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摘要 

預測排隊複用(?0肌，Predictive Queuing Multiple A c c e s s )是一個媒體可用協 

議，用來運輸聲音，資料和視像.主要是在室內的無線信道上運作.我們修改異步 

傳輸模式(八預)的5個位元組幀頭，使其可以做到多速率數據包協議，而且有自動 

重發請求的能力.我們用乂口達到彈性帶寬分配的效果.在八™的幀頭裡面.有 

一個預測數値，基站用這個數値去安排各移動站的輸送資料時間.在衰滅的信道’ 

這個協議有自動重發的能力.我們用慢頻跳動的方法去應付頻率選擇性的衰滅.我 

們分析及模擬了 PQMA的排隊性和錯誤表現而顯示出PQMA可以用在個人通訊系統 

上的多媒體通訊. 

快速碼(Turbo�0016)在一個高斯白噪聲信道上有很理想的表現,所以_會利用快 

速碼去滅低傳輸上的錯誤.爲了減少在慢平瑞利衰減(310�flat Rayleigh fading 

channel)的環境下傳輸的錯誤，本文將會提出一種利用快速碼特性的新技術去估計 

所傳輸的信道的特性並將估計所得出的資料去增加解碼時的準確性.透過電腦在不 

同環境下的模擬，我們發覺新技術可以大大提高解碼時的準確性，甚至可以接近理 

論上所可以取得的極限. 
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Abbreviation 

ABR: Available Bit Rate 

ARQ: Automatic repeat request 

ATM: Asynchronous Transfer Mode 

AWGN: Addictive White Gaussian Noise 

BER: Bit Error Rate 

CBR: Constant Bit Rate 

CLP: Cell Lost Priority 

FER: Frame Error Rate 

FIR: Finite Impulse Response 

HEC: Header Error Check 

GSM: Global System for Mobile Communications 

LLR: Logarithm of Likelihood Ratio 

nrt_VBR: non-real-time Variable Bit Rate 

PCS: Personal Communication Systems 

PQMA: Predictive Queuing Multiple Access 
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PTI: Payload Type Identifier 

QoS: Quality of Service 

RCPTC: Rate Compatible Punctured Turbo Code 

rt_VBR: real-time Variable Bit Rate 

SNR: Signal to Noise Ratio 

VCI: Virtual Circuit Identifier 

VPI: Virtual Path Identifier 

UBR: Unspecified Bit Rate 
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ABSTRACT 

PQMA (Predictive Queuing Multiple Access) is a media access protocol for transporting 

speech, data, and video via indoor wireless channels. The 5-byte A T M header is modified 

to accommodate a multi-rate packet access protocol with ARQ capability. Similar to 

ATM, flexible bandwidth assignment is achieved by the use ofVCI . The ATM header 

contains a prediction field for the base station to schedule subsequent transmission from 

the mobile. Packet queues are maintained at both the base station and the mobile station. 

The protocol also has a built in capability for retransmission required for fading channels. 

Slow Frequency Hopping is also employed for combating frequency selective fading. The 

queueing and error performance ofPQMA is analyzed and simulated, which 

demonstrates that PQMA can support multimedia communication for PCS. 

Turbo coding has shown impressive performance in an AWGN channel. PQMA adopts 

turbo codes for error control. We propose an Iterative Channel Estimation technique for 

turbo codes over slow frequency hopped multiple access in a slow flat Rayleigh fading 

environment. Iterative Channel Estimation uses the intermediated decoder output of each 

5 



Multiple Channel Access and Coding Method for Wireless A TM 

turbo decoding iteration to estimate the channel state information. Through simulation, 

Iterative Channel Estimation has demonstrated a performance very close to that of using 

perfect channel state information. We have simulated the performance of applying turbo 

codes with a slow frequency hopping scheme over slow flat Rayleigh fading channels. 

Our results show a performance close to the theoretical limit of a Rayleigh channel. 
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Chapter 1 

Introduction 

1.1 Wireless ATM for multimedia 

application 

Modem wireless communication is evolving to an era of multimedia. We can see more 

wireless multimedia applications such as mobile telephony, wireless internet, 

teleconferencing and portable video on demand. Existing wireless communication 

systems such as GSM (Global System for Mobile Communications) and PCS (Personal 

Communication Systems) are not capable of supporting the variety of multimedia 

applications due to the diverse bandwidth requirements for the multimedia services. 
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Fig. 1.1, Wireless / Wired ATM network 

In a wired system, B-ISDN (Broadband Integrated Service Digital Network) makes the 

distinction between synchronous services (voice and video) and asynchronous services 

(data). An ATM system, however, is even more sophisticated in supporting the 

multimedia applications. ATM-based systems have categorized multimedia applications 

in five categories: (a) constant bit rate (CBR), (b) real-time variable bit rate (rt_VBR), (c) 

non-real-time variable bit rate (nrt_VBR), (d) unspecified bit rate (UBR) and (e) 
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available bit rate (ABR) services [Toh97]. ATM systems provide flexible bandwidth on 

demand and allow quality of service (QoS) control. With fast Virtual Circuit Identifier 

(VCI) switching for broadband network, an ATM-based system is ideal for multimedia. 

The evolution of wireless multimedia applications and A T M systems introduces an 

interesting research area — Wireless ATM. Wireless ATM combines the advantage of 

mobility and the QoS control for wired ATM systems. With wireless ATM, we are able 

to access multimedia applications anywhere and anytime. However, due to the difference 

between wired and wireless media, problems such as the design of media access protocol 

and error control scheme remain to be solved. 

1.2 Challenges in Wireless ATM 

Fundamental differences between wired and wireless media present great challenges in 

designing a wireless ATM system. Such differences have also raised doubts in the 

feasibility ofbuilding a wireless ATM system. 
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ATM was designed for a wired media with very low bit error rates (BER) of about 10'̂ .̂ 

A wireless medium, however, is very noisy and time varying. An A T M system does not 

provide a low level error correction scheme. Error correction is done at the transport 

protocol level. In wireless ATM, it is a great challenge for real-time services that require 

high bandwidth and fidelity. Noisy channels also cause much difficulty in the control of 

the system. Wireless ATM provides flexible on-demand bandwidth allocation, making 

wireless ATM distinguishable from the existing wireless systems such as GSM and PCS 

which use primarily circuit switching. Besides the wireless medium being corrupted by 

noise, flexible bandwidth allocation is not possible unless the mobile stations (MS) can 

effectively access the channel. Media access protocol is therefore a key topic in the 

design of a wireless ATM system. 

In a wired ATM system, a multiplexer serves the media access function. In a wireless 

ATM system, mobile users are distributed geographically, all sharing the same noisy 

wireless media. The challenge for media access protocol is how to have distributed 

contention and access of ATM slots, and dynamically assigning bandwidth to the mobile 

users. 

12 
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Also, wireless media is limited in bandwidth. Wired A T M often uses optics as the 

transmission medium, which has a bandwidth in the order of gigabits per second. The 

wireless media, however, has a bandwidth limited to about 34 Mb/s [KM97]. There is a 

basic question whether such limited bandwidth is capable of supporting multimedia 

services. A typical video stream has a bandwidth ranging from 1 to 1.5 Mb/s. The 

wireless media may easily be overloaded. 

Moreover, as ATM was designed for riched bandwidth, the A T M cell header is big as 

compare to its payload. Such a big header is for the trade off for simplicity in switching. 

An ATM cell header uses up about 10 percent of the whole cell payload, which is too 

expensive in a wireless communication system. As shown in Fig. 1.2, many researchers 

have proposed wireless systems with media access protocol piggy backed to the existing 

ATM cell. 

Wireless Wired ATM 
header header Cell Payload 

Fig. 1.2, Wireless ATM cell with piggy backed wireless header. 
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As the existing ATM cell header is already considered too long for wireless ATM, any 

additional overhead is notjustified for wireless ATM. As shown in Fig. 1.3, we propose a 

wireless ATM protocol called Predictive Queuing Multiple Access (PQMA) [FYP96], 

with a modified ATM cell header. PQMA is capable of multiple access control in 

handling the variety of services as proposed for ATM systems. A base station (BS) takes 

up the role of translating the cell header between wired and wireless media so that PQMA 

can be seamlessly integrated with wired ATM system. 

