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Abstract 

Over the past decade, significant progress has been made in speech recognition. Current state-of-

the-art Chinese speech recognition systems are capable of achieving character accuracy of 80% on 

continuous speech recognition tasks using 29,000 words (from EBM, 1996). While the size and 

performance of modern speech recognition and understanding systems are impressive, current 

approaches to continuous word recognition utilize little linguistic knowledge in phonological, 

lexical and syntactic level. We believe the use of phonological and lexical knowledge through 

lexical access, as well as syntax knowledge through language model would be beneficial to speech 

recognition. 

This thesis presents an algorithm for the construction of lexical access model that attempts to speed 

up a large vocabulary isolated word recognizer. Additionally, we describe different Chinese 

language modeling technique of a large vocabulary system at the character level and word level. 

These language models provide a powerful constraint to the recognizer. Finally, different kinds of 

n-gram smoothing methods are studied, with the aim of solving the problem of uneven distribution. 

The results of this thesis support the argument that linguistic knowledge is beneficial to speech 

recognition. 
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；商要 

過去十年，語音科技的發展迅速，現時最先進的中文語音識別系統應用於29000字的連續性 

語音識別任務中可以達到80%的準確性(來源：萬國商業機器，1996) o雖然現代語音識別系 

統的規模和表現已經令人嘆爲觀止，但是現時的語音識別處理方法較少利用到語言學裏的音 

韻、詞匯和語句結構的知識。我們相信一方面利用音韻和詞匯的知識來選取詞匯，另一方面 

使用語句結構的知識來製作語言模型會對語音識別有幫助。 

本論文介紹了詞匯選取的算法。這方法嘗試去加快大詞彙、單詞識器的運作。另外，我們描 

述了語言模型用於大詞彙的識別器。這模型對識別器提供了一個有效的語言約束。最後，我 

們硏究了不同的平滑化語言模型，它們用於解決多聯模型仏-2^110不平均分佈的問題。 

本論文的結果支持了語言學能夠幫助語音識別的論點。 

關鍵詞• 

語音識別、中文、詞匯選取、語言模型，平滑化 

ii 



Acknowledgements 

The completion of this thesis would not have been possible without the help of many people to 

whom I would like to express my heartfelt appreciation. 

Firstly, I would like to express my deepest gratitude to my supervisor Prof. Hong C. Leung for 

being everything a supervisor should be. He taught me not only speech recognition, but also about 

thinking and behaving like a scientist. Without his great enthusiasm and continuous encouragement, 

the work would not have been completed. 

Another person whom I would like to thank is my friends, Finoa Tse and Karen Ip, who shared with 

me their expertise in computational linguistics and proof reading. 

Thanks are also given to the department for providing me with excellent facilities and environment 

for my research. I received much support from my colleagues, such as K.F. Chow, Y. Chen, C.Y. 

Choy, C.P. Chan, W. Lau, Y.W. Wong, etc... at the DSP laboratory. I am also grateful for the 

financial support from Sir Edward Youde Memorial Fund. 

Another excellent person whom I would like to thank is my friend, Desiree Lam, for supporting me, 

and for encouraging me to do my best at what I choose to pursue. 

Finally, my biggest gratitude is undoubtedly to my fiancee, Yvonne Lee. Her love and unwavering 

support were my continuing sustenance. 

iii 



Table of Contents: 

ABSTRACT I 

KEYWORDS： I 

ACKNOWLEDGEMENTS III 

TABLE OF CONTENTS: IV 

TABLE OF FiGURES： VI 
TABLE OF TABLES： VII 

CHAPTER 1 INTRODUCTION 1 

1.1 LANGUAGES U^ THE WORLD 2 
1.2 PROBLEMS OF CHD^JESE SPEECH RECOGNITION 3 

1.2.1 Unlimited word size: S 
1.2.2 Too many Homophones: 3 
1.2.3 Difference between spoken and written Chinese: 3 
1.2.4 Word Segmentation Problem: 4 

1.3 DIFFERENT TYPES OF KNOWLEDGE 5 
1.4 CHAPTER CONCLUSION 6 

CHAPTER 2 FOUNDATIONS 7 

2.1 CmNESE PHONOLOGY AND LANGUAGE PROPERTIES 7 
2.1.1 Basic Syllable Structure 7 

2.2 ACOUSTIC MODELS 9 
2.2.1Acoustic Unit 9 
2.2.2 Hidden Markov Model (HMM) 9 

2.3 SEARCH ALGORITHM 11 
2.4 STATISTICAL LANGUAGE MODELS 12 

2.4.1 Context-Independent Language Model 12 
2.4.2 Word-Pair Language Model 13 
2.4.3 N-gram Language Model 13 
2.4.4 Backoff n-gram 14 

2.5 SMOOTmNG FOR LANGUAGE MODEL 16 

CHAPTER 3 LEXICAL ACCESS 18 

3.1 INTRODUCTION 18 
3.2 MOTIVATION： PHONOLOGICAL AND LEXICAL CONSTRAWTS 20 
3.3 BROAD CLASSES REPRESENTATION 22 
3.4 BROAD CLASSES STATISTIC MEASURES 25 
3.5 BROAD CLASSES FREQUENCY NORMALIZATION 26 
3.6 BROAD CLASSES ANALYSIS 27 
3.7 ISOLATED WORD SPEECH RECOGNIZER USING BROAD CLASSES 33 
3.8 CHAPTER CONCLUSION 34 

iv 



CHAPTER 4 CHARACTER AND WORD LANGUAGE MODEL 35 

4.1 INTRODUCTION 35 
4 .2 MOTIVATION 36 

4.2.1Perplexity 36 
4.3 CALL HOME MANDARE^ CORPUS 38 

4.3.1 Acoustic Data 38 
4.3.2 Transcription Texts 39 

4.4 METHODOLOGY： BUILDEMG LANGUAGE MODEL 41 
4.5 CHARACTER LEVEL LANGUAGE MODEL 45 
4.6 WORD LEVEL LANGUAGE MODEL 48 
4.7 COMPARISON OF CHARACTER LEVEL AND WORD LEVEL LANGUAGE MODEL 50 
4.8 INTERPOLATED LANGUAGE MODEL 54 

4.8.1 Methodology 54 
4.8.2 Experiment Results 55 

4.9 CHAPTER CONCLUSION 56 

CHAPTER 5 N-GRAM SMOOTHING 57 

5.1 INTRODUCTION 57 
5.2 MOTWATION 58 
5.3 MATHEMATICAL REPRESENTATION 59 
5.4 METHODOLOGY： SMOOTfflNG TECHNIQUES 61 

5.4.1 Add-one Smoothing 62 
5.4.2 Witten-Bell Discounting 64 
5.4.3 Good Turing Discounting 66 
5.4.4Absolute and Linear Discounting 68 

5.5 COMPARISON OF DlFFERENT DlSCOUNT METHODS 70 
5.6 CONTEMUOUS WORD SPEECH RECOGNEER 71 

5.6.1 Experiment Setup 71 
5.6.2 Experiment Results: 72 

5.7 CHAPTER CONCLUSION 74 

CHAPTER 6 SUMMARY AND CONCLUSIONS 75 

6.1 SUMMARY 75 
6.2 FURTHER WORK 77 
6.3 CONCLUSION 78 

REFERENCE 79 

V 



Table ofFigures: 
Figure 1: Illustration of state transition and observation emission 10 
Figure 2: Illustration ofHMM for modeling acoustic units 10 
Figure 3: Illustration ofViterbi algorithm for fmding the best state sequence 11 
Figure 4: Manner/Place Recognition Rate vs Consonant Intelligibility [26] 23 
Figure 5: Percentage of text coverage for English and Mandarin most frequent words 26 
Figure 6: Relative expected cohort size analysis of 6 broad classes 30 
Figure 7: Expected and Maximum Cohort Size for whole phoneme set 31 
Figure 8: Expected and Maximum Cohort Size for 6 broad classes 31 
Figure 9: Total number of pattern and number of unique pattern for whole phoneme set 32 
Figure 10: Total number of pattern and number of unique pattern for 6 broad classes 32 
Figure 11: System Flow of the Isolated Word Speech Recognizer 33 
Figure 12: Character Perplexity Character level language model 47 
Figure 13: Word Perplexity of Word level Language Model 49 
Figure 14: Effect of vocabulary size on Perplexity of Word 8c Character Level Language Model.. 52 
Figure 15: Effect of vocabulary size on OOV% Word & Character Level Language Model 52 
Figure 16: Perplexity vs. 0 0 V % for Word Language Model & Character Language Model 53 
Figure 17: Word Perplexity of (Call Home & HUB5) Interpolated Language Model 55 
Figure 18: Comparison of different Discounting Methods for the Call Home task 70 
Figure 19: Recognition results for different language models for the Call Home task 73 

vi 



Table of Tables: 
Table 1: The data re-compiled from the 1992 World Almanac and Katzner. [1] 2 
Table 2: Different kinds of speech knowledge defined by Reddy D.R. et al. [7] 5 
Table 3: The 22 Mandarin initials including null initial 7 
Table 4: The 38 Mandarin finals are classified into 7 final groups according to the middle vowel 

sound 8 
Table 5: The structure of Initials and Finals in term of 33 PLUs 8 
Table 6: The hierarchy ofMandarin words, where the number inside every bracket indicates the 

total number of that kind of unit in Mandarin Chinese 8 
Table 7: The occurrence frequency of the initials and the conditional probability of the initials in 

combination with the finals ofMandarin. (Base on a corpus with one million syllables) 21 
Table 8: Place and Manner of articulation classification for Mandarin consonants 22 
Table 9: The basic measurements used in our study. | C(wi) | is the cohort size for word Wf, \L | is 

the lexicon size, and pt is the frequency of occurrence of the i'th word, W/, in lexicon L 25 
Table 10: Notations for the measurements used in this study. Results normalized by frequency of 

occurrence are shown in italic 25 
Table 11 Analysis on Mandarin broad classes 27 
Table 12: Analysis of uniqueness Mandarin words in term of tonal syllable and base syllable 27 
Table 13: Analysis on Cantonese broad classes 28 
Table 14: Analysis on English broad classes 29 
Table 15: Comparisons of characteristics between Mandarin, Cantonese, and English. Both 

Mandarin and Cantonese are based on the base syllables (or 38 phonemes), whereas English is 
based on a set of 43 phonemes 29 

Table 16: Analyses on Mandarin, Cantonese, and English for six broad classes 30 
Table 17: Detailed statistics of Call Home Corpus 39 
Table 18: Baseline perplexity compare to IBM 40 
Table 19: Bigram count for 7 words (out of 5774) in Call Home Corpus 41 
Table 20: Unigram count for 7 word in Call Home Corpus 42 
Table 21: Log-probabilities ofbigrams for 7 word in Call Home Corpus 42 
Table 22 Word prediction by a backoffbigram language model for "<s> 他 都 不 知 道 他 的 

條件有多麼好 < / s > " 44 
Table 23: List of top frequency out-of-vocabulary characters 45 
Table 24: Character level Language Model for CALL HOME spoken speech transcription 46 
Table 25: List of top frequency out-of-vocabulary words 48 
Table 26: Word Level Language Model for Call Home spoken speech transcription 49 
Table 27: Effect of vocabulary size on Character Level Language Model 51 
Table 28: Effect of vocabulary size on Word Level Language Model 51 
Table 29: Perplexity and 0 0 V reduction of Interpolated Language Model 55 
Table 30: Frequently used notation for smoothing techniques 60 
Table 31: Implementation complexity of different smoothing methods 61 
Table 32: Add-one smoothed bigram counts for 7 words in Call Home Corpus 63 
Table 33: Log-probabilities of add-one smoothed bigram for 7 word in Call Home Corpus 63 
Table 34: Add-one smoothed bigram counts (reconstructed) for 7 words in Call Home Corpus..... 63 
Table 35: The number of seen bigram for 7 words in Call Home Corpus 65 
Table 36: The number of unseen bigram for 7 words in Call Home Corpus 65 
Table 37: Witten Bell smoothed log-probabilities for 7 word in Call Home Corpus 65 
Table 38: Witten Bell smoothed bigram count for 7 words in Call Home Corpus 65 
Table 39: Good Turing smoothed bigram counts for words in Call Home Corpus 66 
Table 40: Good Turing smoothed bigram counts for 7 words in Call Home Corpus 67 

vii 



Table 41: Good Turing smoothed Log Probability for 7 words in Call Home Corpus 67 
Table 42: Absolute smoothed bigram counts for 7 word in Call Home Corpus 69 
Table 43: Linear smoothed Bigram counts for 7 word in Call Home Corpus 69 
Table 44: Comparison of different Discounting Methods for the Call Home task 70 
Table 45: Recognition results for different language models for the Call Home task 73 

viii 



Chapter 1 Introduction 

In this thesis, we describe novel techniques to solve the large vocabulary problem of speech 

recognition. We investigate the usefulness of lexical access for large speech recognition. Moreover, 

we investigate problems of building probabilistic language models for Chinese. 

In this chapter, we describe the popularity of Chinese in the world's languages. First, we discuss 

specific problems for Chinese speech recognition. Secondly, we explore different kinds of 

knowledge that can be used. Finally, we identify our target research area of Chinese speech 

recognition. 

Chapter 2 introduces fundamental linguistic knowledge, which would be useful throughout this 

thesis. Chapter 3 describes a method of lexical access by broad classes features. Our analysis of 

Mandarin broad class is compared with English and Cantonese. In chapter 4, two different kinds of 

language modeling approaches are studied. They are character level language model and word level 

language model. Smoothing methods for improving the language models are introduced in chapter 

5. Four different kinds of smoothing techniques are compared. They are Witten-Bell, Good-Turing, 

absolute and linear smoothing. Detailed algorithm and its underlying inspiration are also presented. 

An experimental continuous Mandarin speech recognizer is also developed. Chapter 6 presents the 

conclusion of this thesis. 
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1.1 Languages in the World 

Mandarin is the most popular language in the world. There are 864 million people speaking 

Mandarin. Cantonese is also a popular Chinese dialect. It is spoken in the southern provinces of 

Guangdong and Guangxi, Hong Kong and Macau, as well as throughout Southeast Asia in such 

places as Singapore, Malaysia, Thailand and Vietnam. There are 63 million Cantonese speakers. 

Table 1 shows the most popular languages in the world. 

Family Language Geographic area Rank Number of 
speaker 

Sino-Tibetan Mandarin North China — (1) 864,000,000 
Indo-European~"English North America, Great Britain, ^~~~ 443,000,000 

Australia 
Indo-European Hindi Northern India (3) 352,QQ0,Q00" 
Indo-European Spanish Spain, Latin America (4) 341,000,000 
Lido-European Russian Russia (¾ 293,000,000 
Afro-Asiatic Arabic North Africa, Middle East (6) — 197,000,6^ 
Altaic Japanese Japan (9) 125,00Q,0Q0" 
Sino-Tibetan Cantonese South China (20) 63,000,000 “ 

Table 1: The data re-compiled from the 1992 World Almanac and Katzner. [V 

Although there are twice as many Mandarin speakers as English speakers, the development of 

Mandarin Chinese speech recognition is still lagging behind than that of English. In addition, the 

development of Cantonese speech recognition was not started until recent years. The motivation of 

this thesis comes from the huge potential need for Chinese speech recognition technology, and the 

relative lately development of the technology [3]. 

Page 2 



1.2 Problems of Chinese Speech Recognition 

There are some technical reasons for the late development for Chinese speech technology. Chinese 

has her unique features, which are very different from western languages. The major obstacles for 

large-vocabulary Chinese speech recognition are listed below [4:. 

1.2.1 Unlimited word size: 

There are about 10,000 commonly used Chinese characters. One to several numbers of characters 

can be combined to form a Chinese word. The combination of such characters gives an almost 

unlimited number of words, in which at least some 100,000 are commonly used and can be found in 

different version of dictionaries and texts on different subjects. Hence, it is extremely difficult to 

include all Chinese Words in a speech recognizer. 

