
On-line Learning For Adaptive Text
Filtering

YU Kwok Leung
Department of Systems Engineering & Engineering Management

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Systems Engineering and Engineering Management

©The Chinese University of Hong Kong
June 1999

The Chinese University of Hong Kong holds the copyright of the thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the Graduate
School.

, y ^ ^ s ^
^ / , ^ ^大 ^ ^ ^
'一色《^^^_£_§_^^

- 「 理 ！
...:YS^'STEMy^ ^%^^g^^ •

i

On-line Learning For Adaptive Text Filtering
Submitted by YU Kwok Leung

for the degree of Master of Philosophy

at The Chinese University of Hong Kong in June 1999

Abstract

We investigate the unique requirements of the adaptive textual

document filtering problem and propose a new on-line learning frame-

work, known as the REPGER (RElevant feature Pool with Good train-

ing Example retrieval Rule) algorithm to tackle this problem. Our

algorithm possesses three characteristics. First, it maintains a pool of

selective features with potentially high predictive power to predict doc-

ument relevance. Second, besides retrieving documents according to

their predicted relevance, it also retrieves incoming documents which

are considered as good training examples. Third, it can dynamically

adjust the dissemination threshold throughout the filtering process so

as to maintain a good filtering performance in a fully interactive envi-

ronment. We have conducted experiments on three document corpora,

namely, Associated Press, Foreign Broadcast Information Service and

Wall Street Journal to compare the performance of our REPGER al-

gorithm with two existing on-line learning algorithms. The results

demonstrate that our REPGER algorithm gives better performance

most of the time. Comparison with the TREC-7 adaptive text filtering

track participants was also done. The result shows that our REPGER

algorithm is comparable to them. Finally, we explore a technique for

integrating a feature clustering method into our REPGER algorithm.

ii

運用線上學習去處理自適應文件過濾問題

作者：庾國良

文摘

我們研究“自適應文件過爐”的獨特要求，從而提出一個新的線上學習

框架名叫 R E P G E R 算法。我們的算法擁有三個特點。第一，它保持

一個包含一些擁有高潛在預料能力的項的集，這個集是用來預料文件

的關聯性。第二，除了根據文件的關聯性去過滤文件外，它亦會從

大量输入文件中自動收集一些有潛質的剜練例子。第三，它能動態地

_整文件過爐的門限，使這算法能在互動環境下保持良好的性能。我

們在三個文集上做了實驗，對我們的算法和另外兩個線上學習算法的

‘性倉色作出比較。這三個文集分另|]是Associated Press, Foreign Broadcast

Information Service 和 Wall Street Journal�實.險結果顯示 REPGER 算

法的性能在大部分的情況下都比較好。我們亦與T R E C - 7中自適應文件

過滤組的參與者作出比較，結果顯示我們的算法與他們的不相伯仲。

最後，我們探討一個技術去把項的聚集方法與R E P G E R算法結合。

Acknowledgments

I would like to take this opportunity to thank all those who have contributed

to this thesis, directly or indirectly.

I would first like to express my sincere gratitude to my supervisor Prof.

Wai Lam for his constructive criticisms, guidance and support and for sharing

his immense wealth of knowledge, providing me the appropriate environment

for my research, and being accessible at all times. I would also like to thank

Prof. Kam-Fai Wong and Prof. Mei-Ling Meng for their valuable comments

and constructive criticisms.

iii

I

Contents

1 Introduction 1

： 1.1 The Problem 1

I 1.2 Information Filtering 2

1.3 Contributions 7

1.4 Organization Of The Thesis 10

2 Related Work 12

3 Adaptive Text Filtering 22

3.1 Representation 22

3.1.1 Textual Document . . 23

3.1.2 Filtering Profile 28

3.2 On-line Learning Algorithms For Adaptive Text Filtering . . . 29

3.2.1 The Sleeping Experts Algorithm 29

3.2.2 The EG-based Algorithms 32

4 The REPGER Algorithm 37

4.1 A New Approach 37

4.2 Relevance Prediction By RElevant feature Pool 42

4.3 Retrieving Good Training Examples 45

4.4 Learning Dissemination Threshold Dynamically 49

iv

i

CONTENTS V

5 The Threshold Learning Algorithm 50

5.1 Learning Dissemination Threshold Dynamically 50

5.2 Existing Threshold Learning Techniques 51

5.3 A New Threshold Learning Algorithm 53

6 Empirical Evaluations 55

6.1 Experimental Methodology 55

6.2 Experimental Settings 59

6.3 Experimental Results 62

7 Integrating With Feature Clustering 76

7.1 Distributional Clustering Algorithm 79

7.2 Integrating With Our REPGER Algorithm 82

7.3 Empirical Evaluation 84

8 Conclusions 87

8.1 Summary 87

8.2 Future Work 88

Bibliography 91

A Experimental Results On The AP Corpus 97

A.1 The EG Algorithm 97

A.2 The EG-C Algorithm 98

A.3 The REPGER Algorithm 100

B Experimental Results On The FBIS Corpus 102

B.1 The EG Algorithm 102

B.2 The EG-C Algorithm 103

B.3 The REPGER Algorithm 105

I

！

i
i •

I
i
[CONTENTS vi —
•‘

E C Experimental Results On The WSJ Corpus 107

^ C.1 The EG Algorithm 107

^ C.2 The EG-C Algorithm 108

: C.3 The REPGER Algorithm 110
I

i
r
I u
!

I

i ^
L

!

i
L
P
I
r.
1
pi \Mi _
|. m
Vi

K

i

I

I

i ^

1
！

I
i
i
1
邏
1
置 t
m
I

I _
m
m
\
I
ii «
1 ；i i

i :

List of Figures

I

1.1 Batch Filtering 4

1.2 Adaptive Filtering 5

3.1 The Sleeping Experts Algorithm 31

4.1 The REPGER Algorithm 41

6.1 The filtering performance of the EG algorithm with different

dissemination threshold and target value for relevant docu-

ments settings on the FBIS corpus. Without KW on the left
j
I and with KW on the right 65
I
j

I 6.2 The filtering performance of the EG-C algorithm with different

initial dissemination threshold and adjusted threshold position

settings at threshold learning starting point 二 30 on the FBIS
I

corpus 66

j 6.3 The filtering performance of the REPGER algorithm with dif-

ferent p (beta) and initial dissemination threshold settings at

threshold learning starting point 二 15 on the FBIS corpus. . . 67

6.4 The filtering performance of the REPGER algorithm with dif-

ferent initial dissemination threshold and P (beta) settings at

threshold learning starting point = 15 on the FBIS corpus. • . 68

i' • •
丨 Vll

LIST OF FIGURES viii

6.5 The filtering performance of the REPGER algorithm with dif-

ferent initial dissemination threshold and threshold learning

starting point settings at /? (beta) — 1.6 on the FBIS corpus. . 70

6.6 The on-going filtering performance of the four algorithms cho-

sen by the best parameter combinations on the AP corpus. . . 72

6.7 The on-going filtering performance of the four algorithms cho-

sen by the best parameter combinations on the FBIS corpus. . 72

6.8 The on-going filtering performance of the four algorithms cho-

sen by the best parameter combinations on the WSJ corpus. . . 73

7.1 The Clustering Algorithm 82

List of Tables

I

6.1 The parameter settings for the algorithms 61

6.2 The best performance, set F3, of REPGER1 and REPGER2

on the three document corpora 64

6.3 The average set F3 values of the on-going performance of the

EG, the EG-C and the REPGER algorithms 74

6.4 The number of topics in which the F3 of our REPGER al-

gorithm is less than, equal to, or greater than the median of

the TREC-7 adaptive text filtering track participants (total 50

topics) 75

7.1 The details of the topics chosen for the clustering experiment. 84

7.2 The result of the clustering experiment 85

A.1 The set F3 of the EG algorithm using KW on the AP corpus. 97

A.2 The set F3 of the EG algorithm on the ylP cor^m<s 97

A.3 The set F3 of the EG-C algorithm with threshold learning

starting point at 0 on the AP corpus 98

A.4 The set F3 of the EG-C algorithm with threshold learning

‘ starting point at 5 on the AP corpus 98

A.5 The set F3 of the EG-C algorithm with threshold learning

\ starting point at 10 on the AP corpus 99

• ix

I

LIST OF TABLES x

A.6 The set F3 of the EG-C algorithm with threshold learning

starting point at 15 on the AP corpus 99

A.7 The set F3 of the REPGER algorithm with threshold learning

starting point at 3 on the AP corpus 100

A.8 The set F3 of the REPGER algorithm with threshold learning

starting point at 5 on the AP corpus 101

, A.9 The set F3 of the REPGER algorithm with threshold learning

starting point at 10 on the AP corpus 101

B.1 The set F3 of the EG algorithm on the FBIS corpus 102

B.2 The set F3 of the EG algorithm using KW on the FBIS corpus.l02t

B.3 The set F3 of the EG-C algorithm with threshold learning

starting point at 10 on the FBIS corpus 103

B.4 The set F8 of the EG-C algorithm with threshold learning

starting point at 30 on the FBIS corpus 104

B.5 The set F3 of the EG-C algorithm with threshold learning

starting point at 50 on the FBIS corpus 104

B.6 The set F3 of the REPGER algorithm with threshold learning

starting point at 10 on the FBIS corpus 105

B.7 The set F3 of the REPGER algorithm with threshold learning

starting point at 15 on the FBIS corpus 105

B.8 The set F3 of the REPGER algorithm with threshold learning

starting point at 20 on the FBIS corpus 106

C.1 The set F3 of the EG algorithm on the WSJ corpus 107

C.2 The set F3 of the EG algorithm using KW on the WSJ corpus. 108

C.3 The set F3 of the EG-C algorithm with threshold learning

starting point at 0 on the WSJ corpus 108

!

LIST OF TABLES xi

C.4 The set F3 of the EG-C algorithm with threshold learning

starting point at 5 on the WSJ corpus 109

C.5 The set F3 of the EG-C algorithm with threshold learning

starting point at 10 on the WSJ corpus 109

C.6 The set F3 of the REPGER algorithm with threshold learning

starting point at 5 on the WSJ corpus 110

, C.7 The set F3 of the REPGER algorithm with threshold learning

starting point at 10 on the WSJ corpus 110

C.8 The set F3 of the REPGER algorithm with threshold learning

starting point at 15 on the WSJ corpus 111

Chapter 1
1

Introduction

1.1 The Problem

The number of Internet users has been growing rapidly with the widespread

use of personal computers and networks in recent years. This explosive

growth has led to the growth in the amount of information resources avail-

able over the Internet. As more and more information becomes available

electronically, it becomes increasingly difficult to search for information or

to filter out non-interesting information from information streams for users.

Therefore, it is critically important to develop effective filtering systems that

help users decide which information is relevant to their preferences. We fo-

cus on textual information since texts are still the major form of information

available.

1

CHAPTER 1. INTRODUCTION 2

An information filtering system is capable of automatically monitoring

information sources to find documents for a particular information need. In

practice, for each user, it starts with an initial filtering profile derived from

the information need of the user. The system assists the user by filtering

the information stream and delivering the relevant information to him/her.
1

Users can optionally give feedback information to the information filtering

system after reading the delivered documents. The feedback information is

the evaluation given by the user on how relevant each document is for a spe-

cific information need. This feedback information is usually referred to as a

relevance judgment. It can simply be a binary judgment indicating the rele-

vance, i.e. being relevant or non-relevant, or a numerical score representing

the likelihood of relevance. The system makes use of the relevance judgments

to learn a more accurate filtering profile for each user. In summary, an infor-

mation filtering system aims at learning a filtering model, which represents

the information need given by the user, to filter information according to the

filtering model.

1.2 Information Filtering

Information filtering deals with the delivery of information that is relevant

to the user in a timely manner. Information Filtering (IF) and Information

CHAPTER 1. INTRODUCTION 3

Retrieval (IR) are two research fields addressing the problem of delivery of

information to people who need it. At an abstract level, there is relatively

little difference between IF and IR. Belkin and Croft [3] provided a detailed

description of IF and identify the similarities and differences with IR. IF also

shares some resemblance with text categorization [23]. Information Filtering

can be classified into two settings, namely, batch filtering and adaptive fil-

tering according to the filtering definitions in the Text REtrieval Conference

(TREC) 1 [16, 17, 27]. Batch text filtering basically requires a training stage

before starting the filtering process. In the training stage, the system takes as

input a batch of training documents with user relevance judgments for a spe-

cific information need. The system is required to construct a filtering profile

for the user's information need based on the set of training documents. This

learning technique is called off-line learning which means that it can learn

a filtering profile in a batch mode but not incrementally. After the filtering

profile is learned, the system uses the profile to filter future documents for

the user. The filtering profile usually remains unchanged during the filtering

process. The batch filtering setting is summarized in Figure 1.1.

iThe Text REtrieval Conference (TREC) was started in 1992 as part ofthe TIPSTER

Text program. Its purpose is to support research within the information retrieval commu-

nity by providing the infrastructure necessary for large-scale evaluation of text retrieval

methodologies.

CHAPTER 1. INTRODUCTION 4

Q : ' 7 ^ — 7 ^ - - … … ：
pocument pre- J Off-line \ •

Training ‘“ y processing j y learning j 善
documents • \ / \ /
^ j I \ , ^ J \ ^ 夕 Filtering ‘

I knowledge •
I learned _
I ‘ Training
j I stage

, ^ ‘ 广 ^ ^ 广 ^ ^ Filtering •

、 ‘^fcocument preA J On-line \ knowledge Filtering |

丨 Incoming ~ " ^ y processing) ^ filtering 广 model |

documents • \ J \ J I I ^ ^

^ _ ^ • V _ ^ V _ ^ / ； U
: „ 丨 / \
I ^ ^ ^ V ^ Retrieved , / \

Filtered out No ^ y ^ Retrieve \ ^ e s incoming document, .̂
^ _ <T the d o c u m e n t 〉 • user

:� . > ^ ^ :
Figure 1.1: Batch Filtering.

As shown in Figure 1.2，the adaptive text filtering problem is designed

to model a more realistic situation that a filtering system can only expect

relevance judgments for documents which have been decided by the system

for retrieving. The system starts only with the user information need, which

is usually referred to as topic description, and no evaluated documents. It

creates an initial filtering profile by using the description of the topic. Doc-

uments arrive sequentially in chronological order. The system analyzes the

contents ofthe incoming documents. It makes use of the filtering profile to de-

cide whether or not to retrieve each document based on the profile-document

similarity. If a document is retrieved, the user can optionally provide a rel-

i

CHAPTER 1. INTRODUCTION 5

evance judgment of that document for the topic. The system can use the

relevance information to update the filtering profile. This learning technique

is known as on-line learning which means that it can learn a filtering pro-

file incrementally in an interactive environment. This setting implies that

relevance judgments from unretrieved documents are never revealed to the
I

system. It does not have an explicit training stage as in batch filtering.

c ^ :' r ^ — / ^ ^ ：

^ 一 • / \ /lnitializatiom
I pocument pre-| Filtering | of the •

Incoming , 1 processing I model 1 filtering j _
documents , V j ^~| \ model / ,

^^_^ . vv ^ — V3^ ‘
• Filtering New ^ ^ ^ ‘
‘ knowledge knowledge _

i /^ ^ A I
L^ On-line | | ^ On-line \ .

• \ filtering / \ learning | . . “. ‘

V J \ J description,

乂 VV R i ：〇
I “ Relevance •
I judgment _ / \

： ^^V ： /\

"'':̂ ^_̂ ^̂ r==;;:̂ l!̂ _Retrieved document ^ User

_ ^^\^^or not? ^>^ ‘

V /
Figure 1.2: Adaptive Filtering.

