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Abstract 

We investigate the unique requirements of the adaptive textual 

document filtering problem and propose a new on-line learning frame-

work, known as the REPGER (RElevant feature Pool with Good train-

ing Example retrieval Rule) algorithm to tackle this problem. Our 

algorithm possesses three characteristics. First, it maintains a pool of 

selective features with potentially high predictive power to predict doc-

ument relevance. Second, besides retrieving documents according to 

their predicted relevance, it also retrieves incoming documents which 

are considered as good training examples. Third, it can dynamically 

adjust the dissemination threshold throughout the filtering process so 

as to maintain a good filtering performance in a fully interactive envi-

ronment. We have conducted experiments on three document corpora, 

namely, Associated Press, Foreign Broadcast Information Service and 

Wall Street Journal to compare the performance of our REPGER al-

gorithm with two existing on-line learning algorithms. The results 

demonstrate that our REPGER algorithm gives better performance 

most of the time. Comparison with the TREC-7 adaptive text filtering 

track participants was also done. The result shows that our REPGER 

algorithm is comparable to them. Finally, we explore a technique for 

integrating a feature clustering method into our REPGER algorithm. 
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運用線上學習去處理自適應文件過濾問題 

作者：庾國良 

文摘 

我們研究“自適應文件過爐”的獨特要求，從而提出一個新的線上學習 

框架名叫 R E P G E R 算法。我們的算法擁有三個特點。第一，它保持 

一個包含一些擁有高潛在預料能力的項的集，這個集是用來預料文件 

的關聯性。第二，除了根據文件的關聯性去過滤文件外，它亦會從 

大量输入文件中自動收集一些有潛質的剜練例子。第三，它能動態地 

_整文件過爐的門限，使這算法能在互動環境下保持良好的性能。我 

們在三個文集上做了實驗，對我們的算法和另外兩個線上學習算法的 

‘性倉色作出比較。這三個文集分另|]是Associated Press, Foreign Broadcast 

Information Service 和 Wall Street Journal�實.險結果顯示 REPGER 算 

法的性能在大部分的情況下都比較好。我們亦與T R E C - 7中自適應文件 

過滤組的參與者作出比較，結果顯示我們的算法與他們的不相伯仲。 

最後，我們探討一個技術去把項的聚集方法與R E P G E R算法結合。 
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Chapter 1 
1 

Introduction 

1.1 The Problem 

The number of Internet users has been growing rapidly with the widespread 

use of personal computers and networks in recent years. This explosive 

growth has led to the growth in the amount of information resources avail-

able over the Internet. As more and more information becomes available 

electronically, it becomes increasingly difficult to search for information or 

to filter out non-interesting information from information streams for users. 

Therefore, it is critically important to develop effective filtering systems that 

help users decide which information is relevant to their preferences. We fo-

cus on textual information since texts are still the major form of information 

available. 

1 
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An information filtering system is capable of automatically monitoring 

information sources to find documents for a particular information need. In 

practice, for each user, it starts with an initial filtering profile derived from 

the information need of the user. The system assists the user by filtering 

the information stream and delivering the relevant information to him/her. 
1 

Users can optionally give feedback information to the information filtering 

system after reading the delivered documents. The feedback information is 

the evaluation given by the user on how relevant each document is for a spe-

cific information need. This feedback information is usually referred to as a 

relevance judgment. It can simply be a binary judgment indicating the rele-

vance, i.e. being relevant or non-relevant, or a numerical score representing 

the likelihood of relevance. The system makes use of the relevance judgments 

to learn a more accurate filtering profile for each user. In summary, an infor-

mation filtering system aims at learning a filtering model, which represents 

the information need given by the user, to filter information according to the 

filtering model. 

1.2 Information Filtering 

Information filtering deals with the delivery of information that is relevant 

to the user in a timely manner. Information Filtering (IF) and Information 
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Retrieval (IR) are two research fields addressing the problem of delivery of 

information to people who need it. At an abstract level, there is relatively 

little difference between IF and IR. Belkin and Croft [3] provided a detailed 

description of IF and identify the similarities and differences with IR. IF also 

shares some resemblance with text categorization [23]. Information Filtering 

can be classified into two settings, namely, batch filtering and adaptive fil-

tering according to the filtering definitions in the Text REtrieval Conference 

(TREC) 1 [16, 17, 27]. Batch text filtering basically requires a training stage 

before starting the filtering process. In the training stage, the system takes as 

input a batch of training documents with user relevance judgments for a spe-

cific information need. The system is required to construct a filtering profile 

for the user's information need based on the set of training documents. This 

learning technique is called off-line learning which means that it can learn 

a filtering profile in a batch mode but not incrementally. After the filtering 

profile is learned, the system uses the profile to filter future documents for 

the user. The filtering profile usually remains unchanged during the filtering 

process. The batch filtering setting is summarized in Figure 1.1. 

iThe Text REtrieval Conference (TREC) was started in 1992 as part ofthe TIPSTER 

Text program. Its purpose is to support research within the information retrieval commu-

nity by providing the infrastructure necessary for large-scale evaluation of text retrieval 

methodologies. 
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Figure 1.1: Batch Filtering. 

As shown in Figure 1.2，the adaptive text filtering problem is designed 

to model a more realistic situation that a filtering system can only expect 

relevance judgments for documents which have been decided by the system 

for retrieving. The system starts only with the user information need, which 

is usually referred to as topic description, and no evaluated documents. It 

creates an initial filtering profile by using the description of the topic. Doc-

uments arrive sequentially in chronological order. The system analyzes the 

contents ofthe incoming documents. It makes use of the filtering profile to de-

cide whether or not to retrieve each document based on the profile-document 

similarity. If a document is retrieved, the user can optionally provide a rel-

i 
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evance judgment of that document for the topic. The system can use the 

relevance information to update the filtering profile. This learning technique 

is known as on-line learning which means that it can learn a filtering pro-

file incrementally in an interactive environment. This setting implies that 

relevance judgments from unretrieved documents are never revealed to the 
I 

system. It does not have an explicit training stage as in batch filtering. 

c ^ :' r ^ — / ^ ^ ： 

^ 一 • / \ /lnitializatiom 
I pocument pre-| Filtering | of the • 

Incoming , 1 processing I model 1 filtering j _ 
documents , V j ^~| \ model / , 

^^_^ . vv ^ — V3^ ‘ 
• Filtering New ^ ^ ^ ‘ 
‘ knowledge knowledge _ 

i /^ ^ A I 
L^ On-line | | ^ On-line \ . 

• \ filtering / \ learning | . . “. ‘ 

V J \ J description, 

乂 VV R i ：〇 
I “ Relevance • 
I judgment _ / \ 

： ^^V ： /\ 

"'':̂ ^_̂ ^̂ r==;;:̂ l!̂ _Retrieved document ^ User 

_ ^^\^^or not? ^>^ ‘ 

V / 
Figure 1.2: Adaptive Filtering. 

In general, an adaptive information filtering system basically comprises 

four major components: 

• Filtering model: It has a filtering model which stores the filtering 

knowledge of the information domain. The filtering knowledge actu-
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ally represents how a relevant document should be. In other words, it 

represents the user's information need. The filtering model is usually 

referred to as a filtering profile. 

• Filtering profile initialization: There is a filtering profile initial-

ization mechanism. Before starting the filtering process, the user can 
I 

provide his/her information need to the system so that the system can 

initialize its filtering profile according to the preference of the user. The 

system treats each user's information need as a topic. Therefore, this 

information need is usually referred to as a topic description. 

• Information filtering: It has an information filtering mechanism to 

decide which documents should be treated as relevant and presented to 

the user. The criterion in predicting the relevance of the documents is 

based on the profile-document similarity. 

• On-line learning: It has an on-line learning mechanism to update 

the filtering profile in order to improve future filtering performance. 

After reading each retrieved document, the user can provide a relevance 

judgment of the document to the system. The system can then learn 

a more accurate filtering profile by using the relevance judgment. 

There are some advantages in adopting on-line learning technique ofadap-

tive filtering over the off-line learning technique of batch filtering. First, 
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on-line learning does not need a large set of documents with relevance judg-

ments to train the filtering profile. In fact, collecting a large set of documents 

with relevance judgments for each user's information need is practically im-

possible. Second, on-line learning is adaptable in an interactive environment. 

Since users' information needs may change or shift over time, on-line learning 

is capable of capturing the shift of users' preferences by learning from exam-

ples. This is achieved by learning incrementally from retrieved documents 

with relevance judgments. 

1.3 Contributions 

We have studied a number of existing information filtering systems. We 

discover that only some of them comprise all the four major components ^ 

that an adaptive filtering system should have. Since adaptive filtering is 

a new setting in information filtering introduced by TREC [16，17，27] in 

1998，many filtering frameworks of the existing filtering systems were not 

designed to tackle the adaptive filtering problem. After investigating the 

existing filtering systems and some existing on-line learning algorithms, we 

find out three main tasks that an adaptive filtering system should be able to 

perform well in order to achieve good filtering performance. The three tasks 

2piease refer to Section 1.2 for the details of the four components. 
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are: (1) Differentiating the features with potentially high predictive power 

from the other features so that the system can consider a set of informative 

features in predicting document relevance; (2) Solving the probiem of lack of 

training examples (judged documents) in adaptive filtering; and (3) Varying 

the parameters used by an algorithm so as to maintain a good performance 
I 

throughout the filtering process. 

We propose an adaptive filtering framework based on on-line machine 

learning and content-based learning to tackle the adaptive text filtering prob-

lem [24，44]. Our algorithm, known as the REPGER (RElevant feature 

Pool with Good training Example retrieval Rule) algorithm, possesses 

three characteristics. First, it maintains a pool of selective features with po-

tentially high predictive power to predict document relevance. Second, it 

incorporates a novel mechanism for retrieving good training examples; this 

overcomes the problem of lack of training examples in an adaptive filtering 

environment. Third, it can dynamically learn the dissemination threshold, 

which is used to decide whether or not to retrieve an incoming document, so 

as to maintain a good filtering performance in an interactive environment. 

Specifically, the contributions made by this thesis are as follows: 

• This thesis proposes a new on-line machine learning framework, known 

as the REPGER algorithm, to deal with adaptive filtering. New tech-
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niques are developed for making the technical procedures of predicting 

document relevance and setting dissemination threshold more adapt-

able in an interactive environment of adaptive filtering. For predicting 

document relevance, a new concept, known as the RElevant feature 

Pool (REP), is proposed to maintain a set of features with potentially 
I 

high predictive power. For dissemination threshold setting, we propose 

a technique to adjust the threshold dynamically so as to maintain a 

good filtering performance throughout the filtering process. 

• One unique characteristic of adaptive filtering is that there is no evalu-

ated documents, i.e. documents with relevance judgment, for the sys-

tem to learn the filtering profile before the filtering process. In the light 

of this characteristic, a new technique is proposed to tackle the prob-

lem of lack of training examples in the adaptive filtering setting which 

is known as the Good training Example retrieval Rule (GER). 

The GER retrieves good training examples from the stream of incom-

ing documents to help the system learn a more accurate filtering profile 

by using the relevance judgments of the retrieved documents. 

• This thesis validates the use of the GER for tackling the problem oflack 

of training examples for the information filtering system in adaptive 

filtering. 
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• A new performance comparison method for information filtering sys-

tems is proposed for adaptive filtering. It reflects how well an informa-

tion filtering system performs throughout the filtering process. 

• Experimental results on three document corpora show that our REPGER 

algorithm is more effective than two existing on-line learning algorithms 

7, 18] and the performance of our algorithm is comparable to the 

TREC-7 [17] adaptive filtering track participants. 

• The feasibility of applying a feature clustering technique, known as 

the Distributional Clustering, in adaptive filtering is investigated. The 

experimental result shows that the effect of the clustering technique is 

quite promising. 

1.4 Organization Of The Thesis 

The rest of this thesis is organized as follows. Chapter 2 reviews some re-

lated work in information filtering. Chapter 3 presents the commonly used 

textual document representation techniques and analyzes two existing on-

line learning algorithms and discusses their limitations. Some ideas of our 

new approach have been drawn from the analysis. Chapter 4 presents our 

REPGER algorithm which is a new on-line learning framework for adap-
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tive text filtering. Chapter 5 describes a new threshold learning algorithm 

which is used in our REPGER algorithm for higher adaptability in filtering. 

Evaluation experiments and results are presented in Chapter 6. Chapter 7 

describes the investigation of integrating REPGER with a feature cluster-

ing technique. Chapter 8 gives the concluding remarks and presents some 

directions for future work. 

I 



Chapter 2 

Related W o r k 

The work in this thesis is on the field of adaptive filtering which belongs to the 

research area of Information Filtering (IF). There are some well-developed 

information filtering systems employing different approaches to deal with IF. 

