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Abstract 

Large scale distributed virtual environment (DVE) systems model the activities of 

thousands of entities interacting in a virtual world simulated over wide area networks. 

These systems are growing to include more clients for applications such as multiplayer 

video games, military and industrial training, and collaborative engineering. In these 

applications, each host receives updates (such as position and orientation) from remote 

clients, models and renders the scene, and performs other tasks such as collision detec-

tion. The number of clients places a heavy burden on both the networking resources 

and computational resources available to the application. Today, how to meet the 

growing requirements of bandwidth and computational resources is one of the major 

challenges facing the design and implementation of large scale DVE system. A scalable 

DVE system usually employs many servers to handle clients' requests. The problem 

is how to allocate workloads among servers such that the computational load on each 

server is roughly the same, while communication cost is minimized. 

In this thesis, we discuss the DVE scalability problem, briefly overview the ma-

jor bandwidth reduction techniques and partitioning techniques currently being in-

vestigated and implemented in contemporary DVE systems, and propose an effective 

partitioning algorithm to solve the scalability problem. 

The main idea of solving the scalability problem is to divide the virtual world 

into partitions and then assign these partitions to different servers. The server in the 

logical partition is responsible for maintaining all clients within its partition. We use 

i 



Hybrid approaches to partition the virtual world. The major approach is based on 

linear optimization technique. 

Experiments are carried out to illustrate the effectiveness of the proposed parti-

tioning algorithm under various settings of virtual world. The insight gained from 

our work and the challenges still facing the design of large scale DVE system are also 

discussed. 
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Chapter 1 

Introduction 

Advances in multimedia systems, parallel/distributed database systems and high speed 

networking technologies enable system designers to build a distributed system that 

allows many users to virtually explore and interact under the same 3D virtual world. In 

general, a 3D virtual world is composed of many high-resolution 3D graphics sceneries 

that represent a real-life world. For example, we can have a 3D virtual world that 

represents a lecture hall with hundreds of students and scientists listening to a seminar 

given by Professor Daniel C. Tsui^ or we can have a large 3D virtual world that 

represents the latest COMDEX show with thousand of attendants reviewing the latest 

softwares and electronic gadgets. This type of shared, computer-resident worlds are 

called the distributed virtual environments (DVEs) [22] and like other ground-breaking 

computer technologies, DVEs can change the way we learn, work, and interact with 

other people. 

To illustrate how DVEs can change our lifestyles and the way we handle our business 

operation, we can consider the following situation. Let say that we have an architect 

from New York, a civil and structural engineer from Paris, a financial planner from 

Hong Kong and an interior designer from Tokyo, who are having a business meeting 

concerning about the design and financial planning issues of a new high-rise office 

complex to be built in London. Under the DVE setting, these people can convene 

a meeting while still reside at their respective homes/offices. Their meeting can be 

carried out through the DVE system, they can interact with each other in a virtual 

1八 1998 Noble Prize winner in Physics for the discovery of a new form of quantum fluid with 

fractionaUy charged excitations. 
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world of the new high-rise office complex that they are proposing to build. Each 

participant in this business meeting can virtually walk through the proposed high-

rise office building, interact and carry out the discussion without leaving their own 

offices. For example, in this virtual high-rise office complex, each user in the meeting is 

represented by a 3D object, which is known as an avatar, and each individual can walk 

around in this virtual office building, and in the process, rearrange any 3D objects in 

the environment (e.g., paintings, furniture, selecting different kinds of wall papers,... 

etc). Any change to a 3D object in this virtual world will be visible to all participants. 

Also, during the meeting in this virtual world, participants will be able to interact with 

each other in real-time, as well as inquiring any relevant information about the virtual 

world that they are exploring. For example, querying about the credit information of 

a manufacturer who is responsible to produce the office furniture. 

1.1 Challenging Issues 

There are many challenging issues to design a cost-effective, scalable and high perfor-

mance DVE system. In what follows, we list some of the important research issues 

(although not exhaustive) in the design of such kind of DVE system. 

• Backend Database: Designing a spatial database engine so that users can vir-

tually explore a huge 3D environment and at the same time, able to query and 

retrieve relevant information about the environment being explored. The type of 

queries that being supported are of relational, spatial, and possible fuzzy types. 

This research issue has been addressed in the VINCENT project[3], which is the 

earlier version of our current DVE system. 

• Object Consistency: Since DVE clients can manipulate any object in the 3D 

virtual world (e.g., a user may want to pick up a book), therefore, it is important 

to keep all these 3D objects in a consistent state such that once the object is being 

accessed, other users may not be able to access it anymore. In general, there are 

several approaches to solve this concurrent access problem, either by exclusive 

locking of the object, or by defining various operations (similar to defining the 

read/write operations in database) that can be performed on the object so as 
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to allow many users to concurrently access the object. Although concurrency 

control has been well studied in the database research community[15], concurrent 

-data access under a DVE environment is more complicated because each object 

is rich in semantics and therefore, high degree of concurrency control algorithm 

can be defined. 

• View Consistency: Since users can move around in the virtual world and any 

user can access any object in the environment, therefore, all users under the same 

virtual world have to be notified of the activities so as to keep their local views 

consistent. For example, if a user moves a chair from one location to another 

location, another user in the virtual world has to have this activity visually 

displayed on his/her local screen. The propagation of this information to all 

clients demands a tremendous communication bandwidth. Recent research work 

on multicasting techniques[9, 16, 17] can help to reduce the aggregate bandwidth 

demand on the network. In [4], the authors derive the optimal synchronization 

interval so that every client in the same virtual world can view all objects with 

a high degree of consistency. 

• Balancing Workload and Reducing Communication Cost[l]: A virtual world may 

represent a large real-life environment and this require a large amount of compu-

tational power so as to render the realistic-looking 3D models at an interactive 

frame rate, detect and resolve object collisions, monitor user input devices and 

process their inputs. Each client/server also needs to process many updates sent 

by others so as to keep the states of every object in the virtual world consistent. 

The complexity of these tasks is increasing rapidly as DVE systems become more 

complex. 

As the number of clients in DVE system increases, the network traffic generated 

by these clients increases to an enormous level. The communication networks 

(WANs and LANs) supporting this exercise can easily become overwhelmed by 

the resulting traffic load and a portion of the transmitted packets can be lost. 

Furthermore, the increased computation overhead incurred at each client/server 

for processing the incoming information makes the scale up effort more difficult. 

It is clear that the DVE systems will have to employ multiple servers to han-

dle clients' requests. Mapping the entities located in the same region to hosts 
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located in the same LAN and let the gateway host be the DVE server of that 

LAN can help to reduce update messages on networks. We can integrate other 

Altering techniques with this approach to further reduce both communication 

and computational demands. DVE systems based on a good mapping will have 

better intrinsic scalability. Therefore, an interesting and important problem in 

designing a DVE system is how one can partition/map the workload among dif-

ferent servers in the DVE system and at the same time, maintain a manageable 

level of communication overhead. This is the main focus and contribution of this 

thesis. 

1.2 Previous Work 

Let us briefly describe some previous work on DVE system. In [3], the authors il-

lustrated how to design and implement a virtual walk-through system such that a 

user can query and retrieve information about the virtual world. One major limita-

tion of the work is that it only allows a single user to explore the virtual world^ and 

therefore, there is no communication and interaction between users. In [18, 19], the 

authors described how to build a storage system that can support applications like the 

video-on-demand and 3D walk-through of a virtual world. The result is particularly 

interesting in the sense that the storage server can guarantee the timely delivery of data 

to different multimedia applications, which may have vastly different quality of service. 

In [20], the authors demonstrated how to build a distributed virtual environment for 

military purpose and showed that it is possible to support hundreds of users. In [11], 

authors designed a prototype system for a large scale DVE that operates based on the 

Internet IP Protocol[12]. In this work, the authors illustrated that it is impossible for a 

single system to handle all the required workload and therefore, partitioning approach 

was mentioned. However, there is no detail description on how to maintain synchro-

nization among partitions and how to carry out the partitioning operation with the 

consideration of communication cost. In [21], the authors provided a software toolkit 

known as DIVE so as to build a DVE system. In the DIVE toolkit, users can define 

^Of course, the system aUows many users to explore the same virtual world but under different 

sessions. 
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their own objects and behavior but the DIVE system assumes a single server, multiple 

clients architectures that each DIVE world is maintained by a dedicated server only. 

In [4],- the authors derive the optimal synchronization interval so that every client in 

the same virtual world can view all objects with a high degree of consistency. 

1.3 Organization of the Thesis 

The thesis is organized as follows. Chapter 2 contains a description ofthe DVE system 

architectures, the avatar objects and their characteristics. 

Chapter 3 surveys how existing DVE systems have solved the scalability prob-

lem, and the limitations of those approaches. Special emphasis is paid to research on 

bandwidth and computation reduction techniques. 

Chapter 4 contains the formulation of the workload partitioning problem. We 

propose a partitioning algorithm to solve the scalability problem. The partitioning 

algorithm is based on the linear optimization technique and is shown to be computa-

tionally efficient and can effectively partition the workload evenly among the servers 

and at the same time, reduce the communication overhead. 

Chapter 5 contains the result and analysis of various experiments with various sizes 

of virtual world and different avatar's location distributions to illustrate the effective-

ness of our proposed partitioning algorithm. 

Chapter 6 describes some considerations of implementing DVE systems and the 

insight gained from our work. 

Lastly, conclusion and summary is given in Chapter 7. 



Chapter 2 

Distributed Virtual Environment 

In this chapter, we describe various elements in a distributed virtual environment 

(DVE), namely, 1) possible architectures, 2) representations of clients as avatars, their 

area-of-interest (AOI) and, 3) the dynamic join and leave property of avatars in the 

DVE system. 

2.1 Possible Architectures 

To realize the multimedia service like the DVE application, one first has to consider the 

possible architecture. In general, there are two possible architectures for implementing 

a DVE system. The choice of which architecture to use depends on the size of the 

virtual world (or the 3D environment) that we want to model as well as the number of 

concurrent clients. These two types of architectures are 1) the single server distributed 

virtual environment architecture (SSDVE) and 2) the multiple servers distributed vir-

tual environment architecture (MSDVE). 

In the SSDVE architecture, all clients are connected to the dedicated server. To 

make sure that all clients have the same consistent view of the virtual world, any action 

or activity generated by a client has to be transmitted to other clients^ in real time. 

This form of communication is accomplished as follows. The initiating client will send 

a message to the DVE server, the DVE server will first transform the message to the 

i ln general, the information is sent to aU other dients or only a subset of the dients in the system. 
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corresponding database operations (e.g., locking an object in the virtual world) and 

then the server will broadcast (or multicast) the new information to other clients in the 

DVE system so that every client can update their local view of the virtual world. It is 

important to point out that, experience has shown that the SSDVE approach does not 

scale well. If the number of clients is large, then the demand on the processing power, 

system buffer and communication bandwidth will be a serious problem. Therefore, 

SSDVE is only suitable for small scale DVE system, for example, the virtual world 

with small number of objects and the number of clients is small. 

