
Design and Implementation of Distributed
Interactive Virtual Environment

CHAN Ming-fei

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science & Engineering

Supervised by:

Prof. John C.S.Lui

© The Chinese University of Hong Kong

June 1999

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intend-

ing to use a part or whole of the materials in the thesis in a proposed publication must seek

copyright release from the Dean of the Graduate School.

" ^ ^
统 系 餘 書 圓 、 &

i M fffl 2^||
,,,A ~UNiVERSITY~~~ / M y
'̂ d;:>sL''̂ f̂ RY SYSTEM>/^

^ ^ ^ P ^

Design and Implementation of Distributed
Interactive Virtual Environment

submitted by

C H A N Ming-fei

for the degree of Master of Philosophy

at the Chinese University of Hong Kong in June 1999

Abstract

Large scale distributed virtual environment (DVE) systems model the activities of

thousands of entities interacting in a virtual world simulated over wide area networks.

These systems are growing to include more clients for applications such as multiplayer

video games, military and industrial training, and collaborative engineering. In these

applications, each host receives updates (such as position and orientation) from remote

clients, models and renders the scene, and performs other tasks such as collision detec-

tion. The number of clients places a heavy burden on both the networking resources

and computational resources available to the application. Today, how to meet the

growing requirements of bandwidth and computational resources is one of the major

challenges facing the design and implementation of large scale DVE system. A scalable

DVE system usually employs many servers to handle clients' requests. The problem

is how to allocate workloads among servers such that the computational load on each

server is roughly the same, while communication cost is minimized.

In this thesis, we discuss the DVE scalability problem, briefly overview the ma-

jor bandwidth reduction techniques and partitioning techniques currently being in-

vestigated and implemented in contemporary DVE systems, and propose an effective

partitioning algorithm to solve the scalability problem.

The main idea of solving the scalability problem is to divide the virtual world

into partitions and then assign these partitions to different servers. The server in the

logical partition is responsible for maintaining all clients within its partition. We use

i

Hybrid approaches to partition the virtual world. The major approach is based on

linear optimization technique.

Experiments are carried out to illustrate the effectiveness of the proposed parti-

tioning algorithm under various settings of virtual world. The insight gained from

our work and the challenges still facing the design of large scale DVE system are also

discussed.

\ I I j

ii

i

Acknowledgments

I have been incredibly lucky to have Professor John C.S. Lui as my supervisor. His

warmth, enthusiasm, and clever insights have been inspirational. He has a unique

intuition for what will and will not work, and his on-the-spot suggestions often saved

me lots of fruitless works.

My work benefited greatly from cooperation and discussions with members of DVE

research group, particularly Mr. Peter Tam and Mr. Oldfield So. They offer valuable

suggestions to me. This thesis would not exist without the help of them.

It has been very pleasant to be a graduate student of Department of Computer

Science and Engineering at the Chinese University of Hong Kong. The department

provides a friendly research environment. Many people were always there when I

needed help wading through any difficulty.

Finally, I would like to thank my family for having faith in me.

