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Abstract 

Let f be a continuous difFerentiable function on a closed subset of W. Following 

the works on [9], we first study the relation between LP-minimizing (Levitin-

Polyak) and stationary sequences of the problem in minimizing f on X. Condi-

tions for equivalence on these sequential properties are obtained. Moreover, we 

investigate [14] the relation between minimizing and stationary sequence for the 

problem on a Banach space, where the extended real-valued function f is lower-

semicontinuous and bounded below. Finally, through discussing some functions G 

and L for constrained problem, sufficient and necessary conditions for nonsmooth 

optimization is introduced from [15 . 



» 

簡介• 

設£是定義在&”的一個閉子集中連續可微函數。循著文章[9]中 

的結果，我們首先硏究求f的極小値問題上LP極小化序列及穩定序 

列。並且得到這兩個1^質的等價條件。此外’我們更在[14]文章中考 

察兩種序列在Banach空間，延實價下半連續和有下界函數的關係。最 

後，通過討論在帶約束性問題上的兩個函數G及L，由文章[15]引入 

非光滑最優化的充份及必要條件° 
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Introduction 

This thesis surveys some recent theoretical results on optimization theory. 

Our study is divided into two parts. The first one emphasizes on the relation 

between minimizing sequences and stationary sequences. The second part is to 

study the necessary and sufficient conditions on nonsmooth optimization. 

The study of minimizing sequences and stationary sequences of a convex pro-

grams was first investigated by Auslender, Crouzeix, Angleraud and their col-

leagues ([1] [4] [5] [18]). Initially, they wanted to determine the conditions for en-

suring a stationary sequence of a given function are minimizing for an algorithm. 

But their work was mainly on convex functions. After that, Chou, Huang, Ng 

and Pang ([9] [14] [15] [16] [17]) extended the result to a lower semicontinuous 

function on a Banach space. Also, they dealt with the equivalence on minimizing 

and stationary sequences for constrained and unconstrained convex program. 

Many results on necessary and sufficient optimality conditions for nonsmooth 

optimization problem had been presented under various kinds of conditions, for 

example, regularity, convexity and semismoothness ([6] [7] [8]). Huang and Ng 

then extended the result to a Banach space for a locally Lipschitzian function. 

They had investigated necessary and sufficient second order constrained and un-

constrained programs. 

Based on [9], the first chapter is to study the relation between Levitin-Polyak 

minimizing (LP-minimizing) and stationary sequences in residual function ap-

proach. As a consequence of Theorem (1.2.1), whether an LP-minimizing se-

quence {xk} is stationary depends on the behaviour of the function f and the 

gradient V / near {xk}. For example, if f and V / are uniformly continuous 

near an LP-minimizing sequence {xk}, then {xk} is N-stationary. Conversely, 
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a stationary sequence becomes an LP-minimizing sequence if the problem is H-

metrically regular, which is given in Theorem (1.3.1). Moreover, we investigate 

the equivalence relation for a special type problem CQQSP given in Theorem 

(1.4.1). In the last section of this chapter, we discuss a descent algorithm of a 

convex optimization program. Its convergence depends on the error bound con-

dition in Theorem (1.7.1). 

We extend a function f to be lower semicontinuous extended real-valued on 

a Banach space X. Based on [14], relation between minimizing and stationary 

sequences by subdifferential approach is introduced in chapter 2. First of all, we 

define a subdifferential as a subset of a dual space X* in Definition (2.1.1) and a 

minimizing sequence is in terms of subdifferential. A minimizing sequence {xk] is 

stationary if the subdifferential df is uniformly upper semicontinuous near {xk}, 

which is illustrated in Theorem (2.2.2). On the other hand, if the function is C-

convex and the Banach space is reliable, then a stationary sequence is minimizing 

for the level sets which can be characterised by the error bound condition. The 

result is given in Theorem (2.4.1). Finally, we deal with a problem that whether 

a function is critical. If the function f is C-convex, has at least one critical point 

and all its stationary seqeuences are bounded, then it is critical as in Proposition 

(2.5.2). In addition, for a reliable space X and a critical function / , minimizing 

is a consequence of a stationary sequence. This property for a critical function is 

illustrated in Theorem (2.5.1). 

In the last chapter, based on [15] we turn to our attention to study necessary 

and sufficient conditions in an optimization problem, where the objective function 

is locally Lipschitz real-valued on a Banach space X. We divided the problem into 

two cases, unconstrained and constrained optimization. For the unconstrained 

problem, the discussion is mainly on the Dini-directional derivatives. In the case 
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of constrained one, some functions G and L are introduced. If the lower Dini-

directional derivatives of G in a direction u equals to zero, then the necessary 

condition is given in Theorem (3.4.1) that G"_ is nonnegative in such direction. 

On the other hand, x is a local minimizer if G"_ is strictly greater than zero at 

X in some direction v for which the lower Dini-directional derivative of G at x in 

the direction v is zero. This is the sufficient condition in Theorem (3.5.1) for a 

constrained problem. 
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Chapter 1 

LP-minimizing and Stationary 

Sequences 

For constrained finite-dimensional problems, we discuss [9] the relation between 

an LP-minimizing (Levitin-Polyak minimizing) sequence and stationary sequence. 

Analysis is mainly through residual function approach and the theory of error 

bounds. The advantage is that we can handle infeasible sequence and constraints 

explicitly in practical problems. Moreover, specializations ofthe results to convex 

quadratically constrained convex spline (differential convex piecewise quadratic 

function) minimization problems is introduced. 

1.1 Residual function 

We consider the following constrained finite-dimensional differential problem: 

Minimize f{x) 

subject to X G X (1.1) 

where / :R^ ~» E is a continuously differentiable function and X is a nonempty 

closed subset of E^. 

8 
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It is well known that for each x G R^ there exists z G X such that \\z - x\ = 

dist{x, X ) , where dist{y, X) 二 inf”ex ||” — "ll. If X is assumed to be convex, then 

there is exactly one vector z in X satisfying the above property and will henceforth 

be denoted by Ux{x). The following result is well-known; for completeness, we 

include a proof here. 

Proposition 1.1.1 Let X be a nonempty closed convex set in M^\X. The fol-

lowing statements are equivalent: 

(i) z = Ux{x); 

(ii) z e X and {z — x, y — z) > 0； Vy G X. 

Proof Let z, y G X. Define (p : [0,1] — R by 

V?(t) = h l [ z ^ t { y - z ) ] -x|p, Vt G [0,1:. 
Zd 

Clearly, ip is convex and 

^{t) = {z-x + t(y-z),y-z) Vt G [0,1: 

where (/?'(0) = {z — x, y — z) to be interpreted as right-hand side derivative. Now, 

if (i) holds, then (p{t) > (p{0) for each t and so (^'(0) > 0, that is (ii) holds. 

Conversely, suppose (ii) is true. Then, with any y G X and cp be defined as 

before, it follows from the convexity of (p that 

洲-v^(0) > <p\0) = {z - X, y - z) > 0, 

so \̂\y — x|p > |||z — z||2, and (i) is seen to hold. • 

The inequality appeared in (ii) of the proposition is sometimes referred in the 

literature as the variational inequality. One of its application is: 
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Proposition 1.1.2 LetX be a nonempty closed convex set in W. Letx e W\X. 

Then 

\llx^i — Hx^ll 2 ||xi - x2W Vx1,x2 G M .̂ 

Proof Write X1,X2 respectively for HxXi and UxX2- Applying (ii) of the above 

Proposition to x = xi and y 二 ^2, one has 

{xi - X1,X2 - Xi) > 0. 

Similarly, we also have 

{x2 - x2,x2 - xi) > 0. 

Summing up, we have 

{X2 — Xi, X2 - Xi) > {X2 - Xi, X2 _ Xi). 

By the Schwarz inequality, it follows that 

\X2 - Xi\\ > \\X2 - Xi \ . 

• 
As we do not assume that f attained minimum (unless specified), let 

finf = inf/(2;) > -00. xGA 

Definition 1.1.1 A sequence {xk} C R" is said to be a Levitin-Polyak minimiz-

ing (LP minimizing) sequence for (1.1) if the following conditions are satisfied: 

(i) Asymptotically Optimal 

lim f{xk) = finf 
k—oo 

and 
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(ii) Asymptotically Feasible 

lim dist{xk, X) = 0 
fc—oo 

where dist{x,X) is the distance function from x to the set X measured in 

the Euclidean norm. 

After defining a minimizing sequence, we introduce a stationary sequence in 

residual function approach instead of subdifferential approach. The advantage 

is that it is convenient in computing stopping rules in practical problems and 

allows the treatment of infeasible sequences. For a unconstrained problem that 

X 二 ]R ,̂ as f is diflFerentiable on R^, we simply define a sequence {xk} to be 

stationary if {V/(xfc)} converges to zero. In the case that X is a proper closed 

convex subset of R^, we have two kinds of stationary sequences (N-stationary and 

A/"-stationary). 

Definition 1.1.2 The residual function i^v : M^ — R^ at x G W is 

RN{oo) = X - nx(o: - v / ( x ) ) 

where Hx is the projection onto the set X. 

It is easily seen that X = R^, i^v(i) = V / (x ) . Note also that if x is a local 

minimum of (1.1) and X is convex, then 

(V/⑷， .—.)=lim 彻 + 力 (卜,))—爛 > 0 V. E X (1.2) 
\ � , t|0 t 

and it follows from the well-known variational inequality that 

xeUx{x-Vf{x)) (1.3) 

implying that i^v(z) = 0. Conversely, if f is a convex function and x G W with 

RN{x) = Vf{x) = 0, then (1.3) holds. Consequently x is a global minimum of 

(1.1) because 

f{z)>{Vf(x),z-x) + f{x)>f{x) ^zeX 

by the virtue of the convexity of f. 
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Definition 1.1.3 A sequence {xk} C W is a naturally stationary (N-stationary) 

sequence z/linifc_^oo Rni^k) = 0. 

A N-stationary sequence {xk} is asymptotically feasible: 

lim Rnixk) 二 0 ==̂  Xk Ux{ock V / 0 ^ ) ) — • asA; — 00 
k—00 

=4> lim dist{xk, X) = 0. 
k—00 

Also note that if X is convex, then by the variational principle of the Euclidean 

projector, for all y G X and x G M ,̂ one has 

{y - T + RN{x)f{^f{x) - RN{x)) 

二 — (" - Hx(x - Vf{x))f{x - Vf{x) - n^(x - V/(x))) 

> 0. (1.4) 

Definition 1.1.4 A normal function R^ :股” —M^ is defined as 

RAf{z) = v / 0 nx ( z ) + z - Ux{z) forz e r \ 

Definition 1.1.5 A sequence {xk} C R^ is said to be normally stationary {Af-

stationary) if 

(i) {xk} is asymptotically feasible such that linifc_,oo dist(xk,X) = 0 

and 

(ii) there exists a sequence {zk} C W such that Ex(^fc) = Hx(xk) for each k 

and limfc_oo RM^^k) = 0. 

Consider a special case when {xk} is a constant sequence {x } : Xk = x for all 

k e N. Then (i) simply says that x G X. Moreover, assuming (i), (ii) is equivalent 

to the condition that { x k } = 何 is N-stationary as the following result shows 

Proposition 1.1.3 Let x G X. Then the following statements are equivalent: 
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{iJ {Vf(x),y-x)>0 Vy G X ; 

问 x = n x ( T - V / W ) / 

(iii) i^v(i) = 0; 

(iv) There exists z G R^ with Uxz = x such that Rj^{z) = 0. 

Proof The equivalence of (i) and (ii) is due to the variational inequality. That 

(ii) is equivalent to (iii) by definition of R^. 

( i i )分 ( i v ) Let z = X - V/(a:). Then Uxz = x by (ii). By the definition of R^/ 

it is east to check that Ru{z) = 0. Conversely, suppose that (iv) holds for some 

z G R^. Then, since RM{z) 二 0, z = x - V / ( x ) . Also, since Hxz = x, 

{x - z, y - x) > 0 \/y G X 

by virtue of the variational inequality. Therefore, (i) is seen to be hold. • 

For z G R^, let x = n^(^), we have the following relation between R^ and 

ÂT, 

RN{x) = X - Ux{x - V / ( x ) ) 

=nxW - nx(x — Vf{x)) 

= U x { x — V / ( x ) + V / o n x ( z ) + Z — Ux{z)) - Ux{x - V / ( x ) ) 

二 nx(^ — v/(x) + Ru{z)) 一 nx(^ - v/(x)). 

By the nonexpansiveness of projection, we then have 

WRN{X)W < \\RAf{z)\\. 

Therefore, for any sequence {zk} C R^ and {x^) C X with Xk = Ux{zk) for each 

k, one has 

lim RN{xk) = 0 if lim Rjsf�Zk) = 0. (1.5) 
k—oo k—oo 
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Definition 1.1.6 A function h : R^ — W^ is said to be uniformly continuous 

near a sequence {xk} iffor all e > 0，there exists a 6 > 0 and for all k and y 

\h{y) — h{xk)W < € whenever \\y — Xk\\ < & 

1.2 Minimizing sequences 

In this section, we assumed that finf for (1.1) is finite: finf > - o o . We want 

to investigate a question: if {xk} is an LP-minimizing sequence, is it necessarily 

an N-stationary sequence? The answer of this question is negative in general. 

The following proposition shows however that there exists a sequence near to 

{xk} which is LP-minimizing as well as N-stationary under a suitably uniform 

continuity of f. 

Proposition 1.2.1 Let f : R^ — R be a continuously differentiable function 

and X be an nonempty closed convex subset of R^. If finf is finite, {xk} C R^ 

is an LP-minimizing sequence and f is uniformly continuous near {xk}, this 

condition can be dropped if {xk} is assumed to be in X，then there exists a nearby 

feasible sequence {yk} C X such that 

(i) limfc_oo ll̂ f̂c - VkW 二 0 

(ii) limfc^oo f{Vk) = finf and 

(iii) limfc—ooi^vO/fc) = 0. 