The Stanford Information Filtering Tool (SIFT) was developed by Yan 

and Garcia-Molina [43]. It is basically an information retrieval system which 

does not support user profile learning. Users need to submit their profiles 

through a World Wide Web (WWW) browser, and then SIFT matches the 

users，profiles against the news articles. There are two alternative match-

ing algorithms in SIFT, namely, the Boolean model and the vector space 

model [38]. A profile can be a Boolean conjunction of words for the Boolean 

model or a set ofwords and a relevance threshold for the vector space model. 

Matching articles are sent to the user by e-mail. The SIFT filtering engine 

12 

1 
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implements novel indexing techniques which are capable of scaling to large 

number of documents and profiles. The main disadvantage of SIFT is that 

it does not have any learning capability. If users are not satisfied with the 

retrieved articles or have different information needs, they need to manually 

re-construct their profiles until the retrieved articles satisfy them. 

NewT is an information filtering system developed by Sheth and Maes [39, 

40] and it is used for filtering Usenet news. It applies the vector space model 

in profile and document representations. It maintains a set of profiles for each 

user's information need. Documents are retrieved based on a combination of 

the predictions of the profiles in some manner. Existing profiles are learned 

from relevance feedback provided by the users. The system makes use of 

genetic algorithm (GA) to discover new profiles from existing ones and to 

flush out the unfit ones. One limitation of genetic algorithm is that it is 

unsuitable for adaptive filtering settings. Moreover, there is no mechanism 

to maintain the functional diversity of the profiles in the population. 

InRoute is a document filtering system developed by Callan [6]. It makes 

use of the Bayesian inference network model [41] to process a query and a 

document. The major tasks performed by InRoute are creation of a query 

network (representing a user profile), creation of a document network (repre-

senting a document) and performing inference over the networks for filtering 

purpose. Users specify their information needs by using a query language or 
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in natural language and then InRoute transforms the description to a query 

network. The query language, which is also used in INQUERY [8], defines 

the syntax for users to specify their information needs. In order to save pro-

cessing time, InRoute uses the "lightweight indexing" philosophy. Indexing 

speed is maximized by indexing terms that actually appear in one or more 

queries. A new inverted document frequency (IDF) estimation technique was 

also proposed. However, like SIFT, there is no mechanism for the system to 

update the query network by using feedback from the users. 

Mostafa et al. [30] presented a general model of information filtering. As 

a way to reduce complexity, the architecture of the model incorporates mul-

tilevel functional decomposition and supports generality through modularity. 

A filtering system, namely SIFTER (Smart Information Filtering Technol-

ogy for Electronic Resources), has been implemented based on the model. 

SIFTER employs established information retrieval and artificial intelligence 

techniques. They proposed to decompose the problem of learning a filtering 

profile into two levels. The top level represents a classification mapping from 

the document space to a finite number of classes. This mapping is learned in 

an off-line setting. The bottom level subsequently estimates the mapping de-

scribing user relevance for the different classes which can be done by on-line 

learning. The decomposition reduces the learning complexity but it limits 

the maximum achievable filtering accuracy for a class may not correspond 
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well to a user interest. Unlike many filtering systems, SIFTER does not make 

binary filtering decisions on incoming documents. It presents a number of 

ranked documents to users at a time. 

Pazzani and Billsus proposed an extension of the World Wide Web (WWW) 

sites retrieval system, known as Syskill & Webert [32], to support revising 

of user provided profiles in [31]. Web pages are represented as a Boolean 

feature vector. Not all words that appear in an HTML document are used as 

features. The system uses an information-theoretic approach to determine 

which words to use as features. It employs a naive Bayesian classifier to 

revise profiles provided by users and to learn the profiles by using relevance 

feedback from users. 

The systems described above apply a content-based approach to filter in-

formation. Information is filtered based on a comparison between its content 

and a user profile. Besides using the content-based approach, other systems 

apply a collaborative approach or a combination of them. In the collabora-

tive approach, we filter information for a user by considering the filtering 

results of other similar users. Rather than computing the similarity of the 

information and the user profile in the content-based approach, we compute 

the similarity of the users. 

Konstan et al. [19] discussed the challenges involved in creating a collabo-

rative filtering system, named GroupLens, for Usenet news. The GroupLens 
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project was started in 1992 and completed a pilot study at two sites to estab-

lish the feasibility of using collaborative filtering for Usenet news [35]. The 

GroupLens server was a two-part database. The ratings database stores all 

ratings that users have given to articles. The correlations database stores 

information about the historical agreement of pairs of users. The prediction 

process reads both correlations and ratings and generates prediction. The 

problem of ratings sparsity in collaborative filtering is tackled by partitioning 

the set of Usenet news articles into clusters that are commonly read together. 

Fab [2] is a distributed implementation of a hybrid content-based, collab-

orative Web page filtering system. It addresses the problem of how to com-

bine both content-based and collaborative approaches in filtering Web pages. 

They maintain user profiles based on content analysis (content-based learn-

ing) and directly compare these profiles to determine similar users for col-

laborative filtering. Users receive items both when they score highly against 

their own profile, and when they are rated highly by a user with a similar 

profile. Users are required to assign appropriate ratings from a 7-point scale 

after reading the filtered Web pages. The users' ratings are used to update 

their profiles. 

NewsWeeder is a netnews-filtering system proposed by Lang [25]. It ad-

dresses the problem of the reliance on the user for creating a user profile. 

The user can rate his or her interest level for each article being read, and 
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then NewsWeeder can learn a user profile based on these ratings. Currently, 

there are six interest levels: essential, interesting, borderline, boring, gong 

and skip. News articles and the user profile are represented by vectors com-

posed of tokens as their elements. Besides words and a combination of words, 

tokens include punctuation and other specialized symbols also. The learning 

algorithm is based on the Minimum Description Length (MDL) principle. 

The MDL measure is used to find the best distribution of the tokens for each 

interest level. It provides an information-theoretic framework for balancing 

the tradeoff between model complexity and training error. NewsWeeder uses 

both content-based and collaborative filtering. The system uses the collected 

rating information to learn a new user profile each night. One deficiency of 

NewsWeeder is that it can only perform off-line learning. 

After reviewing the above existing information filtering systems, we find 

that many of the above approaches are not effective for adaptive filtering� 

Several methods have been proposed to deal with adaptive filtering in the 

recent Seventh Text REtrieval Conference (TREC-7) [17] in 1998 which is the 

first year for TREC to organize the adaptive text filtering track. For instance, 

Eichmann et al. [12] developed a clustering method based on the standard 

cosine-similarity measure. There are two levels of clusters containing words 

derived from the topic description and the incoming documents. There are 

some thresholds used by the system for its dynamic clustering technique. 
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The primary cluster level corresponds to the internal representation of a 

topic description. Each primary cluster has a set of zero or more secondary 

clusters. When a document clears the threshold for a primary cluster, it 

either joins an existing secondary cluster or forms a new one, based upon a 

membership threshold. When a secondary cluster's similarity to a primary 

cluster exceeds a visibility threshold, its member documents are declared 

as relevant to the primary cluster. However, the binary decision to accept 

or reject a document is not made immediately until the similarity of the 

secondary cluster to the primary cluster exceeds the visibility threshold. This 

is an additional constraint imposed on the adaptive filtering setting. 

Kwok et al. [22] conducted some experiments on applying the PIRCS 

system to perform adaptive filtering. The PIRCS system is based on the 

probabilistic indexing and retrieval models of [28, 36] but extended with 

the concept of document components [20, 21]. It is an information retrieval 

system designed to deal with information retrieval and batch filtering. They 

emphasize on dynamically setting a retrieval status value (RSV) threshold to 

select or not select a document for examination. A technique for adjusting 

the threshold was proposed. They implemented query weight adjustment 

only, but not query expansion. This helps the RSV's of documents remain in 

a stable range which would favor the performance of the threshold adjusting 

technique. 
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Zhai et al. [45] made use of the CLARIT system based on the simple 

Rocchio relevance feedback [37] to handle adaptive filtering. Each document 

is indexed on noun phrases and individual words using the standard CLARIT 

phrase indexing technique [13, 14, 29]. The filtering profiles and the docu-

ments are both represented as term vectors. Rocchio feedback, on relevant 

documents only, is used to expand the term vector. A method, known as 

the "delivery ratio" method, is used to estimate an initial profile threshold. 

The delivery ratio equals to the desirable number of documents to deliver 

over the total number of documents. A small reference corpus can be used to 

estimate an approximate threshold score at which the desirable ratio would 

be achieved. However, the accuracy of the initial threshold estimated on the 

reference corpus is not guaranteed. This is because different topics and cor-

pora may have different characteristics and score ranges. Besides estimating 

the initial threshold, they also proposed a technique to adjust the threshold 

dynamically. 

We have studied a number of existing information filtering systems above. 

Since adaptive filtering is a new setting in information filtering introduced by 

TREC [16, 17, 27] in 1998, many filtering frameworks of the existing filter-

ing systems were not designed to tackle the adaptive filtering problem. We 

discover that only some of them comprise all the four major components 丄 

ipiease refer to Section 1.2 for the details of the four components. 
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that an adaptive filtering system should have. SIFT [43] and InRoute [6] do 

not support user profile learning. NewsWeeder [25] can only performs off-line 

learning. Even some of them can be potentially applied in adaptive filtering, 

they still have deficiencies. NewT [39, 40] applies GA to generate new user 

profiles but there is no mechanism to maintain the functional diversity of 

the profiles. SIFTER [30] decomposes the procedure of profile learning into 

two levels in order to reduce learning complexity, however, it limits the max-

imum achievable filtering accuracy. GroupLens [19], a collaborative filtering 

system, is not effective for adaptive filtering because the problem of lack of 

training examples in adaptive filtering makes the system hard to create fil-

tering profiles for users especially when the user's preference is very different 

from the others. For the TREC-7 adaptive text filtering track participants' 

systems, most of them are not originally designed for adaptive filtering. For 

example, PIRCS [22] is designed to deal with information retrieval and batch 

filtering�They only adjust the retrieval status value (RSV) threshold in or-

der to make the system suitable for adaptive filtering. The other systems 

also have deficiencies as we mentioned above. 

In general, the suitability of a filtering system for adaptive filtering mainly 

depends on the learning algorithm used by the system. One of the four 

major components that an adaptive filtering system should have is On-line 

Learning. We believe that adaptive filtering can be effectively tackled by on-
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line machine learning techniques. Therefore, we investigate two existing on-

line learning algorithms. Recently Cohen and Singer developed the sleeping 

experts algorithm [10] for performing automatic text categorization. This 

on-line learning algorithm can potentially be applied to adaptive filtering. 

Callan [7] proposed an improved Exponentiated-Gradient (EG) algorithm, 

which is also an on-line learning algorithm, to solve the adaptive filtering 

problem. We present a more detailed analysis of these two algorithms and 

their shortcomings in Section 3.2. 



Chapter 3 

Adaptive Text Filtering 

3.1 Representation 

Unstructured textual documents and topic descriptions must be represented 

in a way which can be processed by information filtering systems. We describe 

a representation used in many filtering systems including our approach. The 

representation is based on the vector space model [38]. The vector space 

model assumes that a feature set is available to identify both documents 

and topic descriptions. Both filtering profiles and documents can then be 

represented as feature vectors in some hyper-space. A distance metric which 

measures the proximity of vectors to each other is defined over the space. 

Hence, the profile-document similarity can be computed by using the distance 

metric. The advantage of using the vector space model is its flexibility - as 

22 
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such a document can also be represented as a topic description. Users can 

provide samples of interesting documents as an alternative to constructing 

the filtering profile. The representations used for documents and filtering 

profiles are described below. 

3.1.1 Textual Document 

In textual document representation, appropriate words or phrases are ex-

tracted from a document to form a vector representing the document. A 

textual document needs to be preprocessed before the extracted words or 

phrases can be used in document representation. There are three basic steps 

in document preprocessing. The first step is to remove the punctuation marks 

and to change all alphabets to lower cases. The second step is to remove non-

informative words or common function words (stop-words) such as "I", "an"， 

"of，and "but" • These words are eliminated for they are useless in content 

identification of the textual documents. This step is usually referred to as 

stop-word removal. The third step is to conduct word stemming which is a 

process to transform all words to their word-stems. The purpose of word 

stemming is to make sure that words which differ only in tenses or part 

I of speech can be matched. For example, the words "looking" and "looks" 

would be transformed to "look". After punctuation mark removal, lower case 

I 

I 
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transformation, stop-word removal and word stemming, the selective words 

or phrases generated from the remaining words are called features or terms, 

which are used to characterize the document. 

Here is an example which shows the procedures of document preprocessing 

of an original document. The raw text is quoted from an article of the 

Associated Press document corpus. 

• Raw text: 

Brezhnev ruled for 18 years before he died in 1982. After his death a 

city, streets, city squares and state-run enterprises were named after 

him. Soviet officials started removing those names in January. 