iii

Contents

•

Abstract i

• • •

Acknowledgments ui

1 Introduction 1

1.1 Challenging Issues 2

1.2 Previous Work 4

1.3 Organization of the Thesis 5

2 Distributed Virtual Environment 6

2.1 Possible Architectures 6

2.2 Representations of Clients as Avatars 7

2.3 Dynamic Membership 9

3 Bandwidth and Computat ion Reduction Techniques 11

3.1 Network Communication 12

3.2 Dead Reckoning 13

3.3 Message Aggregation 15

3.3.1 Network-Based Aggregation 15

iv

3.3.2 Organization-Based Aggregations 16

3.3.3 Grid-Based Aggregations 16

3.4 Relevance Filtering 17

3.4.1 Entity-Based Filtering 17

3.4.2 Grid-Based Filtering 19

3.5 Quiescent Entities 20

3.6 Spatial Partitioning 21

3.6.1 Necessity of Spatial Partitioning 22

3.6.2 Binary Space Partitioning Tree 23

3.6.3 BSP Tree Construction 23

4 Partit ioning Algori thm 25

4.1 Problem Formulation 25

4.2 Exhaustive Partition (EP) Algorithm 28

4.3 Partitioning Algorithm 29

4.3.1 Recursive Bisection Partition (RBP) Algorithm 30

4.3.2 Layering Partitioning (LP) Algorithm 32

4.3.3 Communication Refinement Partitioning (CRP) Algorithm . . . 38

4.4 Parallel Approach 42

4.5 Further Observation 43

5 Experiments 44

5.1 Experiment 1: Small Virtual World 45

5.2 Experiment 2: Large Virtual World 46

V

5.3 Experiment 3: Moving of Avatars 47

5.4 Experiment 4: Dynamic Joining and Leaving 48

5.5 Experiment 5: Parallel Approach . . 49

6 Implementat ion Considerations 55

6.1 Different Environments 55

6.2 Platform 56

6.3 Lessons learned 57

7 Conclusion 59

A Simplex Method 60

Bibliography 63

vi

List of Tables

5.1 Small virtual world under uniform distribution 46

5.2 Small virtual world under skewed distribution 46

5.3 Small virtual world under clustered distribution 46

5.4 Experimental results under uniform distribution 47

5.5 Experimental results under skewed distribution 48

5.6 Experimental results under clustered distribution 49

5.7 Experimental results under uniform distribution after avatars moved . . 49

5.8 Experimental results under skewed distribution after avatars moved . . 50

5.9 Experimental results under clustered distribution after avatars moved . 50

5.10 Dynamic join and leave under uniform distribution 50

5.11 Dynamic join and leave under skewed distribution 51

5.12 Dynamic join and leave under clustered distribution 51

5.13 Uniform, 30x30 cells, 16 partitions, 25000 avatars 51

5.14 Skewed, 30x30 cells, 16 partitions, 25000 avatars 51

5.15 Clustered, 30x30 cells, 16 partitions, 25000 avatars 51

5.16 Combined uniform world, 30x30 cells, 16 partitions, 25000 avatars 51

5.17 Combined skewed world, 30x30 cells, 16 partitions, 25000 avatars 53

vii

5.18 Combined clustered world, 30x30 cells, 16 partitions, 25000 avatars 53

^

5
^

^

I
['

I

I

J
运

I
i'«
决

I
viii

f
I

^
i

List of Figures

2.1 MSDVE architecture for our DVE system 8

2.2 Avatars and their area of interest 9

3.1 Examples ofbroadcast, multicast and unicast 12

3.2 Filtering with four sites 19

3.3 The virtual world is decomposed into rectangular cells 20

3.4 The floor plan with partitioning planes added 23

3.5 The BSP tree for the lab 24

4.1 A virtual world represented by 32 disjoint cells 30

4.2 Graph GLP with boarder nodes (nodes in bold circle), edge weight and

three partitions V{, Vj and Vk 35

4.3 Assigning layer numbers to boarder nodes in GLP 35

4.4 Assigning layer numbers to other nodes in G^p 36

4.5 New partition 37

4.6 Before refinement 41

4.7 After refinement 41

ix

5.1 Virtual world with a 25 X 25 cells under under (a) Uniform (b) Skewed

(c) Clustered location distribution 52

5.2 Processing time under different approaches . . 53

5.3 Cost under different approaches 54

X

i

Chapter 1

Introduction

Advances in multimedia systems, parallel/distributed database systems and high speed

networking technologies enable system designers to build a distributed system that

allows many users to virtually explore and interact under the same 3D virtual world. In

general, a 3D virtual world is composed of many high-resolution 3D graphics sceneries

that represent a real-life world. For example, we can have a 3D virtual world that

represents a lecture hall with hundreds of students and scientists listening to a seminar

given by Professor Daniel C. Tsui^ or we can have a large 3D virtual world that

represents the latest COMDEX show with thousand of attendants reviewing the latest

softwares and electronic gadgets. This type of shared, computer-resident worlds are

called the distributed virtual environments (DVEs) [22] and like other ground-breaking

computer technologies, DVEs can change the way we learn, work, and interact with

other people.

To illustrate how DVEs can change our lifestyles and the way we handle our business

operation, we can consider the following situation. Let say that we have an architect

from New York, a civil and structural engineer from Paris, a financial planner from

Hong Kong and an interior designer from Tokyo, who are having a business meeting

concerning about the design and financial planning issues of a new high-rise office

complex to be built in London. Under the DVE setting, these people can convene

a meeting while still reside at their respective homes/offices. Their meeting can be

carried out through the DVE system, they can interact with each other in a virtual

1八 1998 Noble Prize winner in Physics for the discovery of a new form of quantum fluid with

fractionaUy charged excitations.

1

Chapter 1 Introduction f_

world of the new high-rise office complex that they are proposing to build. Each

participant in this business meeting can virtually walk through the proposed high-

rise office building, interact and carry out the discussion without leaving their own

offices. For example, in this virtual high-rise office complex, each user in the meeting is

represented by a 3D object, which is known as an avatar, and each individual can walk

around in this virtual office building, and in the process, rearrange any 3D objects in

the environment (e.g., paintings, furniture, selecting different kinds of wall papers,...

etc). Any change to a 3D object in this virtual world will be visible to all participants.