To support a large number of concurrent clients in a DVE system, one can adopt 

the MSDVE architecture. In the MSDVE architecture, multiple servers will be used 

and each server is responsible to handle a subset of the virtual world (e.g., some number 

of clients and some number of objects in the virtual environment), the communication 

of its attached clients as well as the communication between servers. It is important to 

point out that in order to keep the view consistency among the clients, it is unavoidable 

to have server-to-server communication and that the communication cost between 

servers is more expensive than the communication cost between the server and its 

attached clients. This is due to the fact that the server and its attached clients may 

reside in the same local area network while different servers may reside at two extremes 

edges in the Internet. Figure 2.1 illustrates that we use three servers to divide up the 

virtual world. Clients are attached to a specific server whenever the client is in the 

administrative region of that server. 

2.2 Representations of Clients as Avatars 

In a distributed virtual environment, we usually use an avatar, which is a 3D active 

object, to represent a DVE client in the virtual world. In order to provide the interac-

tive capability of a client, the avatar can move or travel in the virtual world. The client 

can also use his/her avatar to communicate with other avatars (or other users in the 

virtual world), or use his/her avatar to access any 3D objects, such as books, chairs, 

glass, . . . etc, in the virtual environment. Since an avatar can move around and can 

interact with any static or dynamic 3D objects within the virtual world, any action 

that is performed by an avatar may require the DVE system to relate this information 
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to other avatars so as to keep the information of the virtual world consistent. 

One simple way to maintain the consistency of the virtual world is to broadcast any 

action taken by any avatar to all other avatars in the system. However, this will incur 

a significant communication overhead. In general, each avatar only needs to know the 

activities that happened near his/her vicinity, for example, any activity that is within 

10 meters of his/her position in the virtual world. Therefore, one way to significantly 

reduce the total communication overhead is to allow every avatar to define his/her own 

area of interest (AOI). In general, AOI is the region of the virtual world that if there 

is any activity happened in this region, the avatar needs to know so as to update it's 

own state and to make his/her view consistent. Figure 2.2 illustrates the concept^ of 

AOI. In this figure, we have three avatars, A1, A2 and A3. Since the AOI of A1 and 

^Without the loss of generaJity, we use a circle to represent the AOI of each avatar. 
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A2 intersects, therefore, any activity that happened in the intersection region can be 

seen by both A1 and A2. On the other hand, the AOI of A3 does not cover any other 

avataFS. Therefore, the server does not have to inform A3 about any activity that was 

generated by avatars A1 or A2. 

‘ 厂 、 \ 
/ f ^ 、 ( ^ j 

\K '勺 j V 乂 
、 」 乂 乂 

Figure 2.2: Avatars and their area of interest 

2.3 Dynamic Membership 

It is important to point out the dynamic characteristic of avatar in joining and leaving 

the virtual world. The dynamic characteristic of avatar in joining and leaving the 

virtual world refer to the fact the number of clients who are exploring a virtual world 

may be dynamically changing in time. For example, for the virtual world of business 

meeting we described in Chapter 1, the number of clients is fixed through the virtual 

world application (e.g. people are conducting a business meeting over the DVE sys-

tem). On the other hand, the virtual world of the COMDEX show we described in 

Chapter 1, the number of clients can vary in time since a user may want to logon to the 

DVE system and explore the COMDEX virtual world anytime, or a user may decide 

to leave the COMDEX virtual world when he/she found the electronic gadget in mind. 

This dynamic characteristic of avatar in joining and leaving the virtual world in-

crease the necessity of an efficient partitioning algorithm. Moreover, Since an avatar 

can move from one location to another, it is very possible that an avatar can move out 

of the region that is managed by a server, say Si, and move into another region that is 

managed by another server Sj where i • j. It is easy to observe that if we do not ad-
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just the avatar-to-server assignment, eventually, the workload among servers will vary 

significantly and the amount of traffic^ between servers may reach an unacceptable 

level. Therefore, it is important to find an efficient algorithm that can partition the 

workload in the virtual world evenly so that every server will carry the same amount 

of workload and at the same time, minimize the server-to-server communication. The 

partitioning problem will be explored in Chapter 3. 

^The traffic between servers is to keep the view of every avatar in the system consistent. 
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Chapter 3 

Bandwidth and Computat ion 

Reduction Techniques 

Distributed Virtual Environment systems have adopted widely disparate approaches 

for disseminating information about entity motion and modeling those entities at re-

mote hosts. The broad range of techniques reflects the relative lack of experience in 

developing such systems. In this chapter, we discuss techniques used to reduce the 

bandwidth and computational demands of large scale DVE systems. 

Given the limitation of hardware, we must seek to reduce the bandwidth and 

computational demands of DVE systems without introducing additional latency for 

iiiforinalion dissemination. Three basic approaches are available: 

• Transmit less information about, each entity and/or transmit entity updates less 

fro(]uenlly. 

• Liiiiit the iuiniber of entities that are of interest to each host. 

• Have each packet provide information about multiple entities. 

ln following sections, we describe the major techniques based on the above ap-

proaches. 

11 
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3.1 Network Communication 

Three- distribution methods [23] are shown in Figure 3.1. Multicast services allow 

arbitrarily-sized groups to communicate on a network via a single transmission by 

the source. Multicast allows a host to send data simultaneously to a set of (but 

not necessarily all) locations. With broadcast, data is sent to all hosts while unicast 

establishes communication between two hosts. 

Q Q 

C]̂^̂ ]̂̂  Network ^__^^]]^ C^[^ Network ^][^3^ 

Q 0 © © G5) © 
0 、� "''' 

Broadcast ^r^^ 、，,. Multicast 
Y  

d]]^^^ Network ^̂ ^̂ ^̂ ]̂  

Q ~ Q Q 

Unicast 

Figure 3.1: Examples of broadcast, multicast and unicast 

Most DVE systems have employed some form of broadcast or unicast. For exam-

ple, broadcast is used in the earliest military SIMulator NETwork (SIMNET)[25] and 

unicast is used in the Distributed Interactive Virtual Environment (DIVE)[26] system. 

NPSNET-IV [27] is the first DVE application to use the IP multicast protocol. 

Broadcast is not appropriate for DVE systems because the network becomes flooded 

with unwanted traffic and it is difficult to avoid routing loops. Moreover, IP broadcast 

requires that all hosts examine a packet even if the information is not intended for that 

host, incurring a major performance penalty for that host because it must interrupt 

operations in order to perform this task at the operating system level. As the number of 

simulator increases, the traffic generated by these simulators increases to an enormous 

level. The resulting traffic load can easily overwhelm the communication networks and 

a portion of the transmitted packets can be lost. 
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Unicast requires the establishment of a connection or path from each node to every 

other node in the network for a total of N * {N - 1) virtual connections in a group. It 

is also not appropriate for DVE. 

A general problem of using multicasting is that the IP Multicast protocol is neither 

reliable nor order preserving. Thus packets might get lost, be duplicated or arrive 

in different orders. Communications reliability often forces a compromise between 

bandwidth and latency. Reliable multicast protocols are currently not practical for 

large groups because in order to guarantee that a packet is properly received at every 

host in the group, an acknowledgment and retransmission scheme is required. With a 

large distributed simulation, reliability, e.g., as provided in TCP, would penalize real-

time performance merely by having to maintain timers for each host's acknowledgment 

and by holding up flow when a packet is lost for retransmission. Flow control introduces 

delay to the network to reduce congestion. Therefore, it is also not appropriate for 

DVE which can recover from a lost packet more gracefully than from late arrivals - it 

is impossible for real-time simulations to go backward in time. 

3.2 Dead Reckoning 

Dead reckoning [10] is used to reduce the number of state update messages that need 

to be transmitted by each simulator for the purpose of maintaining accurate state 

representation. The basic idea is to predict the trajectory of a simulation entity based 

on its speed and orientation. In a dead reckoning system, each simulator has a high 

fidelity model which maintains accurate information (position, velocity, orientation, 

etc.) of the state of its own entity. Each simulator also maintains a less accurate 

model, called the dead-reckoning model, for each entity participating in the simulation. 

The high fidelity model of an entity provides the exact position/orientation of that 

entity. The corresponding low fidelity model provides the dead-reckoned (inaccurate) 

position/orientation of the entity. When the state of an entity changes, the simulator 

of this entity updates its high fidelity model and compares it with the corresponding 

dead-reckoning model. If the entity's dead-reckoned position/orientation has deviated 

from the exact position/orientation by more than a threshold value, the simulator of 

that entity issues a new message to communicate to other hosts the actual information 
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of its entity. When any simulator receives a update message for one of the dead-

reckoned entities, it corrects the dead-reckoning model for that entity and begins a 

new extrapolation based on the new information of the received message. 

The earliest implementation of dead reckoning protocol in DVE is the Amaze multi-

player game. In this game, every host transmits position (â o) and velocity (t;) updates 

about local player once per second. The dead reckoned position at time t is given by: 

x{t) = Xo + V * t 

The SIMulation NETworking (SIMNET) system moves away from the fixed-rate 

update approach used by Amaze. The host transmits an update packet either when 

the true and dead reckoned models differ by some error threshold or when no update 

has been otherwise within a five second timeout period. The Distributed Interactive 

Simulation (DIS) protocol, IEEE standard 1278, is similar to the SIMNET protocol 

in most respect, though its update packets also include acceleration, orientation, and 

angular velocity information. The dead reckoned position at time t is given by: 

X {t) = xo + V * t + I * a * t^ 

Some studies concluded that second-order dead-reckoning is the recommended 

mechanism since it gives a good balance between accuracy and complexity. 

The current state-of-the-art in dead reckoning algorithm raises several limitations 

l3]. First, all existing protocols are tightly coupled to their underlying network envi-

ronment. Most systems have been designed for use over a LAN providing high relia-

bility and predictable latency characteristics. Even the DIS protocol design, targeted 

for WAN, does not directly address the variable performance of long-haul communica-

tion networks. Second, existing simulation protocols do not accommodate the variable 

modeling fidelity needs at each remote simulation host but instead associate a single 

dead reckoning error threshold with the source transmissions. As simulations contain 

increasing numbers of entities, hosts cannot afford to model all entities in full detail. 

Instead, the simulation needs to support a continuum from low-fidelity modeling to 

high-fidelity modeling so that individual host can select the appropriate level-of-detail 
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based on local requirements. Finally, analyses of dead reckoning protocol behavior 

have concentrated almost exclusively on single entity types. These analyses do not of-

fer a general-purpose technique for assessing the protocol's behavior over more general 

entity motion. 

3.3 Message Aggregation 

Message aggregation [24] attempts to merge a group of entity updates into an up-

date packet, thereby reducing packet header overhead in the network and reducing 

packet-processing overhead at receivers. This approach is a viable way to reducing 

bandwidth and computational load, yet it must be designed with care. Message ag-

gregation means that the earlier packets will have to wait for the arrival of additional 

packets to combine into larger packets. If this waiting period becomes too large, the 

earlier packets in the bundle would become too old and transmitting them would be 

no better than discarding them. The size of the bundle must therefore be limited by 

taking into consideration the maximum end-to-end delay permitted in the DVE system 

as well as by the maximum packet size allowed by the network protocol. A key chal-

lenge in message aggregation is determining which entities to group together. Three 

approaches have been used in previous distributed simulation systems: network-based, 

organization-based, and grid-based. 