Modified ^ „ ^ , , 
ATMheader Cell Payload 

Fig. 1.3, Wireless ATM cell with modified ATM cell header. 

1.3 Outline of thesis 

In chapter 2, we shall describe our proposed wireless ATM multiple access protocol 

PQMA. It has been noted that the turbo code proposed by C. BERROU, A. GLAVIEUX 

and P. Thitimajshima [BGT93] has strong error correction capability in low Signal to 

Noise (SNR) environment. We have integrated PQMA with Rate Compatible Punctured 
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Turbo Code (RCPTC) [JPDB97]. For different categories of services, we adopt turbo 

code with different puncturing scheme. With different levels of puncturing, we can 

adaptively change the code rate according to the channel condition. 

Chapter 3 focuses on the fundamental of wireless communication media and discusses 

the theoretical limits on the channel capacities of two common channel model, namely 

the Gaussian channel and the Rayleigh fading channel. Such theoretical limits are 

fundamentals to the evaluation of our proposed coding schemes. We shall also see under 

what condition can such limits be possibly achieved. 

The Rayleigh fading channel is commonly used to model a wireless communication 

channel. Though turbo coding has shown impressive performance for Gaussian channel, 

it has been shown that turbo coding fails for slow flat Rayleigh fading channel. In chapter 

4, we propose to apply turbo coding over a frequency hopped channel with channel 

interleaving so as to combat the Rayleigh fading. We propose a new channel estimation 

technique called Iterative Channel Estimation to estimate the channel state information. 

Through simulation, we have shown Iterative Channel Estimation can converge to a very 

accurate estimate for the channel state information. 
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In chapter 5, we draw our attention to turbo coding with small frame size. Speech 

communication systems are generally characterized with small frame size. It is been 

noted that turbo coding degrades when the information block size decreases. We propose 

a dummy bit inserted turbo code aiming to improve the performance of turbo code over 

small frames. Inserting dummy bits in the information stream can reduce the multiplicity 

of the low-weigh codewords. However, since dummy bits introduce extra parity bits, it is 

shown that such extra redundancy is notjustified as the performance gain is not 

significant. 
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Chapter 2 

Predictive Queuing Multiple Access 

2.1 Introduction 

New applications are developing for wireless communications based on portable 

computers. Such terminals can provide functions such as mobile telephony, electronic 

mail, and file transfer. Higher bandwidth applications such as Web browsing, multimedia 

presentation, video on demand, and video conferencing are becoming popular on 

notebook computers. 

There is a need to use the wireless channel for broadband access to these computers. Such 

effort is broadly termed wireless multimedia. 

17 
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For wireline networks ATM was devised to allow flexible and on-demand allocation of 

transmission capacity for broadband networks. Also, ATM allows fast switching using 

Virtual Circuit Identifiers (VCI) and parallel switching fabrics. More importantly, Quality 

of Service (QoS) can be carefully provisioned for different media types with vastly 

different burstiness, bit-rate, delay and error requirements. The ATM cell header is 

shown in fig 2.1. 

For wireless networks supporting high bandwidth multimedia applications, it is desirable 

to maintain compatibility with the wireline ATM network, using similar notions of fixed 

cell size, VCI routing, and QoS provisioning. The advantages of ATM apply similarly for 

the wireless environment. However, the ATM header and protocol functions must be 

modified to reflect major differences between the wireless and 

wireline networks. 

18 
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VPI VPI-VirtualPathID 

VPI VCI VCI - Virtual Channel ID 

VCI PLT - Playload Type 

V a K j CLP 

HEC 

Fig. 2.1Wireline ATM Cell Header 

The first difference is that mobiles require the use of scheduling or contention algorithms 

in order to access the wireless channel. Such algorithms allow bursty and multi-rate 

establishment of multimedia virtual circuits. 

The second difference is that a severely impaired wireless transmission environment 

requires the extensive use ofboth forward error correction coding and ARQ. Sporadic 

errors as well as changing channel condition may cause fluctuation in the required 

channel bit rate due to code adaptation and retransmission. 
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The third difference is that bandwidth is severely limited on the wireless channel. 

Multiple frequency bands may be necessary for high bandwidth applications. 

We propose to modify the forward and reverse channel A T M header format to 

accommodate the different functionalities for a wireless channel [FYP96]. These 

functionalities include scheduling channel access and error control, both FEC and ARQ. 

Slow frequency hopping is adopted for providing more bandwidth and diversity 

protection against fading. 

2.2 Protocol for Mobile to Base 

We assume that ATM cells queue at both the base and the mobile for transmission. 

V P W C I translation occurs prior to the cell being put into the queue at the base station. 

The number of enqueued cells at either the base station or the mobile depends on the data 

generation rate of the connection, retransmission requests resulting from channel errors, 

and the rate at which cells are scheduled for transmission. Queue length could be one 

factor for scheduling transmission for connections in a microcelL 

20 
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I 

Each connection on the wireless ATM channel is labeled by 1 byte (fig 2.2), instead of 

the usual 3 1/2 byte V P W C I field for wireline ATM. Therefore as many as 256 virtual 

channels can be supported in a microcell. This should be sufficient since a microcell may 

have limited bandwidth. 

v a 
PF - Prediction Field 

¥F 
SEQ — Sequence No. 

PF SEQ 

Code Rate New VH CLP 

HEC 

Fig. 2.2 Wireless ATM Cell Header 

The key concept for PQMA is the use of a prediction field in the cell header for explicit 

scheduling of the next cell for mobile to base communication. For each virtual circuit, a 

currently transmitted cell schedules the next cell by the parameter Prediction Field (PF), 

which represents the offset in term of slots from the current cell (fig 2.3). The offset 

depends on the current bit-rate of the circuit, and is approximately given by the total 

channel bit-rate divided by the bit-rate of the virtual circuit after channel coding. 
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This offset may fluctuate from cell to cell due to bit-rate changes for a connection, 

retransmission needs, and fill status ofthe source buffer. The offset could be reduced if 

the source buffer is close to full, or increased if the source buffer is close to empty. 

Retransmissions tend to increase buffer occupancy and therefore reduces the offset. 

This offset is coded as two sub-fields in the Prediction Field as frame offset and slot 

offset. The wireless channel is divided into frames. Each frame contains 32 slots. Each 

slot may carry a 53 byte cell. The 7-bit frame offset refers to the frame location of the 

next schedule cell. The 5-bit slot offset refers to the slot location in the referenced frame. 

data cell Next cell 
^ ^^^^ r ^^^^^M • • • • ^^HHI 

^ ^ ^ I i i ^ ^ ^ ^ ^ ^ H ^ ^ ™ ^ ^ ™ 
^̂  ^̂ ^ ^̂ ^̂ HHHI 車 

. PF 
Source 77r^ 

Channel offset 
coder Frame 0 Frame 1 一丨 Frame 2 

Fig. 2.3 Offset and its Representation 

One byte of the 5-byte ATM header is used for error control functions. First, a 4-bit 

sequence number (SEQ) represents cyclically the cell sequence number. This is used for 

selective repeat of errored transmission. A 3-bit code rate field represents the error 
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control code being used. A 1-bit New field is set to 1 if the cell is the first cell of a 

connection. We shall describe in detail the error control mechanism in a later section. 

The remaining 1 1/2 byte is identical to that for wireline ATM, namely a 3-bit Payload 

Type Identifier (PTI), a 1-bit Cell Loss Priority (CLP), and an 8-bit Header Error Check 

(HEC) field. 

