
Issues in a Very Large Scale Distributed
Virtual Environment

SO, King-yan Oldfielc.
• \

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science & Engineering

Supervised by:
Prof. John C.S. LUI

© The Chinese University of Hong Kong
June 1999

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole ofthe materials in the thesis in a pro-
posed publication must seek copyright release from the Dean of the Graduate
School.

}

/ ^ ^ ^ (卜,统系.書園^^&

k 2 1 FB ® n i j
tev J J
^̂ ¾^ uivr. _;:;iY / ^ /
\KHiER;.r:Y mimy<^Jf

^ ^ S K

大型分佈式虛擬環境的硏究項目

蘇敬恩

論文摘要

隨著多媒體的硏究和網絡技術的發展，大型分佈式虛擬環境將得到實現。在大

型分佈式虛擬環境中，數以千萬計身處於不同地方的用戶，可以透過計算機網

絡來在一個同共同的虛擬環境中遊覽、交換資訊和溝通。

當我們要在局域網和廣域網中建立大型分佈式虛擬環境時，我們需要一個能同

時應付極大量的用戶’又能處理在整個網絡當中不同結點在通訊上延遲的不同

的系統建構。就此，我們把這個問題制定成爲一個劃分問題，並爲此建議了幾

個不同的算法來解答這個劃分問題，以致當我們把整個大型分佈式虛擬環境的

工作量分配到不同計算機網絡結點時，我們亦能同時減低因爲這個分配所引起

對計算機網絡帶寬的額外需求。

理想來說，在大型分佈式虛擬環境中，任何一個用戶在虛擬環境中的一舉一動，

都應該立即被傳送到其他的用戶的計算機中°換言之’我們要爲所有用戶提供

一個一致的虛擬環境。要保持不同用戶的虛擬環境的一致性，我們需要做透過

計算機網絡來做一些同步化的工作。我們就此建議了一些子圖建立的算法，使

我們可以透過組播來更有較的在計算機網絡中傳送同步化的資料。我們亦提供

了一些同步化的機制來達致不同用戶的虛擬環境的一致性。最後，我們定義了

何謂虛擬環境的一致性’並根據這定義和一些系統的參數，用不同的方法演算

出該系統的最佳同步化間距。

Issues in a Very Large Scale Distributed Virtual
Environment

submitted by

SO, King-yan Oldfleld
for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Advances in the multimedia and networking technologies allow the realization of
the distributed virtual environment (DVE) system. A DVE is a distributed system that
allows many users who are located in different nodes in the network to concurrently
explore and interact with each other in a high-resolution, 3-dimensional, graphical
virtual world.

In general, a DVE can be operated in either a local area network (LAN) or a
wide area network (WAN). It is important to have an architecture which can handle
both the large number of users and the variation on the network delay throughout the
whole network. We formulate the load balancing problem as a partitioning problem,
and then we derive some algorithms to solve it, so that as the load is distributed, the
total network bandwidth requirement is reduced at the same time.

Each user in a DVE is represented by an avatar and any action taken by an avatar
should be observable immediately by all other avatars in the same virtual environ-
ment and to provide such a consistent view, synchronization is required. To allow
the efficient use of the underlying network resource, construction algorithms for some
communication subgraphs are described. Then, we propose a mechanism to perform
object state synchronizations. Afterward, we define the notion of consistency and fi-
nally, we describe several methods to derive the optimal synchronizing interval based
on the consistency requirements and the system parameters.

i

Acknowledgments

—I would like to thank Prof. John C.S. Lui, my supervisor, for his guidance and
patience. He never fails to provide me with his insightful advices and comments on my
research. He is always here to give whatever support to his students. He also helped
me a lot on my job searching. I am proud to be one of his students.

I would also want to express my thanks to my colleagues in SHB 1026, for the
discussions on our research, the informal reviews on our research papers, the wonderful
games and chats. I will never forget the time I have in there.

Finally, I would like to thank all of my family members and my girl friend, Ling,
for their support, care and love. My parents can really provide me with an excellent
environment so that I can concentrate on my studies, their dedication to their children
is one of the most wonderful gift from my God. I praise the Lord my dearest God.

ii

Contents

•

Abstract i

• •

Acknowledgments u

1 Introduction 1

1.1 Evolution of Communication Technologies 1

1.2 The Internet 2

1.3 The Distributed Virtual Environments 2

1.3.1 Features of DVE 3

1.3.2 Current and Potential Applications 4

1.3.3 The Challenges 5

1.4 Our Contributions 6

2 System Architecture 7

2.1 The SSDVE and MSDVE Architectures 7

2.2 Issues in the MSDVE Architecture 8

2.2.1 On the Server Side 8

2.2.2 On the Client Side 8

3 Balancing Work Load and Reducing Inter-server Communication 10

3.1 Problem Formulation 10

iii

3.1.1 The Area of Interest 11

3.1.2 The DVE Cells 11

3.1.3 Expected Number of Avatars 12

3.1.4 Cost Metrics in Different Types of Network 13

3.1.5 Problem Definition 14

3.1.6 Complexity 18

3.2 Partitioning Algorithms 19

3.2.1 A Simplified Case 19

3.2.2 The General Case 19

3.3 Experiments 22

4 Communication Sub-graph 31

4.1 Problem Formulation 31

4.1.1 Optimization Metrics 32

4.1.2 Design Considerations 32

4.2 Communication Sub-graph Construction Algorithms 34

4.2.1 The Minimum Diameter Sub-graph (MDS) 34

4.2.2 The Core-based Tree (CBT) 37

4.2.3 The Minimum Spanning Tree (MST) 40

5 Synchronization 42

5.1 Synchronization in a DVE System 43

5.2 System Model 46

5.2.1 Problem Definition 47

5.2.2 The Markov Chain Model 47

5.2.3 Deciding the Threshold 少 49

iv

5.3 Optimal Synchronizing Interval 50

5.3.1 An "on-average" Guarantee 50

5.3.2 A Stochastic Guarantee 52

5.3.3 Finding p with r and 少 52

5.3.4 Searching for r* 54

5.4 Experiments 55

5.4.1 Simulation Results 55

5.4.2 Theoretical Results 58

6 Related Work 63

6.1 Load Balancing on DVE 63

6.2 Object State Synchronization Techniques 63

6.3 Group Communication and Multicasting 64

6.4 DVE System Development Toolkits 64

6.5 Example DVE Systems 65

7 Conclusion 66

7.1 A Vision to the Future 66

7.2 Conclusion 66

Bibliography 68

V

List of Tables

5.1 Parameters used in the Simulation in Figure 5.8 57

5.2 Comparisons of Simulations and Theoretical Results 62

！

i
i I
i
i

1
I
！

j
(‘

I ‘ .
i i]

.1 I
•I :1

I
.；)

• j

•(j

丨] H
v! I
、]
-.1

:i 1"：1 :、•
•丨！
！ ! 丨i

II
i'j i •• r
I
[:::! 丨'1 n!
ri
1.1 n I . •

N vi I I
.:I :-i
i j
：i I

List of Figures

2.1 System Architecture for (a) SSDVE; (b) MSDVE 8

3.1 Relation of the Size of DVE Cell and AOImax 12

3.2 Bus-based Network 13

3.3 Switch-based Network 14

3.4 The Original DVE 15

3.5 The Transformed Graph 15

3.6 Hexagonal Honeycomb Partitioning 20

3.7 Virtual World with a 4 x 4 Cells under (a) Uniform (b) Skewed (c)
Clustered distribution 24

3.8 Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy . . . 24

3.9 Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy . . . 25

3.10 Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy . . . 26

3.11 Virtual World with a 25 x 25 Cells under (a) Uniform (b) Skewed (c)
Clustered Distribution 26

3.12 Partitioning under (a) Baseline (b) Bisection Policy 27

3.13 Partitioning under (a) Baseline (b) Bisection Policy 27

3.14 Partitioning under (a) Baseline (b) Bisection Policy 28

3.15 Partitioning under (a) Baseline (b) Bisection Policy 28

3.16 Partitioning under (a) Baseline (b) Bisection Policy 29

vii

3.17 Partitioning under (a) Baseline (b) Bisection Policy 30

4.1 MDS Example (a) the Original Graph (b) MDS of Graph in (a) 37

4.2 An Example of CBT Construction . . . 40

5.1 Aggressive Object Synchronization (AOS) Technique with dmax being
the Maximum Network Delay 45

5.2 Dead Reckoning Synchronization Technique 45

5.3 Dead Reckoning Synchronization Technique with Synchronization Mes-
sage and dmax being the Maximum Network Delay 46

5.4 The Markov Chain with L = 2 47

5.5 The Markov Chain with Infinite State Space 52

5.6 The Chopped Markov Chain 53

5.7 Simulations of an Example System 56

5.8 Simulation Results Showing the Effect on the Skewness of the System
Loadings 58

5.9 The Difference with or without Network Delay 59

5.10 Optimal Synchronizing Interval Derived for an "on-average" Guarantee 60

5.11 Effect on the Value of \pa -Pb\ 61

5.12 Effect on the Absolute Magnitude of pa and pt 62

viii

Chapter 1

Introduction

Communication is a process by which information is exchanged between individuals
through a common system of symbols, signals or behavior. Communication is im-
portant for any individual inside a society to establish relations and produce mutual
benefits.

1.1 Evolution of Communication Technologies

The earliest forms of communication among human beings have the limitation that they
can only be used when two individuals are sufficiently close to each others. Examples
include verbal conversations, communication through bodily gesture, etc. Later with
the commencement of the postal service (including the delivery of letter by pigeon,
etc), people can communicate with each others remotely. However, there is usually a
large time lag after the initiation of the communication to the arrival of the information
at the receiver side. Only after the invention of the telegram and later the telephone
system, real time communication was then possible.

Modern communication technologies like the telegram, telephone system, the fac-
simile, the video conferencing system, are proved to be very useful in the modern
society by their wide popularity. These technologies are designed to suit various needs
and they have been enhanced in such a way that they are becoming faster and cheaper.
Information is becoming extremely vital in the business world and the efficient trans-
mission of information is very important.

However, the above mentioned communication technologies imposed a limitation
on the format of the data being transmitted, for example, we can only communicate
through voice with a telephone. Even with the video conferencing technology, we are

1

Chapter 1 Introduction £

still limited in the transmission of images and voice. This limitation, however, does
not exist in a computer based communication network.

1.2 The Internet

The Internet is the largest global computer network in the world, and it is also the
first globally available computer network. The number of computers connected to the
Internet keeps increasing everyday.

With the rapid expansion of the Internet, computer has become one of the most
important tools for communications and information exchange. Notice that the com-
munication technologies mentioned previously can also be implemented in a computer
network. On the Internet, we have the email service to provide postal like services,
we have the talk utility in UNIX to provide real time conversations based on text, for
example.

With the World Wide Web, documents with graphics or even multimedia data
can be incorporated together by using the Hypertext Makeup Language (HTML) and
then transmitted by using the Hypertext Transmission Protocol (HTTP) through the
Internet. Not only text or images can be transmitted, but it can also support real
time audio, video data, etc., by means of extra plug-ins in the web browsers. The web
starts a complete revolution in the communications based on the computer network,
and its rate of growth shows its usefulness and popularity.

Since multimedia data can be transmitted through a computer network and there-
fore there is virtually no limitation on the format of data being transmitted. For
example, a designer can send a three dimensional geometrical model of an aircraft
prototype to an aeroplane developer through the computer network, while in the old
days, we can only send the blueprint of the design on the paper, say by using facsimile.
The growth of the Internet opens up the potential ability on the further use of this
flexible and efficient means of communications.

1.3 The Distributed Virtual Environments

With the advances in computer graphics, multimedia systems, parallel/distributed
systems and high speed networking technologies, it is now possible for the computer
scientists and engineers to build a distributed virtual environment (DVE) system [26 .

Chapter 1 Introduction £

A DVE is a distributed system that allows many clients who may be located in different
nodes in the network to concurrently explore and interact with each other in a high-
resolution, 3-dimensional, graphical virtual environment (or virtual world). Clients
who are exploring the virtual environment can (1) extract relevant information about
the virtual environment (e.g., by sending database query to the DVE system and
inquire about the state of any object in the virtual environment), (2) communicate in
real time with other clients who are also exploring the same virtual environment. Like
any other computer technology, DVE will change the way how people work, interact
and share the information. In the near future, people may regularly log in a DVE
system just like we read our email today. Through the DVE system, they can enter
a highly graphical computer generated virtual world and they can meet and interact
with other people.

1.3.1 Features of D V E

The DVE provides the following special features which is either unique or is especially
attractive with respect to any other existing technology:

1. The DVE breaks the barrier of geographical separation. Users from different
part of the world can join the same virtual world through a DVE system on the
computer network. It saves the time for long-distance traveling, and it certainly
reduces the cost.

2. The DVE provides a computer generated environment such that it might not
necessarily be real. Part of the environments can be computer simulated and it
is useful for training, for examples, astronauts can be trained inside a DVE with
a computer generated space-craft, soldiers can learn how to react to different
situations in a simulated war-field environment.

3. The DVE produces a common environment to the users so that they can be more
involved in the interaction. Unlike the video conferencing technology, every user
is not bounded inside their own room. They share a common virtual world and
yet, it poses no threat to any of the participant.

4. The DVE creates a virtual world such that it can be treated as the real world.
Nearly everything can be done in reality inside the virtual world. A user can, for
examples, shake hand with other participants, and even play cards, etc.

Chapter 1 Introduction £

1.3.2 Current and Potential Applications

The Distributed Interactive Simulation (DIS) is a similar concept to the DVE and
it is now widely used in military applications. It provides a realistic computer gen-
erated environment and it supports thousands of simultaneous users in the training
of the armed forces. Immersive simulators are used for teaching the army on how to
operate military vehicles such as the planes, helicopter and tanks in a virtual world
with simulated enemies. Strategic planning can be done with the help of these DIS
applications.

As for an example of a civilian use of a DVE system, we consider the following
situation to show how the DVE technology may affect our daily life and business
operation. An architect from France, a civil and a structural engineer from the Los
Angeles, a financial planner from Hong Kong and an interior designer from Tokyo, who
are having a business meeting concerning about the design and financing issues of a
new high-rise office complex which will be built in London. Under the DVE system,
these people can interact in a virtual world of the new high-rise office complex that they
are proposing to build. Each participant in this business meeting can virtually walk
through the high-rise office building. They can interact and carry out the discussion
without leaving their own homes. For example, in this virtual environment of high-rise
office complex, each user in the meeting is represented by a 3D object, which is known
as an avatar, and each participant can walk around in this virtual office building, and
in the process, they can rearrange any 3D object (e.g., furniture, paintings, selecting
different kinds of wall papers, . . . etc) in the environment. Any change to a 3D object
in this virtual environment will also be visible to all the participants. Also, during the
meeting in this virtual 3D environment, the participants will be able to interact with
each other in real time, as well as to inquire the information about the virtual world
that they are exploring.