Proof For each k, let Xk = nx(a^fc). As {xk} is asymptotically feasible, 

limfc—oo \\xk — Xk\\ = 0. It then follows by the uniformly continuity of f near 

{xk} that limfc^oo /(^fc) = linifc^oo/(a^fc) = finf- Thus an LP-minimizing se-

quence since {x^} is certainly feasible. Take an arbitrary sequence (e^) with 

6k > 0 for each k such that 

lim 6k = 0 and f{xk) < finf + k̂-
fc—OO 
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Let ^ : W — E be a function that ^{x) = f{x) + Ix{x) where 
r 
0, if X G X 

lx{x) = <^ 
00 otherwise. 

\ 

Since W f = finf and {xk} is feasible, 

i^{xk) 二 /(^fc) < finf + ek = i^inf + efc for each k. 

By the Ekeland's variational principle in Lemma (3.2.1), there exists a sequence 

{Vk} C R" with 

9k{y) = V^\\y - VkW for y G M ,̂ 

such that 

(a) \\xk — yfc|| S V ^ 

(b) i;{yk) < ^{xk) 

(c) yk is a global minimizer of • + Qk-

By (a), liniA;_̂ oo \\xk — VkW = 0 for ê  converges to zero and limfc—oo \\xk _ f̂c|| = 0. 

yk e X as • = 00 outside X . By the definition of 补 and (c), yk is a global 

minimizer of 

minimize f{x) + Qk{x) 

subject to X G X. 

Since limfc—00 / ( ¾ ) = finf, it follows from (b) that limfc—oo f{Vk) = finf. 

For y G X, the directional derivative of f + Qk at yk along y — yk must be 

nonnegative. So there exists Wk e d{f + gk){Vk) (Clarke's subdifferential) such 

that {wk)^{y - yk) > 0. By Proposition (1.1.1), yk = Tlx{Vk _ m ) . By Lemma 
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(3.2.3)，Wk can be written as df{yk) + Zk with \\zk\\ < V ^ . Since n ^ is non-

expansive by Proposition (1.1.2), one has 

WVk — ^x{Vk — df{vk)W = WUx{yk — Wk) — Ux{yk — df{yk)W 

< \\wk df{yk)l 

=|zfc| 

< v ^ — 0 

that is 

lim RN{Vk) = 0. 
k—oo • 

Noticed that finf > - o c is essential for applying Ekeland's variational prin-

ciple in Proposition (1.2.1). There is a counterexample to illustrate it: X = R, 

we want to minimize f{x) = x,Wx e R. Clearly, any sequence converging to - o o 

is minimizing, but / {x) = 1 • 0 for all x. 

With the above proposition, we immediate have the following main result in 

this section. 

Theorem 1.2.1 Let f : R^ — R be a continuously differentiable and X he an 

nonempty closed convex subset ofW. Assumed finf > —oo. Suppose a sequence 

{xk} C R^ is an LP-minimizing sequence, f and V / are uniformly continuous 

near {xk}. Then {xk} is N-stationary. 

Proof Follow the proof in Proposition (1.2.1), we have a nearby N-stationary 

sequence {yk}. Then by the uniformly continuity property of / , V / near {xk} 
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and limfc—oo \\xk — VkW = 0, 

\RN{xk) — RN{Vk)W = W[xk - ^x{0Ck — Vf(xk))] — [pk — TIx(Pk - Vf(pk))]| 

=\\xu - Vk — [I^x{0Ck - V/(xfc)) — Ux{Vk - ^f{Vk))]W 

< \\xk 一 VkW + \\xk — Vk - V/(xfc) + Vf{yk)l 

< 2\\xk — VkW + ||V/(xfc) — Vf{vk)W 

— 0 as k — oo. 

Hence, l im“oo ^iv(^fc) = 0. • 

1.3 Stationary sequences 

In this section, we deal with a problem when does a stationary sequence becomes 

an LP-minimizing sequence. We used error bounds for the level sets of (1.1). For 

the analysis purpose, an assumption that f is convex for (1.1) is needed. 

Definition 1.3.1 The minimizing problem (1.1) is said to have H-metrically reg-

ular level sets, or in short is H-metrically regular iffor each scalar X > finf, there 

exists c > 0 and 0 < 7 < 1 such that 

dist{x,L{X)) < cr^(x), V x G X (1.6) 

where L(A) is the X-level set of (1.1)， 

L{X) = { x e X l f { x ) < X } 

and r^{x) is the residual for L(A)； 

r^(x) = max( [{f{x) — A)+p, {f{x) - A)+). 

Theorem 1.3.1 Suppose f : R^ ~> E is a continuously differential convex func-

tion and X is a nonempty closed convex subset ofW^ . If a sequence {xk] ^ R^ 

satisfies at least one of the conditions: 
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(i) {xk} is a Af-stationary sequence and {xk} is feasible to (1.1); 

(ii) {xk} is a Af-stationary sequence and f is uniformly continuous near {xk}; 

(iii) {xk} is a N-stationary sequence，V/ is uniformly continuous near {xk} and 

{Vf{xk)} is hounded, 

then {xk] is an LP-minimizing sequence whenever (1.1) is H-metrically regular. 

Proof Suppose (i) holds, we need to show limfc—oo/(Tfc) = finf. Assume on 

the contrary that there exists A G M such that lim inffc^oo f{xk) > A > finf- Since 

the level set L(A) is nonempty closed convex, for each k there exists yk G L{X) 

such that dist{xk, L(A)) = ||孙—讲||. Also, f{yk) = A. Otherwise for X is convex, 

there exists Wk e L(A) for each k where Wk + Xk, yk which lies on the line segment 

joining x^ and yk in X and \\wk — Xk\\ < \\xk _ VkW- Noted that by the gradient 

inequality for convex function f , we have 

A = f{vk) > f{xk) + V f { x k f { y k - x k ) . ( 1 " ) 

For {xk} is AT-stationary, there exists a sequence {2:^} C W such that Xk = 

Ux{zk) for all k with 

lim RM{zk) = 0. 
fc—oo 

Then it follows by the definition of Rj^{zk), 

{Vk - Xkf{Vf{xk) - R^{zk)) 

={Vk - Xkf{Vf{xk) — {VfoUx{zk) + Zk — nx(^))) 

=(vk - xkf{vf{xk) - Zk + Ux{zk) - V/onx(2^iO) 

={Vk - Xkf{xk - Zk) 

> 0. (1.8) 

It becomes 

Vf{xkf{yk - Xk) > RM{zkf{Vk 一 Xk)-
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By (1.7), 

f(Xk) - A < -RM{zkf{Vk — ^fc); 

Since dist{xk, L(A)) 二 ||�fc_3;fc|| and f{xk) > A, by the Cauchy-schwartz inequal-

ity and (1.6), the inequality becomes 

f{xk - A < c\\R^f{zk)\\dist{xk,L{X)) 

< c\\Rj^{zk)\\ max{f{xk) - A, {f{xk) - A)^). 

Dividing both sides by f{xk) — \ one has 

1 < cpAKzfc)||max(l,( /Orfc)-A)7-i) . 

As liminffc^oo f{xk) > A and {i^A/*(Zfc)} converges to zero, a contradiction to the 

above inequality is obtained by letting k — oo. 

Assumed (ii) that {a:^} is A/"-stationary. There exists a sequence {zk} C R^ 

such that Tlx{zk) = Hx{xk) with linifc^oo ^Ar(^fc) = 0. Let Xk = Ux(xk) for each 

k, then Ux(zk) = ^k for each k and linifc^oo RAf{zk) = 0. That means {xk} is also 

a A/"-stationary sequence. It follows that {xk} satisfies (i) and thus 

l im f{xk) = finf. fc—oo 

Moreover, f is uniformly continuous near {xk} and the asymptotically feasibility 

of {xk}, limk^oof{ock) = limfc^oo f{xk) = finf. 

Supposed (iii) that {xk} is a N-stationary sequence and so asymptotically 

feasible. Let Xk = Ux{xk) for each k. It follows that {xk} is a N-stationary 

sequence as f is uniformly continuous near {x^}. 

Next we need to show that f is uniformly continuous near {xk} first. By the 

mean-value theorem, for all y G M ,̂ there exists 0 < � < 1 such that 

f{y) - f{xk) = Vf{xk + Ck{y - Xk)f{y — Xk) 

=[Vf{xk + Ck{y - Xk)) — Vf{xk)Y{y — x^) + Vf{xkf{y — :¾). 
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One can easily see that for {V f (xk ) } is bounded and V / is uniformly continuous 

near {xk}, f is thus uniformly continuous near {xk} from the above inequality. 

We then follow the above proof that suppose lim inf^^oo f{^k) > A > /m/ for some 

scalar A G W. Then there exists % G L(A) such that dist{xk, L{X)) = ||:^fc-^fc| . 

By equation (1.4) for {xk} is N-stationary, we get the following inequality instead 

of (1.8) 

{Vk — XU + RN{Xk)f{^f{Xk) - RN{Xk)) > 0. (1.9) 

Also, by the gradient inequality for convex function f the inequality (1.7) becomes 

入 = f { V k ) > f{^k) + V f {x f {Vk —办). （1.10) 

Then 

制 - A 二 f{xk) - fiSk) 

< -{vk - xkYiyf{xk)) 

< -RN{Xkf{m — ^k) + RN{Xkf^f{Xk) - RN{XkfRN{Xk) 

< WRN{xk)Wdist{xk,L{X)) + RN{xkf^f{xk) 

二 cWRN{xk)W m a x { ( / ( A ) - 聰 ⑷ — ^ ^ + RN{xkf^f {xk) . 

where the first inequality follows by (1.10), the second inequality follows by (1.9) 

and the third one follows by H-metrically regularity of (1.1). Similarly, for f{xk) > 

A, we divide both sides by f{xk)—入， 

1 < cWR {̂xk)W max{l, ( / ( 办 ） — X y - ' } + i^iv(^)^V/(x , ) / ( / (x , )—入） 

As {xk} is N-stationary, {S/f{xk)} is bounded and V / is uniformly continuous 

near {xk}, we obtain a contradiction as before by letting k — oo. Therefore, 

limk^oof{xk) = finf. Consequently, lim^^oo f{xk) 二 finf which follows by the 

uniformly continuity of f near {xk}. • 
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1.4 On the equivalence of minimizing and sta-

tionary sequence 

A piecewise quadratic function g : W — M is a continuous function and there 

exists finitely many convex polyhedra Pi, i = 1 , . . . ,p for some positive integer 

p, such that Ut=i Pi 二 股几 and g is quadratic on each Pi. Similarly, a piecewise 

linear function h : R^ — M^ is defined as a vector function which is continuous 

and there exists finitely many convex polyhedra S^ i = 1,...，s for some positive 

integer 5, such that ULi ^ =股几 and g is affine on each Si. From [20], we know 

that a piecewise linear function is a globally Lipschitz function. It can be easily 

seen that for a differentiable piecewise quadratic function f , it's gradient V / is 

piecewise linear and hence globally Lipschitz. 

Lemma 1.4.1 Iff : R^ ~> R is a convex piecewise quadratic function and 

X = {x e R^ I 9i{x) < 0, i = 1,.. . , m } 

where gi is a convex quadratic function and m is a positive integer, then the 

optimization problem (1.1) has H-metrically regular level sets. 

Proof Let A > finf, {Pi | i = 1 , . . . ,p} be the finite convex polyhedra where 

U t = i ^ 二 股几 and f is quadratic on each Pi. Suppose f equals to a quadratic 

function qi on each Pi. We can see that 

L(A) = U L,{X) 
i=l 

where L^X) is the intersection of a level set on Pi and the feasible set X , that is 

U{\) = {xeXf^Pi\f{x)<\}. 

By the error bound in [21], for each i where Li{X) + 0, there exist positive 

constants Q and 7¾ with 0 < 7¾ < 1 such that 

dist{x, Li{X)) < Ci max ([qi{x) — X)+]^\ {qi{x) - A)+ ) Vx € X D Pi. 
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As 

dist{x,L{X)) < dist{x,Li{X)) VxGX 

and Qi coincides with f on 只 for each i, we have 

dzst{x,L{X)) < Q max( [ / ( : c ) -A )+r% {f{x)-X)+) ^xeXnP,. 

By taking 

c 二 max{Q I i = 1,... ,p} and 7 = min{7i | i = 1,. • • ,p}, 

we thus get 

dist(x, L{X)) < c max ( [ f { x ) - A)+]^ {f{x) - A)+ ) \fx e X. 

• 
A convex quadratically constrained quadratic spline (convex differentiable 

piecewise quadratic function f) program: (CQQSP) 

minimize f{x) 

subject to Gi{x) = ^x^Qx + a[x + h < 0 fori 二 1，.. .，m (1.11) 

丄 

where Ci is a n x n symmetric positive semidefinite matrix, ai is a n-vector and 

hi is a scalar. Clearly, problem (1.11) is H-metrically regular by Lemma (1.4.1). 

In the proof of Theorem (1.3.1), we have already prove that if V / is uniformly 

continuous near a sequence {xk} and {V/(xfc)} is bounded, then f is uniformly 

continuous near {xk}- Consequently, one has the follow theorem: 

Theorem 1.4.1 Suppose finf is finite for the minimizing prohlem CQQSP (1.11) 

and a sequence {xk} C R^ has a property that {V/(xfc)} is hounded. Then the 

sequence {xk} is N-stationary if and only if it is LP-minimizing. 

Proof (々）Let {^¾} be a N-stationary sequence for problem (1.11). By the 

assumption that {V/(o;fc)} is bounded and V / is uniformly continuous near {xk} 
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which follows from the property that f is a differentiable piecewise quadratic 

function, the condition in Theorem (1.3.1) (iii) is satisfied. Also, the problem 

CQQSP (1.11) is H-metrically regular by Lemma (1.4.1) and the feasible set is 

nonempty closed convex. Hence, {xk} is an LP-minimizing sequence by Theorem 

(1.3.1). 