2.3 Scheduling Protocol at the Base 

Station 

Scheduling is performed primarily at the base station. A schedule table (fig 2.4) is kept, 

which records the VCI scheduled for slots sequentially. Besides the VCI, the slot entry in 

the table also records the PTI of the VCI and a delay value to be explained later. A 

pointer PTR is used to reference the current frame in the table. 
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Current > 

Scheduleclosed 一 Slotno.VCI |PTI | delay 

Fig. 2.4 Schedule Table at Base 

When an ATM cell arrives, the base examines the entry in the table indexed by PTR plus 

the offset indicated by the PF field. If the slot is not scheduled, then the VCI, the PTI, and 

delay=0 is entered in the empty entry. If the entry is occupied, then a contention arises. 

The contention is resolved first by using the PTI field. If the PTI happens to be identical, 

then the contending party with a larger delay wins. The losing party then contends for the 

next slot with delay increased by one. 

At the beginning of each frame, the base broadcast the frame schedule for the next 

(PTR+1) frame. This broadcast takes up one slot in frame PTR, listing sequentially the 
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VCI entries for frame PTR+1 in the schedule table. For a frame size of 32 slots, 32 bytes 

are used for indicating the VCIs. 

Since the scheduling is explicit, the base expects the mobile to send a cell in the 

scheduled slot. If for some reasons the reception fails, the base would know immediately 

and request a retransmission. The requests could be made in the next frame using the 

broadcast slot. The negative acknowledgements (NAKs) are represented by a 1 byte VCI 

and a 4-bit SEQ. The mobile then selectively repeats the cell being negatively 

acknowledged. Excessive number ofNAKs for a VCI may triggers an exception control 

condition, which indicates either a channel or protocol failure. 

Two additional variations of this basic scheduling algorithm could be made. First, the 

unscheduled slots could be used by mobiles using random access methods such as Aloha. 

The unscheduled slots could be used for selective repeat or for easing temporary backlog 

in the buffer of a mobile. If the reception at the base is successful, positive 

acknowledgement (ACKS) could be sent in the broadcast slot in the next frame, 

indicating the VCI and SEQ of the successful contender. 
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Second, scheduling can also be performed in the frequency domain besides the time 

domain. This is particularly useful if slow frequency hopping is employed. The broadcast 

slot now contains the list ofVCIs for all slots referenced by both time and frequency 

within a frame duration. 

Besides the broadcast slot, protocol information is also carried by the ATM headers of 

the forward (base to mobile) channels. For base to mobile communications, the base 

station can easily schedule slots for virtual circuits. The ATM header contains a 1-byte 

VCI field. The mobile examines the VCI field to see ifthe ATM cell is marked for the 

mobile. Instead ofinband transport ofthe VCI within the ATM cell, out-of-band 

transport of the VCI in the broadcast slot can also be used. The 1 1/2 byte PF field is not 

necessary for the forward channel. The rest of the ATM header remains the same as the 

reverse channel. 
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2.4 Rate Compatible Punctured Turbo 

code 

The classical turbo code shown in Fig. 4.1 is of rate 1/2. Without puncturing, a rate 1/3 is 

obtained. The classical turbo code has shown a very impressive performance and is 

capable of achieving a BER of 10'̂  in low SNR. In wireless ATM, services of different 

QoS have diverse requirements on the BER. A BER of 10'̂  is too strict for some services 

such as speech and video, which have BER requirements ranging from 10'̂  to 1 0 , On 

the other hand, the fading nature ofwireless channel may cause a fluctuation in the 

channel state. To fully utilize the valuable channel capacity of the wireless channel, a 

variable rate coding scheme is generally applied to provide BER performance that 

matches the QoS requirement of a particular service under a particular channel state. 
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Fig. 2.5 Rate Compatible Puncture Turbo codes encoder 

P. Jung and J. Plechinger [JPDB97] proposed the Rate Compatible Puncture Turbo codes, 

RCPTC's, which is able to provide variable rate turbo codes that match different BER 

requirements. As shown in Fig. 2.5, RCPTC consists of two component RSC encoders 

and a puncturing and multiplexing device. Depending on the puncturing schemes, the 

minimum code rate is 1/3 and the maximum code rate is 1. Turbo coder can iteratively 

decode the received stream. 

Different puncturing schemes result in different performance. Berrou's puncturing 

proposedby C. BERROU, A. GLAVIEUX and P. Thitimajshima [BGT93] only 

punctures the parity bits but not the information bits. P.Jung and J. Plechinger [JPDB97] 

propose UKL puncturing which partially punctures both the information bits and the 
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parity bits. The BER performances of different puncturing schemes are shown in Fig. 2.6. 

It is noted that Berrou's puncturing facilitates a better performance at lower values of 

Eb/No whereas ULK puncturing outperforms in higher Eb/No value. The cross over point 

is at BER 10'̂  and moves to lower BER with increasing code rate. 

. ^ 0 ^ 
10 I i 1 1 ^ 

: ’ uiicoded trajismissio-n-

: : : : ^ & 
p̂  10 rrate 4 / & \ ^ \ " " ^ * ^ ^ " " ^ ^ ^ ^ 5 ^ � 
g Lrate 3/4 i \ \ ： \ \ ^ � � ^ 

1 0 - ' , r a t e S/a \ \ � < ^ \ \ � \ 
Erate 1 / 2 ： _ ^ ^ ^ _ _ } ^ \ \ \ N , 

- 广 " 3 ^ = ^ % ^ 

10- ： ： ： ^ ¾ X ^ 
三 一Berrou,s p u n c 1 ^ r i n g � ，〉、、 \ ^ — 

^ - 一UKL p u n c l u r i n g ‘ ^ ^ � � ’ 
1 0 - 7 [ ！ 1 1 ~ ~ ^ 

0 1 2 3 4 
lOlog^^(V^o) / dB 

Fig. 2.6, Performance of an RCPTC in terms ofBER versus Eh/No\ block size 672 bit, 10 

decoding iterations, AWGN channel [WROL99, pp 252；. 
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2.5 FEC and ARQ methodologies 

In this section, we examine how errors may arise and be dealt with. Errors may affect the 

functioning of the protocol described, or corrupt the data transport directly. 

Protocol information errors can arise if the broadcast slot, the VCI, PF, or NAK are 

corrupted. Since scheduling is explicit, the base station could detect such errors if the 

mobile fails to send the scheduled cell. NAKs are sent immediately under such 

conditions. For lost PFs, the base can use previous values of PF for the virtual circuit, 

since the value of PF need not be exact. We believe that our scheme is robust to 

occasional protocol information errors of various types. If such errors are persistent, the 

base triggers an exception condition. 

Several methods are available for handling corrupted data transport. As mentioned 

earlier, the 48-byte information payload may contain a CRC itself for detecting errors 

within the cell. A NAK could be sent requesting a retransmission if an error is detected. 
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Speech service have a BER requirement range from 2.5x10'^ to 1x10'^ which favors the 

choice ofBerrou's puncturing. For video and data service, BER is required to be less than 

1 0 , Therefore, the ULK puncturing is more suitable. In table 2.1, the assignment ofthe 

3-bit code rate field in PQMA is shown with different puncturing scheme for different 

services. 

Table 2.1 Assignment of the code rate field in PQMA for speech service. 

Code rate field in PQMA Puncturing scheme Code rate of RCPTC 

000 Berrou's ^ 

001 Berrou's ^ 

^ Berrou's m 

oTI Berrou's LG 

1 ^ ULK ^ 

m ULK m 

n o ULK m 

m ULK V3 

We propose this wireless ATM scheme to be used in conjunction with Slow Frequency 

Hopping (SFH) with moderate interleaving for the purpose of combating frequency 
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selective fading. We have also explored the possibilities of an adaptive transmission 

baud-rate, which may allow a higher transmission rate if a direct line of sight propagation 

condition exists. 