Note that there are many other types of application that can be built in the form
of the DVE system, for example:

1. Education: Students and teachers can interact in a virtual classroom. For exam-
ple, the teacher can guide a group of students and together, they can explore a
virtual museum and the teacher will be able to explain the historical implication
of each object in the exhibit to the students.

2. Collaborative Group-ware Application: Either in a business or engineering de-
velopment environment, each participant in the meeting can see the changes of

Chapter 1 Introduction £

the business models or engineering designs, and be able to inquire the specific
information about the product that they are trying to market or to build.

3. Internet Shopping: A virtual shopping center such that buyers and sellers can
interact and negotiate about the price of the selling item and at the same time,
people do not need to leave their homes and still be able to visualize the products
in a high-resolution, three dimensional format. It is definitely more intuitive and
immersive than the web-based counterparts.

4. Entertainment: Network computer games can be built in the form of a DVE and
more players from different part of the world can participate even if they do not
know each others. Imagine a football game which involves twenty-plus people
around the world!

5. Tele-presence: Robotic facilities in remote site can be controlled through the cor-
responding simulated objects inside the virtual world of the remote site. Sensors
can be installed in the remote site so that the state of the objects inside the
virtual world can be kept synchronized with the real world objects.

6. Cooperated Interior Designs: Designers from different part of the world can
jointly conduct interior design work inside a room of a virtual building.

1.3.3 The Challenges

To deploy a DVE system in a local area network (LAN), a private network or even
in wide area networking environment, such as the Internet, we need to design a cost-
effective, scalable DVE system. There are many research issues that need to be ad-
dressed. For example:

• Designing an efficient back-end database engine so as to give good throughput
and response time for any query submitted by the clients who want to know some
information about the virtual environment that they are exploring.

• Designing an efficient communication protocol so that clients who are located in
different regions of the world can communicate in real time without consuming
too much network bandwidth and with acceptable delay.

• Maintaining that each user will have a consistent view of the virtual world. In
other words, if there is an action taken by any user in the virtual world or if
the state of any object in the virtual world is changed, every client should be

Chapter 1 Introduction £

able to view the change "immediately". In order to provide this consistent view,
the DVE system needs to perform a synchronization action to every user's view
periodically.

The first research issue can be answered by designing a back-end database engine
which can efficiently process queries (either in relational or spatial form) submitted
by the clients, as illustrated by the VINCENT system [13]. For the second research
issue, we can utilize some of the recent work on the Internet real time protocols, such
as the RSVP [27] and RTP[22], for the network bandwidth allocation and real time
communication.

1.4 Our Contributions

In this thesis, we try to solve some of the major problems in the design of a DVE
system. Our work can be divided into two parts. In the first part, we formulate and
solve the load balancing problem of a DVE system. In the second part, we discuss the
synchronization problem which includes the construction of the communication sub-
graph for the delivery of synchronization messages and the derivation of the optimal
synchronizing interval with a given set of consistency requirements.

Chapter 2

System Architecture

In this chapter, we describe the system architecture of our DVE system. Our DVE
system consists of two components namely the DVE server and the DVE client. The
DVE server is responsible for the maintenance of the state information of the objects
inside the virtual world. The DVE client, on the other hand, serves as an interface to
the users to the virtual world, it renders the view of the virtual world for the users
based on the state of the objects retrieved from the DVE server, it also calculates
the changes in the state of the objects based on the actions of the users and reflect
these changes to the DVE server. More than one users can join the same virtual world
session through different DVE clients.

2.1 The SSDVE and MSDVE Architectures

A straight forward way of implementing a DVE system is to use a single DVE server
to maintain the state of the objects in the virtual world. We call this the Single Server
DVE (SSDVE) architecture. With the SSDVE architecture, we cannot scale up the
size of the virtual world arbitrarily since the computation power of a single server
machine is fixed. This poses a limitation on the size of the virtual world and also the
number of concurrent users.

However, instead of using a single server machine, we can use more than one DVE
server machines to maintain the state of the objects in the virtual world. We call this
the Multiple Server DVE (MSDVE) architecture. With the MSDVE architecture, the
virtual world is divided into several partitions and each of the DVE server machine is
responsible for maintaining the state of the objects inside their own partition.

With the MSDVE architecture, any user can join the virtual world through a DVE

7

Chapter 2 System Architecture ^

client to connect to the DVE server which is responsible for maintaining the partition
ofthe virtual world that the user is interested in. The MSDVE architecture is scalable,
since we can always add more DVE server machines to increase the total computation
power, so that a large virtual world can be maintained. Figure 2.1 illustrates the
SSDVE and MSDVE architecture.

^ • unicast communication ^ _ multicast communication

/ \

DVE DVE ^__^ DVE ^_^ DVE
Server Server Server Server

(¢^¾) (¾..¾..¾)
DVE DVE DVE DVE DVE DVE DVE DVE DVE DVE
Client Client Client Client Client Client Client Client Client Client:

(a) (b)

Figure 2.1: System Architecture for (a) SSDVE; (b) MSDVE

2.2 Issues in the MSDVE Architecture

We assume the MSDVE architecture in the rest of this text. The issues in the design
and implementation of a very large scale DVE system based on this architecture are
covered.

2.2.1 On the Server Side

The first issue we need to address is the work load distribution among the DVE servers.
However, when we divide the virtual world into partitions, inter-server communication
is required. We inust derive a partitioning scheme such that as the work load is shared
ainoiig the DVE servers, the amount of overhead due to this inter-server communication
is minimized. The detail about this problem and our proposed solutions are given in
chapter 3.

2.2.2 On the Client Side

Since the DVE clients of the same virtual world session can be running in different
machines, the views of the virtual world rendered by these clients may not be the
same. We would, however, want to keep these deviations to be as small as possible.

Chapter 2 System Architecture ^

We called this property view consistency. In chapter 4 and chapter 5, we discuss how
to maintain the view consistency among the DVE clients which are connected to the
same DVE server.

In chapter 4, we describe what is a good communication subgraph for the deliv-
ery of the synchronization messages among the DVE clients through the multicasting
technique. Then, we propose some algorithms to derive a suitable communication
subgraph depends on the nature of the application. In chapter 5, we present some
synchronization mechanisms and then we show how to derive the parameters for those
synchronization mechanisms with a given set of consistency requirements and system
parameters.

Chapter 3

Balancing Work Load and
Reducing Inter-server
Communication

In this chapter, we discuss about the load balancing problem in a DVE system. The
computation power required by a very large scale DVE system is huge and therefore,
it is neither scalable nor cost effective to implement such a big system in a single
computer. With more than one computers, we have to consider the problem about
how to use the computing resources in these computers.

In this chapter, a mechanism called the partitioning [14] is proposed to build a cost-
effective and scalable DVE in a network cluster of computers. The system architecture
is first described, and then the partitioning problem is formulated and algorithms are
proposed to solve the problem. Finally, experimental results are shown to demonstrate
the effectiveness of the algorithms proposed.

3.1 Problem Formulation

With the MSDVE architecture described in chapter 2, the problem is to decide how
to divide a virtual world into partitions and to assign them to a given set of server
computers. We call it the partitioning problem.

By dividing the virtual world into different partitions, inter-server communication
is required when an avatar from one partition needs to interact with another avatar
or objects in another partition. Therefore, the partitioning scheme should be able to

10

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 11

divide the work load of maintaining the object states, and at the same time, minimize
the inter-server communication induced by such a division.

We first introduce some necessary concepts like the area of interest [17] and the
DVE cells. Then, we introduce two methods to find the expected number of avatars
within a DVE cell. Afterward, we describe two different types of network and how
they affect our cost metrics in the optimization of the inter-server communication and
finally we define the partitioning problem formally at the end of this section.

3.1.1 The Area of Interest

The users of a DVE are called avatars inside the virtual world, an avatar can interact
with other avatars as well as objects within the virtual world. We define the AOI
of an avatar to be the area such that the avatar can interact with the other objects,
including the other avatars, within.

Definition: The AOI of an avatar A is defined as the circular region with radius r^
measuring from A, i.e. A is the center of the circle, such that the value of r^ depends
on the properties of the avatar A.

In general, the AOI of an avatar can be in arbitrary shape but for the sake of easier
analysis, we use a disc as the shape of the AOL

3.1.2 The D V E Cells

The inter-server communication cost of a partitioning scheme is characterized by the
number of avatars which can interact with the other avatars or objects in another
partition. In another words, inter-server communication is required when the AOI of
an avatar in one partition encloses the other avatars or objects in another partition.

By using the concept of AOI, we divide the virtual world into small regions called
the DVE cells which can then be used as the basic unit of the area in the partitioning
of the virtual world and this division scheme can greatly simplify the evaluation of the
quality of the partitioning scheme.

We divide the virtual world into small square regions and we call them DVE cells.
We limit the size of DVE cells for a virtual world of avatars to satisfy the following:

I < rT' < S

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 12

where r^®^ = maxvAi{^Aj, and by imposing this restriction to the size of the
DVE cells, we ensure that the AOI of an avatar will always exceed its home cell,
as shown in Figure 3.1. More importantly, no AOI can run across two DVE cells.
Therefore, the communication cost between two adjacent DVE cells, either horizontally
or vertically, if they are assigned to different partitions, can be simplified to consider
only the avatars in the neighboring DVE cells instead of considering all the avatars in
the whole neighboring partition.

• 丨 : 》 • [• I
I • I •

• [I
!"X^J^"""*"

' - i - H ^ v - - 1
• • r • •: • • s

I j • ,,

Figure 3.1: Relation of the Size of DVE Cell and AOImax

3.1.3 Expected Number of Avatars

We propose two methods to find the expected number of avatars inside the DVE cells.
The first one is an analytical method based on the theory of Markov Chain, and the
second one is based on the run time statistics of the virtual world.

Setup time method: Analytical Method

We represent the movement pattern of each avatar by a Markovian Process. Let M^
be the mobility matrix of an avatar A where

{ r a t e of avatar A moving from cell i to cell j for i / j

-T^k^i^Alhk] for i = j

Given the mobility matrix M^ of avatar A, we can easily compute the steady state
probability of avatar A at any given cell in the virtual world by solving the following
system of linear equations:

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 13

TT̂ MA = 0

TT̂ e = 1

where 7TA[i] is the steady state probability that avatar A is in cell i and e is the
column vector of l's. Note that if all avatars can provide their mobility matrices upon
entering the virtual world, then an effective server-cell assignment can be obtained
during the arrival instants of each avatar.

Run time method: Statistical Method

If an avatar cannot provide the mobility matrix, we can approximate the expected
number of avatars in a DVE cell by keeping a record on the number of avatars during
the run time of the DVE. For example, we can take n snap shots of the DVE on the
number of avatars in the DVE cells, and then the expected number of avatars of the
DVE cells can be approximated by dividing the total number of avatars which have
appeared in that DVE cell by n.

3.1.4 Cost Metrics in Different Types of Network

We describe two types of communication network and we show how they affect our
cost measurement in the optimization of inter-server communications.

Weight of Edges in Bus-based network

Shared Bus

© © © ©
Cl,C2,C3,C4 are computers

Figure 3.2: Bus-based Network

In a bus-based network, all the communication messages among the DVE servers
are sent and received from this bus. Therefore, a good partitioning scheme should try
to minimize the total amount of communication messages among all the DVE servers.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 14

Weight of Edges in Switch-based network

._ (¾ ^

&"""^^)

Figure 3.3: Switch-based Network

In a switch-based network, the communication messages among the DVE servers
are sent and received virtually through a dedicated link, if this link is full-duplex, a
good partitioning should try to minimize the maximum size of all the communication
messages because messages can be sent and received in parallel and the total delay
due to communication is then the time required for the transmission of the message
having the maximum size.

3.1.5 Problem Definition

With the concept of the DVE cells, the partitioning problem becomes the assignment
of the DVE cells to the partitions or the set of available DVE servers.

We assume that the work load of a DVE server is proportional to the expected
number of avatars in the cells within its own partition. The inter-server communication
cost of the assignment is proportional to the number of avatars in the boundary DVE
cells, because only the avatars in the boundary DVE cells can generate inter-server
communication.

We give a formal definition of the DVE partitioning problem by transforming it into
a graph problem. With a given DVE, we can obtain the expected number of avatars
within each cell with the method described in Section 3.1.3. We then transform the
DVE system into a graph with its nodes representing the DVE cells and its edges
representing the communication link between the adjacent cells.

Let us give an example to illustrate this idea, the DVE in Figure 3.4 is the original
DVE, the graph in Figure 3.5 is the graph transformed from the original DVE system.

Notice that not all the weight of the edges of the graph in Figure 3.5 are shown for
the simplicity of illustration and drawing. The value on the nodes are the expected
number of avatars in the corresponding DVE cells, while the weight ofthe edges can be
calculated in several ways, based on the nature of the network connection within the

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 15

• ； I • • I • I I眷 •參
• •丨 I

;L r v - - " v
I 丨 •

• •丨 書丨 攀
I • • •

• I ,
• I • •

參 I •
• •• : • •： • •

I 丨 •
Figure 3.4: The Original DVE

國 0 ¾ ^
Figure 3.5: The Transformed Graph

DVE server cluster. In the example above, we have summed up the expected number
avatars in the two end nodes to form the weight of the edges (i.e. we are modeling a
bus-based network), and the weight of the diagonal edges can be calculated similarly.