In general, an adaptive information filtering system basically comprises

four major components:

• Filtering model: It has a filtering model which stores the filtering

knowledge of the information domain. The filtering knowledge actu-

CHAPTER 1. INTRODUCTION 6

ally represents how a relevant document should be. In other words, it

represents the user's information need. The filtering model is usually

referred to as a filtering profile.

• Filtering profile initialization: There is a filtering profile initial-

ization mechanism. Before starting the filtering process, the user can
I

provide his/her information need to the system so that the system can

initialize its filtering profile according to the preference of the user. The

system treats each user's information need as a topic. Therefore, this

information need is usually referred to as a topic description.

• Information filtering: It has an information filtering mechanism to

decide which documents should be treated as relevant and presented to

the user. The criterion in predicting the relevance of the documents is

based on the profile-document similarity.

• On-line learning: It has an on-line learning mechanism to update

the filtering profile in order to improve future filtering performance.

After reading each retrieved document, the user can provide a relevance

judgment of the document to the system. The system can then learn

a more accurate filtering profile by using the relevance judgment.

There are some advantages in adopting on-line learning technique ofadap-

tive filtering over the off-line learning technique of batch filtering. First,

CHAPTER 1. INTRODUCTION 7

on-line learning does not need a large set of documents with relevance judg-

ments to train the filtering profile. In fact, collecting a large set of documents

with relevance judgments for each user's information need is practically im-

possible. Second, on-line learning is adaptable in an interactive environment.

Since users' information needs may change or shift over time, on-line learning

is capable of capturing the shift of users' preferences by learning from exam-

ples. This is achieved by learning incrementally from retrieved documents

with relevance judgments.

1.3 Contributions

We have studied a number of existing information filtering systems. We

discover that only some of them comprise all the four major components ^

that an adaptive filtering system should have. Since adaptive filtering is

a new setting in information filtering introduced by TREC [16，17，27] in

1998，many filtering frameworks of the existing filtering systems were not

designed to tackle the adaptive filtering problem. After investigating the

existing filtering systems and some existing on-line learning algorithms, we

find out three main tasks that an adaptive filtering system should be able to

perform well in order to achieve good filtering performance. The three tasks

2piease refer to Section 1.2 for the details of the four components.

CHAPTER 1. INTRODUCTION 8

are: (1) Differentiating the features with potentially high predictive power

from the other features so that the system can consider a set of informative

features in predicting document relevance; (2) Solving the probiem of lack of

training examples (judged documents) in adaptive filtering; and (3) Varying

the parameters used by an algorithm so as to maintain a good performance
I

throughout the filtering process.

We propose an adaptive filtering framework based on on-line machine

learning and content-based learning to tackle the adaptive text filtering prob-

lem [24，44]. Our algorithm, known as the REPGER (RElevant feature

Pool with Good training Example retrieval Rule) algorithm, possesses

three characteristics. First, it maintains a pool of selective features with po-

tentially high predictive power to predict document relevance. Second, it

incorporates a novel mechanism for retrieving good training examples; this

overcomes the problem of lack of training examples in an adaptive filtering

environment. Third, it can dynamically learn the dissemination threshold,

which is used to decide whether or not to retrieve an incoming document, so

as to maintain a good filtering performance in an interactive environment.

Specifically, the contributions made by this thesis are as follows:

• This thesis proposes a new on-line machine learning framework, known

as the REPGER algorithm, to deal with adaptive filtering. New tech-

CHAPTER 1. INTRODUCTION 9

niques are developed for making the technical procedures of predicting

document relevance and setting dissemination threshold more adapt-

able in an interactive environment of adaptive filtering. For predicting

document relevance, a new concept, known as the RElevant feature

Pool (REP), is proposed to maintain a set of features with potentially
I

high predictive power. For dissemination threshold setting, we propose

a technique to adjust the threshold dynamically so as to maintain a

good filtering performance throughout the filtering process.

• One unique characteristic of adaptive filtering is that there is no evalu-

ated documents, i.e. documents with relevance judgment, for the sys-

tem to learn the filtering profile before the filtering process. In the light

of this characteristic, a new technique is proposed to tackle the prob-

lem of lack of training examples in the adaptive filtering setting which

is known as the Good training Example retrieval Rule (GER).

The GER retrieves good training examples from the stream of incom-

ing documents to help the system learn a more accurate filtering profile

by using the relevance judgments of the retrieved documents.

• This thesis validates the use of the GER for tackling the problem oflack

of training examples for the information filtering system in adaptive

filtering.

CHAPTER 1. INTRODUCTION 10

• A new performance comparison method for information filtering sys-

tems is proposed for adaptive filtering. It reflects how well an informa-

tion filtering system performs throughout the filtering process.

• Experimental results on three document corpora show that our REPGER

algorithm is more effective than two existing on-line learning algorithms

7, 18] and the performance of our algorithm is comparable to the

TREC-7 [17] adaptive filtering track participants.

• The feasibility of applying a feature clustering technique, known as

the Distributional Clustering, in adaptive filtering is investigated. The

experimental result shows that the effect of the clustering technique is

quite promising.

1.4 Organization Of The Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews some re-

lated work in information filtering. Chapter 3 presents the commonly used

textual document representation techniques and analyzes two existing on-

line learning algorithms and discusses their limitations. Some ideas of our

new approach have been drawn from the analysis. Chapter 4 presents our

REPGER algorithm which is a new on-line learning framework for adap-

i

CHAPTER 1. INTRODUCTION 11

tive text filtering. Chapter 5 describes a new threshold learning algorithm

which is used in our REPGER algorithm for higher adaptability in filtering.

Evaluation experiments and results are presented in Chapter 6. Chapter 7

describes the investigation of integrating REPGER with a feature cluster-

ing technique. Chapter 8 gives the concluding remarks and presents some

directions for future work.

I

Chapter 2

Related W o r k

The work in this thesis is on the field of adaptive filtering which belongs to the

research area of Information Filtering (IF). There are some well-developed

information filtering systems employing different approaches to deal with IF.

The Stanford Information Filtering Tool (SIFT) was developed by Yan

and Garcia-Molina [43]. It is basically an information retrieval system which

does not support user profile learning. Users need to submit their profiles

through a World Wide Web (WWW) browser, and then SIFT matches the

users，profiles against the news articles. There are two alternative match-

ing algorithms in SIFT, namely, the Boolean model and the vector space

model [38]. A profile can be a Boolean conjunction of words for the Boolean

model or a set ofwords and a relevance threshold for the vector space model.

Matching articles are sent to the user by e-mail. The SIFT filtering engine

12

1

CHAPTER 2. RELATED WORK 13

implements novel indexing techniques which are capable of scaling to large

number of documents and profiles. The main disadvantage of SIFT is that

it does not have any learning capability. If users are not satisfied with the

retrieved articles or have different information needs, they need to manually

re-construct their profiles until the retrieved articles satisfy them.

NewT is an information filtering system developed by Sheth and Maes [39,

40] and it is used for filtering Usenet news. It applies the vector space model

in profile and document representations. It maintains a set of profiles for each

user's information need. Documents are retrieved based on a combination of

the predictions of the profiles in some manner. Existing profiles are learned

from relevance feedback provided by the users. The system makes use of

genetic algorithm (GA) to discover new profiles from existing ones and to

flush out the unfit ones. One limitation of genetic algorithm is that it is

unsuitable for adaptive filtering settings. Moreover, there is no mechanism

to maintain the functional diversity of the profiles in the population.

InRoute is a document filtering system developed by Callan [6]. It makes

use of the Bayesian inference network model [41] to process a query and a

document. The major tasks performed by InRoute are creation of a query

network (representing a user profile), creation of a document network (repre-

senting a document) and performing inference over the networks for filtering

purpose. Users specify their information needs by using a query language or

CHAPTER 2. RELATED WORK 14

in natural language and then InRoute transforms the description to a query

network. The query language, which is also used in INQUERY [8], defines

the syntax for users to specify their information needs. In order to save pro-

cessing time, InRoute uses the "lightweight indexing" philosophy. Indexing

speed is maximized by indexing terms that actually appear in one or more

queries. A new inverted document frequency (IDF) estimation technique was

also proposed. However, like SIFT, there is no mechanism for the system to

update the query network by using feedback from the users.

Mostafa et al. [30] presented a general model of information filtering. As

a way to reduce complexity, the architecture of the model incorporates mul-

tilevel functional decomposition and supports generality through modularity.

A filtering system, namely SIFTER (Smart Information Filtering Technol-

ogy for Electronic Resources), has been implemented based on the model.

SIFTER employs established information retrieval and artificial intelligence

techniques. They proposed to decompose the problem of learning a filtering

profile into two levels. The top level represents a classification mapping from

the document space to a finite number of classes. This mapping is learned in

an off-line setting. The bottom level subsequently estimates the mapping de-

scribing user relevance for the different classes which can be done by on-line

learning. The decomposition reduces the learning complexity but it limits

the maximum achievable filtering accuracy for a class may not correspond

CHAPTER 2. RELATED WORK 15

well to a user interest. Unlike many filtering systems, SIFTER does not make

binary filtering decisions on incoming documents. It presents a number of

ranked documents to users at a time.

Pazzani and Billsus proposed an extension of the World Wide Web (WWW)

sites retrieval system, known as Syskill & Webert [32], to support revising

of user provided profiles in [31]. Web pages are represented as a Boolean

feature vector. Not all words that appear in an HTML document are used as

features. The system uses an information-theoretic approach to determine

which words to use as features. It employs a naive Bayesian classifier to

revise profiles provided by users and to learn the profiles by using relevance

feedback from users.

The systems described above apply a content-based approach to filter in-

formation. Information is filtered based on a comparison between its content

and a user profile. Besides using the content-based approach, other systems

apply a collaborative approach or a combination of them. In the collabora-

tive approach, we filter information for a user by considering the filtering

results of other similar users. Rather than computing the similarity of the

information and the user profile in the content-based approach, we compute

the similarity of the users.

Konstan et al. [19] discussed the challenges involved in creating a collabo-

rative filtering system, named GroupLens, for Usenet news. The GroupLens

CHAPTER 2. RELATED WORK 16

project was started in 1992 and completed a pilot study at two sites to estab-

lish the feasibility of using collaborative filtering for Usenet news [35]. The

GroupLens server was a two-part database. The ratings database stores all

ratings that users have given to articles. The correlations database stores

information about the historical agreement of pairs of users. The prediction

process reads both correlations and ratings and generates prediction. The

problem of ratings sparsity in collaborative filtering is tackled by partitioning

the set of Usenet news articles into clusters that are commonly read together.

Fab [2] is a distributed implementation of a hybrid content-based, collab-

orative Web page filtering system. It addresses the problem of how to com-

bine both content-based and collaborative approaches in filtering Web pages.

They maintain user profiles based on content analysis (content-based learn-

ing) and directly compare these profiles to determine similar users for col-

laborative filtering. Users receive items both when they score highly against

their own profile, and when they are rated highly by a user with a similar

profile. Users are required to assign appropriate ratings from a 7-point scale

after reading the filtered Web pages. The users' ratings are used to update

their profiles.

NewsWeeder is a netnews-filtering system proposed by Lang [25]. It ad-

dresses the problem of the reliance on the user for creating a user profile.

The user can rate his or her interest level for each article being read, and

CHAPTER 2. RELATED WORK 17

then NewsWeeder can learn a user profile based on these ratings. Currently,

there are six interest levels: essential, interesting, borderline, boring, gong

and skip. News articles and the user profile are represented by vectors com-

posed of tokens as their elements. Besides words and a combination of words,

tokens include punctuation and other specialized symbols also. The learning

algorithm is based on the Minimum Description Length (MDL) principle.

The MDL measure is used to find the best distribution of the tokens for each

interest level. It provides an information-theoretic framework for balancing

the tradeoff between model complexity and training error. NewsWeeder uses

both content-based and collaborative filtering. The system uses the collected

rating information to learn a new user profile each night. One deficiency of

NewsWeeder is that it can only perform off-line learning.

After reviewing the above existing information filtering systems, we find

that many of the above approaches are not effective for adaptive filtering�

Several methods have been proposed to deal with adaptive filtering in the

recent Seventh Text REtrieval Conference (TREC-7) [17] in 1998 which is the

first year for TREC to organize the adaptive text filtering track. For instance,

Eichmann et al. [12] developed a clustering method based on the standard

cosine-similarity measure. There are two levels of clusters containing words

derived from the topic description and the incoming documents. There are

some thresholds used by the system for its dynamic clustering technique.

CHAPTER 2. RELATED WORK 18

The primary cluster level corresponds to the internal representation of a

topic description. Each primary cluster has a set of zero or more secondary

clusters. When a document clears the threshold for a primary cluster, it

either joins an existing secondary cluster or forms a new one, based upon a

membership threshold. When a secondary cluster's similarity to a primary

cluster exceeds a visibility threshold, its member documents are declared

as relevant to the primary cluster. However, the binary decision to accept

or reject a document is not made immediately until the similarity of the

secondary cluster to the primary cluster exceeds the visibility threshold. This

is an additional constraint imposed on the adaptive filtering setting.

Kwok et al. [22] conducted some experiments on applying the PIRCS

system to perform adaptive filtering. The PIRCS system is based on the

probabilistic indexing and retrieval models of [28, 36] but extended with

the concept of document components [20, 21]. It is an information retrieval

system designed to deal with information retrieval and batch filtering. They

emphasize on dynamically setting a retrieval status value (RSV) threshold to

select or not select a document for examination. A technique for adjusting

the threshold was proposed. They implemented query weight adjustment

only, but not query expansion. This helps the RSV's of documents remain in

a stable range which would favor the performance of the threshold adjusting

technique.

CHAPTER 2. RELATED WORK 19

Zhai et al. [45] made use of the CLARIT system based on the simple

Rocchio relevance feedback [37] to handle adaptive filtering. Each document

is indexed on noun phrases and individual words using the standard CLARIT

phrase indexing technique [13, 14, 29]. The filtering profiles and the docu-

ments are both represented as term vectors. Rocchio feedback, on relevant

documents only, is used to expand the term vector. A method, known as

the "delivery ratio" method, is used to estimate an initial profile threshold.

The delivery ratio equals to the desirable number of documents to deliver

over the total number of documents. A small reference corpus can be used to

estimate an approximate threshold score at which the desirable ratio would

be achieved. However, the accuracy of the initial threshold estimated on the

reference corpus is not guaranteed. This is because different topics and cor-

pora may have different characteristics and score ranges. Besides estimating

the initial threshold, they also proposed a technique to adjust the threshold

dynamically.

We have studied a number of existing information filtering systems above.

Since adaptive filtering is a new setting in information filtering introduced by

TREC [16, 17, 27] in 1998, many filtering frameworks of the existing filter-

ing systems were not designed to tackle the adaptive filtering problem. We

discover that only some of them comprise all the four major components 丄

ipiease refer to Section 1.2 for the details of the four components.

CHAPTER 2. RELATED WORK 20

that an adaptive filtering system should have. SIFT [43] and InRoute [6] do

not support user profile learning. NewsWeeder [25] can only performs off-line

learning. Even some of them can be potentially applied in adaptive filtering,

they still have deficiencies. NewT [39, 40] applies GA to generate new user

profiles but there is no mechanism to maintain the functional diversity of

the profiles. SIFTER [30] decomposes the procedure of profile learning into

two levels in order to reduce learning complexity, however, it limits the max-

imum achievable filtering accuracy. GroupLens [19], a collaborative filtering

system, is not effective for adaptive filtering because the problem of lack of

training examples in adaptive filtering makes the system hard to create fil-

tering profiles for users especially when the user's preference is very different

from the others. For the TREC-7 adaptive text filtering track participants'

systems, most of them are not originally designed for adaptive filtering. For

example, PIRCS [22] is designed to deal with information retrieval and batch

filtering�They only adjust the retrieval status value (RSV) threshold in or-

der to make the system suitable for adaptive filtering. The other systems

also have deficiencies as we mentioned above.

