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大型分佈式虛擬環境的硏究項目 

蘇敬恩 

論文摘要 

隨著多媒體的硏究和網絡技術的發展，大型分佈式虛擬環境將得到實現。在大 

型分佈式虛擬環境中，數以千萬計身處於不同地方的用戶，可以透過計算機網 

絡來在一個同共同的虛擬環境中遊覽、交換資訊和溝通。 

當我們要在局域網和廣域網中建立大型分佈式虛擬環境時，我們需要一個能同 

時應付極大量的用戶’又能處理在整個網絡當中不同結點在通訊上延遲的不同 

的系統建構。就此，我們把這個問題制定成爲一個劃分問題，並爲此建議了幾 

個不同的算法來解答這個劃分問題，以致當我們把整個大型分佈式虛擬環境的 

工作量分配到不同計算機網絡結點時，我們亦能同時減低因爲這個分配所引起 

對計算機網絡帶寬的額外需求。 

理想來說，在大型分佈式虛擬環境中，任何一個用戶在虛擬環境中的一舉一動， 

都應該立即被傳送到其他的用戶的計算機中°換言之’我們要爲所有用戶提供 

一個一致的虛擬環境。要保持不同用戶的虛擬環境的一致性，我們需要做透過 

計算機網絡來做一些同步化的工作。我們就此建議了一些子圖建立的算法，使 

我們可以透過組播來更有較的在計算機網絡中傳送同步化的資料。我們亦提供 

了一些同步化的機制來達致不同用戶的虛擬環境的一致性。最後，我們定義了 

何謂虛擬環境的一致性’並根據這定義和一些系統的參數，用不同的方法演算 

出該系統的最佳同步化間距。 
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Abstract 

Advances in the multimedia and networking technologies allow the realization of 
the distributed virtual environment (DVE) system. A DVE is a distributed system that 
allows many users who are located in different nodes in the network to concurrently 
explore and interact with each other in a high-resolution, 3-dimensional, graphical 
virtual world. 

In general, a DVE can be operated in either a local area network (LAN) or a 
wide area network (WAN). It is important to have an architecture which can handle 
both the large number of users and the variation on the network delay throughout the 
whole network. We formulate the load balancing problem as a partitioning problem, 
and then we derive some algorithms to solve it, so that as the load is distributed, the 
total network bandwidth requirement is reduced at the same time. 

Each user in a DVE is represented by an avatar and any action taken by an avatar 
should be observable immediately by all other avatars in the same virtual environ-
ment and to provide such a consistent view, synchronization is required. To allow 
the efficient use of the underlying network resource, construction algorithms for some 
communication subgraphs are described. Then, we propose a mechanism to perform 
object state synchronizations. Afterward, we define the notion of consistency and fi-
nally, we describe several methods to derive the optimal synchronizing interval based 
on the consistency requirements and the system parameters. 
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Chapter 1 

Introduction 

Communication is a process by which information is exchanged between individuals 
through a common system of symbols, signals or behavior. Communication is im-
portant for any individual inside a society to establish relations and produce mutual 
benefits. 

1.1 Evolution of Communication Technologies 

The earliest forms of communication among human beings have the limitation that they 
can only be used when two individuals are sufficiently close to each others. Examples 
include verbal conversations, communication through bodily gesture, etc. Later with 
the commencement of the postal service (including the delivery of letter by pigeon, 
etc), people can communicate with each others remotely. However, there is usually a 
large time lag after the initiation of the communication to the arrival of the information 
at the receiver side. Only after the invention of the telegram and later the telephone 
system, real time communication was then possible. 

Modern communication technologies like the telegram, telephone system, the fac-
simile, the video conferencing system, are proved to be very useful in the modern 
society by their wide popularity. These technologies are designed to suit various needs 
and they have been enhanced in such a way that they are becoming faster and cheaper. 
Information is becoming extremely vital in the business world and the efficient trans-
mission of information is very important. 

However, the above mentioned communication technologies imposed a limitation 
on the format of the data being transmitted, for example, we can only communicate 
through voice with a telephone. Even with the video conferencing technology, we are 

1 
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still limited in the transmission of images and voice. This limitation, however, does 
not exist in a computer based communication network. 

1.2 The Internet 

The Internet is the largest global computer network in the world, and it is also the 
first globally available computer network. The number of computers connected to the 
Internet keeps increasing everyday. 

With the rapid expansion of the Internet, computer has become one of the most 
important tools for communications and information exchange. Notice that the com-
munication technologies mentioned previously can also be implemented in a computer 
network. On the Internet, we have the email service to provide postal like services, 
we have the talk utility in UNIX to provide real time conversations based on text, for 
example. 

With the World Wide Web, documents with graphics or even multimedia data 
can be incorporated together by using the Hypertext Makeup Language (HTML) and 
then transmitted by using the Hypertext Transmission Protocol (HTTP) through the 
Internet. Not only text or images can be transmitted, but it can also support real 
time audio, video data, etc., by means of extra plug-ins in the web browsers. The web 
starts a complete revolution in the communications based on the computer network, 
and its rate of growth shows its usefulness and popularity. 

Since multimedia data can be transmitted through a computer network and there-
fore there is virtually no limitation on the format of data being transmitted. For 
example, a designer can send a three dimensional geometrical model of an aircraft 
prototype to an aeroplane developer through the computer network, while in the old 
days, we can only send the blueprint of the design on the paper, say by using facsimile. 
The growth of the Internet opens up the potential ability on the further use of this 
flexible and efficient means of communications. 

1.3 The Distributed Virtual Environments 

With the advances in computer graphics, multimedia systems, parallel/distributed 
systems and high speed networking technologies, it is now possible for the computer 
scientists and engineers to build a distributed virtual environment (DVE) system [26 . 
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A DVE is a distributed system that allows many clients who may be located in different 
nodes in the network to concurrently explore and interact with each other in a high-
resolution, 3-dimensional, graphical virtual environment (or virtual world). Clients 
who are exploring the virtual environment can (1) extract relevant information about 
the virtual environment (e.g., by sending database query to the DVE system and 
inquire about the state of any object in the virtual environment), (2) communicate in 
real time with other clients who are also exploring the same virtual environment. Like 
any other computer technology, DVE will change the way how people work, interact 
and share the information. In the near future, people may regularly log in a DVE 
system just like we read our email today. Through the DVE system, they can enter 
a highly graphical computer generated virtual world and they can meet and interact 
with other people. 

1.3.1 Features of D V E 

The DVE provides the following special features which is either unique or is especially 
attractive with respect to any other existing technology: 

1. The DVE breaks the barrier of geographical separation. Users from different 
part of the world can join the same virtual world through a DVE system on the 
computer network. It saves the time for long-distance traveling, and it certainly 
reduces the cost. 

2. The DVE provides a computer generated environment such that it might not 
necessarily be real. Part of the environments can be computer simulated and it 
is useful for training, for examples, astronauts can be trained inside a DVE with 
a computer generated space-craft, soldiers can learn how to react to different 
situations in a simulated war-field environment. 

3. The DVE produces a common environment to the users so that they can be more 
involved in the interaction. Unlike the video conferencing technology, every user 
is not bounded inside their own room. They share a common virtual world and 
yet, it poses no threat to any of the participant. 

4. The DVE creates a virtual world such that it can be treated as the real world. 
Nearly everything can be done in reality inside the virtual world. A user can, for 
examples, shake hand with other participants, and even play cards, etc. 
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1.3.2 Current and Potential Applications 

The Distributed Interactive Simulation (DIS) is a similar concept to the DVE and 
it is now widely used in military applications. It provides a realistic computer gen-
erated environment and it supports thousands of simultaneous users in the training 
of the armed forces. Immersive simulators are used for teaching the army on how to 
operate military vehicles such as the planes, helicopter and tanks in a virtual world 
with simulated enemies. Strategic planning can be done with the help of these DIS 
applications. 

As for an example of a civilian use of a DVE system, we consider the following 
situation to show how the DVE technology may affect our daily life and business 
operation. An architect from France, a civil and a structural engineer from the Los 
Angeles, a financial planner from Hong Kong and an interior designer from Tokyo, who 
are having a business meeting concerning about the design and financing issues of a 
new high-rise office complex which will be built in London. Under the DVE system, 
these people can interact in a virtual world of the new high-rise office complex that they 
are proposing to build. Each participant in this business meeting can virtually walk 
through the high-rise office building. They can interact and carry out the discussion 
without leaving their own homes. For example, in this virtual environment of high-rise 
office complex, each user in the meeting is represented by a 3D object, which is known 
as an avatar, and each participant can walk around in this virtual office building, and 
in the process, they can rearrange any 3D object (e.g., furniture, paintings, selecting 
different kinds of wall papers, . . . etc) in the environment. Any change to a 3D object 
in this virtual environment will also be visible to all the participants. Also, during the 
meeting in this virtual 3D environment, the participants will be able to interact with 
each other in real time, as well as to inquire the information about the virtual world 
that they are exploring. 

Note that there are many other types of application that can be built in the form 
of the DVE system, for example: 

1. Education: Students and teachers can interact in a virtual classroom. For exam-
ple, the teacher can guide a group of students and together, they can explore a 
virtual museum and the teacher will be able to explain the historical implication 
of each object in the exhibit to the students. 

2. Collaborative Group-ware Application: Either in a business or engineering de-
velopment environment, each participant in the meeting can see the changes of 
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the business models or engineering designs, and be able to inquire the specific 
information about the product that they are trying to market or to build. 

3. Internet Shopping: A virtual shopping center such that buyers and sellers can 
interact and negotiate about the price of the selling item and at the same time, 
people do not need to leave their homes and still be able to visualize the products 
in a high-resolution, three dimensional format. It is definitely more intuitive and 
immersive than the web-based counterparts. 

4. Entertainment: Network computer games can be built in the form of a DVE and 
more players from different part of the world can participate even if they do not 
know each others. Imagine a football game which involves twenty-plus people 
around the world! 

5. Tele-presence: Robotic facilities in remote site can be controlled through the cor-
responding simulated objects inside the virtual world of the remote site. Sensors 
can be installed in the remote site so that the state of the objects inside the 
virtual world can be kept synchronized with the real world objects. 

6. Cooperated Interior Designs: Designers from different part of the world can 
jointly conduct interior design work inside a room of a virtual building. 

1.3.3 The Challenges 

To deploy a DVE system in a local area network (LAN), a private network or even 
in wide area networking environment, such as the Internet, we need to design a cost-
effective, scalable DVE system. There are many research issues that need to be ad-
dressed. For example: 

• Designing an efficient back-end database engine so as to give good throughput 
and response time for any query submitted by the clients who want to know some 
information about the virtual environment that they are exploring. 

• Designing an efficient communication protocol so that clients who are located in 
different regions of the world can communicate in real time without consuming 
too much network bandwidth and with acceptable delay. 

• Maintaining that each user will have a consistent view of the virtual world. In 
other words, if there is an action taken by any user in the virtual world or if 
the state of any object in the virtual world is changed, every client should be 
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able to view the change "immediately". In order to provide this consistent view, 
the DVE system needs to perform a synchronization action to every user's view 
periodically. 

The first research issue can be answered by designing a back-end database engine 
which can efficiently process queries (either in relational or spatial form) submitted 
by the clients, as illustrated by the VINCENT system [13]. For the second research 
issue, we can utilize some of the recent work on the Internet real time protocols, such 
as the RSVP [27] and RTP[22], for the network bandwidth allocation and real time 
communication. 

1.4 Our Contributions 

In this thesis, we try to solve some of the major problems in the design of a DVE 
system. Our work can be divided into two parts. In the first part, we formulate and 
solve the load balancing problem of a DVE system. In the second part, we discuss the 
synchronization problem which includes the construction of the communication sub-
graph for the delivery of synchronization messages and the derivation of the optimal 
synchronizing interval with a given set of consistency requirements. 



Chapter 2 

System Architecture 

In this chapter, we describe the system architecture of our DVE system. Our DVE 
system consists of two components namely the DVE server and the DVE client. The 
DVE server is responsible for the maintenance of the state information of the objects 
inside the virtual world. The DVE client, on the other hand, serves as an interface to 
the users to the virtual world, it renders the view of the virtual world for the users 
based on the state of the objects retrieved from the DVE server, it also calculates 
the changes in the state of the objects based on the actions of the users and reflect 
these changes to the DVE server. More than one users can join the same virtual world 
session through different DVE clients. 

2.1 The SSDVE and MSDVE Architectures 

A straight forward way of implementing a DVE system is to use a single DVE server 
to maintain the state of the objects in the virtual world. We call this the Single Server 
DVE (SSDVE) architecture. With the SSDVE architecture, we cannot scale up the 
size of the virtual world arbitrarily since the computation power of a single server 
machine is fixed. This poses a limitation on the size of the virtual world and also the 
number of concurrent users. 