1.2.2 Too many Homophones: 

Chinese words are formed by a combination of characters. Each character in turn maps to a syllable. 

The total number of phonologically allowed Mandarin tonal syllable is about 1,300. In other words, 

a limited number of syllables maps to a much larger number of monosyllabic characters. Hence, the 

problem of homonym is very severe. On the average, each Mandarin syllable is shared by about 7.7 

(10,000/1,300) Chinese characters. This one-to-many mapping introduces many ambiguities in 

speech recognition. 

The Chinese speech recognition algorithms must then be able to distinguish between Chinese 

homophones. In English, it is unusual to find three words which are homophones e.g. two, too and 

to. Homophones are much more common in Chinese. An analysis of Callhome Lexicon shows that 

only 85% of the Chinese words can be uniquely specific with Mandarin tonal syllables. 

1.2.3 Difference between spoken and written Chinese: 

There are many differences between spoken Chinese and written Chinese. It is rather surprising to 

notice that nearly 40% of the words used in a single case of court proceedings are not found in the 
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overall list of 43000 words used in Hong Kong newspapers for an entire year [6]. It reflects a vast 

gap between the language used by the Cantonese speakers in Hong Kong and the language they are 

expected to use in the context of written language, as found in newspapers. Mandarin Chinese has 

fewer discrepancies between its spoken and written forms. However, the problems still affect the 

performance of a speech recognizer, when its language model is trained on written text or when its 

acoustic model is trained on read speech. 

1.2.4 Word Segmentation Problem: 

While words in western languages are separated by white spaces, there are no delimiters between 

Chinese words. A language model is typically trained by segmented text. The segmentation 

ambiguity of training text in Chinese may hurt the frequency counts of the language model, and 

hence adversely affects the recognition results. 
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1.3 Different types ofknowledge 

In order to solve the unique problem of Chinese speech recognition, we propose to use additional 

linguistics information in the recognition process. Linguistics knowledge can be divided into 

phonetics, phonology, prosody, morphology, syntax, semantics and pragmatics. The acoustic 

model of a speech recognizer captures some of the phonological effects. Morphology, syntax, 

semantics and pragmatics could all be incorporated in the language model. On the other hand, 

speech knowledge can be classified into two dimensions [7]: the linguistic level of knowledge and 

its validity across different type of situations, such as prior knowledge, conversation-dependent 

knowledge and speaker-dependent knowledge. This classification is shown in Table 2. Most of the 

knowledge in the two lowest rows (parametric and phonemic) can be captured by the acoustic 

model. However, all the other types of knowledge could potentially be handled by lexical access 

and language model. 

Type of Prior Knowledge Conversation- Speaker-dependent 
Knowledge dependent Knowledge Knowledge 
Pragmatic Prior semantic Concept sub-selection Psychological model of 
and Semantic knowledge about the based on conversation the user 

task domain 
Syntactic Grammar for the Grammar sub-selection Grammar sub-selection of 

language based on topic the speaker 
Lexical Size and Confusability Vocabulary sub- Vocabulary sub-selection 

of the vocabulary selection based on topic and ordering based on 
speaker preference 

Phonemic Characteristics of Contextual variability in Dialectal variations of the 
and Phonetic phones and phonemes of phonemic characteristics speaker 

the language 
Parametric Prior knowledge about Adaptive noise Variations resulting from 
and Acoustic the transducer normalization the size and shape of 

characteristics vocal tract 
Table 2: Different kinds of speech knowledge defined by Reddy D.R. et al. [7' 
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1.4 Chapter Conclusion 

In the previous sections, the popularity of Chinese language is mentioned. In addition, the issues in 

Chinese speech recognition are highlighted. Furthermore, various types of speech knowledge are 

introduced, with the aim of solving the problems of Chinese speech recognition. In this thesis, our 

1 main emphasis is on the use of lexical and syntactic knowledge. Lexical access and language model 

will be employed to handle the problems. 

Page 6 



Chapter 2 Foundations 

2,1 Chinese Phonology and Language Properties 

2.1.1 Basic Syllable Structure 

Chinese is different from many western languages in that it is monosyllabic and tonal. While there 

are more than 10,000 monosyllabic Chinese characters, there are typically only about 1,300 tonal 

syllables in each of the Chinese dialects. Thus, many Chinese characters share the same 

pronunciation. However, often depending on the context, each Chinese character may have 

multiple pronunciations. Consequently, Chinese is a complex language with many-to-one and one-

to-many mappings between the characters and the syllabic pronunciations. The notion of a Chinese 

word is also very different from many western languages. While the syllables and characters are 

relatively well defined, the Chinese words are composed of a variable number of characters. Since 

a Chinese word can be formed, in principle, by any combination of �10,000 Chinese characters, the 

vocabulary of a speech recognition system can be huge. 

Each tonal syllable can be considered as two independent parts, tone and base syllable. There are 

five lexical tones: 1) high-level tone, 2) mid-rising tone, 3) falling-rising tone, 4) high-falling tone, 

5) neutral tone. Moreover each base syllable can be divided into Initial and Final parts. Table 3 and 

Table 4 list all Initials and Finals in Mandarin. 

1 2 3 4 5 6 7 8 “ 
/j/ - /ch/ 1^ /r/ /tz/ /ts/ “ /s/ /g/ 

_8 9 10 — 11 12 13 14 15 
/g/ /k/ /h/ /ji/ /chi/ 7shi/ /d/ /t/ 
16 17 18 19 20 ^ i 22 “ 
/n/ /1/ /b/ /p/ /m/ /f/ null “ 

Table 3: The 22 Mandarin initials including null initial 
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Category Member 
J Null 
_2 ldJ, /ai/, /au/, /an/, /an/ 
3 — /o/,/ou/ 
4 — /e/, /eh/, /ei/, /enA /en/, /er/ — 

_5 /u/, /ua/, /uo/, /uai/, /uei/, /uan^ /uen/, /uan/, /uen/ 
_6 /iue/, /iuan/, /iun/, /iun/ 
7 /i/, /iu/, /ia/, /ie/, /iai/, /iau/, /iou/, /ian^ /in/, /ian/, /in/ 

Table 4: The 38 Mandarin finals are classified into 7 final groups according to the middle vowel 
sound 

Each Final can be divided into Medial, Kernel and Coda. There are only 3 Phonetic-like unit (PLU) 

can be act as medial. They are /i/ /u/ /u:/. Kernels，however, includes all the vowels. Codas has 2 

vowel and 2 constant members. They are /i/ /u/ /n/ /ng/. Table 5 shows the structure of the Initials 

and the Finals in term of 33 PLUs. Thus, the 33 PLUs can be used to construct Initials and Finals, 

and hence base syllable. 

Initial = [consonant] 
Consonant /b/ /p/ /m/ /f/ /d/ /t/ lnl /1/ /g/ /k/ !hi 

/j/ /q/ /x/ /zh/ /chŷ  /sh/ /r/ /z/ /c/ /s/ 
Final = [medial] kernel [coda] 
Medial |/i//u//u:/ 
Kemel vowels /a/ /o/ /e/ /i/ /u/ /u:/ /e/ /er/ 
Coda (2 vowel + 2 constant) /i/ /u/ /n/ /ng/ 

Table 5: The structure of Initials and Finals in term of 33 PLUs 

Tonal Syllable, Base Syllable, Initial & Final, PLU are the common units of speech recognition. 

Table 6 summary the hierarchy of Mandarin words. 

Word(100,QQ0+) 
Chinese Character (10,000) — 

Tonal Syllable (1,345) 
Base Syllable (408) Tone (5) 

Initial (22) Final (38) Tone (5) 
Initial (22) Medial (3) | Nucleus (9) | Ending W Tone (5) 

PLU (33) Tone (5) 

Table 6: The hierarchy of Mandarin words, where the number inside every bracket indicates the 
total number of that kind of unit in Mandarin Chinese. 
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2.2 Acoustic Models 

2.2.1 Acoustic Unit 

The major goal of speech recognition is to transcribe the input speech into word strings. To 

accomplish this, one may wish to create word-level acoustic models for speech recognition. 

Nevertheless, word models are difficult to be realized directly when the vocabulary size is very 

large, as there may not be enough training data to train each of the words. This problem can be 

solved by creating sub-word models, which may be at morpheme level, syllable level, initial-final 

level or phoneme level. Hence, the training data can be shared across different words. The choice of 

units for acoustic modeling is actually one of the vital issue in speech recognition [8][9]. However, 

syllable and phoneme models are the most commonly used sub-word models for Chinese speech 

recognition. For Mandarin Chinese, there are about 408 base syllable and 34 phonemes. In this 

thesis, we have chosen base syllable as acoustic model for our speaker independent large 

vocabulary Mandarin continuous speech recognizers. 

2.2.2 Hidden Markov Model (HMM) 

Once the acoustic units have been chosen, we should look for a method to model it properly. There 

are two popular methods to model the acoustic units. They are neural network and hidden Markov 

model (HMM) [12][17]. Currently, the most popular method is the HMM. In fact, most exiting 

speech recognizers on the market use HMM to model the acoustic units of speech. 

As shown in Figure 3, HMM can be view as a state machine. The states are indexed by numbers. 

The machine is then able to follow the arrow to change state or loop back to the current state. The 

state transition is actually a random process. A probability is assigned the each arrow such that each 

transition is base on the probability. After each transition, one output will be produced at the current 

state where the output set is finite. The output of a state is called an observation. The process is then 

referred as observation emission. If the finite states of a Markov model are not known (hidden) and 

only the output signal can be observed, the model is called a hidden Markov model (HMM). 
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. S t a t e i n d e x 

¥1 2 3 z Observat ion 

^ S ta te i n d e x ^ ^ f S ^ ^ Observat ion Space 
V r A r ^ S r 7 observat ion 

\ V v / \ ^ " 
^ S t a t e T r a n s i t i o n / A A / / \ n h c o n , a f i n n 9 . n . . . n r . 

D D D D D D D D D • D D D D 一 Observat ion Sequence 
Figure 1: Illustration of state transition and observation emission. 

The use of HMM for modeling acoustic units is illustrated in Figure 2. The HMM presents a word 

by imitating the speech production process. During the speech production process, a state is moving 

from left to right following the arrows. Segments of speech are generated by states in form of 

observation feature vector. The feature vector can be MFCC, CMS, LPC parameters 

[10][ll][15][16], which is able to describe a speech signal. To facilitate good speech stimulation, 

accurate HMM parameters must be estimated which is known as training process. After training, 

the model is then reliable. The output of HMM will have similar acoustic features as the original 

signal. Once the HMM parameters are found, we can make use of the HMM to trace back which is 

the most likely acoustic HMM state, given an speech signal as observation. A search algorithm is 

then need to perform the task. 
Non-emi t t i ng State A A A A ^ ^ ^ - S t a t e T r a n s i t i o n 

^ ^ ^ ® ~ * " ^ ) ~ " * " " ^ ^ ^ 1 ^ 5 ~ ^ ^ ^ ^ ^ ! ^ ® ^ Non-emi t t i ng State 
. ^ " ^ ,\ Observa t ion \jh\Jh. h / f t C - i o n 

Q D D D D D D • D D D • D D D| o b s e r v a t i o n s 

^ m U i | l ^ s p - _ 

Figure 2: Illustration ofHMM for modeling acoustic units 
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2.3 Search Algorithm 

A search algorithm is employed to find the most likely HMM sequence of the acoustic unit, i.e. 

syllable in our case. There are two commonly used decoding algorithms. They are Viterbi decoding 

algorithm [18][19] and stack decoding, and we choose the Viterbi algorithm for our recognizer. 

The Viterbi search is essentially a dynamic programming algorithm, consisting of traversing a 

network of HMM states and maintaining the best possible path score at each state in each frame. It 

is a time synchronous search algorithm in that it processes all states at time t before moving on to 

time t+l. The operation of Viterbi decoder is illustrated by the trellis diagram, which is shown in 

Figure 3. Each dot represents the possible HMM state at time t. Except from the initial state, all the 

dots are pointed by a arrow, which is the survive path from the previous state. The survival path is 

the path with the highest probability from the previous state to the current state. When the operation 

ended at time 6, the system would trace back which is the survival path from time 5 and so on. Such 

that the best state sequence is found, in this case, to be 1-1-2-2-3-4-4. 

State 

• ̂ • _ • _ _ ̂  • 
: 厥 

1——I——I——I——I——I——^ Time 

• 0 1 2 3 4 5 6 

Figure 3: Illustration ofViterbi algorithm for finding the best state sequence 
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2.4 Statistical Language Models 

The most abstract problem involved in large vocabulary speech recognition is to define an 

appropriate "language constraints" for the recognizer. Language constraints are generally concerned 

with how words may be concatenated, in what order, in what context, and in what context meaning. 

Language model is the most common method to realize the language constraints in a recognizer. 

Hence, a large-vocabulary speech recognition system is consisting of two parts: the acoustic model 

and the language model. The acoustic model turns the utterance into a list of candidates that are 

exported to the language model as its input. The language model determines the most possible word 

sequence. 

2.4.1 Context-Independent Language Model 

Context-independent language models assign probabilities to words without considering the 

context, i.e. history information. The simplest context-independent model of syntactic structure 

would simply let any word in a lexicon to be equally probable. Given the vocabulary V and for any 

word w, the occurring probability is: 

P(w) = ~^ ,where IVI is the size of vocabulary 

This model does not have any probabilities to estimate and therefore does not need any training 

data. However, it is of little use to speech recognition because all words receive the same 

probability. It will therefore have no influence on the ranking of the words. 

Another way to construct a context independent model is to estimate the probability of each word 

based on its relative frequency. The use of relative frequency method is also call Maximum 

Likelihood Estimation method. The equation of the relative frequency method is: 

F(w) = ^ � ,where/fwj is the frequency of word w 
L / W 
W 

Page 12 



Hence, the model has only one static probability for each word. There are only V parameters to be 

estimated. Although it is a very simple language model, it is actually being used in commercial 

speech recognizer. Because it is a special case (n=l) of n-gram models, it is always referred as the 

unigram model. 

The advantage of context-independent language model is that it requires very few training data, and 

uses relatively fewer parameters for the speech recognizer, which is very desirable in practical 

systems. However it has the inherit difficulty in predicting next word based on history information. 

2.4.2 Word-Pair Language Model 

The previous context-independent language models have only one distribution for each word, 

independent of context, while the simplest form of context dependence is a word-pair language 

model. The word-pair language model simply consists of a list of valid word pairs. All valid pairs 

are equally probable, and other pairs are impossible. Although the language model is very simple, it 

works very well in some tasks, such as the Resource Management task (RM). When the task has 

very rigid grammar, word pair models have sufficient coverage with low perplexity. 

2.4.3 N-gram Language Model 

If we further improve the word pair language model by adding probability to the model, so that 

words follow other words with differing probabilities, we get bigram model. If we then condition 

the probability of a word not just on the immediately preceding word, but on the preceding n-1 

words, we get an n-gram language model. The difference between bigram, trigram and other n-gram 

models is just the value of n. The parameters of an n-gram are thus the probabilities: 

P(w„ I Wi.. .w"_i) for all Wi, W2.. .w^ 

Given a word string S = w^, W2...W", an N-gram model defines the probability of the string P(S) as 

a product of conditional probabilities [20]: 

P(S) = P{W^ |< S >)P{W^ |< S > Wi)_P(W^ |< S > Wj W _,) 
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where <s> is a special delimiter marking the start of a word string 

N-gram model can be view as partitions of data into equivalence classes based on the last n-\ words 

in the history. Such that, a bigram induces a partition based on the last word in the history. A 

trigram model further refines this partition by considering the next-to-last word. A 4-gram model 

further refines the trigram, and so on. 