3.3.1 Network-Based Aggregat ion 

Network-Based Aggregations group simulation entities by their physical location in 

the network. This approach is best suited for environment in which the wide-area 

network or network tail-circuits represent the primary bandwidth bottleneck. It is 

most beneficial only when there is some correspondence between the entity locations 

in the virtual world and their physical locations. However, entities on a LAN need not 

share any relationship to one another, either in terms of entity type or entity location 

within the virtual world. A receiver who subscribes to the aggregation would typically 

receive a considerable volume of information from entities that are of no local interest. 
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3.3.2 Organ izat ion-Based Aggregat ions 

Organization-Based Aggregations groups simulation entities by their organizational 

hierarchy. Although it is easy to construct and maintain, this approach offers limited 

value because each organization's member entities may travel within different regions 

of the virtual world. For common operations such as collision detection and scene 

rendering, each host wants data about all entities located within a nearby region of 

the virtual world. If only organization-based aggregations are available, the host must 

subscribe to information from all organizations represented within that region, even 

though most ofthe organizations' member entities may actually be far from the viewer. 

Consequently, organization-based aggregations are most beneficial only when there is 

some correspondence between the static entity organization and the dynamic entity 

location within the virtual world. 

3.3.3 Gr id-Based Aggregat ions 

Grid-Based Aggregations [28] group simulation entities by their location within the 

virtual world. The virtual world is divided into rectilinear or hexagonal grids whose 

associated aggregation transmits packets bundling information about entities in that 

region. Most existing implementation of grid aggregations dispense with a designated 

aggregation entity and instead simply associate a multicast address to each grid. Each 

entity transmits updates to the multicast group associated with its current virtual 

world location, so although the data is not bundled into the same packet, the multicast 

group allows remote hosts to select the virtual world region of interest. Grid-based 

aggregations pose several disadvantages. They mask the organizational relationships 

between the various entities. Moreover, establishing an optimal grid size for use by 

all simulation hosts is difficult because the ideal grid size depends on the amount of 

inter-host interaction in the simulation scenario and on the number of entities running 

on each host. 
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3.4 Relevance Filtering 

Large-scale distributed simulations model the activities of thousands of entities inter-

acting in a virtual environment simulated over wide area networks. Originally these 

systems used protocols which dictated that all entities broadcast messages about all 

j 'tivities, including remaining immobile or inactive, to all other entities, resulting in 

explosion of incoming messages for all entities, most of which are of no interest. 

Relevance filtering works by entirely eliminating the transmission ofirrelevant pack-

ets. Specifically, relevance filtering refers to the process of analyzing the semantic 

contents of packets and selecting only the ones that meet certain criterion. Relevance 

filtering can be effectively used to overcome the restricted bandwidth of WANs. Fil-

tering can also be used when the total traffic is large enough to overwhelm the small 

bandwidth of a local site or when the slow nodes in this site cannot handle the fast 

rate of message arrival. 

3.4.1 Ent i ty-Based F i l ter ing 

The filtering scheme uses a one-dimensional vector of distances for each simulated 

avatar. The vector is stored in the gateway of the LAN where the simulator of this 

avatar resides. Assuming that avatars in the simulated environment are numbered 1 

through M, the vector for the ith avatar will be stored in the form 

D{ — (dii, di2,..., dii 二 0,..., diM) 

Where dij is the distance between avatar i and avatar j. We use ,,area of interest” 

to specific a neighborhood region such that the avatars located within that region are 

important to avatar i (e.g., they are visible to avatar i or can be affected by it). State 

update messages from avatars outside this reachability region need not be delivered to 

avatar i. Relevance filtering is based on the concept of distance computations. Filtering 

is performed by network gateways at the transmission and reception of a message. 

Filtering at transmission is the main process that could eliminate the majority of 

irrelevant messages. Filtering at reception performs a final check and eliminates any 

irrelevant messages that have not been detected during the transmission phase. 
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Algorithm Filter-at-Reception 

/* This algorithm is executed in the gateway of site s, 1 < s < N */ 

/* Nodes in site s are numbered from Mg-i + 1 to Mg */ 

loop 

wait for a new external packet 

denote this packet by Ek and let node k be its sender 

/* note that either k < Ms-i + 1 or k > Ms */ 

L - 0 /* L is a list of local nodes that should receivê ；^ */ 

/* update the position of object Ok */ 

for i = Ms-i + 1 to Ms do /* check all local nodes */ 

update dik based on the contents of Ek 

if dik < Ri then L = L U {i} endif; 

endfor; 

if L = 0 then discard Ek 

else send Ek locally to members of L endif; 

endloop; 

Algorithm Filter-at- Transmission 

Loop 

Wait for a new local packet 

Denote this packet by Ei and let node i be its sender 

G — 0 /* G is a list of gateways that should receive Ei */ 

For g e {l,2,..., iV} - {s} do /*check relevance of Ei for all other sites */ 

Relevance = false; 

For k = Mg_i + 1 to Mg do 

Recompute dik based on the contents of Ei 

If dik < Rk then Relevance = true; exit inner loop; endif; 

Endfor; 

If Relevance = true then G = G U {^f)endif 

Endfor; 

If G — 0 then discard Ei 

Else send Ei to each gateway in G endif; 

Endloop; 
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Figure 3.2 shows an example offiltering. Consider a state update message generated 

by a node in the first site(the sender node is denoted by S). Other local nodes in this 

site as well as gateway Gi receive this message without much delay. Gateway Gi then 

executes the filter-at-transmission algorithm. In the scenario shown in Figure 3.2, 

gateway Gi determines that no node in the third site needs to receive the message. 

Gateway Gi therefore sends the message to gateways G2 and G4 (but not to G3). 

Each of gateways G2 and G4 executes the filter-at-reception algorithm and sends the 

message only to those local nodes that need to receive it(receiver nodes are denoted 

by R). 

^ ^ ^ & 
^^^^"^^"^^^3^^3:t l I lo 

^ G1 . ^ _ ^ G4 ^ ^ ^ Z ^ ~ ^ ^ 

^ ^ ^ 
Figure 3.2: Filtering with four sites 

Because of filtering, gateways may be deprived of receiving some critical packets 

from external simulators. This makes the information maintained by each gateway 

less accurate and can render their subsequent filtering decisions incorrect. We may use 

Gateway Dead Reckoning or Periodic Broadcast to reduce or eliminate filtering errors. 

We should notice that some entities simulated on the same site or LAN may far apart 

in the virtual environment while entities simulated far apart on the WAN may be very 

close in the virtual environment. This filtering approach filtered messages before they 

being sent from gateways, irrelevant messages on the WAN are reduced dramatically. 

3,4.2 Grid-Based F i l ter ing 

Under grid-based filtering approach, the virtual world is decomposed into regions, 

each of which has a state server to maintain the states of the simulation entities and 
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environment objects in that region. The set of nodes in a region form a multicast group. 

Whenever a simulation entity changes its state, the update is sent to the multicast 

group-associated with the region which the entity is currently in. When a simulation 

entity crosses region boundaries, it will join the multicast groups corresponding to the 

regions that are now within its sensing range, and leave those multicast groups that are 

associated with regions which become outside of its sensing range. When a node joins 

a multicast group, the corresponding region's environment state server will transport 

the current state of those entities in the region to the node to bring it up to date. 

= ; g 5 G = = 
_ _ ^ ^ ^ J  

丁 ^ \ . x y 

- ^ ^ ^ — — -

Figure 3.3: The virtual world is decomposed into rectangular cells 

The entity-based filtering is generally more computationally expensive than its grid-

based counterpart but is also a more efficient bandwidth reduction method. The grid 

system has the potential of delivering irrelevant data to entities located outside the 

circular region of interest but inside the grids covering this circular region. There is a 

tradeoff in the choice of the grid size. Small size grids result in better filtering efficiency 

at the cost of more overheads due to the management of a large number of multicast 

groups. In [33], the use of hexagonal grids (rather than square grids) is advocated on 

the ground that hexagons have uniform orientation and uniform adjacency and would 

better approximate a circular area of interest than squares. 

3.5 Quiescent Entities 

If an entity becomes totally stationary (zero velocity and acceleration) and does not 

move any articulated part, the dead-reckoning model implies that no state updates 
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would be emitted from this entity. Many DVE systems require such a quiescent entity 

to regularly emit its state at a low rate (e.g. once every 5 seconds). These redundant 

state updates, also called "keep-alive" messages or "time-out" packets, can comprise 

70% of traffic in large scale DVE systems [33, 34]. One benefit of the keep-alive mes-

sages is that hosts joining an exercise in progress can correctly build their database and 

confirm the existence of all other entities participating in the exercise. To reduce the 

amount of extra traffic generated by stationary entities, we can consider two variable 

timeout schemes: a tiered-timeout approach and a exponential-backoff approach. 

The tiered-timeout approach defines a small number of specific timeout levels that 

are selected explicitly by the entity based on its behavior. For example, when the entity 

becomes idle, it transmits an timeout-length-announce message, announcing that it will 

use a longer transmission timeout with its(less frequent) update packets. When the 

entity's behavior becomes more dynamic, a corresponding timeout-length-announce 

message restores the transmission timeout to the original(short) duration. 

Using the exponential-backoff approach, the entity's timeout value is determined 

implicitly based on its recent update behavior. Under this approach, the entity applies 

exponential backoff to increase the transmission timeout if it has not transmitted 

any update packets within the previous timeout period. The timeout is bounded by 

some maximum value, and any position update transmission immediately restores the 

timeout to the original(short duration) value. 

3.6 Spatial Partitioning 

It's clearly not practical to download an entire virtual universe every time you enter it, 

nor could you store it all in memory on a normal computer system. Even if you could, 

the sheer complexity of the virtual world would bring the 3-D rendering subsystem to 

its knees. What we need to do is somehow partition the virtual world into smaller 

pieces. Only the pieces that we can actually see would be downloaded, stored in 

memory, and rendered. 
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3.6.1 Necessity of Spat ia l Pa r t i t i on i ng 

One of the main reasons VRML [5] browsers appear to be so slow, especially for 

indoor scenes such as building interiors, is that they must render everything in the 

entire world. If the user is in a small room next to a huge concert hall, the browser 

must still draw every single chair, every fold of curtain, every door and stairwell and 

banister in the concert hall - even though the user can not see any of those objects. 

This must be done for every single frame the computer renders. Therefore, the number 

of frames per second that can be generated is quite small. Low frame rates not only 

make the world less fun to explore, they can also make it nearly impossible to navigate 

though the environment. 

The use of Level of Detail(LOD) nodes can help a little, but they operate strictly 

on the basis of distance and are therefore of limited use in this type of situation. More 

importantly, they are of little use in indoor scenes where there is a high level of depth 

complexity. Ideally, we never want to draw anything that the user cannot see. We can 

move closer to this goal by using a technique known as spatial partitioning. 

Spatial partitioning works by taking a volume of space and subdividing it into 

smaller regions, then computing region-to-region visibility information. At any given 

time, only a subset of the overall environment needs to be visible to the user; this dra-

matically reduces the amount of rendering that must be done and, therefore, increases 

the frame rate. 

There are a number of different approaches to partition a virtual world. The most 

important ones are bounding boxes, quad trees, octtrees, and BSP trees. Binary Space 

Partitioning (BSP)[32] trees are the approach most commonly used in computer games, 

such as Quake. Regardless of which approach is used, the basic technique is the same. 