• Removing punctuation marks and changing all alphabets to lower case: 

brezhnev ruled for 18 years before he died in 1982 after his death a city 

streets city squares and state-run enterprises were named after him 

soviet officials started removing those names in january 

參 Stop-word removal: 

brezhnev ruled years died 1982 death city streets city squares state-run 

enterprises named soviet officials started removing names january 

• Word stemming: 
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brezhnev rule year di 1982 death citi street citi squar state-run enterpris 

name soviet offici start remov name januari 

The word stemming algorithm used here was proposed by Porter in [34 . 

Since the features are not equally important for content representation， 

document weights are assigned to the features according to their relative 

importance. TF-IDF is one of the commonly used document weights of a 

feature. It is the product of the term frequency (TF) in a document and 

the inverted document frequency (IDF) in a document collection. The term 

frequency ofafeature is the occurrence frequency of the feature in a particular 

document and reflects the importance of the feature in that document. The 

inverted document frequency of a feature is a factor reflecting whether the 

feature is document-specific or not. It attains a high value if the feature 

appears in fewer documents. A commonly used measure for the inverted 

document frequency of a feature 九 is 

N IDF, = l o g ( - ) 

rik 

where N is the total number of documents that the system has encountered, 

and Uk is the number of documents that contain the feature 九.Note that 

the inverted document frequency must be calculated incrementally in the 

adaptive filtering environment. Consider a document D. The document 

weight of the feature 九 appearing in the document D is given as 
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Xk 二 TFfc X IDFfc 

where TF̂ ； is the term frequency of the feature fk in the document D, and 

IDFjfc is the inverted document frequency of the feature fk in the document 

collection. Consequently, the document D can be represented as a vector of 

features 

D = <尉广 . , 2；力 . . . , 0；介〉 （3.1) 

where n is the total number of distinct features in the document collection, 

and Xj is the document weight of the feature fj in document D. Some-

times, we normalize this vector to become a unit vector before it is used for 

subsequent processing. 

The number n is not known in adaptive filtering. To handle this situation, 

a document could be represented as a set of features 

^ = { / | / = / “ z = l，2 ” . . " } (3.2) 

where 1 is the number of distinct features in the document D. Each feature 

is associated with its document weight. When we process a document, we 

usually only need the document weight of a feature in the document. There-

fore, this set-based representation essentially embodies the same information 
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needed for processing a document as in the vector-based representation. 

Note that the topic description provided by the user for the filtering sys-

tem to initialize the filtering profile is also a textual document. We can apply 

the technique mentioned above to represent the topic description. However, 

there is no statistics to calculate the IDF of the features extracted from the 

topic description in the adaptive filtering setting. We can solve this problem 

by using two alternatives. One is to use the TF of the features as their doc-

ument weights, i.e. Xk = TF̂ ；，or to use a binary feature representation, i.e. 

the document weight of a feature is 0/1 if the feature is absent/present in 

the document. The second alternative is to calculate the IDF of the features 

by using the statistics collected from another unrelated document corpus, 

known as the reference corpus. This technique can also be used in calculat-

ing the IDF of the features of the incoming documents. The IDF of a feature 

fk calculated by using this technique is given as 

IDFr/ = l o g ( ^ ^ ; J ^ ) (3.3) 
% + rik 

where N^f is the total number of documents in the reference corpus, and 

72，is the number of documents in the reference corpus that contain the 

feature /^. 
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3.1.2 Filtering Profile 

The representation of a filtering profile is similar to that of a document. 

However, there are some differences between filtering profile and document 

representations. First, a filtering profile stands for a user's information need. 

Each feature in the profile vector is associated with a non-negative feature 

weight indicating the relative importance of the feature for the user's in-

formation need. Consequently, the filtering profile can be represented as a 

vector of features 

^ = < Wi, • • . , W j , . . . , W n > (3=4) 

where n is the total number of distinct features in the document collection, 

and Wj represents the feature weight of the feature f j in the filtering profile. 

Like document representation, the total number of distinct features n is not 

known in the adaptive filtering setting. Similar to Equation 3.2，the filtering 

profile can also be represented as a set of features 

W = { / | / = /”z = l，2,...，p} (3.5) 

where p is the number of features in the filtering profile. Each feature is 

associated with its feature weight. 
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3.2 On-line Learning Algorithms For Adap-

tive Text Filtering 

After a document is converted into an internal representation, we can employ 

some existing on-line learning algorithms for conducting adaptive filtering. 

Two on-line learning algorithms, namely, the sleeping experts algorithm [10 

and the Exponentiated-Gradient (EG) algorithm [18] are investigated. Both 

algorithms tackle filtering by using a common two-step procedure similar to 

the one used in many other information filtering systems. For each profile-

document pair, a document relevance score is first calculated and a dissemi-

nation threshold is applied to make the binary decision to accept or reject the 

document. Both algorithms use multiplicative update techniques to update 

their filtering profiles. The analysis of these two algorithms are presented 

below. 

3.2.1 The Sleeping Experts Algorithm 

The sleeping experts algorithm has recently been applied to conduct auto-

matic text categorization [10]. However, it can potentially be employed to 

solve adaptive filtering. It associates an "expert" with each distinct feature 

to predict the relevance of incoming documents. As shown in Figure 3.1, it 

has a master algorithm which updates the weight of each expert using multi-
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plicative update and combines the predictions of the experts. Motivated by 

the Infinite Attribute Model [4], it does not need to know the vocabulary in 

advance. Each expert consists of two "mini-experts". The first mini-expert, 

/ i , consistently predicts that the document is relevant whenever the corre-

sponding feature is present in the document. The second mini-expert, /•, 

consistently predicts that the document is non-relevant whenever the corre-

sponding feature is present in the document. 

A good adaptive text filtering algorithm should give a good performance 

not only at the end of the filtering process, but also during the filtering task. 

However, the sleeping experts algorithm may give undesirable performance 

before it has processed enough documents to allow the weights of the mini-

experts to converge. If an expert appears in some non-relevant documents, 

this expert will have a negative predictive power, i.e. the weight of / i is 

smaller than that of /•. However, if this expert appears in the next incoming 

document and the document is relevant, it will reduce the degree of the 

predicted relevance for that document, i.e. reduces the score of the function 

in Step 4 in Figure 3.1. Experts having negative predictive power are likely 

to mis-predict the relevance of the documents. Therefore, the idea of using 

"mini-expert" may not be effective for adaptive filtering especially during 

the initial period. Another drawback is that the sleeping experts algorithm 

treats every new feature as an expert (see Step 2，Figure 3.1). It means 
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Parameters: a e (0,1), 6 G (0，1). 

Initialize: Pool — 0 

Do while there is an incoming document 

1. Receive a new document V = {/ | f = f“i = 1 , 2 , . . . , / } and its 

classification y^ G {0,1}. 

2. Define the set of active mini-experts: 

S = { / m | / e P ， m G { 0 , l } } 

3. Initialize the weights of new mini-experts: 

� � 

V/m e S S.t. fm • Pool ： Pj^ 二 1 

4. Classify the document as positive if 

lf^Ph �g 
^feV Em=0,l Pf^ 

5. Update weights: 
f 

Pfm VD 二 m 
Pfm = ̂  

�̂Pfm VD # ^ 

6. Re-normalize the weights of the mini-experts. 

7. Update: Pool [ Pool U S. 

Figure 3.1: The Sleeping Experts Algorithm. 



CHAPTER 3. ADAPTIVE TEXT FILTERING 32 

that even the features appearing only in non-relevant documents have the 

same degree of contribution as relevant features in predicting the document 

relevance. However, it is less likely to have regularities for the features which 

appear only in non-relevant documents in text filtering. We think it is more 

appropriate to have different treatments on these two kinds of features. 

Besides having drawbacks in tackling adaptive filtering, another deficiency 

ofthe sleeping experts algorithm is that it has no filtering profile initialization 

mechanism to process topic descriptions provided by the users. 

3.2.2 The EG-based Algorithms 

The Exponentiated-Gradient (EG) algorithm [18] has been applied to tackle 

adaptive filtering in [7]. The EG algorithm is designed for on-line prediction 

problems. It maintains a linear weight vector W as described in Equation 3.4 

with each component representing a non-negative feature weight of each dis-

tinct feature being considered ^ The sum of all components of the vector 

should be one. A document D is represented by using the vector space model 

as described in Equation 3.1. 

The EG algorithm updates its linear weight vector by using a weight 

update formula when an incoming document is retrieved, i.e. it is predicted 

iThe dimension of the weight vector can be dynamically adjusted by incorporating the 

Infinite Attribute Model [4] into the EG algorithm. 
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as relevant by the system. The weight update formula for the linear weight 

vector W is given as follows: 

让 . — ^ j exp(-277(# . D - yp)x^) 
] ^ l = i W j exp ( -2r / (# . D — y^)xj) ( . ) 

where D is a vector representing the incoming document D (usually a unit 

vector with elements represented as TF-IDF); y^ represents the target value 

of the classifier for the incoming document D] and 77 is the learning rate used 

to determine how rapidly the classifier learns from each retrieved document. 

Kivinen and Warmuth [18] suggested that the learning rate should be de-

termined by the formula 77 二 2 / (3 i ? ) where R is a value that satisfies the 

constraint max(maXjXj - mhijXj) < R 2. Initial weights of all features are 

usually set to l /n . At any time instance, the classifier predicts an incoming 

document as relevant when the inner product W • D exceeds a dissemination 

threshold. The document relevance prediction rule of the EG algorithm is 

shown below: 

If W • D > 小,then retrieve that document 

where 办 is the dissemination threshold. 

Although the EG algorithm does not have features with negative pre_ 

dictive power, it may also give undesirable performance before it processes 
2Refer to as KW in this thesis. 
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enough documents to allow the weights of the linear weight vector to con-

verge. To illustrate this point, let us consider the following cases. Assume 

we begin with a uniform initial weight for each feature in the weight vector. 

Suppose a small learning rate r] is used. If some features appear only in the 

non-relevant documents in the document corpus, the feature weights of these 

features in the weight vector will still be quite high after the algorithm learns 

from some documents. It is due to a low learning speed when a small learning 

rate is used. At this time instance, the algorithm maintains relatively high 

predictive power for these features. However, in fact, features which appear 

only in the non-relevant documents are less likely to have high predictive 

power. These unnecessarily high weights will lead to a poor filtering perfor-

mance. Conversely, suppose a high learning rate r] is used. If some features 

appear in both the relevant and the non-relevant documents and these doc-

uments arrive in a random order. The weights of these features will likely 

increase and decrease alternatively during the filtering process. Essentially, 

it leads to weight fluctuation which in turn will affect effectiveness through-

out the filtering process. In conclusion, the above drawbacks are caused by 

a similar problem faced by the sleeping experts algorithm [10]. This is the 

problem of not differentiating features appearing only in non-relevant docu-

ments. Moreover, there is also no filtering profile initialization mechanism in 

the EG algorithm. 



CHAPTER 3. ADAPTIVE TEXT FILTERING 35 

In [7], the EG algorithm was improved by addressing the problems of 

adjusting the target values and the dissemination threshold. It was proposed 

that the target values should be adjusted to the minimum and maximum 

document relevance scores that the current filtering profile can give. The 

minimum and maximum document relevance scores given by the filtering 

profile are proved to be the minimum and maximum document weights of 

the features in the current incoming document (called MinMax in this the-

sis). Therefore, the target values at a time instance should be the minimum 

and maximum document weights of the features in the current incoming 

document instead of using fixed target values throughout the whole filtering 

process. However, according to the on-line learning framework of the EG 

algorithm, the target values should remain constant since the target values 

represent the target levels of the inner product W . D for relevant and non-

relevant documents. The goal of the on-line learning algorithm is to adjust 

the weights in the weight vector so that the error between the target levels 

and the inner product is minimized. If we apply the proposed method in [7], 

the target values will be dependent on the current incoming document. In 

other words, the target levels of the filtering profile are restricted by different 

incoming documents at different time instances. The scores given by the fil-

tering profile for relevant and non-relevant documents will hardly reach the 

real target levels. Hence, the target levels should not be varied for different 
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incoming documents. 

Another improvement suggested in [7] is to adjust the threshold of the 

classifier during the filtering process so that the filtering system can find a 

good threshold dynamically. The threshold is set somewhere between the 

average score of the retrieved relevant documents and the average score of 

the retrieved non-relevant documents. In order to reduce the risk of setting a 

poor threshold, the system can start to adjust the threshold after retrieving 

some relevant and non-relevant documents. 



Chapter 4 

T h e R E P G E R Algorithm 

4.1 A New Approach 

After investigating the existing filtering systems and some existing on-line 

learning algorithms, we find out three main tasks that an adaptive filter-

ing system should be able to perform well in order to achieve good filtering 

performance. The three tasks are: (1) Differentiating the features with po-

tentially high predictive power from the other features so that the system 

can consider a set of informative features in predicting document relevance; 

(2) Solving the problem of lack of training examples (judged documents) in 

adaptive filtering; and (3) Varying the parameters used by an algorithm so 

as to maintain a good performance throughout the filtering process. 