The hierarchy of refinements introduces a tradeoff between detail and reliability. The equivalence 

class for bigram is the largest, such that the estimates of bigram are more reliable. While the 

equivalence classes of trigram are more detail but numerous, such that many of them contain only a 

few examples from training data, and many more are still empty. However, the differentiating 

power of the trigram is greater, which means that it should result in lower perplexity for the 

language model, given that it is well trained. Since the number of parameters in n-gram models 

grows exponentially with n, n-gram with n�3 is not realizable in a practical system. 

The advantage of the n-gram model is that it captures the information provided by the preceding n-1 

words. Judging from its success, this is an important source of information, especially for fixed 

word order language like English. Its disadvantage is the enormous amount of training data needed 

for obtaining all the probabilities. 

2.4.4 Backoff n-gram 

To model longer term dependencies, we would like n to be as large as possible. However, as n 

increases, the number of observation samples for each n-gram becomes less. Backoff n-gram can 

help to reliably estimate the probabilities. In the backoff method, the different information sources 

are ranked in descending order of detail or specificity. During recognition process, the most detailed 

model is consulted first. If it contains information about current context, it is used exclusively to 

generate the estimate. Otherwise, the next detailed model in line is consulted. The backoff method 

is simple and compact. For example, assume that there are not sufficient statistics for a particular 
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trigram w„_jw„_2w„. To help us compute P{w^ | w^_^w^_ )̂, we can estimate its probability by using 

the bigram probability P{w^ | w^_^). Similarly, if we still do not have any bigram count to compute 

P(w^ I w„_i)，we can look to the unigram P(w^). 

Let w ĵ 二 ŵ  ...w&, the backoff n-gram model is then defined recursively as follows: 

P ( „-K J ( l - J ) - c K ) / c K " ^ ) if c ( < ) > 0 
Pn(w„ w, ) = < 1 1 ^ 

“ 1 l _ ( < - i ) ) . P “ K I < ) if c{w：) 二 0 

where c(w") is the frequency of word string w" occurring in the corpus, d is the discount ratio, and 

a ' s are backoff weights. 
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2.5 Smoothing for Language Model 

The major problem with standard n-gram models is that there are insufficient samples to train up all 

n-gram parameters. Thus, the resulting language model may assign a zero probability to some 

perfectly acceptable Chinese n-grams. This is known as zero probability problem. The task of 

reevaluating some of the zero-probability and low-probability n-gram, and assigning them non-zero 

value, is called smoothing. 

Let us consider a small example, which uses a standard bigram. Let our training data S be 

composed of the three sentences: 

(Roger read Mao Zedong Writings. Desiree read a different book. She read a book by Chris.) 

To calculate p(Roger read a book). We have 

,C> �c(Wbos • ^oger) 1 
p(J^oger I w,J = : -

<^bos) 3 
c{Roger • read) 1 

p{read Roger)= =— 
c(Roger) 1 

, h c(read. d) 2 
p{a read) 二 =— 

c{read) 3 
c{a•book) 1 

p{book a)= =— 
c(a) 2 

c(book.w�o�) 1 
• � 一 ) 二 cib00k) =2 

Hence, 

1 2 1 1 p{Roger read a book)= — x 1 x — x — x — « 0.06 

Now, consider the sentence Mao read a book. We have 

, - � ， � c(Mao. read) 0 
p{reaa Mao)= =— 

c{Mao) 1 
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So we have p(Mao read a book) = 0. Obviously, this is an underestimate for the probability p(Mao 

read a book) as there is some probability that the sentence occurs. 

Smoothing is used to address the problem. The simplest type of smoothing technique is additive 

smoothing [20] which is to pretend each bigram occurs once more than it actually does. 

c(w._i .w.) + l 
p(w. I w. 1 ) = — — — 
^ 1 z_l c(w,._i)+|7 | 

where IVI is the vocabulary size. 

2 2 3 2 2 
p(R02er read a book)=——x — x — x ——x— « 0.0001 
^ ^ 15 13 15 14 14 

1 1 3 2 2 
p ( M a o read a book)=——x — x ——x ——x — « 0 .00002 
r 15 13 15 14 14 

It is noticeable that the probability of "Mao read a book ” is no longer zero, which is more sensible 

in practice. Actually, a more detailed analysis on smoothing can be found in chapter 5. 
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Chapter 3 Lexical Access 

3.1 Introduction 

Developing a recognizer with extremely large vocabulary size has been a challenging problem. The 

use of linguistic knowledge may improve the performance of the recognizer. This chapter describes 

a model of lexical access using partial phonetic information. Over past two decades, a variety of 

broad class representations for lexical access has been proposed in the literature. Yet often these 

proposals describe the effect of broad classes representation for western languages only. 

A number of researchers have evaluated the effect of broad representation. David W. Shipman [22] 

investigated the statistical properties and constraints of the phonemic structures of large lexicons. 

Their results demonstrated broad phonetic labeling could be very useful in reducing the number of 

potential word candidates. For example, categorizing the sound segments in terms of six broad 

classes can uniquely specify about one third of the lexical entries for a 20,000-word lexicon. Daniel 

P Huttenlocher [23][24] described the theoretical approach to implement a large-vocabulary 

isolated word recognizer. The system consists of three stages. First, the classification stage 

produces a sequence of broad phonetic classes. Second, the sequence is used to retrieve a set of 

word candidates from a large lexicon. At the last stage, the subset is further extracted to identify the 

actual spoken word. Luciano Fissore [25] presented their large-vocabulary isolated-word 

recognition system which makes use of broad class pre-selection. By adding the pre-selection 

process to the traditional direct approach, the complexity of the new system can be reduced by 73% 

compared to the direct approach, while the recognition accuracy remains comparable. 

These studies have provided much valuable information on the analysis, implementation and 

experiment results of large isolated word recognizer, which takes the advantage of broad class pre-

selection process. However, broad class analysis of Chinese Language has not yet been explored. In 

this chapter, we will investigate the phonological and lexical characteristics of the most commonly 
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spoken language: Mandarin. We will compare the results with Cantonese and American English. In 

addition, the implementation method for a large-vocabulary isolated Chinese word recognizer will 

be proposed. We believe that the broad class pre-selection process will enable us to deal with the 

large-vocabulary recognition problem in an efficient manner. Section 3.2 presents the motivation of 

broad classes representation. Section 3.3 introduces the model of broad classes representation. In 

Section 3.4-3.5，a model of broad classes representation is presented. Section 3.6 presents the 

analysis of the broad classes representation. Section 3.7 proposes an implementation method that 

makes use of broad classes representation. Section 3.8 concludes this chapter. 
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3.2 Motivation: Phonological and lexical constraints 

Human speech is a highly constrained system. It is known that there are various sources of 

constraints. 1) Production constraint: There are less than 50 phoneme in Mandarin Chinese. A 

person cannot speak Mandarin using another phoneme. 2) Speech recognition constraints: Different 

phonemes in a language tend to be distinct in perception. 3) Natural language constraints: There are 

syntactic, semantic and discourse level constraints for a language. We believe that constraints at the 

phonological and lexical levels are as important as the syntactic, semantic and discourse level. 

For any language, speech is produced by a limited number of phonemes. In addition, the sequence 

of phonemes can only be combined in a certain way to form a meaningful word. Native speakers 

possess the knowledge about the word formation mles of their own language. For example, there is 

a set of syllable formation "mles" which governs the formation of base syllable from initials and 

finals [30]. Regarding the combination of an initial and a final in construction of a syllable, some 

restrictions are shown in Table 7. Initial /f/ cannot be followed by final starting with /i/. Therefore 

syllable /fingl/ is not an allowable sound in Mandarin Chinese. This information would be very 

useful in speech recognition. For example, initial of a syllable is either /j/, /q/ or /x/, then there is a 

79% chance that the final starts with a /i/ medial. Also, there is no chance that the final starts with 

null medial or /u:/ medial. The example is certainly uncovering the power of phonological 

knowledge. 

On the other hand, /del shil/ is a permissible sequence of syllables in Mandarin, but is not a word 

because it is not in the lexicon. Hence /del shil/ should not be an allowable output for a recognizer. 

Therefore, if we have sufficient information of what are the potential words in the lexicon, we can 

further constraint the sequence of syllables for a recognition task. 

Page 20 



Hence, the phonological and lexical knowledge is presumably important in speech recognition, 

particularly when the acoustic cues to a speech sound are missing or distorted. Thus, we are 

concerned with how such knowledge can be used to constrain a speech recognition task. 

Final 
EvfITIAL No medial /i/ medial /u/ medial /u:/ medial 
(occur frequency) g P g ® ^H 撮口 

/b//p//m/ 
5.15%,Q.98%,3.74% 47.98% 33.33% 18.68% 0.00% 

l f / 
2.45% 84.62% Q.QO% 15.38% O.QQ% 
/d//t/ 
12%, 3.53% 59.04% 20.87% 20.09% Q.QQ% 
/n//l/ 
2.53%, 5.69% 46.38% 41.58% 10.17% 2.03% 
/z//c//s/ 
3.01%,1.15%,1.08o/o 54.81% 0.00% 45.19% Q.QO% 
/zhy'/ch//sh//r/ 
7.18%,2.75%,7.66%,1.94% 75.13% 0.00% 24.87% Q.QO% 
/j//q//x/ 
6.98%,3.11%,4.86% O.QQ% 78.73% 0.00% 21.27% 
/g//k//h/ 
5.5Q%,L83%A42% 58.81% 0.00% 41.19% Q.QQ% 

~0 
12.45% 5.91% 55.18 26.14o/o 13.59o/o 

Table 7: The occurrence frequency of the initials and the conditional probability of the initials in 
combination with the finals ofMandarin. (Base on a corpus with one million syllables) 
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3,3 Broad Classes Representation 
\ 

Many phonological rules are specified in terms of broad phonetic classes rather than specific 
I 
5 

i phonemes. For example, the nasal-stop cluster rule in English specifies that nasal and stop 
1 j 
]consonant must be produced at the same place of articulation. Thus, we have words like "limp" or 
i 1 
j "can't", but not "limt" or "canp". Rather than performing detailed phonetic analysis, a word is 
1 

j characterized in terms of broad phonetic classes. This partial description is then used to retrieve a 
I 
I small set of words from a large lexicon. Our lexical study is based on Mandarin Call Home and 
i 
！ 

I English COMLEX obtained from the Linguistic Data Consortium. The Chinese lexicon is consisted 

of 44,000 words, and the English lexicon is consisted of 52,000 words. 

In selecting a representation for lexical access, we try to find a classification, which can be 

[extracted from the acoustic signal irrespective of local context, speaker characteristics, and other 

environmental variability. There are two common methods to classify phonemes into broad 

j phonetics classes, that are grouping them by manner of articulation and the place of articulation. 

Table 8 shows the members of Mandarin consonants in each group. 

i 

I ^ ^ ^ ^ ^ _ _ ^ ^ ^ ^ ^ _ _ ^ ^ ^ ^ ^ ^ ^ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ - _ _ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ « « ^ ^ ^ _ _ _ _ « — ^ ^ ^ _ p « « > _ > » « « ^ ^ ^ _ « » « — ^ ^ ^ « — « « - — « ^ 

Place of Articulation Initial Consonant 
j Labial /b/ /p/ /m/ /f/ _ 

Dental/Alveolar 一 /d//t//n//l/ 
Guttural 一 /g/ /k/ /h/ 
Palatal “ /j//g//x/ 
Dental Sibilant /z/ /c/ /s/ 
Retroflex /zhŷ  /ch/ /sh/ /r/ 

Manner of Articulation Initial Consonant 
Stops — /b//p/ /d//t//g//k/ 
Laterals /1/ /r/ 
Nasals /m//n/ 
Affricates — /c/ /z/ /zh/ /ch/ /j/ /q/ 
Spirants — /f/ /s/ /sh/ |yJ /h/ 
Glides /y/ /i/ /w/ /u/ 

Table 8: Place and Manner of articulation classification for Mandarin consonants 
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In our experiments, the six broad phonetic classes are formed based on the manner of articulation. 

They are "vowels, stops, fricatives, affricates, laterals/glide, nasals" in the Chinese dialects and 

"vowels, stops, strong fricatives, weak fricatives, laterals/glide, nasals" in the English. This set of 

manner classes is used, since it tends to be relatively invariant across different speakers and 

phonetic contexts. Zhang [26] made comparison on intelligibility of a consonant to the effect of 

Mandarin syllable perception. 

Figure 4 shows that manner of articulation plays a more important role in identifying a syllable 

correctly. 

120% 1 

0 100% ^ 
« ^_#"""""一"""^卜 一 ^ 

^ z " z 
5 80% ^ ^ 
.2 ^ Z 
•芸 o ,' 
o) U 60% / 
0 m A 0 o 0) ^ 
^ §_ 4 0 % 
o I±̂  
Z - ^ Manner of Articulation 
^ 20% - ^ - Place ofArticulation 
0) 

0% 1̂ 1 ^ i i 1 
0% 20% 40% 60% 80% 100% 

Consonant Intelligibility 

Figure 4: Manner/Place Recognition Rate vs Consonant Intelligibility [26] 

In the experiment, the researcher prepared some single-syllable sound files. The subjects heard a 

consonant segment from the sound file and they were made to identify the consonant. The subjects 

then heard the whole sound file and they were made to identify the syllable. The process was 

performed for each prepared syllable. 
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Since manner of articulation consistently results in a higher syllable recognition rate than the place 

of articulation at the same level of intelligibility, it suggests that the manner of articulation would be 

more appropriate for speech recognition. 

Once we identified the classifying method, we can re-label the transcription in term of the broad 

classes, so that it can be used for broad classes analysis and recognizer training. Broad phonetic 

classification can be viewed as the partitioning of the lexicon into equivalence classes of words 

sharing the same phonetic class pattern. For example, the characteristics of Mandarin, can be 

represented in terms of: 1) Tonal syllables, e.g. /nin2 men5/ 2) Base syllables, e.g. /nin men/ and 3) 

Manner of broad classes e.g. [Nasal] [Vowel] [Nasal] [Nasal] [Vowel] [Nasal]. 

For example, there are only 23 words in a 44,000-word lexicon have [Nasal] [Vowel] [Nasal] 

[Nasal] [Vowel] [Nasal] broad classes representation. It was found that, even at this broad phonetic 

level, approximately 1/5 of the words in the 44,000-word lexicon could be uniquely specified. 

Tonal syllables and base syllables are usual forms to represent a Chinese word. However, our 

experiment showed that broad class representation is also very useful in speech recognition. 
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3.4 Broad Classes Statistic Measures 

In this section, each of the lexicons for the three different languages is represented in multiple units, 

including tonal syllables, base syllables, phonemes, and broad phonetic classes. In order to explore 

the characteristics of the languages, multiple measurements are made, such as coverage, 

uniqueness, expected and maximum cohort sizes. Since words in a lexicon may have very different 

frequency of occurrence, some of our measurements are also weighted by the frequency of 

occurrence. The frequency of occurrence for English is obtained from the Brown Corpus, whereas 

the frequency of occurrence for Mandarin and Cantonese are obtained from the Call Home 

database. 

Table 9 shows some of the basic measurements used in our study. The maximum cohort size 

represents the largest equivalence class size given a particular phonetic / syllabic description, 

whereas the expected cohort size represents the cohort size with a frequency distribution. Notations 

for different measurements are shown in Table 10. 

UNIFORM DISTRIBUTION FREQUENCY NORMALIZED 
Maximum cohort size max C(w,.) max C(w. )| 

w, eL W,&L 
Expected cohort size J_ ^ |匚（州,）| ^ P,|C(w,)| 

L w,&L "',eL 

Table 9: The basic measurements used in our study. | C(Wi) | is the cohort size for word W/, \L | is 
the lexicon size, and pi is the frequency of occurrence of the i'th word, W/, in lexicon L. 