Before giving the formal definition of the DVE partitioning problem, let us define
the following notations:

N = Number of cells that compose the whole virtual world

P = Number of partitions or servers in the DVE system

Ci = DVE cell i, 1 < i < N

n = Number of avatars in the DVE system

Ai = Avatar i where i = 1,2, . . . , n

Mi = Mobility Matrix for Ai

Wi = Work load in cell Cj, i = 1,2，... , N

Lij = Communication cost for the link between Ci and Cj, 1 < i,j < N

wi = A non-negative weight of the work load cost on a server

W2 = A non-negative weight of the inter-server communication cost

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 16

C^ = Work load cost of a given partition configuration V

Cp = Communication cost of a given partition configuration V

._ Cv = Total cost for a given partition configuration V

With the above notations, the graph G can be obtained from a given DVE system
with the following algorithm:

Algorithm Graph_Transform(Input: DVE; Output G);
begin

For each cell Q, create a node V{ in G and assign Wi with
the expected number of avatars in cell Q；

For all cell Ci and Cj, create an edge Eij in G with end nodes Vi and Vj
if Ci and Cj are adjacent;
For all Eij G E, computer the edge cost Lij = W{ + Wj ；

end;

We are now in the position to formally define our DVE partitioning problem. Given
a graph G = (V, E) with |V| = N, V is the partition that divides V into P (where P

is the number of servers) disjoint subsets Vi, V2,... , Vp such that Vi U Vj = 0 for i + j
and U � i ^ = V. Given a partitioning scheme V, we can define the work load cost
C ^ on this partition such that:

cr = E(Eî -5i) (3.1)
3=1 vieVj

Note that the term ^ is the work load under the ideal partitioning scheme where
there is equal work load in each partition. Therefore, the physical interpretation of
the above equation is to represent the deviation of work load from the ideal case.

One might argue that if all the server computers can handle the work load, there is
no point to make them share the same amount of work load. Let us consider an extreme
case such that the work load of one of the server has reached its limit, and therefore,
that server cannot admit any more new users. On the other hand, a system with all

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 17

the work load equally shared can handle newly admitted users if the total computation
power of the servers allowed, and so it is better for us to devise a partitioning scheme
which can distribute the work load equally to all the server nodes, rather than just to
ensure every server nodes can handle the work load assigned.

Let us define the following function between a cell u and a partition Vi：

3 D , , T,� / 1 ii3veVis.t. EuveE
ADJ(u,Vi) = < . (3.2)

I 0 otherwise

Then , given a partitioning scheme V, let Cij be the communication cost between
partition Vi and Vj and Cij can be expressed as:

Cij = Y. W« . ADJ(u, Vi) + J2 W^ . ADJ(u, Vj) (3.3)
ueVi ueVj

Let Cp be the communication cost for partitioning scheme V and it is:

p P

^ = E E � (3-4)
i=l j>i

Therefore, C^ represents the total inter-server communication cost given the par-
titioning scheme V. The overall cost for the partitioning scheme V can be expressed
as:

Cv = w1C^+w2C^ (3.5)

Finally, the partitioning problem is to find an optimal partitioning scheme V* such
that

C^ = mm{Cp} (3.6)

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 18

3.1.6 Complexity

Before going to the partitioning algorithms, we give a proof of the following theorem:

Theorem 1: The DVE partitioning problem is NP-complete.

Proof: Let us consider a simplified version of the partitioning problem where w2 = 0,
which correspond to the case that the network has infinite communication bandwidth
and so the inter-server communication cost is negligible. Given a set of nodes in V,
we partition them into P disjoint subsets Vi, V2,...，Vp such that uf^^Vi = V and the
partitioning cost is:

Cv = j 2 \ ^ y i - ^ \ (3-7)
i=l

where Wvj = Y^vieVj 恥 .T h e main idea of the proof is to transform the subset sum
problem [9], which is known to be NP-complete, to the above simplified version of the
partitioning problem.

The subset sum problem can be described as follows. Given a set of real numbers
Af = {a1 , a2 , . . . ,aAr} and a real value k, the subset sum problem is to determine
whether there exists a partitioning of the set Af into disjoint partitions A/l,A2,. . .A/"z
such that the sum of the elements in each A/̂ is equal to k.

Given an instance of the subset sum problem, the reduction works as follows. We
create a DVE cell for each element ai G A/", and the work load of the cells are the value
of the element a{. The number of partitions P for the partitioning problem is:

P = ^ | ^ (3.8)
K

If an input instance of the subset sum problem should return a yes, than it implies
that the corresponding partitioning problem can be evenly divided up the work load
among P servers. If the result is no, this implies that the partitioning problem will
have a load imbalance cost which is greater than zero. Since we can reduce the input
instance of a subset sum problem, in polynomial time, to the input instance of a par-
titioning problem and then use the algorithm of solving the partitioning problem to
solve the subset sum problem, therefore, the partitioning problem is also NP-complete.

•

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 19

3.2 Partitioning Algorithms

It has been shown in the earlier section that the general DVE partitioning problem is
NP-complete. Therefore, we try to look into a simplified case to gain some insights of
the general problem.

3.2.1 A Simplified Case

In our simplified DVE model, we assume that the avatars are uniformly distributed
over the whole DVE, that is the number of avatars in all the DVE cells are equal.
With this assumption, the area of a partition will then be proportional to the number
of avatars in this partition.

Another implication is that, the number of avatars lying on the boundary of a
partition is proportional to the length of the boundary of this partition. Therefore, by
minimizing the total length of the boundaries of all partitions, the communication cost
of the DVE server cluster is minimized.

The DVE partitioning problem in this simplified case is then become the packing
of arbitrary shaped areas into a large area, such that the total length of the boundaries
of these areas is to be minimized.

This problem has been evaluated by mathematicians and it is a general belief that
hexagons should be the best shape of the partitions under the above metrics. The
hexagonal honeycomb conjecture [18], has been proposed and formulated in a number
of ways.

Therefore, the DVE partitioning problem in this simplified case can be solved by
using hexagon as the shape of the partitions. We use it as an approximation to the
general case of the problem provided that the deviations on the expected number of
avatars are small among the DVE cells. At the same time, it can be used as a baseline
for us to evaluate and compare the performance of the other heuristics which attempt
to solve the general problem. The hexagonal partitioning scheme in the simplified
DVE model is shown in Figure 3.6.

3.2.2 The General Case

The partitioning scheme for the general case should be able to capture the information
on the distribution of avatars to maintain the load balancing as well as communication

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 20

^ A ^

v V \ / V \ ^ W ^
- I a2 1 I 1 I I

^ Y W Y v Y
Y ^ ^ Y r ^ ^ ^

j�AAvA^

Figure 3.6: Hexagonal Honeycomb Partitioning

cost minimization.

Due to the dynamic nature of the distribution of the avatars in the virtual environ-
ment, we have to re-partition the DVE when required, so as to maintain the efficiency
as well as cost effectiveness. That is, we have to find out when should we invoke the
partitioning algorithm again to produce an efficient partitioning. Two simple criteria
are that either when the work load is exceedingly skewed or when the communication
cost among DVE server increases too much, that is, an imbalance of message cost in a
switch-based network or the an dramatic increase in the total amount of messages in
a bus-based network.

Exhaustive Partitioning Algorithm (EP)

As the name implies, it enumerates all the possible partitioning schemes and try to
find the one with lowest cost. This algorithm is optimal but the complexity is 0 { P ^)
which is not feasible even for a moderate sized DVE.

Baseline Partitioning Algorithm (BP)

Given the NP-completeness nature of the partitioning problem, we try to study a
simplified version of DVE first. In the simplified DVE, the avatars are uniformly

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 21

distributed inside the virtual world. With this assumption, it implies that the number
of avatars in the boundary cell, which turn out to be the inter-server communication
cost, is proportional to the perimeter of the partitions. And load balancing in this
simplified version of DVE can be achieved by assigning equal area of the virtual world
to each of the available servers.

Mathematically, the DVE partitioning problem in the simplified version becomes
the packing of arbitrary shaped area into a large area such that the total length of
the perimeter of the small shaped area is minimized. Mathematicians proposed the
hexagonal honeycomb conjecture [18] saying that regular hexagon is the shape of the
partitions that we wanted.

For the ease of implementation, we use square instead ofhexagon in our experiments
below. And a performance drops of 7% can be derived by using square instead of
hexagon, theoretically. The baseline partitioning algorithm (BP) is to assume that the
underlying distribution of avatars in the given DVE is uniform, even if it is not the
case. The complexity is 0(1).

Bisection Partitioning Algorithm (Bi-P)

This is our proposed attempt to give sub-optimal solution of the DVE partitioning
problem in the general case based on heuristics. We call this algorithm the Bisection
Partitioning Algorithm (Bi-P), and it is designed based on the concept of bisection.
Without the loss of generality, let us first present the Bi-P algorithm for N cell system,
and P = 2. Let PJ^ be the partition for the k^ server with n cells, initially, we set:

p ^ = V = {^1,^2, • • • , VN} ； A �= 0 (3.9)

Let Vi be the î ^ partition configuration and let Cp., the cost based on the above
equation, be the cost of partition configuration Vi. Based on the initial partition, we
have Vo — {P^, P2) and the corresponding Cp� . We then can find Vi by moving one
cell from P ^ to P® and compute the cost C^i • Note that the cell can be chosen in such
a way that the total cost of Cj>̂ is minimized, which can be achieved by considering
each cell in P ^ and this process takes a linear time with respect to the total number
of cells in the system. Formally, we have:

Vi = (Pi^~\ Pi) where i = 0 ,1, . . . , N (3.10)

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 22

and then 巧终1) can be derived by:

^ m) = (户广 - (叫) , / ^ + 1) (3.11)

= { P [^ - ' ^ - { v j h P i ^ M) (3.12)

for Vj e Pp—” and C^(i+i) is minimized.

Note that C p � a n d Cp^ represent the two extremes of the highest load imbal-
anced cost (i.e., all the cells are assigned to one server and there is no inter-server
communication). Therefore, the Bi-P algorithm is to choose a configuration that:

Pi* = {Vi\Cv, = ^min^{Cp,}} (3.13)

The above algorithm applies for P = 2. For larger number of P, we can first use
the Bi-P algorithm mentioned above, then choose a partition that has the largest work
load and then apply the Bi-P algorithm again until the desired number of partitions
is generated. The complexity of the Bi-P algorithm is 0 (^) ¾ ^ ^^"^ |0.

Cell Shifting Operation

Since only the EP algorithm can generate the optimal partitioning, that means there
are rooms for improvements for both the BP and Bi-P algorithms. A post processing
technique called cell shifting is proposed to improve the resulting partitioning. In
general, cell shifting operation is a process of assigning a cell from one partition to its
neighboring partition such that the resulting partition V' has a lower total cost Qp!
than Op. The cell shifting operation terminates when the total cost cannot be further
reduced by cell shifting. Therefore, it is intuitively clear that the resulting partitioning
after cell shifting operation should be at least as good as the original partition.

3.3 Experiments

In this section i, we present the experiments for various algorithms that we discussed in
the previous section. In experiment 1，we have a small virtual world with the dimension

^The experiment is a joint work with Mr. Peter T.S. Tam and Mr. M.F. Chan

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 23

of 4 X 4 cells and the number of avatars is 500 and P = 2. Since this DVE is small,
we can compare our proposed algorithms with the EP algorithm, which guarantees to
yield the optimal partition policy. In the second experiment, the have a large virtual
world which is composed of 25 x 25 cells with the number of avatars being 2500 and
P = S.

In general, we use three different methods to generate the position of each avatar
and they are:

• Uniform Distribution:. Let the position of an avatar be {x, y) and the values of
X and y are uniformly distributed between (0,T4) and (0, Vy) where Vx {Vy) is
the horizontal (vertical) dimension of the virtual world.

• Skewed Distribution: Given the size of the DVE world is (Vx, Vy), we divide the
number of avatars in the DVE systems into four equal sized groups, namely, Gi,
i — 1,2,3,4. Let {x,y) be the position of the avatar in group Gi. The value of
(x,y) is generated in such a way that x is uniformly distributed between (0, ^)
and y is uniformly distributed between (0, ^) . Under this scheme, most of the
avatars will be positioned within the square area defined by the two coordinates
[0,0] and (¾^,¾.

• Clustered Distribution: Given the size of the DVE world is (T4, Vy), we gen-
erate avatars around k > 1 clusters. First, we randomly generate k points
{x i ,y i) , . . . , {xk, Vk) such that Xi and yi is uniformly distributed between (0, Vx)
and (0, Vy) respectively. Then we divide the number of avatars in the DVE sys-
tem into k equal-sized groups, namely, Gi, G2,... , Gk- For each avatar in group
Gi, we generate its position in {x,y) where

‘ 0 if Xi + dx X n < 0
X = Vx if Xi + dx X 0 > Vx

‘ Xi + dx X 0 otherwise

‘ 0 if yi + dy x Q < 0
y = Vy if yi + dy x f2 > Vy

‘ yi + dy X 0 otherwise

Note that dx and dy are generated uniformly between (—1，1) and the parameter
$7 depends on the size of the virtual world. For example, we set 0 = 0.4 for the
4 X 4 cells sized virtual world and Q, = 3.0 for the 25 x 25 cells sized virtual world.

Experiment 1: In this experiment, the virtual world is composed of 4 x 4 cells with

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 24

the total number of avatars equal to 500 and the number of servers V is equal to two.
Figure 3.7 illustrates this virtual world under three different distributions.

T̂" I~~:~~~ • •"r : n ’ n j"""""̂ ""| j
- :...• :: ：： ,::.•、.：:'....

.. ..•• . •• .. . - ..-.‘，..： . 二...； .-••； •• . . “•• , , . • ‘，, ‘,. •... / .,. .:• • ‘...• • , - . . .:. ••'•;' ‘，... •••'''. ‘ .• ... • .-, . .-• .-. ^̂ , - : :‘• ‘；：̂. •：,•：•-••.. - •
. : : : : : . . • . , :

. • • . . •‘ . • • •
• . , •• • . .

.• • •- • • • •• . •• •. • '. • . . . •• ； • •. -
• . ‘ ‘ ‘.. . . ‘ • “ • ； - • ‘ ‘‘'...

• - . • •.. •‘ • . ,.-. . •
• • - . . . - • . •• . . . • ‘ •• • • ‘ •. • •.. . •• . - ,.... . • ‘ ', •

•• ； -. ： .:.• ...•. .-... -.: .. • •• •.-,.::.. .. :...、. .., , •. ‘；: . , . . .: .；-.,：•.：:
.........:.................: :9.‘:;,:.:.:....: ； ；.•： • •； . ~ ~ 「...:.,深:::.:..• • • . •• • . , ...:i .•.�，.. . •. - . , . . . •‘ ••/... / • ; . •., •• • . ‘ . • •• .-, "•• .

. - r • • i • •• . • • .. , . .-, ••• . • .,

:.........:,....|.:.:::...|.::,:.....丨 _i],.......:::..|.:. I . |,,:..:H:..:.i...
(a) (b) (c)

Figure 3.7: Virtual World with a 4 x 4 Cells under (a) Uniform (b) Skewed (c)
Clustered distribution

In this experiment, we set wi = w2 = 0.5.