However, instead of using a single server machine, we can use more than one DVE 
server machines to maintain the state of the objects in the virtual world. We call this 
the Multiple Server DVE (MSDVE) architecture. With the MSDVE architecture, the 
virtual world is divided into several partitions and each of the DVE server machine is 
responsible for maintaining the state of the objects inside their own partition. 

With the MSDVE architecture, any user can join the virtual world through a DVE 
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client to connect to the DVE server which is responsible for maintaining the partition 
ofthe virtual world that the user is interested in. The MSDVE architecture is scalable, 
since we can always add more DVE server machines to increase the total computation 
power, so that a large virtual world can be maintained. Figure 2.1 illustrates the 
SSDVE and MSDVE architecture. 

^ • unicast communication ^ _ multicast communication 

/ \ 

DVE DVE ^__^ DVE ^_^ DVE 
Server Server Server Server 

(¢^¾) (¾..¾..¾) 
DVE DVE DVE DVE DVE DVE DVE DVE DVE DVE 
Client Client Client Client Client Client Client Client Client Client: 

(a) (b) 

Figure 2.1: System Architecture for (a) SSDVE; (b) MSDVE 

2.2 Issues in the MSDVE Architecture 

We assume the MSDVE architecture in the rest of this text. The issues in the design 
and implementation of a very large scale DVE system based on this architecture are 
covered. 

2.2.1 On the Server Side 

The first issue we need to address is the work load distribution among the DVE servers. 
However, when we divide the virtual world into partitions, inter-server communication 
is required. We inust derive a partitioning scheme such that as the work load is shared 
ainoiig the DVE servers, the amount of overhead due to this inter-server communication 
is minimized. The detail about this problem and our proposed solutions are given in 
chapter 3. 

2.2.2 On the Client Side 

Since the DVE clients of the same virtual world session can be running in different 
machines, the views of the virtual world rendered by these clients may not be the 
same. We would, however, want to keep these deviations to be as small as possible. 
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We called this property view consistency. In chapter 4 and chapter 5, we discuss how 
to maintain the view consistency among the DVE clients which are connected to the 
same DVE server. 

In chapter 4, we describe what is a good communication subgraph for the deliv-
ery of the synchronization messages among the DVE clients through the multicasting 
technique. Then, we propose some algorithms to derive a suitable communication 
subgraph depends on the nature of the application. In chapter 5, we present some 
synchronization mechanisms and then we show how to derive the parameters for those 
synchronization mechanisms with a given set of consistency requirements and system 
parameters. 



Chapter 3 

Balancing Work Load and 
Reducing Inter-server 
Communication 

In this chapter, we discuss about the load balancing problem in a DVE system. The 
computation power required by a very large scale DVE system is huge and therefore, 
it is neither scalable nor cost effective to implement such a big system in a single 
computer. With more than one computers, we have to consider the problem about 
how to use the computing resources in these computers. 

In this chapter, a mechanism called the partitioning [14] is proposed to build a cost-
effective and scalable DVE in a network cluster of computers. The system architecture 
is first described, and then the partitioning problem is formulated and algorithms are 
proposed to solve the problem. Finally, experimental results are shown to demonstrate 
the effectiveness of the algorithms proposed. 

3.1 Problem Formulation 

With the MSDVE architecture described in chapter 2, the problem is to decide how 
to divide a virtual world into partitions and to assign them to a given set of server 
computers. We call it the partitioning problem. 

By dividing the virtual world into different partitions, inter-server communication 
is required when an avatar from one partition needs to interact with another avatar 
or objects in another partition. Therefore, the partitioning scheme should be able to 

10 
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divide the work load of maintaining the object states, and at the same time, minimize 
the inter-server communication induced by such a division. 

We first introduce some necessary concepts like the area of interest [17] and the 
DVE cells. Then, we introduce two methods to find the expected number of avatars 
within a DVE cell. Afterward, we describe two different types of network and how 
they affect our cost metrics in the optimization of the inter-server communication and 
finally we define the partitioning problem formally at the end of this section. 

3.1.1 The Area of Interest 

The users of a DVE are called avatars inside the virtual world, an avatar can interact 
with other avatars as well as objects within the virtual world. We define the AOI 
of an avatar to be the area such that the avatar can interact with the other objects, 
including the other avatars, within. 

Definition: The AOI of an avatar A is defined as the circular region with radius r^ 
measuring from A, i.e. A is the center of the circle, such that the value of r^ depends 
on the properties of the avatar A. 

In general, the AOI of an avatar can be in arbitrary shape but for the sake of easier 
analysis, we use a disc as the shape of the AOL 

3.1.2 The D V E Cells 

The inter-server communication cost of a partitioning scheme is characterized by the 
number of avatars which can interact with the other avatars or objects in another 
partition. In another words, inter-server communication is required when the AOI of 
an avatar in one partition encloses the other avatars or objects in another partition. 

By using the concept of AOI, we divide the virtual world into small regions called 
the DVE cells which can then be used as the basic unit of the area in the partitioning 
of the virtual world and this division scheme can greatly simplify the evaluation of the 
quality of the partitioning scheme. 

We divide the virtual world into small square regions and we call them DVE cells. 
We limit the size of DVE cells for a virtual world of avatars to satisfy the following: 

I < rT' < S 
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where r^®^ = maxvAi{^Aj, and by imposing this restriction to the size of the 
DVE cells, we ensure that the AOI of an avatar will always exceed its home cell, 
as shown in Figure 3.1. More importantly, no AOI can run across two DVE cells. 
Therefore, the communication cost between two adjacent DVE cells, either horizontally 
or vertically, if they are assigned to different partitions, can be simplified to consider 
only the avatars in the neighboring DVE cells instead of considering all the avatars in 
the whole neighboring partition. 

• 丨 : 》 • [ • I 
I • I • 

• [ I 
!"X^J^"""*" 

' - i - H ^ v - - 1 
• • r • •: • • s 

I j • ,, 

Figure 3.1: Relation of the Size of DVE Cell and AOImax 

3.1.3 Expected Number of Avatars 

We propose two methods to find the expected number of avatars inside the DVE cells. 
The first one is an analytical method based on the theory of Markov Chain, and the 
second one is based on the run time statistics of the virtual world. 

Setup time method: Analytical Method 

We represent the movement pattern of each avatar by a Markovian Process. Let M^ 
be the mobility matrix of an avatar A where 

{ r a t e of avatar A moving from cell i to cell j for i / j 

-T^k^i^Alhk] for i = j 

Given the mobility matrix M^ of avatar A, we can easily compute the steady state 
probability of avatar A at any given cell in the virtual world by solving the following 
system of linear equations: 



Chapter 3 Balancing Work Load and Reducing Inter-server Communication 13 

TT̂ MA = 0 

TT̂ e = 1 

where 7TA[i] is the steady state probability that avatar A is in cell i and e is the 
column vector of l's. Note that if all avatars can provide their mobility matrices upon 
entering the virtual world, then an effective server-cell assignment can be obtained 
during the arrival instants of each avatar. 

Run time method: Statistical Method 

If an avatar cannot provide the mobility matrix, we can approximate the expected 
number of avatars in a DVE cell by keeping a record on the number of avatars during 
the run time of the DVE. For example, we can take n snap shots of the DVE on the 
number of avatars in the DVE cells, and then the expected number of avatars of the 
DVE cells can be approximated by dividing the total number of avatars which have 
appeared in that DVE cell by n. 

3.1.4 Cost Metrics in Different Types of Network 

We describe two types of communication network and we show how they affect our 
cost measurement in the optimization of inter-server communications. 

Weight of Edges in Bus-based network 

Shared Bus  

© © © © 
Cl,C2,C3,C4 are computers 

Figure 3.2: Bus-based Network 

In a bus-based network, all the communication messages among the DVE servers 
are sent and received from this bus. Therefore, a good partitioning scheme should try 
to minimize the total amount of communication messages among all the DVE servers. 
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Weight of Edges in Switch-based network 

._ ( ¾ ^ 

&"""^^) 

Figure 3.3: Switch-based Network 

In a switch-based network, the communication messages among the DVE servers 
are sent and received virtually through a dedicated link, if this link is full-duplex, a 
good partitioning should try to minimize the maximum size of all the communication 
messages because messages can be sent and received in parallel and the total delay 
due to communication is then the time required for the transmission of the message 
having the maximum size. 

3.1.5 Problem Definition 

With the concept of the DVE cells, the partitioning problem becomes the assignment 
of the DVE cells to the partitions or the set of available DVE servers. 

We assume that the work load of a DVE server is proportional to the expected 
number of avatars in the cells within its own partition. The inter-server communication 
cost of the assignment is proportional to the number of avatars in the boundary DVE 
cells, because only the avatars in the boundary DVE cells can generate inter-server 
communication. 

We give a formal definition of the DVE partitioning problem by transforming it into 
a graph problem. With a given DVE, we can obtain the expected number of avatars 
within each cell with the method described in Section 3.1.3. We then transform the 
DVE system into a graph with its nodes representing the DVE cells and its edges 
representing the communication link between the adjacent cells. 

Let us give an example to illustrate this idea, the DVE in Figure 3.4 is the original 
DVE, the graph in Figure 3.5 is the graph transformed from the original DVE system. 

Notice that not all the weight of the edges of the graph in Figure 3.5 are shown for 
the simplicity of illustration and drawing. The value on the nodes are the expected 
number of avatars in the corresponding DVE cells, while the weight ofthe edges can be 
calculated in several ways, based on the nature of the network connection within the 
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Figure 3.4: The Original DVE 

國 0 ¾ ^ 
Figure 3.5: The Transformed Graph 

DVE server cluster. In the example above, we have summed up the expected number 
avatars in the two end nodes to form the weight of the edges (i.e. we are modeling a 
bus-based network), and the weight of the diagonal edges can be calculated similarly. 

Before giving the formal definition of the DVE partitioning problem, let us define 
the following notations: 

N = Number of cells that compose the whole virtual world 

P = Number of partitions or servers in the DVE system 

Ci = DVE cell i, 1 < i < N 

n = Number of avatars in the DVE system 

Ai = Avatar i where i = 1,2, . . . , n 

Mi = Mobility Matrix for Ai 

Wi = Work load in cell Cj, i = 1,2，... , N 

Lij = Communication cost for the link between Ci and Cj, 1 < i,j < N 

wi = A non-negative weight of the work load cost on a server 

W2 = A non-negative weight of the inter-server communication cost 



Chapter 3 Balancing Work Load and Reducing Inter-server Communication 16 

C^ = Work load cost of a given partition configuration V 

Cp = Communication cost of a given partition configuration V 

._ Cv = Total cost for a given partition configuration V 

With the above notations, the graph G can be obtained from a given DVE system 
with the following algorithm: 

Algorithm Graph_Transform(Input: DVE; Output G); 
begin 

For each cell Q, create a node V{ in G and assign Wi with 
the expected number of avatars in cell Q； 

For all cell Ci and Cj, create an edge Eij in G with end nodes Vi and Vj 
if Ci and Cj are adjacent; 
For all Eij G E, computer the edge cost Lij = W{ + Wj ； 

end; 

We are now in the position to formally define our DVE partitioning problem. Given 
a graph G = (V, E) with |V| = N, V is the partition that divides V into P (where P 

is the number of servers) disjoint subsets Vi, V2,... , Vp such that Vi U Vj = 0 for i + j 
and U � i ^ = V. Given a partitioning scheme V, we can define the work load cost 
C ^ on this partition such that: 

cr = E(Eî -5i) (3.1) 
3=1 vieVj 

Note that the term ^ is the work load under the ideal partitioning scheme where 
there is equal work load in each partition. Therefore, the physical interpretation of 
the above equation is to represent the deviation of work load from the ideal case. 

One might argue that if all the server computers can handle the work load, there is 
no point to make them share the same amount of work load. Let us consider an extreme 
case such that the work load of one of the server has reached its limit, and therefore, 
that server cannot admit any more new users. On the other hand, a system with all 
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the work load equally shared can handle newly admitted users if the total computation 
power of the servers allowed, and so it is better for us to devise a partitioning scheme 
which can distribute the work load equally to all the server nodes, rather than just to 
ensure every server nodes can handle the work load assigned. 