On each frame, the user's viewpoint location is compared to a set of data structures 

in order to determine which region the user is in. Once this region is found, the set of 

visible regions is identified, and those regions that are not visible are flagged as being 

hidden. In VRML, this hiding is accomplished using a Switch node whose whichChoice 

evenIn is set to -1 for a hidden region. 
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3.6.2 B i n a ry Space Pa r t i t i on i ng Tree 

A Binary Space Partitioning (BSP) tree is a data structure that represents a recur-

sive, hierarchical subdivision of n-dimensional space into convex subspaces. BSP tree 

construction is a process which takes a subspace and partitions it by any hyperplane 

that intersects the interior of that subspace. The result is two new subspaces that can 

be further partitioned by recursive application of the method. 

A “ hyperplane" in n-dimensional space is an n-1 dimensional object which can be 

used to divide the space into two half-spaces. For example, in three-dimensional space, 

the “hyperplane" is a plane. In two-dimensional space, a line is used. 

3.6.3 B S P Tree Cons t ruc t ion 

The BSP tree is constructed via a recursive algorithm. At each level, the process takes 

a subspace and partitions it by a selected hyperplane which intersects the interior of 

that subspace. This partitioning results in two new convex subspaces. The process 

can then be recursively called to further partition these two subspaces. 
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Figure 3.4: The floor plan with partitioning planes added 

The algorithm can be summarized as follows: 
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1. Select a partition hyperplane. 

2. Partition the set of objects with the hyperplane. 

3. Recurse with each of the two new sets. 

For example, let us look at a floor plan in Figure 3.4 . We add the planes that 

partition it into regions, and assign a number to each of those planes. The binary tree 

corresponding to this partitioning is shown in Figure 3.5. 
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Figure 3.5: The BSP tree for the lab 

By traversing the tree and always rendering the far side of each partition first, the 

correct drawing order is obtained. This avoids the need for Z-buffer testing, which 

is an expensive per-pixel operation. In VRML, we might use Switch nodes to hide 

regions that are not visible from the region that the user is in, so at least we do not 

waste time to render things the user can not see. 

The use of spatial partitioning can not only lead to dramatic improvements in 

rendering performance, it can also be the basis for filtering of updates in a multi-user 

environment. For example, if a user is standing in the ACO room, they don't need to 

receive updates from someone standing in the SUN lab. 
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Partitioning Algorithm 

In this chapter, we present the partitioning problem of the DVE system. We first 

formulate the partitioning problem and illustrate that it is an NP-complete problem 

in general. We then present the iterative partitioning algorithm. The effectiveness of 

this algorithm will be illustrated in Chapter 5. 

4.1 Problem Formulation 

Let us define the following notation. 

P — Number of partitions or servers in the DVE system. 

n 二 Number of avatars in the DVE system. 

ai 二 Avatar i where i = 1, 2，... , n. 

w{') = A function that maps the processing of messages from an avatar to 

the computational cost of a server. For example, w{ai) represents the 

computational workload for avatar ai. 

/(a,6) 二 A function that maps the information exchange between avatars a and b 

to the network communication cost. 

Wi = A non-negative relative weight to represent the computational workload 

cost on a server. 

W2 = A non-negative relative weight to represent the importance of the 

server-to-server communication cost. Note that Wi + W2 = 1.0. 

C^ = Computation workload cost for a given partition configuration V. 

C^ — Communication cost for a given partition configuration V. 

25 
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Cp = Total cost for a given partition configuration V. 

We can use a graph to represent the DVE system. Given a graph G = (V, E) where V 

represents the set of avatars in the DVE system and E represents a set of edges so that 

eij G E represents that avatar ai and aj should communicate with each other. Let V 

be a partition that divides V into P (number of servers) disjoint subset Vi, V2,.. . , Vp 

such that Vi n 巧.=0 for i • j and ufL^Vi 二 V. In other words, all the avatars in the 

subset Vi will be assigned to the i ^ server in the system. 

Given a partition V, we can define the workload cost C^ of this partition strategy 

as: 

P ( \ 

C^ = ^ Y1 w{ai) — w* (4.1) 

J = 1 \ a^eVj J 

where w* = ^^^1 w{a{)/P is the computational workload per server under the per-

fectly balanced workload partition strategy. Therefore, C^ measures the deviation 

from the ideal load balancing partitioning strategy. 

For the communication cost between servers under a partition strategy V, we have 

to consider the AOI of each avatar. Specifically, if avatar ai is within the AOI of avatar 

cLj, then any action taken by the avatar a{ needs to be sent to aj. We let /(a^, aj) be 

a function that assigns the communication cost between ai and aj. We define the 

following indicator function between an avatar u and a partition Vf. 

, _ T, 、 1 if 3 V G Vi such that avatars u and v are in V and l{u, u) > 0; 
ADJ{u, Vi)= < 、 》 

I 0 otherwise. 

Then, given a partition strategy V, let Cij be the communication cost between partition 

Vi and Vj. The communication cost Cij can be expressed as: 

Cij = Y 1 max{/(w, v) * ADJ{u, Vj)} + V max{/(n, v) * ADJ(u, Vi)} (4.2) 

^ ¼ "e^ n t ^ wK 
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Let Cp be the communication cost for the partition strategy V, we have: 

-c^ = E E Q (4.3) 
i=l j>i 

Therefore, C^ represents the total server-to-server communication cost given the parti-

tion V. The overall cost^ for the partition strategy V, denotes by C^, can be expressed 

as: 

Cv = W i C ^ + W2C^ (4.4) 

where Wi and W2 represent the relative importance of the workload cost and the 

communication cost respectively. For example, to implement a DVE system across the 

Internet, we can assign more weighting to W2 so as to reduce the communication cost. 

Lastly, the DVE partitioning problem is to find an optimal partition V* such that 

C^ = rmn {Cr} (4.5) 

Before we discuss the proposed partitioning algorithm, we need to show the following 

important result[l, 2 . 

Theorem 1 The workload partitioning problem given in Equation (4.5) is NP-complete. 

Proof: Let us consider the simplified version of the workload partition problem where 

W2 = 0 (which corresponds to the case that the network has an infinite communication 

bandwidth and therefore the server-to-server communication cost is negligible). Given 

a set of nodes in V, we partition them into P disjoint subsets ^ , . . . , Vp such that 

^f=iVi — V and the partitioning cost is: 

P 

Cj> = ^ ^ w{a) — w* 

i=l aEVi 

i ln this paper, we assume the communication cost between avatars which are assigned to the same 

server to be negUgible as compare to the communication cost of avatars which are in different servers. 

This assumption can be easily relaxed and be included in the total cost Cv. 
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The main idea is to transform the partitioning problem to the subset sum problem[14], 

which is known to be NP-complete. 

The subset sum problem can be described as follows. Given a set of real numbers 

Af = {n1,n2,.. . ,A^v} and a real value k, the subset sum problem is to determine 

whether there exists a partitioning of the set Af into disjoint partitions Afi，...，Afi 

such that the sum of the elements in each Afi is equal to k. 

Given an instance of the subset sum problem, the transformation works as follows. 

We create an avatar for each element Ui G N , and the value of rii is equal to w{ai)^ 

the computational workload of the avatar a^. The number of partitions P for the 

workload partitioning problem is equal to ^ J2meAf ^i^i)- If ^^ input instance of the 

subset sum problem should return a yes, then it implies that the workload partitioning 

problem can evenly divide up the workload among P servers. If the answer is no, this 

implies that the workload partitioning problem will have a load imbalance cost which 

is greater than zero. Since we can transform the subset sum problem in polynomial 

time and then use the workload partitioning problem to solve the subset sum problem, 

therefore, the workload partitioning problem is also NP-complete. • 

4.2 Exhaustive Partition (EP) Algorithm 

One way to partition the avatars among different servers is by the exhaustive approach, 

that is, given n avatars in the DVE system and P servers, then each avatar can have 

at most P choices, therefore, the total number of partition policies is 

丨列={P){P )---(P ) = P^ (4.6) 

Note that although the exhaustive algorithm can find the optimal partition (e.g., par-

tition with the minimum cost C^), however, this algorithm can only be applied to a 

small DVE system. For example, for n = 16, P = 2, the system needs to evaluate 65536 

different partition policies. For a moderate sized DVE system with n = 16，P = 4, the 

exhaustive algorithm requires approximately 4.3 x 10^ evaluations to find the optimal 

partition. 
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L e m m a 1 The complexity of Exhaustive Partition Algorithm is 0{P^^^rP). 

Proof: Let the number of avatars and the number of servers be n and P, respec-

tively. The complexity for calculating the cost between two servers is 0{n^). For one 

evaluation of the cost between P servers, the complexity is 0{P^v?). We need P^ 

evaluations to get an optimal solution because there are P^ partition policies. Thus, 

the overall complexity of the EP algorithm is 0(F"+^n^). • 

4.3 Partitioning Algorithm 

Due to the NP-completeness nature of the problem in Equation (4.5), we propose the 

following partitioning algorithm. In general, the algorithm has the following steps: 

Partitioning Algorithm: 

1. begin 

2. Use the recursive bisection partitioning(RBP) algorithm to find the initial partition Vi] 

3. current_cost = Cj>;, 

4. difference = oo; 

5. while (difference > c/*){ 

6. Use the layering partitioning(LP) algorithm to find a new partition V2] 

7. Given V2, use the communication refinement partitioning(CRP) algorithm 

8. to find a new partition V'2] 

9. difference = \Ĉ ' — current_cost|; 

10. current_cost = C<p'; 
^2 

11. } 

12. final partition is v'2] 

13. end 

As illustrated, the partitioning algorithm has three components, namely, 1) the 

recursive bisection algorithm, 2) the layering partitioning algorithm and, 3) the com-

munication refinement partitioning algorithm. The recursive bisection algorithm is 

a divide-and-conquer approach in finding the initial partition Vi that reduces the 
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workload deviation and inter-server communication cost. The layering partitioning 

algorithm and the refinement partitioning algorithm are based on linear optimization 

techn-ique[6, 7, 8] to minimize the the workload deviation and the inter-server commu-

nication respectively. The algorithm will iterate the layering partitioning algorithm 

and the communication refinement partitioning algorithm until a difference of the to-

tal partitioning cost is less than some pre-defined threshold d*. In Chapter 5, We will 

show that the proposed partitioning algorithm can efficiently find a partition strategy 

that can reduce the total cost. 

4.3.1 Recurs ive Bisect ion Par t i t i on ( R B P ) A l g o r i t h m 

The main idea about the recursive bisection partitioning algorithm is to divide up the 

avatars in the virtual world into groups and then based on divide-and-conquered to 

find a partitioning strategy V. In the recursive bisection algorithm, we first assume 

that the AOI of avatar is in the form of a circle with an average diameter of V. We 

then divide up the virtual world into N disjoint squared cells such that the area of a 

cell is equal to V^. The rationale of dividing the virtual world into cells is that with 

high probability, most of the communication between avatars is between neighboring 

cells. Figure 4.1 illustrates that the virtual world is divided into 32 disjoint cells. 