In general, the suitability of a filtering system for adaptive filtering mainly

depends on the learning algorithm used by the system. One of the four

major components that an adaptive filtering system should have is On-line

Learning. We believe that adaptive filtering can be effectively tackled by on-

CHAPTER 2. RELATED WORK 21

line machine learning techniques. Therefore, we investigate two existing on-

line learning algorithms. Recently Cohen and Singer developed the sleeping

experts algorithm [10] for performing automatic text categorization. This

on-line learning algorithm can potentially be applied to adaptive filtering.

Callan [7] proposed an improved Exponentiated-Gradient (EG) algorithm,

which is also an on-line learning algorithm, to solve the adaptive filtering

problem. We present a more detailed analysis of these two algorithms and

their shortcomings in Section 3.2.

Chapter 3

Adaptive Text Filtering

3.1 Representation

Unstructured textual documents and topic descriptions must be represented

in a way which can be processed by information filtering systems. We describe

a representation used in many filtering systems including our approach. The

representation is based on the vector space model [38]. The vector space

model assumes that a feature set is available to identify both documents

and topic descriptions. Both filtering profiles and documents can then be

represented as feature vectors in some hyper-space. A distance metric which

measures the proximity of vectors to each other is defined over the space.

Hence, the profile-document similarity can be computed by using the distance

metric. The advantage of using the vector space model is its flexibility - as

22

CHAPTER 3. ADAPTIVE TEXT FILTERING 23

such a document can also be represented as a topic description. Users can

provide samples of interesting documents as an alternative to constructing

the filtering profile. The representations used for documents and filtering

profiles are described below.

3.1.1 Textual Document

In textual document representation, appropriate words or phrases are ex-

tracted from a document to form a vector representing the document. A

textual document needs to be preprocessed before the extracted words or

phrases can be used in document representation. There are three basic steps

in document preprocessing. The first step is to remove the punctuation marks

and to change all alphabets to lower cases. The second step is to remove non-

informative words or common function words (stop-words) such as "I", "an"，

"of，and "but" • These words are eliminated for they are useless in content

identification of the textual documents. This step is usually referred to as

stop-word removal. The third step is to conduct word stemming which is a

process to transform all words to their word-stems. The purpose of word

stemming is to make sure that words which differ only in tenses or part

I of speech can be matched. For example, the words "looking" and "looks"

would be transformed to "look". After punctuation mark removal, lower case

I

I

CHAPTER 3. ADAPTIVE TEXT FILTERING 24

transformation, stop-word removal and word stemming, the selective words

or phrases generated from the remaining words are called features or terms,

which are used to characterize the document.

Here is an example which shows the procedures of document preprocessing

of an original document. The raw text is quoted from an article of the

Associated Press document corpus.

• Raw text:

Brezhnev ruled for 18 years before he died in 1982. After his death a

city, streets, city squares and state-run enterprises were named after

him. Soviet officials started removing those names in January.

• Removing punctuation marks and changing all alphabets to lower case:

brezhnev ruled for 18 years before he died in 1982 after his death a city

streets city squares and state-run enterprises were named after him

soviet officials started removing those names in january

參 Stop-word removal:

brezhnev ruled years died 1982 death city streets city squares state-run

enterprises named soviet officials started removing names january

• Word stemming:

CHAPTER 3. ADAPTIVE TEXT FILTERING 25

brezhnev rule year di 1982 death citi street citi squar state-run enterpris

name soviet offici start remov name januari

The word stemming algorithm used here was proposed by Porter in [34 .

Since the features are not equally important for content representation，

document weights are assigned to the features according to their relative

importance. TF-IDF is one of the commonly used document weights of a

feature. It is the product of the term frequency (TF) in a document and

the inverted document frequency (IDF) in a document collection. The term

frequency ofafeature is the occurrence frequency of the feature in a particular

document and reflects the importance of the feature in that document. The

inverted document frequency of a feature is a factor reflecting whether the

feature is document-specific or not. It attains a high value if the feature

appears in fewer documents. A commonly used measure for the inverted

document frequency of a feature 九 is

N IDF, = l o g (-)

rik

where N is the total number of documents that the system has encountered,

and Uk is the number of documents that contain the feature 九.Note that

the inverted document frequency must be calculated incrementally in the

adaptive filtering environment. Consider a document D. The document

weight of the feature 九 appearing in the document D is given as

CHAPTER 3. ADAPTIVE TEXT FILTERING 26

Xk 二 TFfc X IDFfc

where TF̂ ； is the term frequency of the feature fk in the document D, and

IDFjfc is the inverted document frequency of the feature fk in the document

collection. Consequently, the document D can be represented as a vector of

features

D = <尉广 . , 2；力 . . . , 0；介〉 （3.1)

where n is the total number of distinct features in the document collection,

and Xj is the document weight of the feature fj in document D. Some-

times, we normalize this vector to become a unit vector before it is used for

subsequent processing.

The number n is not known in adaptive filtering. To handle this situation,

a document could be represented as a set of features

^ = { / | / = / “ z = l，2 ” . . " } (3.2)

where 1 is the number of distinct features in the document D. Each feature

is associated with its document weight. When we process a document, we

usually only need the document weight of a feature in the document. There-

fore, this set-based representation essentially embodies the same information

CHAPTER 3. ADAPTIVE TEXT FILTERING 27

needed for processing a document as in the vector-based representation.

Note that the topic description provided by the user for the filtering sys-

tem to initialize the filtering profile is also a textual document. We can apply

the technique mentioned above to represent the topic description. However,

there is no statistics to calculate the IDF of the features extracted from the

topic description in the adaptive filtering setting. We can solve this problem

by using two alternatives. One is to use the TF of the features as their doc-

ument weights, i.e. Xk = TF̂ ；，or to use a binary feature representation, i.e.

the document weight of a feature is 0/1 if the feature is absent/present in

the document. The second alternative is to calculate the IDF of the features

by using the statistics collected from another unrelated document corpus,

known as the reference corpus. This technique can also be used in calculat-

ing the IDF of the features of the incoming documents. The IDF of a feature

fk calculated by using this technique is given as

IDFr/ = l o g (^ ^ ; J ^) (3.3)
% + rik

where N^f is the total number of documents in the reference corpus, and

72，is the number of documents in the reference corpus that contain the

feature /^.

CHAPTER 3. ADAPTIVE TEXT FILTERING 28

3.1.2 Filtering Profile

The representation of a filtering profile is similar to that of a document.

However, there are some differences between filtering profile and document

representations. First, a filtering profile stands for a user's information need.

Each feature in the profile vector is associated with a non-negative feature

weight indicating the relative importance of the feature for the user's in-

formation need. Consequently, the filtering profile can be represented as a

vector of features

^ = < Wi, • • . , W j , . . . , W n > (3=4)

where n is the total number of distinct features in the document collection,

and Wj represents the feature weight of the feature f j in the filtering profile.

Like document representation, the total number of distinct features n is not

known in the adaptive filtering setting. Similar to Equation 3.2，the filtering

profile can also be represented as a set of features

W = { / | / = /”z = l，2,...，p} (3.5)

where p is the number of features in the filtering profile. Each feature is

associated with its feature weight.

CHAPTER 3. ADAPTIVE TEXT FILTERING 29

3.2 On-line Learning Algorithms For Adap-

tive Text Filtering

After a document is converted into an internal representation, we can employ

some existing on-line learning algorithms for conducting adaptive filtering.

Two on-line learning algorithms, namely, the sleeping experts algorithm [10

and the Exponentiated-Gradient (EG) algorithm [18] are investigated. Both

algorithms tackle filtering by using a common two-step procedure similar to

the one used in many other information filtering systems. For each profile-

document pair, a document relevance score is first calculated and a dissemi-

nation threshold is applied to make the binary decision to accept or reject the

document. Both algorithms use multiplicative update techniques to update

their filtering profiles. The analysis of these two algorithms are presented

below.

3.2.1 The Sleeping Experts Algorithm

The sleeping experts algorithm has recently been applied to conduct auto-

matic text categorization [10]. However, it can potentially be employed to

solve adaptive filtering. It associates an "expert" with each distinct feature

to predict the relevance of incoming documents. As shown in Figure 3.1, it

has a master algorithm which updates the weight of each expert using multi-

CHAPTER 3. ADAPTIVE TEXT FILTERING 30

plicative update and combines the predictions of the experts. Motivated by

the Infinite Attribute Model [4], it does not need to know the vocabulary in

advance. Each expert consists of two "mini-experts". The first mini-expert,

/ i , consistently predicts that the document is relevant whenever the corre-

sponding feature is present in the document. The second mini-expert, /•,

consistently predicts that the document is non-relevant whenever the corre-

sponding feature is present in the document.

A good adaptive text filtering algorithm should give a good performance

not only at the end of the filtering process, but also during the filtering task.

However, the sleeping experts algorithm may give undesirable performance

before it has processed enough documents to allow the weights of the mini-

experts to converge. If an expert appears in some non-relevant documents,

this expert will have a negative predictive power, i.e. the weight of / i is

smaller than that of /•. However, if this expert appears in the next incoming

document and the document is relevant, it will reduce the degree of the

predicted relevance for that document, i.e. reduces the score of the function

in Step 4 in Figure 3.1. Experts having negative predictive power are likely

to mis-predict the relevance of the documents. Therefore, the idea of using

"mini-expert" may not be effective for adaptive filtering especially during

the initial period. Another drawback is that the sleeping experts algorithm

treats every new feature as an expert (see Step 2，Figure 3.1). It means

CHAPTER 3. ADAPTIVE TEXT FILTERING 31

Parameters: a e (0,1), 6 G (0，1).

Initialize: Pool — 0

Do while there is an incoming document

1. Receive a new document V = {/ | f = f“i = 1 , 2 , . . . , / } and its

classification y^ G {0,1}.

2. Define the set of active mini-experts:

S = { / m | / e P ， m G { 0 , l } }

3. Initialize the weights of new mini-experts:

� �

V/m e S S.t. fm • Pool ： Pj^ 二 1

4. Classify the document as positive if

lf^Ph �g
^feV Em=0,l Pf^

5. Update weights:
f

Pfm VD 二 m
Pfm = ̂

�̂Pfm VD # ^

6. Re-normalize the weights of the mini-experts.

7. Update: Pool [Pool U S.

Figure 3.1: The Sleeping Experts Algorithm.

CHAPTER 3. ADAPTIVE TEXT FILTERING 32

that even the features appearing only in non-relevant documents have the

same degree of contribution as relevant features in predicting the document

relevance. However, it is less likely to have regularities for the features which

appear only in non-relevant documents in text filtering. We think it is more

appropriate to have different treatments on these two kinds of features.

Besides having drawbacks in tackling adaptive filtering, another deficiency

ofthe sleeping experts algorithm is that it has no filtering profile initialization

mechanism to process topic descriptions provided by the users.

3.2.2 The EG-based Algorithms

The Exponentiated-Gradient (EG) algorithm [18] has been applied to tackle

adaptive filtering in [7]. The EG algorithm is designed for on-line prediction

problems. It maintains a linear weight vector W as described in Equation 3.4

with each component representing a non-negative feature weight of each dis-

tinct feature being considered ^ The sum of all components of the vector

should be one. A document D is represented by using the vector space model

as described in Equation 3.1.

The EG algorithm updates its linear weight vector by using a weight

update formula when an incoming document is retrieved, i.e. it is predicted

iThe dimension of the weight vector can be dynamically adjusted by incorporating the

Infinite Attribute Model [4] into the EG algorithm.

CHAPTER 3. ADAPTIVE TEXT FILTERING 33

as relevant by the system. The weight update formula for the linear weight

vector W is given as follows:

让 . — ^ j exp(-277(# . D - yp)x^)
] ^ l = i W j exp (-2r / (# . D — y^)xj) (.)

where D is a vector representing the incoming document D (usually a unit

vector with elements represented as TF-IDF); y^ represents the target value

of the classifier for the incoming document D] and 77 is the learning rate used

to determine how rapidly the classifier learns from each retrieved document.

Kivinen and Warmuth [18] suggested that the learning rate should be de-

termined by the formula 77 二 2 / (3 i ?) where R is a value that satisfies the

constraint max(maXjXj - mhijXj) < R 2. Initial weights of all features are

usually set to l /n . At any time instance, the classifier predicts an incoming

document as relevant when the inner product W • D exceeds a dissemination

threshold. The document relevance prediction rule of the EG algorithm is

shown below:

If W • D > 小,then retrieve that document

where 办 is the dissemination threshold.

Although the EG algorithm does not have features with negative pre_

dictive power, it may also give undesirable performance before it processes
2Refer to as KW in this thesis.

CHAPTER 3. ADAPTIVE TEXT FILTERING 34

enough documents to allow the weights of the linear weight vector to con-

verge. To illustrate this point, let us consider the following cases. Assume

we begin with a uniform initial weight for each feature in the weight vector.

Suppose a small learning rate r] is used. If some features appear only in the

non-relevant documents in the document corpus, the feature weights of these

features in the weight vector will still be quite high after the algorithm learns

from some documents. It is due to a low learning speed when a small learning

rate is used. At this time instance, the algorithm maintains relatively high

predictive power for these features. However, in fact, features which appear

only in the non-relevant documents are less likely to have high predictive

power. These unnecessarily high weights will lead to a poor filtering perfor-

mance. Conversely, suppose a high learning rate r] is used. If some features

appear in both the relevant and the non-relevant documents and these doc-

uments arrive in a random order. The weights of these features will likely

increase and decrease alternatively during the filtering process. Essentially,

it leads to weight fluctuation which in turn will affect effectiveness through-

out the filtering process. In conclusion, the above drawbacks are caused by

a similar problem faced by the sleeping experts algorithm [10]. This is the

problem of not differentiating features appearing only in non-relevant docu-

ments. Moreover, there is also no filtering profile initialization mechanism in

the EG algorithm.

CHAPTER 3. ADAPTIVE TEXT FILTERING 35

In [7], the EG algorithm was improved by addressing the problems of

adjusting the target values and the dissemination threshold. It was proposed

that the target values should be adjusted to the minimum and maximum

document relevance scores that the current filtering profile can give. The

minimum and maximum document relevance scores given by the filtering

profile are proved to be the minimum and maximum document weights of

the features in the current incoming document (called MinMax in this the-

sis). Therefore, the target values at a time instance should be the minimum

and maximum document weights of the features in the current incoming

document instead of using fixed target values throughout the whole filtering

process. However, according to the on-line learning framework of the EG

algorithm, the target values should remain constant since the target values

represent the target levels of the inner product W . D for relevant and non-

relevant documents. The goal of the on-line learning algorithm is to adjust

the weights in the weight vector so that the error between the target levels

and the inner product is minimized. If we apply the proposed method in [7],

the target values will be dependent on the current incoming document. In

other words, the target levels of the filtering profile are restricted by different

incoming documents at different time instances. The scores given by the fil-

tering profile for relevant and non-relevant documents will hardly reach the

real target levels. Hence, the target levels should not be varied for different

CHAPTER 3. ADAPTIVE TEXT FILTERING 36

incoming documents.