Let us define the following function between a cell u and a partition Vi： 

3 D , , T,� / 1 ii3veVis.t. EuveE 
ADJ(u,Vi) = < . (3.2) 

I 0 otherwise 

Then , given a partitioning scheme V, let Cij be the communication cost between 
partition Vi and Vj and Cij can be expressed as: 

Cij = Y. W« . ADJ(u, Vi) + J2 W^ . ADJ(u, Vj) (3.3) 
ueVi ueVj 

Let Cp be the communication cost for partitioning scheme V and it is: 

p P 

^ = E E � (3-4) 
i=l j>i 

Therefore, C^ represents the total inter-server communication cost given the par-
titioning scheme V. The overall cost for the partitioning scheme V can be expressed 
as: 

Cv = w1C^+w2C^ (3.5) 

Finally, the partitioning problem is to find an optimal partitioning scheme V* such 
that 

C^ = mm{Cp} (3.6) 
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3.1.6 Complexity 

Before going to the partitioning algorithms, we give a proof of the following theorem: 

Theorem 1: The DVE partitioning problem is NP-complete. 

Proof: Let us consider a simplified version of the partitioning problem where w2 = 0, 
which correspond to the case that the network has infinite communication bandwidth 
and so the inter-server communication cost is negligible. Given a set of nodes in V, 
we partition them into P disjoint subsets Vi, V2,...，Vp such that uf^^Vi = V and the 
partitioning cost is: 

Cv = j 2 \ ^ y i - ^ \ (3-7) 
i=l 

where Wvj = Y^vieVj 恥 .T h e main idea of the proof is to transform the subset sum 
problem [9], which is known to be NP-complete, to the above simplified version of the 
partitioning problem. 

The subset sum problem can be described as follows. Given a set of real numbers 
Af = {a1 , a2 , . . . ,aAr} and a real value k, the subset sum problem is to determine 
whether there exists a partitioning of the set Af into disjoint partitions A/l,A2,. . .A/"z 
such that the sum of the elements in each A/̂  is equal to k. 

Given an instance of the subset sum problem, the reduction works as follows. We 
create a DVE cell for each element ai G A/", and the work load of the cells are the value 
of the element a{. The number of partitions P for the partitioning problem is: 

P = ^ | ^ (3.8) 
K 

If an input instance of the subset sum problem should return a yes, than it implies 
that the corresponding partitioning problem can be evenly divided up the work load 
among P servers. If the result is no, this implies that the partitioning problem will 
have a load imbalance cost which is greater than zero. Since we can reduce the input 
instance of a subset sum problem, in polynomial time, to the input instance of a par-
titioning problem and then use the algorithm of solving the partitioning problem to 
solve the subset sum problem, therefore, the partitioning problem is also NP-complete. 

• 
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3.2 Partitioning Algorithms 

It has been shown in the earlier section that the general DVE partitioning problem is 
NP-complete. Therefore, we try to look into a simplified case to gain some insights of 
the general problem. 

3.2.1 A Simplified Case 

In our simplified DVE model, we assume that the avatars are uniformly distributed 
over the whole DVE, that is the number of avatars in all the DVE cells are equal. 
With this assumption, the area of a partition will then be proportional to the number 
of avatars in this partition. 

Another implication is that, the number of avatars lying on the boundary of a 
partition is proportional to the length of the boundary of this partition. Therefore, by 
minimizing the total length of the boundaries of all partitions, the communication cost 
of the DVE server cluster is minimized. 

The DVE partitioning problem in this simplified case is then become the packing 
of arbitrary shaped areas into a large area, such that the total length of the boundaries 
of these areas is to be minimized. 

This problem has been evaluated by mathematicians and it is a general belief that 
hexagons should be the best shape of the partitions under the above metrics. The 
hexagonal honeycomb conjecture [18], has been proposed and formulated in a number 
of ways. 

Therefore, the DVE partitioning problem in this simplified case can be solved by 
using hexagon as the shape of the partitions. We use it as an approximation to the 
general case of the problem provided that the deviations on the expected number of 
avatars are small among the DVE cells. At the same time, it can be used as a baseline 
for us to evaluate and compare the performance of the other heuristics which attempt 
to solve the general problem. The hexagonal partitioning scheme in the simplified 
DVE model is shown in Figure 3.6. 

3.2.2 The General Case 

The partitioning scheme for the general case should be able to capture the information 
on the distribution of avatars to maintain the load balancing as well as communication 
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Figure 3.6: Hexagonal Honeycomb Partitioning 

cost minimization. 

Due to the dynamic nature of the distribution of the avatars in the virtual environ-
ment, we have to re-partition the DVE when required, so as to maintain the efficiency 
as well as cost effectiveness. That is, we have to find out when should we invoke the 
partitioning algorithm again to produce an efficient partitioning. Two simple criteria 
are that either when the work load is exceedingly skewed or when the communication 
cost among DVE server increases too much, that is, an imbalance of message cost in a 
switch-based network or the an dramatic increase in the total amount of messages in 
a bus-based network. 

Exhaustive Partitioning Algorithm (EP) 

As the name implies, it enumerates all the possible partitioning schemes and try to 
find the one with lowest cost. This algorithm is optimal but the complexity is 0 { P ^ ) 
which is not feasible even for a moderate sized DVE. 

Baseline Partitioning Algorithm (BP) 

Given the NP-completeness nature of the partitioning problem, we try to study a 
simplified version of DVE first. In the simplified DVE, the avatars are uniformly 
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distributed inside the virtual world. With this assumption, it implies that the number 
of avatars in the boundary cell, which turn out to be the inter-server communication 
cost, is proportional to the perimeter of the partitions. And load balancing in this 
simplified version of DVE can be achieved by assigning equal area of the virtual world 
to each of the available servers. 

Mathematically, the DVE partitioning problem in the simplified version becomes 
the packing of arbitrary shaped area into a large area such that the total length of 
the perimeter of the small shaped area is minimized. Mathematicians proposed the 
hexagonal honeycomb conjecture [18] saying that regular hexagon is the shape of the 
partitions that we wanted. 

For the ease of implementation, we use square instead ofhexagon in our experiments 
below. And a performance drops of 7% can be derived by using square instead of 
hexagon, theoretically. The baseline partitioning algorithm (BP) is to assume that the 
underlying distribution of avatars in the given DVE is uniform, even if it is not the 
case. The complexity is 0(1). 

Bisection Partitioning Algorithm (Bi-P) 

This is our proposed attempt to give sub-optimal solution of the DVE partitioning 
problem in the general case based on heuristics. We call this algorithm the Bisection 
Partitioning Algorithm (Bi-P), and it is designed based on the concept of bisection. 
Without the loss of generality, let us first present the Bi-P algorithm for N cell system, 
and P = 2. Let PJ^ be the partition for the k^ server with n cells, initially, we set: 

p ^ = V = {^1,^2, • • • , VN} ； A �= 0 (3.9) 

Let Vi be the î ^ partition configuration and let Cp., the cost based on the above 
equation, be the cost of partition configuration Vi. Based on the initial partition, we 
have Vo — {P^, P2) and the corresponding Cp� . We then can find Vi by moving one 
cell from P ^ to P® and compute the cost C^i • Note that the cell can be chosen in such 
a way that the total cost of Cj>̂  is minimized, which can be achieved by considering 
each cell in P ^ and this process takes a linear time with respect to the total number 
of cells in the system. Formally, we have: 

Vi = (Pi^~\ Pi) where i = 0 ,1, . . . , N (3.10) 
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and then 巧终1) can be derived by: 

^ m ) = (户广 - (叫 ) , / ^ + 1 ) (3.11) 

= { P [ ^ - ' ^ - { v j h P i ^ M ) (3.12) 

for Vj e Pp—” and C^(i+i) is minimized. 

Note that C p � a n d Cp^ represent the two extremes of the highest load imbal-
anced cost (i.e., all the cells are assigned to one server and there is no inter-server 
communication). Therefore, the Bi-P algorithm is to choose a configuration that: 

Pi* = {Vi\Cv, = ^min^{Cp,}} (3.13) 

The above algorithm applies for P = 2. For larger number of P, we can first use 
the Bi-P algorithm mentioned above, then choose a partition that has the largest work 
load and then apply the Bi-P algorithm again until the desired number of partitions 
is generated. The complexity of the Bi-P algorithm is 0 ( ^ ) ¾ ^ ^^"^ |0. 

Cell Shifting Operation 

Since only the EP algorithm can generate the optimal partitioning, that means there 
are rooms for improvements for both the BP and Bi-P algorithms. A post processing 
technique called cell shifting is proposed to improve the resulting partitioning. In 
general, cell shifting operation is a process of assigning a cell from one partition to its 
neighboring partition such that the resulting partition V' has a lower total cost Qp! 
than Op. The cell shifting operation terminates when the total cost cannot be further 
reduced by cell shifting. Therefore, it is intuitively clear that the resulting partitioning 
after cell shifting operation should be at least as good as the original partition. 

3.3 Experiments 

In this section i, we present the experiments for various algorithms that we discussed in 
the previous section. In experiment 1，we have a small virtual world with the dimension 

^The experiment is a joint work with Mr. Peter T.S. Tam and Mr. M.F. Chan 
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of 4 X 4 cells and the number of avatars is 500 and P = 2. Since this DVE is small, 
we can compare our proposed algorithms with the EP algorithm, which guarantees to 
yield the optimal partition policy. In the second experiment, the have a large virtual 
world which is composed of 25 x 25 cells with the number of avatars being 2500 and 
P = S. 

In general, we use three different methods to generate the position of each avatar 
and they are: 

• Uniform Distribution:. Let the position of an avatar be {x, y) and the values of 
X and y are uniformly distributed between (0,T4) and (0, Vy) where Vx {Vy) is 
the horizontal (vertical) dimension of the virtual world. 

• Skewed Distribution: Given the size of the DVE world is (Vx, Vy), we divide the 
number of avatars in the DVE systems into four equal sized groups, namely, Gi, 
i — 1,2,3,4. Let {x,y) be the position of the avatar in group Gi. The value of 
(x,y) is generated in such a way that x is uniformly distributed between (0, ^ ) 
and y is uniformly distributed between (0, ^ ) . Under this scheme, most of the 
avatars will be positioned within the square area defined by the two coordinates 
[0,0] and (¾^,¾. 

• Clustered Distribution: Given the size of the DVE world is (T4, Vy), we gen-
erate avatars around k > 1 clusters. First, we randomly generate k points 
{x i ,y i ) , . . . , {xk, Vk) such that Xi and yi is uniformly distributed between (0, Vx) 
and (0, Vy) respectively. Then we divide the number of avatars in the DVE sys-
tem into k equal-sized groups, namely, Gi, G2,... , Gk- For each avatar in group 
Gi, we generate its position in {x,y) where 

‘ 0 if Xi + dx X n < 0 
X = Vx if Xi + dx X 0 > Vx 

‘ Xi + dx X 0 otherwise 

‘ 0 if yi + dy x Q < 0 
y = Vy if yi + dy x f2 > Vy 

‘ yi + dy X 0 otherwise 

Note that dx and dy are generated uniformly between (—1，1) and the parameter 
$7 depends on the size of the virtual world. For example, we set 0 = 0.4 for the 
4 X 4 cells sized virtual world and Q, = 3.0 for the 25 x 25 cells sized virtual world. 

Experiment 1: In this experiment, the virtual world is composed of 4 x 4 cells with 
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the total number of avatars equal to 500 and the number of servers V is equal to two. 
Figure 3.7 illustrates this virtual world under three different distributions. 
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Figure 3.7: Virtual World with a 4 x 4 Cells under (a) Uniform (b) Skewed (c) 
Clustered distribution 

In this experiment, we set wi = w2 = 0.5. 

When the avatars are uniformly distributed around in virtual world, we have the 
< following result. 

DVE with a 4 x 4 cells, 500 avatars under uniform distribution 
Algorithm (C^) (C^) Overall Cost (Cp) Execution Time T 

Exhaustive 22 235 128.5 3.341 
Baseline 218 249 233.5 0.164 
Bisection 22 243 132.5 0.002 

Figure 3.8 illustrates the partitioning of various algorithms. 
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Figure 3.8: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy 
When the avatars are skewly distributed around in virtual world, we have the 

following result. 

一广. 



Chapter 3 Balancing Work Load and Reducing Inter-server Communication 25 

DVE with a 4 x 4 cells, 500 avatars under skewed distribution 
.Algorithm (C^) {C^) Overall Cost {Cy) Execution Time T 

.—Exhaustive 2 396 199 3.341 
Baseline 388 205 2 ^ 0.171 
Bisection 6 397 201.5 0.002 

Figure 3.9 illustrates the partitioning of various algorithms. 
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Liî/=iî L̂ ^̂  MMMiiHMMMMMM >>>>>>>«><>>>>« ZM Li»««««>̂>̂̂ J»»>«̂«£>W«*>i>̂-=»̂»>iL_da«î̂««̂̂ 1«̂̂L ^ ̂ ^^ ^ �“ ~ ^ ^ ^ ^ ^̂  .,....- ,,.̂ .-MSSfiSS 

(a) (b) (c) 

Figure 3.9: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy 
When the avatars are distributed in a clustered fashion around in virtual world, 

we have the following result. 

