian-based algorithm needs total 21 iterations to 

solve the problem (6.1). 

In the Balasian-based algorithm, the additive algorithm [1] plays the role of 

searching all the feasible solutions to the linear master problem. Its computational 

amount linearly depends not only on the number of the decision terms but also 

on the number of the constraints. The p-norm surrogate-constraint algorithm 

can easily finish this job with the help of checking all the coefficients of the 

surrogate constraint, so its computational amount only depends on the number of 

the decision terms. Especially, when a polynomial zero-one programming problem 

is in an all-combination form, i.e., it has all the 2打'—1 decision terms, the number 

of the decision terms will remain unchanged after the transformation in the p-

norm surrogate constraint method. Example 6 is an all-combination problem. 

The number of decision terms is still 2̂  - 1 = 7 after the transformation and 

only 4 iterations are performed in the solution process. Obviously, the searching 

strategy of the new algorithm is more efficient than the additive algorithm. Thus, 

we can conclude that the p-norm surrogate-constraint algorithm is more efficient. 

The new version of the Geoffrion's implicit enumeration technique also ac-

celerates the new algorithm. It may skip from a partial solution to the next one in 

a big backtrack step according to some rules. In Iteration 1 ofExample 5, we back-
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track Ji = {12,1,3,10,11,2,4,5,6,7,8,9} to J2 = {12 ,1 ,3 ,10 , -11} directly, 

but the traditional GeofFrion's implicit enumeration technique only backtracks 

Ji 二 {12,1,3，10,11,2,4,5,6，7,8，9} to J2 = {12,l,3,10，ll ,2,4,5,6,7，8,-9}. 

In Iteration 1 of Example 6, we prefer to backtrack Ji 二 { 7 , l , 2 ,3 ,4 ,5 ,6 } to 

J2 = { - 7 } rather than to J2 二 {7,1,2，3,4,5, - 6 } . 



Chapter 7 

Application to the Set Covering 

Problem 

7.1 The set covering problem 

Many real-word problems, such as the crew scheduling problem in railway and 

mass-transit transportation companies [3][8], could be modeled as the set covering  

problem (SCP). The general form of SCP may be expressed as follows: 

n 
minz — Yl CjXj, Cj > 0, 

j=^ (7.1) 
n 

s.t. YlciijXj < 1, i = l , 2 , . . . ,m , ^ 
i - i 

where the decision variables Xj e {0 ,1} for i 二 1,2，...，n. All coefficients a^ are 

either 0 or 1. The right-hand-side of each constraint is always equal to 1. The 

coefficient matrix is denoted by A 二 [c%]^xn in which m represents the number 

74 
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of the constraints in the problem (7.1) and n represents the number of n devision 

variables in the problem (7.1). If â - 二 1, we say that the jth column covers 

the ith row. Let Cj represent the cost of column j. SCP can be interpreted as a 

problem to search for a minimum-cost subset S C {1 ,2 , . . •，n} of columns such 

that each row is covered by at least one column. The coefficient matrix A often 

has a large density of 0. In other words, the number of entries of 1 is much smaller 

than m x n in general. 

SCP is NP-hard in the strong sense [14], and is difficult to solve from the 

point of view of the theoretical approximation [24]. However, due to the structure 

of certain real-world instances of the problem, many algorithms including both 

heuristic [4][2][23][9][12][7] and exact approaches [2][26][5][6] have been derived 

to perform efficiently on these instances. The current state of the art on the 

problem is that instances with a few hundred rows and a few thousand columns 

can be solved exactly, and instances with a few thousand rows and a few millions 

columns can be solved within about 1% of the optimum value with a reasonable 

computing time. 

7.2 Solving the set covering problem by using 

the new algorithm 

As stated before, SCP is a linear zero-one problem. We first reduce the mul-

tiple constraints into a single constraint using the p-n6rm surrogate constraint 

method, then model it as the standard form, i.e., the master problem with a sin-

gle constraint and its secondary constraints. Finally, we solve it using the p-norm 
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surrogate-constraint algorithm. 

A series of test problems are given to demonstrate the solution procedure 

using the new algorithm. All the test problems have a same objective function, 

min z 二 lOyi + 2y2 + 3ys + %4 + ^V5 + %6 + 7yj, (7.2) 

where decision variables yi G {0 ,1 } for i 二 1’ 2,...，7, but they have different 

constraints. We compose 5 constraint matrices for the same objective function 
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(7.2) by choosing different row from a matrix A which is defined, 

- 1 0 0 - 1 0 0 0 

0 —1 0 0 - 1 0 0 

0 0 —1 0 0 - 1 0 

0 0 0 - 1 0 0 - 1 

—1 0 0 0 —1 0 0 

0 - 1 0 0 0 - 1 0 

0 0 - 1 0 0 0 - 1 

- 1 0 0 0 - 1 0 0 

0 - 1 0 0 0 - 1 0 , (7.3) 