When the avatars are uniformly distributed around in virtual world, we have the
< following result.

DVE with a 4 x 4 cells, 500 avatars under uniform distribution
Algorithm (C^) (C^) Overall Cost (Cp) Execution Time T

Exhaustive 22 235 128.5 3.341
Baseline 218 249 233.5 0.164
Bisection 22 243 132.5 0.002

Figure 3.8 illustrates the partitioning of various algorithms.

T "̂,-r r̂ T 厂 、 〜 ” \ pif|is*iin > i T̂],> : � \Fc •
酵參绍_藥_苟簿講藥雜簿舞:_驗辱__鎮| '̂ ^̂ ^W ̂ ^^^^^麵_攀離_麟靜1灘 f̂ m̂ŵ ̂^̂^̂ :̂織翁:凉.>勞與蘇(.“.丨丨

‘”‘零 * ‘ ！ 5 f ” “ ； g S g ^ ^ B “ î N I、 ||ps| B w i v.„, ”> 5；,*
y%,̂ v̂ |vrt̂ ŷ ^ ̂ > ‘^ f̂t̂ "-ŷ At l̂ ^̂ m^ ^^KS$ ‘ - i* A ijii.*Ww.wU'<̂、;_•_•—•“…丨i …> .L,><r>;j ‘ cU>p ŝ ？̂ J/ >'<i>̂ >̂̂.>Ĥ? ^̂ ^̂ -̂ ^̂爹嘴縱 N < l«S™ wwBI 厂；'、 < > î l_M̂ îiP®itti®S®iiŜ MiStfS_ ^̂ ^̂ B ^̂^̂^̂8纖續纖聽挺::推_ ^̂ ^̂ ¾ ^^^^^^:.:_丨二：；/吞辑:.:::纖::、禱丨^ 麵 &̂纖雄:纖缴.纖|幅银_錄_约絲_:| wXMW ̂ ^̂ ^̂ 该秘磁赛_:凝&>场翻！ «®MII •̂̂^̂鄉：’命站於：；…一瑪：维勸！ _纖__:發#麵__#$_#1##^_ ^^^8 ̂ ^^Bii&iiî teMM |»|*| ̂ ^^^wmm_mSmM ¾̂!¾¾¾¾¾̂ ¾¾¾̂ :¾¾!̂ ¾¾!¾¾¾ '^^^^m ̂^̂ ^̂‘_攀_雄_;_资_ ^̂ ^̂ ^ ̂̂̂^̂,.::雜巧纪:::.雄_钱輪.令
• I I•••••I j WA<*̂̂ V̂>4<**̂*̂>X̂**̂<*̂̂r ¾̂̂ *v •_••_“¥____• __W_•__wh_i < ，4_ ,今 |^^pi m^mm iX*ll ^¾¾! _麵1̂ |̂謹___鰱_11_謹翻擁_ Pl#lw ̂^̂ :̂讓__讓麵1__ m̂ Ŝ :̂ 8̂¾ ^̂ ŵ ^̂ ¾̂ î̂ ijî _î i_i_|i_ipî p_ i^^mM ̂ ^^^^騒_辦、;:4�: :::•_ mMm BII8 'mMm 1111¾ _ _ _ _ _ _ _ _ _ _ ilillil ̂ ^B:__:___ ^̂¾¾̂̂¾̂¾ ^^^^^^^^ 缴^^^^^^ ^̂ ^̂ ^̂ ^ 妨缺,筋^：^^^：;^^躲拼《^^^>:務％<»:<:>^^^”知-^：:>:~:^>^—-:电.子:广狭。游汽 ^^^^^^^^ »̂̂ ^̂ ^̂ v • ".:•�,.�,’:•�....:.:..•..•��•. .•:•..., -'.A,--{,'.v.v.;vry-̂/;.v̂
rnmmmfm*mm *mtmmmttmm mmmtmmtmtm <mmtmmtttmm ŷ M 今 ,‘t4«̂ < ,<;ty?'̂ �> v mmmmmmmm trtmtm>*t**Mmm » w=̂ v*
^mm m^m |i*| mmm _|8|疆||8__1||__ mmm ̂ ^B___II___
^^^^^^^ .¾̂̂ ¾̂:¾̂¾ '̂^̂^̂^̂^ ̂ ¾̂̂ ¾̂̂ ?̂ 磁蘇叙¥孩磁’豕^?'紋炼夕谈极滅钱练热々(知减纪1护年(殺港裕% SŜ̂ î̂ Ŝ<5? •"^^^^^^^^^::.•、':歡寂、終约、挺,减^^帮々)麵々為 IM̂MM M^^^M^M ?mM¥MM M̂MxMs 1¾¾<̂-̂¾¾¾¾̂ IM?iWM̂ ^^^^^^^�.:•^命叙麵^^丨“结为嚇知> •； :•:. .�<1
••翁零mm̂ m $mMtm$i纖霧鐵纖 |翁爾糖翻錄％__:錢嫩:___:_-憐绍 mmmMW<纖顯羅書钱3_:料:...贱改_释.卿
^^^^^^^ ^̂ ^̂ ^̂ ̂ ^̂ ¾̂̂¾ ^̂ ^̂ ¾̂ ^ 1<;¾;¾<>̂¾?̂¾.¾ im̂^̂%̂^ 安^^^^^^^二,饭吻〉:、.:飞)恕:'?〈於赞勢搏趣礙、

HiiiMMMMiMiMM2MliMHMMMiMMMjLiMMMMMMHMMlM«MMMMMMaîl \. 供 > ̂ ». {,：\ ^ ,̂ . ̂ . <¾.¾̂ ^ LuMMMMMHM>«LMMMMMjSid)̂ ^

(a) (b) (c)

Figure 3.8: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy
When the avatars are skewly distributed around in virtual world, we have the

following result.

一广.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 25

DVE with a 4 x 4 cells, 500 avatars under skewed distribution
.Algorithm (C^) {C^) Overall Cost {Cy) Execution Time T

.—Exhaustive 2 396 199 3.341
Baseline 388 205 2 ^ 0.171
Bisection 6 397 201.5 0.002

Figure 3.9 illustrates the partitioning of various algorithms.

• F F : i : : 圓
？一、 _ 画 ^^^^^a ^̂ ^̂ ^mr4̂ t-4''"*̂ 1

卜 " _ ^ H ： ⑶ 秦 + ^ 卜 ” 丨 I
' ^ " " ^ B ^ B ^ H f^^^-rt^m4^^^ ^r-i > :^ri
i t', !彻 L'>ifHp!;̂ h <? s ij > ” ‘ < r _ _
Liî/=iî L̂ ^̂ MMMiiHMMMMMM >>>>>>>«><>>>>« ZM Li»««««>̂>̂̂ J»»>«̂«£>W«*>i>̂-=»̂»>iL_da«î̂««̂̂ 1«̂̂L ^ ̂ ^^ ^ �“ ~ ^ ^ ^ ^ ^̂ .,....- ,,.̂ .-MSSfiSS

(a) (b) (c)

Figure 3.9: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy
When the avatars are distributed in a clustered fashion around in virtual world,

we have the following result.

DVE with a 4 x 4 cells, 500 avatars under clustered distribution
Algorithm [C^) (C^) Overall Cost {Cy) Execution Time T

fExhaustive 2 116 59 3.341
Baseline 4~~ 178 n 0.164
Bisection^ 2 116 59 0.002

Figure 3.10 illustrates the partitioning of various algorithms.

Experiment 2: In this experiment, the virtual world is composed of a 25 x 25 cells
with total number of avatars equal to 2500 and the number of servers V is equal to
eight. Two algorithms are compared on these worlds, which are the Baseline Algorithm
and the Bisection Algorithm.

Figure 3.11 illustrates this virtual world under three different distributions. In this
experiment, we set wi — w2 = 0.5.

When the avatars are uniformly distributed around in virtual world, we have the
following result.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 26

\ HA' ^ ^ih H�” Vi ^^^^P:'�“<A�<“<:�j ^ H ^ H ^ B ^ B
l*x,A4f4 u ^ >̂>̂>̂̂ M̂ ̂ ¾½^ ,，二|,一:—”— -‘"^ 1 ^M ̂ M ̂ B ^¾
1 r' ii { ^ �[� ” j ^ ^ ^ ^ ^ ^ ^ 、 & ： (\ & \ ' ; 換 \ ^ H ^ B ^ B ^ H
ir9imMmmMM ^rt ^ ^ ^ ^ ^ ^ ^ ^ H “書察‘“�‘
WiMw^^ _ . < “ A • ‘ <。> '^^^41^^>¾ ‘) ； ： <�、> s �.、入\、

+ r i b f e f e : ; : : v - � .
(a) (b) (c)

Figure 3.10: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy

^_i__i__夸言晶言言1____丨⑴回圓關圓圏⑴⑴

(a) (b) (c)

Figure 3.11: Virtual World with a 25 x 25 Cells under (a) Uniform (b) Skewed (c)
Clustered Distribution

DVE with a 25 x 25 cells, 2500 avatars under uniform distribution
Algorithm {C^) {C^) Overall Cost {Cy) Execution Time T

Baseline 536 1007 771.5 0.177
Bisection 5 1142 573.5 95.315

Figure 3.12 illustrates the partitioning of various algorithms.

When the avatars are skewly distributed around in virtual world, we have the
following result.

DVE with a 25 x 25 cells, 2500 avatars under skewed distribution
"Algorithm {C^) {C^) Overall Cost {Cy) Execution Time T

Baseline 1606 1156 1381 0.183
Bisection 103 1267 685 127.575

Figure 3.13 illustrates the partitioning of various algorithms.

When the avatars are distributed in a clustered fashion around in virtual world,
we have the following result.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 27

(a) (b)

Figure 3.12: Partitioning under (a) Baseline (b) Bisection Policy

(a) (b)

Figure 3.13: Partitioning under (a) Baseline (b) Bisection Policy

DVE with a 25 x 25 cells, 2500 avatars under clustered distribution

Algorithm (Cif) (C~) Overall Cost (Cp) Execution Time T

Baseline 2245.75 1402 1823.88 ·0.176

Bisection 555 2456 1505.5 152.270

Figure 3.14 illustrates the partitioning of various algorithms.

Experiment 3: In this experiment, the virtual world is composed of 25 x 25 cells

with the total number of avatars equal to 2500 and the number of servers P is equal

to eight. The virtual worlds are the same as the one found in Experiment 2. And

again, we apply two algorithms, the Baseline Algorithm and the Bisection Algorithm

to partition those worlds. However, we additionally apply the Cell-Shifting iterative

improvement method to the results and obtain better partitions. As usual, in this

experiment, we set Wl = W2 = 0.5.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 28

(a) (b)

Figure 3.14: Partitioning under (a) Baseline (b) Bisection Policy

When the avatars are uniformly distributed around the virtual world, we have the

following result (additional cell-shifting method).

DVE with a 25 x 25 cells, 2500 avatars under uniform distribution

Algorithm (C;') (C~) Overall Cost (Cp) Execution Time T

Baseline 356 1071 715.3 3.874

Bisection 5 1044 524.5 106.315

Figure 3.15 illustrates the partitioning of various algorithms.

(a) (b)

Figure 3.15: Partitioning under (a) Baseline (b) Bisection Policy

When the avatars are skewly distributed around the virtual world, we have the

following result (additional cell-shifting method).

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 29

DVE with a 25 x 25 cells, 2500 avatars under skewed distribution

Algorithm (C:) (C~) Overall Cost (Cp) Execution Time T

Baseline 1564 1081 1322.5 3.460

Bisection 103 1211 657 132.125

Figure 3.16 illustrates the partitioning of various algorithms.

(a) (b)

Figure 3.16: Partitioning under (a) Baseline (b) Bisection Policy

When the avatars are distributed in a clustered fashion around the virtual world,

we have the following result.

DVE with a 25 x 25 cells, 2500 avatars under clustered distribution

Algorithm (C:) (C~) Overall Cost (Cp) Execution Time T

Baseline 2635.75 995 1815.38 3.690

Bisection 555 2072 1313.5 162.289

Figure 3.17 illustrates the partitioning of various algorithms.

Chapter 3 Balancing Work Load and Reducing Inter-server Communication 30

(a) (b)

Figure 3.17: Partitioning under (a) Baseline (b) Bisection Policy

Chapter 4

Communication Sub-graph

Before going into the discussion on the synchronization mechanisms for maintaining
the view consistency of the DVE clients, we first present the ideas on the construction
of the underlying communication sub-graph [15] to support the delivery of the syn-
chronization messages through multicasting. We are interested in doing that because
we want to use the communication channels efficiently, and more importantly, we want
to know the maximum end-to-end delay, we call it dmax, for the delivery of the syn-
chronization message, in order to derive the optimal synchronizing interval in the next
chapter.

In this chapter, we describe various factors which affect the design choices of the
communication sub-graph. Then, we present several algorithms for the construction
of the communication sub-graph, depending on the those design considerations.

4.1 Problem Formulation

The underlying network among the DVE clients is represented by a connected graph
G = {V, E). Given the current DVE client set C{t) = {c1,c2,... , ĉ：}, we need to

find a connected sub-graph G' = {V',E') such that C{t) C V' and E' C E. Note
that in general, the number of nodes in G' is greater than k. The reason is that some
intermediate nodes are needed between the DVE client nodes so as to provide the
connectivity as well as to allow further optimization of the communication sub-graph.

31

Chapter 4 Communication Sub-graph ^2

4.1.1 Optimization Metrics

Since there are many possible communication sub-graphs G', we may want to optimize
the sub-graph construction based on the following metrics:

1. Minimize the maximum end-to-end delay between any two clients in G'.

2. Minimize the total bandwidth consumption by minimizing the total edge cost of
G'.

Formally, minimizing the maximum end-to-end delay refers to:

mrndmax{G') = m i n] max id{pij)} \ (4.1)
VG' VG' [^hj^c{t) J

where d{pij) is the delay in the communication path between client i and client j,
for i ^ j. Minimizing the total network bandwidth consumption refers to:

m i n (l i m S L ^ | (4.2)
VG' l t^oo t 1

where N(k) is the total number of messages which are in transit (e.g., the trans-
mitting messages which are in some communication paths in G') at time k.