DVE with a 4 x 4 cells, 500 avatars under clustered distribution 
Algorithm [C^) (C^) Overall Cost {Cy) Execution Time T 

fExhaustive 2 116 59 3.341 
Baseline 4~~ 178 n 0.164 
Bisection^ 2 116 59 0.002 

Figure 3.10 illustrates the partitioning of various algorithms. 

Experiment 2: In this experiment, the virtual world is composed of a 25 x 25 cells 
with total number of avatars equal to 2500 and the number of servers V is equal to 
eight. Two algorithms are compared on these worlds, which are the Baseline Algorithm 
and the Bisection Algorithm. 

Figure 3.11 illustrates this virtual world under three different distributions. In this 
experiment, we set wi — w2 = 0.5. 

When the avatars are uniformly distributed around in virtual world, we have the 
following result. 
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Figure 3.10: Partitioning under (a) Exhaustive (b) Baseline (c) Bisection Policy 
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(a) (b) (c) 

Figure 3.11: Virtual World with a 25 x 25 Cells under (a) Uniform (b) Skewed (c) 
Clustered Distribution 

DVE with a 25 x 25 cells, 2500 avatars under uniform distribution 
Algorithm {C^) {C^) Overall Cost {Cy) Execution Time T 

Baseline 536 1007 771.5 0.177 
Bisection 5 1142 573.5 95.315 

Figure 3.12 illustrates the partitioning of various algorithms. 

When the avatars are skewly distributed around in virtual world, we have the 
following result. 

DVE with a 25 x 25 cells, 2500 avatars under skewed distribution 
"Algorithm {C^) {C^) Overall Cost {Cy) Execution Time T 

Baseline 1606 1156 1381 0.183 
Bisection 103 1267 685 127.575 

Figure 3.13 illustrates the partitioning of various algorithms. 

When the avatars are distributed in a clustered fashion around in virtual world, 
we have the following result. 
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(a) (b) 

Figure 3.12: Partitioning under (a) Baseline (b) Bisection Policy 

(a) (b) 

Figure 3.13: Partitioning under (a) Baseline (b) Bisection Policy 

DVE with a 25 x 25 cells, 2500 avatars under clustered distribution 

Algorithm (Cif) (C~) Overall Cost (Cp) Execution Time T 

Baseline 2245.75 1402 1823.88 ·0.176 

Bisection 555 2456 1505.5 152.270 

Figure 3.14 illustrates the partitioning of various algorithms. 

Experiment 3: In this experiment, the virtual world is composed of 25 x 25 cells 

with the total number of avatars equal to 2500 and the number of servers P is equal 

to eight. The virtual worlds are the same as the one found in Experiment 2. And 

again, we apply two algorithms, the Baseline Algorithm and the Bisection Algorithm 

to partition those worlds. However, we additionally apply the Cell-Shifting iterative 

improvement method to the results and obtain better partitions. As usual, in this 

experiment, we set Wl = W2 = 0.5. 
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(a) (b) 

Figure 3.14: Partitioning under (a) Baseline (b) Bisection Policy 

When the avatars are uniformly distributed around the virtual world, we have the 

following result (additional cell-shifting method). 

DVE with a 25 x 25 cells, 2500 avatars under uniform distribution 

Algorithm (C;') (C~) Overall Cost (Cp) Execution Time T 

Baseline 356 1071 715.3 3.874 

Bisection 5 1044 524.5 106.315 

Figure 3.15 illustrates the partitioning of various algorithms. 

(a) (b) 

Figure 3.15: Partitioning under (a) Baseline (b) Bisection Policy 

When the avatars are skewly distributed around the virtual world, we have the 

following result (additional cell-shifting method). 
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DVE with a 25 x 25 cells, 2500 avatars under skewed distribution 

Algorithm (C:) (C~) Overall Cost (Cp) Execution Time T 

Baseline 1564 1081 1322.5 3.460 

Bisection 103 1211 657 132.125 

Figure 3.16 illustrates the partitioning of various algorithms. 

(a) (b) 

Figure 3.16: Partitioning under (a) Baseline (b) Bisection Policy 

When the avatars are distributed in a clustered fashion around the virtual world, 

we have the following result. 

DVE with a 25 x 25 cells, 2500 avatars under clustered distribution 

Algorithm (C:) (C~) Overall Cost (Cp) Execution Time T 

Baseline 2635.75 995 1815.38 3.690 

Bisection 555 2072 1313.5 162.289 

Figure 3.17 illustrates the partitioning of various algorithms. 
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(a) (b) 

Figure 3.17: Partitioning under (a) Baseline (b) Bisection Policy 



Chapter 4 

Communication Sub-graph 

Before going into the discussion on the synchronization mechanisms for maintaining 
the view consistency of the DVE clients, we first present the ideas on the construction 
of the underlying communication sub-graph [15] to support the delivery of the syn-
chronization messages through multicasting. We are interested in doing that because 
we want to use the communication channels efficiently, and more importantly, we want 
to know the maximum end-to-end delay, we call it dmax, for the delivery of the syn-
chronization message, in order to derive the optimal synchronizing interval in the next 
chapter. 

In this chapter, we describe various factors which affect the design choices of the 
communication sub-graph. Then, we present several algorithms for the construction 
of the communication sub-graph, depending on the those design considerations. 

4.1 Problem Formulation 

The underlying network among the DVE clients is represented by a connected graph 
G = {V, E). Given the current DVE client set C{t) = {c1,c2,... , ĉ：}, we need to 

find a connected sub-graph G' = {V',E') such that C{t) C V' and E' C E. Note 
that in general, the number of nodes in G' is greater than k. The reason is that some 
intermediate nodes are needed between the DVE client nodes so as to provide the 
connectivity as well as to allow further optimization of the communication sub-graph. 

31 
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4.1.1 Optimization Metrics 

Since there are many possible communication sub-graphs G', we may want to optimize 
the sub-graph construction based on the following metrics: 

1. Minimize the maximum end-to-end delay between any two clients in G'. 

2. Minimize the total bandwidth consumption by minimizing the total edge cost of 
G'. 

Formally, minimizing the maximum end-to-end delay refers to: 

mrndmax{G') = m i n ] max id{pij)} \ (4.1) 
VG' VG' [^hj^c{t) J 

where d{pij) is the delay in the communication path between client i and client j, 
for i ^ j. Minimizing the total network bandwidth consumption refers to: 

m i n ( l i m S L ^ | (4.2) 
VG' l t^oo t 1 

where N(k) is the total number of messages which are in transit (e.g., the trans-
mitting messages which are in some communication paths in G') at time k. 

4.1.2 Design Considerations 

In this chapter, we consider two factors that may affect the optimization metrics on 
the construction of the communication sub-graph. These factors are: 

1. The underlying networking environment. 

2. The type of membership of the DVE clients. 

We classify the underlying networking environment into two major classes: the 
LAN and the WAN (e.g., the Internet) environment. Under the LAN environment, 



Chapter 4 Communication Sub-graph ^ 

the transmission bandwidth is high and the data transmission is usually fast with 
low latency and reliable. For a DVE system to operate on a LAN environment, the 
number of participants is usually small, for example, from tens to hundreds. Thus, it 
is possible to use a centralized algorithm to construct a communication sub-graph so 
as to minimize the maximum delay or to minimize the bandwidth consumption. 

On the other hand, under the WAN environment which consists of many routers 
and sub-networks, the communication delay between any two clients is not negligible. 
The transmission bandwidth in the WAN environment is usually scarce and expensive 
when compared with the LAN environment. Moreover, the number of DVE clients in 
the WAN environment can vary a lot, ranging from tens to thousands. Due to the 
size of the network and the number of possible participating DVE clients, we need a 
distributed algorithm for the construction of the communication sub-graph. 

Another factor that influence the design choices of the communication sub-graph 
is the type of the membership of the DVE clients. We classify the membership of the 
DVE client into two types, the static membership and the dynamic membership. 

Static membership refers to the case that the set of participating DVE clients 
is constant throughout a DVE session. For example, in a DVE system for a tele-
conferencing application, where the set of participants are known ahead of time and it 
remains constant throughout the conference. 

On the other hand, dynamic membership refers to the case that the set of partic-
ipating DVE clients is time varying. For example, in a DVE system for an Internet 
game in which the client can join or leave the DVE system at any time. 

Under a DVE system with static membership, we can construct the communication 
sub-graph before admitting the participating clients and the communication sub-graph 
will be discarded at the end of the DVE session. Under a DVE system with dynamic 
membership, the communication sub-graph is initialized at the beginning ofthe virtual 
environment session. Whenever one or more clients want to join or leave the virtual 
environment session, the DVE system may have to modify or re-create a new com-
munication sub-graph. Therefore, an incremental sub-graph construction algorithm is 
favorable in this case. 
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4.2 Communication Sub-graph Construction Algorithms 

With the consideration of the above factors for the construction of the communication 
sub-graph, we present the following sub-graph construction algorithms: i 

1. The minimum diameter sub-graph (MDS) 

2. The core-based tree (CBT) 

3. The minimum spanning tree (MST) 

4.2.1 The Minimum Diameter Sub-graph (MDS) 

The minimum diameter sub-graph (MDS) is a natural choice when we want to construct 
a multicast sub-graph for a communication network. The reason is that the MDS 
provides a guarantee on the delay bound between any two client nodes. The MDS 
ensures that for every pair of client nodes in the sub-graph, there exists a path between 
them which is having a length less than or equal to the diameter of the sub-graph. In 
the context of our DVE application, the diameter is particularly important, since the 
diameter is the delay bound of all the messages transmissions. 

The definition of the diameter of a graph is the length of a path, where this path 
is the longest among all the possible shortest paths within the graph. Formally, the 
diameter of a graph G — {V, E) is: 

Diameter(G)= max d{py. ^.) 
vi,vjev ，] 

where Pvi,vj is the shortest path between the two nodes Vi and Vj, and d(jhi,vj) is 

the delay associated with the path. An important point is that the minimum diameter 

sub-graph G' is not unique. 

It is worth to note that when we remove any edge from a graph, provided that it 
does not destroy the connectivity, the diameter of the graph will either be increased 
or remain unchanged. On the other hand, if we add some edges to the graph, the 
diameter of the graph will either be decreased or remain unchanged. 

Aside from finding the MDS of a graph G, one interesting question is whether we 
can find a MDS which also has the minimum total edge cost among all the possible 

^This part is a joint survey conducted with Mr. T.S.Tam 
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MDS so that we can also minimize the total network bandwidth consumption. To 
answer this question, we have the following theorem: 

Theorem 1 Given a graph G = (V", E) and for each edge e € E, the edge cost is 
d(e) G N. For a given positive integer B, the process of finding a spanning sub-graph 
G' = {V,E') for G (where E' C E) such that the sum of the cost of the edges in E' 

does not exceed B and the diameter of G' is minimized, is NP-complete. 

Proof: Please refer to [21]. • 

Because of the NP-completeness nature of the problem, we relax our requirement 
of minimizing the total edges cost, so that we can come up with an algorithm to find 
a minimum diameter sub-graph (MDS) in polynomial time. 

In general, to find the MDS of a graph G, we perform the following steps: 

1. Find the all pairs shortest paths between every pair of nodes in the graph G = 
{V,E). 

2. Union the edges within all the above shortest paths found, to form a new set of 
edges E'. 

3. Then, the resulting G' = {V,E') is a MDS. 

We have presented the general idea on the construction of a MDS of a graph G, 
but in the context of the DVE application, the situation is different and we need some 
pre-processing before we can obtain a MDS for a DVE application. The reason for 
this step is that, because the clients set C{t) is not equal V, the set of nodes in the 
network. For a given graph G = {V, E) and a set of clients C(t), we are seeking a 
sub-graph G' = {V^ E') which satisfies the following: 

1. The set V' must include the set of all clients, i.e. C(t) C V'^ in addition, V' must 
be a subset of V {V' C V). 

2. The longest path among those paths between any two clients should be mini-
mized, i.e. we minimize the following: 

max d(p',) 
V i j G C W � � ' 
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where p[^ is the shortest path between client i and client j with respect to sub-

graph G' 

The algorithm offinding a MDS communication sub-graph for our DVE application 
is given below. 