We propose a new content-based on-line learning algorithm, known as 

37 
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the REPGER (RElevant feature Pool with Good training Exam-

ple retrieval Rule) algorithm, for the adaptive text filtering problem. The 

filtering process typically starts with an optional description of the topic or 

information need. When there is an incoming document, the system com-

putes a document relevance score and then apply a dissemination threshold 

to make the binary decision to accept or reject the document. Our learning 

algorithm maintains a pool of selective features with potentially high pre-

dictive power to predict document relevance and adjusts the dissemination 

threshold dynamically so that the filtering system is more adaptable in an 

interactive environment. In adaptive filtering, one of the most challenging 

problems is the lack of training examples for the system to learn an accurate 

filtering profile. In the light of this problem，we propose a novel mechanism 

to retrieve good training examples at the beginning stage of the filtering pro-

cess. In summary, there are three characteristics in our REPGER algorithm 

shown as follows: 

• Predicting the likelihood of relevance of incoming documents by main-

taining a pool of selective features with potentially high predictive 

power. 

• Retrieving incoming documents based on the merit as good training 

examples to tackle the problem of lack of training examples in adaptive 
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filtering. 

• Adjusting the dissemination threshold dynamically so as to maintain a 

good performance of the classifier during the filtering process. 

We present the whole REPGER algorithm in Figure 4.1. Each charac-

teristic of the algorithm is explained in detail in the following subsections. 

Appropriate features are automatically extracted from the documents in the 

preprocessing stage. A document is represented by a set of features extracted 

from the document and each feature is associated with a document weight as 

described in Equation 3.2. Two sets of features, PoolR and Poolw, are main-

tained throughout the filtering process. PoolR contains features from the 

topic description and the retrieved relevant documents while PoolN contains 

features appearing only in retrieved non-relevant documents. Therefore, the 

two sets are complement and contain the features of all retrieved documents 

and the topic description. A feature weight is associated with each feature 

in PoolR and PoolN. The feature weights of the features in PoolR are used 

in predicting document relevance. PoolR stands for the filtering profile and 

the representations of PoolR and PoolN are equivalent to the one described 

in Equation 3.5. Once an incoming document in retrieved, either or both 

of the two sets will be updated depending on the relevance judgment of 

the retrieved document. When the retrieved document is relevant, all the 
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features of the document which are not contained in PoolR are moved into 

PoolR. If the features are new features, i.e. the features which never ap-

pear in retrieved documents, they associated with their initialized feature 

weights will be moved into PoolR directly. If the features are in PoolN, they 

associated with their feature weights in PoolN will be moved into PoolR. 

When the retrieved document is non-relevant, the new features are moved 

into PoolN with their initialized feature weights. After an incoming docu-

ment is retrieved, the feature weights of the features in PoolR and PoolN are 

normalized separately so that they are summed to one in each set. The nor-

malized weight is the unnormalized weight over the sum of the unnormalized 

weights. There is a feature weight allocation component in Step 4(a) in Fig-

ure 4.1 of our REPGER algorithm. The weight allocation component can be 

implemented by a variety of weight updating techniques. We use the weight 

update formula of the EG-based algorithm described in Equation 3.6 in our 

current implementation so that we have a fair performance comparison with 

the EG-based algorithms in the experiments. 
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Definition: 

PoolR - a set of features appearing in retrieved relevant documents and topic 
description, 
PoolN - a set of features appearing only in retrieved non-relevant documents, 
fk - the k-th. feature that the system has encountered, 
00k - the normalized document weight of fk that appears in the incoming 
document, 
Wk - the normalized feature weight of fk that appears in the incoming docu-
ment. 

Initialization: extract features Q 二 { / i , /2，…， /J from the topic and initial-
ize their feature weights. PoolR — Q. PoolN <- 0 

Do while there is an incoming document 

1. Let V be the set of features extracted from the document. Calculate 
the normalized document weight for each feature in V. Initialize the 
feature weights of the new features, i . e . 九 ^ {PoolR U PoolN), to be 
l/\PoolR\. 

2- If E/fce(x>nPooZfl)($fc f̂c) = scoreo > 0，then retrieve the document 

3- If ^ 9 ^ + 丨糾尸-丨¥广)丨 > p, then retrieve the document 

4. If the document is retrieved in Step 2 or 3, 

(a) Get the classification (target value) y^ of the document and up-
date the feature weights of the features in V by: 

^k = Wk exp{-2f]{scoreD 一 VD)00k) 

where r] is the learning rate 

(b) Update PoolR and PoolN and re-normalize the feature weights of 
the features in them separately so that they are summed to 1. 

(c) If the number of retrieved documents is greater than a predefined 
number, then invoke the threshold learning algorithm. 

Figure 41: The REPGER Algorithm. 
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4.2 Relevance Prediction By RElevant fea-

ture Pool 

As discussed in Section 3.2, not all the features that appear in incoming 

documents should have the same degree of contribution in predicting docu-

ment relevance. In other words, some features may not be essential for the 

system to consider in predicting document relevance. In batch filtering, a 

filtering profile usually considers all distinct features in the document collec-

tion. Deciding which feature to be considered by the filtering profile is not a 

main concern. It is because there is a large set of training documents for the 

system to train an accurate filtering profile with appropriate feature weight 

for each feature in the profile. However, deciding which feature should be 

considered by a filtering profile is a critical problem in adaptive filtering. The 

filtering profile is learned incrementally while it is being used to filter incom-

ing documents. If the filtering profile considers too many features which are 

actually without significant predictive power, the performance of the system 

will be affected badly until the feature weights of these features converge to 

a negligible level. 

Our REPGER algorithm carefully chooses the appropriate features being 

considered in predicting the likelihood of relevance of incoming documents. 

Inspired by the idea of Infinite Attribute Model [4], our algorithm does not 
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need to specify the full feature set in advance i. The Infinite Attribute Model 

defines a model of document and filtering profile representations which is dif-

ferent from the vector space model. For the vector space model, the dimen-

sion, which is the total number of distinct features in the document corpus, 

of the feature vector used for representation must be known in advance. In 

contrast, the Infinite Attribute Model represents each document and filtering 

profile by using a set of features. The size of the set depends on the num-

ber of features in the documents or the filtering profile. Hence, documents 

and filtering profile can be represented by using the Infinite Attribute Model 

without the requirement of knowing the total number of distinct features in 

the document corpus in advance. Therefore, this model is suitable for on-line 

learning algorithm in adaptive filtering. We observe that the features which 

appear only in non-relevant documents are less likely to have high predic-

tive power because it is less likely to have regularities for these features. In 

contrast, the features that appear in the topic description or in relevant doc-

uments have potentially high predictive power because they are potentially 

related to the topic. In view of this observation, we make an assumption 

about the characteristic of the features. The assumption is that the features 

appearing in the topic description and the relevant documents are essential 

iThe REPGER algorithm uses Equations 3.2 and 3.5, which apply the Infinite Attribute 

Model, in document and profile representations respectively. 
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for the filtering system to consider in predicting document relevance. We 

are not going to claim that the features appearing only in non-relevant doc-

uments are not informative. We just think that they may not help much 

in document relevance prediction. Based on this assumption, we maintain a 

RElevant feature Pool (REP) containing features from the topic descrip-

tion and the retrieved relevant documents. This pool is used for predicting 

the likelihood of relevance of incoming documents. Suppose fk denotes the k-

th feature that the system has encountered. Let Xk and Wk be the document 

weight and the feature weight of fk respectively. Let V be a set of features 

of the incoming document and PoolR be a set of features that appear in 

the topic description or in the previously retrieved relevant documents. The 

relevance prediction rule is: 

If Y1 {xkWk) > 於，then retrieve that document 
fke(vnPooiR) 

where 4> is the dissemination threshold. 

The features in Pooln will be updated throughout the filtering process as 

shown in Step 4(b) in Figure 4.1. When the retrieved document is relevant, 

the features of the retrieved relevant document which are not in Pooln will 

be moved into Pooln. This means that the size of PoolR is monotonically 

increasing. The features that appear only in non-relevant documents will 

not affect the predicted document relevance because all features in PoolR 
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come from the topic description and the retrieved relevant documents. This 

design is more effective than the EG-based algorithms [7, 18] and the sleeping 

experts algorithm [10] for adaptive text filtering problems as shown in the 

experimental results (see Section 6.3). The REP design does not apply the 

concept of mini-expert. Therefore, it will not face the problem of negative 

predictive power of the sleeping experts algorithm 2. Moreover, it will not 

face the problem of learning rate setting of the EG algorithm .̂ This is 

because the possibility of having the problem of low learning rate setting 

is much lower than the EG algorithm when we apply the REP design in 

predicting document relevance. Hence, we can set the learning rate at a 

value for a desirable learning speed without worrying the problems faced by 

the EG algorithm. 

4.3 Retrieving Good Training Examples 

The relevance prediction rule concentrates on retrieving incoming documents 

based on the likelihood of relevance. The documents predicted as relevant 

by the relevance prediction rule are presented to the user and then the rele-

vance judgments from the user are used to update the filtering profile. Every 

retrieved document is actually a training example for the system to learn 

2piease refer to Section 3.2.1. 
3piease refer to Section 3.2.2. 
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a more accurate filtering profile. If no incoming document is predicted as 

relevant by the relevance prediction rule, there will be no training example 

(retrieved document) for the system to update the filtering profile. There-

fore, in order to have enough training examples for the system to learn, we 

have to retrieve an incoming document not only according to its predicted 

degree of relevance, but also according to its value as a training example to 

improve the future filtering performance. 

We may simply set a lower dissemination threshold at the beginning stage 

of the filtering process to let the system retrieve more documents for it to 

learn. However, this strategy only makes use of PoolR, i.e. the filtering 

profile, to retrieve incoming documents. If the features in PoolR are not 

informative owing to a poor topic description, the documents retrieved by 

using this strategy will not help much in improving the future filtering perfor-

mance. We observe that if we retrieve an incoming document which contains 

many new features, i.e. the features which never appear in retrieved docu-

ments, and many features in Poolji, this document can help us learn more 

new features. It also allows the weight allocation component to update the 

weights of the features in PoolR by using the relevance judgment of the re-

trieved document to improve the future filtering performance. In view of 

this observation, we make an assumption about the characteristic of good 

training examples in adaptive filtering. The assumption is that an incoming 
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document is a good training example if it contains many new features and 

many features in PoolR. Therefore, we introduce the Good training Ex-

ample retrieval Rule (GER) to retrieve the incoming documents which 

have many new features and many features in Pooln. Note that the GER are 

not designed to retrieve relevant documents. The task of retrieving relevant 

documents is done by the document relevance prediction rule presented in 

Section 4.2. The purpose of the GER is to retrieve documents which meet 

the criteria of being a good training example to improve the accuracy of 

the filtering profile by using the relevance judgments of the retrieved docu-

ments. In order to achieve this purpose, we need to maintain another set of 

features to keep track of the features of the previously retrieved documents. 

Let PoolN be a set of the features which appear only in previously retrieved 

noii-relevant documents. The G E R is: 

\VnPoolt^\ \V 一 [Poola U Poo/,v)| � 
~\Poola ‘ p > " ’ then retrieve that document 

Similar to PoolR, the features in Poo/,y will be updated throughout the 

filtering process. 

Obviously, when considering the two fractions in the condition part of the 

GER independently, the maximum score given by each fraction is one. The 

overall score range given b\' the GER is [0,2). By setting the value of /5 higher 

than one, only the incoming documents satisfying our good training example 
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criteria, i.e. containing many new features and many features in PoolR, will 

be retrieved be the GER. The higher is the value of p, the more strict the 

requirement of being a good training example is. The purpose of the GER is 

to retrieve a small number of good training examples for the system to learn 

at the beginning stage of the filtering process. Therefore, the parameter j3 

should not be too small. A good strategy is to set P to a value slightly lower 

than the value at which the GER gives no effect. Moreover, the effect of 

the GER is continuously decreasing during the filtering process because the 

number of new features is decreasing and the number of features in PoolR is 

increasing as the system is retrieving more and more incoming documents. 

In other words, given a fixed value of j3, the possibility of retrieving docu-

ments by the GER reduces during the filtering process. It means that the 

requirement of being a good training example set by the GER is adaptable 

in an interactive environment. This characteristic of the GER ensures that 

the GER will only retrieve a small number of good training examples. 
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4.4 Learning Dissemination Threshold Dynam-

ically 

In our REPGER algorithm, one characteristic is that the dissemination 

threshold can be adjusted dynamically throughout the filtering process. In an 

adaptive filtering environment, the filtering knowledge of the filtering model 

is changing all the time. Therefore, the dissemination threshold, which is 

used to decide whether or not to retrieve incoming documents, should be 

varied dynamically in order to make the filtering system more adaptive and 

effective. We propose to learn a local optimal dissemination threshold with 

respect to the performance measure dynamically during the filtering process. 