Another improvement suggested in [7] is to adjust the threshold of the

classifier during the filtering process so that the filtering system can find a

good threshold dynamically. The threshold is set somewhere between the

average score of the retrieved relevant documents and the average score of

the retrieved non-relevant documents. In order to reduce the risk of setting a

poor threshold, the system can start to adjust the threshold after retrieving

some relevant and non-relevant documents.

Chapter 4

T h e R E P G E R Algorithm

4.1 A New Approach

After investigating the existing filtering systems and some existing on-line

learning algorithms, we find out three main tasks that an adaptive filter-

ing system should be able to perform well in order to achieve good filtering

performance. The three tasks are: (1) Differentiating the features with po-

tentially high predictive power from the other features so that the system

can consider a set of informative features in predicting document relevance;

(2) Solving the problem of lack of training examples (judged documents) in

adaptive filtering; and (3) Varying the parameters used by an algorithm so

as to maintain a good performance throughout the filtering process.

We propose a new content-based on-line learning algorithm, known as

37

CHAPTER 4. THE REPGER ALGORITHM 38

the REPGER (RElevant feature Pool with Good training Exam-

ple retrieval Rule) algorithm, for the adaptive text filtering problem. The

filtering process typically starts with an optional description of the topic or

information need. When there is an incoming document, the system com-

putes a document relevance score and then apply a dissemination threshold

to make the binary decision to accept or reject the document. Our learning

algorithm maintains a pool of selective features with potentially high pre-

dictive power to predict document relevance and adjusts the dissemination

threshold dynamically so that the filtering system is more adaptable in an

interactive environment. In adaptive filtering, one of the most challenging

problems is the lack of training examples for the system to learn an accurate

filtering profile. In the light of this problem，we propose a novel mechanism

to retrieve good training examples at the beginning stage of the filtering pro-

cess. In summary, there are three characteristics in our REPGER algorithm

shown as follows:

• Predicting the likelihood of relevance of incoming documents by main-

taining a pool of selective features with potentially high predictive

power.

• Retrieving incoming documents based on the merit as good training

examples to tackle the problem of lack of training examples in adaptive

CHAPTER 4. THE REPGER ALGORITHM 39

filtering.

• Adjusting the dissemination threshold dynamically so as to maintain a

good performance of the classifier during the filtering process.

We present the whole REPGER algorithm in Figure 4.1. Each charac-

teristic of the algorithm is explained in detail in the following subsections.

Appropriate features are automatically extracted from the documents in the

preprocessing stage. A document is represented by a set of features extracted

from the document and each feature is associated with a document weight as

described in Equation 3.2. Two sets of features, PoolR and Poolw, are main-

tained throughout the filtering process. PoolR contains features from the

topic description and the retrieved relevant documents while PoolN contains

features appearing only in retrieved non-relevant documents. Therefore, the

two sets are complement and contain the features of all retrieved documents

and the topic description. A feature weight is associated with each feature

in PoolR and PoolN. The feature weights of the features in PoolR are used

in predicting document relevance. PoolR stands for the filtering profile and

the representations of PoolR and PoolN are equivalent to the one described

in Equation 3.5. Once an incoming document in retrieved, either or both

of the two sets will be updated depending on the relevance judgment of

the retrieved document. When the retrieved document is relevant, all the

CHAPTER 4. THE REPGER ALGORITHM 40

features of the document which are not contained in PoolR are moved into

PoolR. If the features are new features, i.e. the features which never ap-

pear in retrieved documents, they associated with their initialized feature

weights will be moved into PoolR directly. If the features are in PoolN, they

associated with their feature weights in PoolN will be moved into PoolR.

When the retrieved document is non-relevant, the new features are moved

into PoolN with their initialized feature weights. After an incoming docu-

ment is retrieved, the feature weights of the features in PoolR and PoolN are

normalized separately so that they are summed to one in each set. The nor-

malized weight is the unnormalized weight over the sum of the unnormalized

weights. There is a feature weight allocation component in Step 4(a) in Fig-

ure 4.1 of our REPGER algorithm. The weight allocation component can be

implemented by a variety of weight updating techniques. We use the weight

update formula of the EG-based algorithm described in Equation 3.6 in our

current implementation so that we have a fair performance comparison with

the EG-based algorithms in the experiments.

CHAPTER 4. THE REPGER ALGORITHM 41

Definition:

PoolR - a set of features appearing in retrieved relevant documents and topic
description,
PoolN - a set of features appearing only in retrieved non-relevant documents,
fk - the k-th. feature that the system has encountered,
00k - the normalized document weight of fk that appears in the incoming
document,
Wk - the normalized feature weight of fk that appears in the incoming docu-
ment.

Initialization: extract features Q 二 { / i , /2，…， /J from the topic and initial-
ize their feature weights. PoolR — Q. PoolN <- 0

Do while there is an incoming document

1. Let V be the set of features extracted from the document. Calculate
the normalized document weight for each feature in V. Initialize the
feature weights of the new features, i . e . 九 ^ {PoolR U PoolN), to be
l/\PoolR\.

2- If E/fce(x>nPooZfl)($fc f̂c) = scoreo > 0，then retrieve the document

3- If ^ 9 ^ + 丨糾尸-丨¥广)丨 > p, then retrieve the document

4. If the document is retrieved in Step 2 or 3,

(a) Get the classification (target value) y^ of the document and up-
date the feature weights of the features in V by:

^k = Wk exp{-2f]{scoreD 一 VD)00k)

where r] is the learning rate

(b) Update PoolR and PoolN and re-normalize the feature weights of
the features in them separately so that they are summed to 1.

(c) If the number of retrieved documents is greater than a predefined
number, then invoke the threshold learning algorithm.

Figure 41: The REPGER Algorithm.

CHAPTER 4. THE REPGER ALGORITHM 42

4.2 Relevance Prediction By RElevant fea-

ture Pool

As discussed in Section 3.2, not all the features that appear in incoming

documents should have the same degree of contribution in predicting docu-

ment relevance. In other words, some features may not be essential for the

system to consider in predicting document relevance. In batch filtering, a

filtering profile usually considers all distinct features in the document collec-

tion. Deciding which feature to be considered by the filtering profile is not a

main concern. It is because there is a large set of training documents for the

system to train an accurate filtering profile with appropriate feature weight

for each feature in the profile. However, deciding which feature should be

considered by a filtering profile is a critical problem in adaptive filtering. The

filtering profile is learned incrementally while it is being used to filter incom-

ing documents. If the filtering profile considers too many features which are

actually without significant predictive power, the performance of the system

will be affected badly until the feature weights of these features converge to

a negligible level.

Our REPGER algorithm carefully chooses the appropriate features being

considered in predicting the likelihood of relevance of incoming documents.

Inspired by the idea of Infinite Attribute Model [4], our algorithm does not

CHAPTER 4. THE REPGER ALGORITHM 43

need to specify the full feature set in advance i. The Infinite Attribute Model

defines a model of document and filtering profile representations which is dif-

ferent from the vector space model. For the vector space model, the dimen-

sion, which is the total number of distinct features in the document corpus,

of the feature vector used for representation must be known in advance. In

contrast, the Infinite Attribute Model represents each document and filtering

profile by using a set of features. The size of the set depends on the num-

ber of features in the documents or the filtering profile. Hence, documents

and filtering profile can be represented by using the Infinite Attribute Model

without the requirement of knowing the total number of distinct features in

the document corpus in advance. Therefore, this model is suitable for on-line

learning algorithm in adaptive filtering. We observe that the features which

appear only in non-relevant documents are less likely to have high predic-

tive power because it is less likely to have regularities for these features. In

contrast, the features that appear in the topic description or in relevant doc-

uments have potentially high predictive power because they are potentially

related to the topic. In view of this observation, we make an assumption

about the characteristic of the features. The assumption is that the features

appearing in the topic description and the relevant documents are essential

iThe REPGER algorithm uses Equations 3.2 and 3.5, which apply the Infinite Attribute

Model, in document and profile representations respectively.

CHAPTER 4. THE REPGER ALGORITHM 44

for the filtering system to consider in predicting document relevance. We

are not going to claim that the features appearing only in non-relevant doc-

uments are not informative. We just think that they may not help much

in document relevance prediction. Based on this assumption, we maintain a

RElevant feature Pool (REP) containing features from the topic descrip-

tion and the retrieved relevant documents. This pool is used for predicting

the likelihood of relevance of incoming documents. Suppose fk denotes the k-

th feature that the system has encountered. Let Xk and Wk be the document

weight and the feature weight of fk respectively. Let V be a set of features

of the incoming document and PoolR be a set of features that appear in

the topic description or in the previously retrieved relevant documents. The

relevance prediction rule is:

If Y1 {xkWk) > 於，then retrieve that document
fke(vnPooiR)

where 4> is the dissemination threshold.

The features in Pooln will be updated throughout the filtering process as

shown in Step 4(b) in Figure 4.1. When the retrieved document is relevant,

the features of the retrieved relevant document which are not in Pooln will

be moved into Pooln. This means that the size of PoolR is monotonically

increasing. The features that appear only in non-relevant documents will

not affect the predicted document relevance because all features in PoolR

CHAPTER 4. THE REPGER ALGORITHM 45

come from the topic description and the retrieved relevant documents. This

design is more effective than the EG-based algorithms [7, 18] and the sleeping

experts algorithm [10] for adaptive text filtering problems as shown in the

experimental results (see Section 6.3). The REP design does not apply the

concept of mini-expert. Therefore, it will not face the problem of negative

predictive power of the sleeping experts algorithm 2. Moreover, it will not

face the problem of learning rate setting of the EG algorithm .̂ This is

because the possibility of having the problem of low learning rate setting

is much lower than the EG algorithm when we apply the REP design in

predicting document relevance. Hence, we can set the learning rate at a

value for a desirable learning speed without worrying the problems faced by

the EG algorithm.

4.3 Retrieving Good Training Examples

The relevance prediction rule concentrates on retrieving incoming documents

based on the likelihood of relevance. The documents predicted as relevant

by the relevance prediction rule are presented to the user and then the rele-

vance judgments from the user are used to update the filtering profile. Every

retrieved document is actually a training example for the system to learn

2piease refer to Section 3.2.1.
3piease refer to Section 3.2.2.

CHAPTER 4. THE REPGER ALGORITHM 46

a more accurate filtering profile. If no incoming document is predicted as

relevant by the relevance prediction rule, there will be no training example

(retrieved document) for the system to update the filtering profile. There-

fore, in order to have enough training examples for the system to learn, we

have to retrieve an incoming document not only according to its predicted

degree of relevance, but also according to its value as a training example to

improve the future filtering performance.

We may simply set a lower dissemination threshold at the beginning stage

of the filtering process to let the system retrieve more documents for it to

learn. However, this strategy only makes use of PoolR, i.e. the filtering

profile, to retrieve incoming documents. If the features in PoolR are not

informative owing to a poor topic description, the documents retrieved by

using this strategy will not help much in improving the future filtering perfor-

mance. We observe that if we retrieve an incoming document which contains

many new features, i.e. the features which never appear in retrieved docu-

ments, and many features in Poolji, this document can help us learn more

new features. It also allows the weight allocation component to update the

weights of the features in PoolR by using the relevance judgment of the re-

trieved document to improve the future filtering performance. In view of

this observation, we make an assumption about the characteristic of good

training examples in adaptive filtering. The assumption is that an incoming

CHAPTER 4. THE REPGER ALGORITHM 47

document is a good training example if it contains many new features and

many features in PoolR. Therefore, we introduce the Good training Ex-

ample retrieval Rule (GER) to retrieve the incoming documents which

have many new features and many features in Pooln. Note that the GER are

not designed to retrieve relevant documents. The task of retrieving relevant

documents is done by the document relevance prediction rule presented in

Section 4.2. The purpose of the GER is to retrieve documents which meet

the criteria of being a good training example to improve the accuracy of

the filtering profile by using the relevance judgments of the retrieved docu-

ments. In order to achieve this purpose, we need to maintain another set of

features to keep track of the features of the previously retrieved documents.

Let PoolN be a set of the features which appear only in previously retrieved

noii-relevant documents. The G E R is:

\VnPoolt^\ \V 一 [Poola U Poo/,v)| �
~\Poola ‘ p > " ’ then retrieve that document

Similar to PoolR, the features in Poo/,y will be updated throughout the

filtering process.

Obviously, when considering the two fractions in the condition part of the

GER independently, the maximum score given by each fraction is one. The

overall score range given b\' the GER is [0,2). By setting the value of /5 higher

than one, only the incoming documents satisfying our good training example

CHAPTER 4. THE REPGER ALGORITHM 48

criteria, i.e. containing many new features and many features in PoolR, will

be retrieved be the GER. The higher is the value of p, the more strict the

requirement of being a good training example is. The purpose of the GER is

to retrieve a small number of good training examples for the system to learn

at the beginning stage of the filtering process. Therefore, the parameter j3

should not be too small. A good strategy is to set P to a value slightly lower

than the value at which the GER gives no effect. Moreover, the effect of

the GER is continuously decreasing during the filtering process because the

number of new features is decreasing and the number of features in PoolR is

increasing as the system is retrieving more and more incoming documents.

In other words, given a fixed value of j3, the possibility of retrieving docu-

ments by the GER reduces during the filtering process. It means that the

requirement of being a good training example set by the GER is adaptable

in an interactive environment. This characteristic of the GER ensures that

the GER will only retrieve a small number of good training examples.

CHAPTER 4. THE REPGER ALGORITHM 49

4.4 Learning Dissemination Threshold Dynam-

ically

In our REPGER algorithm, one characteristic is that the dissemination

threshold can be adjusted dynamically throughout the filtering process. In an

adaptive filtering environment, the filtering knowledge of the filtering model

is changing all the time. Therefore, the dissemination threshold, which is

used to decide whether or not to retrieve incoming documents, should be

varied dynamically in order to make the filtering system more adaptive and

effective. We propose to learn a local optimal dissemination threshold with

respect to the performance measure dynamically during the filtering process.

Our threshold learning algorithm is fully automatic which does not need any

user intervention. Chapter 5 describes our threshold learning algorithm in

detail.

Chapter 5

T h e Threshold Learning

Algorithm

5.1 Learning Dissemination Threshold Dynam-

ically

The performance of an information filtering system, which makes use of a

dissemination threshold to decide whether or not to retrieve incoming doc-

uments, is heavily dependent on the setting of the dissemination threshold.

In adaptive text filtering problems, the optimal value of the dissemination

threshold for the classifier is unknown before the filtering process. Even if

we can estimate the optimal dissemination threshold for the classifier at a

50

CHAPTER 5. THE THRESHOLD LEARNING ALGORITHM 51

specific time instant, we cannot guarantee that the estimated threshold is

good at every time instant throughout the filtering process. One solution

is to adjust the dissemination threshold dynamically throughout the filter-

ing process so that the filtering system is more adaptable in an interactive

environment.

5.2 Existing Threshold Learning Techniques

In [7], Callan suggested to improve the Exponentiated-Gradient (EG) al-

gorithm [18] by adjusting the threshold of the classifier during the filtering

process so that the filtering system can find a good threshold dynamically.

The adjusted threshold is set somewhere between the average score of the re-

trieved relevant documents and the average score of the retrieved non-relevant

documents. In order to reduce the risk of setting a poor threshold, the sys-

tem can start to adjust the threshold after retrieving ten relevant and ten

non-relevant documents. One characteristic that Callan mentioned is that

the threshold learning technique is not misled by occasional low-scoring rel-

evant document or high-scoring non-relevant document. However, we think

that this characteristic holds only when the number of retrieved relevant

documents and the number of retrieved non-relevant documents are high

enough. Moreover, we observe that the average score of the retrieved rele-

CHAPTER 5. THE THRESHOLD LEARNING ALGORITHM 52

vant documents is not necessarily always greater than that of the retrieved

non-relevant documents especially at the beginning of the filtering process.