NOTATION STATISTICS 
UNIQ % of word which is uniquely specified 
ECS Expected cohort size 
F-ECS Frequency normalized expected cohort size 
MCS Maximum cohort size 
RECS Expected cohort size /lexicon size 
F-RECS Frequency normalized expected cohort size /lexicon size 
RMCS Maximum cohort size /lexicon size 
LEX Lexicon size 

Table 10: Notations for the measurements used in this study. Results normalized by frequency of 
occurrence are shown in italic. 
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3.5 Broad Classes Frequency Normalization 

In all languages, some words occur much more frequently than others do. The occurring 

probabilities of a word in the lexicon are very uneven, words like "the", 'T', "and" occur more 

frequently. It would be interesting to see the frequency distribution of the words in a language. 

Figure 5 shows the cumulative distribution of the most frequent words for Mandarin and English. 

For example, the set of the most frequent 4,000 words cover over 92% and 77% of all the texts in 

Call Home Mandarin and the Brown Corpus, respectively. 

i | ^ : | 
0.9 ^ ^ ^ ^ ^ 

: : ^ ^ " ^ 
I � 6 ^ 7 
臣 ° ^ ^ r ^ 
> 0 4 ^ 
u f 
^ 0.3 ^ 
Q • Mandarin 
承 0.2 一 雀 一 English p 

0.1 

0 I I I 1 1 1 I I I 
65 125 250 500 1K 2K 4K 8K 16K 32K 

LEXICON SIZE 

Figure 5: Percentage of text coverage for English and Mandarin most frequent words 
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3.6 Broad Classes Analysis 

This section describes the properties of broad classes. Table 11 shows our results for Mandarin. It 

can be seen that if the lexicon is represented in terms of the tonal syllables, only 85% of the lexicon 

can be uniquely specified. The remaining 15% of the lexicon contain words that cannot be uniquely 

specified by the tonal syllables. This low percentage of 85% reflects the fact that many of the 

words in Mandarin are actually homophones. For example, all of the following Chinese words 

have the same tonal-syllable representation, /fu4 shu4/': 

一 復 述 1 複 數 1 負 數 1 富 庶 — 

When the lexicon is represented in terms of the base syllables, i.e. syllables with no tone 

information, only 65% of the lexicon can be uniquely specified. Similarly, only 19% of the lexicon 

can be uniquely specified by the broad classes. 

Tonal Syllable Base Syllable Manner of 
(38 phoneme) Articulation 

UNIQ 85.0% 65.0% 19.0% 
ECS - 1.39 2.54" 62.4 
F-ECS “ 3.44 924' 127.6 

_MCS 21 54 299 
"LEX 44K 44K 44K 

Table 11 Analysis on Mandarin broad classes 

Table 12 further describes the problem of homophone of different word length in Mandarin 

Chinese. The analysis was done based on a 70,687 words lexicon. It was found that 50% of total 

homophones are single syllable word. 

Length of Number ofWords Number of Different Number of Number of 
Words Tonal-Syllable String homophones Different Base-
(# ofsyllable) Syllable String 

1 5384 l_^ 3979 529 
2 45602 41988 3614— 31814 
3 9554 9406 ‘ 1 ^ 9310 
4 9324 9183 141— 9314 

>5 823 - 818 5 — 8 l T 
Total 70687 62800 7887 51640 

Table 12: Analysis of uniqueness Mandarin words in term of tonal syllable and base syllable 
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On the other hand, Table 11 also shows the discriminatory power of the broad phonetic classes. By 

using only six broad phonetic classes, the expected cohort size (ECS) is found to be 62.4. In other 

words, if the lexicon is represented in terms of the broad classes, on average 62.4 words would have 

the same broad class representation. 

Table 13 shows the characteristics of Cantonese. We can see that 87%, 70%, and 16.7% of the 

lexicon can be uniquely specified by the tonal syllables, base syllables, and broad phonetic classes, 

respectively. These figures are quite similar to those for Mandarin. 

However, the expected cohort size in Cantonese is 107.9, almost twice of the corresponding size in 

Mandarin. This shows that the broad phonological structures for the two Chinese dialects are quite 

different. It also suggests that the six broad phonetic classes are not as effective in differentiating 

the Cantonese words in the lexicon. 

Base Syllable 
Tonal Syllable (38 phoneme) Manner of Articulation 

UNIQ 87.2% 7 Q . f ^ 16.7^7 
1 ^ 1.32 2.15" 107.9 
F-ECS 2 ^ 6.80" 165.9 

" N ^ 26 37" 471 
LEX 44K 44K 44K 

Table 13: Analysis on Cantonese broad classes 

Table 14 shows our analysis for English. It can be seen that over 93% of the lexicon can be 

uniquely specified by a set of 43 phonemes, in contrast to the 85% and 87% for Mandarin and 

Cantonese with tonal information. Furthermore, the expected cohort size is about 74, which is 

comparable to the corresponding figures in Mandarin and Cantonese. These experimental results 

for English are very similar to those reported by Carter. We have found that the largest broad class 

cohort is [fricative] [Vowel] [fricative] [vowel] [fricative]. This cohort has 648 word members, such 

as "thesis". 
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43 Phonemes Manner of Articulation 
UNIQ “ 93.2% 15.7%" 
ECS — 1.07 74.1 
F-ECS — 1 . ^ l l T T 
MCS 5 648" 
LEX 52K 52K" 

Table 14: Analysis on English broad classes 

In order to compare directly the lexical characteristics of all three languages, Table 15 summarizes 

the results when the base syllables (or 38 phonemes) are used for the Chinese dialects, and the set of 

43 phonemes is used for English. It can be seen that the characteristics of the three languages are 

quite different. First, there is a major difference between the UNIQ's for the three languages, 

ranging from 65% for Mandarin to 93% for English. Second, the relative cohort sizes can differ by 

as much as a factor of 2.7, since the RECS for Mandarin is 0.0057% and the RECS for English is 

0.0021%. Finally, the RMCS can also differ by an order of magnitude, since the RMCS for 

Mandarin is 0.12% and the RMCS for English is 0.0096%. 

Mandarin Cantonese English 
UNIQ 65% 70.1% 93.2% 
ECS 2.54 2.15 i W 
MCS 54 — 3 ~ 5 
RECS 0.QQ57% — 0.0049%" 0.QQ21% 
RMCS 0.12% 0.083of 0.0096% 
LEX 44K 44K 5 ^ 

Table 15: Comparisons of characteristics between Mandarin, Cantonese, and English. Both 
Mandarin and Cantonese are based on the base syllables (or 38 phonemes), whereas English is 
based on a set of 43 phonemes. 

We have also compared the lexical characteristics of the three languages using the 6 broad classes. 

Table 16 summarizes the results. We can see that their characteristics are more similar than those 

using the entire phoneme set. First, it is observed that almost 20% of the Mandarin lexicon can be 

uniquely defined by the broad phonetic classes, compared to 15.7% for English. Second, the 

relative expected cohort sizes are quite small for all three languages, with the highest one at 0.24% 

for Cantonese and the lowest one at 0.14% for both Mandarin and English. Third, while the 
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maximum class sizes for all three languages are still quite low, they differ by only a factor of 2. For 

example, the RMCS for Mandarin is 0.67%, whereas that for English is 1.25%. 

Mandarin Cantonese English 
UNIQ 19.0% ~ 16.7% 1 5 . 7 ^ 
ECS 62.4 1 0 7 l 74.1 
MCS 299 — 471 “ 6 4 ^ 
RECS 0.14% O.240I 0.14% 
RMCS 0.67% ~ 1.10/0' 1 . 2 5 ^ 
LEX 44K 44K 52K_ 

Table 16: Analyses on Mandarin, Cantonese, and English for six broad classes 

The effectiveness of the broad class representation for the three languages are compared, Figure 6 

shows the relative expected cohort sizes (RECS) as functions of the lexicon sizes. It can be seen 

that the RECS decrease monotonically. With a lexicon size of 4,000, the RECS for all languages 

are below 1%. 

1 .80% n 

1.60% *^ ~• ~ M a n d a r i n 一 
� 

� 
1-40% H ^ ^ --,-- Can tonese 
1.20% ^ ^ ~ ~ ^ ^ 一 -*• 一 Engl i sh — 

Ĉ  � ^ s ^ �� i ^ 
U 1.00% \ ^ x ^ ^ 
§ 0.80% � ^ ^ ^ ^ ^ • ^ • � � _ � � 

0.60% � � C ^ ^ ^ ——•�� 
*"***" ?K， """"̂*̂"̂*̂̂^̂̂函 * N _ 

0.40% � � � ^ * ^ ^ ^ ‘ • • - _ • • 
�ac«̂ ^̂ *̂"̂ >̂<̂ _̂_ _ 一 1 0.20% ^^^^^^^^*^^rr:r:r-^ 

0.00% "I 1 1 1 ‘ 1 
1K 2K 4K 8K 16K 32K 

L E X I C O N S IZE 

Figure 6: Relative expected cohort size analysis of 6 broad classes. 
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Figure 7 to Figure 10 compare the characteristics of Mandarin and English as functions of the 

lexicon sizes. We can see that most of the curves are quite linear with the lexicon size and that the 

characteristics using broad phonetic classes are quite similar between the languages. 

1 0 0 丨 丨 

• ECS (Mandarin) 一 • * 一 ECS (English) 

• F-ECS (Mandarin) 一 H " 一 F-ECS (English) • A 

• MCS (Mandarin) 一 "X" 一 MCS ( E n g j i j b i - - « " “ ^ 

g _ ; : ^ ' ^ 
00 ^ 

S 10 - — ^ ^ ^ ^ ^ ^ ^ 
ffi _ ^ 一 一 -X 
0 — • " " ^ ^ ^ — 一 , x x - 一 

0 ^^ ; ;^_ ja__^ . -e r -^r*zr 寺 “ • n 

1 J * = = 〒 = * = = — *^ = 7 ^ ^ 二 7 — 一一 7 " — 雀—— 

1K 2K 4K 8K 16K 32K 
LEXICON SIZE 

Figure 7: Expected and Maximum Cohort Size for whole phoneme set 

1000.00 1 
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^ 

PQ 一 _ ^ * ^ ^ ^ ^ ^ ^ 
a ^^^^:J：^^^^^^^^ 

E 100.00 J > ^ ^ ^ ^ ^ ^ ^ ^ ~ ~ ~ ^ ^ ^ _ ^ ^ = • " • " - " = = " ^ " ^ 

_ ' ^^^^' 

1 0 . 0 0 — — — I 1 1 1 i — 

1K 2K 4K 8K 16K 32k 
LEXICON SIZE 

Figure 8: Expected and Maximum Cohort Size for 6 broad classes 
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Figure 9: Total number of pattern and number of unique pattern for whole phoneme set 
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Figure 10: Total number of pattern and number of unique pattern for 6 broad classes 
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3.7 Isolated Word Speech Recognizer using Broad Classes 

Our model of isolated word recognizer involves three distinct stages: The first stage is classification 

of the acoustic signal. Second, this sequence is then used to retrieve a set of word candidates form 

the 44,000-lexicon. Finally, a detail feature recognizer determines which of those words was 

actually spoken. Figure 11 shows the block bigram of the algorithm. 

The recognizer has two major features. First, the classification of the speech signal is in terms of 

phonetic-size units as opposed to fixed rate labeling. Second, there is no attempt to perform detailed 

recognition of the acoustic signal until after lexical access. 

. (Broad Class) ^ |(Callhome) N 八"st of 
Speech I > Classifcation I / Lexical Access ‘ / potential 

Words 

I) V 

I 〉Recogn i t i on 丨 〉 W o r d 

Figure 11: System Flow of the Isolated Word Speech Recognizer 

Performance of the system can be measured by: 1. The number of word candidates returned in 

lexical access. 2. The probability of the correct word that appears in the candidate set. 

By using these two separate criteria, the tradeoffs inherent in the choice of representations are more 

explicit. If very broad classes are extracted from the acoustic signal, then the error rate in 

recognizing these classes will be very low. However, a large number of words will match each 

sequence of the broad classes. If the classes are detailed, the error rate will be higher, but fewer 

words will match each sequence. We believe the 6 broad classes would be a good option for the 

first stage of the recognizer. Since a large vocabulary isolated word Mandarin corpus is not 

available in public, the mentioned system is not actually built for experimental testing. 
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3.8 Chapter Conclusion 

In this chapter, we demonstrate a method for partitioning a large lexicon into small equivalence 

classes, bases on phonetic constraints. In our two-stage recognizer, word classes are represented in 

terms of manner of articulation. The benefits are: 1) These broad phonetic classes are relatively 

invariant across different speakers and phonetic contexts. 2) Only a tiny subset of the words in very 

large lexicon matches a given sequence of the classes. 

We demonstrated that broad phonetics classification of words could, in principle, reduce the 

number of word candidates significantly. It is found that the Mandarin broad class representation 

can uniquely specific 19% words in a 44404-word lexicon, and the expected cohort size is only 

62.4. Thus, a subsequence recognizer only need to search 64.2 words instead of 44404 words. It is 

also marked that the percentage of uniquely specified word (UNIQ) of 6 broad classes are very 

similar for the languages, they are 19.0%, 16.7% and 15.7% for Mandarin, Cantonese and English 

respectively. Since the broad class recognizer only makes use of the broad features of an input 

phoneme, minor change in the acoustic realization would not affect the result of first lexical access 

stage. Thus, the representation is both powerful at differentiating between words, and robust with 

respect to acoustic variability. 

Therefore, lexical access, through the broad classes feature, is undoubtedly a feasible way to cut 

down the computation time of a large-vocabulary isolated-word recognizer. 
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丨 Chapter 4 Character and Word Language Model 

j 4.1 Introduction 
.i 
.:i -3 

I N-gram language model simultaneously encodes syntax, semantics and pragmatics. They 

i concentrate on local dependencies. It is especially effective for structural languages, such as English 

where word order is important and the contextual effects among neighbor words is strong. On the 

；other hand, n-gram language model processes inherit deficiencies in exploiting long-range 

constraints. Researchers have tried different approaches to solve the problem [31][32][33]. 

However, these attempts have yielded little improvement at the high expense of computational cost. 

Thus, in this thesis, we concentrate on n-gram language model only. 

People tend to speak more freely (less constraint in syntax or grammar) in telephone conversation. 

It makes the building of language model even more difficult. Not much work of language model has 

been done for Chinese large-vocabulary telephone speech. ffiM [39] has presented their 

experiments of Call Home corpus. However, the detailed analysis of the language model has not 

been published. In this chapter, we analyze and compare the characteristics of Chinese word 

language model and character language model. 

While word language model has been found to provide powerful constraints for speech recognition, 

it is also known that word language model suffers from out-of-vocabulary and sparse data 

problems. These problems are particularly severe in Chinese, as new Chinese words can be created 

with a high degree of freedom. Furthermore, as there are no clearly defined word boundaries in 

Chinese, some forms of word segmentation procedures must first be performed before word 

language model can be applied. In this chapter, we explore the possibility of using character 

language model, which can potentially alleviate some of the known problems with word language 
1 -| 
:j 

i model. 
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4.2 Motivation 

While many researchers assume that word level language model is better than character level 

language model. Few researchers compared the performance of both language models. The 

motivation of the chapter comes from the fact that the assumption may not be tme, and it is worth to 

have systematic procedures for the comparison. In our experiments, the performances of language 

models are compared based on the perplexity. 

4.2.1 Perplexity 

The most common response after experiencing large-vocabulary speech recognizer is "It doesn't 

make sense!". The better the language model we have, the lower the occurrence of nonsense 

sentences. How can we identify a better language model? Language model is commonly measured 

by "perplexity" which is the extent of constraints of a given language model in a recognizer. This 

term roughly means the average number of branches at any decision point during the decoding of 

the message. For a simple language model, in which all of the V words is allowed to follow any 

word with probability MV. The perplexity of this model is V. This concept can be extended 

further, where the probability of words following each other is not uniformly 1 / V . From Rabiner & 

Juang [34], perplexity B, is defined in term of entropy H. B = 2" 

And we estimate H over Q words of data to be H^: 

^ " = - ^ l 0 g i X W p W 2 , . . . , ) 

Which for an n-gram model is: 

1 -
Hp = --Yulog户(冰'I /̂-2,...州卜“+1) 

a i=\ 
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； In practice, we can only estimate probabilities using some test data, and thus only an estimation of 

；perplexity can be obtained. The more data is used to train and test the language model, the better 

\ this estimate should be. 