V' — 0 
E' — 0 
for each pair of clients i,j G C{t) do 

Find the shortest path pij between i and j where pij is 
a set of edges that constitute to a path 
for each edge eg E pij do 

if 65 g E' then E' 4- E' U { e J 
Let Vsi and Vg2 be the vertices on the two end of the edge eg 
if Vsi 雀 V' then V' — V' U ^ i } 

if v,2 g V' then V' ^ V' U {秘} 

end for 

end for 

The MDS is found in G' = {V', E') 

Theorem 2 The above algorithm guarantees that the diameter of the sub-graph G' 
is minimum. ‘ 

Proof : We prove by contradiction. We first assume that the sub-graph G' of G is not a 
minimum diameter sub-graph. This implies the existence of a sub-graph G" of G with 
a smaller diameter. Then we choose the path p\j between client i and j which is the 
longest shortest path in G' (i.e., diameter of G' = d{p'^j)). We also take the shortest 
path p'-j from G" for client i and j. Based on the definition of the diameter of a graph, 
d{p'-j) < diameter of G". Combine with the fact that the diameter of G" is less than 
the diameter of G', we have d{p'-j) < d{p[j). However, the path p^j is guaranteed to 
be the shortest with respect to the graph G with client C {t), therefore it is impossible 
to find another path p'-j which is shorter than p'- and therefore contradiction occurs. I 
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An Example for the MDS Construction 

Figure 4.1 shows an example of finding a minimum diameter subgraph. Figure 4.1(a) 
is a graph that represents the model of a network. Assume that all the nodes are 
participating nodes, then Figure 4.1(b) is the MDS corresponding to the graph in (a). 
It is worth to note that the MDS may contain cycles and usually, the total cost of 
edges is larger than the total cost of edges in the corresponding minimum spanning 
tree. 

M K 
G T ^ d > ^ 

(a) (b) 

Figure 4.1: MDS Example (a) the Original Graph (b) MDS of Graph in (a) 

4.2.2 The Core-based Tree (CBT) 

The core-based tree (CBT) was proposed in [2], which is intended to provide a general 
framework for sub-graph construction in a large scale network where clients are located 
in different points of the Internet. The features of CBT is that: 

1. There is a designated node called the core. 

2. The path between any node to the core node must be the shortest path. 

3. The routing policy for each node (or router) is efficient and easy to implement 
(e.g., based on the current Internet routing protocol). 

4. The core-based tree is constructed in an incremental manner, such that any 
change to the client membership imposes only little changes to the communica-
tion sub-graph. 

However, it is important that the CBT does not guarantee a minimum diameter 
spanning tree, it only guarantees that the path between the core node and any node 
(i.e. the participating client) is the shortest. 

A CBT is constructed in a distributed, incremental manner. The construction 
procedure of CBT is as follows: at the very beginning, a core is chosen from the set of 
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participating clients either manually or via a bootstrap mechanism as discussed in [2 . 
The core node is the first and the only node which is on the communication sub-graph 
at this stage. It would be natural for our DVE application to choose the common DVE 
server of the DVE clients to be the core. 

Then, each participating client will send a JOIN_REQUEST message to the core (the 
IP address of the core node is advertised and well-known). This join message is sent 
through the shortest path from the participating client node to the destination core and 
this can be accomplished via the existing Internet routing protocol. Along the shortest 
path, the join message may reach a node which is either in the current communication 
sub-graph (i.e., a node which has already joined the CBT) or a node that is not part 
of the tree. 

If the join message reaches a node which is a part of the multicast tree, the for-
warding process will stop and the incoming interface (channel) will be added to the 
forwarding cache of the visiting node. Then, the visiting node will send an acknowl-
edgment message (JOIN_ACK) back to the participating client node via the incoming 
interface. 

On the other hand, if the join message reaches a node which is not part of the 
multicast tree, the visiting node will redirect the message to the next hop along the 
shortest path towards the core node and caches the incoming interface and the incoming 
node on the temporary storage. After that the node waits for an acknowledgment 
message. Once an acknowledgment is received, the node will put the incoming interface 
to the forwarding cache and redirect the acknowledgment to the nodes listed in the 
temporary storage. Also, it will set the node which sent the acknowledgment to be its 
parent node. It is clear that under this construction scheme, a multicast tree will be 
formed and this tree guarantees the shortest path from any participating client to the 
core node. 

Once the CBT is formed, we can start the multicast service. When a client sends 
a multicast message, it must first consult the content in the forwarding cache. The 
information stored in the forwarding cache of the node v is a list of neighbor nodes of v 
in the CBT. Therefore, to multicast a message, a client can simply sends the message to 
all the nodes listed in its forwarding cache. When a node receives a message, it should 
forward the message to all the outgoing interfaces listed in the forwarding cache, except 
the incoming interface. In this way, the message can go through the whole tree, and 
stop at the leaf nodes. 
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The algorithm for the CBT construction for our DVE application is given below. 
Initially, the CBT consists of one core node only, and we assume that this core is one 
of the client v^ G C{t). The initial CBT is G' = {V', E'), where V' = {vc} and E' = 0. 
Besides, there is a temporary storage associated with each node v, and denote it by 
tmpv. The temporary storage of each node is empty at the beginning of the CBT 
construction procedure, i.e. tmpv = 0, Wv E V'. 

A client v who wants to join the DVE can send a JOINJlEQUEST message to the 
core node Vc by sending the message to its adjacent node v̂  which is along the shortest 
path from v to the core node Vc. When node v' receives a JOIN_REQUEST from node v, 
the following procedure will be executed: 

if v' e V' then 
add V to the forwarding cache; 
reply an JOIN_ACK message to v\ 

else 
tmp^i ̂  tmp^i U {?;}; 
send a JOIN_REQUEST message to the first computer 

along the shortest path from v' to the core Vc., 

When node v receives a JOIN_ACK message from node v', the following procedure 
will be executed: 

V' — V' U {v}-, 
E' — E' U {e } , where e is the edge connecting v and v'; 
add v' to the forwarding cache in v; 
set v' to be the parent of v; 
reply a JOIN_ACK to all the neighboring node u 6 tmp^; 
clear the temporary storage tmpy\ 



Chapter 4 Communication Sub-graph ^ 

^ @ ^ ^ # \ 4 , : : : # X 4 

1 ^O^^Q" '^w" 
(a) (b) (c) 

Figure 4.2: An Example of CBT Construction 
An Example for the CBT Construction 

An example of the CBT construction is depicted in Figure 4.2. Figure 4.2(a) shows 
a network topology of one core C and four nodes i^i, R2, R3 and R4. The number 
besides each edge is the cost (i.e., delay) of the edge, i.e. d{e). We use a shadow 
pattern to indicate that the corresponding node is a part of the multicast tree. In 
this example, the node R3 wants to join the CBT and then the node Ri wants to 
join the CBT. Initially, only the core C is on the tree, and we use the shaded nodes 
and doted line to denote the nodes and edges of the tree. At the beginning, node 
i?3 sends a JOIN_REQUEST message toward the core, as shown in the arrows in Figure 
4.2(a). The intermediate node R2 receives the request message, and then processes 
it. Since R2 is not on-tree, it stores R^ on its forwarding cache, after that R2 sends 
a request message toward C. The core C replies the acknowledgment to R2, and in 
turn R2 sends an acknowledgment to R3. Because of the acknowledgment, C is added 
to the forwarding cache of R2 and C is marked as the parent of R2. Similarly R2 is 
added to the forwarding cache of R^ and R2 is marked as the parent of R3. After 
the above process, the forwarding cache of R2, R3 and C is: {R3, C} , ( ¾ } and {R2} 

respectively. Also, R2 and Rs are now part of the tree as depicted in Figure 4.2 (b). 
Now, consider the case that node Ri wants to join the multicast tree. It sends a join 
request message to R2. Since R2 finds itself is already part of the multicast tree, it 
replies an acknowledgment to Ri directly and adds Ri in its forwarding interfaces list. 
Node Ri adds R2 into its forwarding interfaces list after receiving the acknowledgment, 
and mark R2 as its parent. 

4.2.3 The Minimum Spanning Tree (MST) 

Consider the following problem: given a graph G = (V, E) where each edge e G E is 
associated with an edge cost d{e). There is a subset of vertices C(t), which is the set 
of DVE clients. We want to find a subtree G' of G that includes all the vertices in 
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C{t) and the sum of the cost of the edges in the subtree G' is no more than B. 

The motivation for finding the above sub-graph is to guarantee that the total 
edge cost is less than or equal to B so as to provide an upper bound on the network 
bandwidth consumption. However, the above problem is the well-known Steiner tree 
problem, which is known to be NP-complete[9]. Due to this reason, we propose to find 
the MST sub-graph based on the following procedure: 

1. First, build a minimum spanning tree by any well known algorithm like Kruskal's 
algorithm and Prim's algorithm, the resulting tree is denoted by G' = {V,E'). 

2. For every v nodes in G', check that whether removing v will partition G' into 
two parts where both parts consists of any clients in C(f), if not, remove v, and 
the edges associated with v, from G'. 

3. The resulting G' is the communication sub-graph we want. 

Note that the MST sub-graph generated by the above algorithm preserves the tree 
structure but it does not guarantee the total edge cost to be minimum. The reason 
that it does not provide minimum total edge cost is that only a subset of nodes (e.g., 
the participating clients) are included in the sub-graph instead of all nodes in the graph 
G. 



Chapter 5 

Synchronization 

In this chapter, we discuss the synchronization problem in a DVE system. In a DVE 
system, we have a number of DVE clients and they serve as an interface of the users to 
the virtual world. In order to render the virtual world for the users, the DVE clients 
must obtain the information about the virtual world from the DVE server. The DVE 
clients are also responsible to send any request from the users to the DVE server for 
processing. The actions taken by the users on the virtual objects inside the DVE 
system are sent to the DVE server by the DVE clients, too. 

Since the DVE clients are processes running in different client machines with dif-
ferent run time environment (e.g., the current work load in the client machine, the 
bandwidth and latency of the network), they will generate the same sequence of views 
of the virtual world at different rate. Therefore, there are going to be some consistency 
problems among the views rendered by different client machines such that even the 
users of the same virtual world may experience a slightly different view of the virtual 
world at the same time. 

Synchronization is the key to maintain the consistency among the views generated 
by the DVE clients so that the deviation of the views can be kept under an acceptable 
level. 

We begin with some definitions and descriptions about synchronizations in a DVE 
system. Then, we present our system model followed by defining what is consistency by 
means of the system model we described. Finally, we present how to solve the synchro-
nization problem by deriving an optimal synchronizing interval with two consistency 
measures based on the given set of consistency criteria. 
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5.1 Synchronization in a DVE System 

The virtual world is populated by different virtual objects and they keep changing 
over time. Before we classify the objects in the virtual world, we need the following 
definition: 

Definition 1 The state of an object is defined by its current coordinate (e.g., the 
x,y,z] coordinate in the virtual world) and its current property (e.g., the current 
color of an object, directional velocity, . . . , etc). 

For a given object ô , let So, = { 4 ^ ^ 4 ' - . . } be the set of all the possible states 
of the object Oi in the virtual world. In general, objects in the virtual world can be 
classified into two categories, namely static and dynamic. A static object has only one 
state. For example, an object representing a mountain in the virtual world is static 
in the sense that it will not change its coordinate in the virtual world. On the other 
hand, a dynamic object can have more than one state. For example, an avatar may 
traverse from one region to another region in the virtual world or an avatar may choose 
to move an object from one location to another location. Since all the users who are 
exploring the virtual world should share the same view, therefore, it is important that 
all users should have the consistent view of all the objects in the virtual world. For 
example, if a user from client Ca views an object Oi and the object Oi is in state 5*. 
(e.g., coordinate [x,y,z]), then another user from client Cb should also display object 
Oi in state 5*. (e.g., the same coordinate [x,y,z]). 

To visualize a dynamic object, let Sô  {t) be the state of object Oi at time step t. If 
client k wants to view the dynamic object Oi, then the computer in which client k resides 
has to render a sequence of states changes for object 0¾, {5o-(t), 5o-(t+l), Soi {t+2), . . . }, 
starting from the same time step t. To maintain a consistent view for all the clients 
in the virtual world, this implies that every computers where the clients reside have 
to render the same sequence of state changes, starting from time step t, Note that in 
general, an absolute consistent view of a dynamic object may not be possible due to 
the following reasons: 

• Not all client can start the rendering of state sequence at the same time step 
t. This may be caused by the network delay variation of delivering the "start-
rendering" message to all the clients. 

• Different computer may render the state sequence at different rate. This is due 
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to the fact that different computers may have different work load and therefore, 
some computers may miss the rendering operation at some time steps. 

Let c[. {t) be the state of object Oi at time step t that client 1 is rendering. We have 
the following definition: 

Definition 2 If cl.{t) = s .̂ and C.{t + r) = 5^., then we say that the phase difference 
between client 1 and client m, denotes by ^(/ ,m), is r. 