If the average score of the retrieved relevant documents is lower than that of

the retrieved non-relevant documents, the threshold learning technique will

not work. Also, it is not fully automatic because users need to decide the

position of the new threshold within the two average scores in advance.

Zhai et al. [45] also proposed to adjust the dissemination threshold dy-

namically in their TREC-7 [17] adaptive text filtering track entry. They

proposed a technique, namely the beta-gamma adaptive threshold regula-

tion, to adjust the threshold by interpolating between an "optimal" threshold

and "zero" threshold. The optimal threshold is the threshold that yields the

highest performance, given the newly updated feature weight vector, over the

accumulated training documents. The zero threshold is the highest threshold

below the optimal threshold that gives a non-positive performance over the

training documents. The threshold learning technique involves two parame-

ters. One limitation of this technique is that we need to set the parameters

in advance which may vary for different document corpora.

CHAPTER 5. THE THRESHOLD LEARNING ALGORITHM 53

5.3 A New Threshold Learning Algorithm

We propose to learn a local optimal dissemination threshold with respect

to the performance measure dynamically during the filtering process. Our

threshold learning algorithm is fully automatic which does not need any user

intervention. Step 4(c) in Figure 4.1 of our REPGER algorithm is responsible

for learning the dissemination threshold.

We propose to adjust the dissemination threshold based on the historical

information. At any time instant during the filtering process, we have the

current PoolR and a collection of retrieved documents. The maximum and

the minimum feature weights of the features in PoolR are first obtained from

the features in PoolR. The dissemination threshold will then be determined

somewhere between the two values. The idea is to choose the threshold

with the best value with respect to the performance measure when using the

threshold and the current PoolR to filter the previously retrieved documents.

The reason for using the maximum and the minimum feature weights of the

features in PoolR as the boundaries is that these two boundaries can restrict

the new dissemination threshold within a reasonable range for retrieving

other incoming documents. The adjusted threshold may be too high or too

low if there is no boundary constraint. When there is a range of thresholds

giving the best performance, we choose the mid-point of the range. If there

CHAPTER 5. THE THRESHOLD LEARNING ALGORITHM 54

are two or more non-consecutive thresholds giving the best performance,

the lowest one will be chosen because it can help the system maintain a

higher possibility of retrieving another incoming document. By using this

mechanism, a new threshold can be learned whenever the system retrieves

an incoming document. In summary, the threshold learning procedure is

summarized as follows:

1. Obtain max{it;fc} and min{iL'fc} of the features in the current PoolR to

form a value range [min{it;fc} ，max{tt;jfc}

2. Divide the value range into b + 1 intervals to get b boundary points.

One of the b boundary points will be the new threshold. (We used

b = 20 in our current implementation.)

3. Use each boundary point and the current PoolR to filter the previously

retrieved documents. Every boundary point will have a corresponding

value of the performance measure after the filtering process.

4. Choose the boundary point with the best performance with respect

to the performance measure given by the user as the new threshold.

If there are consecutive boundary points giving the best performance,

the middle one or the one immediately lower than the mid-point will

be chosen. If there are two or more non-consecutive boundary points

giving the best performance, the lowest one will be used.

Chapter 6

Empirical Evaluations

6.1 Experimental Methodology

We have conducted experiments similar to the adaptive text filtering track

in the Seventh Text REtrieval Conference (TREC-7) [17] in 1998. It was the

first time for TREC to organize the adaptive text filtering track. Incoming

documents arrive in chronological order. The filtering system starts with a

topic description. For each incoming document, it needs to make a binary

decision to accept or reject the document. When the system retrieves a doc-

ument, the filtering profile is learned and updated by using the relevance

judgment of that document. Three corpora, namely, AP (Associated Press),

FBIS (Foreign Broadcast Information Service) and WSJ (Wall Street Jour-

nal) were used. Associated Press (AP) World-stream is an amalgamation

55

CHAPTER 6. EMPIRICAL EVALUATIONS 56

of all the AP-produced international services. The English language copy

usually originates in or is of interest to areas outside the United States; the

service also produces copy in French, German, Swedish, Dutch and Span-

ish. The Foreign Broadcast Information Service (FBIS) is a United States

government operation which translates the text of daily broadcasts, govern-

ment statements, and select news stories from non-English sources around

the world. The Wall Street Journal (WSJ) is a trusted and reliable business

newspaper. Thus, the WSJ corpus is a collection of the articles in this news-

paper. We have fully implemented our REPGER algorithm and conducted

experiments on these three document corpora to study the effectiveness of

our algorithm in adaptive filtering. We also compared the performance of

our REPGER algorithm with two on-line learning algorithms, namely, the

basic EG algorithm [18] and the improved EG algorithm in [7] (called EG-C

in this thesis) on the three document corpora. The EG-C algorithm enhances

the EG algorithm by dynamically adjusting the dissemination threshold and

the target values.

As we mentioned earlier, the EG-based algorithms integrated with the

Infinite Attribute Model [4] can be applied to adaptive filtering problems so

that the full set of distinct features need not be known in advance. Nev-

ertheless, in our experiments, we give the EG and the EG-C algorithms

an advantage by providing the full set of distinct features in advance. In

CHAPTER 6. EMPIRICAL EVALUATIONS 57

contrast, our REPGER algorithm does not have such information. At the

beginning of the filtering process, for the EG and the EG-C algorithms, we

treat the topic description as a relevant document and update the filtering

profile by the weight update formula using the binary feature representation.

Each incoming document is represented by a unit vector or a set of features

depending on which algorithm is used. Features are composed of words ex-

tracted from documents or topic descriptions after stop-word removal and

word stemming. For the topic descriptions, words in the description or the

concept fields (marked by SGML tags <desc> and <con>) are extracted.

Normalized TF-IDF is adopted in the document representation. For each

document corpus, the initial IDF statistics were derived from an unrelated

reference corpus. This technique is commonly used for obtaining a more ac-

curate estimate for the initial statistics. The reference corpus used for each

document corpus in our experiments is shown in the following table.

Document corpus Reference corpus

AP WSJ

FBIS AP

WSJ AP

During the filtering process, the IDF used for each incoming document is

calculated incrementally using the initial statistics and the historical infor-

mation collected as shown in Equation 3.3.

CHAPTER 6. EMPIRICAL EVALUATIONS 58

We follow the set-based utility measure, namely F3, proposed in TREC-7

17] to evaluate the performance of an adaptive text filtering system. The

measure is defined as:

F3 = 4A — B (6.1)

where A is the number of retrieved relevant documents and B is the number

of retrieved non-relevant documents. F3 assigns a value of 4 units to each

retrieved relevant document and a cost of 1 unit to each retrieved non-relevant

document. The larger the F3 score, the better the filtering system performs

for a given topic. Filtering according to a utility measure is equivalent to

filtering by estimated probability of relevance. Therefore, filtering according

to F3 is equivalent to setting the probability threshold to 0.2, i.e. retrieve

the document if the probability of relevance of the document is greater than

0.2 1.

For each document corpus, we have conducted experiments for different

algorithms on a set of topics. We evaluated the performance by considering

the macro measures of all topics. In particular, the set F3 measure is derived

from the macro figures in Equation 6.1. We used the set F3 measure to reflect

how good an algorithm performs over a set of topics.

iReaders can find the general formula for converting a utility measure into a probability

threshold in [26].

CHAPTER 6. EMPIRICAL EVALUATIONS 59

6.2 Experimental Settings

For the AP corpus, we used 164,597 documents from 1988 and 1989. All 50

topics from TREC-7 [17] filtering track (topic number 1-50) were used. For

the FBIS corpus, we used 130,471 documents from 1993 and early 1994. We

used 38 topics from TREC-5 [42] routing/filtering track in our experiments

which have hundreds of relevance judgments for each topic. For the WSJ

corpus, we used 98,732 documents from 1987 to 1989. 50 topics from TREC-

7 routing track (topic number 51-100) were used.

For each document corpus, we varied the parameters of each algorithm

in an attempt to study the performance for a particular algorithm. We also

recorded the on-going filtering performance during the filtering process to

observe the adaptive behavior of each algorithm. For each document cor-

pus, we evenly divide the full set of documents into five intervals. We then

record the filtering performance of each algorithm at the end of each inter-

val. By observing the change of the performance of each algorithm through

the five intervals, we observe the adaptive behavior of each algorithm. For

the EG algorithm, we varied the dissemination threshold, the target value

for relevant documents and the learning rate r]. We set the target value for

non-relevant documents to 0 because it is reasonable to obtain a zero inner

product W • D for a non-relevant document and a learned classifier in prac-

CHAPTER 6. EMPIRICAL EVALUATIONS 60

tice. For the EG-C algorithm, we followed the desirable parameter setting

for the value of R ^ in [7] and varied the initial dissemination threshold, the

threshold learning starting point and the learned threshold position between

the average score of the retrieved relevant documents and the average score

of the retrieved non-relevant documents. For our REPGER algorithm, we

followed the parameter setting for the value of R in [7]. We set the target

values for relevant documents and for non-relevant documents to 0 and 0�5

respectively. We varied the initial dissemination threshold, the value of P

and the threshold learning starting point to investigate their effects. In addi-

tion, we also conducted experiments with and without the GER to see how

the GER contributes to the filtering process. REPGERO denotes the trial of

REPGER without using the GER. Experiment was also conducted to find

out whether the assumption of feature characteristic in Section 4.2 is valid

or not on the three document corpora. In order to achieve this purpose, we

designed two variations of the REPGER algorithm. Both are based on the

REPGER framework without using GER and threshold learning mechanism.

REPGER1 applies the REP while REPGER2 considers all features that the

filtering system has encountered in predicting document relevance. Table 6.1

summarizes the parameter settings for the algorithms.

In order to compare the effectiveness of the algorithms throughout the

^Note that the learning rate rj = 2/{3R^).

CHAPTER 6. EMPIRICAL EVALUATIONS 61

Algorithm Parameter Setting

EG target value for non-rel. doc. (0), target value

for rel. doc. (0.005-1), R (0.8 or KW)

EG-C target values (MinMax), R (0.8), threshold

learning starting point (0-30 retrieved reL and

non-rel. doc. each), learned threshold position

(0%, 25%, 50% and 75%)

REPGER target values (0.5, 0), R (0.8), j3 (1.3-1.8),

threshold learning starting point

(3-30 retrieved doc.)

REPGERO REPGER without using GER

REPGER1 base on the REPGER framework,

follow the parameter setting of REPGER,

only use REP

REPGER2 base on the REPGER framework,

follow the parameter setting of REPGER,

consider all features in predicting doc. reL

Table 6.1: The parameter settings for the algorithms.

CHAPTER 6. EMPIRICAL EVALUATIONS 62

filtering process, we present the on-going filtering performance of the trials

corresponding to the best parameter combination of each algorithm. Besides

comparing the performance of the three algorithms, we also compare the per-

formance of our REPGER algorithm on the AP corpus with the participants

of the adaptive text filtering track in the latest TREC-7 [17]. Note that this

track only conducted filtering runs on the AP corpus.

6.3 Experimental Results

The detailed experimental results of the algorithms on the AP, FBIS and

WSJ document corpora were presented in Appendix A, B and C respectively.

For each algorithm, we only show the runs which are necessary to give the

trend of the filtering performance for each document corpus. From the ex-

perimental results, we observe that the EG and the EG-C algorithm are very

sensitive to the parameter settings, including the dissemination threshold

and the target value for relevant documents. For the EG algorithm, the KW

technique suggested by Kivinen and Warmuth in [18] does not give a signif-

icant improvement. It is because the KW technique was originally designed

for batch learning such as batch filtering. In batch filtering, the learning rate

set by the KW technique is fixed throughout the learning process. However,

when it is applied to adaptive filtering, the learning rate is varied according

CHAPTER 6. EMPIRICAL EVALUATIONS 63

to the constraint of the KW technique. Therefore, it may not be suitable for

adaptive filtering. For the EG-C algorithm, it performs better than the EG

algorithm on the three document corpora. It shows that the improvements

proposed by Callan make the EG algorithm more effective in adaptive filter-

ing. As we discussed in Section 3.2.2, the dissemination threshold is adjusted

within two threshold bounds. We observe that the EG-C algorithm always

gives the best filtering performance at the position 0%, i.e. the adjusted

dissemination threshold is set to the lower bound .̂ The performance may

be higher if we set the adjusted threshold lower than the lower bound. It

means that the lower bound may be too high.

Table 6.2 summarizes the best performance of REPGER1 and REPGER2

on the three document corpora. The best performance of REPGER1 is al-

ways higher than that of REPGER2 on these corpora. It shows that consider-

ing only the features which appear in the topic description and the retrieved

relevant documents in predicting document relevance can improve the fil-

tering performance. This observation implies that our assumption on the

feature characteristic in Section 4.2 is reasonable and the REP concept helps

improve the performance in adaptive filtering.

Figures 6.1, 6.2 and 6.3 show the effect of the initial dissemination thresh-

old on the performance of the EG, the EG-C and the REPGER algorithms

^The lower bound is the average score of the retrieved non-relevant documents.

CHAPTER 6. EMPIRICAL EVALUATIONS 64

Corpus REPGER1 REPGER2

AP 23 4

FBIS 9 1

WSJ 376 78

Table 6.2: The best performance, set F3, of REPGER1 and REPGER2 on

the three document corpora.

on the FBIS corpus respectively. We plotted two sub-figures to show the

effect of using KW for the EG algorithm in Figure 6.1. Performance of using

different target values for relevant documents is also shown in the sub-figures.

In Figure 6.2, we plotted the performance of setting different adjusted thresh-

old positions of the EG-C algorithm with threshold learning starting point

at 30 4. For the REPGER algorithm, we plotted the performance of setting

different values of /? (beta) with threshold learning starting point at 15 ^ in

Figure 6.3. We aim at observing the sensitivity of parameter settings of dif-

ferent algorithms from these figures. We find that our REPGER algorithm

gives satisfactory performance over a range of initial dissemination threshold

^The EG-C algorithm gives the best performance with threshold learning starting point

at 30 on the FBIS corpus.

5We randomly choose a value of the threshold learning starting point to show the

effect of different values of (3 (beta) and initial dissemination threshold of the REPGER

algorithm on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 65

and a range of j3 (beta). The performance is less sensitive to the parameters.

In contrast, the performance of the EG and the EG-C algorithms is more

sensitive to the initial dissemination threshold. For example, the EG and

the EG-C algorithms can only give non-negative performance over a narrow

range of 0.000094-0.000106 and 0.000092-0.000108 respectively for the initial

dissemination threshold parameter. These characteristics are also observed

on the other two corpora.

80 1 1 1 1 1— 1 1 1
Target value for rel. doc. = 0.35 ~ i ~ Target value for rel. doc. = 0.45 ~ i ~ ~
Target value for rel. doc. = 0.25 — x — " " “ Target value for rel. doc. = 0.35 — x — "

70 - Target value tor rel. doc. = 0.05 —*— _ Target value for rel. doc. = 0.25 —«—
X Target value for rel. doc. = 0.025 .—a— Target valua for rel. doc. = 0.05 —o—
i、、、、 70 . , ¾ - . -60 - i ������ - / i����:>... i ���� 60 - / �����•-.. -.^. 、、、、 / 丨 、、、、•»

50 - ..-• i ••-.. X - / i 、、、、\
. , 1 "••-. \ 50 - / I V -

卜 - / I . ,\\ - “ . < 二 小 \ ^ -
3�- \ + z � \ K _ - r I � _ _
2�- I I \ i • - /i I \ � \ -

1�- I I . \ \ - 1�- /i I 誠 _
ol L_, 1 1 4k_̂ —— ol :~̂ i \ --.X \
9e"05 9.4e-05 9.8e*05 0.000102 0.000106 0.00011 9e-05 9.4e-05 9.8e^5 0.000102 0.000106 0.00011

Threshold Threshold

Figure 6.1: The filtering performance of the EG algorithm with different

dissemination threshold and target value for relevant documents settings on

the FBIS corpus. Without KW on the left and with KW on the right.