: F o r speech recognition, fewer possible words means an easier task for the recognizer. Hence, a 

丨 language model with low perplexity is more desirable. It will generally result in faster and more 

accurate recognition. The relationship between perplexity and word accuracy is not guaranteed, 

although we expect models with lower perplexity introduce better recognition results. 

•！‘ 

i ! ] 
I 
1) 
] 

\ } 

1 J 
今 
.3 ^ 
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4.3 Call Home Mandarin corpus 

4.3.1 Acoustic Data 

Our study is based on the second release (apr95) of Mandarin Call Home corpus [37][38], 

distributed by Linguistic Data Consortium (LDC). The CallHome Mandarin corpus consists of 120 

telephone conversations between native speakers of Mandarin. All speakers were aware that they 

were being recorded. They were given no guidelines concerning what they should talk about. Once 

a caller was recruited to participate, he/she was given a free choice of whom to call. Most 

participants called family members or close friends overseas. All calls originated in North America. 

The corpus is a large-vocabulary, conversational and telephone speech corpus. Speech is 

transcribed and time-aligned with human intervention. Conversations take place in an unprompted 

manner with no specified topics for talker to follow. Each recording is 10 to 30 minutes long. The 

transcription is in native orthography, covering 10 minutes of each call. Unlike Switchboard [40], 

transcription in Call Home is time-aligned interactively by speaker turns instead of on a word-by-

word basis. 

Because of the Call Home corpus speech is collected over international connections, there are 

channel noise and distortions to deal with. Moreover, handsets and speakerphones are often used in 

the case of multiple talkers on one end. The average number of speakers per conversation in 

Mandarin Call Home is 2.81 instead of 2 for Switchboard. In view of poor quality of telephone 

speech, not all the transcribed speech from conversation is suitable for training. After the non-

Mandarin speech, laughter and corruptive channel noise are removed, the usable portion of training 

speech is about 9.0 hours. 

There are 80 conversations in the training set and 20 in the development test set. The training set 
'i 

j contains 19K sentences and 5744 unique words. The average word length is about 1.39 characters. 

Detailed statistics of the corpus can be found in Table 17. 
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Transcription Training Development Testing 
# ofdialog ^ ^ 
#ofscntencc 19,965 5,378 
#ofword 127,063 一 34,699 
#ofcharacter 177,148 48,218 
# of unique word (w-vocab.) 5,774 2,936 
# of unique character(c-vocab.) 2,098 1,466 
Average word length 1.394 character/word 1.390 character/word 

Table 17: Detailed statistics of Call Home Corpus 

4.3.2 Transcription Texts 

Mandarin Call Home exhibits strong characteristics of spontaneous speech with lots of disfluencies, 

hesitations, repetitions of phrases, and word slurring, which makes human transcription 

complicated. Unlike Switchboard corpus, no conversation topic is specified in Call Home. Talkers 

speak in a more relaxing manner in Call Home than in Switchboard because they are family 

members or close friends. Moreover, proper names such as human names and abbreviations for 

organizations frequently appear in the context. 

The speech is transcribed in native orthography, Chinese characters, by human transcribers. There 

are several problems for Mandarin transcription, which do not occur in western languages. For 

example, word boundaries in Mandarin are ambiguous and cannot be clearly distinguished by 

simple mles [41]. Some examples of texts used as test sentences are as follows. 

<s>剛來那時候感覺特別不好</s> 

< s >他說有什麼事兒可以找他< / s > 

To have better analysis of my testing result, the characteristic of usable portion of training speech 

data and transcription of IBM's experiment [39] and those of my experiments are compared in 

Table 18. It is notice that JBM include less transcription for training (7.7hrs vs. 9.8hrs). It might 

account for the small variation of our results. 
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Corpus IBM-Call Home CUHK-Call Home 
# of Recording(Training/ Devtest) 80/20 80/20 
Transcribed length of training 7.7 hrs 9.8 hrs 
# ofTurns 12,QQQ/3,Q00 ~~ 19,965/5,378 
# of Words for LM 170K 177K 
Trigram Perplexity 288! 313.23 

Table 18: Baseline perplexity compare to JBM 
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4.4 Methodology: Building Language Model 

A bigram language model can be seen as a VxV matrix of probabilities, where V is the size of the 

vocabulary in a specific task. The bigram and trigram probabilities can be estimated by the simple 

relative frequency approach. 

Bigram: P(w„ | w “ ) = /(w„ | w “ ) = ’ , : " ) 
^(K-i) 

Trigram : P{w^ | w”—？，w„_,) == f(w, | w„_,, w„_,) = c(:”-�,^"-"?) 
cK-2,^«—i) 

where the function c(.) counts the number of string in the blanket 

The use of relative frequencies as a way to estimate probabilities is known as Maximum Likelihood 

Estimation (MLE) [35][36]. Table 19 and Table 20 show the bigram and unigram counts of 7 words 

in Call Home corpus. The relative frequencies are then calculated by normalizing the bigram with 

their unigram counts. Table 21 shows the bigram probabilities after normalization. Note that WA' 

log probabilities are caused by zero bigram counts, which is undesirable. Actually, we have chosen 

7 sample words which are more related to each other, the majority count of full-version bigram 

matrix should be zero. From the Table 19, we also notice that the disfluency problem is very severe, 

for example, there are 259 number of bigram 我-我，73 number of bigram 他-他 and 17 number of 

bigram 什麼-什麼.Generally, those bigrams would not be appeared in written text. However, 

people tend to repeat their words in telephone conversation. 

^n.,XwJ 我| 想| 知道| 他| 買| 了| { T i i 
g 259 126 119 6 \_0 6 4 
m 21 2 1 7 6 5" 1 
知道 50 q n U 0 ^ 4 
他 11 ~6 5 73 To 17 7 
買 0 1 0_ 0 4 50" 3 

T 100 ~0 2 44 ~ 6 1 7 
什麼 7| o| l| 5| Q| i2| 17 

Table 19: Bigram count for 7 words (out of 5774) in Call Home Corpus 
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I |Unigramfe |想 |知道 |他 |買 |了 |什麼 
Count 4568 423| 57l| 2246| 28l| 2953| 881 1 i 

I Table 20: Unigram count for 7 word in Call Home Corpus ) 

： w„.,\wJ 我| 想| 知道| 他| 買| 了| 什)^ 
g -1.1929 -1.5058 -1.5306 -2.8280 -2.6062 -2.8280 -3.0041 
想 一 " l . 2 5 7 6 - 2 . 2 m -2.5798 -1.7347" -1.8016 一-1.8808 -2.5798 

知道 ~""0.9657 1 ^ -1.5855 -1.5507 N/A - l . T ^ -2.Q6^ 
他 -2.2843 -2.5476 -2.62^ -1.4624 -2.32'57 -2.Q953~-2.4806 
置 N/A -2.3483 N/A N/A -1.7462 -0.6493 -1.8712 
y -1.4461 N/A -3.14^ -1.8026 -2.6679" -3.4461 —-2.6010 
|什麼 -2.0787| N/A! -2.9238| -2.2248| N/A| -1.8446| -1.6933 

Table 21: Log-probabilities of bigrams for 7 word in Call Home Corpus 

As illustrated above (N/A entries in log-probabilities table), a bigram/trigram language model 

would give zero probability to string W which contains an unseen type of bigranVtrigram. If the 

bigram/trigram missing-rate is high, a large number of word errors would be introduced in a 

recognizer, which operates with the statistical decision criterion: 

PiJV)P(A I W) = max F(W)P(A | W) 
w 

Actually, we found that 58% of the word trigrams and 26% of the word bigrams appearing in the 

test set never took place in the training set. One approach to solve the zero probability problem is 

using backoff technique. In the model, the probability backoff from a trigram to a bigram, and then 

to a unigram estimation. The ideal is incorporated in the approximated formula. 

[P(wJw,_2,w,_i) if c(w,_2,w,_i,w,.)>0 
Piŷ i I y^,:-2, >n_i) 二 j ««：2 )戶0/1 >n-i) if ^(^/-2, >Vi, ̂ /) 二 0 and c{w,_,, w,) > 0 

a{w^_^)P{w^) otherwise 

..i 

where a(w=;),a(w"_i)are factors that depend on the counts c and assure that the probability P 

when summed over all words w. adds up to 1. 

•j ••̂  
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i P is a discounted version of bigram and trigram. The discount method used for the simple backoff 

! bigram in our experiments is shown below: 
i 

.| -

1 _ : 7 ( * i ) : f l - ^ % i ^ 
丨 、 C { ^ n - x ) ) <^n-x) 

An intuitive impression for the quality of the language model can be conceived from Table 22. The 

simple backoff language model is used to predict the potential words for the sentence "<s> 他 都 

不 知 道 他 的 條 件 有 多 麼 好 </s>". Table 22 manifests all the words that are predicted to 

be more likely than the actual word, given the language model has perfect knowledge of the 

preceding word. For example, knowing the preceding word “有"，the language model estimates 

that the most likely next word is “一個“，and the word 機會，時『曰1... are all more likely than the 

actual word “多麼“which is estimated as the 219-th likeliness, given that particular past. 

We observe that the language model is quite effective at predicting most function words (e.g. 

我,你,他）but that is uncertain about some content words (e.g.條件，多麼).Another observation is 

that the language model provides powerful constraints to a speech recognizer. In the above 

example, the correct words are always within the top 800 candidates, instead of 5774 words. It is 

quite amazing that without any acoustic information of the current word, a recognizer is able to 

predict accurately the potential words. Thus the searching time for the recognizer can be greatly 

reduced. Of course, we cannot make the conclusion merely based on the example. An objective and 

quantity measure of language model quality would be presented in the following sections. 

5 ! J \ 
'i j 
j 
.:( 

i •i 1 •] 
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1" Rank Wi W2 W3 W4 W5 W6 W7 Ws W9 Wip Wg W12 
？ 1 ^ “ 嗯 說 是 知 措 </s> 說 ^ 7 ^ </s> ^ ¥ " 大 " " i Z ^ 
P 2 呃 < / s > _ _ 2 嗎 < / s > 時 候 _ 7 _ _ 有 是 吧 

丨 3 m___m. a _ _ _ _他那個 _ _ 她 什 麼 </s> 
4 咬 也 P B _ _ ^ _ m _ _ _ 也 </s> _ _ a _ 

！ 5_ ¢ 1 _ ^ r__m^__我也好 _ _ m _ _ t L 
^ 6 a _ _ M _ m__^_fL__我可能 _ m _ 
：丨 7_ 對 現 在 你 現 在 東 西 _ _ 啊 這 個 _ i ^ 
!：： 8_ 你 的 他 的 啦 的 機 會 了 

- L sg mm 是 不 好 _ z i _ _ _ m . 
: 15_ M.__g 人 大 家 一 些 __m _ 

n ^ is__3____T__m. 
n 3i_ 嘛 對 吧 那 個 _ ^ 

13 s _ ffi__好空調 _ _ f f i _ 
: U^ a f i 呀 好 啊 _ M _ _ _ _ M _ 
： ^ M_ i L _ & _ _ _ _ £ . _ 1 

1 ^ s _ s a _ _ a _ _ _ £ _ _ ^ 
^ jtL ^ a _ _ 你 時 間 那 個 

雄 爆 攀 • « « • • • • * • • • • 

. 34 — ^ ¾ 說 都 . 妊 
s 

争 攀 攀 • • • • • • • • _ 

: 40 — 錢 有 1 真 

！ 219 _ 或者 ~^M~ “ 
s 

參 參 參 * • • 

• 782 _ 體質- _ 

, 783 2 
： 784 g 2 
； 785 鍵 

3 Table 22 Word prediction by a backoffbigram language model for "<s> 他 都 不 知 道 他 的 

J 條件有多麼好 < / s > " 
d j 

1 

J 
. i 

vi 

m 

i 
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4.5 Character Level Language Model 

Out-of-vocabulary (OOV) rate and perplexity of different character language model are analyzed. 

There are 156 out-of-vocabulary characters in the test set, some of them with higher 0 0 V count are 

listed in Table 23. The total number of OOV word token is 298，which represents 0.62% of the total 

number of words in the test set. 

Count 11| 10| 8| 8| 7| 7| 7| 7| 7| 5| 5| 5| 5| 4| 4| 4| 4| 4| 3| 3 
OOV l ^ H ~ l " ^ " W � i H i 3 � " ^ l i ~ ^ " ^ " ^ i ~ # " ^ 
Count ~ ^ m 3 3 ^ 3 2 2 2 2 2 2 2 2 2 2 2 2 
OOV ~ g ^ H " ^ " " ^ i � " ¥ ] " ^ i ~ ¥ " ^ i ~ W " ^ H U 
Count ~ 2 ~ 2 2 ~ 2 ~ 2 ^ ~ 2 ~ 2 ^ 2 2 2 2 2 2 2 1 1 1 1 
OOV 汰 |淘 |恬 |誘 |裕 |蚤 |植 |逐 |煮 |尊 | m\呱| _ | d 梓 | 痱 | i |挨|礙|卩八 

Table 23: List of top frequency out-of-vocabulary characters 

Table 24 exhibits the perplexity and OOV rate of the simple backoff character bigram and trigram. 

Figure 12 visualizes those perplexity results. Eight language models are compared in Table 24. 

They are divided into two groups: cheating and fair models. Cheating models are included in the 

experiments to give a wider range of perplexity analysis. Since bigram and trigram language models 

are the most common types of language model implementation methods, both of them are employed 

in the experiment. Smoothing techniques are also included, aimed at further improving the 

perplexity of language model. More detailed analysis of smoothed technique would be presented in 

Chapter 5. 

Cheating language models are language models, which are trained from testing transcription. Hence 

the cheating language models has better statistic information than fair language models, which 

trained on training transcription. The cheating language models always have lower perplexity than 

the fair ones, and would normally perform better in recognition tasks. Each group contains four 
i ； 

j members. They are bigram/trigram language model with/without smoothing. Since many possible 

Chinese character trigrams wj,w ,̂w^ never actually take place even in very large corpora of training 
t 
[ 
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text, it is noticeable that the simple backoff character trigram (Perplexity, PP=96.03) has a higher 

perplexity than the simple backoff character bigram (PP=63.13). It suggests that there is insufficient 

training data for trigram language model. Hence, most of the subsequence experiments are worked 

with bigram language model. 

It is also noticeable that smoothing technique reduces the perplexity of fair language models, but it 

increases the perplexity of cheating language models. It suggests that the smoothing technique 

would not be usefully if the target language model already has good statistic information. 

Furthurmore, it is found that OOV rate of character language model is only 0.62%, while it is 

4.15% (shown in Table 26) for word language model. For a recognizer without using statistical 

language model, each of the 2098 character is equally probable to follow any word. As described in 

section 4.2, its perplexity is 2098. By using the simple backoff language model, the perplexity is 

reduced from 2098 to 63.13，i.e. 97% improvement. 

Character Level Test on Perplexity/ OOV 
Language Model Entropy OOV (%) 

(Character) 
Fair Bigram Testing transcription 63.13 / 298 hits 
(no smoothing) Hit on 2-gram:50,663 (86.34%) 5.98 bits 0.62% 

Hit on l-gram:8,013 (13.66%) 
Fair Trigram Testing transcription 96.03 / 298 hits 
(no smoothing) Hit on 3-gram: 34720(59.17%) 6.59 bits 0.62% 

Hit on 2-gram: 15943(27.17%) 
Hit on 1-gram: 8013(13.66%) 

Fair Bigram Testing transcription 44.10/ 298 hits 
(GTsmoothing) Hit on 2-gram:50,663 (86.34%) 5.47 bits 0.62% 

Hit on l-gram:8,013 (13.66%) 
Fair Trigram Testing transcription 43.06/ 298 hits 
(GT smoothing) Hit on 3-gram: 34720(59.17%) 5.43 bits 0.62% 

Hit on 2-gram: 15943(27.17%) 
Hiton 1-gram: 8013(13.66%) 

Cheating Bigram Testing transcription 21.70 / 0 hits 
(GT smoothing) 4 .48 bits TO 

Cheating Trigram Testing transcription 11.20 / 0 hits 
(GT smoothing) 3 .48 bits 0% 

Cheating Bigram Testing transcription 17.19 / 0 hits 
j (no smoothing) 4.10bits 0% 
I — —‘ 

Cheating Trigram Testing transcription 5.90 / 0 hits 
(no smoothing) 2 .56 bits 0% 

Table 24: Character level Language Model for CALL HOME spoken speech transcription 
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Figure 12: Character Perplexity Character level language model 
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4.6 Word Level Language Model 

The advantage of using word language model is that it provides a better description of the language. 