2.6 Experimental Results 

Extensive simulation is performed for the following system. For this thesis, we use the 

following example. We assume for indoor radio that a total of 20 Mb/s capacity is 

available. Slow Frequency hopping with rate 1/2 convolutional coding and interleaving 

are employed. We assume three kinds of services, namely 16 Kb/s speech, 1.5 Mb/s 

video, and Web data at 1 Mb/s. These bit rates are expanded by 2 upon convolutionally 

coded. An active terminal use any one of the three services at one time with probability 

0.4, 0.2, 0.4 respectively. Call admission control can be determined by examining the 

region where delay for these services is acceptable. For this example, we examine 

throughput and delay versus the number of active terminals with the above service type 

probabilities. 
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Figure 2.7 illustrates the throughput as more active terminals are admitted. The straight 

line shown is the expected load of the system. We can see that the throughput saturates at 

around 10 terminals. PQMA adopts earliest deadline first scheme to resolve the 

contention of cells having identical PTI. The queuing delay suffered by video according 

to the PQMA scheme with earliest deadline first scheme is shown in figure 2.8. 

The above simulation is performed under the assumption that the channel is error free. In 

order to see under what regime we may assume an error free condition, we have 

simulated in chapter 4 the performance of turbo code applied over slow flat rayleigh 

channel with channel interleaving and slow frequency hopping. It has been shown that 

when the number of channels and message length increase, we can assume the channel is 

error free if the SNR is increased to 4.5 dB. With RCPTC, it is possible to adjust the code 

rate adaptively according to the channel condition of a particular frequency band. 
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2.7 Conclusion 

We propose a wireless ATM protocol which provides true on demand bandwidth 

allocation using the notion of timed reservation via PQMA. Preliminary results show that 

throughput and delay are acceptable for indoor applications. 

Channel usage of PQMA vs, No, of mobile 
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Fig. 2.7 Throughput for PQMA 
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Fig. 2.8 Delay for PQMA 
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Chapter 3 

Fundamentals of the Wireless 

Communication Medium 

3.1 Introduction 

One of the most challenging topics in a wireless ATM system is the error control 

problem. PQMA adopts turbo code for error correction control. In this chapter, we shall 

focus on the theoretical limits of the channel capacity of an AWGN channel and a 

Rayleigh fading channel. C. BERROU, A. GLAVIEUX and P. Thitimajshima [BGT93] 

have shown that turbo codes can achieve near channel capacity performance in AWGN 

channels. While slow flat Rayleigh fading channels are commonly used to model wireless 
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communication channels, we shall focus on studying the performance of turbo codes over 

such channels. 

A Gaussian channel is a conmionly used channel model in wireless communication 

studies. Much research in evaluating the performance of a wireless system or coding 

system is based on the Gaussian channel model. 

Zi 

X 4 Ŷ, 

Fig. 3.1, The Gaussian channel 

Fig. 3.1 shows a time discrete channel with output Yi at time i, where Yi is the sum of the 

input Xi and the noise Z" Z； is the Gaussian noise with a Gaussian Distribution of variance 

N. Thus, 

Yi=X,+Z, Z^ -N(0,N) (31) 

Zi is independent of%. The common limitation on the input is an energy or power 

constraint where 

- t ^ f ^ P 37 (3.2) 
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for any codeword {xi, x2, ..., x„) transmitted over the channel. 

3.2 Error control and channel capacity 

In 1948, Shannon [Sha48] derived the capacity of a AWGN channel as 

E 
C = W log(l + — ) bits per second (3.3) 

N \ , 
八0 

Where W is the bandwidth of the channel and Es is the average signal energy. No is the 

power spectral density (PSD) of the Gaussian noise. Shannon has also shown that as long 

as the information transmission rate is lower than the capacity, there exists an error 

correction code that can provide a high level of reliability at the receiver output. 

Equation 3.3 can be used to find the limit on the coding gain of a system. Suppose we use 

a BPSK-modulated system. BPSK-modulation is good for evaluating a coding scheme 

because it has a spectral efficiency of roughlyl. Spectral efficiency is the number ofbits 

that can be sent per two-dimensional signaling interval of duration T. Let rj be the 

spectral efficiency expressed in terms ofbits per second per Hertz (b/s/Hz). Now, we 

have E/No= 7/EM and ” =CAV, then 
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c E (3.4) 
- < l o g ( l + ^ ) 
W N, 

Eb (3-5) 
2 � <1 + " 丄 

K 
E, 2 " ' - l (3.6) _ ^ > 

Â o 7 

From equation 3.6, we can easily see that the limit in the SNR for a given spectral 

efficiency. For BPSK, ”=1 , we see that theoretically SNR can be as low as 1, or 0 dB. 

For the past fifty years, this channel capacity is never achieved by practical coding 

systems until Claude Berrou, Alain Glavieux and Punya Thitimajshima [BGT93: 

proposed Turbo Coding. Turbo coding is capable of attaining a channel capacity that is 

very closed to the limit as stated in equation 3.3. 

3.3 Capacity of fading channel 

Besides being corrupted by noise, the wireless media is also time varying. The Rayleigh 

distribution is commonly used to model the statistical time varying nature of the envelope 

of a flat fading channel, or the envelope of an individual multipath component [Pro89:. 
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The probability distribution function (pdf) ofRayleigh distribution is given by 

, � ^ e x p ( - ^ ) (0 < r < o)) 
p(r) = <cT̂  ^' 2 a ' (3.7) 

0 (r < 0) 

where a is the rms value of the received voltage signal before envelope detection and a ^ 

is the time-average power of the received signal before envelope detection. The pdf of 

y=/, which is the power of the received signal, is given by 

P ( y ) = ^ e - ^ ^ ' ^ ^ (3.8) 
zcr 

which is chi-square-distributed with 2 degree of freedom. 

The channel model for time varying channel corrupted with noise is given by 

y=ax^n (3.9) 

where ;c is the transmitted signal, a is the fading amplitude while a Rayleigh distribution. 

n is an AWGN. The above channel can be instantaneously viewed as a Gaussian channel 

with signal voltage r=ax. From equation 3.3, we can find out the instantaneous channel 

capacity. However, owing to the time varying nature ofthe channel, the channel capacity 

of the Rayleigh channel must be calculated in an average sense. 
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Typical s imulated Rayleigh fading at the carr ier 
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Fig 3.2 A typical Rayleigh fading envelope at 900 MHz [From [FRT93] copyright IEEE]. 

Lee [Lee90] has proposed a method to calculate Rayleigh channel capacity in the average 

sense. Suppose the carrier-to-noise ratio y =C/N varies in time. From 3.8, we have the 

pfd 0f7 given by 

P{r) = ^e-"^ (3 10) 
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where F is the average power of 7 , F=< ^>=<C>/N. The average channel capacity is 

- 1 (3.11) 
<C>= \W\og{l + r)-e~''^dr 

0 r 
1 (3.12) 

= - W ( l o g d ( y z r ^ ( - F ) 

where Ej is the exponential-integral function and can be expressed in two different forms 

E^(-x) = E + H x ) + f ^ ^ (3.13) 

k=i欠.欠！ 

E^(-.) = e - t ( - ^ r ^ ^ ^ K (3-14) 
k=i ^ 

where x>0, E is the Euler constant {E=0.5772157), and R�is the residual term. Put 3.13 

into 3.12, we have 

< C > = - - e - ' ' ^ - ^ + lnr + - i~~- + i~~- + ... (3 15) 

ln2 [ r (2-2!)r' (3-3!)r' ( 4 . 4 ! ) 广 」 、 乂 

In case of T >2, equation 3.15 becomes 

^ ^ = loge. e—"r i - E + lnr + 丄） (3.16) 
w r 

From Fig 3.3, we see that it requires average carrier to noise ratio T at about 1.5 dB in 

order to have a capacity of 1 bit per second per Hertz. 
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Fig 3.3 Channel capacity of Rayleigh channel and Gaussian channel 

As shown in Fig. 3.3，Rayleigh fading channels have channel capacity closed to that of 

AWGN channels. However, capacity <C> in equation 3.16 is obtained in an average 

sense. In case of a slow flat fading channel, a packet transmitted over the channel has an 

envelope almost constant for the whole packet. In such case, the condition of an 

individual signal undergoes Rayleigh fading independently is not justified. Thus, the 
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average capacity <C> obtained in equation 3.16 can never achieved in slow flat Rayleigh 

fading channels. 