1 5 9 13 17 21 25 29 
• • 

• • .-•• . • / a---••••;-•. 
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2 6 • 10 l'4, \ 1̂8 \ 22 ........ 26 30 

>-----D / .-.., 
二 ^ ] U ^ i _ 2 

3 7 • 11 15 . \rt9^ 23-、—-----•' 27 31 

• • \ .•• AOI • • • • 
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Figure 4.1: A virtual world represented by 32 disjoint cells 

Given the state ofthe DVE system, we can construct a graph GnBP = {VRBP, ERBp) 

as follows: 

1. For each cell q, 1 < i < N, create a node Vi in VnBp. 
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2. Compute the workload for cell c ,̂ which is equal to Y^^j^ci ^o,j-

3. For any two adjacent cell Ci and Cj, there is an edge Ei j between Vi and Vj such 

that C(Eij), the cost of Eij, is: 

C{Eij) = ^ max{/(w, v) * ADJ{u, cj)} + ^ max{/(^, v) * ADJ(u, c,)} 
^"』V^Cj V^ C{ 
ueci uecj 

The recursive bisection partitioning algorithm is based on the concept of divide-

and-conquered. Without the loss of generality, let us first present the RBP algorithm 

for N cells system and the number of servers {P) is equal to two. Let Vj^ be the 

partition for the k^ server (where k = 1, 2 , . . . , P) with n < N cells, and initially, we 

set: 

V^" = VRBP^{VI ,V2, . . . ,VN} ； P? = 0 (4.7) 

Let Vi be the i^^ partition configuration and let Cp-, the cost based on Equation 

(4.4), be the cost of partition configuration Vi. Based on the initial partition, we have 

Vo 二 (Vj；^, V2) and the corresponding C^v We can then find Vi by moving one cell 

from V(^ to V2 and compute the cost Cp^. Note that the cell can be chosen in such a 

way that the total cost CV>i is minimized, which can be achieved by considering each 

cell in Vl^ and this process takes a linear time with respect to the total number of cells 

in the system. Formally, we have: 

Vi = { V ^ - W i ) z = 0 , l , . . . , i V (4.8) 

where 7^(i+i) can be derived by: 

n^+i) - (l̂ r-“.+i))，g+i) 

= ( v f ^ - 0 - { � } ’ vl U {i;,}) for Vj E V^^-'^ and 6^(晰）is minimized (4.9) 

Note that Cp^ and Cv^ represent the two extremes of the highest load imbalanced cost 

(i.e., all cells are assigned to one server and there is no server-to-server communication). 

Therefore, the RBP algorithm is to choose a configuration that: 

7 ^ = {Vi 丨 Cp ,=og i^{C7^ j . }} (4.10) 
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The above bisection algorithm applies for P - 2. For a larger number of P, we can 

first use the bisection partitioning algorithm presented above, then choose a partition 

that has the largest cost and then apply the bisection partitioning algorithm again. 

At the end of the RPB algorithm, we obtain a partition strategy VuBP that partition 

the graph GnPB into P disjoint regions (or VuPB — {Vi U . . . U Vp}) such that all the 

nodes in V{ will be assigned to the i ^ server. 

Lemma 2 The complexity of Recursive Bisection Partition Algorithm is 0{N^{P — 

1)) . 

Proof: Let the number of cells and the number of servers be N and P, respectively. 

The number of evaluation of the partitioning configurations is N[P-1). For each eval-

uation, we need to calculate the cost between two servers, the complexity is 0{N^). 

Therefore, the overall complexity of RBP Algorithm is 0[N^{P — 1)). • 

4.3.2 Layering Par t i t i on i ng ( LP ) A l g o r i t h m 

Although the RBP algorithm can produce a partition strategy T*RBP, there are several 

shortcomings in the approach. For example, the computational complexity is high (as 

illustrated in Chapter 5) and at the same time, the overall cost Cj>^̂ ^p for pRBP can 

still be reduced further. The main idea about the layering partitioning algorithm is 

to label each avatar using a server number. The label (or server number) serves as a 

possibility of moving an avatar to that partition. The decision of whether to move the 

avatar can be formulated as a linear programming optimization which we illustrate in 

this chapter. 

Since we have obtained a partition VnBP from the bisection partitioning algorithm, 

we can relax the assumption that the DVE world is divided up into cells. We first have 

to construct a graph GLP 二 (VLP, ̂ p ) such that each node in the graph represents 

an avatar. An edge e,-j G E represents that avatar 04 is within the AOI of avatar 

«i and the cost of this edge eij is /(a^, aj). In general, construction of the graph 

GhP = {VLP, ELp) is: 
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Graph Const ruc t ion A lgo r i t hm : 

1. begin 

2. for each avatar ai, create a node V{ in GiP] 

3. for each Vi G G iP , do { /* initiaze */ 

4. inltiaUze variables connected[t;i]=false; 

5. initiaUze variables server_number[t;i] = k where Vi G Vk and 1 < k < P\ 

6. /* note that the server index k for Vk can be obtained from the output of the RBP algorithm */ 

7. } 

8. for Vi G VLP do { 

9. /* create edges and mark those nodes along the partition boarder as connected */ 

10. for Vj G VLP where i — j, do { 

11. i f Vj is within the AOI of Vi then { 

12. create an edge eji in E ip] /* Cji is an edge between Vj and Vi where Vi, Vj 6 VLP */ 

13. set the weight of eji = l{vj, Vi)] 

14. i f (server_num[ui] ^ server_num[fj] ) then { 

15. connected[t;i] = connected[fj] = true; } 

16. } 
17. } 

18.} 

19. for aU Vi G G i p do{ /* connect the remaining nodes */ 

20. i f ( connected[fi] = false ) then { 

21. i f ((there exists a node Vj which is a neighbor of Vi) /* Vj is a neighbor of Vi if eij exists*/ 

22. and (connected[fj] = true) ) then 

23. connected[wi] = true; 

24. i f (connected[t;i] =false) do { 

25. find a nearest node Vk such that connected[t;A:]=tme and server_num[t;t]=server_num[ufc]; 

26. create an edge eik G ELP; 

27. set weight of eik = l{vi,vk) or e > 0; 

28. connected[i;i]=tme; 

29. } 

30. if(connected[ui]=false) do { 

31. find a nearest node Vk € G i p such that connected[t;A:]=tme； 

32. create an edge eik € ELP; 

33. set weight of eik = /(fi, Ufc) or e > 0; 

34. connected[fi]=tme; 

35. } 

36. } 

37. } 

38. end 
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The purpose of the constructing graph GiP is to produce a connected graph so 

that we can perform the layering step^, which can be described as follows. 

First, a node Vi is considered as a hoarder node when there exists a node Vj such 

that 1) there exists an edge eij G ELP and, 2) server_num[i;J + server_num[t;j]. In 

other words, node vi is along a partition boarder. Let Shn be the set of all boarder 

nodes in the graph GiP- For each node Vi G <S&n, we find a partition j* such that the 

sum of weight from node V{ to partition j* is 

max( E l{e,k)) for 1 < j * < P 

Vk^Vj* 

Then we set the layer number of the node ”“ denotes by layer_num[?;^], as j*. At this 

point, we let <S/ to denote the set of nodes that has an assigned layer number. Note 

that S! C Vip. The remaining step is to consider all those nodes in GLP which have 

no layer number yet. To accomplish this, let us consider a node V{ which has no layer 

number. For this node V{, we find a label j* such that the sum of weight from node V{ 

to nodes with label j* is 

max( ^ ^ l{eik)) where layerjnum[vk] =j* 

Vk^^l 

then we set layer_num[i'J, the layer number of node V{, as j*. Now for all those nodes 

that have the newly assigned layer number, we add them to the set 5/. We repeat the 

layer number assignment process for all those nodes in GLP that have no layer number. 

Figure 4.2 illustrates a graph GLP with the corresponding edge weight and all the 

boarder nodes are high lighted. Note that graph GLP is divided into three partitions, 

namely, ^ , Vj and Vk. Figure 4.3 shows the assignment of layer number for the boarder 

nodes and Figure 4.4 illustrates the assignment of layer number for the remaining 

nodes. 

After we finished layering all nodes in the graph G^p, we can consider moving 

some of the nodes with layer number i to server i, where 1 < i < P, so as to reduce 

the workload deviation (e.g., reduce the workload cost according to Equation (4.1)). 

^The pmpose of the layering is to identify which node can be assigned to a different servers. 
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Figure 4.2: Graph G i P with boarder nodes (nodes in bold circle), edge weight and 

three partitions Vf, Vj and Vk 

_ 
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Figure 4.3: Assigning layer numbers to boarder nodes in GLP 

The number of nodes that can be moved can be formulated as an linear optimization 

problem. Let cqj represents the number of nodes in partition V{ that can be moved to 

partition Vj (e.g., these are the nodes that are in partition V{ and with layer number 

equal to j). For example, in Figure 4.3(b), cqj — 2. Let |̂ -| represents the total 

number of nodes in partition Vi (e.g. in Figure 4.3(b), |V̂-| = 7). Let X{j to be the 

decision variable of the number of nodes that we eventually move from partition Vi to 

Vj so as to reduce the workload cost of the DVE system. We would like to minimize 

the total number of movement, or minimize J2i<i^j<p ^ij, so as to achieve workload 

balancing property. 
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Figure 4.4: Assigning layer numbers to other nodes in G iP 

The formulation of the linear optimization is: 

Minimize ^ X{j (4.11) 

i<i^j<P 

subject to 

0 < Xij < aij < |K-| (4.12) 

1 N 
E (工。.-：•?‘）= 1 巧 . 丨 - p J 2 < ^ i ) for 1 < j < P (4.13) 

l<i<P i=l 

The constraint in Equation (4.12) is to ensure that the number of nodes that we move 

from partition V{ to partition Vj is less than or equal to the feasible number of candidate 

nodes. The constraint in Equation (4.13) is to ensure that the difference of the total 

number of nodes that move into server i and the total number of nodes that move out 

of server i is equal to the workload deviation of server i under the ideal load balanced 

situation. In other words, we try to make sure the workload in server i is as close to 

the ideal workload balanced situation as possible. 

Lemma 3 The complexity of Layering Partitioning Algorithm is 0{P^). 

Proof: Let the number of partitions be P. We will have P{P — 1) variables and 

P(P - l ) + P = P^ constraints. The number of iterations required for linear program-

ming is problem dependent. A better estimate is 2(p2 + p ( p _ i ) ) . The time required 
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for one iteration of the linear programming is 0{P(P — 1) * P^). Thus, the overall 

complexity for the linear programming is 0(P^). • 

To illustrate this linear optimization problem, let us consider the graph in Figure 

4.4. The formulation is given as follows. 

Min im i ze X{j + Xik + Xji + Xjk + Xki + Xkj 

subject to: Xij < 2; Xik < 5; Xji < 3; Xjk < 2; Xki < 2; Xkj < 4 

Xij + Xik — Xji — Xki 二 7 - 6 = 1 

Xj{ + 3)jk — ^ij — ^kj — 5 — 6 — —1 

Xki + Xkj - Xik - Xjk 二 6 - 6 = 0 

The solution to the above optimization problem is X{j — 1, Xik = Xji = Xjk 二 Xki — 

Xkj = 0. Therefore, we choose the node that has a layer number equal to j in partition 

Vi and move it to partition Vj. In selecting which node to move, we start from the 

boarder nodes, then to the nodes in the inner layers. Note that during the node 

movement, only those nodes which will not increase the communication cost will be 

moved. After we moved a node vi from partition V{ to Vj, we re-assign the server 

number of node vi as server_num(f/)= j. The process stops when the number of nodes 

moved is equal to the solution. The new partitioning policy VLP for the graph G^p in 

Figure 4.4 is given in Figure 4.5. 