However, it suffers from large out-of-vocabulary (OOV) rate. There were 845 OOV words in the 

test set. Some of them with higher OOV count are listed in Table 25. Most of these words occurred 

only once. The total number of out-of-vocabulary word token is 1441, which represents 4.15% of 

the total number of words in the test set. We notice that most of the OOV for the character level 

language model are rarely used character, while the OOV for the word level language contains 

many frequently used word, such as 這是，西瓜. 

[Count 18丨 16| 13| 11| 10| 9| 9| 9| 9| 8 
OOV 真 的 這 是 高 溫 _ 好 多 弓 季 虹 酒 精 糖 甜 甜 ^ ^ 
Count 7 7 7 7 7 7 7 7 7 6 

OOV mm\花椒|化療| 徽 1賈玫 1夢超 1西瓜 1 霞1 圓 1 吃藥 

Table 25: List of top frequency out-of-vocabulary words 

Moreover, Chinese has no clearly defined word boundaries. Thus, some forms of word 

segmentation procedures must be performed before the word language model can be applied. In 

addition, the Chinese lexicon contains more than 40,000 words, and therefore there are potentially 

40,000" n-grams, making sparse data a challenging problem. 

An perplexity and OOV analysis, which is similar to the analysis of character language model (in 

section 4.5), is done for word language models. Table 26 and Figure 13 exhibit the perplexity of the 

word language models. Similar to character language model, the improvement in perplexity is very 

substantial for word level language model. The word perplexity reduced from 5776 to 175.13, 
i 

which is also 97% improvement. Moreover, the simple backoff word trigram (PP=313) has higher 

perplexity than the simple backoff word bigram (PP=175). By comparing to the Table 11 and Table 

12，it is found that both character and word language gives similar effects when similar changes are 

applied. Such as changing from bigram to trigram or applying smoothing technique on unsmoothed 
1 j language models. < 
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Word Level Test on Perplexity/ OOV 
Language Model Entropy OOV (%) 

(WORD) 
Fair Bigram Testing transcription 175.13 / 1441 hits 
(no smoothing) Hit on 2-gram:32615 (74.10%) 7.45 bits 4.15% 

Hiton l-gram:11399 (25.90%) 
Fair Trigram Testing transcription 313.23 / 1441 hits 
(no smoothing) Hit on 3-gram:18,654 (42.38%) 8.29 bits 4.15% 

Hit on 2-gram:13,961 (31.72%) 
Hit on l-gram:ll,399 (25.90%) 

Fair Bigram Testing transcription 90.88/ 1441 hits 
(GT smoothing) Hit on 2-gram:32615 (74.10%) 6.51 bits 4.15% 

Hit on l-gram:11399 (25.90%) 
Fair Trigram Testing transcription 94.51 / 1441 hits 
(GTsmoothing) Hit on 3-gram:18,654 (42.38%) 6.56 bits 4.15% 

Hit on 2-gram:13,961 (31.72%) 
Hit on l-gram:ll,399 (25.90%) 

Cheating Bigram Testing transcription 29.91 / 0 hits 
(GT smoothing) 4 . 9 0 bits 0% 

Cheating Trigram Testing transcription 15.47 / 0 hits 
(GT smoothing) 3 .95 bits 0% 

Cheating Bigram Testing transcription 18.35 / 0 hits 
(no smoothing) 4 . 2 0 bits 0% 

Cheating Trigram Testing transcription 4.96 / 0 hits 
(linear smoothing) 2.31 bits 0% 

Table 26: Word Level Language Model for Call Home spoken speech transcription 
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] Figure 13: Word Perplexity of Word level Language Model 
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'1 4.7 Comparison of Character level and Word level Language Model 
..1 

i 

i The perplexities of language models presented in Table 24 and Table 26 are on the two different 
j 

bases. Perplexity in the Table 24 is based on a word-level analysis, whereas perplexity in Table 26 
i 

is based on a character-level analysis. In order to compare information on the two bases, we define 

PPc ~ yPPw • 

i 

where PP^ is the average word perplexity, PP^ is the average character perplexity, and L is the 
average length of a word . 

Let the entropy of a sentence is E. Sentence entropy is equal to the sum of character or word 

entropy, ie. E = ̂ Ec = ̂ Ew. Since the average word length is L character per word, the L times 

the average character entropy {Ec) would equal to average word entropy {Ew). Hence, 

Ew = L. Ec. By translating the entropy formula to perplexity formula, we provide P P � = ^ P P . 

After normalizing the perplexities to the same basis, we found that word language model has a 

better performance on perplexity, while character language model has a better performance on 

OOV rate. 

Hence, we need to adjust OOV rate of both language models, such that the two language models are 

comparable. The easiest method to adjust the OOV rate is to change the vocabulary size. Table 27 

and Table 28 describe the effect of vocabulary size on the two language models. Figure 14 and 

Figure 15 present those data in graphical form. For both language model, we found that increasing 

the vocabulary size reduces the OOV rate. However, increasing the vocabulary size also increase 

the perplexity of the language model, which is not desirable. In other words, increasing the 

vocabulary size of a speech recognition system has two conflicting effects. 1) reduces the OOV 
.| 

j rate, which reduces OOV related recognition errors; 2) the added lexical entries increase the 
� 

average acoustic confusability of words, which results in recognition errors. Hence, compromise 

must be made on certain vocabulary size, such that the problems of large OOV rate and high 
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.j 
j perplexity are minimized. In this thesis, extensive recognition experiments have not been done to 
i 

found the optimal vocabulary size. Nevertheless, OOV rate and perplexity of language models with 

I different vocabulary sizes are compared, 
j 

I 

"i 
'.i 
'i 

Vocab. Size~~ PP* Entropy f P P OOV~~~ OOV 2-gram"" 1-gram"^ 
i (Word) (character) ( ¾ to hit 
I 21oT 193.09 5.46 b i ^ 44.10 2 ^ 0.62% 86.34% “ 13.66% 
i 2000 192M 5.46 bits 43.93 333 0.69"/T 86.58%" 13.42% 

1750" 187.16 5.43 bits 43.12 464 0.96"/T 86.93%" 13.07% 
1500 1 8 0 . ^ 5.39bl5" 42.04 6 ^ 1.39% 87.44%" 12.56% 

丨 1250" 172.95' 5.35 bits 4074" 946 1.96% 88.10% —11.90% 
lo6o" 163.^ 5.29 bitT 39.08 14Q0" 2.90% 89.08% “ 10.92% 
7 5 T 1 5 1 . i 5.21 bits 37.02 2 1 ^ 4.43% 90.40% “ 9.60% 

i 500 757.22" 5.06 bits 33.40 3759 7.80% “ 92.64% — 7 . 3 6 % 
250 104.69 4.83 bits 28.39 7828 16.23% 95.17% 4.83% 

Table 27: Effect of vocabulary size on Character Level Language Model 
I 

Vocab. \YP Entropy PP* OOV~~ OOV%~~ 2-gram~~ 1 - g r a m ~ 
Size (Word) (character) ] ^ 1^ 

5774 90 .8^ 6.51 bits 25.64 1441 4.15 % 74.10% “ 25.90% 
5500 89.88— 6.49 bits 25:7T 1481 4.27% 一 76.13% ~~23.87% 
5000" 88.47" 6.47 bits 25.15 1586 4.57% 76.76% “ 23.24% 
4500 8 7 . i r 6.44 bits 24.87 1665 4.80% 77.20% “ 22.80% 
4000 85.40— 6.42 bits 24^IF 1772 5.11% — 77.61% ~~22.39% 
3500" 82.6^ 6.37bitT 23.95 1947 5.61% 78.24% ‘ 21.76% 
3000 80 .5^ 6.33 bits 23.50 2102 6.06% 78.86% 21.14% 
2 5 0 0 7 6 . 8 ^ 6 .26 bits 2 2 . 7 2 2 3 8 2 6 .86% 79 .86% 2 0 . 1 4 % 
2000 73.0T 6.19bits 21.91 2 7 0 ^ 1.19V7 80.95% 19.05% 
1500 67.4^ 6.08 bits" 20.69 3 2 3 ^ 93VA 82.61% 17.39% 
1000 6 Q . i r 5.91 bits 19.06 4 0 l ^ 11.67% 84.99% 15.01% 
500 46.48 5.54bits 15.83 6141 17.70% 89.83% 10.17% 

Table 28: Effect of vocabulary size on Word Level Language Model 

j ;、' .， 
1 
I 
i 
,3 
；] 
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Figure 16 compares the word perplexity of the word-level and character-level language models, as 

function of the OOV. As usual, we notice that increasing the vocabulary size always reduces the 

OOV rate. We also found that the word-level bigram consistently results in lower word perplexity 
j 

,| than the character-level bigram, suggesting that the word-level language model maybe more 

appropriate for speech recognition. 
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Figure 16: Perplexity vs. OOV % for Word Language Model & Character Language Model 
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4.8 Interpolated Language Model 

We are estimating a language model for the specific domain task, Call Home speech recognition, 

where the amount of training data is limited. There is actually a large amount of data available from 

another domain, such as newspaper. A language model trained on the larger corpus may be more 

robust, but will not match the target domain. A simple solution, which take advantages of the large 

corpus language model and the specific domain language model, is to interpolate the parameters of 

both language models. In this experiment, we make use of another text corpus from LDC, which is 

HUB5 corpus. A HUB5 language model is generated base on the corpus. 

4.8.1 Methodology 

The probability of a given sentence assigned by the interpolated model is defined as a weighted sum 

of the probability assigned by the original models: 

P{w I ILM) = (1 - a)P(w I CHLM) + aP{w \ HBLM) 

‘ (1 - “)尸0/ — 2 (〜丨〜 - 1 ) + 沙 冊 _ 2 ( \ 丨 〜 — 1 ) 

( 〜 （ 1 - ¾ 2(〜丨〜—1) + 妙 ™ 1(�-1)户//5 l ( V 
尸 ( " ‘ • ) = (1 - aWcH 1—" - 1 ) ¾ / 1(〜）+ aPHB 2(w” ' ； -1 ) 

( l - W " C F _ M " - l ) ^ / _ l ( ^ P + ^ / / 5 _ l K - l ) i 5 _ l ( ^ P 

where a is the interpolation ratio, p is the backoff weight, and CH-LM stand for Call Home LM, 
HB-LM stand for HUB5 LM. 

The weight a is found by using the estimation maximization (EM) algorithm [43], which minimizes 
！ 

the perplexity of the interpolated model over the training data. The Interpolated Language Model 

Bigram is then generated through the formula above. There are four possible cases, i.e. both CH-
'{ 

\ LM and HB-LM has the bigram, only CH-LM has the bigram, only HB-LM has the bigram, both 

CH-LM and HB-LM do not have the bigram. 
I 

I I s 

- Page 54 



1 

4.8.2 Experiment Results 

Both perplexity and 0 0 V rate can be improved by interpolating the Call Home language model 

‘ w i t h HUB5 conversation transcription. By using the Estimation Maximization (EM) algorithm, it is ••；] 
j 

found that the perplexity is optimized when a=0.2. 

Figure 17 shows the change of word perplexity at different interpolation ratio for simple backoff 

language models. There is 6.3% improvement in perplexity. 
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Figure 17: Word Perplexity of (Call Home & HUB5) Interpolated Language Model 

The improvement of perplexity and OOV rate is less significant in the smoothed language model 

but it is still noticeable. As shown in Table 29, our interpolation methods have successfully reduced 

the OOV by 6.8%. In addition, the perplexity improves from 90.88 to 88.90. 

Language Model Perplexity OOV 
Smoothed FWB 90.88 1441 
Interpolated and Smoothed FWB 88.90 1343 

Table 29: Perplexity and OOV reduction of Interpolated Language Model 
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! 4.9 Chapter Conclusion j 

i In this chapter, we demonstrate a method for implementing language model for a large vocabulary 

•j speech recognizer. We compare the performance of language models by an objective measure, 
i 

j perplexity. The simple backoff character bigram reduces the perplexity from 1468 to 63.13, 
1 

whereas the simple backoff word bigram reduces the perplexity from 5776 to 175.3. In other words, 

：both bigram language models reduce the perplexity by 97%. This shows that language model 

provide powerful constraints to a recognizer. By comparing the language models at wide range of 

� O O V and at same perplexity unit, it shows that word level language model always gives a lower 

I perplexity. It suggests that word level language model is more appropriate for speech recognition. 

We also demonstrate an interpolation method, which further reduce the perplexity of language 

model. By using the interpolated language model, we achieved 6.8% reduction in OOV and 2.17% 

reduction in perplexity. Furthermore, some perplexity results for smoothed language mode are also 

I presented, and detailed discussion on smoothing techniques can be found in Chapter 5. 

1 

I ^ 

•] 

i .s ,.l 

f 
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Chapter 5 N-gram Smoothing 

5.1 Introduction 

The problems discussed in the previous chapter are related to the estimation of P(WnlWn-2,Wn-1) for 
i 

trigram or P(wnlwn-i) for bigram based on the relative frequency /(wnlwn-2,wn-1) and /(wnlwn-i). 

Although backoff technique helps to solve the zero probability problem, the backoff model is 
i 

^ incapable to estimate the actual probability of unseen events well. We have found that there is a 

! severe sparse data problem for both language models. For example in language modeling for a 

6000-word vocabulary, there are 36 million possible word bigram. Nevertheless, for a specific task, 

the training corpus rarely has more than 2 million words. A direct approach to improve the language 

model is to derive it from a much larger training corpus. However, this approach introduces other 

f problems. First, we may not able to get a sufficiently large corpus (e.g. hundred million words). 
I [ 
I • 

i Second, the resulting language model would still be confounded to a specific domain, from which it 
.i ^ 
1 

I was extracted. They are the two major motivations for researchers to work in a better smoothing 
I 
1 , 
1 

I method. 

.:丨 

To overcome the drawbacks of the conventional maximum likelihood estimation and the 

incapability of the simple backoff n-gram, a number of different approaches have been proposed. 

Such as floor method [44], discounting technique related to the Good-Turing formula [45][46], 

Witten-Bell discounting [47], linear and absolute discounting [48]. However detailed comparison 

for the effectiveness of those smoothing methods on Chinese text has not been done. 

In this chapter, we describe our work on the smoothing of n-gram models. Four smoothing 

techniques, which significantly improve the existing trigram models, are explained in detail. We 

also present and extensive empirical comparison of the smoothing techniques, which was 

previously lacking in the literature. 
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5.2 Motivation 

In this chapter, we describe and compare different smoothing techniques. Smoothing is one of the 

most important technique to solve the zero probability problem of language models. Many 

smoothing techniques are proposed by researchers. The motivation of performing series of 

experiments in this chapter is to identify the most appropriate smoothing method for Call Home 

Mandarin speech, and perhaps the result can be extended to other Mandarin telephone speech. Four 

faovous smoothing technique, which is developed for western language, are borrowed in the 

experiments. They are Witten-Bell smoothing, Good-Turing smoothing, linear and absolute 

smoothing. 
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5.3 Mathematical Representation 

Any language model can be seen as a probability generator. It predicts the probability of next word 

；b a s e on the statistics in the training data and the preceding words of testing data [49]. However, the 

training data is always limited, so that it fails to observe some typical event classes. Let us denote 

the event class under consideration by k = \,2,".,K. Their sample count is then denoted as Ck, 

which means the number of event k observed in the training text. The corresponding probability for 

event k is then denoted as p{k). In other words, we then have C independent trials with K possible 

outcomes, where the sample counts N\̂  denote the number of trial resulting in outcome k. 