4.1.2 Design Considerations

In this chapter, we consider two factors that may affect the optimization metrics on
the construction of the communication sub-graph. These factors are:

1. The underlying networking environment.

2. The type of membership of the DVE clients.

We classify the underlying networking environment into two major classes: the
LAN and the WAN (e.g., the Internet) environment. Under the LAN environment,

Chapter 4 Communication Sub-graph ^

the transmission bandwidth is high and the data transmission is usually fast with
low latency and reliable. For a DVE system to operate on a LAN environment, the
number of participants is usually small, for example, from tens to hundreds. Thus, it
is possible to use a centralized algorithm to construct a communication sub-graph so
as to minimize the maximum delay or to minimize the bandwidth consumption.

On the other hand, under the WAN environment which consists of many routers
and sub-networks, the communication delay between any two clients is not negligible.
The transmission bandwidth in the WAN environment is usually scarce and expensive
when compared with the LAN environment. Moreover, the number of DVE clients in
the WAN environment can vary a lot, ranging from tens to thousands. Due to the
size of the network and the number of possible participating DVE clients, we need a
distributed algorithm for the construction of the communication sub-graph.

Another factor that influence the design choices of the communication sub-graph
is the type of the membership of the DVE clients. We classify the membership of the
DVE client into two types, the static membership and the dynamic membership.

Static membership refers to the case that the set of participating DVE clients
is constant throughout a DVE session. For example, in a DVE system for a tele-
conferencing application, where the set of participants are known ahead of time and it
remains constant throughout the conference.

On the other hand, dynamic membership refers to the case that the set of partic-
ipating DVE clients is time varying. For example, in a DVE system for an Internet
game in which the client can join or leave the DVE system at any time.

Under a DVE system with static membership, we can construct the communication
sub-graph before admitting the participating clients and the communication sub-graph
will be discarded at the end of the DVE session. Under a DVE system with dynamic
membership, the communication sub-graph is initialized at the beginning ofthe virtual
environment session. Whenever one or more clients want to join or leave the virtual
environment session, the DVE system may have to modify or re-create a new com-
munication sub-graph. Therefore, an incremental sub-graph construction algorithm is
favorable in this case.

Chapter 4 Communication Sub-graph ^

4.2 Communication Sub-graph Construction Algorithms

With the consideration of the above factors for the construction of the communication
sub-graph, we present the following sub-graph construction algorithms: i

1. The minimum diameter sub-graph (MDS)

2. The core-based tree (CBT)

3. The minimum spanning tree (MST)

4.2.1 The Minimum Diameter Sub-graph (MDS)

The minimum diameter sub-graph (MDS) is a natural choice when we want to construct
a multicast sub-graph for a communication network. The reason is that the MDS
provides a guarantee on the delay bound between any two client nodes. The MDS
ensures that for every pair of client nodes in the sub-graph, there exists a path between
them which is having a length less than or equal to the diameter of the sub-graph. In
the context of our DVE application, the diameter is particularly important, since the
diameter is the delay bound of all the messages transmissions.

The definition of the diameter of a graph is the length of a path, where this path
is the longest among all the possible shortest paths within the graph. Formally, the
diameter of a graph G — {V, E) is:

Diameter(G)= max d{py. ^.)
vi,vjev ，]

where Pvi,vj is the shortest path between the two nodes Vi and Vj, and d(jhi,vj) is

the delay associated with the path. An important point is that the minimum diameter

sub-graph G' is not unique.

It is worth to note that when we remove any edge from a graph, provided that it
does not destroy the connectivity, the diameter of the graph will either be increased
or remain unchanged. On the other hand, if we add some edges to the graph, the
diameter of the graph will either be decreased or remain unchanged.

Aside from finding the MDS of a graph G, one interesting question is whether we
can find a MDS which also has the minimum total edge cost among all the possible

^This part is a joint survey conducted with Mr. T.S.Tam

Chapter 4 Communication Sub-graph ^

MDS so that we can also minimize the total network bandwidth consumption. To
answer this question, we have the following theorem:

Theorem 1 Given a graph G = (V", E) and for each edge e € E, the edge cost is
d(e) G N. For a given positive integer B, the process of finding a spanning sub-graph
G' = {V,E') for G (where E' C E) such that the sum of the cost of the edges in E'

does not exceed B and the diameter of G' is minimized, is NP-complete.

Proof: Please refer to [21]. •

Because of the NP-completeness nature of the problem, we relax our requirement
of minimizing the total edges cost, so that we can come up with an algorithm to find
a minimum diameter sub-graph (MDS) in polynomial time.

In general, to find the MDS of a graph G, we perform the following steps:

1. Find the all pairs shortest paths between every pair of nodes in the graph G =
{V,E).

2. Union the edges within all the above shortest paths found, to form a new set of
edges E'.

3. Then, the resulting G' = {V,E') is a MDS.

We have presented the general idea on the construction of a MDS of a graph G,
but in the context of the DVE application, the situation is different and we need some
pre-processing before we can obtain a MDS for a DVE application. The reason for
this step is that, because the clients set C{t) is not equal V, the set of nodes in the
network. For a given graph G = {V, E) and a set of clients C(t), we are seeking a
sub-graph G' = {V^ E') which satisfies the following:

1. The set V' must include the set of all clients, i.e. C(t) C V'^ in addition, V' must
be a subset of V {V' C V).

2. The longest path among those paths between any two clients should be mini-
mized, i.e. we minimize the following:

max d(p',)
V i j G C W � � '

Chapter 4 Communication Sub-graph ^

where p[^ is the shortest path between client i and client j with respect to sub-

graph G'

The algorithm offinding a MDS communication sub-graph for our DVE application
is given below.

V' — 0
E' — 0
for each pair of clients i,j G C{t) do

Find the shortest path pij between i and j where pij is
a set of edges that constitute to a path
for each edge eg E pij do

if 65 g E' then E' 4- E' U { e J
Let Vsi and Vg2 be the vertices on the two end of the edge eg
if Vsi 雀 V' then V' — V' U ^ i }

if v,2 g V' then V' ^ V' U {秘}

end for

end for

The MDS is found in G' = {V', E')

Theorem 2 The above algorithm guarantees that the diameter of the sub-graph G'
is minimum. ‘

Proof : We prove by contradiction. We first assume that the sub-graph G' of G is not a
minimum diameter sub-graph. This implies the existence of a sub-graph G" of G with
a smaller diameter. Then we choose the path p\j between client i and j which is the
longest shortest path in G' (i.e., diameter of G' = d{p'^j)). We also take the shortest
path p'-j from G" for client i and j. Based on the definition of the diameter of a graph,
d{p'-j) < diameter of G". Combine with the fact that the diameter of G" is less than
the diameter of G', we have d{p'-j) < d{p[j). However, the path p^j is guaranteed to
be the shortest with respect to the graph G with client C {t), therefore it is impossible
to find another path p'-j which is shorter than p'- and therefore contradiction occurs. I

Chapter 4 Communication Sub-graph ^

An Example for the MDS Construction

Figure 4.1 shows an example of finding a minimum diameter subgraph. Figure 4.1(a)
is a graph that represents the model of a network. Assume that all the nodes are
participating nodes, then Figure 4.1(b) is the MDS corresponding to the graph in (a).
It is worth to note that the MDS may contain cycles and usually, the total cost of
edges is larger than the total cost of edges in the corresponding minimum spanning
tree.

M K
G T ^ d > ^

(a) (b)

Figure 4.1: MDS Example (a) the Original Graph (b) MDS of Graph in (a)

4.2.2 The Core-based Tree (CBT)

The core-based tree (CBT) was proposed in [2], which is intended to provide a general
framework for sub-graph construction in a large scale network where clients are located
in different points of the Internet. The features of CBT is that:

1. There is a designated node called the core.

2. The path between any node to the core node must be the shortest path.

3. The routing policy for each node (or router) is efficient and easy to implement
(e.g., based on the current Internet routing protocol).

4. The core-based tree is constructed in an incremental manner, such that any
change to the client membership imposes only little changes to the communica-
tion sub-graph.

However, it is important that the CBT does not guarantee a minimum diameter
spanning tree, it only guarantees that the path between the core node and any node
(i.e. the participating client) is the shortest.

A CBT is constructed in a distributed, incremental manner. The construction
procedure of CBT is as follows: at the very beginning, a core is chosen from the set of

Chapter 4 Communication Sub-graph ^

participating clients either manually or via a bootstrap mechanism as discussed in [2 .
The core node is the first and the only node which is on the communication sub-graph
at this stage. It would be natural for our DVE application to choose the common DVE
server of the DVE clients to be the core.

Then, each participating client will send a JOIN_REQUEST message to the core (the
IP address of the core node is advertised and well-known). This join message is sent
through the shortest path from the participating client node to the destination core and
this can be accomplished via the existing Internet routing protocol. Along the shortest
path, the join message may reach a node which is either in the current communication
sub-graph (i.e., a node which has already joined the CBT) or a node that is not part
of the tree.

If the join message reaches a node which is a part of the multicast tree, the for-
warding process will stop and the incoming interface (channel) will be added to the
forwarding cache of the visiting node. Then, the visiting node will send an acknowl-
edgment message (JOIN_ACK) back to the participating client node via the incoming
interface.

On the other hand, if the join message reaches a node which is not part of the
multicast tree, the visiting node will redirect the message to the next hop along the
shortest path towards the core node and caches the incoming interface and the incoming
node on the temporary storage. After that the node waits for an acknowledgment
message. Once an acknowledgment is received, the node will put the incoming interface
to the forwarding cache and redirect the acknowledgment to the nodes listed in the
temporary storage. Also, it will set the node which sent the acknowledgment to be its
parent node. It is clear that under this construction scheme, a multicast tree will be
formed and this tree guarantees the shortest path from any participating client to the
core node.

Once the CBT is formed, we can start the multicast service. When a client sends
a multicast message, it must first consult the content in the forwarding cache. The
information stored in the forwarding cache of the node v is a list of neighbor nodes of v
in the CBT. Therefore, to multicast a message, a client can simply sends the message to
all the nodes listed in its forwarding cache. When a node receives a message, it should
forward the message to all the outgoing interfaces listed in the forwarding cache, except
the incoming interface. In this way, the message can go through the whole tree, and
stop at the leaf nodes.

Chapter 4 Communication Sub-graph ^

The algorithm for the CBT construction for our DVE application is given below.
Initially, the CBT consists of one core node only, and we assume that this core is one
of the client v^ G C{t). The initial CBT is G' = {V', E'), where V' = {vc} and E' = 0.
Besides, there is a temporary storage associated with each node v, and denote it by
tmpv. The temporary storage of each node is empty at the beginning of the CBT
construction procedure, i.e. tmpv = 0, Wv E V'.

A client v who wants to join the DVE can send a JOINJlEQUEST message to the
core node Vc by sending the message to its adjacent node v̂ which is along the shortest
path from v to the core node Vc. When node v' receives a JOIN_REQUEST from node v,
the following procedure will be executed:

if v' e V' then
add V to the forwarding cache;
reply an JOIN_ACK message to v\

else
tmp^i ̂ tmp^i U {?;};
send a JOIN_REQUEST message to the first computer

along the shortest path from v' to the core Vc.,

When node v receives a JOIN_ACK message from node v', the following procedure
will be executed:

V' — V' U {v}-,
E' — E' U {e } , where e is the edge connecting v and v';
add v' to the forwarding cache in v;
set v' to be the parent of v;
reply a JOIN_ACK to all the neighboring node u 6 tmp^;
clear the temporary storage tmpy\

Chapter 4 Communication Sub-graph ^

^ @ ^ ^ # \ 4 , : : : # X 4

1 ^O^^Q" '^w"
(a) (b) (c)

Figure 4.2: An Example of CBT Construction
An Example for the CBT Construction

An example of the CBT construction is depicted in Figure 4.2. Figure 4.2(a) shows
a network topology of one core C and four nodes i^i, R2, R3 and R4. The number
besides each edge is the cost (i.e., delay) of the edge, i.e. d{e). We use a shadow
pattern to indicate that the corresponding node is a part of the multicast tree. In
this example, the node R3 wants to join the CBT and then the node Ri wants to
join the CBT. Initially, only the core C is on the tree, and we use the shaded nodes
and doted line to denote the nodes and edges of the tree. At the beginning, node
i?3 sends a JOIN_REQUEST message toward the core, as shown in the arrows in Figure
4.2(a). The intermediate node R2 receives the request message, and then processes
it. Since R2 is not on-tree, it stores R^ on its forwarding cache, after that R2 sends
a request message toward C. The core C replies the acknowledgment to R2, and in
turn R2 sends an acknowledgment to R3. Because of the acknowledgment, C is added
to the forwarding cache of R2 and C is marked as the parent of R2. Similarly R2 is
added to the forwarding cache of R^ and R2 is marked as the parent of R3. After
the above process, the forwarding cache of R2, R3 and C is: {R3, C} , (¾ } and {R2}

respectively. Also, R2 and Rs are now part of the tree as depicted in Figure 4.2 (b).
Now, consider the case that node Ri wants to join the multicast tree. It sends a join
request message to R2. Since R2 finds itself is already part of the multicast tree, it
replies an acknowledgment to Ri directly and adds Ri in its forwarding interfaces list.
Node Ri adds R2 into its forwarding interfaces list after receiving the acknowledgment,
and mark R2 as its parent.

4.2.3 The Minimum Spanning Tree (MST)

Consider the following problem: given a graph G = (V, E) where each edge e G E is
associated with an edge cost d{e). There is a subset of vertices C(t), which is the set
of DVE clients. We want to find a subtree G' of G that includes all the vertices in

Chapter 4 Communication Sub-graph ^1

C{t) and the sum of the cost of the edges in the subtree G' is no more than B.

The motivation for finding the above sub-graph is to guarantee that the total
edge cost is less than or equal to B so as to provide an upper bound on the network
bandwidth consumption. However, the above problem is the well-known Steiner tree
problem, which is known to be NP-complete[9]. Due to this reason, we propose to find
the MST sub-graph based on the following procedure:

1. First, build a minimum spanning tree by any well known algorithm like Kruskal's
algorithm and Prim's algorithm, the resulting tree is denoted by G' = {V,E').

2. For every v nodes in G', check that whether removing v will partition G' into
two parts where both parts consists of any clients in C(f), if not, remove v, and
the edges associated with v, from G'.

3. The resulting G' is the communication sub-graph we want.

Note that the MST sub-graph generated by the above algorithm preserves the tree
structure but it does not guarantee the total edge cost to be minimum. The reason
that it does not provide minimum total edge cost is that only a subset of nodes (e.g.,
the participating clients) are included in the sub-graph instead of all nodes in the graph
G.