Our threshold learning algorithm is fully automatic which does not need any 

user intervention. Chapter 5 describes our threshold learning algorithm in 

detail. 



Chapter 5 

T h e Threshold Learning 

Algorithm 

5.1 Learning Dissemination Threshold Dynam-

ically 

The performance of an information filtering system, which makes use of a 

dissemination threshold to decide whether or not to retrieve incoming doc-

uments, is heavily dependent on the setting of the dissemination threshold. 

In adaptive text filtering problems, the optimal value of the dissemination 

threshold for the classifier is unknown before the filtering process. Even if 

we can estimate the optimal dissemination threshold for the classifier at a 

50 
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specific time instant, we cannot guarantee that the estimated threshold is 

good at every time instant throughout the filtering process. One solution 

is to adjust the dissemination threshold dynamically throughout the filter-

ing process so that the filtering system is more adaptable in an interactive 

environment. 

5.2 Existing Threshold Learning Techniques 

In [7], Callan suggested to improve the Exponentiated-Gradient (EG) al-

gorithm [18] by adjusting the threshold of the classifier during the filtering 

process so that the filtering system can find a good threshold dynamically. 

The adjusted threshold is set somewhere between the average score of the re-

trieved relevant documents and the average score of the retrieved non-relevant 

documents. In order to reduce the risk of setting a poor threshold, the sys-

tem can start to adjust the threshold after retrieving ten relevant and ten 

non-relevant documents. One characteristic that Callan mentioned is that 

the threshold learning technique is not misled by occasional low-scoring rel-

evant document or high-scoring non-relevant document. However, we think 

that this characteristic holds only when the number of retrieved relevant 

documents and the number of retrieved non-relevant documents are high 

enough. Moreover, we observe that the average score of the retrieved rele-
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vant documents is not necessarily always greater than that of the retrieved 

non-relevant documents especially at the beginning of the filtering process. 

If the average score of the retrieved relevant documents is lower than that of 

the retrieved non-relevant documents, the threshold learning technique will 

not work. Also, it is not fully automatic because users need to decide the 

position of the new threshold within the two average scores in advance. 

Zhai et al. [45] also proposed to adjust the dissemination threshold dy-

namically in their TREC-7 [17] adaptive text filtering track entry. They 

proposed a technique, namely the beta-gamma adaptive threshold regula-

tion, to adjust the threshold by interpolating between an "optimal" threshold 

and "zero" threshold. The optimal threshold is the threshold that yields the 

highest performance, given the newly updated feature weight vector, over the 

accumulated training documents. The zero threshold is the highest threshold 

below the optimal threshold that gives a non-positive performance over the 

training documents. The threshold learning technique involves two parame-

ters. One limitation of this technique is that we need to set the parameters 

in advance which may vary for different document corpora. 
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5.3 A New Threshold Learning Algorithm 

We propose to learn a local optimal dissemination threshold with respect 

to the performance measure dynamically during the filtering process. Our 

threshold learning algorithm is fully automatic which does not need any user 

intervention. Step 4(c) in Figure 4.1 of our REPGER algorithm is responsible 

for learning the dissemination threshold. 

We propose to adjust the dissemination threshold based on the historical 

information. At any time instant during the filtering process, we have the 

current PoolR and a collection of retrieved documents. The maximum and 

the minimum feature weights of the features in PoolR are first obtained from 

the features in PoolR. The dissemination threshold will then be determined 

somewhere between the two values. The idea is to choose the threshold 

with the best value with respect to the performance measure when using the 

threshold and the current PoolR to filter the previously retrieved documents. 

The reason for using the maximum and the minimum feature weights of the 

features in PoolR as the boundaries is that these two boundaries can restrict 

the new dissemination threshold within a reasonable range for retrieving 

other incoming documents. The adjusted threshold may be too high or too 

low if there is no boundary constraint. When there is a range of thresholds 

giving the best performance, we choose the mid-point of the range. If there 
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are two or more non-consecutive thresholds giving the best performance, 

the lowest one will be chosen because it can help the system maintain a 

higher possibility of retrieving another incoming document. By using this 

mechanism, a new threshold can be learned whenever the system retrieves 

an incoming document. In summary, the threshold learning procedure is 

summarized as follows: 

1. Obtain max{it;fc} and min{iL'fc} of the features in the current PoolR to 

form a value range [ min{it;fc} ，max{tt;jfc} 

2. Divide the value range into b + 1 intervals to get b boundary points. 

One of the b boundary points will be the new threshold. (We used 

b = 20 in our current implementation.) 

3. Use each boundary point and the current PoolR to filter the previously 

retrieved documents. Every boundary point will have a corresponding 

value of the performance measure after the filtering process. 

4. Choose the boundary point with the best performance with respect 

to the performance measure given by the user as the new threshold. 

If there are consecutive boundary points giving the best performance, 

the middle one or the one immediately lower than the mid-point will 

be chosen. If there are two or more non-consecutive boundary points 

giving the best performance, the lowest one will be used. 



Chapter 6 

Empirical Evaluations 

6.1 Experimental Methodology 

We have conducted experiments similar to the adaptive text filtering track 

in the Seventh Text REtrieval Conference (TREC-7) [17] in 1998. It was the 

first time for TREC to organize the adaptive text filtering track. Incoming 

documents arrive in chronological order. The filtering system starts with a 

topic description. For each incoming document, it needs to make a binary 

decision to accept or reject the document. When the system retrieves a doc-

ument, the filtering profile is learned and updated by using the relevance 

judgment of that document. Three corpora, namely, AP (Associated Press), 

FBIS (Foreign Broadcast Information Service) and WSJ (Wall Street Jour-

nal) were used. Associated Press (AP) World-stream is an amalgamation 

55 
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of all the AP-produced international services. The English language copy 

usually originates in or is of interest to areas outside the United States; the 

service also produces copy in French, German, Swedish, Dutch and Span-

ish. The Foreign Broadcast Information Service (FBIS) is a United States 

government operation which translates the text of daily broadcasts, govern-

ment statements, and select news stories from non-English sources around 

the world. The Wall Street Journal (WSJ) is a trusted and reliable business 

newspaper. Thus, the WSJ corpus is a collection of the articles in this news-

paper. We have fully implemented our REPGER algorithm and conducted 

experiments on these three document corpora to study the effectiveness of 

our algorithm in adaptive filtering. We also compared the performance of 

our REPGER algorithm with two on-line learning algorithms, namely, the 

basic EG algorithm [18] and the improved EG algorithm in [7] (called EG-C 

in this thesis) on the three document corpora. The EG-C algorithm enhances 

the EG algorithm by dynamically adjusting the dissemination threshold and 

the target values. 

As we mentioned earlier, the EG-based algorithms integrated with the 

Infinite Attribute Model [4] can be applied to adaptive filtering problems so 

that the full set of distinct features need not be known in advance. Nev-

ertheless, in our experiments, we give the EG and the EG-C algorithms 

an advantage by providing the full set of distinct features in advance. In 
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contrast, our REPGER algorithm does not have such information. At the 

beginning of the filtering process, for the EG and the EG-C algorithms, we 

treat the topic description as a relevant document and update the filtering 

profile by the weight update formula using the binary feature representation. 

Each incoming document is represented by a unit vector or a set of features 

depending on which algorithm is used. Features are composed of words ex-

tracted from documents or topic descriptions after stop-word removal and 

word stemming. For the topic descriptions, words in the description or the 

concept fields (marked by SGML tags <desc> and <con>) are extracted. 

Normalized TF-IDF is adopted in the document representation. For each 

document corpus, the initial IDF statistics were derived from an unrelated 

reference corpus. This technique is commonly used for obtaining a more ac-

curate estimate for the initial statistics. The reference corpus used for each 

document corpus in our experiments is shown in the following table. 

Document corpus Reference corpus 

AP WSJ 

FBIS AP 

WSJ AP 

During the filtering process, the IDF used for each incoming document is 

calculated incrementally using the initial statistics and the historical infor-

mation collected as shown in Equation 3.3. 
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We follow the set-based utility measure, namely F3, proposed in TREC-7 

17] to evaluate the performance of an adaptive text filtering system. The 

measure is defined as: 

F3 = 4A — B (6.1) 

where A is the number of retrieved relevant documents and B is the number 

of retrieved non-relevant documents. F3 assigns a value of 4 units to each 

retrieved relevant document and a cost of 1 unit to each retrieved non-relevant 

document. The larger the F3 score, the better the filtering system performs 

for a given topic. Filtering according to a utility measure is equivalent to 

filtering by estimated probability of relevance. Therefore, filtering according 

to F3 is equivalent to setting the probability threshold to 0.2, i.e. retrieve 

the document if the probability of relevance of the document is greater than 

0.2 1. 

For each document corpus, we have conducted experiments for different 

algorithms on a set of topics. We evaluated the performance by considering 

the macro measures of all topics. In particular, the set F3 measure is derived 

from the macro figures in Equation 6.1. We used the set F3 measure to reflect 

how good an algorithm performs over a set of topics. 

iReaders can find the general formula for converting a utility measure into a probability 

threshold in [26]. 
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6.2 Experimental Settings 

For the AP corpus, we used 164,597 documents from 1988 and 1989. All 50 

topics from TREC-7 [17] filtering track (topic number 1-50) were used. For 

the FBIS corpus, we used 130,471 documents from 1993 and early 1994. We 

used 38 topics from TREC-5 [42] routing/filtering track in our experiments 

which have hundreds of relevance judgments for each topic. For the WSJ 

corpus, we used 98,732 documents from 1987 to 1989. 50 topics from TREC-

7 routing track (topic number 51-100) were used. 

For each document corpus, we varied the parameters of each algorithm 

in an attempt to study the performance for a particular algorithm. We also 

recorded the on-going filtering performance during the filtering process to 

observe the adaptive behavior of each algorithm. For each document cor-

pus, we evenly divide the full set of documents into five intervals. We then 

record the filtering performance of each algorithm at the end of each inter-

val. By observing the change of the performance of each algorithm through 

the five intervals, we observe the adaptive behavior of each algorithm. For 

the EG algorithm, we varied the dissemination threshold, the target value 

for relevant documents and the learning rate r]. We set the target value for 

non-relevant documents to 0 because it is reasonable to obtain a zero inner 

product W • D for a non-relevant document and a learned classifier in prac-
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tice. For the EG-C algorithm, we followed the desirable parameter setting 

for the value of R ^ in [7] and varied the initial dissemination threshold, the 

threshold learning starting point and the learned threshold position between 

the average score of the retrieved relevant documents and the average score 

of the retrieved non-relevant documents. For our REPGER algorithm, we 

followed the parameter setting for the value of R in [7]. We set the target 

values for relevant documents and for non-relevant documents to 0 and 0�5 

respectively. We varied the initial dissemination threshold, the value of P 

and the threshold learning starting point to investigate their effects. In addi-

tion, we also conducted experiments with and without the GER to see how 

the GER contributes to the filtering process. REPGERO denotes the trial of 

REPGER without using the GER. Experiment was also conducted to find 

out whether the assumption of feature characteristic in Section 4.2 is valid 

or not on the three document corpora. In order to achieve this purpose, we 

designed two variations of the REPGER algorithm. Both are based on the 

REPGER framework without using GER and threshold learning mechanism. 

REPGER1 applies the REP while REPGER2 considers all features that the 

filtering system has encountered in predicting document relevance. Table 6.1 

summarizes the parameter settings for the algorithms. 

In order to compare the effectiveness of the algorithms throughout the 

^Note that the learning rate rj = 2/{3R^). 
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Algorithm Parameter Setting 

EG target value for non-rel. doc. (0), target value 

for rel. doc. (0.005-1), R (0.8 or KW) 

EG-C target values (MinMax), R (0.8), threshold 

learning starting point (0-30 retrieved reL and 

non-rel. doc. each), learned threshold position 

(0%, 25%, 50% and 75%) 

REPGER target values (0.5, 0), R (0.8), j3 (1.3-1.8), 

threshold learning starting point 

(3-30 retrieved doc.) 

REPGERO REPGER without using GER 

REPGER1 base on the REPGER framework, 

follow the parameter setting of REPGER, 

only use REP 

REPGER2 base on the REPGER framework, 

follow the parameter setting of REPGER, 

consider all features in predicting doc. reL 

Table 6.1: The parameter settings for the algorithms. 
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filtering process, we present the on-going filtering performance of the trials 

corresponding to the best parameter combination of each algorithm. Besides 

comparing the performance of the three algorithms, we also compare the per-

formance of our REPGER algorithm on the AP corpus with the participants 

of the adaptive text filtering track in the latest TREC-7 [17]. Note that this 

track only conducted filtering runs on the AP corpus. 

6.3 Experimental Results 

The detailed experimental results of the algorithms on the AP, FBIS and 

WSJ document corpora were presented in Appendix A, B and C respectively. 