(<^) Suppose {xk} is an LP-minimizing sequence. Firstly, V / is uniformly contin-

uous near {xk}- Together with {Vf{xk)} is bounded, f is uniformly continuous 

near {xk}- Moreover, with the assumption that finf is finite and the feasible 
set is nonempty closed convex, applied Theorem (1.2.1), {xk} is N-stationary. 
• 

Lemma 1.4.2 If f : W — R is a convex function and X is a closed convex 

subset ofW^ and c > 0； the following properties (i) and (ii) are equivalent 

(i) For each x G X with f{x) > finf, there exists x G X with f{x) < f{x) and 

iix - x|i < c{f{x) - m v 

(ii) For all X > finf, 

dist{x,L{X)) < c{f{x) - A)+, Vx G X. 

Proof (i) =^ (ii) Let x G X and f{x) > A > finf. Consider the problem of 

projecting x onto 丄(入)： 

minimize ^{z — x)^{z — x) 
Zi 

subject to z G L(A). 

Let X = n^A)(^)- One has / ( x ) = A, otherwise there exist y G L(A) such that 

\y — x\\ < \\x — x\\. Suppose x G X such that f{x) < f{x) and 

|无一士|| < c{f{x) - f{x)), 
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From the result of convex analysis [19], there exists a nonnegative scalar r and a 

vector u G df{x) such that for all z G X , 

{z — xf{x — X + TU) > 0. (1.12) 

By putting z = x, one has 

T^{X — X) > -(X - X)^(X - X). 

From the definition of u, we have 

f{x) - f{x) > u^{x — rr). 

Then 

r ( / ( x ) — f{x)) > -{x — xf{x - x). 

Therefore, 

T < C ||x — x\ . 

By putting z = x in (1.12), we deduce 

||x - x|p < Tu^[x — x) < r ( / ( x ) — / ( f ) ) . 

As X • X and f{x) = A < / (x ) , we have 

|f — x|| < c{f{x) - A)+. 

Thus (ii) holds. 

(ii) 4 (i) Let x G X with f{x) > A > finf for some A. Let x be the Euclidean 

projection of x onto the level set L(A). Then x G X and f{x)=入 < /(rr). By 

(ii), we have 

11̂  - x|| = dist{x,L{X)) < c{f{x) - A)+ = cf{x) — f{x). 

That is, (i) holds. • 
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Theorem 1.4.2 Suppose that f : R^ — M is convex ,continuous differentiable 

function and X is a nonempty closed convex subset of W with the property that 

/ h / finite. Let c > 0 be a constant such thatfor each x G X satisfying f{x) > finf, 

there exists x G X with f{x) < f{x) and 

1：̂  - x|| < c ( / (x ) - f(x)). 

For an arbitrary sequence {xk} for which V / is uniformly continuous near {xk} 

and the sequence {V/(xfc) } is hounded, then {xk} is N-stationary if and only if 

it is LP minimizing. 

Proof (=^) Assumed {xk} is a N-stationary sequence. The property in Lemma 

(1.4.2) (i) is satisfied, so the problem is H-metrically regular. Also, by the as-

sumption that {V/(xfc) } is bounded and V / is uniformly continuous near {x^}, 

it follows by the Theorem (1.3.1) that {xk} is an LP-minimizing sequence. 

(<^) Suppose {xk} is a LP-minimizing sequence. Firstly, f is uniformly continuous 

near {xk} which follows by the boundedness of {V f {xk ) } and the uniformly 

continuity of V / near {x^}. Also, finf is finite. With the assumption that 

V / is uniformly continuous near {xk}, {xk} is N-stationary by Theorem (1.2.1). 
• 

1.5 Complementarity conditions 

Consider X is a closed convex cone in the (1.1). Let X* be the dual cone of X 

such that 

X* = {u G R^ I u^v > 0 for all v G X}. 

If X is a local minimum of the problem 

Minimize f{x) 

subject to X G X (1.13) 



Minimizing and Stationary Sequences 26 

where f : W — R is continuously differentiable and X is a nonempty closed 

convex cone of R^, then 

^ f { x f { y - ^) > 0 V y G X 

It can be easily seen that by the property of a cone X , the complementarity 

system holds: 

x^V/ (x ) = 0 (1.14) 

for all X G X and V / ( x ) G X*. 

On the contrary, suppose f is a convex function and a vector x G R^ satisfying 

(1.14), then 

f{y)-f{x)>Vf{xf{y-x)>0 Vo:,yGX 

That is X is a global minimum of the problem (1.13). 

We want to see that whether the above property (1.14) is satisfied by a se-

quence {xk} instead of a vector x. 

Theorem 1.5.1 Suppose that X is a nonempty closed convex cone in R^ and 

f ： R^ — R is a continuously differentiable function. Let {xk} C X be a feasible 

sequence, 

(i) If finf > —oQ, V / is uniformly continuous near {xk} and {x^} is LP 

minimizing for the problem (1.13), then there exists a sequence {u^A；} C X* 

such that 

lim {xk)^Wk = 0 and lim {Vf{xk) — Wk) = 0. (1.15) 
k~>oo fc—oo 

(ii) Conversely, suppose that f is a convex function and the problem (1.13) 

is H-metrically regular. If there exists a sequence {i6'ifc} C X* having the 

properties (1.15), then {x^} is an LP-minimizingfor the problem (1.13). 
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Proof (i) In the proof of Proposition (1.2.1), we deduced two sequences of 

vectors {yk] C X and {wk} C R^ satisfying the following properties 

(a) yk = Ux(yk — Wk) for each k; 

(b) lim“oo("fc - ^fc) = 0; 

(C) limjt_oo f(Vk) = finf； 

(d) limfc_^oo(̂ fc 一 V/(yfc)) = 0. 

Noted that 

V / ( x , ) - Wk = (Vf(xk) — • 綱 ） + ( • 制 - ^ k ) . 

Since V / is uniformly continuous near {xk}, by (b) and (d), let k goes to infinity 

we have 

lim (V/(xfc) Wk) == 0. 
k—oo 

Next, we are going to prove linifc_oo(^fc)^^fc 二 0. Noticed that 

f{Vk) - f{xk) = (Pk — Xkf^f{xk) + o{Wxk-VkW) 

where o{t) converges to zero if t 丄 0. Also, {yk} is LP-minimizing by (c), let k 

goes to infinity it then follows that 

lim (x, - V k f V f { x k ) = 0. (1.16) 
fc—oo 

On the other hand, for X is a convex cone, 

{Vk)̂ Wk = 0 

Thus, 

{xk)^{wk) = {xk — Vk)^Wk + {Vk)^Wk 

={xk - Vk)^Wk 

={xk - Vkf{wk - V / ( y , ) ) + {xk — vkfvfivk) + (Xk — ykfiynVk) _ V/(o: , ) ) . 
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Then by the uniformly continuity of • / near {x^}, (b), (d) and (1.16), we estab-

lishes 

lim (xk)^Wk = 0. 
k—oo 

(b) Suppose on the contrary that there exists a scalar a such that lim inffc^oo f{^k) > 

a > finf. For the problem (1.13) is H-metrically regular, we can let 

dist{xk, L{a)) < cr^{xk) for each k 

where r^(x^) is the residual for L(a), 

r {̂ook) = max([(/(x/,) - a)+]^, {f{xk) — c^+). 

Moreover, there exists pk G X for each k such that 

f{Vk) = OL and dist{xk,L{a)) = \\xk -yk\\- (1.17) 

Since f is convex, 

^f{xkf{xk - Vk) > f{xk) - a. (1.18) 

Also, with {wkYyu = 0, 

Vf{xk)^{xk - Vk) = {wkf{xk — Vk) + (V/(xfc) — Wkf{xk - Vk) 

< |(l̂ fc)T:TA;| + ||V/(Xfc) - WkWWVk - Xk\ . 

Thus by (1.18) and (1.17), 

f{xk) - OL < \{wkfxk\ + WVf{xk) -WkWdist{xk,L{a). 

As f{xk) — a — 0 for all k, we then divide both sides by f{xk) — a, one has 

1 < c||V/(x,) — ,̂|| max(l, {f{xk) - a ) ” + ^ j ^ ^ . 
j[Xk) - OL 

By letting k goes to infinity, the right hand side of the inequality becomes 0 while 

the left hand equals to 1. • 
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1.6 SubdifFerential-based stationary sequence 

Let d denote the Clark's subdifferential that 

f{x]u) = lim s u p \ { f { y + tu) - f{y)} f o rx ,ueJC 
y~^T i|o t 

and 

df{x) = {x* G X* I :r*(.) < f{x;.) o n X } . 

Suppose that X is a closed convex subset in R^ and Ix is the indicator function 

of X , such that 
y 
0, if X G X 

Ix{x)= 
00 if X 0 X. 

V 

Note that Ix is a convex function. By [10] d!x is defined as 

dIx{x) = {u e �丨 uT(y — X) < Ix{y) - Ix{x) Vy G X } . 

We use 汰 to denote the e-subdiflPerential [12]. The subdifferential dJx{x) of Ix 

at X G X is 

dJx{x) = {u e R^ I uT[y — X) < e Vy G X}. 

Consider the function f and X in (1.1) are both convex such that 

Minimize f{x) 

subject to X G X (1.19) 

where /:R^ — R is continuously differentiable convex function and X is an 

nonempty closed convex subset in M .̂ Let a function • : R^ ~> R be such that 

ij{x) = f{x) + Ix{x) Vx G M .̂ 

Definition 1.6.1 A sequence {x^} C R^ is said to be AC-stationary (AC for 

Auslender and Crouzeix) if 
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(i) {xk} is asymtotically feasible; 

(ii) for each k with x^ = Ux{ock), there exists a^ G d^[^{xk) and the sequence 

{a^} converges to zero. 

Similarly, ACg-stationary sequence is defined as follows: 

Definition 1.6.2 A sequence {xk} C R^ is said to be ACe-stationary if 

(i) {xk} is asymptotically feasible; 

(ii) for each k with x^ 二 Ux{xk), there exists ak G de^i>{xk) for some sequence 

of nonnegative scalars {ck} which converges to zero. The sequence {a^} 

converges to zero as well. 

For a sequence which is AC-stationary, it is A/"-stationary. Such relation 

is illustrated by the following theorem. In addition, the relation between N-

stationarity, AC-stationarity and ACg-stationarity is mentioned with some crite-

ria. 

Theorem 1.6.1 Suppose that X is a nonempty closed convex subset of R^ and 

f : R^ "^ R is a convex, continuously differentiable function. Let {x^} he a 

sequence in 股〜we have the following properties: 

(i) The sequence {xk} is AC-stationary if and only if it is Af-stationary. 

(ii) If {xk} is AC-stationary and each Xk is feasible, then {xk} is N-stationary. 

(iii) If {xk} is AC-stationary and V / is uniformly continuous near {x^}, then 

{xk} is N-stationary. 

(iv) If {xk} is N-stationary, {V/(^^)} is hounded and V / is uniformly contin-

uous near {xk], then {x^} is AC-stationary. 
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Proof (i) Let {xk} be a AC-stationary sequence. Write Xk = Ux{xk). Let 

0 二 f + Ix‘ Since f is differentiable, 

d^{x) = Vf{x) + dIx{x) Vrr G M .̂ 

Suppose that a sequence {a^} have a property that a^ G d4>{xk) for each k and 

CLk converging to zero. Take 6¾ G dIx{xk) such that a^ 二 Vf{xk) + h. Also, for 

each k define Zk 二 ̂ k + h- Then by definition of subdifferential of Ix 

{xk - Zk)T[y — Xk) > Ix{xk) - Ix{y) = 0 \/y G X 

It follows from the variational inequality, I[x(^fc) = Xk for all k. Moreover, it can 

be easily seen that R^{zk) = a^ and hence converges to zero. This establishes 

the “only if，part. Conversely, suppose {xk} is a AA-stationary sequence. Then 

there exists {zk} such that Ux{zk) 二 nx(a:fc) for all k with linifc_̂ oo Rj\f{zk)= 

0. Write Ux{xk) = Xk for each k. Take a^ = Vf{xk) + {zk - Xk). It should 

be note that Zk — Xk G dIx{x) as Iix{zk) = ^k and the variational inequality 

{xk — Zk)T(jj — Xk) > 0 for all y G X. Hence a^ = Rj\f{zk) converges to zero. 

(ii) Since {xk} is a AC-stationary sequence, it follows from (i) that {xk} is 

also A/"-stationary. Then for each x^ is feasible, there exists a sequence {z^} C E^ 

satisfying Hx{^k) = f̂c for each k and 

lim Rj^f{zk) = 0. 
k^oo 

Consequently, by (1.5), limfc—ooi^v( :̂&) = 0. 

(iii) Similar to the proof in (ii), {^^} is AT-stationary. It follows that there 

exists a sequence {zk} C R^ such that Iix{^k) 二 Hx(3:fc) = Xk for each k and 

lim RM{zk) = 0. 
k~^oo 

Once again, by (1.5), 

lim RN{xk) = 0. 
k—oo 
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As V / is uniformly continuous near {xk}, by the definition of the residual func-

tion, 

lim Rp^{xk) 二 lim R^ixk) = 0. 
k—oo fc—oo 

(iv) Suppose {xk} is a N-stationary sequence, it is asymptotically feasible. Let 

Xk = Ux{xk) for each k. Since \\xk — Xk\\ converges to zero, it follows from the 

uniformly continuity of V / near {xk} and the boundedness of {V/(xfc)} , one has 

{Vf {xk) } is bounded and 

lim RN{xk) = 0. (1.20) 
fc—oo 

Let 

ek = \RN{xkVVf{xK)\ for eachk 

the sequence {e^} converges to zero. By (1.4), 

{RN{Xk)-^f{xK)V{y-Xk) < RN{Xkf{^f{Xk) - RN{Xk)) < f̂c 

for all y G X. This means i^v(^fc) ^ de^^{xk) for all k. Together with (1.20), the 

result follows. • 

1.7 Convergence of an Iterative Algorithm 

In this section, we consider a decent iterative method to solve an constrained 

minimization problem. Our goal is to show that the H-metric regularity condi-

tion in (1.6) is played an important role in the study of LP-minimizing sequences 

which is essential for the convergency of these method. 
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Now we consider the following problem 

Minimize f{x) 

subject to oc G X (1.21) 

where X is a closed nonempty convex subset in M^ and f is a convex, continuously 

differentiable function on R^ to R. 