Q 

{ The maximum likelihood estimation for p{k) is p{k) 二 丄.However, most of the events k are never 
.1 c 

seen in the training text because there are many more event classes K than the number of observed 

event C. Thus most of the event classes has zero outcoming probability, due to Ck = 0. The 

problem of sparseness of data can be captured by the following equation: q < C « ĉ  < K . 

Since all event classes k with the same sample count c must be assigned with the same probability 
•,< 
I 

and are therefore grouped into the same equivalence class. Therefore, we define r^ as the number of 

； class numbers. The value rir is then referred as count frequency because it is the number of classes 

that was observed exactly r times. Except add-one smoothing, each of the smoothing technique 

described in throughout this chapter makes use of the value r .̂ Table 30 summarizes the frequently 

used notation in this chapter. 
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i I 

i Symbol Meaning 
I _V Vocabulary Size 

c(Wn-h ^n) Bigram count for Wn-i followed by Wn 
c(wn-i) Count for unigram Wn-i 

I Count for bigram with prefix word Wn-i 
c. Original counts for n-gram i 

！ — • 

c. * Discounted counts for n-gram i 

d̂  Discount ratio = c,. * / c,. 
飞 Different between original count and discounted count: 

gj = C , * _ C / 
K Total number of n-gram event — 
C Total count of n-gram event 

For unigram N = V ； for bigram N = related unigram count 
； “ Number of n-gram that occur exactly c times 
( C _^^^^^_________„«__^_^_«««_^^_^___^_^^—«»«_^_^«^«~««™~~~^^«^~~«~ 

_^ Number of observed event 
R(w) Number of observed bigram with prefix w 

_Z Number of unseen event 
Z(w) Number of unseen bigram with prefix w 

Table 30: Frequently used notation for smoothing techniques 

j 

'i t 
I s 
i 
j 
i i 

I 
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5.4 Methodology: Smoothing techniques 

；Each of the mentioned smoothing methods assign a non-zero probability to the unseen events by 

discounting each count c(k) > 0 , then redistributing the discounted probability mass over all rio 

] u n s e e n n-gram. The first one to be introduced is the add-one smoothing method. Add-one 
I 

•I 

smoothing is also called floor-smoothing method, which give each n-gram a floor count L Add-one 
1 

smoothing is very easy to implement, but it is a poor method of smoothing. The weakness of add-
I ^ 

one is that it is worse at predicting the unseen n-gram probabilities. Gale and Church summarize a 
: 

number of problems with the add-one method [50]. The next mentioned smoothing method is 

Witten-Bell smoothing method. It is only slightly more complex than add-one smoothing but gives 

much better results. The main idea behind the Witten-Bell smoothing is that "Use the count of 

things you have seen to help estimating the count of things you haven't seen." This idea gives a 

I simple but useful estimation for unseen events. A more complex smoothing method call Good-
I 

j Turing smoothing method is also introduced. The basic idea of Good-Turing smoothing is to re-
• i 

i 

I estimate the low or zero count n-gram by looking at the number of n-grams with a higher count. 

The last two smoothing methods are absolute and linear smoothing. They are sharing the same idea 

that each original count is subtracted by certain value. In the case of absolute discount, the 

subtracting value is an 'absolute' constant. Therefore, we have 'absolute discount' as her name. 

Simultaneously, the subtracting value of linear discount is linear，to the original count. Hence, we 

j have the name linear discount'. To give a rough estimation of the complexity of each method. Table 

31 manifests the number of lines of program code for each of the implementation. 
Smoothing method Lines of C coding 

^ Add-one 40 
Witten-Bell 250 
Good Turing 300 
Absolute 150 
Linear 150 

Table 31: Implementation complexity of different smoothing methods 
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5.4.1 Add-one Smoothing 

A simple way to perform smoothing is add-one smoothing. It is by just taking the matrix of n-gram i 
！ 

counts and adding one to all the counts. Although this algorithm rarely used in smoothing of 
j 

i language model, it introduces important concept that would be used in other smoothing methods. 

An example of add-one smoothing is shown below: 

Add-one smoothed bigram probability are computed by normalizing each row of modified counts 

by recalculating unigram count: 

戶 ( * 1 ) 今 ; : ) ; 1 
^ K - i ) + ^ 

where c(wn-i, Wn) is the bigram count for Wn-i followed by Wn, and c(Wn-i) is the unigram count for 

word Wn-i. 

The add-one smoothed language model can also be described in terms of discount ratio (cQ. It is the 

ratio of discounted counts (c*) to the original counts (c): 

C* c(w _,) 
d, = — where c * K _ ! , w^) = (c(w„_,, w„) +1) —~~^77^ 

c ^K-i) + ^ 

^ 

j Table 19 shows the add-one smoothed counts for the bigram mentioned in chapter 4. Table 21 ^ 
I 

shows the log-probabilities of add-one smoothed bigram. You may notice that the simply add-one 
i •( •| 

j smoothed solves the zero probability problem in original bigram. For example, the original 

language model would give zero probability to a string "什麼想買"，since the ?(想 I 什麼）equal 

to zero. It would introduce recognition error if the string were really appeared in the testing 
‘I 

: sentence. With add-one smooth technique, P ( J | I 什麼）is now equal to 3.35E-04 instead of zero. '； 
#J 
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丨 |w„.i\w„ 我| 想| 知道| 他| 買| 了| 什麼 
j g 260 127 120 7 U 7 5 
.| 想 — 2 2 3 2 8 1 6 2 

1 知道 51 1 13 14 1 31 5 
他 12 l' 6 74 11~ 18 T 

i 買 1 2 1 1 5 51 4 
T foT 1 3 ^ 7 2 ~ 8 
|什麼 s| l| 2| 6| l | 13| 18 

] T a b l e 32: Add-one smoothed bigram counts for 7 words in Call Home Corpus 

1 |w„.,\w„ 我| 想| 知道| 他| 買| 了| # i i 
^ -1.4603 -1.7715 -1.7961 -3.0302 -2.8339 -3.0302 -3.1763 

1 想 一-2.1838 -3.0491 -3.22^ -2.6231 -2.6811~-2.7481 - 3 . I ^ 
] 矢口道 _-1.8374 -3.5449 -2.4310 -2.3988 -3.5449~-2.0536 -2.84^ 

j 他 一-2.6353 - 2 . 8 ^ -2.9363 -1.8453 -2.6731 -2.4592 -2.8lf4 
】 買 -3.5075 ~"3.2064 - 3 . 5 ^ -3.5075 -2.8085" -1.7999 -2.9054 

T ~ -1 .76^ -3.7700 -3.2929 -2.1168 ~"^.9249 -3 .46^ -2.8670 
！ |什麼 -2.6786! -3.5817| -3.2807! -2.8036! -3.581?! -2.4678| -2.3264 

Table 33: Log-probabilities of add-one smoothed bigram for 7 word in Call Home Corpus 

] 

\ The effect of add-one smoothing can be manifested by reconstructing the count matrix from the 

probability in Table 34. Each probability in Table 34 is multiplied by its original unigram count, so 

that the number of smoothed unigram count is then preserved as original. Note that add-one 

smoothing has made a very big change to the counts:。(我想）changed from 259 to 158.27. The 

effect can also be seen in the log-probability table: P($| I 我）decrease from -1.5058 (Table 21) in 

the un-smoothed bigram to -1.7715 in the add-one smoothed bigram. The big change in the counts 

i and probabilities is due to large portion of probability mass is moved to the unseen events. 
k . \ w „ 我| 想| 知道| 他| 冒| 了| f f i i 
g 158.27 77.31 73.05 4.26 6.70 4.26 3.04 
m ^ ^ ^ Lm 0 ^ ^ ^ 

I 心、 
知道 8.30 0.16 2.12 2.28 0.16 5.05 0.81 
{也 5.20 3.03 2.60 32.07 — 4.77 7.80 3.47 

g 0.09 ~ ~ 0.17 0.09 0.09" 0.44 4.45 0.35 
y “ 50.65 0T^ 1.50 22.56 3.51 1.00 4.01 
|什麼 1.85| 0.23| Q.46| 1.3s| 0.23| 3.00| 4.15 

Table 34: Add-one smoothed bigram counts (reconstructed) for 7 words in Call Home Corpus 
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5.4.2 Witten-Bell Discounting 
�1 

Witten-Bell discounting [47] is based on a Poisson process formulation for the appearance of new 

tokens, which was originally introduced to estimate the number of unseen biological species [46]. 
] 
I Later it was applied to estimate the rate of appearance of new words in natural language text [51]. i| j 
^ 

i Witten-Bell can be viewed as a generalized Laplace's of succession, which only deal with binary 

event. Supposing that there are k of event types instead of the two. Out of complete set of C 
1 

observations, it supposes there are c\ of type 1，c: of type 2 and so on. These random variables are 
1 
I related by: q + Cj +... + ĉ  = C. 
1 
1 

Witten-Bell estimates the total probability mass of all the unseen types with the number of observed 

types divided by the number of tokens C plus observed types R: 

c 
P[next token will be of the 产 type] = ^ ^ ^ 

i '•{ 

R 
P[next event will be novel]= 

C + R 

We can apply the Witten-Bell formula to our smoothing problem. For example, the probability of 
？ 

an unseen bigram Wn-1Wn-2 is calculated by using the probability of seeing a new bigram starting 

with Wn-i. Note that the number of seen bigram types R and the number of bigram token C are 

conditioned by the previous word Wn-i. 

* ( � ^ K - i ) 
/^*(>^/l>^M) = ^ ~ ~ ^ ~ ~ r r ^ ~ ~ ^ 

Z(w,_i)[c(w,_i) + i^(w,_i)] 

where Z is the total number of bigram with zero count. Each of the formerly zero bigram now gets 
； 

its equal share of redistributed probability mass. For the non-zero count bigram, we then discount 

them through the same manner: 
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j * , � c{w^_^w^) 
\ J ^ * 0 ^ I > ^ M ) = " 7 “ “ ^ t ^ “ “ ： 
I c{w^_,) + R{w,_,) 

•] -i i 
3 

I To calculate the Witten-Bell discount for 7 word Call Home experiments, we need the number of 
'1 •̂  
； 

•j bigram R{wn-x) which has been seen in the training text. The values for the selected words in the 

j Call Home corpus are listed in Table 35. 
B i g r a m w i t h P re f ix | 我| 想| 知道| 他| 買| 了| f F j j 

#ofBigram| 6i7| 184| 1221 505| 95| 465丨 312 
Table 35: The number of seen bigram for 7 words in Call Home Corpus 

Since the vocabulary size is V, V=5776, and there are exactly V potential bigrams which can begin 
1 
:i 
j with a given word w, the number of unseen bigram is Z(w) = V - R{w). ‘] 
I 

lBigramwithPrefix| 我| 想| 知道| 他| 買| 了| # ) ^ 

#ofBigram| 5159+ 5592| 5654| 527l| 568l| 531l| 5 4 ^ 

Table 36: The number of unseen bigram for 7 words in Call Home Corpus 

Table 37 shows the re-estimated probability of Witten Bell smoothing method. For comparison 

I reason, the bigram count of Witten Bell smoothing method is re-constructed on Table 38. 
i 

W n - l \ W n | 我 | 想 | 知 道 | 他 | 買 | 了 | 什 函 

^ -1.301 -1.614 -1.639 -2.937 -2.715 -2.937 -3.113 
^ -1 .4^ -2.482 -2.783 -1.938 -2.005 -2.084 - l T m 
^ 道 —-1.142 -4.507 -1.7^ -1.727 -4.507_ -1.364 -2.239 
他 —-2.398 -2.661 -2.741 -1.576 -2.439一 -2.209 -2.594 
買 -4.352 -2.575 -4.352 -4.352 -1.973 -0.876 -2.098 
y -1.534 -4.591 -3.233 -1.890 -2.756— -3.534 -2.689 
|什麼 -2.232j -4.32o| -3.077| -2.37s| -4.32o| -1.997| -1.846 

； Table 37: Witten Bell smoothed log-probabilities for 7 word in Call Home Corpus 

w „ . , \ w J 我| 想| 知道| 他| 買| 了| fr)i 
g 228.180 111.006 104.839 5.286 8.810 5.286 3.524 

] m U ^ 1.394 0.697 4.878 4.181 3.484 0.697 
r 心、 

I ^ p ^ 41.198 0.018 9.887 10.711 0.018 24.719 3.296 
^ 8 . ^ 4.899 4.082 59.599 8.164 13.8^ 5.7T? 
^ 0.0T2 0 .747 Q.Q12~ 0.012 2 .989 3 7 . 3 ^ 2 ^ 
y 8 6 . m 0.076 1 . 7 2 8 _ 38.014 5.184 0 .864 6 . ^ 
^ ¾ 5.l69| Q.Q42| Q.738| 3.692| O.O42| 8.862| 1 2 . ^ 

Table 38: Witten Bell smoothed bigram count for 7 words in Call Home Corpus 
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5.4.3 Good Turing Discounting 

The Good-Turing (GT) discount method is suggested by Turing and developed by Good [53]. For 

certain n-gram occurs c times, Good-Turing re-estimated it to c* with the formula: 

c* = (c + l ) ^ 
^c 

Nc is the number of n-gram that occur exactly c times. Hence, No is the number of bigrams with 

zero count, and Ni is the number of bigram, which occurred only once. For example, the modified 

count for unseen bigrams is then estimated by dividing the number of singleton by the number of 

unseen bigrams. Table 39 gives an example of the use of Good-Turing discount to the bigrams for 

the Call Home task. The first column is the original count c. The second column is the number of 

bigram which has the related count c. Thus, 2677 bigrams has a count of 3. The third column shows 

the Katz Good-Turing smoothed count. 

|c 卜 |c*(GT) -
0 — 33308413 0.0011686 
1 — 38923 0.3141021 
2 6925 1.1052781 
3 — 2677 1.9248795 
4 1332 2.8544832 

j 5 779 4.1867221 
I 6 — 550 4.8287431 

I? 385| 6.0956292 

I Table 39: Good Turing smoothed bigram counts for words in Call Home Corpus 
！ 

I 
Since we assume the large bigramArigram counts are reliable, the discounted c* is not used for all 

counts c in our experiment. We adopt the Katz [45] modified Good-Turing model for our 

experiments, in which only counts less than eight (1 < c < 7) are modified. 

Since the total number of smoothed count must not be changed after smoothing, a remedied 

equation is developed to preserve the total count. 
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I Since the counts given to unseen n-gram are: c � = n̂  * (0 +1)— = n� , 
i 0̂ 

. i k 
] a n d in order to preserve the total count, we must have ^ n̂  {ĉ  - ĉ  *) = n̂  
i 1 

The unique solution to the above equation is: 

(c+i)"c+i ( ^+ iK . i 
:* _ j c J% n, 

1 _ ) " , + i 
1 «1 

Table 40 shows the smoothed count of 7 words in Call Home Corpus by Katz Good-Turing method. 
.j 

The log probability is shown in Table 41. 