For each algorithm, we only show the runs which are necessary to give the 

trend of the filtering performance for each document corpus. From the ex-

perimental results, we observe that the EG and the EG-C algorithm are very 

sensitive to the parameter settings, including the dissemination threshold 

and the target value for relevant documents. For the EG algorithm, the KW 

technique suggested by Kivinen and Warmuth in [18] does not give a signif-

icant improvement. It is because the KW technique was originally designed 

for batch learning such as batch filtering. In batch filtering, the learning rate 

set by the KW technique is fixed throughout the learning process. However, 

when it is applied to adaptive filtering, the learning rate is varied according 
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to the constraint of the KW technique. Therefore, it may not be suitable for 

adaptive filtering. For the EG-C algorithm, it performs better than the EG 

algorithm on the three document corpora. It shows that the improvements 

proposed by Callan make the EG algorithm more effective in adaptive filter-

ing. As we discussed in Section 3.2.2, the dissemination threshold is adjusted 

within two threshold bounds. We observe that the EG-C algorithm always 

gives the best filtering performance at the position 0%, i.e. the adjusted 

dissemination threshold is set to the lower bound .̂ The performance may 

be higher if we set the adjusted threshold lower than the lower bound. It 

means that the lower bound may be too high. 

Table 6.2 summarizes the best performance of REPGER1 and REPGER2 

on the three document corpora. The best performance of REPGER1 is al-

ways higher than that of REPGER2 on these corpora. It shows that consider-

ing only the features which appear in the topic description and the retrieved 

relevant documents in predicting document relevance can improve the fil-

tering performance. This observation implies that our assumption on the 

feature characteristic in Section 4.2 is reasonable and the REP concept helps 

improve the performance in adaptive filtering. 

Figures 6.1, 6.2 and 6.3 show the effect of the initial dissemination thresh-

old on the performance of the EG, the EG-C and the REPGER algorithms 

^The lower bound is the average score of the retrieved non-relevant documents. 
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Corpus REPGER1 REPGER2 

AP 23 4 

FBIS 9 1 

WSJ 376 78 

Table 6.2: The best performance, set F3, of REPGER1 and REPGER2 on 

the three document corpora. 

on the FBIS corpus respectively. We plotted two sub-figures to show the 

effect of using KW for the EG algorithm in Figure 6.1. Performance of using 

different target values for relevant documents is also shown in the sub-figures. 

In Figure 6.2, we plotted the performance of setting different adjusted thresh-

old positions of the EG-C algorithm with threshold learning starting point 

at 30 4. For the REPGER algorithm, we plotted the performance of setting 

different values of /? (beta) with threshold learning starting point at 15 ^ in 

Figure 6.3. We aim at observing the sensitivity of parameter settings of dif-

ferent algorithms from these figures. We find that our REPGER algorithm 

gives satisfactory performance over a range of initial dissemination threshold 

^The EG-C algorithm gives the best performance with threshold learning starting point 

at 30 on the FBIS corpus. 

5We randomly choose a value of the threshold learning starting point to show the 

effect of different values of (3 (beta) and initial dissemination threshold of the REPGER 

algorithm on the FBIS corpus. 
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and a range of j3 (beta). The performance is less sensitive to the parameters. 

In contrast, the performance of the EG and the EG-C algorithms is more 

sensitive to the initial dissemination threshold. For example, the EG and 

the EG-C algorithms can only give non-negative performance over a narrow 

range of 0.000094-0.000106 and 0.000092-0.000108 respectively for the initial 

dissemination threshold parameter. These characteristics are also observed 

on the other two corpora. 

80 1 1 1 1 1— 1 1 1  
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Figure 6.1: The filtering performance of the EG algorithm with different 

dissemination threshold and target value for relevant documents settings on 

the FBIS corpus. Without KW on the left and with KW on the right. 

Figure 6.4 depicts the effects of the parameter f3 (beta) and the initial dis-

semination threshold on the performance of our REPGER algorithm on the 

FBIS corpus. We plotted three initial dissemination thresholds with a range 

o f ^ for our REPGER algorithm and also plotted the best performance of the 

EG and the EG-C algorithms for reference. The threshold learning starting 
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Figure 6.2: The filtering performance of the EG-C algorithm with differ-

ent initial dissemination threshold and adjusted threshold position settings at 

threshold learning starting point — 30 on the FBIS corpus. 
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Figure 6.3: The filtering performance of the REPGER algorithm with differ-

ent j3 (beta) and initial dissemination threshold settings at threshold learning 

starting point 二 15 on the FBIS corpus. 
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point of our REPGER algorithm was set to 15 .̂ This empirical result shows 

two characteristics of our REPGER algorithm. First, we observe that our 

REPGER algorithm performs better than the EG-C algorithm and the EG-

C algorithm gives better performance than the EG algorithm. Second, the 

REPGER algorithm gives stable and high performance on a range of values 

of (3 (beta). This shows that the performance of the REPGER algorithm is 

less sensitive within a range of values of f3. 
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Figure 6.4: The filtering performance of the REPGER algorithm with differ-

ent initial dissemination threshold and j3 (beta) settings at threshold learning 

starting point 二 15 on the FBIS corpus. 

®We randomly choose a value of the threshold learning starting point to show the 

effect of different values of |3 (beta) and initial dissemination threshold of the REPGER 

algorithm on the FBIS corpus. 
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Figure 6.5 shows the effects of the threshold learning starting point pa-

rameter and the initial dissemination threshold on the performance of our 

REPGER algorithm on the FBIS corpus. We plotted three initial dissemi-

nation thresholds with a range of threshold learning starting points for our 

REPGER algorithm and also plotted the best performance of the EG and 

the EG-C algorithms for reference. The P (beta) of our REPGER algorithm 

was set to 1.6 .̂ We observe one more characteristic of our REPGER al-

gorithm from this empirical result. It is that our REPGER algorithm gives 

satisfactory performance over a range of threshold learning starting points 

and the performance is always better than that of the EG and the EG-C 

algorithms. 

Figures 6.6, 6.7 and 6.8 depict the on-going filtering performance of the 

best trials of the EG, the EG-C, the REPGERO and the REPGER algo-

rithms on the three corpora during the whole filtering task. Recall that 

REPGERO denotes REPGER without using the GER. They demonstrate 

that the adaptive learning performance of the REPGERO and the REPGER 

algorithms is much higher than that of the others. For the three corpora, we 

observe that the adaptive learning performance of the EG algorithm is very 

^We randomly choose a value of /3 (beta) to show the effect of different values of thresh-

old learning starting point and initial dissemination threshold of the REPGER algorithm 

on the FBIS corpus. 
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Figure 6.5: The filtering performance of the REPGER algorithm with dif-

ferent initial dissemination threshold and threshold learning starting point 

settings at f3 (beta) 二 1.6 on the FBIS corpus. 
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low. It may be due to the problem that the EG algorithm does not have 

a mechanism to maintain a pool of selective features with potentially high 

predictive power in an interactive environment. For the FBIS corpus, the 

REPGER algorithm starts with a performance lower than that of the EG 

and the EG-C algorithms. It seems that the topics in the FBIS corpus is dif-

ficult for our algorithm to learn. We found that the initial features extracted 

from the topic descriptions are not informative. Our algorithm starts with 

a filtering profile containing only the features extracted from the topic de-

scription. This makes our algorithm retrieving some non-relevant documents 

at the beginning of the filtering process for these topics. Nevertheless, it 

achieves better performance than the EG-based algorithms after processing 

some documents. Note that the EG and the EG-C algorithms know the full 

set of distinct features in advance to construct their filtering profiles. 

When concentrating on the performance ofthe REPGERO and the REPGER 

algorithms on the three corpora, we observe that the REPGER algorithm al-

ways give a better performance. When the topics are difficult to learn such 

as the FBIS corpus, it can give a considerable contribution to the filtering 

system. The GER reduces the performance damage at the beginning stage of 

the filtering process. In other words, it increase the filtering performance of 

the algorithm at the beginning stage. This is exactly what the GER intends 

to achieve. By having a better performance at the beginning stage, the per-
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Figure 6.6: The on-going filtering performance of the four algorithms chosen 

by the best parameter combinations on the AP corpus. 
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Figure 6.7: The on-going filtering performance of the four algorithms chosen 

by the best parameter combinations on the FBIS corpus. 
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Figure 6.8: The on-going filtering performance of the four algorithms chosen 

by the best parameter combinations on the WSJ corpus. 

formance will keep better than REPGERO throughout the filtering process. 

For example, on the FBIS corpus, the percentage increase of the performance 

at the end of the filtering process is 15.59% ^ which is a significant improve-

ment. This validates the use of the GER for tackling the problem of lack of 

training examples for the information filtering system in adaptive filtering. 

Table 6.3 shows the average set F3 values of the on-going performance of 

the EG, the EG-C and the REPGER algorithms. For instance, the average 

set F3 values of the AP corpus is the mean of the five set F3 values shown 

in Figure 6.6 for the corresponding algorithm. It shows that our REPGER 

8REPGER gives 786 and REPGERO gives 680. The percentage increase is (786-

680)/680 = 15.59%. 
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algorithm has higher average utility values demonstrating its effectiveness. 

Corpus EG EG-C REPGER 

AP 10 22.4 1,042.8 

FBIS 38.6 108.8 272.2 

WSJ 107.2 454.6 791.2 

Table 6.3: The average set F3 values of the on-going performance of the EG, 

the EG-C and the REPGER algorithms. 

In comparing the performance with the participants of the adaptive text 

filtering track in TREC-7 [17], only AP years 88 and 89 could be used since 

we could not obtain the relevance judgments for the year 90. Similar to 

most TREC-7 participants, we adopted a topic-by-topic comparison fashion 

and concentrated on the comparison with their median performance .̂ Com-

paring with the median performance of the TREC-7 participants can reflect 

how well an algorithm performs among them. Table 6.4 summarizes the 

comparison of the performance of our REPGER algorithm with the TREC-7 

participants over 50 topics. It depicts the number of topics in which the F3 

of our REPGER algorithm is less than, equal to, or greater than the me-

dian of the TREC-7 participants. It shows that our REPGER algorithm is 

^Actually, we can only obtain the minimum, median and maximum performance of the 

participants for the 50 topics. 
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comparable to them. Note that no single participant obtained performance 

consistently better than the median over all topics. Moreover, our algorithm 

achieves the same performance as their best performance in 5 topics and even 

achieves better performance than their best performance in 3 topics in the 

AP year 89 corpus. 

Corpus < median = median > median 

AP year 88 24 2 24 

AP year 89 21 5 24 

Table 6.4: The number of topics in which the F3 of our REPGER algorithm 

is less than, equal to, or greater than the median of the TREC-7 adaptive 

text filtering track participants (total 50 topics). 



Chapter 7 

Integrating With Feature 

Clustering 

In the vector space model, both the incoming documents and the filtering pro-

file are represented as a feature vector as described in Equation 3�1 and 3.4. 

Consider now a situation in which n distinct features are available to char-

acterize document content. Each of the n features,九，can then be identified 
— 

with a feature vector fk. Hence the incoming document D can be rewritten 

as 

D = j ^ x J i (7.1) 
i=l 

where x ,̂ the document weight, is interpreted as the components of the doc-

76 
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~ f 

ument D along the vector fi. 

In a vector space, a common similarity measure used to compute the 
— 

similarity between vectors a and b is the cosine similarity. It is their inner 
~k — — — 

product, a ‘ b — \a\\b\ cosS, where |a|, |6| are the lengths of a, b, respectively 

and S is the angle between the two vectors. Hence, given a document D 

and a filtering profile W represented in the form of Equation 7.1, the profile-

document similarity can be computed as 

D'W = f； x,Wj fi. f^ (7.2) 
i,j=l 

Computing the similarity value thus depends on a specification of the 

document and filtering profile components, as well as knowledge ofthe feature 
— ~^ 

correlations f i . f j for all feature pairs. The feature correlations are not usually 

available a priori especially in the adaptive filtering setting. In practice the 

feature-correlation problem is often solved by assuming that the features are 

in fact uncorrelated, in which case the feature vectors are orthogonal (i.e., 
~* — — ~* 

fi . f j = 0, except when i 二 j and fi • fi = 1). When the n feature vectors 

are orthogonal, linear independence follows automatically. Assuming that 

the features are uncorrelated, the profile-document similarity computation 

of Equation 7.2 is reduced to a simple sum-of-products form of Equation 7.3: 
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sim(D, W) = ^XiWi (7.3) 
2=1 

The profile-document similarity measure used in our REPGER algorithm 

(Step 2 in Figure 4.1) is a variant of the Equation 7.3. It also works under 

the assumption of feature uncorrelation. However, in fact, this assumption 

does not hold. Many features are correlated to each other in a document 

corpus. For example, the words "rear", "steering" and "tire" are correlated. 