Figure 6.4 depicts the effects of the parameter f3 (beta) and the initial dis-

semination threshold on the performance of our REPGER algorithm on the

FBIS corpus. We plotted three initial dissemination thresholds with a range

o f ^ for our REPGER algorithm and also plotted the best performance of the

EG and the EG-C algorithms for reference. The threshold learning starting

CHAPTER 6. EMPIRICAL EVALUATIONS 66

1 1 ： 1 1
Adjusted threshold position = 0% ~ i ~

S Adjusted threshold position = 25% -—x-_-
___ ffi\ Ad usted threshold position = 50% ---*---
^ U - mA Adjusted threshold position = 75% . ..a . - ." r\ _

^ 100 - i \ -

7 V \ 、 .
0 Li 1 1 1 1

9.2e-05 9.6e-05 0.0001 0.000104 0.000108 0.000112
Initial threshold

Figure 6.2: The filtering performance of the EG-C algorithm with differ-

ent initial dissemination threshold and adjusted threshold position settings at

threshold learning starting point — 30 on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 67

900 1 1 1
beta = 1.3 ~ i ~
beta = 1.4 ---x---

800 - beta = 1.5 - • •* - • • - .
beta = 1.6 •̂；；；；；-̂̂

‘•"""""""""T"̂ ~~~~~~~̂ ^^^^^ ，， _̂ :--:.f:.:-:..-•-... ^^-^ 丨‘ _,,,..--- ^--^--^.^_ :rr^ :::::::^S^--�
600 - 〜.:,:.:.:;一

„ 500 - -
©

⑴ 400 - -

300 - -

200 - -

1 0 0 - -

0 1 1 1
0.013 0.015 0.017 0.019 0.021

Initial threshold

Figure 6.3: The filtering performance of the REPGER algorithm with differ-

ent j3 (beta) and initial dissemination threshold settings at threshold learning

starting point 二 15 on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 68

point of our REPGER algorithm was set to 15 .̂ This empirical result shows

two characteristics of our REPGER algorithm. First, we observe that our

REPGER algorithm performs better than the EG-C algorithm and the EG-

C algorithm gives better performance than the EG algorithm. Second, the

REPGER algorithm gives stable and high performance on a range of values

of (3 (beta). This shows that the performance of the REPGER algorithm is

less sensitive within a range of values of f3.

_ [‘ ‘ REPGER0.013 ——i——
.--*-. REPGER 0.017 —x— _

, . - - •- .,. REPGER 0.021 …潔…
.--''' "•-.. EG-C (baseline)……G……

700 sr"" ^^______ " - - ^ EG baseline) - » - - ,
^^ —+:^^^.__ ----”

^ ^ ' ^ , ' ' ' ^ -̂-̂ n3!Hi;;i -I .---'"

600 - ̂ ^C^"'' �-�”::--x---;7，:- ‘丨
< ^ ' ' ' ' � • * • '

^ 500 - -
ff
o

CO

400 - -

300 - -
2 0 0 ' - ^ ° 巴 - '

1 0 0 - -
'̂ 畢 » ―丨

1.2 1.3 1.4 1.5 1.6

beta

Figure 6.4: The filtering performance of the REPGER algorithm with differ-

ent initial dissemination threshold and j3 (beta) settings at threshold learning

starting point 二 15 on the FBIS corpus.

®We randomly choose a value of the threshold learning starting point to show the

effect of different values of |3 (beta) and initial dissemination threshold of the REPGER

algorithm on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 69

Figure 6.5 shows the effects of the threshold learning starting point pa-

rameter and the initial dissemination threshold on the performance of our

REPGER algorithm on the FBIS corpus. We plotted three initial dissemi-

nation thresholds with a range of threshold learning starting points for our

REPGER algorithm and also plotted the best performance of the EG and

the EG-C algorithms for reference. The P (beta) of our REPGER algorithm

was set to 1.6 .̂ We observe one more characteristic of our REPGER al-

gorithm from this empirical result. It is that our REPGER algorithm gives

satisfactory performance over a range of threshold learning starting points

and the performance is always better than that of the EG and the EG-C

algorithms.

Figures 6.6, 6.7 and 6.8 depict the on-going filtering performance of the

best trials of the EG, the EG-C, the REPGERO and the REPGER algo-

rithms on the three corpora during the whole filtering task. Recall that

REPGERO denotes REPGER without using the GER. They demonstrate

that the adaptive learning performance of the REPGERO and the REPGER

algorithms is much higher than that of the others. For the three corpora, we

observe that the adaptive learning performance of the EG algorithm is very

^We randomly choose a value of /3 (beta) to show the effect of different values of thresh-

old learning starting point and initial dissemination threshold of the REPGER algorithm

on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 70

‘ REPGER 0.016 i
finn - REPGER0.018 — x —
"uu REPGER 0.021 - - * -

EG-C (baseline)……Q……
EG (baseline) ---»—

700 - 丨 丨… 。

- : = = ¾ ¾ : ^ ^ ^ ^ ^ ^ :
CO 500 - -

"S
CO

400 - -

300 - -

200'- : ° -'
100 - -

• h — >- HI

10 15 20

Threshold Learning Starting Point

Figure 6.5: The filtering performance of the REPGER algorithm with dif-

ferent initial dissemination threshold and threshold learning starting point

settings at f3 (beta) 二 1.6 on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 71

low. It may be due to the problem that the EG algorithm does not have

a mechanism to maintain a pool of selective features with potentially high

predictive power in an interactive environment. For the FBIS corpus, the

REPGER algorithm starts with a performance lower than that of the EG

and the EG-C algorithms. It seems that the topics in the FBIS corpus is dif-

ficult for our algorithm to learn. We found that the initial features extracted

from the topic descriptions are not informative. Our algorithm starts with

a filtering profile containing only the features extracted from the topic de-

scription. This makes our algorithm retrieving some non-relevant documents

at the beginning of the filtering process for these topics. Nevertheless, it

achieves better performance than the EG-based algorithms after processing

some documents. Note that the EG and the EG-C algorithms know the full

set of distinct features in advance to construct their filtering profiles.

When concentrating on the performance ofthe REPGERO and the REPGER

algorithms on the three corpora, we observe that the REPGER algorithm al-

ways give a better performance. When the topics are difficult to learn such

as the FBIS corpus, it can give a considerable contribution to the filtering

system. The GER reduces the performance damage at the beginning stage of

the filtering process. In other words, it increase the filtering performance of

the algorithm at the beginning stage. This is exactly what the GER intends

to achieve. By having a better performance at the beginning stage, the per-

CHAPTER 6. EMPIRICAL EVALUATIONS 72

1 1 1 1 ffi
/^ EG ~ I ~

2000 - /:''' EG-C —X- - - -
/：-' REPGERO - ^ -

/;'' REPGER —s---/ , ' / /
./ /

1500 - El/'' -
, . / '

•.,/."
£ 1000 - J'- -® / ' ' CO .;i-

/V

500 - y ,_x -

/ , z , Z
•�^===^^^^^"V""_̂_^^;r'^-^ -

、、、、、、、、、z
1 !̂¢:: 1 1 1

0 32919 65838 98757 131676 164597

Number of incoming documents encountered

Figure 6.6: The on-going filtering performance of the four algorithms chosen

by the best parameter combinations on the AP corpus.

800 p ‘ ‘ ‘ ‘ J EG 一 -
EG-C ---X—

/ REPGERO - - � -
/ , ' REPGER……Q……

600 - /••,''' -
/ z

/ . .
400 - / / -•‘ /

/ • / /

£ / / "S / .'
^ 200 - ,声 / , z ' x -

..-••• / X'-"'
* z-'''x

..••••••• J-y."'"
^ 於-一-二 _______-^^

„ ,_^:::::zz^ ^ ” — H
Oet-^ 7 ^ -

\.. / .--'
��,::::>....../:/

> ,.. .• •

-200 - ����Ef' /' -
� � � / '
^ 1 1 1 1

0 26094 52188 78282 104376 130471

Number of incoming documents encountered

Figure 6.7: The on-going filtering performance of the four algorithms chosen

by the best parameter combinations on the FBIS corpus.

CHAPTER 6. EMPIRICAL EVALUATIONS 73

1 1 1 1 H 1400 - ,,...> EĜ-C - ^ -
,•••_,'' REPGERO - - * - -

0 " ,-' REPGER -•-••-Q…… 1200 - ,V" -/•米
/ / .' •

/ • • / '
1000 - / / -

/ /
/ /

/,'
800 - 0/ ,.--^ -2 /^ , , " - ' © /-' /

的 600 _ /：-'' / _

// /
// /

400 - !/ / -
:• /

. J /

2 0 0 - 々 （ / _ _ _ _ _ _ ^ , . -

� • ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ " ^ ^ " ^ " ^ " ^ " " ^ ^ -

1 I I I I

0 19746 39492 59238 78984 98732

Number of incoming documents encountered

Figure 6.8: The on-going filtering performance of the four algorithms chosen

by the best parameter combinations on the WSJ corpus.

formance will keep better than REPGERO throughout the filtering process.

For example, on the FBIS corpus, the percentage increase of the performance

at the end of the filtering process is 15.59% ^ which is a significant improve-

ment. This validates the use of the GER for tackling the problem of lack of

training examples for the information filtering system in adaptive filtering.

Table 6.3 shows the average set F3 values of the on-going performance of

the EG, the EG-C and the REPGER algorithms. For instance, the average

set F3 values of the AP corpus is the mean of the five set F3 values shown

in Figure 6.6 for the corresponding algorithm. It shows that our REPGER

8REPGER gives 786 and REPGERO gives 680. The percentage increase is (786-

680)/680 = 15.59%.

CHAPTER 6. EMPIRICAL EVALUATIONS 74

algorithm has higher average utility values demonstrating its effectiveness.

Corpus EG EG-C REPGER

AP 10 22.4 1,042.8

FBIS 38.6 108.8 272.2

WSJ 107.2 454.6 791.2

Table 6.3: The average set F3 values of the on-going performance of the EG,

the EG-C and the REPGER algorithms.

In comparing the performance with the participants of the adaptive text

filtering track in TREC-7 [17], only AP years 88 and 89 could be used since

we could not obtain the relevance judgments for the year 90. Similar to

most TREC-7 participants, we adopted a topic-by-topic comparison fashion

and concentrated on the comparison with their median performance .̂ Com-

paring with the median performance of the TREC-7 participants can reflect

how well an algorithm performs among them. Table 6.4 summarizes the

comparison of the performance of our REPGER algorithm with the TREC-7

participants over 50 topics. It depicts the number of topics in which the F3

of our REPGER algorithm is less than, equal to, or greater than the me-

dian of the TREC-7 participants. It shows that our REPGER algorithm is

^Actually, we can only obtain the minimum, median and maximum performance of the

participants for the 50 topics.

CHAPTER 6. EMPIRICAL EVALUATIONS 75

comparable to them. Note that no single participant obtained performance

consistently better than the median over all topics. Moreover, our algorithm

achieves the same performance as their best performance in 5 topics and even

achieves better performance than their best performance in 3 topics in the

AP year 89 corpus.

Corpus < median = median > median

AP year 88 24 2 24

AP year 89 21 5 24

Table 6.4: The number of topics in which the F3 of our REPGER algorithm

is less than, equal to, or greater than the median of the TREC-7 adaptive

text filtering track participants (total 50 topics).

Chapter 7

Integrating With Feature

Clustering

In the vector space model, both the incoming documents and the filtering pro-

file are represented as a feature vector as described in Equation 3�1 and 3.4.

Consider now a situation in which n distinct features are available to char-

acterize document content. Each of the n features,九，can then be identified
—

with a feature vector fk. Hence the incoming document D can be rewritten

as

D = j ^ x J i (7.1)
i=l

where x ,̂ the document weight, is interpreted as the components of the doc-

76

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 77

~ f

ument D along the vector fi.

In a vector space, a common similarity measure used to compute the
—

similarity between vectors a and b is the cosine similarity. It is their inner
~k — — —

product, a ‘ b — \a\\b\ cosS, where |a|, |6| are the lengths of a, b, respectively

and S is the angle between the two vectors. Hence, given a document D

and a filtering profile W represented in the form of Equation 7.1, the profile-

document similarity can be computed as

D'W = f； x,Wj fi. f^ (7.2)
i,j=l

Computing the similarity value thus depends on a specification of the

document and filtering profile components, as well as knowledge ofthe feature
— ~^

correlations f i . f j for all feature pairs. The feature correlations are not usually

available a priori especially in the adaptive filtering setting. In practice the

feature-correlation problem is often solved by assuming that the features are

in fact uncorrelated, in which case the feature vectors are orthogonal (i.e.,
~* — — ~*

fi . f j = 0, except when i 二 j and fi • fi = 1). When the n feature vectors

are orthogonal, linear independence follows automatically. Assuming that

the features are uncorrelated, the profile-document similarity computation

of Equation 7.2 is reduced to a simple sum-of-products form of Equation 7.3:

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 78

sim(D, W) = ^XiWi (7.3)
2=1

The profile-document similarity measure used in our REPGER algorithm

(Step 2 in Figure 4.1) is a variant of the Equation 7.3. It also works under

the assumption of feature uncorrelation. However, in fact, this assumption

does not hold. Many features are correlated to each other in a document

corpus. For example, the words "rear", "steering" and "tire" are correlated.

Feature clustering methods can solve this problem by joining similar fea-

tures, i.e. features that are correlated, into groups. After feature clustering,

the set of distinct features considered in the vector space becomes a set of

clusters by joining the similar features into groups. Hence, the assumption

that the vectors are orthogonal becomes reasonable.

There is another benefit of feature clustering. It can reduce the feature

dimensionality in the vector space. The size of the filtering model can be

reduced because the large set of features in PoolR is reduced to a relatively

small set of feature clusters. Hence, the efficiency of calculating the profile-

document similarity can be improved.

In this thesis, we investigate the contribution of feature clustering in adap-

tive filtering. We modify the distributional clustering algorithm proposed in

1] so that the algorithm can be applied in the adaptive filtering setting.

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 79

7.1 Distributional Clustering Algorithm

Distributional clustering [33] is an information-theoretic approach that has

shown good performance in language modeling. It joins features that induce

similar probability distributions among the target concept that co-occur with

the features in question. The reasoning behind this is as follows. If two

different features "vote" similarly among the possible answer in the task

at hand, then the features are correlated and can be joined into a cluster.

Baker and McCallum [1] modified the distributional clustering algorithm

for text classification. They show that distributional clustering is better

than other existing clustering techniques, such as class-based clustering using

mutual information [5] and clustering by Latent Semantic Indexing [11], in

both reducing feature dimensionality and improving accuracy. Therefore, we

choose distributional clustering to integrate with the REPGER algorithm.

We modify the algorithm in [1] so that we can apply distributional clustering

of features in adaptive filtering.