For example, assume that the set of all the possible states of object Oi is Soi = 
{sl.,sl.,... , sJ-} and the rendering sequence ofobject Oi is Seq = {5j.,5^.,5^.,5^.,5^j. 
If client CA starts the rendering sequence at time step 0 and client C^ starts the same 
rendering sequence at time step 3, then the phase difference $(A, B) = 3. 

The object synchronization procedure in the DVE system is a process to guarantee 
that the absolute value of the phase difference between any clients of any object in the 
virtual world to be less than a pre-defined system threshold $. Some of the approaches 
to maintain object state consistency are: 

• Aggressive Object Synchronization Technique (AOS): Under the AOS 
approach, each object oi is assigned to a master process Pi. For every small period 
5t, process Pi will broadcast the state of the object oi to all participating clients 
in the DVE system. Upon receiving the state information of object ô , every 
client will render the state of Oi. Figure 5.1 illustrates the AOS synchronization 
technique. A major disadvantage of this approach is that there will be a high 
volume of synchronization message traffic and this will lead to scalability problem 
in the DVE system. Note that even though the process Pi will broadcast a 
synchronization message every 5t time unit, the synchronization can still be off 
by dmax time unit due to the network delay of transmitting the synchronization 
message. 

• Dead Reckoning Synchronization Technique (DRS): In the AOS tech-
nique, extremely high network bandwidth will be consumed. However, it is 
important to observe that in most cases, the state of an object at the current 
time step is very similar to the state of the object in the previous time step. 
Therefore, it is not necessary for the process Pi to send a synchronization mes-
sage every 6t. Consider the following example, if a ball is experiencing a free fall 
from a 1000 feet tall building and if the initial position of the ball is known to all 
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5t dp^x 
<J / object 口 

—=:iMlliMMWMil 
site 

Figure 5.1: Aggressive Object Synchronization (AOS) Technique with dmax being 

the Maximum Network Delay 

clients, then every participating sites should be able to calculate the trajectory of 

this ball and render the corresponding sequence of state changes. That is, every 

participating machines will render the object's coordinate for every time step 

and update the object's state in its local machine. This is the main idea about 

the dead-reckoning (DRS) technique [5] in which the initial state as well as the 
equation governing the trajectory of the object are available to all the partici-
pating machines and each machine will perform the local computation and will 
update its local display. The DRS technique is illustrated in Figure 5.2 where 
the start-synchronization message also encodes the object's initial position 
and directional velocity, for example. 

T 

Master Mj ^ • • • • • • • • • ^ 
觀 

start-synch ronization <\ 

• 
飄 

participating _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

site 

Figure 5.2: Dead Reckoning Synchronization Technique 

• Dead Reckoning with Periodic Synchronization Message (DRPS): Note 

that even if the DRS technique is used, it is still necessary for the master process 

Pi of object Oi to send the synchronization message from time to time. This 

situation occurs if there is an external event that will affect the trajectory of 

the object Oj (e.g., a client catches the free-falling ball). Another reason why we 

need to send a synchronization message periodically is due to the fluctuation of 

work load at the participating computers, some computers may not be able to 

render the next state of the object on time and if it is not adjusted, this will 
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create view inconsistency in the long run. Therefore, for the DRPS technique, 

it employs the dead-reckoning technique and for every synchronization interval, 

nr, a "synchronization message" is sent. Upon receiving the synchronization 

message, each computer will immediately update the state of the object (or in 

effect, the phase difference is reset to zero). The DRPS synchronization technique 

is depicted in Figure 5.3. 

dmax 
T ；; 

«" • î  
I • 

Master M里"f——•——•——•——•——•——^~~•——•——# 

start-synchronization - \ synchronizat ion-m—sage V \ 

participating J%——#——#——#——•——•——•——•——•——• 

site 

Figure 5.3: Dead Reckoning Synchronization Technique with Synchronization Mes-

sage and dmax being the Maximum Network Delay 

Note that in general, the longer the value of synchronization interval, the phase 

difference between any two clients will be higher, this imply that the view con-

sistency between these two clients may be un-acceptable. On the other hand, if 

the synchronization message is sent too often (or the synchronization interval is 

too small), the DVE system needs to send too many synchronization messages 

to all the participating clients and it will consume too many network bandwidth. 

5.2 System Model 

We have two DVE clients in two different computing nodes namely Ca and C ,̂ in a 

communication network with maximum delay dmax- The computation of Ca and C^ 

can be described by their phase. Specifically, Ca and Cb start from phase 0 and then 

they compute phase i based on phase i — 1 (for i > 1) together with the user inputs, 

if any. Due to the fluctuation of the work load on the computing nodes, we have pa 

as the probability for the computing node Ca to fail to calculate the next phase. We 

have pb for the computing node C^ similary. The values of Pa and pb can be obtained 

by statistics inside the kernel. 

We define the phase difference of Ca and C& at time t as $(Ca, Cb) = i_j, assuming 

that Ca is in phase i and Cb is in phase j at time t. It is clear that Ca and C^ may not 

be in the same phase after a period of time, synchronization is required to maintain 
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the consistency of the phases. We choose Ca as the master process and it is responsible 

for sending the synchronization message to Cb to maintain the consistency. 

5.2.1 Problem Definition 

Our goal is to ensure that the phase difference of the system is not exceeding the 

threshold $ which is a system parameter defined based on the nature of the underlying 

application as described in Section 5.2.3. 

We assume that ^(Ca,C&) will be reset to zero if Ca sends its current phase to 

Cb, for simplicity. ^ Our problem is then to find out how often should Ca send 

synchronization messages to Cb with a set of consistency and system parameters. 

5.2.2 The Markov Chain Model 

We use a Markov Chain to model the system with its states as $(Ca, Cb). The 

computing nodes have to update their phase every At time units, for example, we 

want At = ^ s for a smooth animation. In general, the computing nodes can make 

L =�^^1 phase changes between successive synchronization messages if dmax is the 

maximum network delay. 

^ ^ ^ ^ ^ 2 _ ^ _ ^ ^ P+2 P+2 ^ ^ t ^ ^ ^ 3 t 2 ^ ^ ^ 3 ^ 

^ ¾ ¾ ^ ^ ¾ ^ ^ ^ ^ 
v M M ^ M M ^ 

P—2 P-2 P-2 P-2 P-2 P-2 P-2 
Figure 5.4: The Markov Chain with L = 2 

The Markov Chain with L = 2 is shown in Figure 5.4. In each state i, it can make 
a transition back to state i with probability po, or make transitions to state i 士 1 and 

state i 士 2 with probability p±i and p±2 respectively, after two phase changes in each 

of the computing node. 

In general, we define po to be the probability of the system to stay in the same 

^ Simulation in Section 5.4 reveals that this assumption is a good approximation to the case with 

the consideration of the network delay. 
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state after L phase changes in each of the computing node, p+k and p-k to be the 
probability of the system to advance or to go back k states after L phase changes in 
the each of the computing node, and obviously, we have |A;| < L for a system with L 
steps transition. 

We first give the probability generating function for the calculation of po with L 
steps transition. The intuitive idea is to sum up the probability of all the possible 
cases within a L phase changes which result in a zero net transition. To have zero net 
transition, we should have 1 phase changes combinations which result in an increase 
in the phase difference, and another 1 phase changes combinations which result in an 
equal decrease in the phase difference. Obviously, we should have 0 < 1 < [鲁」so 

that we can ensure that the number of forward moves and backward moves can cancel 

out the effect of each others, and the rest of the phase changes combinations of the 

computing nodes left by these 21 phase changes should not generate any further change 

in the phase difference. The probability generating function for L steps transition for 

po is therefore: 

L � 

列 = 亡 [ ^ ^ ( 似 似 片 — 叫 （5.1) 
1—0 

where pp = (1 -Pa)Pb^ is the probability of $(Ca, Cjj) being increased by one, that 

is, Ca can compute the next phase and C^ cannot, in one At; ps = Pa{^ - Pb) is the 

probability of $(Ca, C^) being decreased by one, that is C& can compute the next phase 

on time and Ca cannot in one At; ps = PaPb + (1 _ Pa){^ - Pb) is the probability of 
$(Ca, Cb) being unchanged, that is, when both of the nodes either success or fail, in 
one At, for the computation of the next phase. 

Similarly, the probability generating function for going forward k steps after L 
phase changes in each of the computing node can be generalized as follow, with the 
upper limit on the number of forward steps reduced to ensure there will be sufficient 
backward steps left to cancel out its effect such that the net forward transition is 
exactly k: 

L^J 

拟 = t Lz + ̂ ( f ! - 2 Z-AO!(^*)(A)(4-”] (5.2) 

And the probability generating function for going backward k steps after L phase 
changes in each of the computing node, can be generalized similarly as follow: 
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-P-k = L g �̂_ 叫 ^ -
2
卜 幻 ! ( 們 ( 似 始 1 勺 ] (5") 

1—0 

The transition probability matrix Q for the Markov Chain with L steps transitions 

can therefore, be specified by: 

f 

Po for i = j 

_ ^ P+k for i + k = j, L > k > 0 (5 斗） 

銜 — p—k hri-k = j,L>k>0 . 

0 otherwise 

、 

5.2.3 Deciding the Threshold $ 

We show how to decide the value of the threshold 少 by giving a brief description on 

an application example. The main idea is that we should choose a threshold such that 

the causal relationship of the objects state changes are preserved upon synchronization 

actions. 

We use a table tennis game as an example. In this game, the only critical causal 

relationship among the actions are the smovement of the ball and the action of the 

player on the ball applied through the bat. Suppose even when the ball travels at 

its maximum speed Vmax^ it requires t seconds to travel from one end of the table to 

another end of the table of length d (or to be within the reach of another player from 

one player), where t can be estimated by the simple formula: t = :;j^-

In order to provide smooth animation, we have to render the scene every ^s , and 

it is also the time required for a phase change. To maintain the the position of the ball 

to be consistent with respect to the causal relationship, we have to set the threshold 

歪 = t ^ 4 n = - ^ ^ or even smaller, since in the worst case, the ball would reach another 
3 0 Vmax ‘ ‘ 

player suddenly (because all the intermediate phases are skipped) and thus one might 

not be able to react to the ball. The above formula provides a guideline to estimate 

the largest possible threshold required for a particular application by considering the 

characteristics like the maximum speed of the objects, the inter-avatar distances, etc. 
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5.3 Optimal Synchronizing Interval 

5.3,1 A n "on-average" Guarantee 

To answer the question of how often (e.g. how many time steps) a "synchronization-
message" should be sent such that the expected value of the absolute phase difference 
between clients CU and Cs is less than or equal to 少.W e use the theory of the 

fundamental matrix and analyze the underlying Markov chain M. Let state Si, i > 0 

represents the value ofthe phase difference i. We aggregate[3] all those states Si, i > ¢, 
as one state and we make it a trap state ^ and we have a new Markov chain M with 
an associated transition probability matrix P ' as: 

/ 1 >r̂ 2$ D \ 
PQ P+1 P+2 … _P+2$ 丄一2^=0尸0< 

P-1 P0 P+1 ... _P+(2$-l) 1 - ^i=O^li 
P-2 P-1 P0 . . . P+(2$_2) 1 — Y^i=0 ^2i 

• • • • • 
争 争 • • • 
• 争 • • • 

p 二 P-龟 ： 丨 P+^ 1 — E i f o P^i 
• • • • • 
• • • • • • • • • • 

P-(2$-2) P-(2$-3) P-(2$-4) . . . P+2 1 _ Z)^fo 2̂<l>-2i 
p_(2$_i) P-(2$-2) P_(2$_3) . . . P+l 1 _ Ei=0 P2^-li 

P-2^ P-{2^-l) P-(2^>-2) . • . P0 1 - Z)i=0 P^i 

^ 0 0 0 ... 0 1 

The new Markov chain has 2$ + 2 states with the last state being the trap state. 
We can partition P as: 

p ' - IM^) 
V 0 1 ； 

where Q is an sub-stochastic matrix describing the transition probability between the 

2$ + 1 states, C is a column vector representing the transition probabilities between 
the 2^ + 1 transient states to the trap state and 0 is a row vector of 2$ + 1 zeros, that 
means once the system has reached the trap state, it has no way to leave. We define 

^A trap state is a state where in once the system reaches that state, the system stays in that state 
forever. 
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the matrix M (also known as the fundamental matrix) as: 

00 

M = ( I - Q ) - i = I + Q + Q2 + Q3 + . . . = E Q h (5.5) 
k=0 

To compute the average number of time steps (or transition) so that the absolute value 
of the phase difference in M is greater than $, we let Xij (0 < i, j < 亞)be the random 

variable denoting the number of time steps that the Markov chain M' visits state j 

before entering the absorbing state, given that it started in state i. Let E[Xij] be the 
expected value of Xij. We have the following theorem 

Theorem 3 For 0 < i,j < 2$ + 2, we have E[Xij] = rriij where rriij is the (z,j) 
element of the fundamental matrix M. 