We are going to introduce an iterative decent method for solving this problem. 

This method generate a sequence of feasible vectors {xk} in X with decreasing 

objective function value { f {xk)} - At each iteration, an iterater x^+i is deduced 

by solving a convex subprogram in the form of 
/ 

minimize Vf{xk)^d + ^cFMd 

< subject to Xk + d G X (1.22) 

and ||c/|| < 5, 
< 

where M is a positive semidefinite matrix and 8 is a positive scalar. This yield 

a feasible decent direction d^ for (1.21) at Xk. It then follow by the Armijo line 

search on f at Xk along dk to get Xk+i-

Lemma 1.7.1 Let f : R^ — R he a continuously differentiable function and X 

be a closed convex subset o/R. Also, let M be a symmetric positive semidefinite 

matrix. If d is an optimal solution of (1.22), then Vf{x)^d < 0 for all x G X. 

In addition，ifx has a property that Vf[x)^d = 0，then x is an optimal solution 

of f on X. 

Proof Since d is a local minimum of (1.22), we have 

(V / (x ) ,J ) < {Vf{x),d) + ^{d,Md) < (V/(x),0> = 0. 

In the case that (V/(rr), d) = 0, let • be a convex function defined on the convex 

set {X - x) n 6B where 4>{d) = (V / (x ) , d) + 琳 Md). Since {d, Md) > 0 for all 
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d e R^, (d, Md) = 0 for all d G M .̂ For d is a minimum point of ¢, one has 

(V / ( x ) , d) =〈•/⑷，d) + (J, Md)=雜 d) > 0 

for feasible d. Therefore, x is a minimum point of f on X. • 

Lemma 1.7.2 Let f : W^ — R be a continuously differentiable convex function, 

X be a closed convex subset ofW^ and a G (0,1). IfVf{x)^d < 0，then for each 

p G (0,1)； there exists an positive integer m such that 

f{x + p^d) — f{x) < a,Vf[x)Td. 

Proof Suppose that for all m G N, 

f{x^p^d)-f{x) > ap^(Vf(x),d). 

Then dividing both sides by p^ and passing to limit, we get (V / (x ) , d) > 

cr(V/(x), d). This contradicts the assumption that {Vf{x),d) < 0 and a G (0，1). 
• 

A Descent Algorithm. 

Step 1. Let p, a G (0,1) be given scalar and S > 0 be an arbitrary constant. 

Initially, let xo be a given vector in X and Mo be a symmetric positive semidefinite 

matrix. Set k = 0. 

Step 2. Solve the convex subprogram in the variable d G R^: 
y 

minimize V f { x k f d + ^ M d 

< subject to Xk + d G X (1.23) 

and ||ĉ|| < 6. 
< 

Let dk be an optimal solution of this subprogram, such minimizer must exist as 

the objective function is quadratic and the feasible set is nonempty convex. 

Then it follows that Vf{xk)^dk < 0. In case that ^f{xk)^dk = 0, then Xk is 

an optimal solution of (1.21) by Lemma (1.7.1) and the iteration is terminated. 
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Otherwise, continue the iteration for Vf{xk)^dk < 0. 

Step 3. Let ruk be the smallest nonnegative integer m such that 

f[Xk + P^d) — f{x,) < apT(^f{xuh d). (1.24) 

Such integer always exists by Lemma (1.7.2). Set 7¾ = p^^ and Xk+i = Xk+Tkdk. 

Step 4. Test Xk+i whether it satisfies the prescribed stopping rule. If so, stop 

the iterations and Xk+i is a desired solution of the problem (1.21). Otherwise, 

choose a symmetric positive semidefinite matrix Mk+i and turn to step 2 with k 

replaced by k + 1. 

Theorem 1.7.1 Let f : R^ — R be a continuously differentiable convex function 

and X be a closed convex subset ofW^. Also, let {Mk} be a sequence of symmetric 

positive semidefinite matrices. Suppose that {x^；} is an infinite sequence of vectors 

generated by the iterative descent algorithm. Assume that 

(i) {Mk} is hounded; 

(ii) V / is uniformly continuous near {xk}; 

(iii) for each X > finf, there exists scalars c > 0 and 7 G (0,1) such that for all 

k, 

dist{xk,L{X)) < cmax{(/(x/,) - A)+, [{f{xk) - A)+]^}. 

Then {x^} is a minimizing sequence such that linifc^oo f{^k) = finf • 

Proof By (1.24), we can see that { f {xk) } is a decreasing sequence. Then the 

limit limfc—00 f{xk) exists and not smaller that finf. Suppose on the contrary that 

lim f{xk) > A > finf 
k—00 
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for some scalar A. As L(A) is a closed convex subset of R^, for each vector 

X g L(A) there exists a unique vector y G L{X) such that \\x — ^|| = dist{x, L{X)) 

and f{y) = X. Therefore, for each Xk there exists yk G L(X) so that 

\xk - VkW = dist{xk,Vk) < cmax{f{xk) - A)+，[{f{xk) — A)+]^}. 

If follows that the sequence {yk — xu] is bounded. Thus, we define the scalar 
• 

— 1 if|bfc-w||y 
^k = s 

\\xk — yk\\~̂  otherwise. 

\ 

Then the vector d = 8k{yk — ̂ k) is feasible to the subprogram (1.23). The 

boundedness of {x^ — Vk) also implies 
0 < inf 5k < sup 8k < 1. 

k^oo k^oo 

Hence, the sequence {^^^} is also bounded. 

Noted that Vf(Xk) is the unique vector in R^ satisfying the gradient inequality 

Vf(x,fy - X, < f{y) — f{xk) for all y G � . （1.25) 

Also, dk is a minimum of the optimization subprogram (1.23), one has 

d - dlVf{xu) + MA > 0. (1.26) 

Combining the inequalities (1.25) and (1.26), for each k, 

A - f{xk) = fiVk) — f{xk) 

> (v/(xfc),yfc-xfc) 

> ^ d l V f { x k ) + Mkdk - Vk — xlMkdk. (1.27) 
Ok 

As dk is an optimal solution of the subprogram (1.23), for each k G N, 

^ f { x k f d k + � d l M k d k < 0. (1.28) 
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Then, 

/(Xfc+i) - f{Xk) < (TTkVf{Xkfdk < 0. 

Since linifc_oo f{xk) exists and hence limfc^oo[/(a:fc+i) - f{^k)] 二 0，for a G (0,1) 

l i m r , ( V / ( ^ , ) , 4 > = 0 . (1.29) 
k—oo 

If inffc^oo Tk > 0, then limk^oof(xk)^dk = 0. If inffc_oo Tk = 0 and suppose the 

sequence {7¾} itself converges to zero. Then linifc^oo ^k = � .W e claim that 

lim V f ( x k f d k = 0. (1.30) 
k—oo 

Indeed, from the boundedness of {¢4} and the uniformly continuity of V / near 

{xk}, we have 

lim / f a + ^ " — i ^ - / ( W - ^ " - i � W ( W ,̂ = 0 (1 31) 
k^ p^k-i —. . 

Note that from the definition of m^ and the gradient inequality we obtain 

f(Xk + p^'-'d,) - f(x,) - p^^-'Vf(x,fdk > P^'-'(cT-l)Vf(Xkfd, > 0. 

Dividing the above inequality by 广广！ we easily deduce (1.30). 

Consequently, we shown that regardless of the infimum value of the sequence 

{rfc}, (1.30) holds. There is no loss of generality to assume that (1.29). By (1.28) 

and the positive semidefinite of each Mk, the sequence of {�(4，Mkdk)} converges 

to zero. Furthermore, since {Mk] is bounded, which implies that the eigenvalues 

of Mk are bounded above, it can be easily shown that the sequence {M^dk) also 

converges to the zero vector. 

Since {x^ — Vk] and {^" i } are bounded, passing to limit (1.27), it leads to 

a contradiction as the left hand converges to a negative limit whereas the right 

hand side converges to zero. • 



Chapter 2 

Minimizing And Stationary 

Sequences In Nonsmooth 

Optimization 

Let / be a bounded below, lower semicontinuous function from a Banach space 

into RU{+oo} . In this chapter, we study [14] the relation between minimizing and 

stationary sequence for the problem of minimizing f. The stationary condition is 

in terms of subdifferential, the function f is not convex or smooth on a Banach 

space. 

2.1 Subdifferential 

We consider lower semicontinuous extended real-valued function f defined on a 

Banach Space X whose dual space is denoted as X*. Let 

domf 三{x G X I —00 < f{x) < +00}. 

38 
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We are to study the problem: 

Minimize f{x) 

subject to X G X 

Noticed that f is nonsmooth, nonconvex and X is a general Banach space. 

Definition 2.1.1 Given a class of normed vector space X and a class of function 

T{X) from X to R U {+00}，for any X G A:'； f G T{X) and x e X, the 

subdifferential of f at x df{x) is defined as a subset of X* which satisfied the 

following properties: 

(i) Iff{x) = 00，then df{x) is an empty set; 

(ii) ifx is a local minimizer off, then 0 G df{x); 

(iii) iff is convex, then df{x) = {x* | /(•) > x*{-) + f{x) — {x*, x) onX}; 

(iv) if a function g G JF(X) coincide f on some neighborhood ofx, then df{x)= 

dg{x); 

(v) if /(•) = cg{A{-) + b) where A is a linear map from X to Y such that 

A{X) = Y, c e R+ and b e Y, then df{x) 二 cdg(A(^x) + b) 0 A; 

(vi) if X = Y X Z, for y G Y and z G Z with f{y, z) = g{y) + h{z), then 

df{y,z) = dg{y) x dh{z). 

Definition 2.1.2 Given a Banach space X, JF(X) a class offunction from X to 

R U { + o o } and a subdifferential d on X and T{X). X is said to be reliable space 

or the subdifferential d is reliable on X iffor any lower semicontinuous function 

f G J^{X), any convex Lipschitzian function g on X and x G domf is a local 

minimizer of f + g, then for each e > 0， 

0 e df{u) + dg{v) + dT, 

for some u, v G B{x, e) such that \f{u) — f{x)\ < e. 
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Definition 2.1.3 Given a set X, a class offunction J^{X) from X to MU{+oo } 

and a subdifferential on X and T{X). A sequence {xk) C X is defined to be a 

stationary sequence if there exists a sequence {x^} C X* such that 

xl G df{xk) for each k and xl — 0 as k ~> oo. 

Definition 2.1.4 A sequence {xk] is said to be minimizing for a function f on 

X tf 

{f{^k)} — finf = i n f / ( x ) . 
x£X 

2.2 Stationary and minimizing sequences 

The following theorem told us that for a minimizing sequence, there always exists 

a nearby sequence which is stationary as well as minimizing. 

Theorem 2.2.1 Suppose that X is a Banach space and J^{X) is a class of func-

tion from X to R U {+oo } . Let f is hounded below，lower semicontinuous on X 

and the subdifferential d is reliable on X. If {xk} is a minimizing sequence for 

f , then there exists sequences {pk} and {y^} C X* satisfied y^ G df{xk) for each 

k with the following properties, 

� lim \\xk - VkW = 0; (2.1) 
k—oo 

{b) lim f{vk) = finf] fc—oo 
� lim y： = 0. (2.2) 

fc~»oo 

Proof As {xfc} is a minimizing sequence, there exists a sequence {e^}丄 0 

satisfied 

f{xk) < finf + ek ^k. 

Then, we apply Ekeland's variational principle in Lemma (3.2.1) for Â  = e ^ , 

there exists z^ G X such that 
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(i) \\xk - Zk\\ < Afc; 

(ii) f{zk) < f{xk); 

(iii) f{zk) = mi:,ex{f{oc) + Xk\\x - Zk\\}. 

It follows from (iii), we have 

Oed{f + Afc||. -ZkW){zk). (2.3) 

Since d is reliable on X , for Xk\\ . — Zk\\ is a convex Lipschitzian function on X, 

(2.3) becomes 

0 G df{vk) + XkB* 

for some yk G X with \\yk - Zk\\ < Xk and ]f{yk) — f(^k)l < h- We do this for 

each k, then one has a sequence {yk} with the properties: 

(1) ||yfc - Zk\\ < Afc; 

(2) lf{vk) - f{zk)l < Xk； 

(3) yl e df{vk) with U\\ < Xk. 

1/2 

for each k. Noted that linifc^oo ̂ k 二 limfc—oo ̂ k 二 •. Then, Xk — Pk < 

\xk — Zk\\ + \\zk - VkW < 2Afc by (i) and (1) and so lim“oo \\xk — VkW = 0. Also, 

by (2) and (iii) f{yk) converges to finf. Moreover, linifc_>oo Vk = • which follows 

by (3). • 

Definition 2.2.1 Suppose X, Y are metric spaces and F is a multifunction from 

X to Y. F is said to he uniformly upper semicontinuous near a sequence {xk] if 

for any e > 0； there exists a S > 0 and N G N such that 

F{x) c F{xn) + ^(0, e) 

for all n > N and \\x — Xn\\ < 8. 
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Noticed that a subdifferential d on a set X in which introduced a class of 

extended real-valued function T { X ) is a multifunction. With the assumption 

that a subdifferential is uniformly upper continuous near a minimizing sequence, 

the minimizing sequence is then stationary. The fact is illustrated by the following 

theorem. 