Feature clustering methods can solve this problem by joining similar fea-

tures, i.e. features that are correlated, into groups. After feature clustering, 

the set of distinct features considered in the vector space becomes a set of 

clusters by joining the similar features into groups. Hence, the assumption 

that the vectors are orthogonal becomes reasonable. 

There is another benefit of feature clustering. It can reduce the feature 

dimensionality in the vector space. The size of the filtering model can be 

reduced because the large set of features in PoolR is reduced to a relatively 

small set of feature clusters. Hence, the efficiency of calculating the profile-

document similarity can be improved. 

In this thesis, we investigate the contribution of feature clustering in adap-

tive filtering. We modify the distributional clustering algorithm proposed in 

1] so that the algorithm can be applied in the adaptive filtering setting. 
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7.1 Distributional Clustering Algorithm 

Distributional clustering [33] is an information-theoretic approach that has 

shown good performance in language modeling. It joins features that induce 

similar probability distributions among the target concept that co-occur with 

the features in question. The reasoning behind this is as follows. If two 

different features "vote" similarly among the possible answer in the task 

at hand, then the features are correlated and can be joined into a cluster. 

Baker and McCallum [1] modified the distributional clustering algorithm 

for text classification. They show that distributional clustering is better 

than other existing clustering techniques, such as class-based clustering using 

mutual information [5] and clustering by Latent Semantic Indexing [11], in 

both reducing feature dimensionality and improving accuracy. Therefore, we 

choose distributional clustering to integrate with the REPGER algorithm. 

We modify the algorithm in [1] so that we can apply distributional clustering 

of features in adaptive filtering. 

Consider a random variable over classes, C, and its distribution given 

a particular feature, fi. The distribution can be written as P{C\fi). Note 

that, in information filtering, the class variable C contains only two classes, 

relevant and non-relevant When features fi and f j are clustered together, the 

new distribution can be estimated as the weighted average of the individual 
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distributions 

P ( W , V /.) = F ( ^ f ( C | / ' ) + ^U^)P_j) (7.4) 

In the context of information filtering, the target variable for the task at 

hand is the class label. Distributional clustering thus measures the similarity 

between two features fi and f j as the similarity between the class variable 

distributions they induce: P{C\fi) and P{C\fj). Kullback-Leibler (called KL 

in this thesis) divergence is an information-theoretic score that measures the 

difference between two probability distributions. The KL divergence between 

the class distributions induced by fi and f j is defined as 

D{P{CmP{Clfj)) 二 f 5 P(c,|/.) l o g ( ^ ^ ) (7.5) 
k=i r�Ck fj) 

The KL divergence has some odd properties. It is asymmetric, and is infinite 

when an event with non-zero probability in the first distribution has zero 

probability in the second distribution. Thus, in Distributional Clustering we 

use a related measure that does not have these problems. It is the average 

of the KL divergence of each distribution to their mean distribution, called 

"KL divergence to the mean". In [1], they use a weighted average instead of 

a simple average. 
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P{fi)D{P{CimP(Clf, V fj)) + P{fj)D{P{C\fj)\\P{C\f, V /,-)) (7.6) 

In our investigation, we follow the weighted average of the "KL divergence to 

the mean" in Equation 7.6 to measure the difference between two probability 

distributions over the class variable. 

Now we address the question of how to use the similarity metric to form 

clusters. We present the clustering algorithm first and then describe how to 

integrate it with our REPGER algorithm in Section 7.2. We create clusters 

with deterministic feature membership using a simple greedy agglomerative 

approach that works well in practice. The number of clusters desired, M, 

should be specified in advance. At all stages, the algorithm has not more than 

M clusters. The clusters are initialized with M features that have highest 

average mutual information with the class variable. Mutual information is a 

criterion commonly used in statistical language modeling of word associations 

and related applications [9, 15]. The mutual information between the feature 

fk and the class label Q is defined as 

/ ( / “ ) = i � g ( ^ ^ ) (”） 

and the average mutual information is 
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|ci 
Iavg{fk) = ZP(CiWk，Ci) (7.8) 

i=l 

After forming the first M clusters, the remaining features are joined to one 

of the M clusters until each feature belongs to one of the clusters. Figure 7.1 

summarizes the clustering algorithm. 

1. Sort the features by average mutual information with the class variable. 

2. Initialize the M clusters as singletons with the top-ranked M features. 

3. Loop until all features have been put into one of the M clusters: 

• Group the next feature in the sorted list into one of the M clusters 

that are most similar to the feature according to Equation 7.6. 

Figure 7.1: The Clustering Algorithm. 

7.2 Integrating With Our REPGER Algorithm 

We apply the distributional clustering algorithm to the features in PoolR of 

our REPGER algorithm. The features with similar probability distributions 

over the class variable in PoolR can be joined together into a cluster. The 

parameters of the cluster such as the document weight, ock, and the feature 

weight, Wk, become the simple average of the parameters of its constituent 
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features. Since the clustering algorithm is based on the probability distri-

butions of the features, the performance of our REPGER algorithm after 

starting feature clustering is heavily dependent on the accuracy of the fea-

tures' probability distributions. We should start the clustering algorithm 

after the system has retrieved a large number of documents so that the sys-

tem can maintain accurate estimates on the probability distributions over the 

class variable. After starting the clustering algorithm, the clusters will be 

updated every time when the system retrieves an incoming document. The 

number of clusters M can be different in each update. In adaptive filtering, 

we cannot estimate the number of features in PoolR at any time instance in 

the filtering process. Moreover, this number also varies from different topics. 

We propose to set the value of M dynamically in the filtering process. We 

can relate the number of clusters M with the number of features in PoolR 

by the following equation: 

M 二 ratiOc |PooZji| (7.9) 

where ratiOc is the ratio used to determine the size of M. After starting 

feature clustering, the weight update formula and the threshold learning 

algorithm of our REPGER algorithm also works on the clusters in PoolR. 
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7.3 Empirical Evaluation 

In order to investigate the effect of the clustering algorithm purely in the 

profile-document similarity (Step 2 in Figure 4.1), we integrate the clustering 

algorithm with our REPGER algorithm without using the GER. Based on 

the experimental results in Section 6.3, we chose one topic with the highest 

number of retrieved documents from each document corpus for our clustering 

experiment. Table 7.1 shows the details of the topics chosen. 

Corpus Topic number Number of retrieved documents 

AP 22 1,650 

FBIS 111 1,810 

WSJ 56 431 

Table 7.1: The details of the topics chosen for the clustering experiment. 

We follow the parameter settings of our REPGER algorithm that give 

the results shown in Table 7.1 and explore a range of parameter values, 

i.e. the clustering starting point and the value of raUoc, for the clustering 

algorithm. The clustering algorithm will start if the number of retrieved 

documents is larger than the clustering starting point. The parameter ratiOc 

is used to decide the number of clusters, M, as described in Equation 7.9. We 

concentrate on the difference in performance with and without the clustering 



CHAPTER 7. INTEGRATING WITH FEATURE CLUSTERING 85 

algorithm. Therefore, only the performance after the number of retrieved 

documents exceeds the clustering starting point will be analyzed. 

No. of Clustering F3 F3 

Topic retrieved starting without with 

Corpus no. documents point ratiOc clustering clustering 

AP 22 1,650 1,600 0.025-0.2 16 33 

FBIS 111 1,810 1,800 0.2-0.7 -4 4 

WSJ 56 431 400 0.4-0.9 15 13 

Table 7.2: The result of the clustering experiment. 

Table 7.2 summarizes the experimental result. It shows the best per-

formance and the parameter setting that gives the best performance of the 

algorithm integrating with the feature clustering technique. The clustering 

starting points for the AP, the FBIS and the WSJ corpora are 1,600, 1,800 

and 400, respectively. For the AP corpus, the clustering algorithm helps our 

REPGER algorithm without the GER attain a performance improvement 

from 16 to 33 in the ratiOc range 0.025-0.2. It also gives improvement from 

-4 to 4 in the ratiOc range 0.2-0.7 for the FBIS corpus. However, the perfor-

mance reduces from 15 to 13 in the ratiOc range 0.4-0.9 for the WSJ corpus. 

The clustering algorithm gives improvement in the topics of the AP and the 

FBIS corpora but not in that of the WSJ corpus. It shows that the clustering 

starting point does affect the performance of the clustering algorithm. The 
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clustering algorithm does well only when there are enough statistics to esti-

mate the probability distributions over the class variable of the features in 

PoolR. In addition, the clustering performance may depend on the content of 

the corpus. If features of a document corpus are less correlated, the clustering 

algorithm will not do well because it may over-cluster the features. The FBIS 

corpus may be this type of corpus so that the performance is decreased after 

applying the clustering technique. In conclusion, this empirical result also 

shows that clustering correlated features together improves the performance 

of our REPGER algorithm. This is because, by doing so the assumption of 

feature uncorrelation in calculating the profile-document similarity becomes 

more reasonable. However, work needs to be done to investigate how to solve 

the shortcoming of the deficiency of statistics available in adaptive filtering. 

Besides improving the filtering performance, feature clustering can also 

improve the efficiency of calculating the profile-document similarity since the 

number of features needed to be considered in calculating the similarity is 

decreased by clustering correlated features together. However, in adaptive 

filtering, the computational cost in clustering the features is higher than the 

time saving in calculating the profile-document similarity. It is because we 

need to re-cluster the features every time when an incoming document is 

retrieved. Therefore, much work needs to be done to explore and investigate 

the feasibility of applying feature clustering in adaptive filtering in the future. 



Chapter 8 

Conclusions 

8.1 Summary 

In this thesis, we propose a new on-line learning algorithm, namely the 

REPGER (RElevant feature Pool with Good training Example 

retrieval Rule) algorithm, for adaptive text filtering problems. Our ap-

proach maintains a pool of selective features with potentially high predictive 

power. Besides using the predicted relevant documents to update its filter-

ing profile, it also retrieves documents which are considered as good training 

examples. Dissemination threshold can be learned dynamically to maintain 

a good filtering performance throughout the filtering process. We have con-

ducted experiments on three document corpora, namely, AP, FBIS and WSJ 

to compare the performance of our REPGER algorithm with two existing 

87 
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EG-based algorithms [7，18]. The results demonstrate that our REPGER 

algorithm offers a more effective filtering performance than the others most 

of the time. Comparison with the TREC-7 [17] adaptive text filtering track 

participants was also done. The result shows that our REPGER algorithm is 

comparable to them. We also investigate the feasibility of applying a feature 

clustering technique, known as the Distributional Clustering [33], in adap-

tive filtering. The experimental result shows that the effect of the clustering 

technique is quite promising. 

8.2 Future Work 

There are some interesting directions for future work concerning the REPGER 

algorithm. One area is to improve the learning capability of the REPGER 

algorithm by considering more informative statistics throughout the filtering 

process. Another direction is to make the GER more adaptive in the interac-

tive environment of adaptive filtering. Both these directions for future work 

are discussed below. 

First, the effectiveness of the feature weight allocation component of our 

REPGER algorithm could be improved in an interactive environment. We 

would use the weight update formula of the EG-based algorithms [7, 18] in 

our current implementation. However, this would not account for all the 



CHAPTER 8. CONCLUSIONS 89 

informative statistics of the features such as the number of relevant/non-

relevant documents that a particular feature appears. By using these statis-

tics, P(relevant|/A;) and P(non-relevant|/fc) could be calculated incrementally 

which could help the feature weight update formula determine the magni-

tude of the change more accurately i. For example, suppose a retrieved 

relevant document contained two features fi and f j with the same docu-

ment weight (i.e., Xi 二 Xj), the magnitudes of the feature weight updates 

of the two features would be the same by using Equation 3.6. However, 

if P(relevant|/i) was larger than P(relevant|/^) and P(non-relevant|/i) was 

smaller than P (non-relevant | f j ) , the feature weight updates of the two fea-

tures should not be the same. The magnitude of the feature weight update 

of the feature fi should be larger than that of the feature fj. 

Second, we also intend to study in more detail the behavior of the Good 

training Example retrieval Rule (GER); in particular, how its effectiveness 

varies with different topics. The relative importance of the new features and 

the features in PoolR considered by the GER may vary from different topics. 

We believe that a self-learning mechanism to adjust the relative importance 

for different topics will help improve the overall effectiveness of the filtering 

system. 

^ P (relevant/non-relevant | fk) is the probability of relevance/non-relevant of a docu-

ment, which contains the feature fk. 
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On a different area, the filtering profile initialization mechanism in REPGER 

was not fully exploited due to time constraints. We have only used the sim-

plest method for filtering profile initialization just for showing the effective-

ness of our REPGER algorithm. The filtering performance of our REPGER 

algorithm, however, could be improved by carrying out query expansion in 

the filtering profile initialization process. Query expansion is a process to 

expand the set of features extracted from the original topic description in 

order to have a more accurate filtering profile before starting the filtering 

process. For example, one could introduce synonyms to the filtering profile. 

This technique would be particularly useful when the topic description is not 

informative. 