Chapter 5

Synchronization

In this chapter, we discuss the synchronization problem in a DVE system. In a DVE
system, we have a number of DVE clients and they serve as an interface of the users to
the virtual world. In order to render the virtual world for the users, the DVE clients
must obtain the information about the virtual world from the DVE server. The DVE
clients are also responsible to send any request from the users to the DVE server for
processing. The actions taken by the users on the virtual objects inside the DVE
system are sent to the DVE server by the DVE clients, too.

Since the DVE clients are processes running in different client machines with dif-
ferent run time environment (e.g., the current work load in the client machine, the
bandwidth and latency of the network), they will generate the same sequence of views
of the virtual world at different rate. Therefore, there are going to be some consistency
problems among the views rendered by different client machines such that even the
users of the same virtual world may experience a slightly different view of the virtual
world at the same time.

Synchronization is the key to maintain the consistency among the views generated
by the DVE clients so that the deviation of the views can be kept under an acceptable
level.

We begin with some definitions and descriptions about synchronizations in a DVE
system. Then, we present our system model followed by defining what is consistency by
means of the system model we described. Finally, we present how to solve the synchro-
nization problem by deriving an optimal synchronizing interval with two consistency
measures based on the given set of consistency criteria.

42

Chapter 5 Synchronization ^

5.1 Synchronization in a DVE System

The virtual world is populated by different virtual objects and they keep changing
over time. Before we classify the objects in the virtual world, we need the following
definition:

Definition 1 The state of an object is defined by its current coordinate (e.g., the
x,y,z] coordinate in the virtual world) and its current property (e.g., the current
color of an object, directional velocity, . . . , etc).

For a given object ô , let So, = { 4 ^ ^ 4 ' - . . } be the set of all the possible states
of the object Oi in the virtual world. In general, objects in the virtual world can be
classified into two categories, namely static and dynamic. A static object has only one
state. For example, an object representing a mountain in the virtual world is static
in the sense that it will not change its coordinate in the virtual world. On the other
hand, a dynamic object can have more than one state. For example, an avatar may
traverse from one region to another region in the virtual world or an avatar may choose
to move an object from one location to another location. Since all the users who are
exploring the virtual world should share the same view, therefore, it is important that
all users should have the consistent view of all the objects in the virtual world. For
example, if a user from client Ca views an object Oi and the object Oi is in state 5*.
(e.g., coordinate [x,y,z]), then another user from client Cb should also display object
Oi in state 5*. (e.g., the same coordinate [x,y,z]).

To visualize a dynamic object, let Sô {t) be the state of object Oi at time step t. If
client k wants to view the dynamic object Oi, then the computer in which client k resides
has to render a sequence of states changes for object 0¾, {5o-(t), 5o-(t+l), Soi {t+2), . . . },
starting from the same time step t. To maintain a consistent view for all the clients
in the virtual world, this implies that every computers where the clients reside have
to render the same sequence of state changes, starting from time step t, Note that in
general, an absolute consistent view of a dynamic object may not be possible due to
the following reasons:

• Not all client can start the rendering of state sequence at the same time step
t. This may be caused by the network delay variation of delivering the "start-
rendering" message to all the clients.

• Different computer may render the state sequence at different rate. This is due

Chapter 5 Synchronization ^

to the fact that different computers may have different work load and therefore,
some computers may miss the rendering operation at some time steps.

Let c[. {t) be the state of object Oi at time step t that client 1 is rendering. We have
the following definition:

Definition 2 If cl.{t) = s .̂ and C.{t + r) = 5^., then we say that the phase difference
between client 1 and client m, denotes by ^(/ ,m), is r.

For example, assume that the set of all the possible states of object Oi is Soi =
{sl.,sl.,... , sJ-} and the rendering sequence ofobject Oi is Seq = {5j.,5^.,5^.,5^.,5^j.
If client CA starts the rendering sequence at time step 0 and client C^ starts the same
rendering sequence at time step 3, then the phase difference $(A, B) = 3.

The object synchronization procedure in the DVE system is a process to guarantee
that the absolute value of the phase difference between any clients of any object in the
virtual world to be less than a pre-defined system threshold $. Some of the approaches
to maintain object state consistency are:

• Aggressive Object Synchronization Technique (AOS): Under the AOS
approach, each object oi is assigned to a master process Pi. For every small period
5t, process Pi will broadcast the state of the object oi to all participating clients
in the DVE system. Upon receiving the state information of object ô , every
client will render the state of Oi. Figure 5.1 illustrates the AOS synchronization
technique. A major disadvantage of this approach is that there will be a high
volume of synchronization message traffic and this will lead to scalability problem
in the DVE system. Note that even though the process Pi will broadcast a
synchronization message every 5t time unit, the synchronization can still be off
by dmax time unit due to the network delay of transmitting the synchronization
message.

• Dead Reckoning Synchronization Technique (DRS): In the AOS tech-
nique, extremely high network bandwidth will be consumed. However, it is
important to observe that in most cases, the state of an object at the current
time step is very similar to the state of the object in the previous time step.
Therefore, it is not necessary for the process Pi to send a synchronization mes-
sage every 6t. Consider the following example, if a ball is experiencing a free fall
from a 1000 feet tall building and if the initial position of the ball is known to all

Chapter 5 Synchronization ^

5t dp^x
<J / object 口

—=:iMlliMMWMil
site

Figure 5.1: Aggressive Object Synchronization (AOS) Technique with dmax being

the Maximum Network Delay

clients, then every participating sites should be able to calculate the trajectory of

this ball and render the corresponding sequence of state changes. That is, every

participating machines will render the object's coordinate for every time step

and update the object's state in its local machine. This is the main idea about

the dead-reckoning (DRS) technique [5] in which the initial state as well as the
equation governing the trajectory of the object are available to all the partici-
pating machines and each machine will perform the local computation and will
update its local display. The DRS technique is illustrated in Figure 5.2 where
the start-synchronization message also encodes the object's initial position
and directional velocity, for example.

T

Master Mj ^ • • • • • • • • • ^
觀

start-synch ronization <\

•
飄

participating _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

site

Figure 5.2: Dead Reckoning Synchronization Technique

• Dead Reckoning with Periodic Synchronization Message (DRPS): Note

that even if the DRS technique is used, it is still necessary for the master process

Pi of object Oi to send the synchronization message from time to time. This

situation occurs if there is an external event that will affect the trajectory of

the object Oj (e.g., a client catches the free-falling ball). Another reason why we

need to send a synchronization message periodically is due to the fluctuation of

work load at the participating computers, some computers may not be able to

render the next state of the object on time and if it is not adjusted, this will

Chapter 5 Synchronization ^

create view inconsistency in the long run. Therefore, for the DRPS technique,

it employs the dead-reckoning technique and for every synchronization interval,

nr, a "synchronization message" is sent. Upon receiving the synchronization

message, each computer will immediately update the state of the object (or in

effect, the phase difference is reset to zero). The DRPS synchronization technique

is depicted in Figure 5.3.

dmax
T ；;

«" • î
I •

Master M里"f——•——•——•——•——•——^~~•——•——#

start-synchronization - \ synchronizat ion-m—sage V \

participating J%——#——#——#——•——•——•——•——•——•

site

Figure 5.3: Dead Reckoning Synchronization Technique with Synchronization Mes-

sage and dmax being the Maximum Network Delay

Note that in general, the longer the value of synchronization interval, the phase

difference between any two clients will be higher, this imply that the view con-

sistency between these two clients may be un-acceptable. On the other hand, if

the synchronization message is sent too often (or the synchronization interval is

too small), the DVE system needs to send too many synchronization messages

to all the participating clients and it will consume too many network bandwidth.

5.2 System Model

We have two DVE clients in two different computing nodes namely Ca and C ,̂ in a

communication network with maximum delay dmax- The computation of Ca and C^

can be described by their phase. Specifically, Ca and Cb start from phase 0 and then

they compute phase i based on phase i — 1 (for i > 1) together with the user inputs,

if any. Due to the fluctuation of the work load on the computing nodes, we have pa

as the probability for the computing node Ca to fail to calculate the next phase. We

have pb for the computing node C^ similary. The values of Pa and pb can be obtained

by statistics inside the kernel.

We define the phase difference of Ca and C& at time t as $(Ca, Cb) = i_j, assuming

that Ca is in phase i and Cb is in phase j at time t. It is clear that Ca and C^ may not

be in the same phase after a period of time, synchronization is required to maintain

Chapter 5 Synchronization ^

the consistency of the phases. We choose Ca as the master process and it is responsible

for sending the synchronization message to Cb to maintain the consistency.

5.2.1 Problem Definition

Our goal is to ensure that the phase difference of the system is not exceeding the

threshold $ which is a system parameter defined based on the nature of the underlying

application as described in Section 5.2.3.

We assume that ^(Ca,C&) will be reset to zero if Ca sends its current phase to

Cb, for simplicity. ^ Our problem is then to find out how often should Ca send

synchronization messages to Cb with a set of consistency and system parameters.

5.2.2 The Markov Chain Model

We use a Markov Chain to model the system with its states as $(Ca, Cb). The

computing nodes have to update their phase every At time units, for example, we

want At = ^ s for a smooth animation. In general, the computing nodes can make

L =�^^1 phase changes between successive synchronization messages if dmax is the

maximum network delay.

^ ^ ^ ^ ^ 2 _ ^ _ ^ ^ P+2 P+2 ^ ^ t ^ ^ ^ 3 t 2 ^ ^ ^ 3 ^

^ ¾ ¾ ^ ^ ¾ ^ ^ ^ ^
v M M ^ M M ^

P—2 P-2 P-2 P-2 P-2 P-2 P-2
Figure 5.4: The Markov Chain with L = 2

The Markov Chain with L = 2 is shown in Figure 5.4. In each state i, it can make
a transition back to state i with probability po, or make transitions to state i 士 1 and

state i 士 2 with probability p±i and p±2 respectively, after two phase changes in each

of the computing node.

In general, we define po to be the probability of the system to stay in the same

^ Simulation in Section 5.4 reveals that this assumption is a good approximation to the case with

the consideration of the network delay.

Chapter 5 Synchronization ^

state after L phase changes in each of the computing node, p+k and p-k to be the
probability of the system to advance or to go back k states after L phase changes in
the each of the computing node, and obviously, we have |A;| < L for a system with L
steps transition.

We first give the probability generating function for the calculation of po with L
steps transition. The intuitive idea is to sum up the probability of all the possible
cases within a L phase changes which result in a zero net transition. To have zero net
transition, we should have 1 phase changes combinations which result in an increase
in the phase difference, and another 1 phase changes combinations which result in an
equal decrease in the phase difference. Obviously, we should have 0 < 1 < [鲁」so

that we can ensure that the number of forward moves and backward moves can cancel

out the effect of each others, and the rest of the phase changes combinations of the

computing nodes left by these 21 phase changes should not generate any further change

in the phase difference. The probability generating function for L steps transition for

po is therefore:

L �

列 = 亡 [^ ^ (似 似 片 — 叫 （5.1)
1—0

where pp = (1 -Pa)Pb^ is the probability of $(Ca, Cjj) being increased by one, that

is, Ca can compute the next phase and C^ cannot, in one At; ps = Pa{^ - Pb) is the

probability of $(Ca, C^) being decreased by one, that is C& can compute the next phase

on time and Ca cannot in one At; ps = PaPb + (1 _ Pa){^ - Pb) is the probability of
$(Ca, Cb) being unchanged, that is, when both of the nodes either success or fail, in
one At, for the computation of the next phase.

Similarly, the probability generating function for going forward k steps after L
phase changes in each of the computing node can be generalized as follow, with the
upper limit on the number of forward steps reduced to ensure there will be sufficient
backward steps left to cancel out its effect such that the net forward transition is
exactly k:

L^J

拟 = t Lz + ̂ (f ! - 2 Z-AO!(^*)(A)(4-”] (5.2)

And the probability generating function for going backward k steps after L phase
changes in each of the computing node, can be generalized similarly as follow:

«

Chapter 5 Synchronization ^

-P-k = L g �̂_ 叫 ^ -
2
卜 幻 ! (們 (似 始 1 勺] (5")

1—0

The transition probability matrix Q for the Markov Chain with L steps transitions

can therefore, be specified by:

f

Po for i = j

_ ^ P+k for i + k = j, L > k > 0 (5 斗）

銜 — p—k hri-k = j,L>k>0 .

0 otherwise

、

5.2.3 Deciding the Threshold $

We show how to decide the value of the threshold 少 by giving a brief description on

an application example. The main idea is that we should choose a threshold such that

the causal relationship of the objects state changes are preserved upon synchronization

actions.

We use a table tennis game as an example. In this game, the only critical causal

relationship among the actions are the smovement of the ball and the action of the

player on the ball applied through the bat. Suppose even when the ball travels at

its maximum speed Vmax^ it requires t seconds to travel from one end of the table to

another end of the table of length d (or to be within the reach of another player from

one player), where t can be estimated by the simple formula: t = :;j^-

In order to provide smooth animation, we have to render the scene every ^s , and

it is also the time required for a phase change. To maintain the the position of the ball

to be consistent with respect to the causal relationship, we have to set the threshold

歪 = t ^ 4 n = - ^ ^ or even smaller, since in the worst case, the ball would reach another
3 0 Vmax ‘ ‘

player suddenly (because all the intermediate phases are skipped) and thus one might

not be able to react to the ball. The above formula provides a guideline to estimate

the largest possible threshold required for a particular application by considering the

characteristics like the maximum speed of the objects, the inter-avatar distances, etc.