Wn-l\Wn 我| 想| 知道| 他| 買| 了| 什麼 
^ 259.000 126.000 119.000 4.829 10.000 4.829 2.8545 
想 21.000 1.105 Q.3l4 6.096 4 . 8 2 9 ~ 4.187 0 . 3 m 
知道 一 50.000 0.001 12.000 13.Q00" 0.001 一 30.000 2.8545 

他 11.000 4 .829 4 .187 73 .000 1Q.QQ0" 17.000 6 .0956 

買 0.001 0.314 0.001 0.00T 2.854 50.000 一 1.9249 
y 100.000 0.001 l . T ^ 44.000 4.829 0.314 — 6.0956 
|什麼 6.096| Q.OQl| Q.3i4| 4.l87| Q.OOl| 12.0Q0| 17.0000 

Table 40: Good Turing smoothed bigram counts for 7 words in Call Home Corpus i \ 
I 
i 

I [Wn-lXWn 我| 想| 知道| 他| 買| 了| f f i i 
j ^ -1.246 -1.559 -1.584 -2.976 -2.660 -2.976 -3.204 
i 想 -1.304 -2.583 -3.m -1.841 -1.943 -2.004 一-3.129 

知道 —-1.058 -5.689 - L ^ -1.643 -5.689" -1.280 一-2.301 
他 —-2.310 -2.668 -2.7^ -1.488 -2.351 -2.121 一-2.566 
買 -5.381 -2.952 -5.381 -5.381 -1.993" -0.750 一-2.164 
y — -1.470 -6.403 -3.427 -1.827 -2.786 -3.973 ~"-2.685 

丨 |什麼 -2.16o| -5.877| -3.44s| -2.323| -5.877| -1.866| -1.715 

Table 41: Good Turing smoothed Log Probability for 7 words in Call Home Corpus 
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；5.4.4 Absolute and Linear Discounting 

The probability Pr for absolute discounting and linear discount [48][56] can then be written in a 
•！ 
i general forms: 
:| ！ ‘！ .̂  
•j 

Pr=^{Cr-gr) i f ^ r>0 / ^ = ^丄 ^ ] >。 "‘ i f ^ = 0 

C c riQ 

i where gr is defined as the differences between the original count c and the smoothed count c* 

For absolute discount, g^ = b where b is a constant. Intuitively it is equivalent to sample 

i subtracting the constant b from each count. For linear discounting, g^ = ac^ where a is a constant. 

In other word, the original count is subtracted by a value, which is in proportion to its original 
1 

count. Unlike the Good-Turing method, the discounting function is applied to all non-zero count. 

Absolute discounting define the probability as, 

P = ^ ^ ifcr>0 P,=b'- ifcr = 0 
尸 C CZ 

jn 
where b is a constant with value: b = . 

"1 + 2^2 

Linear discount is then defining the probability as, 

i ^ r = ( l - a ) " ^ i f c r>0 P, = - ifCr = 0 
C Z 

yi 
where a is a constant with value: a =—. 

C 

Table 42 and Table 43 show the re-estimated probability by absolute and linear smoothing methods. 

Although the absolute and linear smoothing are relatively easy to be calculated, their perplexity 

: performance in our Call Home experiments are as effective as the Good-Turing and Witten Bell 

smoothing methods. 
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丨 3 8 9 2 3 

In our Call Home task, b value for bigram is: b = = 0.73756，while a value for 
. 38923 + 2-6925 

38923 
bigram is: a = = 0.23307 

167002 

] w „ _ i \ w „ | 我| 想| 知道| 他| 買| 了| 什“)̂  

\ ^ 258.262 125.262 118.262 5.262 9.262 5.262 3.262 
想 一 20.262 一 1.262 0 ^ 6.262 5.262 4.262_ 0.262 

知道 4 9 . ^ Q.Q16 11.262 12.262— 0.016 ~~29.262 3 . ^ 
‘ ^ 1 0 T ^ 5.262 4.262 72.262 9.262 ~ 16.262 — 6.262 
g 0.012_ 0.262 0.012 0.012 3.262 49.262 2.262 
� 99.262 0.065 1.262' 43.262 5.262 0.262 6 . I ^ 

i 什麼 — 6 . 2 6 2 | Q . 0 4 2 | 0.262+ 4 . 2 6 2 | Q . 0 4 2 | 1 1 . 2 6 2 + 1 6 . 2 6 2 

.| Table 42: Absolute smoothed bigram counts for 7 word in Call Home Corpus 

.1 
.； 

1 Wn-lXWn| 我| 想| 知道| 他| 買| 了| 什麼 
^ 198.635 96 .633 91 .265 4 .602 7 .669 4 .602 3 .068 

‘ 想 —16.106 1.534 0.767 5.369 4.602 3.835 0.767 
知道 —38.347 0.077 9.203 9.970 0.077— 23.008 3.068 

他 8.436 4.602 3.835 55.986 7.669一 13.038 5.369 

g 0.038 0.767 0.038 0.038 3.068 38.347— 2.301 
y 76.693 0.426 1.5M 33.745 4.602 0.767 5.369 

j |什麼 5 . 3 6 9 | 0.124| Q . 7 6 7 | 3 . 8 3 5 | Q . 1 2 4 | 9 . 2 0 3 ! 13.038 

i Table 43: Linear smoothed Bigram counts for 7 word in Call Home Corpus 

] T h e different between two discounting models is that absolute discount affects the high counts 
:i 1 
1 • 

much less than low counts, while linear discounting scales down all counts by the discount factor 

d^ = (1 - a) • 
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\ 5.5 Comparison of Different Discount Methods 
\ 
I We have explored the effectiveness of the four different discount methods to overcome the sparse 

J 
-.j 
'] 

I data problem. These discount methods are: linear, Witten Bell, absolute, and Good Turing. As 
i ！ 

,1 Figure 18 shows, compare to the simple backoff method, all the four smoothing methods give more 

than 39% reduction in perplexity for the Call Home task. Good-Turing smoothing is the most 

effective one among those methods. Specifically, the Good-Turing smoothed word bigram and 

character bigram perplexities are 90.88 and 193.09 respectively. These results compare favorably 
；! 

to the simple backoff bigram perplexities of 175.13 and 317.93. As shown in Table 44, it is quite 
i 

amazing that the simple absolute discount method gives the perplexity value 91.97, which is better 
j .) 

than the more well-known and more sophisticated Witten-Bell algorithm. 

I Discount Method Word-LM Perplexity Character-LM Perplexity 
Simple backoff~~ 175.13 63.13^ ^"-317.93 

± — r - ^ 

Good Turing 90.88 44.10^ '^=193.09 
Absolute 91.97 44.25^'^=194.01 
Witten Bell 9 3 ^ 44 .47 : : = 195.3l" 

i Linear 106.00 48.22^-^^-218.62 
Table 44: Comparison of different Discounting Methods for the Call Home task 

350 1 — 1 
； i 

—Word Bigram | 
] 300 DCharacterBigram | 

1 ^ 250 
"5 
0) — 
a 200 r = ^ = 

I ! i 5 � - � 

I g 1 0 0 - — ~ ~ — p z : =：：：：：：：; 一 

1 50 -- —— 一 一 — — 

] I 
滅 Q hmmm 丨 ^^smssi } ^ ^ ^ M w^xj^fxyAmA k a a a a a a a J 

Simple Linear Witten Bell Absolute Good Turing 
backoff 

Discount Methods 

Figure 18: Comparison of different Discounting Methods for the Call Home task 
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5.6 Continuous Word Speech Recognizer 

To examine the contribution of the proposed smoothing methods to the recognition accuracy, we 

have incorporated our language models into our continuous speech recognizer. Having reviewed 
i 

some typical art-of-the-state speech recognition system, the chosen system is designed using 

Hidden Markov Models. However, there are only a few systems with similar parameters for 

comparison, such as JBM Call Home experiments. 

5.6.1 Experiment Setup 

i All recognizers in the experiments used 408 base syllable as speech units. The architectures of the 

j recognizers in all experiment are the same: they all use the hidden Markov Model (HMM) 
I 
•i 

'丨 technique for acoustic modeling. All 408 HMMs has 8-states and 8 mixtures. The HMM states are 

, a r r a n g e d in a left-to-right, no-state-skipping topology. The segmental k-means algorithm is used for 
j 

training and the Viterbi algorithm is used for decoding. 13 MFCC, 13 AMFCC, Energy and an 

i AEnergy are used as feature vectors to the recognizer. Since our main theme is to compare the 
j 

I language models, no context-depend models are made to improve the recognition result. 
.j “ 1 
.t 
) 

i Details of the different Language Models 
•', i \ 

1. No Language Model (No-LM): All of 408 base syllable are output candidate, with grammar 

network [sil] <Base_syllabe> [sil]. 

2. Fair Character Bigram (FCB-LM), Fair Word Bigram (FWB-LM): Language model is formed 

base on the Call Home Training Transcription (170K words) 

3. GT Smoothed Fair Word Bigram (SFWB-LM): FWB-LM with smoothing techniques. Please 

refer to section 5.3.3 for the details the implementation. 
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.j 4. Interpolated & GT Smoothed Fair Word Bigram (ISFWB-LM): Language model is formed by 
,； 

. j 

] interpolating fair Call Home language Model and Hub5 language model (250K Words). Please 
f 

j refer to section 4.8 for details of the implementation, 
j 

i ：] 

！ 5. Cheating Word Bigram (CWB-LM): Language model form base on Call Home testing 
. 1 

transcription (48K Words). 

5.6.2 Experiment Results: 
All the five experiment results are shown in Table 45 and Figure 19. The percent accuracy is 

i 
calculated by taking into account all of the deleted, inserted, and substituted words as given in the 

•j 
:i ,i j following equation: 
i 

sub.err + del.err + ins.err 
error 二 

total words 

\ 

\ VoAccuracy = (1 - %error) * 100 

1 

I Thus, it is possible to have an error rate greater than 100% or negative accuracy. While these error 

rates are much higher than for tasks involving read speech, they are comparable to the initial results 

obtained from the IBM research center. 
j •| 

By using the simple word bigram language model, we have the syllable accuracy increased from 

I 20.17% to 27.24%, which is 35% improvement compared with system without language model. In 

addition, the Good Turing smoothed word bigram produces the syllable accuracy 31.46%. It is a 

significant improvement when compared with the simple backoff character bigram. Moreover, the 

interpolated language model can further push the accuracy up to 32.02%, which is 0.8% 

improvement over the smoothed one. Furthermore, we notice that if the perplexity is lowered to 

18.35 (by cheating method), we can have 38.28% syllable accuracy. 
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These results are not as good as current state-of-the-art speech recognizer system for a couple of 
I 

I reasons. First, instead of using the context-dependent initial-final model, we use the isolated base 
j 

i 

I syllable acoustic models, which may not be well trained in data insufficient situation. Second, we ] 
i 
！ 
I do not embed any tonal information in our speech recognizer, which is assumed able to settle some ,] 

recognition ambiguity. 

Language Model ~~Word Perplexity Syllable Character 
Accuracy (%) Accuracy (%) 

! No LM N/A 20.17% N/A 
FCB-LM N/A 27.24%" 23.25% 
FWB 175.13 29.37% 25.24% 

I SFWB-LM 90.88 — 31.75%" 27.94% 
i ISFWB-LM 88.90 一 32.02%" 28.13% 

CWB-LM 18.35 38.28% 36.Q9%" 

j Table 45: Recognition results for different language models for the Call Home task 

100j 1 1 1 1 1 " 
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Figure 19: Recognition results for different language models for the Call Home task 
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丨 5.7ChapterConclusion 

I In this chapter, we study the effect of various smoothing techniques in n-gram language models of 

I Chinese. Detailed algorithm and its underlying inspiration are also presented. The Good Turing 

smoothing method give the best perplexity result, which is 90.88 for word language model. 

Moreover, the Good Turing smoothed bigram language model gives 31.46% syllable accuracy for 

the Call Home recognition task. On the other hand, the absolute and linear smoothing methods are 

easier to implement. It may then useful for simple application. Moreover, we can achieve 38.28% 

syllabi accuracy, if the perplexity is lowered to 18.35. 

All the language models in this thesis are trained by full set of the Call Home Mandarin training 

transcription. However, there are only 127 thousand words in the training data and we have 33 

million possible bigrams. We expect that the result can be further improved if a larger training 

corpus is available. 
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Chapter 6 Summary and Conclusions 

! In this final chapter, I summarize the results from the previous chapters. Next, I will describe some 
') 

I possibilities for improvement for the system and its components. Finally, I will suggest how the 

work described in the thesis might be forward. 

6.1 Summary 

The aim of this thesis is to study lexical access and language modeling in Mandarin speech 

recognition. Lexical access attempts to provide a speech recognizer a small subset of potential word 

from a large vocabulary, so that the searching speed for the recognizer can be dramatically 

increased. While statistic language model tries to capture and characterize the syntax constraints in 

a language. Proper language modeling is crucial to the performance of a speech recognition system. 

Fundamental theory for the works in the thesis is described in chapter 2. The characteristic for 

Chinese is highlighted, which may be useful for western readers. Also the background theories for 

the components of our experimental recognizer is also described, such as acoustic modeling, 

recognizer search algorithm, statistical language model and smoothing techniques. 

Chapter 3 presents our analysis on the lexical access by broad class features. The Mandarin broad 

i class analysis is compared with English and Cantonese. It is found that the Mandarin broad class 

representation can uniquely specific 19% words in a 44404-word lexicon, and the expected cohort 
1 
i size is only 62.4. Thus, a subsequence recognizer only need to search 64.2 words instead of 44404 
... 

words. It is also marked that the percentage of uniquely specified word (UNIQ) of 6 broad classes 

I are very similar for the languages, they are 19.0%, 16.7% and 15.7% for Mandarin, Cantonese and 

English respectively. 
I 

In chapter 4, tw9 different kinds of language modeling approaches are studied. They are character 

level language model and word level language model. It was found that at the same level of OOV, 
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the word level language model gives a lower perplexity than character language model. This 

suggests that word level language model should be more appropriate for speech recognition tasks. 

Smoothing methods for improving the language models are introduced in chapter 5. Four different 

kinds of smoothing techniques are compared. They are Witten-Bell, Good-Turing, absolute and 

linear smoothing. Detailed algorithm and its underlying inspiration are also presented. It is found 

that the Good-Turing algorithm give the lowest perplexity results for our Call Home task. An 

experimental continuous Mandarin speech recognizer is also constructed to test the real recognition 

performance for the language models. The system achieves 38.28% syllable accuracy when the 

word perplexity is at 18.35. 
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j 
6.2 Further Work 

\ In this section, we will mention some possible future extensions of this work. 
i 

j 

j While the lexical access method is proved an effective way for a fast search recognizer. It may not 
I 

be practical in the real recognition task. For example, the recognition result for the broad class 

model may not be good, which causes the appropriate candidate is not passed to the next level 

detailed recognizer. Finally, this leads to the recognizer error. Therefore, a large isolated word 

recognizer must be built to test the performance of lexical access. 

The language models used in our experiments are in character and word level only. It may be 

interesting in building a syllable or morpheme level language model. 

The smoothing methods used in this thesis tries to estimate the probability of unseen n-gram by the 

counts of seen n-gram. However, it losses some linguistic information. We can have a better 

estimation by checking the n-gram starting with its synonyms. For example, the probability of an 

unseen word pair W1W2 can be expressed as: p(w1w2)=p(wsw2) where Ws = arg max Sim(wi,w) and 

Sim(wi,w) is a similarity function to express the similarity between the two words. The similarity of 

the two words can be represented as a square matrix A. The elements of this matrix are the 

probability of in which a word followed by other words, i.e. the element aij is the probability of 

word Wi follow by word wj. We can than compare different columns in the matrix to find the 

similarity. 

「 一 1̂1 1̂2 ••• 1̂« 

I . 一 ^21 ^21 ... <̂ 2n 
A — 

• 蠢 肇 • 

•j l^nl ^n2 ... ^m_ 
'•5 

+• 

： 

\ 
\ 
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6.3 Conclusion 

The major work presented in this thesis has contributed to two aspects. The first one is the study of 

lexical access for large isolated word speech recognition. The construction of lexical access models 

that attempt to speed up a large vocabulary isolated word recognizer. The second one is the study of 

language model for large vocabulary spontaneous speech recognition. The language model and its 

smoothing method provide a powerful tool for predicting next word for a recognizer. The results of 

this thesis show that linguistic knowledge is certainly beneficial to speech recognition. 

1 
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