— E N D — 
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Appendix A 

Experimental Results O n T h e 

A P Corpus 

A.1 The EG Algorithm 

Target value for relevant documents 
Threshold || 0.35 0.25 0.15 0.05 0.025 
0.000078 ~~— -13,130 -3,377~~^ 0~~ 
0.000082 -17,384 41 13 13 13 
0.000086 -699 11 11 12 12 
0.00009 0 — — — — 

Table A.1: The set F3 of the EG algorithm using KW on the AP corpus. 

Target value for relevant documents 
Threshold | 0.125 0.1 0.075 0.05 0.025_ 
0.000074 II -10,403 -5,146 -1,442 -131 -89 
0.000078 -7,411 45 11 -4 -1 
0.000082 15 13 13 13 13 
0.000086 11 11 11 12 12 

Table A.2: The set F3 of the EG algorithm on the AP corpus. 
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A.2 The EG-C Algorithm 

II Adjusted threshold position 
Initial threshold | Q% | 25% 50% | _ 7 5 ^ _ 

0.000066 II -289 -549 -703 -1,004 
0.00007 139 -64 -241 -334 
0.000074 143 97 66 -109 
0.000078 3 -2 0 1 
0.000082 18 13 14 16 
0.000086 II 11 11 11 11 

Table A.3: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 0 on the AP corpus. 

Adjusted threshold position 
Initial threshold || 0% | 25% 50% 75% 

0.000066 II -732 -693 -740 ~ ~ ^ ~ ~ 
0.00007 484 376 119 101 

0.000074 276 260 203 152 
0.000078 97 85 85 63 
0.000082 80 76 72 73 
0.000086 22 22 24 25 

Table A.4: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 5 on the AP corpus. 
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~~Adjusted threshold position 
Initial threshold Q% | 25% 50% 75% 

0.000066 -1,235 -1,019 -1,047 -1,124 
0.00007 77 120 25 -93 
0.000072 247 257 236 130 
0.000074 256 233 187 141 
0.000076 431 344 271 254 
0.000078 159 147 103 83 
0.000082 111 109 110 96 
0.000086 -38 -35 -30 -19 

Table A.5: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 10 on the AP corpus. 

Adjusted threshold position 
Initial threshold | 0% 25% 50% 75% 

0.00007 -1,132 -511 -669~~-887 
0.000074 120 103 21 -25 
0.000078 88 73 71 75 
0.000082 -58 -38 -34 -25 
0.000086 -119 -99 -82 -74 

Table A.6: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 15 on the AP corpus. 
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A.3 The REPGER Algorithm 

Value of /3 (beta) 一 

Initial threshold 1.3 1.4 1.5 1.6 

OOOl 1,190 1,958 1,988 1,948 

0.002 1,462 1,859 1,936 1,891 
0.003 1,742 2,209 2,043 1,992 
0.004 1,783 2,047 2,001 1,963 
0.005 1,580 2,046 2,025 1,976 
0.006 1,832 2,013 1,984 1,935 
0.007 948 1,138 1,124 1,063 

0.008 1,032 1,141 1,116 1,065 
0.009 1,861 1,932 2,054 2,003 
0.01 2,025 2,061 2,245 2,251 
0.011 1,934 2,038 2,397 2,401 
0.012 1,184 1,294 1,650 1,656 

Table A.7: The set F3 of the REPGER algorithm with threshold learning 
starting point at 3 on the _AP corpus. 
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Value of /̂  (beta) 
Initial threshold 1.3 | 1.4 1.5 1.6 

0 ^ 1,402 1,673 1,614 1,595 
0.002 1,456 1,922 1,829 1,829 
0.003 1,475 2,024 1,941 1,941 
0.004 1,894 2,088 2,032 2,032 
0.005 1,725 1,935 1,918 1,867 
0.006 1,647 2,146 2,111 2,066 
0.007 1,302 1,903 1,848 1,825 
0.008 1,681 2,181 2,159 2,101 
0.009 1,651 1,995 2,121 2,067 
0.01 1,570 1,828 2,020 2,001 

0.011 1,671 1,954 2,147 2,128 
0.012 995 1,280 1,452 1,433 

Table A.8: The set F3 of the REPGER algorithm with threshold learning 
starting point at 5 on the 4P corpus. 

Value of P (beta) 
Initial threshold 1.3 1.4 1.5 1.6— 

OOOl 1,625 1,574 1,574 1,574 
0.002 1,556 1,686 1,660 1,660 
0.003 1,416 1,552 1,526 1,526 
0.004 1,705 1,656 1,605 1,605 
0.005 1,825 1,804 1,738 1,738 
0.006 1,464 1,755 1,699 1,699 
0.007 1,786 1,753 1,702 1,702 
0.008 1,507 1,808 1,747 1,747 
0.009 948 1,127 1,059 1,059 
0.01 889 1,215 1,080 1,045 
0.011 683 965 830 795 
0.012 1,418 1,410 1，275 1,222 

Table A.9: The set F3 of the REPGER algorithm with threshold learning 
starting point at 10 on the AP corpus. 



Appendix B 

Experimental Results O n T h e 

FBIS Corpus 

B.1 The EG Algorithm 

Target value for relevant documents 
Thresho1d"| 0-35 0.25 0.05 0.025 

0.00009 ~~— — ^ ^ 
0.000094 — -10,797 35 33 
0.000098 -7,652 67 54 27 
0.000102 -574 51 35 35 
0.000106 26 19 0 -3 
0.00011 -23 -24 — — 

Table B.1: The set F3 of the EG algorithm on the FBIS corpus. 
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II Target value for relevant documents 
Threshold | 0.45 0.35 0.25 0.05 

0.00009 ~ ~ = ~ -12,922 -2,301 ~ ~ ^ ~ ~ 
0.000094 -14,204 -9,401 42 32 
0.000098 -11,460 69 71 47 
0.000102 40 51 57 35 
0.000106 41 19 12 0 
0.00011 -26 -24 -24 -24 

Table B.2: The set F3 of the EG algorithm using KW on the FBIS corpus. 

B.2 The EG-C Algorithm 

II Adjusted threshold positio^ 
Initial threshold || Q% | 25% 50% 75% 

0.000088 -255 -249 -243 ~ ~ ^ ^ 
0.000092 16 23 26 -6 
0.000096 86 74 75 76 
0.0001 43 43 43 43 

0.000104 38 38 38 38 
0.000108 8 8 8 8 
0.000112 II 0 0 0 0 

Table B.3: The set F3 of the EG-C algorithm with threshold learning starting 
point at 10 on the FBIS corpus. 
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Adjusted threshold position— 
Initial threshold 0% | 25% 50% 75% 

0.000092 -18 -14 -16 ^ 
0.000096 218 211 208 201 

0.0001 43 43 43 43 
0.000104 38 38 38 38 
0.000108 8 8 8 8 
0.000112 0 0 0 0 

Table B.4: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 30 on the FBIS corpus. 

Adjusted threshold position 
Initial threshold Q% | 25% 50% 75% 

0.000092 -103 -102"""^^ ^ ^ 
0.000096 70 114 102 73 

0.0001 43 43 43 43 
0.000104 38 38 38 38 
0.000108 8 8 8 8 
0.000112 0 0 0 0 

Table B.5: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 50 on the FBIS corpus. 
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B.3 The REPGER Algorithm 

Value of /3 ( b e t a ) ~ 
l ^ a l threshold 1.3 1.4 L 5 J _ ^ ^ 

O l 5 123 88 97 816 
0.016 22 614 634 654 
0.017 657 620 571 550 
0.018 643 666 634 602 
0.019 664 629 608 624 
0.02 702 90 69 629 
0.021 714 106 96 647 
0.022 702 168 146 82 

Table B.6: The set F3 of the REPGER algorithm with threshold learning 
starting point at 10 on the FBIS corpus. 

Value of /? (beta) 
l ^ t i a l threshold 1.3 1.4 1.5 1.6 

0 ^ 690 669 637 621 
0.014 647 678 671 671 
0.015 734 654 668 684 
0.016 596 588 636 665 
0.017 653 650 612 603 
0.018 637 680 640 625 
0.019 674 674 646 659 
0.02 787 110 86 760 
0.021 786 686 577 685 

Table B.7: The set F3 of the REPGER algorithm with threshold learning 
starting point at 15 on the FBIS corpus. 
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II Value of |3 (beta) 
l ^ i a l thresholdJ 1.3 1.4 1.5 1.6 

O l 3 465 510 527 544 
0.014 532 538 524 562 
0.015 484 469 459 494 
0.016 522 516 597 556 
0.017 529 573 552 509 
0.018 538 571 581 551 
0.019 610 601 630 615 
0.02 617 426 494 637 
0.021 657 634 653 695 
0.022 699 645 641 -29 
0.023 490 628 634 495 
0.024 503 676 690 689 

0.025 629 707 728 715 

Table B.8: The set F3 of the REPGER algorithm with threshold learning 
starting point at 20 on the FBIS corpus. 
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Experimental Results O n T h e 

W S J Corpus 

C.1 The EG Algorithm 

Target value for relevant documents 
Threshold | 0.1 0.05 | 0.025 Q.Q1 0.005 
0.000102 — -784 11 -38 ~ ~ " ^ " ^ 
0.00011 — -76 48 47 44 
0.000114 一 -55 78 127 108 
0.000122 — 39 102 116 102 
0.00013 -182 108 103 91 94 
0.000138 26 86 66 55 55 
0.000146 88 47 29 29 29 
0.000154 18 — — 一 一 

Table C.1: The set F3 of the EG algorithm on the WSJ corpus. 
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Target value for relevant documents 
Threshold 0.1 0.05 0.025 0.01 0.005 
0.000102 -7,885 -54 -29 -32 ~ ~ ^ ~ ~ 
0.00011 -339 6 44 46 49 
0.000114 -238 47 112 133 103 
0.000122 -87 91 116 113 102 
0.00013 67 110 95 91 92 
0.000138 95 72 61 55 55 
0.000146 68 32 32 29 29 

Table C.2: The set F3 of the EG algorithm using KW on the WSJ corpus. 

C.2 The EG-C Algorithm 

II Adjusted threshold position 
Initial threshold | 0% ] 25% 50% 75% 

0.00009 ^ 3 e T -396 -470 ^ ^ ~ ~ 
0.000098 707 414 453 440 
0.000106 600 629 535 124 
0.000114 II 293 314 208 161 

Table C.3: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 0 on the WSJ corpus. 
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~~~Adjusted threshold position 
Initial threshold 0% | 25% 5 0 % T ^ 5 " ^ 

0.00009 -1,416 -1,043 -1,206 -1,500 
0.000098 210 295 224 42 
0.000106 763 817 764 746 
0.000114 455 456 428 452 
0.000122 7 210 188 111 
0.00013 154 148 113 101 

Table C.4: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 5 on the WSJ corpus. 

Adjusted threshold position 
Initial threshold 0% | 25% 50% 75% 

0.000098 -1,258 -1,001 -1,001 -1,132 
0.000102 137 122 -183 -38 
0.000106 193 282 406 371 
0.00011 126 156 139 108 
0.000114 79 144 189 127 
0.000118 80 99 182 186 
0.000122 68 115 -3 1 
0.000126 27 66 56 86 

Table C.5: The set F3 ofthe EG-C algorithm with threshold learning starting 
point at 10 on the WSJ corpus. 
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C.3 The REPGER Algorithm 

Value of p (beta) 
Initial threshold 1.4 1.5 1.6 

M n 1,616 1,618 1,623 
0.013 1,097 1,302 1,306 
0.015 1,339 1,629 1,556 
0.017 938 1,567 1,488 
0.019 901 1,187 1,245 
0.021 1,081 1,075 997 
0.023 1,144 1,599 1,592 
0.025 1,081 1,312 1,297 

Table C.6: The set F3 of the REPGER algorithm with threshold learning 
starting point at 5 on the WSJ corpus. 

一 II Value of 0 (beta) 
Tnitial t h r e s h ^ 1.4 1.5 1.6~~ 
“ O l 2 II 1,450 1,401 1,404 

0.014 1,366 1,360 1,362 
0.016 1,419 1,425 1,428 
0.018 957 1,401 1,401 
0.02 1,097 1,107 1,107 
0.022 1,103 1,133 1,121 
0.024 II 1:122 1,365 1,362 

Table C.7: The set F3 of the REPGER algorithm with threshold learning 
starting point at 10 on the WSJ corpus. 
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一 Value of /3 (beta) 
Initial threshold 1.4 1.5 1.6~ 

OOl2 1,446 1,390 1,391 
0.014 1,414 1,420 1,421 
0.016 1,640 1,644 1,645 
0.018 1,129 1,431 1,432 
0.02 1,021 1,028 1,034 
0.022 1,017 1,039 1,027 
0.024 1,047 1，302 1,296 

Table C.8: The set F3 of the REPGER algorithm with threshold learning 
starting point at 15 on the WSJ corpus. 
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