Chapter 5 Synchronization ^

5.3 Optimal Synchronizing Interval

5.3,1 A n "on-average" Guarantee

To answer the question of how often (e.g. how many time steps) a "synchronization-
message" should be sent such that the expected value of the absolute phase difference
between clients CU and Cs is less than or equal to 少.W e use the theory of the

fundamental matrix and analyze the underlying Markov chain M. Let state Si, i > 0

represents the value ofthe phase difference i. We aggregate[3] all those states Si, i > ¢,
as one state and we make it a trap state ^ and we have a new Markov chain M with
an associated transition probability matrix P ' as:

/ 1 >r̂ 2$ D \
PQ P+1 P+2 … _P+2$ 丄一2^=0尸0<

P-1 P0 P+1 ... _P+(2$-l) 1 - ^i=O^li
P-2 P-1 P0 . . . P+(2$_2) 1 — Y^i=0 ^2i

• • • • •
争 争 • • •
• 争 • • •

p 二 P-龟 ： 丨 P+^ 1 — E i f o P^i
• • • • •
• • • • • • • • • •

P-(2$-2) P-(2$-3) P-(2$-4) . . . P+2 1 _ Z)^fo 2̂<l>-2i
p_(2$_i) P-(2$-2) P_(2$_3) . . . P+l 1 _ Ei=0 P2^-li

P-2^ P-{2^-l) P-(2^>-2) . • . P0 1 - Z)i=0 P^i

^ 0 0 0 ... 0 1

The new Markov chain has 2$ + 2 states with the last state being the trap state.
We can partition P as:

p ' - IM^)
V 0 1 ；

where Q is an sub-stochastic matrix describing the transition probability between the

2$ + 1 states, C is a column vector representing the transition probabilities between
the 2^ + 1 transient states to the trap state and 0 is a row vector of 2$ + 1 zeros, that
means once the system has reached the trap state, it has no way to leave. We define

^A trap state is a state where in once the system reaches that state, the system stays in that state
forever.

Chapter 5 Synchronization ^

the matrix M (also known as the fundamental matrix) as:

00

M = (I - Q) - i = I + Q + Q2 + Q3 + . . . = E Q h (5.5)
k=0

To compute the average number of time steps (or transition) so that the absolute value
of the phase difference in M is greater than $, we let Xij (0 < i, j < 亞)be the random

variable denoting the number of time steps that the Markov chain M' visits state j

before entering the absorbing state, given that it started in state i. Let E[Xij] be the
expected value of Xij. We have the following theorem

Theorem 3 For 0 < i,j < 2$ + 2, we have E[Xij] = rriij where rriij is the (z,j)
element of the fundamental matrix M.

Proof: Please refer to Bhat [3]. •

Remark: Note that the above theorem indicates that if the system starts at state
i (the absolute value of the phase difference is equal to z), then we know on average
it takes m -̂ time steps for the system to enter the trap state (a state representing the
absolute value of the phase difference is greater than ¢).

Corollary 1 Assume that the phase difference between client CU and Cs is zero
initially, then on average, after t* time steps, the expected value of the absolute phase
difference between client CU and Cs is greater than 少.We can express t* as:

2$
t* == ̂ mok (5.6)

k=0

Proof: We can show this by directly applying Theorem 3. I

Corollary 2 To ensure that the expected value of the absolute phase difference be-

tween client CA and Cs is less than or equal to 少 for all time steps, the master process

Poi of object Oi needs to send the "synchronization-message" every t* = J]^^Q mo^ time

steps.

Chapter 5 Synchronization ^

Proof: This can be directly observed by applying Corollary 1. •

Remark: Note that once the "synchronization-message" is received by all clients, the
phase difference is reset to zero. Therefore, in order to maintain the phase difference
between CU and Cs to stay within ¢, the master process i ^ needs to periodically
broadcast the synchronization message and the period is t* 二 Yll=Q mok-

5.3.2 A Stochastic Guarantee

We are going to derive the optimal synchronizing interval r*, with a given value of
threshold $ such that the system will stay in states not exceeding 少 with probability

p. It is a generalization of the problem described in [15 .

However, direct derivation of the value of r* is difficult and so we try to find it
indirectly. We find that it is easier to find the value of p for a system with a given r
and ¢. Therefore, we can solve the problem by searching. More formally, we derive a
function p = /M(T, ¢) for system M, and it returns the corresponding p, which is the
probability of the system to be in state not exceeding ¢, if synchronization messages
were sent every r time unit; then we try to find the optimal r* which satisfy our
consistency requirements with the searching techniques in Section 5.3.4.

5.3.3 Finding p with r and 尘

Finding the exact value of p with given r and $ is difficult as well because the state

space of the underlying Markov Chain is infinite as shown in Figure 5.5 for a system

with L = 1.

… ^ 、 . . . 入 & ^ 為 入 ^ ^ … 入 & ^ …
v _ ^ v _ y v _ _ ^ v _ _ y V _ > ^ _ - A _ A _ _ _ _ y V _ ^ v _ y v _ _ A _ A _ y

p_i p-i p-i p-i p-i p-i p-i p-i

Figure 5.5: The Markov Chain with Infinite State Space

Therefore, we suggest the following method to find an approximation of the value

oip with given r and $. With the observation that synchronization action would be

applied to the system, the Markov chain will be in most of the time, staying in states

i with a small |z|. To obtain an approximation of the infinite state system, we chop off

Chapter 5 Synchronization ^

the Markov Chain at states ±(少 + 1), and then we aggregate the chopped states by

two new states namely ± B , as in Figure 5.6.

% + P-i 0̂ ^ ^ ^ Po Po+P+1

^ ^ • ^ ： 誠 愈 ^ ： 誠
~ ^"-^ p p P ^ p 1 P 1 P 1 p 1 P_ 1 _̂ 1 -̂1 -丄 _ 1 _ 1 _ 1 _ 丄

Figure 5.6: The Chopped Markov Chain

In the general case with L steps transitions, we try to redirect the traffic going from

any states to the chopped states, to the two new states ± B and then we also redirect

the traffic going from states ± B to the chopped states back to states ± 5 . We call

the corresponding transition probability matrix of the above chopped Markov Chain

as Q. The next task is to incorporate the synchronization action into Q. To do this,

we modify Q according to r. The intuitive idea of this transformation is based on the

following two facts:

1. We have (1 - •) chance to make transitions as usual, for example, if we have

probability p+k to go to state k from state 0 originally, we now have probability
(l - *) x p + f c .

2. In addition, we have ^ more chance to go to the state 0 from each state due
to synchronization, for example, if we have probability p+k to transit to state 0
from state k originally, we now have probability • + (1 — ̂)p+k-

Formally, we have the following new transition probability matrix Q' with synchro-
nization:

q；, = p + (|-^)qi>^ i f p O (5.7)
I (1 — ^)q^ otherwise

Now, we can calculate the residence probability of the states of the chopped Markov
Chain with synchronization action, by solving the following system of equations:

{ Q ' x n = n

1 E^n,^i

Chapter 5 Synchronization ^

After finding H, Pr can be obtained by the following formula:

Pr 二 ；^瓜 （5.9)
i=-$

=i-(n_s + ns) (5.10)

which is the approximation of the probability for the system to be in states not
exceeding the threshold with the synchronizing interval r. And it is intuitive that this
approximation would be better if we try to chopped off the infinite state Markov chain
at states c with a larger c rather than 少 + 1.

With the above derivations, we can calculate the value oipr from a given r and 少

with a Markov Chain M. In another words, we have the function pr = /M(T, ¢).

5.3.4 Searching for r*

We have the function Pr = /M(T, $) derived in previous section. Now, we propose two
searching techniques for finding r* with a given consistency criteria, that is, finding
the optimal synchronizing interval to guarantee that the system would be in state not
exceeding the threshold $ with probability p. The first technique is the simple iteration
technique, we give the algorithm formally as below:

function sijind�nterval(double p) :int;

begin

T = 1;

if /ivf(T, ¢) < p then return -1; (* impossible p *)
T — T + 1；

(* Find the maximum r to satisfy p *)

while /M(T, ¢) > p do r = r + 1;
(* Return the largest one without violating p *)
return r — 1;

end

Chapter 5 Synchronization ^

This technique is efficient if the optimal synchronizing interval T* is small, and to
deal with system with larger value ofr*, we propose a second technique called the step
searching technique, we give the algorithm formally as below:

function step_fincUnterval(double p, int step) :int;
begin

T = 1;
if /M(T, ¢) < P then return -1; (* impossible p *)
if step < 1 then step = 1; (* step should greater than zero *)
r = T+ step;
(* Find a r to violate p *)
while fM(T, ¢) > P do r = r + step;
(* Search backward to get the largest one without violating p *)
while /M(T, ¢) < p do r = r — 1;
(* Return the one which first match the consistency criteria *)
return r + 1;

end

The parameter "step" is used to adjust the jumping size of the forward search, and
a larger value should be used for larger values of the threshold.

5.4 Experiments

This section is divided into two parts. In the first part, simulation results are presented
to show the influences of changing various system parameters on the effectiveness of
the synchronization actions. Then, a simulation has been conducted to justify our
assumption that ^(Ca, C5) can be reset to zero when Ca sends its current phase to
Cb. In the second part, we show the synchronizing interval derived by our theoretical
model and the corresponding results obtained from simulations are shown in parallel
for comparison.

5.4.1 Simulation Results

We begin by giving a brief description on our simulation program. The simulation
program is written in C with the following input parameters:

Chapter 5 Synchronization ^

1. pa,pb-. the probabilities of missing a computation of the next phase for the two
computing nodes

2. dmax- the maximum network delay

3. T: the synchronizing interval

4. $: the threshold (in the number of phase difference)

Each of the simulation runs for one million iterations, and it is equivalent to a
DVE session which last for about ten hours. The fluctuation of the work load on the
computing nodes were modeled by using the random number generation function in
the C library.

On an Example System

^ ^ pa = 10%; pb = 18% ^ -

囊
2 3 ~~""̂ ~̂~~(__̂ :______̂ ^ ^:^^JooSynchronizinglnterval

Threshold ^ ^ ^ 8 ^ " ' ' " ^ - - ^ - ^ - . ^ ^ 5 �
g 10

Figure 5.7: Simulations of an Example System

Simulations were conducted with the values of threshold r ranged from 1 to 10,

the values of pa and pb are set to 10% and 18% respectively, and the synchronizing

interval ranged from 1 to 300 time units are used. The value of the maximum network

delay {dmax) of 5 is used.

Chapter 5 Synchronization ^

We choose the values of pa and pb to be rather high but not too high because we

would like to illustrate the effect of the synchronization actions. Too low the values

of Pa and pb making synchronization action insignificant, too high the values make

the system non-realistic since machines with too high a load is not suitable for DVE

application at all.

To provide a good quality animation inside the DVE, we need 30 frames per second,

and therefore one time unit in the system is approximately ^s . With a 10Mbps

network, we can transmit a maximum of41.6k bytes per time unit and therefore each

synchronizing message can have a size up to 41.6k bytes at most, in this network setting

with the delay of 5.

. In Figure 5.7, the probability p of the system with the phase difference exceeding

the threshold is shown with different values of the threshold $ and the synchronizing

interval r. Notice that as the value of synchronizing interval r increases, the system

becomes less synchronized, regardless of the value of the threshold 少 used. In addition,

the larger the value of the threshold 少 used, the more effective the synchronization

action is.

Effect of the Skewness on the System Loadings

Difference in pg and pb || Pa Pb dmax threshold ^

D 二 0% II 10% 10% ~~5~~ 5

D = 0% 90% 90% 5 5

D = 20% 10% 30% 5 5

D = 20% 30% 50% 5 5

D = 40% 10% 50% 5 5

D = 40% 50% 90% 5 5

D = 80% II 10% 90% 5 5

Table 5.1: Parameters used in the Simulation in Figure 5.8

The probability of the system to be in states exceeding the threshold against the

synchronizing intervals ranged from 1 to 300 are shown in Figure 5.8, and the param-

eters used for the simulations are shown in Table 5.1.

We can see that simulations with the same value of D behave similarly and the

larger the skewness of the system loadings, the smaller the synchronizing interval

should be used to maintain a good consistency. This indicates that the synchronization

action is less effective in a system with large difference in pa and p .̂

Chapter 5 Synchronization ^

100 T 1 1 1 " “

^ 一 — o o 令 � - -D = C ^ :
...o-----々 ^ 么一.一.：:余二.二二二#^二-章二^#:口—

” 90 - .-^-- &.一：：多二�一. -fl-B^^—-
1 ..--' . , - ' :rr^'- ,̂.------.§-：.：.：••••一̂一D=26̂ .̂…
^ ,户 ,,:..玄- ’.一 ..¾:.:.:.:.:-:¾ ^ D=40 各 -
2 - �� / 产：'.’. ..B--::>-̂ D=40 务 - -
|E 80 - / z > ' .•---：：：»<•••• D=80 -•--.
卜 / y ,' ,'' ^.--'
I 令",>, ,g:.:.:;.....
g> 70 - ； , - ,:.:.:,..x -
云 : / / H>--
S ••• //' ,,'；乂
^ 60 - ： / / ..-：.••••• -
山 ：/ ！ •• /
<D ； ^ / P/.
0 ； !/ ,'X
1 50 - ;_ if // -
� ，'ii ,'/
!t .• i; ••/
Q : i; //
w 40 - ：‘ •'• ''/ -
器 ;|i // —
« : i! .v ^"-^:::X^^^•
£ :// 0- ;̂̂ rzrl̂ :̂ ^^^^
1 l f " ' y ^ ^ ; : : : : : : : r r : : P ^ ^ " ^ ^ ^ -

！ 20 - f / ,C:: ; : : : :^^^^^^^ -
I :,// z S ^ ^ ^ ^
圣 10 i / < ; : : : : ; ^ ^ ^ ^ -

!|/ z^^
J,^^^^^ • .

50 100 150 200 250 300
Synchronizing Interval

Figure 5.8: Simulation Results Showing the Effect on the Skewness of the System

Loadings

With or without Network Delay

This simulation has been conducted to justify our assumption that $(Ca, C&) can

simply be reset to zero if Ca sends its current phase to Q . The simulation result is

obtained by using dmax = 20 and it is plotted in Figure 5.9. In the figure, we can

see that the average phase differences in one million iterations, either with or without

considering network delay, is very similar to each others and thus our assumption is

valid and good approximation to the real case with network delay.

5.4.2 Theoretical Results

We have implemented a program in Mathematica and another program in C to cal-

culate the optimal synchronizing intervals based on the theory and the two different

methods presented in Section 5.3.

Chapter 5 Synchronization ^

8 I T 1 1 1 1 1 I I 7^
With network delay (2 0) 产

Without network de la^-+—

: r ^ x ：
§ X
i 5 - • -
0 /z
w y
1 X
g, 4 - / _
2 Z

^ _ x :
1 I I I I I I 1 1 1

10 20 30 40 50 60 70 80 90 100
Synchronizing Interval

Figure 5.9: The Difference with or without Network Delay

Optimal Synchronizing Interval for an “on-average’，Guarantee

In the first experiment, we have calculated the optimal synchronizing interval for dif-
ferent values of the threshold by using the theory of fundamental matrix to give an
"on-average" guarantee. We have used a system with pa 二 0.1 and pb = 0.18, the

maximum network delay dmax is set to 5. The results are plotted in Figure 5.10.