Also, during the meeting in this virtual world, participants will be able to interact with

each other in real-time, as well as inquiring any relevant information about the virtual

world that they are exploring. For example, querying about the credit information of

a manufacturer who is responsible to produce the office furniture.

1.1 Challenging Issues

There are many challenging issues to design a cost-effective, scalable and high perfor-

mance DVE system. In what follows, we list some of the important research issues

(although not exhaustive) in the design of such kind of DVE system.

• Backend Database: Designing a spatial database engine so that users can vir-

tually explore a huge 3D environment and at the same time, able to query and

retrieve relevant information about the environment being explored. The type of

queries that being supported are of relational, spatial, and possible fuzzy types.

This research issue has been addressed in the VINCENT project[3], which is the

earlier version of our current DVE system.

• Object Consistency: Since DVE clients can manipulate any object in the 3D

virtual world (e.g., a user may want to pick up a book), therefore, it is important

to keep all these 3D objects in a consistent state such that once the object is being

accessed, other users may not be able to access it anymore. In general, there are

several approaches to solve this concurrent access problem, either by exclusive

locking of the object, or by defining various operations (similar to defining the

read/write operations in database) that can be performed on the object so as

Chapter 1 Introduction f_

to allow many users to concurrently access the object. Although concurrency

control has been well studied in the database research community[15], concurrent

-data access under a DVE environment is more complicated because each object

is rich in semantics and therefore, high degree of concurrency control algorithm

can be defined.

• View Consistency: Since users can move around in the virtual world and any

user can access any object in the environment, therefore, all users under the same

virtual world have to be notified of the activities so as to keep their local views

consistent. For example, if a user moves a chair from one location to another

location, another user in the virtual world has to have this activity visually

displayed on his/her local screen. The propagation of this information to all

clients demands a tremendous communication bandwidth. Recent research work

on multicasting techniques[9, 16, 17] can help to reduce the aggregate bandwidth

demand on the network. In [4], the authors derive the optimal synchronization

interval so that every client in the same virtual world can view all objects with

a high degree of consistency.

• Balancing Workload and Reducing Communication Cost[l]: A virtual world may

represent a large real-life environment and this require a large amount of compu-

tational power so as to render the realistic-looking 3D models at an interactive

frame rate, detect and resolve object collisions, monitor user input devices and

process their inputs. Each client/server also needs to process many updates sent

by others so as to keep the states of every object in the virtual world consistent.

The complexity of these tasks is increasing rapidly as DVE systems become more

complex.

As the number of clients in DVE system increases, the network traffic generated

by these clients increases to an enormous level. The communication networks

(WANs and LANs) supporting this exercise can easily become overwhelmed by

the resulting traffic load and a portion of the transmitted packets can be lost.

Furthermore, the increased computation overhead incurred at each client/server

for processing the incoming information makes the scale up effort more difficult.

It is clear that the DVE systems will have to employ multiple servers to han-

dle clients' requests. Mapping the entities located in the same region to hosts

Chapter 1 Introduction f_

located in the same LAN and let the gateway host be the DVE server of that

LAN can help to reduce update messages on networks. We can integrate other

Altering techniques with this approach to further reduce both communication

and computational demands. DVE systems based on a good mapping will have

better intrinsic scalability. Therefore, an interesting and important problem in

designing a DVE system is how one can partition/map the workload among dif-

ferent servers in the DVE system and at the same time, maintain a manageable

level of communication overhead. This is the main focus and contribution of this

thesis.

1.2 Previous Work

Let us briefly describe some previous work on DVE system. In [3], the authors il-

lustrated how to design and implement a virtual walk-through system such that a

user can query and retrieve information about the virtual world. One major limita-

tion of the work is that it only allows a single user to explore the virtual world^ and

therefore, there is no communication and interaction between users. In [18, 19], the

authors described how to build a storage system that can support applications like the

video-on-demand and 3D walk-through of a virtual world. The result is particularly

interesting in the sense that the storage server can guarantee the timely delivery of data

to different multimedia applications, which may have vastly different quality of service.

In [20], the authors demonstrated how to build a distributed virtual environment for

military purpose and showed that it is possible to support hundreds of users. In [11],

authors designed a prototype system for a large scale DVE that operates based on the

Internet IP Protocol[12]. In this work, the authors illustrated that it is impossible for a

single system to handle all the required workload and therefore, partitioning approach

was mentioned. However, there is no detail description on how to maintain synchro-

nization among partitions and how to carry out the partitioning operation with the

consideration of communication cost. In [21], the authors provided a software toolkit

known as DIVE so as to build a DVE system. In the DIVE toolkit, users can define

^Of course, the system aUows many users to explore the same virtual world but under different

sessions.