Theorem 2.2.2 Let X be a Banach space which is reliable for the subdifferential 

d and f : X — R U {+00 } be a hounded below lower semicontinuous function. 

Also, suppose that {xk} is a minimizing sequence for f and the subdifferential df 

is uniformly upper semicontinuous near a sequence {xk}- Then it is a stationary 

sequence such that there exists {x^} C X* with x% ~^ 0. 

Proof Let ê  | 0. By the uniformly upper semicontinuity of df near {xk}, 

there exist 6k > 0 and Nk G N such that 

df{x) c df{Xr.) + ^(0, 6,) 

for all n > Nk and \\x — Xn\\ < Sk. Then we arrange Sk i 0. By Theorem (2.2.1), 

there exist {yk} with linifc_,oo Ŵ k—VkW = 0. Then we can take n^ > Nk such that 

\xn - VnW < h Vn > rik 

thus, 

y: ^ df(yn) c df{xn) + 5(0,k) Vn > nk. 

We can certainly arrange n^ to strictly increase as k increase. Hence, for n^ < 

n < rik+i we pick x^ G df{xn) such that 

氺 * z 
Fn - 2/nl < efc-

Therefore, one has 

{||< - 2/:ll} — 0. 

It follows from (2.2) that yl — 0 and so { < } 一 0. • 
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2.3 C-convex and BC-convex function 

Definition 2.3.1 A function f : X — RU{+oo} is critically convex or in short 

C-convex iffor any stationary sequences {xk] and {yk] with Xk + Vk for all k, 

we have 

l i m 丨 胸 - 編 丨 二 0. (2.4) 
fc—oo Xk - Vk 

Lemma 2.3.1 Iff is a convex function, then it is C-convex. 

Proof Let {xk] and {yk] are stationary sequences for f. Then there exist 

sequences {xl} C X* and {y^} C X* such that x^ — 0 and y^ 一 0 as k — oo. 

Since f is convex, it follows from the definition of subdifferential Definition (2.1.1) 

(iii) that 

xl{xk - Vk) > f{xk) — f{Vk) > yl{xk - Vk)-

Hence, for {x^} and {yk} are bounded, one has 

f{xk) - f{vk)l < (||4ll V ||W||)||xA; - yk\. 

Thus, limfc—oo lf{xk) _ /("fc)| Ŵk — VkW'̂  = 0. • 

Lemma 2.3.2 Let f be a differentiable function on X. Suppose that for any 

stationary sequences {xk] and {yk} off, any sequence {z^} such that Zk G [x^, yk 

for each k is stationary. Then f is C-convex. 

Proof Since f is differentiable, by mean value theorem there exists a sequence 

{zk} with Zk G [xfc, yk] for each k such that 

f{xk) - f{yk)l = lf{zk){xk - Vk)l < Wf'{zk)W \\xk — yk\ 

for each k. Since {f'{zk)} ~^ 0 by the assumption, 

l i m 丨 胸 - _ 丨 二 0. 
fc—oo Xk - Vk 

• 
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Lemma 2.3.3 Any quadratic function is a C-convex function. 

Proof For a quadratic function, it is differentiable and its derivative is an 

affine function. So the assumption in Lemma (2.3.2) holds and thus a quadratic 

function is C-convex. • 

Definition 2.3.2 A function f is said to be houndedly critically convex or in 

short BC-convex iffor any pair of hounded stationary sequences {xk] and {y^} 

with Xk • Vk for all k, the following equality holds: 

l i m 丨 胸 — 漏 丨 = 0 . (2.5) 
“oo Xk - Vk 

Noted that a class of C-convex function on X is a subset of a class of BC-

convex function on X as if any pair of stationary sequences satisfied equation 

(2.4), those bounded pair do has such property. 

2.4 Minimizing sequences in terms of sublevel 

sets 

Let 入 G R and Z/(A) be the level set of function f for a set X, such that 

L(A) = {x e X I f{x) < A}. 

As mentioned before, we assume f is a lower semicontinuous function and thus 

the level set is closed for each A G R. 

Theorem 2.4.1 Let X be a reliable Banach space and f : X ~> R U { + o o } be 

a C-convex and hounded below lower semicontinuous function. Also, we assumed 

that a sequence {xk] is stationary. Then {xk} is minimizing if and only if there 

exists a sequence {A^} C M. in which Xk i finf satisfied the inequality 

sup dist(Xk , L(Afc)) < +oo. (2.6) 
km 



Minimizing and Stationary Sequences 45 

Proof (=^) Let Xk = f{xk) for each k. Then {A^}丄 finf for {xk} is minimizing 

and the inequality (2.6) holds as supremum equals to zero. 

(4=) Let {Afc} I finf and {xk} is a stationary sequence such that there exists 

a sequence {xl} — 0 and x^ G df{xk) for each k. Then for each k we take 

Vk ^ L{^ satisfying 

\xk - VkW < dist{xk,L{Xk)) + I . (2.7) 

Noted that f{yk) < 入於’ Vk ^ X for each k and {A^}丄 Uif, so {f{yk)} — finf 

that is {yk} is minimizing. By Theorem (2.2.1), there exists a nearby sequence 

{zk} C X with the following properties: 

(i) limfc—oo WVk — Zk\\ = 0; 

(ii) {zk} is stationary; 

(iii) {zk} is minimizing. 

Let K C N such that Xk + Zk for all k G K. As f is C-convex, there exists 

{Sk]keK ^ M+ which is decreasing such that 

f{xk) - f{zk)l < Sk\\xk - Zk\\ for eachA: G K. 

For each k G N\K such that Xk = Zk, one has f{xk) = f{zk). Consequently, we 

can take {6k]ken 1 0 such that 

lf{xk) — f{zk)l < Sk{\\xk - VkW + WVk - ZkW) Mk G N. (2.8) 

Let k ~> oo, if follows from (2.8), (i) and (2.7), {xk] is also minimizing as {zk] 

is. • 

Definition 2.4.1 The e-subdifferential (or e-approximate subdifferential) of a 

function f : X — R U { + o o } at x is defined as 

def{x) = {x* e X* I oc*[y — x) < f{y) — f{x) + e Vy G X } . 
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Definition 2.4.2 A sequence {xk} is said to be a e-stationary sequence (or e-

approximate stationary sequence) if there exists a sequence {e^} with ê  > 0 and 

{xl} with xl G def{xk) such that x% 一 0. 

Lemma 2.4.1 Suppose X is a Banach space and f : X — R U {+oo}. If there 

exists a sequences {e^} and {xk} is e-stationary, then {xk} is minimizing if and 

only iffor any X > finf,视 have 

sup dist{xk, L{X)) < +oo. (2.9) 
nGN 

Proof ( 4 ) Let A > finf. Since {xk} is minimizing, dist{xk, L{X)) = 0 for all 

sufficient large k. So (2.9) holds. 

(<=)Suppose on the contrary that there exist scalars 7, // such that 7 > fj. > finf 

and a subsequence {0;^^} that /(^½&) > 7 for each k. Then we take a sequence 

{yk} C L(^) such that for each k, 

1 
\oCk - VkW < dist{xn^,L{fi)) + - . (2.10) 

It follows from the definition of def that 

KJI ll̂ n, — VkW > <,(3^n, - Vk) 

> /(<J - fiVk) - ^n, 

> 7 P - enfc. 

for all k. However, contradiction on the last inequality occurs as x: — 0，ê ^ — 0 

and \\xnĵ  — yk\\ is bounded by (2.10). • 

Theorem 2.4.2 Suppose X is a Banach space and f : X 一 R U {+00} he a 

lower semicontinuous function. Let {x^} be an e-stationary such that there exist 

{a:^} and {e^} satisfied ê  > 0 for each k, {e&} — 0，x^ G df{xk) for each k and 

{x^} — 0. One has the conclusion that 

(i) the sequence {xk} is minimizing 
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if and only if any one of the following condition is satisfied: 

(ii) for any 入 �f i n f ， 

sup dist{xk, L{X)) < +oo; 
keN 

(iii) there exists a sequence {A^} | finf such that 

sup dist{xk, L{Xk)) < +oo; 
keN 

(iv) for any X > finf, there exists a scalar c > 0 such that for all k G N 

dist{xk,L{X)) < c{f{xk) - A)+; (2.11) 

(v) for any X > finf, there exists a function |j. : R+ — R+ with lim sup^^^ r"^/i(r) < 
00 and for all k G N； 

dzst{xk,L{X)) < fi{f{xk) - A). (2.12) 

Proo f (ii) <^ (i) This follows from Lemma (2.4.1). 

( i )今( i i i ) Let {x^} is minimizing, take Â  = f{xk) for each k and dist{xk, L{Xk))= 

0 for all k e N. Thus (iii) holds. 

(iii) ==> (ii) For any A > finf, as {Xk} | finf there exists N G N for all n > N 

such that A > A^ > finf and 

dist{xn, L{X)) < dist{xn, L{Xn)) for eachn > N. 

Thus, 

sup dist{xn, ^(^)) < sup dist{xn, L{Xn)) < +00. 
n>N n>N 

Also, supueN,n2AT dist{xk, L{X)) < +00. Thus, sup^ ĵ̂  dist{xk, L{X)) < +00. 

(i) =4> (iv) Let A > finf. As {xk} is minimizing, dist{xk^ L[X)) 二 0 for sufficient 

large k. So we can take a scalar c > 0 satisfied (2.11). 
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(iv) => (v) By letting /j,(r) 二 cmax(r,0), then l imsup^^^r"V(^) < oo. Thus, 

(2.12) holds. 

(v) =^ (ii) Suppose on the contrary that there exists Ao > /m/ such that 

sup dist{xk^ ^i^o)) = +oo. 
keN 

Then by (2.12), we have sup^p^ M(/(rfc) _ 入0) = +oo. Since the function satisfies 

limsuPr—o^r-V(/*) < oo, one has 

lim f(xk) = +oo. 
k—oo 

Take a sequence {yk} C L(Ao) such that for each k, 

\xk - VkW < dist{xk,L{Xo)) + i. 

Hence, by the definition of ^ , it follows that 

K I I M / 0 ^ ) - V ) > 114" (ll̂ fc - VkW - I ) 

> ^li^k — Vk) - ^\\xl\ 

> f{^k) - f{yk) - ek — |||4l 

> f{^k) - Ao - tk \\\̂ k\ . 

It then let k large and divides both sides by f{xk) — Ao • 0, one has 

1411 limsup(/(xfc) - A o ) " V ( / K ) - Ao) > 1 - , f ! / \ ^ \ � . 
nGN f^\J\^k) — ^0j 

For {xJ} — 0 and the property of /x, contradiction on the above inequality occurs 

as k — oo because the left side converges to zero while the right hand side 

converges to 1. • 

2.5 Critical function 

Definition 2.5.1 Given a Banach space X, a class offunction J^{X) from X to 

R U { + o o } and the suhdifferential d, a function f : X — R U { + o o } is said to be 

critical iffor any stationary sequence {x^} off, the sequence {f{xk)} converges. 
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Let Z be a set containing all critical points for f , that is for all z G Z, 

df{z) = 0. 

Proposition 2.5.1 For a critical function f , f is constant on Z. 

Proof Let z, y G Z. Then we take a sequence {xk} in such a way that X2p = z 

and X2p-i 二 y for all p G N. Thus, {xk} is a stationary sequence. It then follows 

from the definition of a critical function, we have f{y) and f{z) must coincide 

with the limit of { f {xk) } . • 

Proposition 2.5.2 Suppose a function f is C-convex, has at least a critical point 

z and all its stationary sequences are hounded. Then f is critical. 

Proo f Let {xk]keN be a stationary sequence of / . We want to show that for 

any subsequence {xi)i^j of {xk]keN contains a subsequence {xi . } j^j where J C I 

such that {f{xi.))j^j converges to f{z). This means {f{xk)} converges to f{z) 

and thus f is critical. If Xi = z for infinitely many i G I, then the claim follows. 

Otherwise, let M C I be such that for all m G M, x ^ • z. Take a stationary 

sequence {Vm} for which •爪=z for all m e M. Since the subsequence {xm} is 

bounded, we have 

\xm — z\\ < r Vm G M 

for some scalar r > 0. Also, for f is C-convex, there exists a sequence {e^}丄 0 

such that 

f{Xm) — f{ym)l = lf{Xm) — f{z)\ < e^r 

It follows that the subsequence {f{xm)} converges to f{z). Hence, {f{xk)} con-

verges to f{z) too. • 

Instead of existing a critical point, similar result holds if there exists a sta-

tionary sequence whose functional values are bounded. 
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Proposition 2.5.3 Suppose that a function f is C-convex, there exists a station-

ary sequence {zk} such that {f{zk)} is hounded and all the stationary sequences 

for f are hounded. Then f is critical. 

Proof The proof follows similar to that of Proposition (2.5.2). Let {xk)ken be 

a stationary sequence for / . Since { f { zk ) } is bounded, there exists a subsequence 

{zk^} such that { / ( ¾ ) } converges. We claim that for any subsequence {xi}i^j of 

{xk}, one can find a subsequence {xi^)meM of {x i ) such that { f { x i ^ ) } converges. 

This means { f {xk ) } converges. If there exists a subsequence {x i^} of {x i ) such 

that Xi^ = Zk^ for infinitely many m, then {f{xi^)} converges and the claim 

follows. Otherwise, let M C I such that for all m G M C /，Xî  • Zk^. As { x ‘ } 

and {zk^} are bounded, we have 

\^im - ^kmW < r Vm G M 

for some scalar r > 0. Also, f is C-convex, one has 

f{xiJ f{zkJl < ekT 

for some sequence {e^}丄 0. It follows that { f { x i^ ) } converges in R as { f {zk^)} 

converges. We have shown that for any stationary sequence {xk} and its subse-

quence {xi]i^i, there exists a subsequence {xi^} of {xi)i^i such that { f { x i^ ) } 

converges. That is { f {xk) } converges. • 

Theorem 2.5.1 Suppose that f is a hounded below lower semicontinuous func-

tion from a Banach space X to R U { + o o } , Also, let d he a reliable subdifferential. 