_ 

�̂ I Tr Z 
、、J Vk Z _ ’ 一 —, 

Figure 4.5: New partition 
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Let the workload weighting Wi and the communication cost weighting W2 be 0.5 

and 0.5, respectively. Assume the workload for maintaining an avatar is 10. 

Before we apply the LP algorithm, 

P / \ 

c^ = J2 E ^K') — ^* 
j=l \ aiEVj J 

二 10 X (|7 6| + |5 — 6| + 16 — 6|) = 20 

C^ = Cij + Cji + Cik + Cki + Cjk + Ckj 

= ( 2 + 3) + (1 + 3) + (4 + 2 + 3) + (4 + 4 + 3) + (4 + 5) + (5 + 2) 

= 4 5 

Cv = WiC^ + W2C^ 

二 0.5 x 20 + 0.5 x 45 = 32.5 

After we applied the LP algorithm, 

P ( \ 
C^ = ^ ^ w{ai) - w* 

3 = 1 \ a^ev, / 
二 10 X (|6 一 6| + |6 6| + |6 - 6|) = 0 

C^ — Cij + Cji + Cik + Cki + Cjk + Ckj 

= ( 1 + 3) + (1 + 3) + (4 + 2 + 3) + (4 + 4 + 3) + (4 + 5) + (5 + 2) 

= 4 4 

Cv = WiC^ + W2C^ 

二 0 . 5 x 0 + 0 . 5 x 4 4 = 22 

We can see that the cost is reduced by more than thirty percent. In Chapter 5, we 

illustrate that by using the layer partitioning algorithm there is a large reduction in 

the overall partition cost. 

4.3.3 C o m m u n i c a t i o n Re f inement Par t i t i on ing ( C R P ) A l g o r i t h m 

The layering partitioning (LP) algorithm is to reduce the overall workload cost of the 

system. In the communication refinement partitioning (CRP) algorithm, the objective 
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is to re-assign some nodes (or avatars) to another partition so as to reduce the server-

to-server communication cost. 

Given the partitioned graph GhP = { V L P , ^ p } from the LP algorithm, let us 

consider all the boarder nodes. Again, a node Vi is considered as a boarder nodes 

when there exists a node Vj such that 1) there is an edge from e{j G E i p and, 2) 

server_num(t'i) + server_num(”j). Let Shn be the set of all boarder nodes. For each 

Vi G Skn, we compute Tj, the communication cost to partition Vj, as: 

r , = ^ l{eik) for 1 < j < P (4.14) 

vkeVj 

Let Tj* = maxi<j<p{rj}. Then Fj* is the maximum communication due to node v^ 

and this communication is to partition Vj*. Then the node V{ G Sbn will be assigned 

a label j*, that is, communication_number[vi)=j*. The motivation of finding the 

communication_number is that if we move node V{ to partition Vj*, then it is possible 

for us to reduce the communication cost. We repeat this process for all nodes in 

Sbn- At the end of this communication number assignment, we have determined the 

possible partition assignment of all those boarder nodes so as to reduce the system 

communication cost. 

In order to determine the final partition assignment, we can formulate the problem 

as a linear optimization problem. Let /3ij denotes the number of nodes in partition Vi 

that has the communication_number assignment equal to j. We define yij to be the 

decision variable of the number of nodes that we eventually move from partition Vi 

to Vj so as to reduce the communication cost of the system. We can formulate the 

problem as: 

Maximize ^ yij (4.15) 

i<i^j<P 

subject to 

0 < Vij < (3” for 1 < i ^ j < P (4.16) 

Z ! {Vij - Vji) = 0 (0 < j < P) (4.17) 
l<i<j 
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The constraint in Equation (4.16) is to ensure that the number of nodes that we move 

from partition Vi to partition Vj is less than or equal to the feasible number ofcandidate 

nodes. The constraint in Equation (4.17) is to ensure that the number of nodes that 

move into server i and the number of nodes that move out of server i is the same so 

as to maintain the workload balancing property. 

Lemma 4 The complexity of Communication Refinement Partitioning Algorithm is 

0(P6). 

Proof: This algorithm also uses linear programming technique. Let the number of 

partitions be P. We will have P{P — 1) variables and P[P - 1) + P = P^ constraints. 

The number of iterations required for linear programming is problem dependent. A 

better estimate is 2{P^ + P{P — 1)). The time required for one iteration of the linear 

programming is 0(P{P — 1) * P^). Thus, the overall complexity for the linear pro-

gramming is 0(P^). • 

Let us illustrate the refinement algorithm given that we have the partitioned graph 

GLP in Figure 4.5. The optimization formulation is: 

Maximize Xij + X{k + Xji + Xjk + Xki + Xkj 

subject to: Xij < 0; Xik < 1； Xji < 0; Xjk < 0; Xki < 1； Xkj < 1 

^ij + ^ik — ^ji — ^ki — 0 

^ji + ^jk — ^ij — ^kj ~ 0 

^ki + ^kj _ ^ik _ ^jk = 0 

The solution is X{k = 1, x^i — 1， all other values are zero. Therefore, we can ex-

change one node between partitions V{ and Vk to reduce communication cost. The 

new partitioning is given in Figure 4.7. 
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Figure 4.6: Before refinement 
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Figure 4.7: After refinement 

After we apply the CRP algorithm, 

P / \ 

c^ = E E _ ) - ^ * 
j=l \ o,,^Vj J 

= 1 0 X (|6 - 6| + |6 - 6| + |6 6|) = 0 

C^ = Cij + Cji + Cik + Cki + Cjk + Ckj 

= 1 + 1 + (4 + 2 + 3) + (4 + 2 + 3) + (4 + 5) + (3 + 5 + 2) 

= 3 9 
Cv 二 WiC^ + W2C^ 

= 0 . 5 X 0 + 0.5 X 39 = 19.5 
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4.4 Parallel Approach 

DVE-systems are growing to include more entities and clients. As the number of clients 

places a heavy burden on both the networking resources and computational resources 

available to the system, we will have to add more servers to maintain the virtual 

world. As the number of clients and servers increases tremendously, the processing 

time of our previous algorithm also increases tremendously. To keep the system cost 

at a lower level, we need a partitioning algorithm with high efficiency. We introduce 

a parallel approach to improve the performance. In general, the parallel approach has 

the following steps: 

Para l le l App r o a ch : 

1. beg in 

2. Divide the virtual world into four smaUer virtual worlds; 

3. Distribute the smaller virtual worlds to different processors; 

4. for each processor i do { 

5. Use the recursive bisection partitioning(RBP) 

6. algorithm to find the initial partition Vi； 

7. ciuTent_cost 二 Cp^ ； 

8. difference = oo; 

9. wh i l e (difference > d*){ 

10. Use the layering partitioning algorithm(LP) to find a new partition 7̂ 2； 

11. Given V2, use the communication refinement partitioning(CRP) algorithm 

12. to find a new partition V】., 

13. difference = |C^/ — current_cost | ； 

14. current_cost = C„/ ； 

‘2 

15. } 

16. } 
17. Combine the smaUer virtual worlds into one large virtual world; 

18. Use LP algorithm to find, a new partition V3; 

19. Use CRP algorithm to find a new partition V3 based on V3； 

20. final partition is P3; 

21. end 

Consider the partitioning of a virtual world with 16 servers. This can be completed 

in two stages: in the first stage, we can roughly divide the virtual world into four smaller 
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virtual worlds. In the second stage, we apply the partitioning algorithm we discussed 

in section 4.3 to partition each of the small virtual worlds. The partitioning processes 

can be carried out in different machines. From the experiments in chapter 5, we can 

see that the parallel approach can have a comparable partitioning cost as compare to 

the unparallel approach. The advantage of this approach is that the time required for 

applying RBP, LP and CRP algorithms to each small virtual world will be much less 

than the time required for applying those algorithms to the whole large virtual world. 

We may add one more stage to this approach. In this additional stage, we combine all 

small virtual worlds and then apply LP and CRP algorithms to the combined virtual 

world once. We can see that the result is much better than the result of unparallel 

approach. 

4.5 Further Observation 

We can integrate the filtering approaches we discussed in chapter 3 with our proposed 

partitioning algorithm to cancel much of the WAN traffic. We can first apply the 

proposed algorithm to partition/map clients and entities to different servers. We then 

use filtering approaches to further reduce communication and computation cost. Al-

though the good intrinsic behavior induced by the initial mapping will be likely to 

deteriorate slowly over time (as avatars move and interact), the overall benefit of a 

good initial mapping will still be significant. For many DVE systems (meetings lasting 

only few hours or shows dominated by slow moving visitors), the positive impact of a 

good initial mapping will most likely persist throughout the duration of the exercise. 

This suggests that proper consideration needs to be given to the initial entity-to-host 

mapping during the preparation and planning for an exercise. Another related issue 

with similar potential benefits concerns entities belonging to the computer controlled 

objects. These entities are not associated with actual clients and do not therefore have 

to be tied up to a fixed machine. As these entities move and change state over time, 

a dynamic migration protocol can be used to remap each entity to the host in DVE 

systems that will most preserve the locality behavior mentioned above. The design 

and evaluation of this migration protocol is one task worthy of investigation. 
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Experiments 

In this chapter, we present experiments for the algorithms that we discussed in the 

previous chapter and apply them to both a small and a large virtual world. For the 

small virtual world experiment, since the problem state space is manageable, we can 

compare the performance of our proposed algorithm with the exhaustive partitioning 

algorithm, which guarantees to produce the optimal partition P*. We also carry out 

experiments to investigate the dynamic characteristics of avatars and the effectiveness 

of parallel approach. In general, we use three different methods to generate the position 

of each avatar in the virtual world. These methods are: 

• Uniform Distribution: Let the position of an avatar be {x, y) and the values of 

X and y are uniformly distributed between (0, Vx) and (0, Vy) where Vjr is the 

horizontal dimension of the virtual world and Vy is the vertical dimension of the 

virtual world. 

• Skewed Distribution: Given the size of the DVE world as (T4, V^), we divide the 

number of avatars in the DVE system into four equal sized groups, namely, Gi, 

i = 1,2,3,4. Let (a:, y) be the position of the avatar in group Gi. The value of 

(x, y) is generated in such a way that x is uniformly distributed between (0,华） 

and y is uniformly distributed between (0,令).Under this scheme, most of the 

avatars will be positioned within the square area defined by the two coordinates 

[0,0] and [^,¾^]. 