Slow frequency hopping together with channel interleaving schemes can effectively 

combat slow flat Rayleigh fading. According to the channel interleaving scheme, 

received signals from different frequency bands are permuted into a block, where 

individual signals are faded according to the frequency bands they belong to. If the 

number of frequency bands is large enough, individual signals can be assumed to be 

independently faded. In theory, average channel capacity <C> in equation 3.16 is 

achieved. We can use that value to evaluate the performance of a practical system. 

Turbo coding has been shown to have an excellent performance over the AWGN channel. 

However, turbo codes fail when applied over a flat Rayleigh channel. In chapter 4, we 

shall demonstrate that with the slow frequency hopping scheme, Turbo Codes with 

Iterative Channel Estimation technique are capable of combating the fading channel. We 

shall show that with large number of frequency channels, our scheme can have a 

performance fairly closed to the theoretical limit stated in equation 3.16. 
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Chapter 4 

Iterative Channel Estimation for 

Turbo Code for Frequency Hopped 

Multiple Accessing 

4.1 Introduction 

PQMA adopts turbo coding for FEC. Many literatures have shown that turbo code 

BGT93] has a good performance in Additive White Gaussian Noise (AWGN) channel. 

Some studies focus on the performance of turbo coding over Rayleigh faded channel 
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HW96] [Jun96]. However, these studies have made the assumptions of a fully 

interleaved channel and perfect channel information in evaluating the performance. 

We adopt turbo coding in PQMA to provide high bandwidth multimedia communication 

over wireless media. In PQMA, the message length of the turbo code is short, around 

1000 bits. For the high bandwidth wireless channel, the channel is highly correlated over 

time. It is not possible to have the message bits "fully interleaved" within the short 

message length. 

M.C Valenti, and B.D Woemer [VW98] have proposed some channel estimation by 

passing the received signal through an FIR filter to estimated the fading amplitude and 

the Gaussian property of the channel in order to improve the performance of turbo code 

applying over Rayleigh faded channel. In this chapter, we notice that turbo coding 

improves its accuracy after each decoding iteration. We use the decoded bit after each 

decoding iteration to estimate the channel state information. This is known as Iterative 

Channel State Estimation. 

On the other hand, PQMA uses slow frequency hopping channel access to combat the 

highly correlated fading channel. We have simulated our system over different system 
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configurations to see the performance of turbo code. In this chapter, we show that 

iterative channel state estimation can accurately estimate the channel state information 

and thus we can effectively adopt turbo coding to a highly correlated Rayleigh fading 

channel. We conclude that PQMA can provide different error correction capability that 

can meet the varieties ofBER requirements for all the services. 

4.2. Turbo code structures 

X 
• 

Information bits Y1 

H RSC 1 1 ~ ^ Y 

Interleaver Y2 ^»~^ 

丨 H RSC 2 V ^ 

Fig. 4.1, Simplified Turbo code encoder. 

Fig.4.1 shows a simplified turbo code encoder. Two identical RSC codes are 

concatenated in parallel. Both RSC encoders (RSC1 and RSC 2) use the same 
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information bits but rearranged as different sequences due to the use of an interleaver. 

The code rates for RSC1 and RSC2 are the same. The parity streams Y1 and Y2 are 

alternatively punctured to yield Y. Xis identical to the source information bits S. A 

generalized design of turbo code is to uses n encoding components parallel concatenated 

and n-1 interleavers to provide permuted blocks for data bits ofthe encoders. 

Turbo codes are decoded in an iterative manner. Decoding modules are put in a series for 

pipeline decoding. Turbo code decoding module atp^ iteration shown in Fig. 4.2 is made 

up of two elementary decoders DEC1 and DEC2 in a serial concatenation scheme. The 

first elementary decoder DEC1 is associated with encoder RSC1 and yield a soft 

(weighted) decision. The error bursts from DEC1 are scattered by the interleaver before 

passing to DEC2. Each elementary decoder use modified BAHL et al. algorithm 

BGT93]. At the end of each decoding iteration, the Logarithm of Likelihood Ratio 

(LLR) Zp is passed for the (p+lf" decoding iteration. Xp andy^ are the input signal to 

decoder corresponding to information bits and parity bits respectively. 

48 



Multiple Channel Access and Coding Method for Wireless A TM 

, � deinter- ⑵口 _ 
(z) 一 — • 

^ 16 STATE r r ^ 16 STATE �eaving 
DECODER ——/ ——DECODER 

r DEC1 I I _ g r ~ DEC2 ^ ^ 
1 leaving 

r ^ (yi)p-i (y2)p-i ^ 

’ T 
* � • itermediate 

^ decoded 

三 output 

(x̂ J _ ( X ) , 

DELAY LINE ^ ⑴口 
(y)p-i ‘ 

Fig. 4.2, Turbo code decoding module (p̂ ^ iteration). 

4.3 System Model 

Wireless ATM is suitable for high bandwidth multimedia communication over the 

wireless environment. We design the system with an aim to adopt turbo coding in 

wireless ATM. For one 53-byte ATM cell, 5 byte is the header and 48 byte is the 

payload. We assume wireless ATM system treat the header and the payload in separated 

channels. We group 3 ATM payloads into one turbo code message block of 1152 bits. 

Referring to Fig. 4.3, the information bits, Uk are grouped into frames of 1152 bits. The 
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frame is passed through a rate 1/2 constrain length three Turbo Encoder used in [BGT93] 

with code generator (5/7)8. Random interleaving is employed in the encoder. 

Since PQMA adopts SFH multiple access to combat fading, the 1152 bits message block 

is split into many sub-packets and each sub-packet is transmitted through different 

frequency channels. A channel interleaver interleaves the encoded bits, Xk, before they are 

packed into sub-packets. We can use a FbyATblock interleaver to serve as a channel 

interleaver, where V is the number of frequency channels and K is the sub-packet length. 

The interleaved bit stream, s^, is packed into V sub-packets of K bits. Each sub-packet is 

hopped through a channel with frequency band i. For example, if there are 8 frequency 

channels in the system, then each sub-packet has 1152/8 = 144 bits. And the channel 

interleaver is a 144 x 8 block interleaver. Fig. 4.5 shows the performance of our system 

using block interleaver as channel interleaver. In our simulation, we have simulated 1, 4， 

8, 16 and 32 frequency channels. 

Another approach for channel interleaver is the random interleaver. In this case, the 

encoded bits, xk, are randomly permuted and then packed into sub-packets. Fig. 4.6 

shows the performance of our system using random interleaver as channel interleaver. 
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The whole message block is 8192 bits and we have simulated 32 and 128 frequency 

channels. 

Frequency band 1 
一於,1 M.f I 
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Fig. 4.3 System model of Turbo code over SFH multiple access 

For broadband wireless communication, we model the channel with slow fading. We 

consider coherent BPSK signaling. The discrete representation of the channel i is given 

by rkj=akjSk,i+rikj where k is the message index and i is the channel index. Skj is a BPSK 

symbol. Since the channel is highly correlated and each sub-packet is very short, channel 

at frequency band i is Rayleigh faded with a fading amplitude Ukj, which is assumed to be 

static over the whole sub-packet. An Addictive White Gaussian Noise (AWGN), n ĵ, with 

double-sided power spectral density (PSD) ofA^ is added to Sk. The received bit stream n 

is passed through a channel deinterleaver while becomes yk. A turbo decoder using the 
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SOVA algorithm [PRV96] decodes the estimated information bits. The SOVA algorithm 

is modified to provide iterative estimation ofthe channel state estimation. 