Consider a random variable over classes, C, and its distribution given

a particular feature, fi. The distribution can be written as P{C\fi). Note

that, in information filtering, the class variable C contains only two classes,

relevant and non-relevant When features fi and f j are clustered together, the

new distribution can be estimated as the weighted average of the individual

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 80

distributions

P (W , V /.) = F (^ f (C | / ') + ^U^)P_j) (7.4)

In the context of information filtering, the target variable for the task at

hand is the class label. Distributional clustering thus measures the similarity

between two features fi and f j as the similarity between the class variable

distributions they induce: P{C\fi) and P{C\fj). Kullback-Leibler (called KL

in this thesis) divergence is an information-theoretic score that measures the

difference between two probability distributions. The KL divergence between

the class distributions induced by fi and f j is defined as

D{P{CmP{Clfj)) 二 f 5 P(c,|/.) l o g (^ ^) (7.5)
k=i r�Ck fj)

The KL divergence has some odd properties. It is asymmetric, and is infinite

when an event with non-zero probability in the first distribution has zero

probability in the second distribution. Thus, in Distributional Clustering we

use a related measure that does not have these problems. It is the average

of the KL divergence of each distribution to their mean distribution, called

"KL divergence to the mean". In [1], they use a weighted average instead of

a simple average.

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 81

P{fi)D{P{CimP(Clf, V fj)) + P{fj)D{P{C\fj)\\P{C\f, V /,-)) (7.6)

In our investigation, we follow the weighted average of the "KL divergence to

the mean" in Equation 7.6 to measure the difference between two probability

distributions over the class variable.

Now we address the question of how to use the similarity metric to form

clusters. We present the clustering algorithm first and then describe how to

integrate it with our REPGER algorithm in Section 7.2. We create clusters

with deterministic feature membership using a simple greedy agglomerative

approach that works well in practice. The number of clusters desired, M,

should be specified in advance. At all stages, the algorithm has not more than

M clusters. The clusters are initialized with M features that have highest

average mutual information with the class variable. Mutual information is a

criterion commonly used in statistical language modeling of word associations

and related applications [9, 15]. The mutual information between the feature

fk and the class label Q is defined as

/ (/ “) = i � g (^ ^) (”）

and the average mutual information is

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 82

|ci
Iavg{fk) = ZP(CiWk，Ci) (7.8)

i=l

After forming the first M clusters, the remaining features are joined to one

of the M clusters until each feature belongs to one of the clusters. Figure 7.1

summarizes the clustering algorithm.

1. Sort the features by average mutual information with the class variable.

2. Initialize the M clusters as singletons with the top-ranked M features.

3. Loop until all features have been put into one of the M clusters:

• Group the next feature in the sorted list into one of the M clusters

that are most similar to the feature according to Equation 7.6.

Figure 7.1: The Clustering Algorithm.

7.2 Integrating With Our REPGER Algorithm

We apply the distributional clustering algorithm to the features in PoolR of

our REPGER algorithm. The features with similar probability distributions

over the class variable in PoolR can be joined together into a cluster. The

parameters of the cluster such as the document weight, ock, and the feature

weight, Wk, become the simple average of the parameters of its constituent

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 83

features. Since the clustering algorithm is based on the probability distri-

butions of the features, the performance of our REPGER algorithm after

starting feature clustering is heavily dependent on the accuracy of the fea-

tures' probability distributions. We should start the clustering algorithm

after the system has retrieved a large number of documents so that the sys-

tem can maintain accurate estimates on the probability distributions over the

class variable. After starting the clustering algorithm, the clusters will be

updated every time when the system retrieves an incoming document. The

number of clusters M can be different in each update. In adaptive filtering,

we cannot estimate the number of features in PoolR at any time instance in

the filtering process. Moreover, this number also varies from different topics.

We propose to set the value of M dynamically in the filtering process. We

can relate the number of clusters M with the number of features in PoolR

by the following equation:

M 二 ratiOc |PooZji| (7.9)

where ratiOc is the ratio used to determine the size of M. After starting

feature clustering, the weight update formula and the threshold learning

algorithm of our REPGER algorithm also works on the clusters in PoolR.

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 84

7.3 Empirical Evaluation

In order to investigate the effect of the clustering algorithm purely in the

profile-document similarity (Step 2 in Figure 4.1), we integrate the clustering

algorithm with our REPGER algorithm without using the GER. Based on

the experimental results in Section 6.3, we chose one topic with the highest

number of retrieved documents from each document corpus for our clustering

experiment. Table 7.1 shows the details of the topics chosen.

Corpus Topic number Number of retrieved documents

AP 22 1,650

FBIS 111 1,810

WSJ 56 431

Table 7.1: The details of the topics chosen for the clustering experiment.

We follow the parameter settings of our REPGER algorithm that give

the results shown in Table 7.1 and explore a range of parameter values,

i.e. the clustering starting point and the value of raUoc, for the clustering

algorithm. The clustering algorithm will start if the number of retrieved

documents is larger than the clustering starting point. The parameter ratiOc

is used to decide the number of clusters, M, as described in Equation 7.9. We

concentrate on the difference in performance with and without the clustering

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 85

algorithm. Therefore, only the performance after the number of retrieved

documents exceeds the clustering starting point will be analyzed.

No. of Clustering F3 F3

Topic retrieved starting without with

Corpus no. documents point ratiOc clustering clustering

AP 22 1,650 1,600 0.025-0.2 16 33

FBIS 111 1,810 1,800 0.2-0.7 -4 4

WSJ 56 431 400 0.4-0.9 15 13

Table 7.2: The result of the clustering experiment.

Table 7.2 summarizes the experimental result. It shows the best per-

formance and the parameter setting that gives the best performance of the

algorithm integrating with the feature clustering technique. The clustering

starting points for the AP, the FBIS and the WSJ corpora are 1,600, 1,800

and 400, respectively. For the AP corpus, the clustering algorithm helps our

REPGER algorithm without the GER attain a performance improvement

from 16 to 33 in the ratiOc range 0.025-0.2. It also gives improvement from

-4 to 4 in the ratiOc range 0.2-0.7 for the FBIS corpus. However, the perfor-

mance reduces from 15 to 13 in the ratiOc range 0.4-0.9 for the WSJ corpus.

The clustering algorithm gives improvement in the topics of the AP and the

FBIS corpora but not in that of the WSJ corpus. It shows that the clustering

starting point does affect the performance of the clustering algorithm. The

CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 86

clustering algorithm does well only when there are enough statistics to esti-

mate the probability distributions over the class variable of the features in

PoolR. In addition, the clustering performance may depend on the content of

the corpus. If features of a document corpus are less correlated, the clustering

algorithm will not do well because it may over-cluster the features. The FBIS

corpus may be this type of corpus so that the performance is decreased after

applying the clustering technique. In conclusion, this empirical result also

shows that clustering correlated features together improves the performance

of our REPGER algorithm. This is because, by doing so the assumption of

feature uncorrelation in calculating the profile-document similarity becomes

more reasonable. However, work needs to be done to investigate how to solve

the shortcoming of the deficiency of statistics available in adaptive filtering.

Besides improving the filtering performance, feature clustering can also

improve the efficiency of calculating the profile-document similarity since the

number of features needed to be considered in calculating the similarity is

decreased by clustering correlated features together. However, in adaptive

filtering, the computational cost in clustering the features is higher than the

time saving in calculating the profile-document similarity. It is because we

need to re-cluster the features every time when an incoming document is

retrieved. Therefore, much work needs to be done to explore and investigate

the feasibility of applying feature clustering in adaptive filtering in the future.

Chapter 8

Conclusions

8.1 Summary

In this thesis, we propose a new on-line learning algorithm, namely the

REPGER (RElevant feature Pool with Good training Example

retrieval Rule) algorithm, for adaptive text filtering problems. Our ap-

proach maintains a pool of selective features with potentially high predictive

power. Besides using the predicted relevant documents to update its filter-

ing profile, it also retrieves documents which are considered as good training

examples. Dissemination threshold can be learned dynamically to maintain

a good filtering performance throughout the filtering process. We have con-

ducted experiments on three document corpora, namely, AP, FBIS and WSJ

to compare the performance of our REPGER algorithm with two existing

87

CHAPTER 8. CONCLUSIONS 88

EG-based algorithms [7，18]. The results demonstrate that our REPGER

algorithm offers a more effective filtering performance than the others most

of the time. Comparison with the TREC-7 [17] adaptive text filtering track

participants was also done. The result shows that our REPGER algorithm is

comparable to them. We also investigate the feasibility of applying a feature

clustering technique, known as the Distributional Clustering [33], in adap-

tive filtering. The experimental result shows that the effect of the clustering

technique is quite promising.

8.2 Future Work

There are some interesting directions for future work concerning the REPGER

algorithm. One area is to improve the learning capability of the REPGER

algorithm by considering more informative statistics throughout the filtering

process. Another direction is to make the GER more adaptive in the interac-

tive environment of adaptive filtering. Both these directions for future work

are discussed below.

First, the effectiveness of the feature weight allocation component of our

REPGER algorithm could be improved in an interactive environment. We

would use the weight update formula of the EG-based algorithms [7, 18] in

our current implementation. However, this would not account for all the

CHAPTER 8. CONCLUSIONS 89

informative statistics of the features such as the number of relevant/non-

relevant documents that a particular feature appears. By using these statis-

tics, P(relevant|/A;) and P(non-relevant|/fc) could be calculated incrementally

which could help the feature weight update formula determine the magni-

tude of the change more accurately i. For example, suppose a retrieved

relevant document contained two features fi and f j with the same docu-

ment weight (i.e., Xi 二 Xj), the magnitudes of the feature weight updates

of the two features would be the same by using Equation 3.6. However,

if P(relevant|/i) was larger than P(relevant|/^) and P(non-relevant|/i) was

smaller than P (non-relevant | f j) , the feature weight updates of the two fea-

tures should not be the same. The magnitude of the feature weight update

of the feature fi should be larger than that of the feature fj.

Second, we also intend to study in more detail the behavior of the Good

training Example retrieval Rule (GER); in particular, how its effectiveness

varies with different topics. The relative importance of the new features and

the features in PoolR considered by the GER may vary from different topics.

We believe that a self-learning mechanism to adjust the relative importance

for different topics will help improve the overall effectiveness of the filtering

system.

^ P (relevant/non-relevant | fk) is the probability of relevance/non-relevant of a docu-

ment, which contains the feature fk.

CHAPTER 8. CONCLUSIONS 90

On a different area, the filtering profile initialization mechanism in REPGER

was not fully exploited due to time constraints. We have only used the sim-

plest method for filtering profile initialization just for showing the effective-

ness of our REPGER algorithm. The filtering performance of our REPGER

algorithm, however, could be improved by carrying out query expansion in

the filtering profile initialization process. Query expansion is a process to

expand the set of features extracted from the original topic description in

order to have a more accurate filtering profile before starting the filtering

process. For example, one could introduce synonyms to the filtering profile.

This technique would be particularly useful when the topic description is not

informative.

— E N D —

('

Bibliography

1] L. D. Baker and A. K. McCallum. Distributional clustering of words

for text classification. In Proceedings of the 21st Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 96-103, 1998.

2] M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative

recommendation. Communications of the ACM^ 40(3):66-72, 1997.

3] N. J. Belkin and W. B. Croft. Information filtering and information

retrieval: Two sides of the same coin? Communications of the ACM^

35(12):29-38, 1992.

4] A. Blum. Learning Boolean functions in an infinite attribute space.

Machine Learning, 9:373-386, 1992.

5] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Delia Pieta, and J. C.

Lai. Class-based n-gram models of natural language. Computational

Lingusitics, 18(4):467-479, 1992.

6] J. Callan. Document filtering with inference networks. In Proceedings

of the 19th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 262-269, 1996.

91

BIBLIOGRAPHY 92

•7] J. Callan. Learning while filtering documents. In Proceedings ofthe 21st

Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 224-231, 1998.

8] J. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval sys-

tem. In Proceedings of the Third International Conference on Database

and Expert Systems Applications, pages 78-83, 1992.

•9] K. W. Church and P. Hanks. Word association norms, mutual informa-

tion and lexicography. In Proceedings ofACL 27, pages 76-83, Vancou-

ver, Canada, 1989.

10] W. W. Cohen and Y. Singer. Context-sensitive learning methods for

text categorization. In Proceedings of the 19th International ACM SI-

GIR Conference on Research and Development in Information Retrieval,

pages 307-315, 1996.

11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and

R. A. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6):391-407, 1990.

12] D. Eichmann, M. Ruiz, and P. Srinivasan. Cluster-based adaptive and

batch filtering. In Proceedings of the Seventh Text REtrieval Conference

(TREC-7), U.S.A., 1998.

13] D. A. Evans, K. Ginther-Webster, M. Hart, R. G. LefFerts, and 1. A.

Monarch. Automatic indexing using selective NLP and First-Order the-

sauri. In Intelligent Text and Image Handling. Proceedings of a Confer-

ence, RIAO,91, pages 624—644，1991.

14] D. A. Evans and R. G. Lefferts. CLARIT-TREC experiments. Infor-

mation Processing and Management, 31(3):385-395, 1995.

BIBLIOGRAPHY 93

15] R. Fano. Transmission of Information. MIT Press, Cambridge, MA,

1961.

16] D. A. Hull. The TREC-6 filtering track: Description and analysis. In

Proceedings of the Sixth Text REtrieval Conference (TREC-6), U.S.A.,

1997.

17] D. A. Hull. The TREC-7 filtering track: Description and analysis.

In Proceedings of the Seventh Text REtrieval Conference (TREC-7),

U.S.A., 1998.

18] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradi-

ent descent for linear predictors. Technical report, UCSC-CRL-94-16,

Basking Center for Computer Engineering and Information Sciences,

University of California, Santa Cruz, CA, 1994.

19] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,

and J. RiedL GroupLens: Applying collaborative filtering to Usenet

news. Communications of the ACM, 40(3):77-87, 1997.

20] K. L. Kwok. Experiments with a component theory of probabilistic

information retrieval based on single terms as document components.

ACM Transactions on Office Information Systems, 8:363-386, 1990.

21] K. L. Kwok. A network approach to probabilistic information retrieval.

ACM Transactions on Office Information Systems, 13(3):324-353, 1995.

22] K. L. Kwok, L. Grunfeld, M. Chan, N. Dinstl, and C. Cool. TREC-7

ad-hoc, high precision and filtering experiments using PIRCS. In Pro-

ceedings of the Seventh Text REtrieval Conference (TREC-7), U.S.A.,

1998.

BIBLIOGRAPHY 94

23] W. Lam and C. Y. Ho. Using a generalized instance set for automatic

text categorization. In Proceedings of the 21st Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 81—89, 1998.

24] W. Lam and K. L. Yu. An intelligent adaptive filtering agent based on an

on-line learning model. In Proceedings of the 22nd Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval, 1999. (poster paper), To appear.

'25] K. Lang. NewsWeeder: Learning to filter netnews. In Proceedings of the

Fourteenth International Conference, Machine Learning, pages 331-339,

1995.

26] D. D. Lewis. Evaluating and optimizing autonomous text classifica-

tion systems. In Proceedings of the 18th Annual International ACM

SIGIR Conference on Research and Development in Information Re-

trieval, pages 246—254, 1995.

27] D. D. Lewis. The TREC-5 filtering track. In Proceedings of the Fifth

Text REtrieval Conference (TREC-5), pages 75-96, U.S.A., 1996.

28] M. E. Maron and L. J. Kuhns. On relevance, probabilistic indexing and

information retrieval. Journal ofACM, 7:216-244, 1960.