• Clustered Distribution: Given the size of the DVE world as (T4, V^), we will 

generate avatars around k > 1 clusters. First, we randomly generate k points 

44 
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{xi, yi),... , {xk, Vk) such that Xi and yi are uniformly distributed between (0, K ) 

and (0, Vy) respectively. Then we divide the number of avatars in the DVE system 

-into k equal-sized groups, namely, G1,G2, . . . ,Gk. For each avatar in group Gi, 

we generate its position in {x, y) where 

‘ 0 if Xi + dx X Q < 0 

X = V^ if a;,- + dx X Q > Va： (5.1) 

、Xi + dx X Q otherwise 

’ 0 if yi + dy x Q < 0 

y = y^ if yi + dy X Q > y^ (5.2) 

、yi + dy X r̂  otherwise 

In our experiments, dx and dy are generated uniformly between (-1,1) and the 

parameter Q depends on the size of the virtual world. For example, we set 

Q — 0.4 for the virtual world composed of 4 x 4 units and Q, 二 3.0 for the virtual 

world composed of 25 X 25 units. 

5.1 Experiment 1: Small Virtual World 

In this experiment, we use a small virtual world which is composed of 4 X 4 units with 

the total number of avatars equal to 13 and the number of servers P equal to three. 

We set both the workload weighting, Wi and the communication cost weighting, W2 

to 0.5. The AOI of each avatar is equal to 1. 

Table 5.1, 5.2 and 5.3 illustrate the experimental results under the uniform, skewed 

and clustered location distributions respectively. It is important to observe that the 

proposed algorithm can have a comparable partitioning cost as compare to the exhaus-

tive algorithm and at the same time, only requires a very small fraction of processing 

time. 
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Algorithm II Exhaustive || RBP LP CRP~[ 

System Cost Cy 11 3.47 11 3.47 3.47 3.47 

Computation Time (secs) || 1202.12 || 0.01 <0.01 <0.01 

Table 5.1: Small virtual world under uniform distribution 

f "A^o r i t hm || Exhaustive || R B P LP CRP 

r s7s t em Cost Cp 11 5.45 11 9.66 7.45 7.45 

" ^ m p u t a t i o n T i m e ( s e c s ) || 1290.88 || 0.01 0.01 <0.01 

Table 5.2: Small virtual world under skewed distribution 

5.2 Experiment 2: Large Virtual World 

In this experiment, we use a large virtual world which is composed by 25 x 25 units 

with the total number of avatars equal to 2500 and the number of servers, P = 8. The 

AOI of each avatar is equal to 0.5. Figure 5.1 illustrates this virtual world under three 

different location distributions. 

Table 5.4, 5.5 and 5.6 illustrate the experimental results under the uniform, skewed 

and clustered location distributions respectively. Since the size of the virtual world is 

large, it is impossible to use the exhaustive algorithm (since it has 8^^°° possible parti-

tion schemes). It is important to observe that by applying the proposed algorithm, we 

can generate a good partition with much lower execution time. For all location distri-

butions, we iterate the partitioning algorithm three times. During the first iteration, 

we execute the RBP, LP and the CRP algorithms. For the second and third iteration, 

we only need to iterate the LP and the CRP algorithms. After three iterations, the 

system cost converges to a fixed value. 

Algorithm || Exhaustive || RBP LP CRP 

Sys temCos tCp 11 4.39 11 9.42 7.12 7.12 

I Computation Time (secs) || 1199.68 || 0.01 0.01 <0.01 

Table 5.3: Small virtual world under clustered distribution 
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0 ]_MJB__L_^ •~L_ , • ~ L ^ 

1 2 3 

Iteration Count 1 1 1 2 2 3 3 

Algor i thm K B P LP C H P LP C R P LP C R P ~ f 

Systeni Cost Cp 1 l(>Q.03 443.58 441.06 399.61 399.61 358.07 358.07 

‘ C u t n p u t a t i o n T imc (st-cs) 162 0. >1 0.38 0.4 0.26 0.35 0.2.1 

Table 5.4: Exj)criinental results under uniforin distribution 

5.3 Experiment 3: Moving of Avatars 

In this cxporimeiit, wc uso lho same setting as Experiment 2. W'e a.ssunie lliat the 

;iviilars in the secoiKl exj)eriivient will niovo to anotlior position with a probability of 

0.3 aiui slay in current position willi a probability of 0.7. If an avatar should inove, 

it will movo to a raiulom location wliich is wilhin its AOI . Since lho initial partition 

is already known (o.g., this is 1 lie partition we obtained fr()m l.:X|)(、riin(”it 2), all \vc 

neotl tc) j)(^rform is to itoratr l!io l,P and lho ( ' R P algorithms. Ap;aiii, 1 lio syslnn cost 

C(MJvergos to a sniall value aftor tliroe iterations. 

rahle 5.7. 5.8 aiui 5.9 illustrate tho oxperimcMilal resuIls uiidcr tlic iiiiiforin, skewed 

aiul cluslertnl location di.slril)iitions respectivcly. It is imporlaiit lo observe tlial by ap-

plying; thc LP aiul ( 'RI^ partitioning algorithms itoralively, wr can p;et a ^^ood |)artit_.ioii 

within sliort l ime intervals. 
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Iteration Count 1 1 1 2 2 3 3 

fATgorithm RBP LP CRP LP CRP LP CRP 

System Cost Cy 4405.73 2188.83 2188.83 2143.36 2143.36 2136.24 2136.24 

t Computation Time (secs) 226.1 0.39 0.39 0.36 0.33 0.35 0.31 

Table 5.5: Experimental results under skewed distribution 

5.4 Experiment 4: Dynamic Joining and Leaving 

In this experiment, we use the same setting as the one found in Experiment 3. That is, 

the avatars in the second experiment will move to another position with a probability 

of 0.3 and stay in current position with a probability of 0.7. Moreover, approximate 

50 avatars left the virtual world and at the same time, approximate 150 avatars joined 

the virtual world. Again, the system cost converges to a small value after several 

iterations. 

Table 5.10, 5.11 and 5.12 illustrate the experimental results under the uniform, 

skewed and clustered location distributions respectively. It is important to observe 

that within a short period of time (less than 5 seconds), we can get a good partition 

scheme. 
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Iteration Count 1 1 1 2 2 3 3 

t"Algorithm RBP LP CRP LP CRP LP C R P _ [ 

System Cost Cp 9714.83 6974.77 6531.38 6120.48 6114.32 5668.01 5668.01 

Computation Time (secs) 166.5 0.33 0.39 0.36 0.31 0.36 0.27 

Table 5.6: Experimental results under clustered distribution 

Iteration Count 1 1 2 2 3 3 

Algorithm moved LP CRP LP CRP LP CRP 

System Cost Cp 4839.62 485.01 485.01 462.78 462.78 462.78 462.78~[ 

Computation Time (secs) - 0.41 0.44 0.39 0.47 0.45 0.48~~[ 

Table 5.7: Experimental results under uniform distribution after avatars moved 

5.5 Experiment 5: Parallel Approach 

In this experiment, we use a very large virtual world which is composed by 30 x 30 units 

with the total number of avatars equal to 25000 and the number of servers, P = 16. 

The AOI of each avatar is equal to 0.5. 

Table 5.13, 5.14 and 5.15 illustrate the experimental results under the uniform, 

skewed and clustered location distribution using the same approach as experiment 

2. Since the size of the virtual world is 10 times larger than the large virtual world 

in experiment 2, we need to add more servers to maintain the virtual world. As 

both clients and servers increase tremendously, the time consumed in partitioning the 
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Iteration Count 1 1 2 2 3 3 

t "X I j ^ r i t hm moved LP CRP LP CRP LP _ g H ^ 

System Cost Cy 4405.73 2188.83 2188.83 2143.36 2143.36 2136.24 2136.24 

Computation Time (secs) - 0.43 0.42 0.40 0.35 0.38 0.34 

Table 5.8: Experimental results under skewed distribution after avatars moved 

Iteration Count 1 1 2 2 3 3 

] " ^ o r i t h m moved LP CRP LP CRP LP CRP J 

f ^ y s t e m Cost Cy 34317.51 9160.67 8817.35 6643.21 6643.21 6643.21 6643.21 |" 

tT)omputat ion Time (secs) - 0.36 0.39 0.35 0.25 0.36 0.31 | 

Table 5.9: Experimental results under clustered distribution after avatars moved 

virtual world also increases tremendously. To improve the performance, we use a 

parallel approach which is described in previous chapter. It is important to observe 

that by using the parallel approach, we can generate a good partition with much lower 

execution time. First, we divide the very large virtual world into four smaller virtual 

worlds. For all divided virtual worlds, we iterate the partitioning algorithm twice. 

During the first iteration, we execute the RBP, LP and the CRP algorithms. For the 

second iteration, we only iterate the LP and CRP algorithms. After two iterations, the 

parallel approach can have a comparable partitioning cost as compare to the unparallel 

approach used in experiment 2. At the same time, the parallel approach only requires 

a very small fraction of processing time. The result will be much better if we take 

more time to execute the LP and CRP algorithms once on the combined virtual world. 

Table 5.16, 5.17 and 5.18 illustrate the experimental results. Figure 5.2 illustrates the 

processing time under different approaches. Figure 5.3 illustrates the partitioning cost 

under different approaches. 

Iteration Count 1 1 2 2 3 3 

Algorithm Dynamic LP CRP LP CRP LP CRP | 

System Cost Cp 1469.15 1215.09 1055.30 1055.30 1019.90 1019.90 1013.36 

Computation Time (secs) - 0.60 0.40 0.70 0.44 ~ 0.59 0.46 “ 

Table 5.10: Dynamic join and leave under uniform distribution 
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Iteration Count 1 1 2 2 3 3  

f -A j ^ r i t hm Dynamic LP CRP LP CRP LP _ _ C R ^ 

fSys tem Cost Cy 9066.94 6061.10 5849.96 5828.21 5461.38 5461.38 5456.71 j" 

Computation Time (secs) - 0.63 0.44 0.62 0.52 0.64 0.50 

Table 5.11: Dynamic join and leave under skewed distribution 

Iteration Count 1 1 2 2 3 3 

] - ^ r i t h m Dynamic LP CRP LP CRP LP C H Q 

T ^ s t e m Cost Cy 39662.02 17T99.05 10889.81 10825.43 10359.41 9825.01 8 8 7 3 . 6 ^ 

rC ^mpu t a t i o n Time (secs) - 0.43 0.39 0.43 0.32 0.44 0 . 3 4 ~ 

Table 5.12: Dynamic join and leave under clustered distribution 

1 2 3 

Algorithm Bi-P Layering Refinement 

f " ^ s t 73013.99 40453.82 38656.35 

‘T ime ( s ) 641.22 44.91 38.02 

Table 5.13: Uniform, 30x30 cells, 16 partitions, 25000 avatars 

1 2 3 

Algorithm Bi-P Layering Refinement 

Cost 195224.53 130151.50 126849.17 

Time(s) 811.00 34.61 31.10 

Table 5.14: Skewed, 30x30 cells, 16 partitions, 25000 avatars 

1 2 3 

Algorithm Bi-P Layering Refinement 

Cost 265481.66 163869.56 157648.94 

Time(s) 749.25 51.13 35.82 

Table 5.15: Clustered, 30x30 cells, 16 partitions, 25000 avatars 

1 2 3 

Algorithm Parallel Layering Refinement 

FCost 56931.76 37818.00 37694.41 

Time(s) 7.00 44.61 27.59 

Table 5.16: Combined uniform world, 30x30 cells, 16 partitions, 25000 avatars 
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Figure 5.1: Virtual world with a 25 X 25 cells under under (a) Uniform (b) Skewed 