The symbol amplitude of Sk,i is given by i ^ ^ a n d the fading amplitude cik,i is 

represented in [Skl97] as: 

2 a , , e x p - K , ) ' for^z,,>0 
p{ciu) = \ 

’ [0 otherwise 

The PSD No of Addictive White Gaussian Noise is given by 

N J 2 ^ a ] 

In a Rayleigh faded channel, the turbo decoder must be modified in order to incorporate 

the channel state information. We assume that the fading amplitude is known to us from 

our iterative channel estimation. From [HW96] the transition probability is given by a 

conditional Gaussian distribution as 

P ( r j 5 , “ = 7 � , , ) � " K , ‘ ( 2 / - l ) V ^， "。 / 2 ) 

for j = 1 or 0. 
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4.4 Iterative Channel Estimator 

Iterative channel state estimation uses the decoded bits to estimate the channel states. At 

the end of each decoding iteration, SOVA algorithms can output the decoded bit steam of 

that iteration. Assuming the decoded bits are "correct", we use the difference between the 

decoded bits and the received bits to find out the error induced when the bits are 

transmitted through the channel Using these error terms, we find out the channel states. 

When the number of iterations increases, the accuracy of the turbo decoded bits improves 

as well as the estimation of the error terms and of the channel states. On the other hand, 

since improved channel state estimation is passed to the turbo decoder for the next 

decoding iteration, the performance turbo decoder is also improved. 

Since � , t h e received signal, is given by 

^A-,=^A-A,,+^/ 

We can express 

hj-^k,i 
^kj = 

〜” 
= signCOCi’,-'"’'） 

= s i g n ( 5 , , ) r , , - s i g n ( 5 , , K , 
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where sign(.) equals to +1 or —1 accordingly for positive or negative operand. 

Now, since Uk,i is static over the whole sub-packet and assuming Sk,i is uniformly 

distributed over +1 and —1. For large N, with rik,i being a zero mean Gaussian random 

variable, we extend our estimation of the channel state after the (j-lf" iteration: 

1 N 1 N 

Ki = : S * " _ g " ( O t / - — Y . s i g n { ^ - l ) n , . 
J^ A:=1 丄、k=l 

1 ^ _ 
« : 2 > M � i K 

7V k=i 

which is the estimated fading amplitude for the f iteration, f/：̂  is the intermediate 
/c,z 

decoded bit from the (j-lf" decoding iteration. 

The variance of the channel is also an important factor for estimating the channel 

information. We propose to use iterative channel estimation technique in estimating the 

variance. The AWGN Uk,i can be expressed as: 

n, . = r, . —a, .s,. k,i k,i ^k,ik,i 

and Tik,i is roughly given by 
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^kj-r,i-a,.sign(s,^,) 

Again we use the intermediate decoded bits after the (j-lf" iteration and get, 

4,i=^i-Ki^isn{H7) 

/V j .1 
where k̂,i is the estimated fading amplitude for the j iteration. 

The statistical estimation ofthe noise variance for the 产 iteration is given by: 

(对。 . = ^ 4 ( <广 "“） 

=̂ 2̂]((¾ - Ki'^Sn{H7)) - Ki) 
八 - A k=l 

where 

"i,i =̂ Zk,- -Ki''sn{H7)) 
八 k = \ 

is the statistical mean of the noise. 

In the next session, we shall show how these estimated channel state information, namely 

the fading amplitude Uk and the variance 6̂ k, are used in the turbo decoding algorithm. 
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4.5 Turbo decoding with iterative channel 

estimation 

We use iterative channel estimation to provide the decoder with estimated channel 

information. Fig. 4.4 shows a modified turbo decoding module from [BGT93]. Turbo 

coding algorithms in DEC1 and DEC2 use channel reliability value to indicate the 

reliability of a particular received signal. The channel reliability of a received signal is 

given by 2a/ a^ for a AWGN channel with variance 7̂and fading amplitude a. The 

logarithm oflikelihood ratio (LLR), L_all, associated with each decoded bit is given by 

L_all = ^r,+W, 

C7 
where Wk is a function of the redundant information introduced by the encoder. 
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Fig. 4.4: Modified turbo decoding module ij^ iteration). 

With iterative channel estimation, DEC1 and DEC2 obtained the reliability value from 

the Iterative Channel Estimator. After the (j-lf iteration, the reliability index, L_c, of a 

particular frequency channel is given by 

L c = ^ -«1)2 

The LLR of each decoded bit in f iteration is given by 

2aJ] 
L all = -^^\^r,+W, 

— «)2 
Referring to Fig. 4.4, in 广 iteration, the Q-lf^ module passes the received bit to the 广 

module. Received bits are multiplied by the reliability index Z_(^before passing to the 16 
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State decoders, fzjy_y is the extrinsic value passed from Q-l)th module. After the decoding 

iteration, the intermediate decoded output is passed to the Iterative Channel Estimator to 

estimate the Channel State. 

4.6 Simulation Results 

The performance of turbo code over slow Rayleigh fading channels with iterative channel 

estimation was simulated. We have done simulations for 1，4, 8, 16 and 32 frequency 

channels. 

We use SOVA decoding algorithm with 8 decoding iterations in our simulations for the 

length of 1152 turbo codes. We can see that without frequency hopping as in the 1 

channel case (marked with 1 in fig. 4.5.), turbo coding simply fails. From the turbo code 

performance in an AWGN channel, we can see that turbo codes have a very steep slope 

when the SNR increases from 1 dB to about 4 dB. Ifthe SNR falls below 2 dB, turbo 

coding does not show a good coding gain. Under a slow flat fading environment, there is 

a chance that the entire a received packet has undergone deep fading. In such a case, the 

instantaneous SNR ratio is below 2 dB and turbo coding fails. 
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BER of a Turbo Code over slow flat fading channel 
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Fig. 4.5: Bit error performance of a turbo code of 1152 bit over slow Rayleigh 

fading channel. 

When the whole packet undergoes deep fading, interleaving within the block itselfdoes 

not improve the performance, as the fading amplitude is constant over the block. One 

way to deal with such a highly correlated channel is to increase the channel diversity by 

frequency hopping. Upon increasing the number of channels, turbo coding has improved 

performance. When the number of channel is increased to 16 with the length ofeach sub-
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packet being 144 bits, turbo code gives a BER of 10'̂  at Ê /N^ = 9dB. When the number 

ofchannels is increased to 32 with the length of each sub-packet being 72 bits, it gives a 

BER of 10—5 at Efe/No less than 8 dB. We see that for message length K = 1152 bits of rate 

1/2, the maximum number ofchannels is 32, and further increase in number of channels 

will have the length of sub-packet being very small. It is shown in Fig. 4.5 that the 

scheme offrequency hopping and channel interleaving can effectively improve the 

performance ofturbo code over slow flat fading. It is shown that with 32 channel 

interleaving, turbo coding suffers only a 4 dB degradation over a slow flat Rayleigh 

channel, compared with the case ofno fading. 

We have simulated the case of turbo coding applied over a slow flat fading channel with 

32 channel interleaving. We assume that the channel state information is perfectly 

known. The performance curve is shown in Fig. 4.5 marked with “32 perfect". We can 

see that Iterative Channel Estimation achieves a performance very close to perfect 

channel information. The performance degradation is less than 0.2 dB for medium SNR if 

iterative channel estimation is used instead ofhaving perfect channel information. 

E.K. Hall and S.G. Willson [HW96] have simulated the performance of turbo codes over 

highly correlated channel. For a channel with BT=0.001 using turbo code of rate = 1/3 
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with message length K=420, turbo code attains BER 10'̂  at more than 20dB. With 

message length K 二 5000，turbo code attains BER 10'̂  at about 12 dB. Our result of 9dB 

with turbo code operating at code rate 1/2 and message length K = 1152 shows that 

frequency hopping with iterative channel estimation can effectively combat the slow 

fading channel. 