Proof: Please refer to Bhat [3]. • 

Remark: Note that the above theorem indicates that if the system starts at state 
i (the absolute value of the phase difference is equal to z), then we know on average 
it takes m -̂ time steps for the system to enter the trap state (a state representing the 
absolute value of the phase difference is greater than ¢). 

Corollary 1 Assume that the phase difference between client CU and Cs is zero 
initially, then on average, after t* time steps, the expected value of the absolute phase 
difference between client CU and Cs is greater than 少.We can express t* as: 

2$ 
t* == ̂  mok (5.6) 

k=0 

Proof: We can show this by directly applying Theorem 3. I 

Corollary 2 To ensure that the expected value of the absolute phase difference be-

tween client CA and Cs is less than or equal to 少 for all time steps, the master process 

Poi of object Oi needs to send the "synchronization-message" every t* = J]^^Q mo^ time 

steps. 
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Proof: This can be directly observed by applying Corollary 1. • 

Remark: Note that once the "synchronization-message" is received by all clients, the 
phase difference is reset to zero. Therefore, in order to maintain the phase difference 
between CU and Cs to stay within ¢, the master process i ^ needs to periodically 
broadcast the synchronization message and the period is t* 二 Yll=Q mok-

5.3.2 A Stochastic Guarantee 

We are going to derive the optimal synchronizing interval r*, with a given value of 
threshold $ such that the system will stay in states not exceeding 少 with probability 

p. It is a generalization of the problem described in [15 . 

However, direct derivation of the value of r* is difficult and so we try to find it 
indirectly. We find that it is easier to find the value of p for a system with a given r 
and ¢. Therefore, we can solve the problem by searching. More formally, we derive a 
function p = /M(T, ¢ ) for system M, and it returns the corresponding p, which is the 
probability of the system to be in state not exceeding ¢, if synchronization messages 
were sent every r time unit; then we try to find the optimal r* which satisfy our 
consistency requirements with the searching techniques in Section 5.3.4. 

5.3.3 Finding p with r and 尘 

Finding the exact value of p with given r and $ is difficult as well because the state 

space of the underlying Markov Chain is infinite as shown in Figure 5.5 for a system 

with L = 1. 

… ^ 、 . . . 入 & ^ 為 入 ^ ^ … 入 & ^ … 
v _ ^ v _ y v _ _ ^ v _ _ y V _ > ^ _ - A _ A _ _ _ _ y V _ ^ v _ y v _ _ A _ A _ y 

p_i p-i p-i p-i p-i p-i p-i p-i 

Figure 5.5: The Markov Chain with Infinite State Space 

Therefore, we suggest the following method to find an approximation of the value 

oip with given r and $. With the observation that synchronization action would be 

applied to the system, the Markov chain will be in most of the time, staying in states 

i with a small |z|. To obtain an approximation of the infinite state system, we chop off 
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the Markov Chain at states ±(少 + 1), and then we aggregate the chopped states by 

two new states namely ± B , as in Figure 5.6. 

% + P-i 0̂ ^ ^ ^ Po Po+P+1 

^ ^ • ^ ： 誠 愈 ^ ： 誠 
~ ^"-^ p p P ^ p 1 P 1 P 1 p 1 P_ 1 _̂ 1 -̂1 -丄 _ 1 _ 1 _ 1 _ 丄 

Figure 5.6: The Chopped Markov Chain 

In the general case with L steps transitions, we try to redirect the traffic going from 

any states to the chopped states, to the two new states ± B and then we also redirect 

the traffic going from states ± B to the chopped states back to states ± 5 . We call 

the corresponding transition probability matrix of the above chopped Markov Chain 

as Q. The next task is to incorporate the synchronization action into Q. To do this, 

we modify Q according to r. The intuitive idea of this transformation is based on the 

following two facts: 

1. We have (1 - •) chance to make transitions as usual, for example, if we have 

probability p+k to go to state k from state 0 originally, we now have probability 
( l - * ) x p + f c . 

2. In addition, we have ^ more chance to go to the state 0 from each state due 
to synchronization, for example, if we have probability p+k to transit to state 0 
from state k originally, we now have probability • + (1 — ̂ )p+k-

Formally, we have the following new transition probability matrix Q' with synchro-
nization: 

q；, = p + (|-^)qi>^ i f p O (5.7) 
I (1 — ^)q^ otherwise 

Now, we can calculate the residence probability of the states of the chopped Markov 
Chain with synchronization action, by solving the following system of equations: 

{ Q ' x n = n 

1 E^n,^i 
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After finding H, Pr can be obtained by the following formula: 

Pr 二 ；^瓜 （5.9) 
i=-$ 

=i-(n_s + ns) (5.10) 

which is the approximation of the probability for the system to be in states not 
exceeding the threshold with the synchronizing interval r. And it is intuitive that this 
approximation would be better if we try to chopped off the infinite state Markov chain 
at states c with a larger c rather than 少 + 1. 

With the above derivations, we can calculate the value oipr from a given r and 少 

with a Markov Chain M. In another words, we have the function pr = /M(T, ¢). 

5.3.4 Searching for r* 

We have the function Pr = /M(T, $) derived in previous section. Now, we propose two 
searching techniques for finding r* with a given consistency criteria, that is, finding 
the optimal synchronizing interval to guarantee that the system would be in state not 
exceeding the threshold $ with probability p. The first technique is the simple iteration 
technique, we give the algorithm formally as below: 

function sijind�nterval(double p) :int; 

begin 

T = 1; 

if /ivf(T, ¢) < p then return -1; (* impossible p *) 
T — T + 1； 

(* Find the maximum r to satisfy p *) 

while /M(T, ¢) > p do r = r + 1; 
(* Return the largest one without violating p *) 
return r — 1; 

end 
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This technique is efficient if the optimal synchronizing interval T* is small, and to 
deal with system with larger value ofr*, we propose a second technique called the step 
searching technique, we give the algorithm formally as below: 

function step_fincUnterval(double p, int step) :int; 
begin 

T = 1; 
if /M(T, ¢) < P then return -1; (* impossible p *) 
if step < 1 then step = 1; (* step should greater than zero * ) 
r = T+ step; 
(* Find a r to violate p *) 
while fM(T, ¢) > P do r = r + step; 
(* Search backward to get the largest one without violating p *) 
while /M(T, ¢) < p do r = r — 1; 
(* Return the one which first match the consistency criteria *) 
return r + 1; 

end 

The parameter "step" is used to adjust the jumping size of the forward search, and 
a larger value should be used for larger values of the threshold. 

5.4 Experiments 

This section is divided into two parts. In the first part, simulation results are presented 
to show the influences of changing various system parameters on the effectiveness of 
the synchronization actions. Then, a simulation has been conducted to justify our 
assumption that ^(Ca, C5) can be reset to zero when Ca sends its current phase to 
Cb. In the second part, we show the synchronizing interval derived by our theoretical 
model and the corresponding results obtained from simulations are shown in parallel 
for comparison. 

5.4.1 Simulation Results 

We begin by giving a brief description on our simulation program. The simulation 
program is written in C with the following input parameters: 
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1. pa,pb-. the probabilities of missing a computation of the next phase for the two 
computing nodes 

2. dmax- the maximum network delay 

3. T: the synchronizing interval 

4. $: the threshold (in the number of phase difference) 

Each of the simulation runs for one million iterations, and it is equivalent to a 
DVE session which last for about ten hours. The fluctuation of the work load on the 
computing nodes were modeled by using the random number generation function in 
the C library. 

On an Example System 

^ ^ pa = 10%; pb = 18% ^ -

囊 
2 3 ~~""̂ ~̂~~( __̂ :______̂ ^ ^:^^JooSynchronizinglnterval 

Threshold ^ ^ ^ 8 ^ " ' ' " ^ - - ^ - ^ - . ^ ^ 5 � 
g 10 

Figure 5.7: Simulations of an Example System 

Simulations were conducted with the values of threshold r ranged from 1 to 10, 

the values of pa and pb are set to 10% and 18% respectively, and the synchronizing 

interval ranged from 1 to 300 time units are used. The value of the maximum network 

delay {dmax) of 5 is used. 
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We choose the values of pa and pb to be rather high but not too high because we 

would like to illustrate the effect of the synchronization actions. Too low the values 

of Pa and pb making synchronization action insignificant, too high the values make 

the system non-realistic since machines with too high a load is not suitable for DVE 

application at all. 

To provide a good quality animation inside the DVE, we need 30 frames per second, 

and therefore one time unit in the system is approximately ^s . With a 10Mbps 

network, we can transmit a maximum of41.6k bytes per time unit and therefore each 

synchronizing message can have a size up to 41.6k bytes at most, in this network setting 

with the delay of 5. 

. In Figure 5.7, the probability p of the system with the phase difference exceeding 

the threshold is shown with different values of the threshold $ and the synchronizing 

interval r. Notice that as the value of synchronizing interval r increases, the system 

becomes less synchronized, regardless of the value of the threshold 少 used. In addition, 

the larger the value of the threshold 少 used, the more effective the synchronization 

action is. 

Effect of the Skewness on the System Loadings 

Difference in pg and pb || Pa Pb dmax threshold ^ 

D 二 0% II 10% 10% ~~5~~ 5 

D = 0% 90% 90% 5 5 

D = 20% 10% 30% 5 5 

D = 20% 30% 50% 5 5 

D = 40% 10% 50% 5 5 

D = 40% 50% 90% 5 5 

D = 80% II 10% 90% 5 5 

Table 5.1: Parameters used in the Simulation in Figure 5.8 

The probability of the system to be in states exceeding the threshold against the 

synchronizing intervals ranged from 1 to 300 are shown in Figure 5.8, and the param-

eters used for the simulations are shown in Table 5.1. 

We can see that simulations with the same value of D behave similarly and the 

larger the skewness of the system loadings, the smaller the synchronizing interval 

should be used to maintain a good consistency. This indicates that the synchronization 

action is less effective in a system with large difference in pa and p .̂ 
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Figure 5.8: Simulation Results Showing the Effect on the Skewness of the System 

Loadings 

With or without Network Delay 

This simulation has been conducted to justify our assumption that $(Ca, C&) can 

simply be reset to zero if Ca sends its current phase to Q . The simulation result is 

obtained by using dmax = 20 and it is plotted in Figure 5.9. In the figure, we can 

see that the average phase differences in one million iterations, either with or without 

considering network delay, is very similar to each others and thus our assumption is 

valid and good approximation to the real case with network delay. 

5.4.2 Theoretical Results 

We have implemented a program in Mathematica and another program in C to cal-

culate the optimal synchronizing intervals based on the theory and the two different 

methods presented in Section 5.3. 
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Figure 5.9: The Difference with or without Network Delay 

Optimal Synchronizing Interval for an “on-average’，Guarantee 

In the first experiment, we have calculated the optimal synchronizing interval for dif-
ferent values of the threshold by using the theory of fundamental matrix to give an 
"on-average" guarantee. We have used a system with pa 二 0.1 and pb = 0.18, the 

maximum network delay dmax is set to 5. The results are plotted in Figure 5.10. 

Notice that we can see a linear relationship for the optimal synchronizing interval 

and the value of the threshold. It indicates that the synchronization mechanism is 

efficient and can be scaled up well. 

Effect on the Difference in pa and pb 

In the second experiment, we investigate the relationship of the difference in pa and pb, 

the optimal synchronizing interval and the threshold. In this experiment, pa is fixed 

at 0.1 and pb varies from 0.2 to 0.8，values of the threshold ranged from 5 to 10 are 

used. The results are plotted in Figure 5.11. 

In general, the larger the difference in po and pi, the smaller the synchronizing 

interval is required for a given value of threshold. It is because the skewness of _po and 
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Figure 5.10: Optimal Synchronizing Interval Derived for an "on-average" Guarantee 

pi specify the difference of the behavior of the two computing nodes, which reflects 
the difference in the rate of phase calculations. 

Effect on the Absolute Magnitude of pa and pb 

In the third experiment, we investigate the effect on the absolute magnitude oipa and 
Pb on the optimal synchronizing interval and the values of the threshold. Figure 5.12 
is obtained by values of pa ranged from 0.1 to 0.8，where the corresponding p& used 

can b'e obtained by adding 0.1 to pa. Different values of threshold (from 5 to 10) are 

plotted. 

Notice that when pa and p5 approaches to 0.5, the smallest synchronizing interval 

is required, and this is consistent with what we observed as in the experiment about 

the skewness in pa and p^ in Section 5.4.1. 