(c) Clustered location distribution 
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1 2 3 

.- Algorithm Parallel Layering Refinement 

Cost 128759.35 81014.57 80542.74 

|Time(s) 8.00 25.22 32.28 

Table 5.17: Combined skewed world, 30x30 cells, 16 partitions, 25000 avatars 

1 2 3 

—Algorithm- Parallel Layering Ref inement| 

Cost 172824.14 148949.02 145532.83 

J ^ W ( s ) 9.00 28.50 37.61 

Table 5.18: Combined clustered world, 30x30 cells, 16 partitions, 25000 avatars 
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1 2 3 4 5 6 

Distribution Uniform Skewed Clustered  

Algorithm Unparallel Parallel Unparallel Parallel Unparallel Parallel 

Time 641.22 Y^ 811.00 8.0 — 749.25 9.0 

「 T i m e ( L P ) 44.91 44.61 34.61 25.22 51.13 28.50 

Time(CRP) 38.02 27.59 31.10 — 32.28 35.82 37.61 

Figure 5.2: Processing time under different approaches 
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Algorithm Unparallel Parallel Unparallel Parallel “ Unparallel Parallel 

"~^st 73013.99 56931.76 195224.53 128759.35 265481.66 172824.14 

" P ^ s t ( L P ) 40453.82 37818.00 130151.50 81014.57 163869.56 148949.02 

Cost(CRP) 38656.35 37694.41 126849.17 80542.74 157648.94 145532.837 

Figure 5.3: Cost under different approaches 



Chapter 6 

Implementation Considerations 

Software design and implementation is complicated by issues such as complex interac-

tions among models, real time man-in-loop requirements, and transparently integrating 

real systems with virtual components so the DVE presents a consistent and realistic 

virtual environment. Having studied the related techniques of DVE, I mention some 

considerations in designing our DVE system. 

6.1 Different Environments 

Most work in distributed virtual environment has been done on vehicle simulation. 

However, the DVE we implemented is mainly indoor environment. Although there are 

many similarities between vehicle simulators and building walkthrough systems, there 

are several important differences [31]. First, typical vehicle simulator models contain 

terrain data augmented with plants, buildings, roads, etc. In these models, space 

tends to be "sparsely occluded". In contrast, building models typically contain walls, 

ceilings, and floors which partition space into rooms. These models tend to be "densely 

occluded". Second, in a vehicle simulator, the observer viewpoint navigation is limited 

to movements possible by the vehicle. During normal execution, the observer does not 

generally move sideways, or change direction suddenly. As a result, there is a large 

amount of coherence in the observer position from frame to frame, and it is relatively 

easy to predict future observer viewpoints from the current observer viewpoint and 

direction of travel. In addition, since the observer rarely travels close to detailed 
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model features, realistic-looking detail can be achieved using texture maps applied 

to relatively few, distant polygons. In contrast, in a building system, the observer 

may step in any direction, spin around quickly, or look very closely at any feature of 

the model. Therefore, many of the optimizations used by vehicle simulators based on 

assumptions of observer navigation are not possible in a indoor environment system. 

All these differences must be carefully studied in implementing indoor walkthrough 

system. 

6.2 Platform 

Our previous virtual environment implementation was developed in performer on SGI 

platform. The rendering quality is quite good by using this combination. However, 

our application could not run on other platforms because performer is only supported 

by SGI machines. As a result, we do not have enough machines to test our large scale 

DVE systems because there are less than fifty SGI machines in our department. To 

make our application run on cross platforms, we implement our new DVE by using 

Java and VRML. This work has been done by a group of final year students supervised 

by Professor John C.S. Lui. 

New languages like Java and VRML [36, 37](Virtual Reality Modeling Language) 

provide innovative methods for building virtual worlds. Java may provide the capa-

bility to migrate processes and objects across diverse platforms by using active mes-

saging. VRML is a language for describing multi-participant interactive simulations 

-virtual worlds networked via the global Internet and hyperlinked with World Wide 

Web. VRML merely describes a 3D scene and methods for interacting with models. 

Though VRML 2.0 allows the use of Java to provide object behaviors, VRML itself 

does not provide a mechanism for communication among distributed users. Java and 

VRML complement each other like no other creative tools in existence. As both of 

these languages are object orientated, we can create an easy to use and maintainable 

software library. Other people may use our software library to develop their applica-

tions or plug-ins for our DVE system. 

In our DVE system, the virtual environment is built by using VRML, and the 
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client and server is coded in Java. The primary advantage is that Java is a powerful, 

portable language. We may take advantage of its multithreading capabilities, both in 

the client and in the server. We might also use Java's synchronization capabilities and 

its automatic memory management. 

Since Java classes are portable, both our client and our server are able to run on 

any platform that has a Java VM and networking capabilities, and clients running on 

one platform are able to communicate with servers running on a different platform. 

The primary disadvantage of using Java is performance. An all-Java solution is too 

slow to handle a very large number of clients, and doing real time streaming audio is 

out of the question. However, the situation is improved because SUN released a new 

Just-in-Time Compiler(named Hot Spot). 

As we began to implement the test bed for our DVE algorithms by using Java and 

VRML, I found that VRML worlds were much slower than state-of-the-art 3-D com-

puter games. The speed difference maybe the tradeoffs that have been made between 

speed and generality. Computer games are extremely limited in their capabilities rel-

ative to VRML, as a result, they can use rendering techniques that are not applicable 

to the more general-purpose worlds that are being built in VRML. 

However, some of the techniques used in computer games can be adapted in the 

construction of VRML worlds, in a way that does not require anything more than a 

standard VRML browser with support for scripting in Java. In previous chapter, I 

described the most important of these techniques: spatial partitioning. 

6.3 Lessons learned 

The most important lesson learned during this work is that generating interesting, de-

tailed models is difficult. In developing our previous system VINCENT, approximately 

six "person months" were spent during creating multi-resolution models for the floor 

of Department of Computer Science and Engineering. Clearly, modeling tools must be 

developed that are more user-friendly and more automatic in order to make interac-

tive visualization of complex 3D virtual environments a reality, even a virtual reality. 

Recent research in image-based rendering techniques [38] allow us to walk through a 
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real world environment created by real photos. How to integrate these techniques with 

our DVE system is one task worthy of study. 

i 

i 
i 
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Chapter 7 

Conclusion 

In this thesis, we discussed the scalability problem in DVE and presented related tech-

niques to solve this problem. To build a scalable DVE system, we have to resort to 

the multiple servers DVE architecture. Under the MSDVE architecture, there is a 

necessity to balance the workload and at the same time, reduce the server-to-server 

communication of a DVE systems. We formulate the partitioning problem and show 

that it is NP-complete in general. We then propose a computation effective parti-

tioning algorithm so that we can quickly obtain a good partitioning policy V. Our 

experiments show that our proposed algorithm can achieve significant reduction in 

both communication and computation cost. We also illustrate that we can adopt the 

partitioning algorithm to a virtual world wherein users move from one position to an-

other position and the situation that avatars can dynamically join or leave the virtual 

world. We also investigate the possibility of paralleling the partition algorithm so as to 

obtain a partition policy for a large virtual world that allows many clients and servers. 

With increasing video resolution, network bandwidth, and processor speed, DVE 

systems are becoming increasingly common in the scientific, industrial, and entertain-

ment industries. People's expectations of DVE systems have also increased consid-

erably. More entities are expected to be supported. Moreover, there is a growing 

demand to increase the realism and fidelity of DVE systems. Modeling and imple-

menting real-time atmospheric effects, including wind, smoke, clouds, haze, rain and 

snow, will produce a flood of traffic that may exceed state update messages in cur-

rent DVE systems. We believe that the techniques we discussed and the partitioning 

algorithm we proposed can enable the scalability of DVE systems. 
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Appendix A 

Simplex Method 

A linear programming problem [7，8] is designed to identify a set of nonnegative vari-

ables minimizing a linear objective function subject to a set of linear constraints. A 

standard form of the linear program is: 

minimize z = c^x (A.1) 

subject to Ax = b (A.2) 

x > 0 (A.3) 

where A is a given matrix of order m x n, m < n, c is an n-vow cost vector, b is an 

m vector, and x is an unknown vector of n components. The superscript T denotes 

vector transposition. 

Consider a linear programming problem in its standard form[A.l, A.2, A.3], and 

assume that the rank of A is m. If B is any nonsingular m x m submatrix of A, and 

N is the remaining submatrix of A, we can write (A.2) as 

厂 1 厂 X B 1 

B,N b =b (A.4) 
- J L Xjsj' J 

where Xs and X^ have m and n — m components, respectively. It is assumed for 

convenience that B consists of the first m columns of A. 

If Xpj = 0, the solution to (A.4) is said to be a basic solution Xs — B~^h and the 

nonsingular matrix B is the basis. If , in addition, Xs > 0, we say that Xs is a basic 

feasible solution. 
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Theorem 2 If there is a feasible solution [satisfying constrains A.2 and A.3], there is 

a basic feasible solution. Furthermore, if there is an optimal solution minimizing z, 

there is an optimal basic solution. 

This fundamental theorem is crucial to developing the simplex algorithm, the most 

powerful solution method for the general linear programming problems. There exist 

several distinct versions of this method and many numerical implementations. We 

used the primal simplex method in its revised version, which is the most common 

linear program solver. 

An iteration of the revised simplex algorithm proceeds as follows: 

Step 1. Given the basis B such that 

XB = B-H>0 

Step 2. Solve 

B^X = CB 

for the vector of simplex multipliers A. 

Step 3. Select a column a^ of N such that 

Pk = CNk — \Tak < 0 

We may, for example, select the a& which gives the largest negative 

value of pk' If 

pT = c^ - X^N > 0 

stop; the current solution is optimal. 

Step 4. Solve for y the system of equations 

By = cLk 

Step 5. Find 

^ = ^ i = m i n i <K^ , , , > o [ f ^ 

If none of the yi,s are positive, then the set of solutions to Ax 二 b, x > 0 

is unbounded and z can be made an arbitrarily large negative number. Terminate 

the computation. 

Step 6. Update the basic solution: 

^i — X{ 一 Oyi, 2 ^ k 

Xk = 0 

where Xk is the new basic variable. 
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Step 7. Update the basis B and repeat from Step 2. 

Step 1 assumes that an initial feasible basic solution is available. In order to find 

such a solution to Ax — b, x > 0, consider an auxiliary minimization problem 

m 

min ^ yi (A.5) 

i = i 

subject to Ax + Iy — b 

X > 0 

y > 0 

where y is a vector of artificial variables. If we can find an optimal feasible solution to 

(A.5) such that 

m 

X > = o 
z=l 

then we have also obtained a basis yielding solution X s , If (A.5) has minimum value 

greater than 0, there is no feasible solution to Ax = 6, x > 0. Problem (A.5) is easy 

to solve using the same simplex method since it has an obvious initial feasible solution 

X = 0, y = b, for B — I. This two-phase method is implemented in our program to solve 

the optimization problem. Phase I is used to find a feasible solution to Ax = b, x > 0, 

or to determine that no feasible solution exists. Phase II uses the basic feasible solution 

generated in phase I and solves problem A.1, A.2, A.3. 
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