BER of a Turbo Code over slow flat fading channel 
10� 1 1 1 I I I I 

turbo code over AWGN channel 
32 channel interleaving 
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Fig. 4.6, Turbo code of8192 bits applied over slow flat Rayleigh fading channel. 
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It is well known that turbo coding improves its performance when the interleaver size 

increases. We have simulated turbo codes for the length of 8192 bits using LOG MAP 

decoding algorithm and turbo coding is capable of achieving a BER of 10"̂  at about 1.5 

dB SNR in 8 iterations. The performance of turbo code over a slow flat Rayleight fading 

channel is shown in Fig. 4.6. We can see that for 32 channel interleaving, there is a 5 dB 

degradation due to slow flat Rayleigh fading. This is similar to the performance curves 

shown in Fig. 4.5 for turbo code of 1152 bits. However, when the number of channels is 

increased to 128, we can see that the degradation is decreased to about 3 dB. Turbo code 

can achieve a BER of 10'̂  at about 4.5 dB SNR. In chapter 3, we have shown that 

theoretically to achieve channel capacity of 1, Raleigh fading channels bring a 1.5 dB 

SNR degradation when compared with AWGN channels. Therefore, degradation of 3 dB 

SNR in our proposed scheme achieves a performance fairly close to the theoretical limits. 
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4.7 Conclusion 

In this chapter, we have shown by simulation that frequency hopping together with 

channel interleaving is capable of combating slow flat Rayleigh fading. Our proposed 

scheme has shown a performance fairly closed to the theoretical limits on the 

performance ofaslow flat Rayleigh fading channel. In addition, our proposed iterative 

channel estimation can accurately estimate the channel state information. The 

degradation using our estimation is only 0.2 dB SNR when compared with using perfect 

channel information. Therefore, PQMA has shown a strong error correction capability 

and is thus suitable for handling the variety services in wireless multimedia 

communications. 
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Chapter 5 

Dummy Bits Inserted Turbo code 

5.1 Introduction 

Error correction schemes are commonly used in many systems in order to provide 

reliable communications. Parallel concatenated convolutional coding (PCCC) or turbo 

code achieves a very impressive coding gain when applied to an AWGN channel 

[BGT93]. 

We adopt turbo coding for FEC in PQMA. Turbo coding uses an interleaver to reduce the 

multiplicity of the pairing of low-weigh codeword. Many researches have focused on the 

design of interleavers in order to improve the performance ofturbo coding [PHBB95: 

[AHK98]. 
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It has been shown that large interleaver size is an important issue of reducing the 

multiplicity oflow-weight codewords. Performance of turbo coding decreases with a 

decrease in interleaver size. PQMA is designed to be a wireless ATM system. An ATM 

cell payroll has only 384 bits. The interleaver size for turbo coding in PQMA is therefore 

very short if we limit the interleaver size to 384 bits. In this chapter, we propose a new 

coding scheme that aims to improve the performance ofturbo coding by the use of 

dummy bits to reduce the multiplicity oflow-weight codewords. Dummy bits are inserted 

into the block of source data symbols. Since dummy bit insertion is independent ofthe 

length of the source block, our proposed technique can effectively reduce the multiplicity 

oflow-weight codewords even in a message block of short frame size. In this chapter, 

we have simulated the proposed system to see if it improves the performance ofturbo 

coding. 

65 



Multiple Channel Access and Coding Method for Wireless A TM 

5.2 Weight Distribution of turbo codes 

The component codes used in turbo coding are Recursive Systematic Codes (RSC). In 

order to estimate the performance of turbo coding, we must have information ofthe 

minimum distance, weight distribution or the actual code geometry ofthe codes [DF95；. 

For a RSC code using the (5/7)8 code generator, if an all zero input u=(00.. .000.. .00) is 

encoded, the parity bits will be all zero too, i.e., parity bits are y=(00.. .000. • .00). Since 

RSC codes are linear, we can use the error pattem in decoding an all zero codeword to 

analyze the performance ofthe codes. 

We now focus on the investigation of low-weight inputs. Since RSC use an Infinite 

Impulse Responds (IIR) code generator, the encoder will not retum to the all zero state if 

a weight-1 message is input to the encoder. Therefore, u=(00.. .001000. • .00) is not a low-

weight codeword as the recursive encoder will generator a codeword with an infinite 

number of ones in the parity bits. 
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The weight-2 inputs are particularly important in the study ofperformance ofturbo 

coding. For u=(00.. .001001000.. .00), the recursive encoder will retum to the all zero 

state by the input of the second bit of 1. The parity bits are y=(00.. .001111000.. .00). The 

resulting Humming distance of this codeword is 6. It tums out that weight-2 inputs with 

the following pattem will drive the encoder to the all zero state: 

u=(00...00100...000100...0 
Y 

2+3t zeros 

That is, for an integer t greater than zero, a weight-2 input with 2+3t zeros separating the 

two l 's would drive the encoder to the all zero state. If t is not an integer but equals to 

multiples of 1/3, the encoder will not retum to the all zero state. 

For a rate 1/3 turbo code having two encoding streams, an interleaver rearranges the 

sequence of the input bits for the encoder 2. If a weight-2 input with its 1，s separated by 

2+3ti zeros in encoder one is interleaved to form a weight-2 input with its 1 's separated 

by 2+3t2 zeros for encoder 2, the total Hamming weight of the turbo code will be 

2+2U^3(t]+t2). For the worst case, t1=t2=l, the Hamming weight equals 10. With the 

use of an interleaver, the probability ofhaving such worse cases is minimized. 
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To explain the function of an interleaver, we now consider a rate 1/3 turbo code with 

interleaver size 火二100. Let p be the probability ofhaving a weight-2 input with its 1，s 

separated by two zeros, i.e., u=(00.. .001001000.. .00), is interleaved to a weight-2 input 

with its 1，s also separated by two zeros for the second encoder. Assuming the interleaver 

randomly permutes the input bits, there are totally 100C2 = 4950 possible permutations for 

the two l's. Among all these permutations, only 97 permutations will have the two l 's 

separated by two zeros. Therefore, the probability p is given by 97/4950 = 0.02. 

Since the probability of the occurrence ofpairing oflow-weighted codewords is greatly 

reduced, the use of an interleaver can effectively improve the performance ofturbo 

coding. In addition, this is the reason why turbo coding improves its performance with an 

increase in interleaver size. 

With the use of dummy bits inserting into the message block, we aim to reduce the 

multiplicity of the occurrence of low-weight codewords in each component encoder. In 

session 5.5, we will discuss how the goal can be achieved. 
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5.3 Encoding with dummy bit insertion 

Both the transmitter and receiver have complete knowledge of the dummy bits. We insert 

these dummy bits into the source data block. Let S the original data block of length N and 

let D be the dummy bits oflengthM Now, S=(s!, ^..., s^) mdD=(di, d2,...,dM). Define 

R as the insertion ratio where R=N/M. For every bit in the source data block, there are R 

dummy bits inserted into the data block. Let Xj denote the data block with dummy bits 

inserted into the source data. We pass X； to the turbo encoder as described in section 4.2. 

53.1 Dummy bit insertion methodology 

Dummy bits act as anchor points in the codeword. We define the number of information 

bits between two consecutive dummy bits as the span of the dummy bits. We evenly 

distribute the dummy bits over the codeword so as to maximize the dummy bit spanning 

of the information stream. We call this a block insertion. 

Case I.) R>1 

For R>1, then M ^ , we divide the dummy bits into A^blocks of length R. Then, 

Xj-(sj, dj,...,dpj ...,Sk)d(k-i)R+i, ...,dkR, ".,SN,d(N-i)R+h • • • >d^^p) 
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Case II.) R<1 

I f R < 1, then M<N, we divide the source data block into Mportions. One dummy bit is 

inserted for each portion. We have 

Xi-(Sj,.., S[i/Rj,di,..., S[yRj, dk, ..., s^) 

where U denotes the rounding down operator. 