Then, any stationary sequence for f is minimizing if f is critical. 

Proof Let {xk} be a stationary sequence. Since the function f is bounded below, 

a minimizing sequence for f always exists. Then by Theorem (2.1.2), there exists 

a sequence {yk} Q X which is minimizing as well as stationary. Let a sequence 

{zk} be Z2k = Xk and z2k-1 = yk, then {zk} is a stationary sequence. By the 
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assumption that f is critical, limfc_̂ oo /(^fc) = linifc^oo fiVk) = finf' That is the 

sequence {xk} is minimizing. • 



Chapter 3 

Optimization Conditions 

In this chapter, we discuss [15] the second-order optimization conditions for lo-

cally Lipschitz real-valued function f on a Banach Space X. In general, f is not 

necessarily smooth. Firstly, we will deal with unconstrainted problems. Then for 

constrainted problems some functions G and L will be introduced and optimiza-

tion conditions are expressed in terms of G and L. 

3.1 Introduction 

First of all, let f be a locally Lipschitzian real-valued function on a Banach space 

X. We use /^(x; u) to denote the Clarke's directional derivative at x in the 

direction u and df{x) the Clarke's subdifferential at x: 

f{oc;u) = lim sup 7 { / ( y + tu) - f{y)} ioix,u G X y~̂T no t 

df{x) = {x* e X* I 作 ) < f{x; •) onX}. 

Recalled that the upper and lower Dini-directional derivative at x G X in the 

direction u is 

D+f{x]u) = lim sup l{f{x^tu) - f{x)} 
*丄0 u'4u t 

52 
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and 

D^f{x]u) 二 lim sup -{f{x^tu) - f{x)]. 
亡丄0 u'—u t 

Definition 3.1.1 Forf is a locally Lipschitz function, the upper and lower Dini-

directional derivatives at x G X in the direction u G X are defined by 

D+f{x;u) = l i m s u p i { / ( x + tu) - f{x)} 
t[0 t 

and 

D—f{x., u) = liminf ^{f{x + tu) — f{x)}. 

尤丄0 L 

Definition 3.1.2 Suppose that a sequence {xk] in X converges to x. We defined 

that Xk converges to x in the direction u G X with ||t̂|| + 0； denoted hy {xk} —u ^, 

ifxk 7^ X for each k and the sequence {{xk — x)/\\xk — x\\) converges to u/\\u\ . 

Definition 3.1.3 Let u be a nonzero vector in X. The subset duf{oc) in the dual 

space X* of X is defined by 

duf{x) ={x* e X* I there exists a sequence {xk) C X and Xk* G df{xk)for each k 

such that {xk) —u ^ and x^ 一 rr* in norm} 

={x* G X* I there exists a sequence {xk) C X and{x*^) C X* such that 

Xk ̂ u 3：, ^ki') ^ /0(i; •) onX with xl ~> x*}. 

With the above definitions, we are going to define the second-order directional 

derivative f'l{x, x*,u) at x and x* in the direction u: 

Definition 3.1.4 Let u be a nonzero vector in X. Suppose that x G X and 

X* G duf{x), f'i(x,x*,u) is the infimum of all extended real numbers 

lim inf ^{f{xk) — f{x) - x*{xk - x)}, 
k—OO tf^ 

taken over all triples of sequences {xk}； {x^*}^ and {t^} for which 
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1. tk > 0 for each k and {4} converges to 0； 

2. {xk} converges to x and {{xk — oc)/tk} converges to u, 

3. {xk*} converges to x* with Xk* in df{xk) for each k. 

Similarly, f'_l(x,x*,u) is the supremum of all extended real numbers 

limsup ^{f{xk) - f{x) - x*{xk - x)} 
tk 

taken over all triples of sequences {xk), {ock*), and (4 ) for which the above con-

ditions 1, 2 and 3 all hold. 

Remark In 2, {xk — x)/tk converging to u implies Xk converging to x in the 

direction u as 

y^ 
{Xk — x)/\\Xk — x\\ = [{Xk - x)/tk] [tk/W^k - x\\] ~^ . 

%L 

Since 

lim inf • { / �- / ( x ) - :r*(xfc - x) } 
k^oo tj^ 

1 jQj^ _ j^ 2 
= l i m inf ^ { / � / � ^*(^fc x ) } ^  

k—oo Xk — X 力 tj^ 
=M|2l im inf - { / (x fc ) - f{x) - x*{xk - x)}, 

k^oo Xk — X 丄 

j"_{x^ x*, u) equals to the infimum of all numbers 

K|P lim inf {f{xk) - f{x) - x*{xk - x)}/\\xk - x f , 
fc—oo 

taken over the set of all sequences {xk) and {x*̂ ) with the properties 

1. (xfc) converges to x in the direction u. 

2. there exists a sequence {x^} C X* such that x^ G df{xk) converging to x*. 
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3.2 Second-order necessary and sufficient con-

ditions without constraint 

In this section, we let W be an open subset of X. We are to study the problem 

of minimizing f over W. Before stating the necessary conditions for unconstraint 

problems, we have the following Ekeland' variational principle. 

Lemma 3.2.1 [10, Proposition 7.5.1] Ifu is a vector in X satisfying 

f{u) < finf + e 

for some e > 0, then for each X > 0 there exists a vector v in X such that 

� f{v) < f{u); 

(ii) \\u — f|| < A; 

(iii) For all w G X with w • v, one has f{w) + {e/X)\\w — v|| > f{v). 

Lemma 3.2.2 [10, Proposition 2.3.2] Suppose f is locally Lipschitz and attains 

a local minimum or maximum at x, then 0 G df{x). 

Lemma 3.2.3 [10, Proposition 2.3.3] Suppose {fi | i 二 1, •. • , k} is a family of 

locally Lipschitz functions, then 

k k 

d{J2fi) {^)^Y.dU{x). 
i—l i—1 

Lemma 3.2.4 [10, Proposition 2.3.7] Let x and y be vectors in X, and suppose 

that f is Lipschitz on an open set containing the line segment [x,y]. Then there 

exists a vector in (x, y) such that 

f{y) - f{x) e {df{u),y-x). 
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Lemma 3.2.5 [10, Proposition 2.3.1] Let f be a locally Lipschitz function. For 

any scalar s, one has 

d{sf) {x) = sdf{x). 

Lemma 3.2.6 Suppose that f{x) > f{x) for all x G B[x, 6]. Let 0 + u G X, t > 

0, a > 1 and 0 < e < (a||i^||)^ such that 

f{x + tu) - f{x) < te and t{\\u\\+e^^^) < 8. (3.1) 

Then there exist z • x in X and z* G df{z) such that 

(l) | | z - ^ - H | S * e " 2 o ^ - l ( < t e " 2 ) 

(ii) f{z) < f{x + tu) and 

(Ui) 11^*11 < aei/2. 

Proof By the assumption of the lemma, 

f{x + tu) < f{x) + te < inf f{x) + te 
x&B 

where B is the closed ball with center x + tu and radius te /̂̂ . Note that B C 

B{x, 6) thanks to the second inequality in (3.1). Applied the Ekeland variational 

principle in Lemma (3.2.1) with A = te^/^a"^ , there exists z G B satisfies (i), 

(ii) and 

{iv) f{z) < f(y) + (aei/2)||z - y\\ for ally G B. 

Since (i) and e < (a||n||)̂ , z • x and z is an interior point of B for a > 1. Also, 

it follows from (iv) and calculus for subdifferential Lemma (3.2.2) and Lemma 

(3.2.3) that 0 G df(z) + ae^^^B^ where B^ denotes the unit ball in X*. Thus 

\z*\\ < aci/2 for some 2:* G df{z). • 
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Lemma 3.2.7 Let e > 0 and a > 1, y/e. Let x be a local minimum of f , and 

let u G X be of norm 1 such that D^f{x;u) < e. Then for an arbitrarily small 

t > 0； there exists z G X \ {x} and z* G df{z) such that 

(i) \\z-x-tu\\ < ^ 

(n) f{z) < f{x + tu) 

(iii) ||z*|| S ae"2 

Proof Since x is a local minimum of /，f{x) > f{x) for all x G 8[x, 6] for some 

6 > 0. With u e X and e > 0, there exists to > 0 such that 

to(||î || + e"2) < 5. 

Also, for this to and D.f{x;u) = liminft|o Hf(^ + 力以)—/(^)} < 已，there exists 

t with 0 < t < to such that 

f(x + tu) - f{x) < te and t{\\u\\ + P �< 5. 

That is，(3.1) in Lemma (3.2.6) is satisfied. Together with 0 < e < {a\\u\\y, the 

result (i), (ii) and (iii) all hold by Lemma (3.2.6). • 

The following theorem provides first and second-order necessary conditions in 

nonsmooth optimization without constraint. 

Theorem 3.2.1 Suppose that x is a local minimum point for f. Let u G X be 

of norm 1 such that D-f{x]u) = 0. Then 0 G duf{x) and fi{x,0,u) > 0. 

Proof Let a = 2 and e G (0,1). Since D_f{x;u) < e, by Lemma (3.2.7) we can 

take a sequence (e )̂丄 0 and then get a sequence {tk)丄 0 to obtain {zk), (z^) with 

zl e df{zk) for each k satisfying (i), (ii) and (iii) in Lemma(3.2.6). In particular 

(i) becomes 

\zk - X — tku\\ < tfce^2. 
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Dividing by tk, it follows that 

{W — x]/tk) — U 

1 /2 

showing that {zk) — x in the direction u. Since z^ G df {zk) and \\z^\\ < 2e^ by 

(iii), we have 0 G ^ / ( x ) . Also, fl{x,0,u) > 0 by Definition (3.1.4) because x is 

a local minimum point. • 

Definition 3.2.1 Let X = W. We define the sets D*{xJ) and D^{xJ) in 

R^ by 

D\x, f ) = {u G R^ I 36{u) > 0 such that v . u < 0 

for all \\w — u\\ < S{u) and v G dwf{x)} 

and 

D\x, f) = {u G M^ I V . u < 0 for all v G d^f{x)}. 

By putting w = u above, it is easily seen that D*{x, f) C D^{x, / ) . 

Lemma 3.2.8 (i) For any x,u G M̂ ； there exist w+ and î + in duf{x) such 

that {w^,u) 二 D+f(x;u) and {w+,u) = D_f(^x;u). 

(n) D\xJ) C DKxJ) C {n e �I D_f{x;v) < 0}. 

(iii) Ifx is a local minimum point over R^, then 

D*{x, f) C D\x, / ) C {̂ 1 G �I D_m u) 二 0}. 

Proof By Lebourg's mean value theorem and Lemma (3.2.4) for any x, u G M^ 

and t > 0, we can find a, e (0,t) and Wt e df{x + atu) such that 

^{f{x^tu)-f{x)} = {wt,u). 

Taking the upper limits on both sides, it follows form the definition of D^ that 

D^f{x;u) = lim snp{wt, u). 
t|0 
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Pick a sequence (t^) | 0 such that D+f(x;u) 二 limn—oo�^tn，u�. As the multi-

function X — df{x) is closed and locally takes values in a compact set [10], we 

can find a subsequence (t^J 丄 0 with limwt^ = w^ G df{x) and 

D+f{x;u) = lim {wt ,u) 二�w+,u�. 

k^oo ^ 

Also, w^ e duf {x ) as {x + at^J converges to x in the direction u. 

Similarly, one can show that D-f{x;u) = {w+,u) for some w+ G duf {x ) . There-

fore, (i) holds. 

Let u G D*{x,f). By (!) there exists w^ G duf {x ) such that {w^,u)= 

D+f{x;u). From the definition of D*[x,f), {w+,u) < 0. Thus, D+f{s,u) < 0. 

That is, (ii) is also tme. 

Since x is a local minimum of / , D^f{x, v) > 0 for all v G W. From (ii), one 

has D_f{x-u) < 0 for all u G D\xJ) 3 D*{xJ), Therefore, D_f{x;u) = 0 for 

all u e D^{x, f ) D D\x, / ) . Thus, (iii) follows. • 

Corollary 3.2.1 Suppose x is a local minimum point of locally Lipschitz func-

tion f over W C W. Ifu G D%xJ) with norm 1, then 0 G duf{x) and 

fl{x,0,u)>0. 

Proof If X is a local minimum, it follows Lemma (3.2.8) (iii) that D-f{x; u) 二 

0. Again, by Theorem (3.2.6), 0 G duf{x) and fL{x, 0, u) > 0. • 

Definition 3.2.2 Let S be an subset ofX and x G S, the contingent cone of S 

at X is defined as 

Ks{x) = {u I 3{xk) C S such that x^ • x for each k and Xk —u ^}-

Lemma 3.2.9 Let S be an subset of X and x G S. Suppose f is locally 

Lipschitz defined on S into E and D-f{x,u) > 0 for all u G Ks{x). Then we 
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have for any e > 0，there exists 6 > 0 such that f{x) < f{x) + e\\x — x\\ for any 

X • X and x G B{x^ 8)门 S. 

Proof Suppose on the contrary that there exists a sequence {xk) [ S with 

Xk • X and Xk —u x for some u G Ks{x) such that 

f {xk) - f{x) < -e\\xk-x\ 

for some e > 0. In particular, let tk — Xk — x 

D,f{x-u) < l iminf Uf{xk) — f{x)] < - e . 
k—oo tj^ 

This contradicts the assumption D-f{x, u) > 0. • 

Similar to Theorem (3.2.1), the result 0 G duf{x) still holds when we restrict 

to the case X = IR̂  and relax the minimality condition of x to D^f{x; v) > 0 for 

all V G W : 

Theorem 3.2.2 Letf : W ~> R be a locally Lipschitz function. IfD^f{x;v) > 0 

for all V G R^ and D^f{x; u) = 0 for u G R^ with |M| = 1，then 0 G duf{x). 