Notice that we can see a linear relationship for the optimal synchronizing interval

and the value of the threshold. It indicates that the synchronization mechanism is

efficient and can be scaled up well.

Effect on the Difference in pa and pb

In the second experiment, we investigate the relationship of the difference in pa and pb,

the optimal synchronizing interval and the threshold. In this experiment, pa is fixed

at 0.1 and pb varies from 0.2 to 0.8，values of the threshold ranged from 5 to 10 are

used. The results are plotted in Figure 5.11.

In general, the larger the difference in po and pi, the smaller the synchronizing

interval is required for a given value of threshold. It is because the skewness of _po and

Chapter 5 Synchronization ^

80 1 1 ~r 1 1 ' I ‘ ‘

70 - ^ ^

/ _
60 - i»^

X -

50 - ^ ^

- 4 � _ ^ ^ ：
30 - ^ ^

/ .
20 - j/^ z . 1 0 - j ^

Q I I _ l I 1 1 1 " 1
0 5 10 15 20 25 30 35 40 45 50

Threshold ®

Figure 5.10: Optimal Synchronizing Interval Derived for an "on-average" Guarantee

pi specify the difference of the behavior of the two computing nodes, which reflects
the difference in the rate of phase calculations.

Effect on the Absolute Magnitude of pa and pb

In the third experiment, we investigate the effect on the absolute magnitude oipa and
Pb on the optimal synchronizing interval and the values of the threshold. Figure 5.12
is obtained by values of pa ranged from 0.1 to 0.8，where the corresponding p& used

can b'e obtained by adding 0.1 to pa. Different values of threshold (from 5 to 10) are

plotted.

Notice that when pa and p5 approaches to 0.5, the smallest synchronizing interval

is required, and this is consistent with what we observed as in the experiment about

the skewness in pa and p^ in Section 5.4.1.

Optimal Synchronizing Interval for the Stochastic Guarantee

We have calculated the optimal synchronizing intervals for a system with the values
of Pa and pb of 10% and 18% respectively. The value of the dmax is set to 5, and we

Chapter 5 Synchronization ^

: : _ . .
0.2 ^ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 Threshold ^

“ r ^ ^ " ^ ; ^ " ~ ~ < " ^ 6
Figure 5.11: Effect on the Value of \pa —Pb

want the system to be with the phase difference under the threshold (ranged from 1
to 10) in 90% of time. The results are shown in Table 5.2.

Notice that the value of r derived theoretically is always sufficient to maintain the
required consistency requirement specified in the derivation of the optimal synchroniz-
ing intervals.

The bound derived is not very tight, it is because the effect of the network delay is
not incorporated in the theoretical model, we have made an assumption that the phase
difference of the two computing nodes will be reset to zero when the synchronization
message arrives. In a system with a small value ofthreshold, this can create a noticeable
effect. It is also worth to know that the synchronizing interval should be adjusted in
a stepwise manner, and therefore, we can only use a synchronizing interval which is a
little bit over-shoot to the original specification.

Chapter 5 Synchronization ^

丨_. .
0.2 ^ ~ ^ ^ ^ ^ ^ ^ ^ 7 Threshold 巾

P a = p 5 . 1 0 .5^7^~"~^^~~~^^ 6

Figure 5.12: Effect on the Absolute Magnitude of pa and pb

^ T:o% P form simulation p in theory

"T|"~i~" 6 ? ^ ~~0.00%~~
2 1 6.73% 0.00%

3 2 1.75% 6.58%

4 3 0.23% 7.53%

5 4 0.11% 7.67%

6 5 0.41% 9.96%

7 7 0.21% 9.62%

8 8 0.12% 9.15%

9 9 0.25% 8.77%

10 II 11 0.14% 9.85%
Table 5.2: Comparisons of Simulations and Theoretical Results

Chapter 6

Related Work

In this chapter, we describe some of the related work about DVE system research.
This is by no means a complete survey since the research of DVE is one of the hottest
topics in field of distributed computing, distributed multimedia, graphics and high
speed networking. Here we present some of the work which are closely related to
the problems we have mentioned in this text. Finally, we describe two example DVE
systems at the end of this chapter.

6.1 Load Balancing on DVE

To the best of our knowledge, there is no other published literature on the load balanc-
ing aspect of a DVE system. Load balancing is the key to allow an efficient utilization
of the available computing resources in a distributed system [6 .

We have formulated the load balancing problem in a DVE system as a partitioning
problem in [14] by using the concept of AOI described in [17]. Further improvement
over our proposed solutions can be found in [12 .

6.2 Object State Synchronization Techniques

One of the very important features of a DVE system is that we should provide a
consistent view for different users in the same virtual world. Synchronizations are
required, however, we do not need to keep all the objects state synchronized. For
example, when a user is looking forward, we will not need to synchronize the state of
tlie objects behind the user. We may also use the concept of the AOI for data filtering
19]. The basic principle is to filter all the irrelevant message exchange.

63

Chapter 6 Related Work ^

Another technique called the dead-reckoning is proposed in [5]. It can be used to
reduce the amount of network traffic required for the exchange ofthe state information
of the objects. With the observation that the trajectory of some objects can be calcu-
lated independently in different DVE clients, we can simply send the trajectory (e.g.
in the form of a mathematical formula) with the initial state of the objects, instead of
sending their new states through the network after every update in the master process.

6.3 Group Communication and Multicasting

Since the DVE clients of the same virtual world session share many common objects
in their views, the state information of these common objects have to be sent to all
these DVE clients. Multicasting is the natural choice in the propagation of these state
information.

Multicasting in a Distributed Interactive Simulation (DIS) has been studied in [25:.
It can be readily applied to the DVE systems because of the high similarity of the two
application areas.

Other work about multicasting but not specific to the DVE systems include the
studies of the dynamic light weight group in [11], the maintenance of the total ordering
of the multicast messages [10], etc. The concept ofthe dynamic light weight group can
be used in a DVE system to deal with the dynamic membership of the DVE clients.
The maintenance of the total ordering on the receiver side of the multicast can be used
to ensure the casual relations on the effect of the state changes in the virtual world.
Other work on real-time communication like the RTP [22] and RSVP [27, 4] can also
be employed to make efficient use of the available network resources with guaranteed
performance.

6.4 DVE System Development Toolkits

Distributed Interactive Virtual Environment (DIVE) is a toolkit for building dis-
tributed virtual reality applications in a heterogeneous networking environment. It
is developed by the Swedish Institute of Computer Science. The DIVE consists of a
set of processes, running on different nodes within a network. These processes can
access to a number of databases which they can update concurrently. Each database
contains the information of the virtual objects in the virtual world. Different virtual
world session is associated with a process group so that multicasting protocols are used

Chapter 6 Related Work ^

for the communication within the group. Besides the DIVE, other examples include:
the NPSNET [16], the SIMNET [7], the SPLINE [1], etc.

The research and development of a multimedia storage server in [8, 20] can be used
to allow the efficient access of the data in a DVE system.

6.5 Example DVE Systems

The VINCENT system developed by the CUHK in [13] is implemented to show how
spatial queries can be incorporated in a highly graphical three-dimensional virtual en-
vironment. It allows the users to explore and to make any query about the information
of the virtual world. It also demostrates how existing software or library packages like
the Alias Wavefront [23] and the IRIS Performer [24] can be used for building a DVE
system.

Another example system called the Diamond Park [1] is developed using the SPLINE
of the MERL. It allows the users to explore and to interact with each others inside
the virtual world. Inside the park, live conversations among the users are possible
and it is designed with extensive audio effects. This is one of the unique features that
the Diamond Park supports audio rendering. One of the interesting features of the
Diamond Park is that, the users can ride a bicycle inside, or even to compete with
each others, via a specific hardware.

Chapter 7

Conclusion

7.1 A Vision to the Future

I worked together with a colleague in the Europe this morning on the Mars. After the
routine checking of all the equipments in the iron ore mine, we came back to the Earth
for a lunch. I guess the robots there can be trusted, after these few months of close
monitoring.

After the lunch, I still have tens minutes left and so I logged into my reading room
to read my email and to browse through my favorite discussion groups.

Time's up! I logged out from my reading room and then I logged into the conference
room for a meeting. I guess the worst thing for this kind of meeting is that, we
could not drink anything inside the room, the Head-mounted Display (HMD) is not so
convenient for such purpose. We can share only non-consumable objects inside. But
the good thing is that, you can really fall into sleep without any obvious sign.

The conference finally finished, but we all have no idea that it's already late night.
Working a whole day sitting in front of the computer is never a pleasant experience.

7.2 Conclusion

With the distributed virtual environment, people can communicate and interact with
each others instantly regardless of the geographical distances between them. Potential
application includes, but is not limited to, the virtual classroom, the Internet shopping,
the virtual conference room, the multi-user games and the tele-presence.

66

Chapter 1 Conclusion 67

In this thesis, we have formulated the load balancing problem on the server side
in a DVE system as a partitioning problem by using the concept of AOL The parti-
tioning problem is proven to be NP-complete and heuristic algorithms are proposed
to generate some sub-optimal partitioning schemes. By solving the partitioning prob-
lem, the work load of the DVE system can be shared among the DVE servers and the
inter-communication incurred by the partitioning scheme is minimized. This allows
the realization of a very large scale DVE in a cost effective manner.

On the client side of a DVE system, we have described the object state synchroniza-
tion problem. Communication sub-graph construction algorithms have been presented
to support the efficient delivery of the synchronization messages by multicasting, based
on a number of design choices. We have also presented the derivation of the optimal
synchronizing intervals with different level of guarantees based on a given set of con-
sistency requirements.

I

I

Bibliography

1] D.B. Anderson, J.W. Barrus, J.H. Howard, C. Rich, S. Chia, and R.C. Waters.
Building multiuser interactive multimedia environments at merl. IEEE Multime-
dia Volume 2 4, pages pp 77-82, March 1997.

2] A.J. Ballardie, RF. Francis, and J. Crowcroft. Core based trees. ACMSIGCOMM,
1993.

3] U. N. Bhat. Elements of applied stochastic processes. John Wiley & Sons, New
York, 1972.

4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation
protocol (rsvp) - version 1 functional specification. RFC 2205, September 1997.

'5] T. Chiueh. Distributed systems support for networked games. SPIE First In-
ternational Symposium on Technologies and Systems for Voice, Video and Data
Communications, October 1995.

6] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design. Addison-Wesley, 1994.

'7] K. Koskimies et al. Simnet - a software tool for system simulation. The Second
Symposium on Programming Languages and Software Tools, August 1991.

:8] F. Fabbrocino, J.R. Santos, and R. Muntz. An implicitly scalable, fully interactive
multimedia storage server. International Workshop on Distributed Interactive
Simulation and Real Time Applications (DIS-RT,98), 1998.

9] M.R. Garey and D.S. Johnson. Computer and Intractability: A Guide to the
Theory of NP- Complessness. W.H. Freeman and Company, 1979.

10] R. Guerraoui and A. Schiper. Total order multicast to multiple. ICDCS, 1997.

11] K. Guo and L. Rodrigues. Dynamic light weight groups. ICDCS, 1997.

68

Bibliography . ^

12] John C.S. Lui and M.F. Chan. Efficient partitioning algorithm for the distributed
virtual environment system. The Sixth International Conference on Distributed
Multimedia Systems, 1999.

13] John C.S. Lui, M.F. Chan, T.F. Chan, W.S. Cheung, and W.W. Kwong. Virtual
exploration and information retrieval system: Design and implementation. Third
International Workshop on Multimedia Information Systems, 1997.

14] John C.S. Lui, M.F. Chan, Oldfield K.Y. So, and T.S. Tam. Balancing workload
and communication cost for a distributed virtual environment. Fourth Interna-
tional Workshop on Multimedia Information Systems (MIS'98), September 24-26，

1998.

15] John C.S. Lui, Oldfield K.Y. So, and T.S. Tam. Deriving communication sub-
graph and optimal synchronizing interval for distributed virtual environment sys-
tem. The IEEE International Conference on Multimedia Computing and Systems
(ICMCS,99), June 1999.

16] M.R. Macedonia, M.J. Zyda, D.R. Pratt, D.P. Brutzman, P.T. Barham, J. Falby,
and J. Locke. Npsnet: A network software architecture for large scale virtual
environments. Presence Vol 3, No. 4, pages pp 265-280, Fall 1994.

17] M.R. Macedonia, M.J. Zyda, D.R. Pratt, and P.T. Barham D.P. Brutzman. Ex-
ploiting reality with multicast groups: A network architecture for large-scale vir-
tual environments. IEEE Computer Graphics and Applications, September 1995.

18] F. Morgan. The hexagonal honeycomb conjecture. Trans. Amer. Math. Soc.,
pages 1753-1763, 1999.

19] K.L. Morse. Interest management in large-scale distributed simulations. Tech-
nical Report, University of California, Irvine, Department of Information and
Computer Science, pages IC-TR-96-27, July 1996.

20] R. Muntz, J.R. Santos, and S. Berson. A parallel disk storage system for realtime
multimedia application. Special Issue on Multimedia Computing Systems of the
International Journal of Intelligent Systems, 1998.

21] J. Plesmk. The complexity of designing a network with minimum diameter. Net-
works 11, pages 77-85, 1981.

22] H. Schulzrinne, GMD Fokus, S. Casner, R. Frederick, and V. Jacobson. Rtp: A
transport protocol for real-time applications. RFC 1889, January 1996.

Bibliography ^

•23] Alias Wavefront Software. Learning Alias Level One. A Division of Silicon Graph-
ics Canada Limited, 1995.

24] Performer Software. IRIS Performer Programmer Guides. Silicon Graphics Com-
puter Softwares, 1995.

25] S. Srinivasan. Multicasting in dis: A unified solution. ELECSIM, 1995.

26] R.C. Waters and J.W. Barms. The rise of shared virtual environments. IEEE
Spectrum, pages pp 20-25, March, 1997.

27] L. Zhang, S.E. Deering, D. Estrin, S. Shenker, and D. Zappala. Rsvp: A new
resource reservation protocol. IEEE Network, pages 7(5):8-18, September 1993.

I _? …—_..
^ .
1 • 'fr' li'i

i ••‘ ..

'•',"

M
m̂pjY,-

1
fc
r

1 1

r
l.j p
m

I ̂
^

• fe.

.;M

:-,-..,5

•K'l
‘ . '爾

‘

八5

J

:?h

,.¾

i •̂

I
••«.
i

I
1

I

CUHK L i b r a r i e s

圓__1111111
DD37E3MED