29] N. Milic-Frayling, C. X. Zhai, X Tong, P. Jansen, and D. A. Evans. Ex-

periments in query optimization, the CLARIT system TREC-6 report.

In Proceedings of the Sixth Text REtrieval Conference (TREC-6), pages

415-454, U.S.A., 1997.

30] J. Mostafa, S. Mukhopadhyay, W. Lam, and M. PalakaL A multilevel

BIBLIOGRAPHY 95

approach to intelligent information filtering: Model, system, and evalu-

ation. ACM Transactions on Information Systems, 15(4):368-399, 1997.

•31] M. Pazzani and D. Billsus. Learning and revising user profiles: The

identification of interesting web sites. Machine Learning, 27(3):313-331,

1997.

32] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill k Webert : Identify-

ing interesting web sites. In Proceedings of the National Conference on

Artificial Intelligence, pages 54-61, Portland, OR, 1996.

•33] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English

words. In Proceedings of the 31st Annual Meeting of the Association for

Computational Linguistics, pages 183-190, 1993.

34] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137,

1980.

•35] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. Grou-

pLens: An open architecture for collaborative filtering of netnews. In

Proceedings of the 1994 Computer Supported Cooperative Work Confer-

ence, New York, 1994.

36] S. E. Robertson and J. K. Sparck. Relevance weighting of search terms.

Journal ofAmerican Society for Information Science, 27:129-146, 1976.

37] J. J. Rocchio. The SMART Retrieval System - Experiments in Auto-

matic Document Processing, chapter Relevance feedback in information

retrieval, pages 313-323. Prentice Hall, 1971.

38] G. Salton and M. J. McGill. Introduction to Modern Information Re-

trieval McGill-Hill, 1983.

BIBLIOGRAPHY 96

39] B. Sheth. A learning approach to personalized information filtering.

Master's thesis, Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, 1994.

40] B. Sheth and P. Maes. Evolving agents for personalized information

filtering. In Proceedings ofthe Ninth Conference on Artificial Intelligence

for Applications, 1993.

41] H. R. Turtle and W. B. Croft. Evaluation of an inference network-based

retrieval model. ACM Transactions on Information Systems, 9(3):187-

222, 1991.

42] E. M. Voorhees and D. Harman. Overview of the Fifth Text REtrieval

Conference (TREC-5). In Proceedings of the Fifth Text REtrieval Con-

ference (TREC-5), pages 1—28, U.S.A., 1996.

43] Y. W. Yan and H. Garcia-Molina. SIFT - A tool for wide-area infor-

mation dissemination. In Proceedings of the 1995 USENIX Technical

Conference, pages 177-186, 1995.

44] K. L. Yu and W. Lam. A new on-line learning algorithm for adaptive

text filtering. In Proceedings of the Seventh International Conference on

Information and Knowledge Management, pages 156-160, 1998.

45] C. X. Zhai, P. Jansen, E. Stoica, N. Crot, and D. A. Evans. Threshold

calibration in CLARIT adaptive filtering. In Proceedings of the Seventh

Text REtrieval Conference (TREC-7), U.S.A., 1998.

Appendix A

Experimental Results O n T h e

A P Corpus

A.1 The EG Algorithm

Target value for relevant documents
Threshold || 0.35 0.25 0.15 0.05 0.025
0.000078 ~~— -13,130 -3,377~~^ 0~~
0.000082 -17,384 41 13 13 13
0.000086 -699 11 11 12 12
0.00009 0 — — — —

Table A.1: The set F3 of the EG algorithm using KW on the AP corpus.

Target value for relevant documents
Threshold | 0.125 0.1 0.075 0.05 0.025_
0.000074 II -10,403 -5,146 -1,442 -131 -89
0.000078 -7,411 45 11 -4 -1
0.000082 15 13 13 13 13
0.000086 11 11 11 12 12

Table A.2: The set F3 of the EG algorithm on the AP corpus.

97

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

A.2 The EG-C Algorithm

II Adjusted threshold position
Initial threshold | Q% | 25% 50% | _ 7 5 ^ _

0.000066 II -289 -549 -703 -1,004
0.00007 139 -64 -241 -334
0.000074 143 97 66 -109
0.000078 3 -2 0 1
0.000082 18 13 14 16
0.000086 II 11 11 11 11

Table A.3: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 0 on the AP corpus.

Adjusted threshold position
Initial threshold || 0% | 25% 50% 75%

0.000066 II -732 -693 -740 ~ ~ ^ ~ ~
0.00007 484 376 119 101

0.000074 276 260 203 152
0.000078 97 85 85 63
0.000082 80 76 72 73
0.000086 22 22 24 25

Table A.4: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 5 on the AP corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

~~Adjusted threshold position
Initial threshold Q% | 25% 50% 75%

0.000066 -1,235 -1,019 -1,047 -1,124
0.00007 77 120 25 -93
0.000072 247 257 236 130
0.000074 256 233 187 141
0.000076 431 344 271 254
0.000078 159 147 103 83
0.000082 111 109 110 96
0.000086 -38 -35 -30 -19

Table A.5: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 10 on the AP corpus.

Adjusted threshold position
Initial threshold | 0% 25% 50% 75%

0.00007 -1,132 -511 -669~~-887
0.000074 120 103 21 -25
0.000078 88 73 71 75
0.000082 -58 -38 -34 -25
0.000086 -119 -99 -82 -74

Table A.6: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 15 on the AP corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

A.3 The REPGER Algorithm

Value of /3 (beta) 一

Initial threshold 1.3 1.4 1.5 1.6

OOOl 1,190 1,958 1,988 1,948

0.002 1,462 1,859 1,936 1,891
0.003 1,742 2,209 2,043 1,992
0.004 1,783 2,047 2,001 1,963
0.005 1,580 2,046 2,025 1,976
0.006 1,832 2,013 1,984 1,935
0.007 948 1,138 1,124 1,063

0.008 1,032 1,141 1,116 1,065
0.009 1,861 1,932 2,054 2,003
0.01 2,025 2,061 2,245 2,251
0.011 1,934 2,038 2,397 2,401
0.012 1,184 1,294 1,650 1,656

Table A.7: The set F3 of the REPGER algorithm with threshold learning
starting point at 3 on the _AP corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

Value of /̂ (beta)
Initial threshold 1.3 | 1.4 1.5 1.6

0 ^ 1,402 1,673 1,614 1,595
0.002 1,456 1,922 1,829 1,829
0.003 1,475 2,024 1,941 1,941
0.004 1,894 2,088 2,032 2,032
0.005 1,725 1,935 1,918 1,867
0.006 1,647 2,146 2,111 2,066
0.007 1,302 1,903 1,848 1,825
0.008 1,681 2,181 2,159 2,101
0.009 1,651 1,995 2,121 2,067
0.01 1,570 1,828 2,020 2,001

0.011 1,671 1,954 2,147 2,128
0.012 995 1,280 1,452 1,433

Table A.8: The set F3 of the REPGER algorithm with threshold learning
starting point at 5 on the 4P corpus.

Value of P (beta)
Initial threshold 1.3 1.4 1.5 1.6—

OOOl 1,625 1,574 1,574 1,574
0.002 1,556 1,686 1,660 1,660
0.003 1,416 1,552 1,526 1,526
0.004 1,705 1,656 1,605 1,605
0.005 1,825 1,804 1,738 1,738
0.006 1,464 1,755 1,699 1,699
0.007 1,786 1,753 1,702 1,702
0.008 1,507 1,808 1,747 1,747
0.009 948 1,127 1,059 1,059
0.01 889 1,215 1,080 1,045
0.011 683 965 830 795
0.012 1,418 1,410 1，275 1,222

Table A.9: The set F3 of the REPGER algorithm with threshold learning
starting point at 10 on the AP corpus.

Appendix B

Experimental Results O n T h e

FBIS Corpus

B.1 The EG Algorithm

Target value for relevant documents
Thresho1d"| 0-35 0.25 0.05 0.025

0.00009 ~~— — ^ ^
0.000094 — -10,797 35 33
0.000098 -7,652 67 54 27
0.000102 -574 51 35 35
0.000106 26 19 0 -3
0.00011 -23 -24 — —

Table B.1: The set F3 of the EG algorithm on the FBIS corpus.

102

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

II Target value for relevant documents
Threshold | 0.45 0.35 0.25 0.05

0.00009 ~ ~ = ~ -12,922 -2,301 ~ ~ ^ ~ ~
0.000094 -14,204 -9,401 42 32
0.000098 -11,460 69 71 47
0.000102 40 51 57 35
0.000106 41 19 12 0
0.00011 -26 -24 -24 -24

Table B.2: The set F3 of the EG algorithm using KW on the FBIS corpus.

B.2 The EG-C Algorithm

II Adjusted threshold positio^
Initial threshold || Q% | 25% 50% 75%

0.000088 -255 -249 -243 ~ ~ ^ ^
0.000092 16 23 26 -6
0.000096 86 74 75 76
0.0001 43 43 43 43

0.000104 38 38 38 38
0.000108 8 8 8 8
0.000112 II 0 0 0 0

Table B.3: The set F3 of the EG-C algorithm with threshold learning starting
point at 10 on the FBIS corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

Adjusted threshold position—
Initial threshold 0% | 25% 50% 75%

0.000092 -18 -14 -16 ^
0.000096 218 211 208 201

0.0001 43 43 43 43
0.000104 38 38 38 38
0.000108 8 8 8 8
0.000112 0 0 0 0

Table B.4: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 30 on the FBIS corpus.

Adjusted threshold position
Initial threshold Q% | 25% 50% 75%

0.000092 -103 -102"""^^ ^ ^
0.000096 70 114 102 73

0.0001 43 43 43 43
0.000104 38 38 38 38
0.000108 8 8 8 8
0.000112 0 0 0 0

Table B.5: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 50 on the FBIS corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

B.3 The REPGER Algorithm

Value of /3 (b e t a) ~
l ^ a l threshold 1.3 1.4 L 5 J _ ^ ^

O l 5 123 88 97 816
0.016 22 614 634 654
0.017 657 620 571 550
0.018 643 666 634 602
0.019 664 629 608 624
0.02 702 90 69 629
0.021 714 106 96 647
0.022 702 168 146 82

Table B.6: The set F3 of the REPGER algorithm with threshold learning
starting point at 10 on the FBIS corpus.

Value of /? (beta)
l ^ t i a l threshold 1.3 1.4 1.5 1.6

0 ^ 690 669 637 621
0.014 647 678 671 671
0.015 734 654 668 684
0.016 596 588 636 665
0.017 653 650 612 603
0.018 637 680 640 625
0.019 674 674 646 659
0.02 787 110 86 760
0.021 786 686 577 685

Table B.7: The set F3 of the REPGER algorithm with threshold learning
starting point at 15 on the FBIS corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

II Value of |3 (beta)
l ^ i a l thresholdJ 1.3 1.4 1.5 1.6

O l 3 465 510 527 544
0.014 532 538 524 562
0.015 484 469 459 494
0.016 522 516 597 556
0.017 529 573 552 509
0.018 538 571 581 551
0.019 610 601 630 615
0.02 617 426 494 637
0.021 657 634 653 695
0.022 699 645 641 -29
0.023 490 628 634 495
0.024 503 676 690 689

0.025 629 707 728 715

Table B.8: The set F3 of the REPGER algorithm with threshold learning
starting point at 20 on the FBIS corpus.

Appendix C

Experimental Results O n T h e

W S J Corpus

C.1 The EG Algorithm

Target value for relevant documents
Threshold | 0.1 0.05 | 0.025 Q.Q1 0.005
0.000102 — -784 11 -38 ~ ~ " ^ " ^
0.00011 — -76 48 47 44
0.000114 一 -55 78 127 108
0.000122 — 39 102 116 102
0.00013 -182 108 103 91 94
0.000138 26 86 66 55 55
0.000146 88 47 29 29 29
0.000154 18 — — 一 一

Table C.1: The set F3 of the EG algorithm on the WSJ corpus.

107

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

Target value for relevant documents
Threshold 0.1 0.05 0.025 0.01 0.005
0.000102 -7,885 -54 -29 -32 ~ ~ ^ ~ ~
0.00011 -339 6 44 46 49
0.000114 -238 47 112 133 103
0.000122 -87 91 116 113 102
0.00013 67 110 95 91 92
0.000138 95 72 61 55 55
0.000146 68 32 32 29 29

Table C.2: The set F3 of the EG algorithm using KW on the WSJ corpus.

C.2 The EG-C Algorithm

II Adjusted threshold position
Initial threshold | 0%] 25% 50% 75%

0.00009 ^ 3 e T -396 -470 ^ ^ ~ ~
0.000098 707 414 453 440
0.000106 600 629 535 124
0.000114 II 293 314 208 161

Table C.3: The set F3 ofthe EG-C algorithm with threshold learning starting
point at 0 on the WSJ corpus.

APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103

~~~Adjusted threshold position 
Initial threshold 0% | 25% 5 0 % T ^ 5 " ^ 

0.00009 -1,416 -1,043 -1,206 -1,500 
0.000098 210 295 224 42 
0.000106 763 817 764 746 
0.000114 455 456 428 452 
0.000122 7 210 188 111 
0.00013 154 148 113 101 

Table C.4: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 5 on the WSJ corpus. 

Adjusted threshold position 
Initial threshold 0% | 25% 50% 75% 

0.000098 -1,258 -1,001 -1,001 -1,132 
0.000102 137 122 -183 -38 
0.000106 193 282 406 371 
0.00011 126 156 139 108 
0.000114 79 144 189 127 
0.000118 80 99 182 186 
0.000122 68 115 -3 1 
0.000126 27 66 56 86 

Table C.5: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 10 on the WSJ corpus. 



APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103 

C.3 The REPGER Algorithm 

Value of p (beta) 
Initial threshold 1.4 1.5 1.6 

M n 1,616 1,618 1,623 
0.013 1,097 1,302 1,306 
0.015 1,339 1,629 1,556 
0.017 938 1,567 1,488 
0.019 901 1,187 1,245 
0.021 1,081 1,075 997 
0.023 1,144 1,599 1,592 
0.025 1,081 1,312 1,297 

Table C.6: The set F3 of the REPGER algorithm with threshold learning 
starting point at 5 on the WSJ corpus. 

一 II Value of 0 (beta) 
Tnitial t h r e s h ^ 1.4 1.5 1.6~~ 
“ O l 2 II 1,450 1,401 1,404 

0.014 1,366 1,360 1,362 
0.016 1,419 1,425 1,428 
0.018 957 1,401 1,401 
0.02 1,097 1,107 1,107 
0.022 1,103 1,133 1,121 
0.024 II 1:122 1,365 1,362 

Table C.7: The set F3 of the REPGER algorithm with threshold learning 
starting point at 10 on the WSJ corpus. 



APPENDIX B. EXPERIMENTAL RESULTS ON THE FBIS CORPUS103 

一 Value of /3 (beta) 
Initial threshold 1.4 1.5 1.6~ 

OOl2 1,446 1,390 1,391 
0.014 1,414 1,420 1,421 
0.016 1,640 1,644 1,645 
0.018 1,129 1,431 1,432 
0.02 1,021 1,028 1,034 
0.022 1,017 1,039 1,027 
0.024 1,047 1，302 1,296 

Table C.8: The set F3 of the REPGER algorithm with threshold learning 
starting point at 15 on the WSJ corpus. 



^^
 %>

iê^̂
v 

- 
• 

• 
--••

 --̂
-¾̂

¾
 



h95EEiEDD 

I _圓_丨11_11 
I saLJBjqLH XHHD |(i‘ - . - ^ 

I 1 

I I 

寧 