0 0 - 1 0 0 0 - 1 

- 1 0 0 —1 0 0 0 

0 —1 0 0 - 1 0 ‘ 0 

0 0 - 1 0 0 —1 0 

0 0 J—:1_—0 0 - 1 

- 1 - 1 0 0 0 0 0 

0 - 1 - 1 0 0 0 0 

0 0 - 1 —1 0 0 0 
- 七 

The first problem picks up 3 rows on the top of the matrix A as its coefficient 

matrix with m = 3. The second one picks up 5 rows on the top as its coefficient 

. matrix. The third and fourth choose the first 10 and 15 rows separately as 
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Problem Constraints(m) p F. S. Iteration 

1 3 3 5 26 

2 5 4 10 32 

3 10 6 20 69 

4 15 7 8 69 

5 17 7 5 71 

Table 7.1: The set covering problem 

their coefficient matrices. The whole matrix A is the coefficient matrix of the 

last problem with m 二 17. Computation results of these 5 test problems with 

different constraint matrix are listed in Table 7.1 where the column of constraints 

means the number of constraints a problem has, the column o fp means the value 

of p taken in the p-norm surrogate constraint method [22], the column of F. S. 

means the number of feasible solutions checked in the linear master problem, 

and the column of iteration means the number of iterations to reach the optimal 

solution. 

From Table 7.1，it is not difficult to get some crude observations. The _ .-- -—- .-- — — — -. - ..“ . 

value of p increases slower than the number of constraints, m becomes from 3 to 

17, but p changes from 3 to 7 on a small scale. With the increasing of the value 

of m, the amount of checking feasible solution increases first and then decreases. 

When m is between 5 and 10, the amount of feasible solution checked is up to 

peak. 

The number of iterations is an important index to measure the efficiency 

of an algorithm. We can see a pattern in the relationship between the iteration 
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丨�Iteration 

70 - ^ , ^ ^ ^ ^ ^ ^ ^ o 

/ 
60 - / 

50 - / 

4 � -

30 - / y 
20 - ^ ^ 

1 0 -

1 1 1 ‘ ^m 
5 10 15 20 

Figure 7.1: The relationship between iteration and m 

number and the size of the problem by Figure 7.1. 

From Figure 7.1, it seems that the iteration amount increases logarithmi-

cally when the size ofthe problem grows linearly. Further research is still required 

to check this observation. 

_ _ __.. . . .. • _.. .. . • _ •• ——- - -... .:-:.. .-- - •"• • _. -. 



Chapter 8 

Conclusions and Future Work 

A new algorithm for polynomial zero-one programming has been investigated in 

this thesis. The p-norm surrogate-constraint algorithm is an implicit enumera-

tion method based on Taha's previous work [31][32] and the p-norm surrogate 

constraint method recently proposed in [22]. Up-to-date, implicit enumeration 

methods are one of the most emcient ways to solve the polynomial zero-one 

programming problems due to its flexibility and associability. By powering the 

implicit enumeration method with the p-norm surrogate constraint method, sig- 

nificant improvements have been made to increase the efficiency of the new al-

gorithm. The modified version of the backtrack scheme proposed in this thesis 

enhances further the efficiency of the new algorithm via reducing the number in 

the candidate list for optimality. 

The efficiency of this new algorithm is achieved primarily based on the 

derived single-constraint formulation. This feature will be most evident if the 

original problem formulation involves all the T ' - 1 terms. In other situations, 

• there exists a trade-off between reducing the number of constraints and increasing 

80 
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the number of product terms. Explicit evaluation of this trade-off will be carried 

out in the near future to assess the degree of success of this new algorithm. From 

our computational experience, the saving in the computation for the standard 

formulation (5.2) with secondary constraints (1.2) is tremendous. However, great 

computation efforts in expansion and simplification are required to performing the 

p-norm surrogate constraint method to convert an original form to the standard 

form, especially when p is large. 

The new algorithm can be used to solve not only the polynomial zero-one 

programming problem, but also the linear zero-one programming problem. An 

application to the set covering problem is demonstrated in this thesis. A rough 

observation indicates that the computational amount seems to increase logarith-

mically when the size of the problem grows linearly. One feature of the p-norm 

surrogate-constraint in the set covering problem is that the objective function of 

the set covering problem remains linear in the procedure of transformation and 

it often has much less terms than the terms in the surrogate constraint. This 

property seems to help in the implementation of the new algorithm. 

In summary, the new algorithm seems promising. Of course, more numer-

ical tests are needed to check its efficiency in solving the polynomial zero-one  

prograrnmmg—ff^merSs andmore—WoHris—needed to evaluate its average perfor-

mance against the existing ones in the literature. 
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