Proof Let a > 1. By Lemma (3.2.9) with D_f{x;u) > 0 for all u e R � 

one has for any (e^) | 0 with 0 < ê  < |a^, there exists ( 4 )丄 0 such that 

Fe,^{x) < Fe^{x) for all \\x —到| < Sk where FeJx) = f{x) + ek\\x - :r||. It can be 

easily seen that Fĝ  is a locally Lipschitz function. If u G M^ with norm equal to 

1 and D-f{x;u) = 0, then 

D — F ^ u ) = l iminfy{F, , (x + t^) — F, , {x) } 
t̂ 4'U L 

= l i m i n f - { f { x + tu) - f{x) + Ckt} 
Ĵ,0 ~tf 

=D^f{x]u) + 6fc 

=€fc 

< 2ek 

for all k. Applied Lemma (3.2.6) for x a local minimum of F̂ ^ and 2ek instead of 

e, one can find {tk)丄 0, Zk G X \ { x } and yl G dFe^{zk) satisfying the properties 
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� | | 4 - ^ - h ^ x | | S ^ ^ 

(ii) U W < a { 2 e , y / ^ 

Particularly, (i) becomes 

\zk - X - tku\\ < f “ 2 e � ~ < tk(2ek)i" a 

Then let k — oo, {[zk - x]/tk) ~^ u showing that {zk) — x in the direction u. As 

yl^dF,,{zu)<^df{zk) + euBl 

for sufficient large k and (ii), there exists z^ G df{zk) and w^ G CkBl for large k 

such that 

yl = zl + wl and ||4 + <||Sa(2efc)i/2. 

Let k goes to infinity, then ê  tend to zero. Consequently, both y^ and wl go 

to zero by (ii) and wl G e^B^ Hence, z^ goes to zero too, that is 0 G duf{x). 
• 

Theorem 3.2.3 (Second-order sufficient conditions without constraint) 

Let f : R^ — R is a locally Lipschitz function. Suppose that D_f{x,v) > 0 for 

all unit vector v in W. If f^{x,0,u) > 0 for all unit vector u in W for which 

L)_/(x; u) = 0, then there exists S > 0 such that f{x) > f{x) for all x G B{x, 6). 

Proof Suppose on the contrary that for each 7 > 0, there exists y^ G B[x, 7]\{:r} 

at which f attained minimum on closed set B[x,j]\{x} such that f{Vj) < f{x) 

by the continuity of / . 

Case (i) Suppose that there exists an sequence (7¾)丄 0 and \\ŷ ^ — :r|| < 7^. 

Applied Lemma (3.2.2), we have 0 G dfi^y�) for each k. One can assume that by 

taking subsequence if necessary y�—u x for some direction u. Hence, 0 G duf {x ) 
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and fl(x,0,u) is meaningfully defined. By the assumption that D_f{x;v) > 0 

for all V e R" and / (y^J < / ( x ) , 

0 < D^f{x;u) < lim inf [f{y^,) — f{x)]/h^, - |̂| < 0. 
k—oo 

That is D-f{x]u) 二 0. Similarly, 

/ ! (x ,0,tx) < lim inf [f{y^,) - f{x)]|Wy^, - x|p < 0. 
k—OO 

This contradicts fl(x,0,u) > 0 for which D^f(x;u) = 0. 

Case(ii) Suppose there exists 7 > 0 with ||̂^ - x\\ = 7 for all 0 < 7 < 7. 

Since D-f(x;u) > 0 for all unit vector u in R^ , we can apply Lemma (3.2.9): 

let e > 0 there exists 8 > 0 such that f{x) < f{x) + e\\x - x\\ for all x G B[x, S . 

Taking 70 =min(&7) a n d �二 7o/2^ for k = 1, 2 , . . . , we have ( ¾ ) with the 

following properties: 

(1) ||"7fc+i — 到| = 7fc+i = hk for k = 0 ,1 , . . . 

(2) /OAy,+i) < f{x) < f{x) + e7fc for all x G B[x, 7&] and k = 0 ,1 , . . . . 

By Ekeland's variational principle Lemma (3.2.1) (with A = 7fc+2), there exists 

Xk+i G B[x, 7fc] such that 

� ||Tfc+i - � + J < 7fc+2 (= i7fc) 

(ii) f{xk+i) < /("7fc+i) 

(iii) f{xk+i) < f{x) + 4e||x - Xk+i\ 

for all X G B[x^ 7¾ . 

Therefore, we have f{xk+i) < f{x) by (2) and (ii), Xk+i + x and Xk+i G B{x,jk) 

which follow from (1) and (i). By (iii), Lemma (3.2.2) and Lemma (3.2.3), one has 

0 G df{xk+i) + 4e5i- This means there exists Zk+i G df{xk+i) with ||2:fc+1|| < 4e. 

Thus, we have constructed for any e > 0, there exists a sequence {xk) and Zk G 

df{xk) such that Xk j^ x, Xk — x, f{xk) < f{x) and \\zk\\ < 4e. 
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Inductively, let e^ 丄 0, there exist a sequence x^ —u x for some u with f{x^) < 

f{x), z^ G df{x^) such that z^ — 0. This means 0 G duf {x ) and thus fl{x, 0, u) 

is meaningfully defined. 

Since f(x^) < f{x) for all n, we have 

fl(x,0,u) < lim inf [f{x^) — /(x)]/||x^ - |̂|' < 0. 
n—oo 

This contradicts the assumption with D.f{x;u) = 0, we have f_^{x,0,u) > 0 

where D^f{x;u) = 0 follows from 

0 < D_f(x;u) < lim inf [f{x^) - /(x)]/||x^ - x|| < 0. 
Tl—OO 

• 

Corollary 3.2.2 Let x G R^. If 

(i) V • u > 0 for all unit vector u in R^ and all v G duf{x) 

(ii) fl{x, 0, u) > 0 for all unit vector u with D_f{x; u) — 0； 

then there exists 6 > 0 such that f{x) < f{x) for all x + x and ||rr — :r|| < 6. 

Proof It follows from Lemma (3.2.8) that for each u G M ,̂ there exists w+ e 

duf{x) such that D^f{x;u) = {w+,u) > 0. Then the result holds by Lemma 

(3.2.8). • 

3.3 The Lagrange and G-functions in constrained 

problems 

Let / , g i , . . . , Qm,..., 9m+p be real-valued locally Lipschitz functions on an open 

subset U in a Banach Space X. We consider the following optimization problem: 
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V(X) : minimize f(x) 

subject to gi(x) < 0 fori = l , 2 . . . , m ; 

gi(x) 二 0 fori = m + 1,...，m + p. 

Let S be the feasible set of V{X) and Ks{x) the contingent cone of S at 

X. Also, I{x) denoted the set of active indices i at x with 1 < i < m such 

that Qi{x) = 0. NI{x) is the set of all indices i with 1 < i < m such that 

g.(^x) < 0. With the above notations, one can easily see that for x G S and for 

each u G Ks{x), we have the tangential constraints: 

(i) For all i G / (x ) , 

D-gi{x]u) = lim inf ^{gi{x + tu - gi{x)} 
亡丄0 u 

= l i m inf -{gi{x + tu)} 
itj,0 L 

< 0 

(ii) For all k = m + 1,...，m + p, 

D_gk{x;u) = limmi^{gk{x + tu) -gk{^)} 
4̂'U L 

二 liminf|{^(;^ + Zi)} 
亡丄0 t 

< 0 

and 

D+gk{x;u) = limsupj{^^fc(:r + tt/) -gk{x)} 
no t 

= l i m sup - {Qk {x + ti)} 
îo t 

> 0 &su G Ks{x). 
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Let W be the set of all vectors w 二 (̂ ô, ^ i , . . . , u)m+p) in Ri+^+P such that 

J2T=o^{^i? 二 1 and Wi > 0 for i = 0 , 1 , . . . , m . Particularly, Wi{x) is defined as 

Wi{x) = {w e W I Wi 二 0, Mi G NI{x)} 

二 {w G W I Wigi(x) = 0, Vi = 1, 2，..., m + p}. 

In order to apply the results in the preceding section for unconstrained prob-

lems, we introduce the Lagrange function L and G^'. 

Definition 3.3.1 The Lagrange function L for x G U and w G W is defined by 

m+p 
L(x,w) = wpf{x) + y^^Wjgi{x) 

i=l 

and for x G U and x G S 

G^{xJ) = msix{L{x,w) -wof{x)}. 
wEW 

If we let gQ{x) = f{x) — f{x), we have 

m+p 

Gx{x, f) = max { V WiQi{x) } . wew ^—^ i=0 
For simplicity, we simply write G instead of G^ and Wi for Wi(x) whenever 

X is specified. 

Remark If the equality constraints do not appear, that is p = 0 and gi(x) < 0 

for all i = l , . . . , m , then all x near x are feasible by the locally continuous 

property of all giS and so the problem V{X) becomes an unconstrained problem 

which already studied in Section 2. Therefore, we can assume gj{x) = 0 for some 

j with 1 < j < m + p. 
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Lemma 3.3.1 If Qj{x) 二 0 for some j with 1 < j < m + p, then for all x near 

X, we have 
m+p 

G{xJ) 二 m^x{wo[f(x) - f(x)] + ^ w,g,{x)) 
wEW ^~^ 

t=l 
m+p 

= m a x {wo[f{x) — f{x)] + V Wigi{x)} 
weWi{x) ^ 

%—丄 
m+p 

= m a x { y ^ Wigi(x) } 
wGWi{x) ^ z=0 

where go{x) = f{x) — f{x). Also, iffor all x near x and w G W； one has 

ra+p 
G{xJ) = wo[f{x) - f{x)] + X^ w,g,{x), (3.2) 

i+l 

then w e Wi {x). 

Proof The first part is obvious and we need to prove the last assertion only. 

Let i e NI{x), we have 0 = gj(x) > gi{x). Since gi and Qj are locally Lipschitz 

functions, there exists ^ > 0 such that gj{x) > Qi[x) for all x G B{x, 6i) and each 

i e NI{x). Then we take 6 = mmkeNi{x){h}- Let y e 8{x,6) and y satisfies 

(3.2). We have 

9i{y) < 9j{y) and Wi > 0 

Therefore, Wi = 0 by the maximality condition of G. Since it holds for all 

i e NI{x), we have w G Wi{x). • 

Lemma 3.3.2 (i) Ifx is a local solution to the problem V{X), then G{x, f) > 

0 = G{x, f) for all x near x, that is x is a local minimizer of G. 

(ii) X is a strict local solution to problem V{X) if and only ifwe have G{x, f) > 

0 = G{x, /) for all x near x with x • x, that is x is a strict local minimizer 

ofG. 
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Proo f (i) Suppose x is a local solution of V(X). Clearly, 

m+p 

G(x, f) = max{wof{x) + V Wigi{x) - wof{x)} = 0. wew 二~^’ i=l 

Also, there exists an neighborhood U of x such that f{x) > f{x) for all feasible 

X G U. Particularly, if we take w = (1 ,0 ,0 , . . . ) G M^+^+S then for each feasible 

X e U, 

G{xJ)>L{x,w) - f{x) > f{x) — f{x)>0 = G{xJ). 

If X G U is infeasible, then either there exists i with 1 < i < m such that gi{x) > 0 

or Qi{x) ^ 0 for some i > m. In this case, we choose wj = 0 for all j • i and 

Wi = sgn{gi{x)). It follows that 

G{xJ) > L{x,w) - wof{x) = WiQi{x) > 0 = G{xJ). 

(ii) The 'only if，part follows exactly as (i), but f{x) > f{x) for all feasible a; near 

X. We are going to prove the 'if' part: 

Suppose that there exists an neighborhood V of x such that G{x, f) > 0 = 

G{xJ) for all x G V\{x}. Let x is feasible, x G y \ { x } and w G W, we have 

EZT 哪 ⑷ < 0. Thus, “ 
m+p 

0 < G(x,f) 二 max{t^;o[/(4-/0^] + 5^ y^i9i(^) } 
wEW ~~“ 

i=l 
< m&x{wo[f{x)-f{x)]}. 

wew 

This implies f{x) > f{x) for all feasible x G V\{x} as wo > 0. • 

Lemma 3.3.3 Letx G U andw G W. Suppose thatG{xJ) = J2^^ Wigi{x) > 

0. Then WiQi{x) > 0 for all i. 

Proof It is obviously true for i > m, otherwise we can change the sign of Wi 

to obtain the maximality of G{x^ / ) . 



Minimizing and Stationary Sequences 68 

For the case i < m, suppose on the contrary that Wk9k{x) < 0 for some 1 < k < m. 

We claimed that Wigi{x) = 0 for all i > m. If not, there exists i > m such that 

Wigi{x) > 0. Then by changing Wk to zero and Wi to {wl + w )̂̂ ^ ,̂ it contradicts 

the maximality of G{xJ). Therefore, WiQi{x) = 0 for all i > m. It follows that 

^ ^ + ^ Wigi{x) = YlZo ^i9i{^) > 0. Since WkQk{x) < 0, we can then find some 

1 < j < m with gj{x) > 0 and Wj > 0. Again, if we replace Wk and Wj into 

zero and {wl + w^Y^^ respectively, contradiction on maximality of G{x, f ) is then 

obtained as before. • 

For the following lemma, we assume the inequality holds for some 7 > 0: 

m+p m+p 

E K - ^ ^ I < 7 ( E h M | 2 ) " 2 
i=0 i=0 

for any w, s G R^+^+P. 