5.3.2 Hybrid Periodic Random Interleaver 

As mentioned before, dummy bits are evenly distributed in the inserted information 

streamJC.不 is permuted and encoded by RSC 2. If random interleaving is used for the 

permutation, the dmrnny bits will also be randomly permuted in the inserted information 

stream for RSC 2. The dummy bits in the permuted inserted information stream are not 

distributed evenly. In this case, the dummy bit span is not maximized. In order to keep 

the dummy bits evenly distributed on the inputs for the second encoder, a hybrid periodic 

random interleaver is needed. 

The hybrid periodic random interleaver consists of random interleaving and a periodic 

block insertion. Information stream and dummy bits are independently interleaved using 
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random interleavers. The two permuted sequences are merged together using periodic 

block insertion method mentioned in session 5.3.1. 

5.3.3 Dummy bit removal before transmission 

Since the receiver has complete knowledge ofthe dummy bits (for example, the dummy 

bits are all zero), there is no need to send the dummy bits over the channel. Therefore, as 

shown in Fig. 5.1, the Dummy Bit Remover (DBR) punctures the dummy bits before 

transmission. 

The Dummy bits together with information bits are encoded by the encoder, therefore, 

dummy bits introduce extra parity bits. Since the dummy bits are known to the decoder, 

therefore, we may not need the extra parity bits to protect the dummy bits. As shown in 

Fig. 5.1,the Extra Parity Bit Remover (EPBR) removes these extra parity bits. It is clear 

to see that by puncturing all the dummy bits and extra parity bits introduced by them, the 

overall code rate of the code is not changed. 
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Yi2 Remover 

Turbo Encoder 

Fig. 5.1, encoding process with dummy bit insertion. 
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5.4 Decoding with dummy signal 

enhancement 

In the decoding part of dummy bit inserted turbo coding, we do not modify the decoding 

algorithms used in classical turbo decoding. What we have to do is to reconstruct the 

dummy signals in the received signal stream and flll the position of the punctured extra 

parity bits with zeros. 

The Dummy Signal Insertion Device (DSID) in fig. 5.2 inserts dummy signals to ;c 

according to the positions of the dummy bits in the inserted information stream. For the 

sake of simplicity, assume that the energy per bit used in our system is 1. The amplitude 

of the dummy signal is set to +1 or —1 for the dummy bits of 1 or 0 accordingly. 

Turbo coding algorithms use channel reliability values to indicate the reliability of a 

particular received signal. The channel reliability of a received signal is given by 2a/a^ 
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for a AWGN channel with variance ^and fading amplitude a. The LLR associated with 

each decoded bit is given by 

L_all = ^k+Wk 
C7 

where Wk is a function of the redundant information introduced by the encoder. 

Since dummy bits are not corrupted by noise, they are very "reliable". Therefore, the 

channel reliability value of a dummy bit should be very large so that the decoder will 

never output a wrong value of the dummy bit. We note that the channel reliability value 

is proportional to the fading amplitude a. We therefore scale up the signal amplitude of 

the dummy signals to "tell" the decoders that dummy signals are reliable. 

Dummy Signal Amplifier (DSA) depicted in fig. 5.2 scales up the signal amplitude of the 

dummy signals. For a dummy signal enhance ratio A, where A » 1, the LLR associated 

with a dummy bit is given by 

2A 
L_all = -r,+W, 

cr 

where Wk is a function of the redundant information introduced by the encoder. 
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Since we have punctured the extra parity bits introduced by dummy bits, we have to fill 

the corresponding position with 0's in the parity streams of the received signals. In fig. 

5.2, Extra Parity Signal Insertion (EPSI) unit performs this task. 

The dummy signal processing modules, namely, Dummy Signal Insertion Device, 

Dummy Signal Amplifier and Extra Parity Signal Insertion are only required at the 

beginning ofthe decoding process. That is, they are not required in turbo decoding 

modules other than the first iteration. 
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. ^ ^ 16 STATE r y r ~ 16 STATE “ leaving 
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r n (yii)� （ŷ  ' T ' f f m ^eT 
X i ^ ^ . p ^ 、 」 。 二 _ g 

Insertion — ,^'®"'' 1 � “ dummy \ 
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-̂̂  ^ *(y')i 
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Extra 
Parity 
Signal Turbo decoder (1st iteration) 
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Fig. 5.2, decoding process for dummy signal enhancement 
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5.5 Weight distribution of dummy bit 

inserted turbo coding 

Now we study the case if we use dummy bit insertion with an insertion ratio 1/3 and 

assume that we set all dummy bits to 0. For an all zero message block, after dummy bit 

insertion, we have (00000000000...), where the "0" in bold face denotes a dummy bit. 

We can see that low-weight codeword can only occur in some positions. 

For example, the low-weight codeword (10010000000...) is not a "valid" codeword 

because decoder will not output the forth bit "1" as dummy bit forces it to be “0”. In this 

case, we reduce the multiplicity of low-weight codewords. 

However, low-weight codeword (01001000000...) with parity bits (01111000000...) is 

valid. Since we puncture the parity bits generated by dummy bits, which is the fourth bit 

"1" and the eighth bit “0” in this example, the total Hamming distance of this codeword 

is reduced to 5, instead of 6. 
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In dummy bit inserted turbo coding with insertion ratio 1/3, if weight-2 input with its 1 ’s 

separated by two zeros is randomly interleaved, there are only 64 possible permutation 

that will result in a weight-2 input with its 1，s separated by two zeros. The probability of 

have pairing oftwo low-weighted codewords is then 64/4950=0.015. 

Avoiding the multiplicity of low-weight codeword will improve the performance of turbo 

codes. However, reduction of Humming distance will lead to degradation in performance. 

Intensive simulations have been done to see if variation of dummy bit insertion pattem 

can improve the performance of turbo coding. 

5.6 Simulation results 

We have simulated our proposed system. In order to investigate the performance of turbo 

coding over short frame system, we compare turbo codes of length 100 bits. Constrain 

length three Turbo Encoder of rate 1/3 used in [BGT93] with code generator (5/7)8 is 

used as a control simulation. Random interleaving is employed in the encoder. 
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For turbo codes with dummy bits inserted to information stream, the dummy bit insertion 

ratio is 1, which means every information bit is associated with one dummy bit. Dummy 

signal enhance ratio A=128. The code rate is 1/3 and code generator used is (5/7)g. Fig. 

5.3 shows the BER performance ofthe codes. Inserting dummy bits into the information 

block cannot improve the performance of turbo codes. On the other hand, there is a little 

degradation recorded. 

BER of a Turbo Code with dummy bit inserted at insertion rate = 1 
10 1 1 1 1 1 1 1 1 1 

rate 1/3 Turbo code 
rate 1/3 Turbo Code with dummy insertion 

10-1 _ -

10.� ^¾ .̂ -. %.. 
m X-m \ ^ . 

10-3- x<̂  -

10-̂  - X. -

. V 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Eb/No (dB) 
Fig. 5.3, BER ofturbo code with dummy bits insertion ratio 1. 
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5.7 Summary 

In this chapter, we have proposed to insert dummy bits into the information block to 

reduce the multiplicity of low-weight codeword of turbo codes. However, since 

puncturing the parity bits introduced by dummy bits reduces the free distance of the 

constituent RSC code, the overall performance of the proposed coding scheme has shown 

a small degradation as compared to the classical turbo code. 

At this phase of study, simple dummy bit insertion patterns fail to improve the 

performance of turbo coding. However, we have demonstrated that using dummy bits is a 

feasible method of attacking the multiplicity of low-weight codewords. Finding a non-

trivial dummy bit insertion patterns that can improve the performance of turbo code can 

be a topic for further research. 

In this thesis, we have proposed PQMA for wireless ATM, accommodating multimedia 

services and support distributed multiple access with flexible bandwidth assignment. We 

have demonstrated that adopting turbo coding with slow frequency hopping multiple 

channel access can effectively combat slow flat Rayleigh fading channels. Using Iterative 
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Channel State Estimation technique to provide channel state information for turbo 

coding, we have shown a performance very close to using perfect channel information. 

We conclude that PQMA adopting RCPTC can effectively support ATM services over 

wireless media. 
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