Optimal Synchronizing Interval for the Stochastic Guarantee 

We have calculated the optimal synchronizing intervals for a system with the values 
of Pa and pb of 10% and 18% respectively. The value of the dmax is set to 5, and we 
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want the system to be with the phase difference under the threshold (ranged from 1 
to 10) in 90% of time. The results are shown in Table 5.2. 

Notice that the value of r derived theoretically is always sufficient to maintain the 
required consistency requirement specified in the derivation of the optimal synchroniz-
ing intervals. 

The bound derived is not very tight, it is because the effect of the network delay is 
not incorporated in the theoretical model, we have made an assumption that the phase 
difference of the two computing nodes will be reset to zero when the synchronization 
message arrives. In a system with a small value ofthreshold, this can create a noticeable 
effect. It is also worth to know that the synchronizing interval should be adjusted in 
a stepwise manner, and therefore, we can only use a synchronizing interval which is a 
little bit over-shoot to the original specification. 
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^ T:o% P form simulation p in theory 

"T|"~i~" 6 ? ^ ~~0.00%~~ 
2 1 6.73% 0.00% 

3 2 1.75% 6.58% 

4 3 0.23% 7.53% 

5 4 0.11% 7.67% 

6 5 0.41% 9.96% 

7 7 0.21% 9.62% 

8 8 0.12% 9.15% 

9 9 0.25% 8.77% 

10 II 11 0.14% 9.85% 
Table 5.2: Comparisons of Simulations and Theoretical Results 
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Related Work 

In this chapter, we describe some of the related work about DVE system research. 
This is by no means a complete survey since the research of DVE is one of the hottest 
topics in field of distributed computing, distributed multimedia, graphics and high 
speed networking. Here we present some of the work which are closely related to 
the problems we have mentioned in this text. Finally, we describe two example DVE 
systems at the end of this chapter. 

6.1 Load Balancing on DVE 

To the best of our knowledge, there is no other published literature on the load balanc-
ing aspect of a DVE system. Load balancing is the key to allow an efficient utilization 
of the available computing resources in a distributed system [6 . 

We have formulated the load balancing problem in a DVE system as a partitioning 
problem in [14] by using the concept of AOI described in [17]. Further improvement 
over our proposed solutions can be found in [12 . 

6.2 Object State Synchronization Techniques 

One of the very important features of a DVE system is that we should provide a 
consistent view for different users in the same virtual world. Synchronizations are 
required, however, we do not need to keep all the objects state synchronized. For 
example, when a user is looking forward, we will not need to synchronize the state of 
tlie objects behind the user. We may also use the concept of the AOI for data filtering 
19]. The basic principle is to filter all the irrelevant message exchange. 
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Another technique called the dead-reckoning is proposed in [5]. It can be used to 
reduce the amount of network traffic required for the exchange ofthe state information 
of the objects. With the observation that the trajectory of some objects can be calcu-
lated independently in different DVE clients, we can simply send the trajectory (e.g. 
in the form of a mathematical formula) with the initial state of the objects, instead of 
sending their new states through the network after every update in the master process. 

6.3 Group Communication and Multicasting 

Since the DVE clients of the same virtual world session share many common objects 
in their views, the state information of these common objects have to be sent to all 
these DVE clients. Multicasting is the natural choice in the propagation of these state 
information. 

Multicasting in a Distributed Interactive Simulation (DIS) has been studied in [25:. 
It can be readily applied to the DVE systems because of the high similarity of the two 
application areas. 

Other work about multicasting but not specific to the DVE systems include the 
studies of the dynamic light weight group in [11], the maintenance of the total ordering 
of the multicast messages [10], etc. The concept ofthe dynamic light weight group can 
be used in a DVE system to deal with the dynamic membership of the DVE clients. 
The maintenance of the total ordering on the receiver side of the multicast can be used 
to ensure the casual relations on the effect of the state changes in the virtual world. 
Other work on real-time communication like the RTP [22] and RSVP [27, 4] can also 
be employed to make efficient use of the available network resources with guaranteed 
performance. 

6.4 DVE System Development Toolkits 

Distributed Interactive Virtual Environment (DIVE) is a toolkit for building dis-
tributed virtual reality applications in a heterogeneous networking environment. It 
is developed by the Swedish Institute of Computer Science. The DIVE consists of a 
set of processes, running on different nodes within a network. These processes can 
access to a number of databases which they can update concurrently. Each database 
contains the information of the virtual objects in the virtual world. Different virtual 
world session is associated with a process group so that multicasting protocols are used 
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for the communication within the group. Besides the DIVE, other examples include: 
the NPSNET [16], the SIMNET [7], the SPLINE [1], etc. 

The research and development of a multimedia storage server in [8, 20] can be used 
to allow the efficient access of the data in a DVE system. 

6.5 Example DVE Systems 

The VINCENT system developed by the CUHK in [13] is implemented to show how 
spatial queries can be incorporated in a highly graphical three-dimensional virtual en-
vironment. It allows the users to explore and to make any query about the information 
of the virtual world. It also demostrates how existing software or library packages like 
the Alias Wavefront [23] and the IRIS Performer [24] can be used for building a DVE 
system. 

Another example system called the Diamond Park [1] is developed using the SPLINE 
of the MERL. It allows the users to explore and to interact with each others inside 
the virtual world. Inside the park, live conversations among the users are possible 
and it is designed with extensive audio effects. This is one of the unique features that 
the Diamond Park supports audio rendering. One of the interesting features of the 
Diamond Park is that, the users can ride a bicycle inside, or even to compete with 
each others, via a specific hardware. 
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Conclusion 

7.1 A Vision to the Future 

I worked together with a colleague in the Europe this morning on the Mars. After the 
routine checking of all the equipments in the iron ore mine, we came back to the Earth 
for a lunch. I guess the robots there can be trusted, after these few months of close 
monitoring. 

After the lunch, I still have tens minutes left and so I logged into my reading room 
to read my email and to browse through my favorite discussion groups. 

Time's up! I logged out from my reading room and then I logged into the conference 
room for a meeting. I guess the worst thing for this kind of meeting is that, we 
could not drink anything inside the room, the Head-mounted Display (HMD) is not so 
convenient for such purpose. We can share only non-consumable objects inside. But 
the good thing is that, you can really fall into sleep without any obvious sign. 

The conference finally finished, but we all have no idea that it's already late night. 
Working a whole day sitting in front of the computer is never a pleasant experience. 

7.2 Conclusion 

With the distributed virtual environment, people can communicate and interact with 
each others instantly regardless of the geographical distances between them. Potential 
application includes, but is not limited to, the virtual classroom, the Internet shopping, 
the virtual conference room, the multi-user games and the tele-presence. 
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In this thesis, we have formulated the load balancing problem on the server side 
in a DVE system as a partitioning problem by using the concept of AOL The parti-
tioning problem is proven to be NP-complete and heuristic algorithms are proposed 
to generate some sub-optimal partitioning schemes. By solving the partitioning prob-
lem, the work load of the DVE system can be shared among the DVE servers and the 
inter-communication incurred by the partitioning scheme is minimized. This allows 
the realization of a very large scale DVE in a cost effective manner. 

On the client side of a DVE system, we have described the object state synchroniza-
tion problem. Communication sub-graph construction algorithms have been presented 
to support the efficient delivery of the synchronization messages by multicasting, based 
on a number of design choices. We have also presented the derivation of the optimal 
synchronizing intervals with different level of guarantees based on a given set of con-
sistency requirements. 

I 

I 



Bibliography 

1] D.B. Anderson, J.W. Barrus, J.H. Howard, C. Rich, S. Chia, and R.C. Waters. 
Building multiuser interactive multimedia environments at merl. IEEE Multime-
dia Volume 2 4, pages pp 77-82, March 1997. 

2] A.J. Ballardie, RF. Francis, and J. Crowcroft. Core based trees. ACMSIGCOMM, 
1993. 

3] U. N. Bhat. Elements of applied stochastic processes. John Wiley & Sons, New 
York, 1972. 

4] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation 
protocol (rsvp) - version 1 functional specification. RFC 2205, September 1997. 

'5] T. Chiueh. Distributed systems support for networked games. SPIE First In-
ternational Symposium on Technologies and Systems for Voice, Video and Data 
Communications, October 1995. 

6] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and 
Design. Addison-Wesley, 1994. 

'7] K. Koskimies et al. Simnet - a software tool for system simulation. The Second 
Symposium on Programming Languages and Software Tools, August 1991. 

:8] F. Fabbrocino, J.R. Santos, and R. Muntz. An implicitly scalable, fully interactive 
multimedia storage server. International Workshop on Distributed Interactive 
Simulation and Real Time Applications (DIS-RT,98), 1998. 

9] M.R. Garey and D.S. Johnson. Computer and Intractability: A Guide to the 
Theory of NP- Complessness. W.H. Freeman and Company, 1979. 

10] R. Guerraoui and A. Schiper. Total order multicast to multiple. ICDCS, 1997. 

11] K. Guo and L. Rodrigues. Dynamic light weight groups. ICDCS, 1997. 

68 



Bibliography . ^ 

12] John C.S. Lui and M.F. Chan. Efficient partitioning algorithm for the distributed 
virtual environment system. The Sixth International Conference on Distributed 
Multimedia Systems, 1999. 

13] John C.S. Lui, M.F. Chan, T.F. Chan, W.S. Cheung, and W.W. Kwong. Virtual 
exploration and information retrieval system: Design and implementation. Third 
International Workshop on Multimedia Information Systems, 1997. 

14] John C.S. Lui, M.F. Chan, Oldfield K.Y. So, and T.S. Tam. Balancing workload 
and communication cost for a distributed virtual environment. Fourth Interna-
tional Workshop on Multimedia Information Systems (MIS'98), September 24-26， 

1998. 

15] John C.S. Lui, Oldfield K.Y. So, and T.S. Tam. Deriving communication sub-
graph and optimal synchronizing interval for distributed virtual environment sys-
tem. The IEEE International Conference on Multimedia Computing and Systems 
(ICMCS,99), June 1999. 

16] M.R. Macedonia, M.J. Zyda, D.R. Pratt, D.P. Brutzman, P.T. Barham, J. Falby, 
and J. Locke. Npsnet: A network software architecture for large scale virtual 
environments. Presence Vol 3, No. 4, pages pp 265-280, Fall 1994. 

17] M.R. Macedonia, M.J. Zyda, D.R. Pratt, and P.T. Barham D.P. Brutzman. Ex-
ploiting reality with multicast groups: A network architecture for large-scale vir-
tual environments. IEEE Computer Graphics and Applications, September 1995. 

18] F. Morgan. The hexagonal honeycomb conjecture. Trans. Amer. Math. Soc., 
pages 1753-1763, 1999. 

19] K.L. Morse. Interest management in large-scale distributed simulations. Tech-
nical Report, University of California, Irvine, Department of Information and 
Computer Science, pages IC-TR-96-27, July 1996. 

20] R. Muntz, J.R. Santos, and S. Berson. A parallel disk storage system for realtime 
multimedia application. Special Issue on Multimedia Computing Systems of the 
International Journal of Intelligent Systems, 1998. 

21] J. Plesmk. The complexity of designing a network with minimum diameter. Net-
works 11, pages 77-85, 1981. 

22] H. Schulzrinne, GMD Fokus, S. Casner, R. Frederick, and V. Jacobson. Rtp: A 
transport protocol for real-time applications. RFC 1889, January 1996. 



Bibliography ^ 

•23] Alias Wavefront Software. Learning Alias Level One. A Division of Silicon Graph-
ics Canada Limited, 1995. 

24] Performer Software. IRIS Performer Programmer Guides. Silicon Graphics Com-
puter Softwares, 1995. 

25] S. Srinivasan. Multicasting in dis: A unified solution. ELECSIM, 1995. 

26] R.C. Waters and J.W. Barms. The rise of shared virtual environments. IEEE 
Spectrum, pages pp 20-25, March, 1997. 

27] L. Zhang, S.E. Deering, D. Estrin, S. Shenker, and D. Zappala. Rsvp: A new 
resource reservation protocol. IEEE Network, pages 7(5):8-18, September 1993. 



I _? …—_.. 
^ . 
1 • 'fr' li'i 

i ••‘ .. 

'•'," 

M 
m̂pjY,-



1 
fc 
r 

1 1 

r 
l.j p 
m 

I ̂ 
^ 

• fe. 

.;M 

:-,-..,5 

•K'l 
‘ . '爾 

‘ 

八5 

J 

:?h 

,.¾ 

i •̂  

I 
••«. 
i 

I 
1 

I 

CUHK L i b r a r i e s 

圓__1111111 
DD37E3MED 