Lemma 3.3.4 Let M be a Lipschitz constant of /, gi,.. .,gm+p on B{x,8) for 

some 6 > 0. Then for any w, u G W, t > 0, ||叫| == 1 with y, y + tv G B{x, S), one 

has 

(i) L{y^tv,w) — L(y,w) — [L{y + tv,u) — L{y,u)] < ^Mt\\w-u\ 

(ii) L^{-,w){x;v) - L^{-,u){x;v) < jM\\w-u\ . 

Proof By definitions, we have 
m+p 

L{y^tv,w) — L{y^tv,u) = —0 —仰)/(2/ + 力”)+ ^ {wi - Ui)gi{y + tv) 
i=i 

and 
m+p 

L{y,w) - L{y,u) = (wo - uo)f{y) + ^ {wi-Ui)gi{y). 
i=l 
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Therefore, by subtraction 

L(y + tv,w) - L(y,w) — [L(y + tv,u) — L(y,uJ 
m+p 

={wo — uo)[f{y + tv) — f{y)] + ^ {wi — Ui)[gi{y + tv) - gi{y) 
i=l 

m+p rn+p 

< Y^ \wi-Ui\Mt < ^Mt{Y^ \wi-Ui\^Y^^ = jMt\\w-u\ . 
i=l »=1 

This proves (i). (ii) follows from (i) by taking upper limits with y — x and t [ 0 

in 

-{L{y + tv,w) - L{y,w)} < ^{L{y + tv,u) — L{y,u)} + jMt\\w-u\\. 
t t 

• 

Lemma 3.3.5 Suppose that Qj{x) = 0 for some j with 1 < j < m + p. Then for 

some S > 0 and for all x G B{x, 6), there exists w G Wi{x) such that 

(i) G{xJ) = L{x,w) - wof{x) 

(n) G % , f ) ( x ; v ) < L%,w)(x;v) for all veX 

问 dG{-J){x) C dL{-,w){x). 

Proof By Lemma (3.3.1)，we already have (i) that for some 6 > 0 and for each 

X G B{x,S), G{xJ) 二 L(cc,wo) - wof(x) for some w G Wi{x). The key point 

is to find some element in Wi{x) so that it satisfies (i),(ii) and (iii). 

Fixed X G B{x, 6), let y near x and t > 0 near zero such that y + tv, y G B{x, 6) 

where v e X. It follows that there exists u{y,t) G Wi{x) such that 

G{y + tv, f ) = L{y + tv, u) - uof{x) (3.3) 

and 

G{y, f) > L{y,u) - uof{x). 
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Thus, 

^Giy + tvJ) - G(yJ)] < j[L(y + tv,u) — L(y,u)] 
t t 

Let y — X, t I 0 and take upper limit, we have 

G^(-J)(x;v) < l i m s u p { ] ; [ L { y + tv,u{y,t)) - L{y,u{y,t))]} 
y^x tio t 

= l i m { h L { y n + t n � v n - Hvn, u^)] } (3.4) 
n—oo tn 

where (y^), {u^) and (t^) are the appropriate sequences chosen to be satisfied 

the last equality with Vn — a;, n̂ i 0 and u^ 二 以几("几,力几)converges to some 

w e Wi{x) which follows from the compactness of Wi{x). By Lemma (3.3.4) (i) 

and (3.4), we then have 

G^{-J){x;v) < lim sup ^{[L{yn + tnV,w) - L{yn,w)] + ^Mtn\\u^-w\\} 
n—oo n̂ 

= l i m sup ^{L{yn + t^v, w) L{yn, w)} 
n^oo n̂ 

< L%-,w){x;v) 

Since this hold for all v G X , (ii) holds. 

By the definition of subdifferential, if x* G dG{-, / ) (x ) , then 

x*{v) < G^-J){x;v) for all^; G X 

< LP{',w){x]v) for aRv G X 

which follows by (ii). Thus, x* e dL{-,w){x). 

The remaining is to show that w satisfies (i). We noted that from the definition 

of u^ 

L{yn^tnV,U^) - U^f{x) = G{Vn^tnVj) 

> L{yn + tnV,|J.) — Mo/(^) 

for all /i € Wi{x). By continuities, it becomes 

L{x,w) — wof{x) > L{x,jj) - ^if{x) for all ^ G Wi{x). 

( 
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That is G{x, f) = L(x, w) — wof{x) and w satisfies (i) finally. • 

Let 

M{x) = {w e W I 0 G dL(-,w)(x) and 1̂ 775̂ (̂2:) = 0 fori = l , . . . , m } 

and for any u G X , 

Mu{x) 二 {i(; G M{x) I 0 G duL{-,w){x)} 

Also, let 

M_(x) 二 { i^GV^| Ogi>_i:(-,i(;)(a;;W for all v G X 

and Wigi{x) = 0 for i 二 1 , . . . , m}. 

Proposition 3.3.1 Suppose that gj{x) = 0 for some j and u is a unit vector in 

X. 

(i) IfO e duG{-J){x), then Mu{x) + 0. 

In fact, ifO e duG{-J){x) such that there exists {xk) C X，Xk —u ^ and 

x% G dG{-J){xk) for each k with x% — 0，then there exists {w^) C Wi{x) 

and w^ — w for some cluster point w in Wi{x). Furthermore, there exists 

{yl) such that 

(a) G{xk, /) = w!^[f{xk) — f{x)] + J2T=7wn9i{xk)]; 

(b) yl G dL{-,w){xk) for each k; 

(c) (||yUI) — Oa5A:4oo. 

Consequently, 0 G duL{-,w){x) or w G My,{x). 

(ii) If X = W and u be a unit vector such that D^G{-J){x;u) = 0，then 

M_(x) C Mu{x). 
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Proof (i) By Lemma (3.3.5), for sufficient large k, there exists w^ in Wi{x) 

such that 

G{x,J) = L{xk,w') - wlf{x) 

G%,f)(Xk.,v) < L'{;w'){xk',v) for all" G X 

dG{-J) {xk) C dL{-,w^){xk) (3.5) 

Thus, (a) holds by the first equality. We can assume that taking subsequence if 

necessary w^ converges to some w in Wi{x) as Wi{x) is compact. By Lemma 

(3.3.4) (ii), for w^, w G R^+^+P and each v G X , 

L^{;w^){xk]v) < L%-,w){xk]v) + jM\\w^-w\\\\v\\ 

Then 

dL{;w^){xk) C dL{-,w){xk) + jM\\w^-w\\Bl (3.6) 

which follows from Lemma (3.2.3). 

Together with (3.5), (3.6) and the definition of x%, there exists yl G dL{.,w){xk) 

for each k such that x% G yl + ^M\\w^ — w\\Bl Let k tends to infinity, we have 

xl 一 0 and w^ — w. Therefore, {\\yl\\) — 0 as k — oo. 

We have shown that Xk —u 无,vl ^ dL{-,w){xk), yl — 0 and w G Wi{x), that is 

0 G duL{-,w){x) or w G Mu[x). 

(ii) Let w in M_(:r). Then, for x is feasible WiQi{x) = 0 for all i = 1, 2 , . . . , m + p 

and D_L(-,w)(x;v) > 0 for all v e X = W. It follows that L{x,w) = wof{x), 

that is G{x, / ) = 0. By the definition of G, for t > 0, we have 

G{x + tu, f) > L{x^tu,w) - wof{x) 

that is 

G{x + tu, f ) — G{xJ) > L{x^tu,w) — wof{x), 
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If we divide both side by t and then take lower limits, 

D^G{-J){x;u) > D^L{-,w){x;u). 

With the assumption that D-G{-J){x;u) = 0 and D_L{-,w){x;v) > 0 for all 

V e R^ and the above inequality, we thus have D—L��w){x] u) 二 0. By Theorem 

(3.2.2), one has 0 G duL{- ,w){x). Therefore, w G M^(x). • 

3.4 Second-order necessary conditions for con-

strained problems 

Theorem 3.4.1 (Second-order necessary condition with constraints) Sup-

pose thatx is a local minimum ofV{X) andu a unit vector such that D^G{-,f){x;u)= 

O(or more generally 0 6 duG{-J){x)). Then G'L{x,0,u) > 0 and there exists a 

Lagrange multiplier w in Mu{x) such that L'^{x,w,0,u) > 0. 

Proof Since x is a local minimum of V(X), it is also a local minimum of C(x, / ) 

which follows from Lemma (3.3.2) (i). By assumption that D^G{xJ){x;u) 二 0, 

one can apply Theorem (3.2.1) for G to get 

OeduG{-J){x) and C"_{^,0,u) > 0 . 

Then, one can take a sequence {xk) converges to x in the direction u, x^ G 

dG{-J){xk) for each k and x% converges to 0. By Proposition (3.3.1), there 

exists a sequence {w^) in Wi{x) which converges to some element w in Wi{x) and 

w e Mu{x). 

Now, we want to prove L'^{x, w, 0，u) > 0. 

Suppose on the contrary that for all sufficient large k 

L{xk,w) - L{x,w) < 0, 
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that is 
m+p 

wo[fi^k) — f {x ) ] + X ^ w,gi{xk) < 0 (3.7) 
i=i 

as L{x,w) = wof{x) for w in Wi{x). Let go{-) = / ( . ) _ /(旬，in order to have 

(3.7), there exist h with 0 < h < m + p such that 

Wh9hixk) < 0 

for all infinitely many k. By considering subsequence if necessary, we can assume 

this hold for all k. Since {w^) converges to w, we have 

w^gh{xk) < 0 for some k. 

This contradicts Lemma (3.3.3) that w^ghixk) > 0 for G{xk, f ) > 0. G{xk, f ) > 0 

because x is the local minimum of G{-J) and G{xJ) = 0. Hence, the result 

follows. • 

Theorem 3.4.2 (Second-order necessary condition with constraints in M )̂ 

Ifx is a local minimum o/P(R^) and u is a unit vector with D—G��f){x] u) = 0, 

then G'L{x,0,u) > 0, M_(x) C M_(:r) and there exists an Lagrange multiplier w 

in Mu{x) such that L'^{x,w,0,u) > 0. 

Proof For X = R^, M_(:r) C Mu(x) by Proposition (3.3.1) (ii) and the result 

follows form Theorem (3.2.9). • 

3.5 Sufficient conditions for constrained prob-

lems 

Lemma 3.5.1 Let x G S C R^ such that D^f{x; v) > 0 for all v G Ks{x). Then 

(i) D^G{'J){x-v) > 0 for all v e R" 
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(ii) If D^G{-J){x]u) = 0 for a unit vector u, then 0 G duG{-J){x), M.{x) C 

Mu{x) and Mu{x) is nonempty. 

Remark If no equality constraint for x, that is p = 0, Qi{x) < 0 for i = 

l ,2， . . .，m’ then Ks{x) = W. So, the assumption becomes D^f{x,v) > 0 for 

all V e R^, or f{x) — f{x) > gi{x) for all x near x and all i. Thus (i) holds 

as G{xJ) = f{x) — f{x). Noticed that Vl^i(x) contains w = { l , 0 , . . . , 0 } only, 

L{x,w) — L{x,w) = f{x) - f{x) > 0 for all x near x and hence M-{x) 二 {化}. 

By D-G{-J){x] fj.) > 0 for all /i G R^ and the assumption in (ii), applied The-

orem (3.2.2), one has 0 G ^ C ( - , / ) ( x ) - ^L(-,iD)(x) 二 氏/(旬.Hence, {w} C 

M_{x) C Mu {x) . 

Proof By the definition of G, 
m+p 

G{-,Fe) = m^x{wo[F,{-)-Fe{x)] + V^z^z(-)} wew ~~^ 

2=1 
where Fe{-) = / ( . ) + e " . - ^ | . As F^ is locally Lipschitz function and D^f{x; v) > 0 

for all V e K s { x ) , Lemma (3.2.9) told us x is a strict local minimizer of F^. It 

is also a strict local minimizer of G(.，Fe) without constraints which follows from 

Lemma (3.3.2). Therefore, 
D^G{',Fe){x]v) > 0 for all^ G R^. (3.8) 

On the other hand, G{xJ) 二 max^^w{EZT^iM^) }=。(无，巧)and x is 

feasible, thus G(x, f) = 0 = G{x, F,). 

Since 
m+p 

G{x + tV, F,) = m&x{wo[Fe{x + tv) — Fe{x)] + Y^ WiQi{x + tv)} 
妮 i~l 

m+p 

< max{wo[/eO^ + tv) - fe{x)] + V WiQi{x + tv)} + e||t^| 
wGW "^f 

t=l 
=G{x + tv, f ) + e\\tv\ 
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for all t and v e R", D^G{-,F,){x;v) < D^G{-J){x;v) + e||t;||. Hence, 0 < 

D—G(^�f){x]v) + e|b|| by (3.8). (i) is then proved as e is arbitrary, 

(ii) G{'J) is a locally Lipschitz function as QiJ are for all i. Together with 

(i) that D-G{'J){x]v) > 0 for all v G M^ and the assumption in (ii), one has 

0 G duG{-J){x) by Theorem (3.2.2). Also, M_(x) C M^(x) and M^(x) + 0 

which follows from Proposition (3.3.1). • 

The following theorem is the main result in this section for unconstrained 

problem: 

Theorem 3.5.1 (Second-order sufficient condition) Let x G S C W. If 

D^f{x]u) >Ofor allue Ks{x) andG:(^Av) >Ofor which D^G{-J){x;v)= 

0，then there exists 6 > 0 such that f{x) < f{x) for all x G B{x,6) D S with 

X + X. 

Proo f ByLemma (3.5.1) (i)withLL/0^;^x) 2 0forall^x G Ks{x), D_G{-J){x,u) > 

0 for all u e R^. Also, the assumption that G"_X^, 0, v) > 0 for which D—G�., f){x] v)= 

0, Theorem (3.2.3) told us x is a strict local minimum of G{-,f). Hence, it is a 

strict local minimum of V { W ) by Lemma (3.3.2) (ii). • 
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