Chapter 1 Introduction f_

their own objects and behavior but the DIVE system assumes a single server, multiple

clients architectures that each DIVE world is maintained by a dedicated server only.

In [4],- the authors derive the optimal synchronization interval so that every client in

the same virtual world can view all objects with a high degree of consistency.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 contains a description ofthe DVE system

architectures, the avatar objects and their characteristics.

Chapter 3 surveys how existing DVE systems have solved the scalability prob-

lem, and the limitations of those approaches. Special emphasis is paid to research on

bandwidth and computation reduction techniques.

Chapter 4 contains the formulation of the workload partitioning problem. We

propose a partitioning algorithm to solve the scalability problem. The partitioning

algorithm is based on the linear optimization technique and is shown to be computa-

tionally efficient and can effectively partition the workload evenly among the servers

and at the same time, reduce the communication overhead.

Chapter 5 contains the result and analysis of various experiments with various sizes

of virtual world and different avatar's location distributions to illustrate the effective-

ness of our proposed partitioning algorithm.

Chapter 6 describes some considerations of implementing DVE systems and the

insight gained from our work.

Lastly, conclusion and summary is given in Chapter 7.

Chapter 2

Distributed Virtual Environment

In this chapter, we describe various elements in a distributed virtual environment

(DVE), namely, 1) possible architectures, 2) representations of clients as avatars, their

area-of-interest (AOI) and, 3) the dynamic join and leave property of avatars in the

DVE system.

2.1 Possible Architectures

To realize the multimedia service like the DVE application, one first has to consider the

possible architecture. In general, there are two possible architectures for implementing

a DVE system. The choice of which architecture to use depends on the size of the

virtual world (or the 3D environment) that we want to model as well as the number of

concurrent clients. These two types of architectures are 1) the single server distributed

virtual environment architecture (SSDVE) and 2) the multiple servers distributed vir-

tual environment architecture (MSDVE).

In the SSDVE architecture, all clients are connected to the dedicated server. To

make sure that all clients have the same consistent view of the virtual world, any action

or activity generated by a client has to be transmitted to other clients^ in real time.

This form of communication is accomplished as follows. The initiating client will send

a message to the DVE server, the DVE server will first transform the message to the

i ln general, the information is sent to aU other dients or only a subset of the dients in the system.

6

Chapter 2 Distributed Virtual Environment ^_

corresponding database operations (e.g., locking an object in the virtual world) and

then the server will broadcast (or multicast) the new information to other clients in the

DVE system so that every client can update their local view of the virtual world. It is

important to point out that, experience has shown that the SSDVE approach does not

scale well. If the number of clients is large, then the demand on the processing power,

system buffer and communication bandwidth will be a serious problem. Therefore,

SSDVE is only suitable for small scale DVE system, for example, the virtual world

with small number of objects and the number of clients is small.

To support a large number of concurrent clients in a DVE system, one can adopt

the MSDVE architecture. In the MSDVE architecture, multiple servers will be used

and each server is responsible to handle a subset of the virtual world (e.g., some number

of clients and some number of objects in the virtual environment), the communication

of its attached clients as well as the communication between servers. It is important to

point out that in order to keep the view consistency among the clients, it is unavoidable

to have server-to-server communication and that the communication cost between

servers is more expensive than the communication cost between the server and its

attached clients. This is due to the fact that the server and its attached clients may

reside in the same local area network while different servers may reside at two extremes

edges in the Internet. Figure 2.1 illustrates that we use three servers to divide up the

virtual world. Clients are attached to a specific server whenever the client is in the

administrative region of that server.

2.2 Representations of Clients as Avatars

In a distributed virtual environment, we usually use an avatar, which is a 3D active

object, to represent a DVE client in the virtual world. In order to provide the interac-

tive capability of a client, the avatar can move or travel in the virtual world. The client

can also use his/her avatar to communicate with other avatars (or other users in the

virtual world), or use his/her avatar to access any 3D objects, such as books, chairs,

glass, . . . etc, in the virtual environment. Since an avatar can move around and can

interact with any static or dynamic 3D objects within the virtual world, any action

that is performed by an avatar may require the DVE system to relate this information

Chapter 2 Distributed Virtual Environment ^

i i j i j I
i I i i I I I I 1 ！ 1 1 1 • j > S I I I i I I [I ^ 1 - i' + j 'Ĵ j

- U I — 1 — — 1 . . . — . . J A I —
m ； : : i T i • i
1 \ ： 丨 j 丨 ..1

4 I ： i I 丨 丨 i
• 丨 • i 丨 丨 i 丨 卜

； i ； I i i i i ,.
• I • i ！ i I ! •
* i \ -^'"i f- r r “^ r <

: i : I 玄 丨 ~ ^ 1 i 丨 1 丨 _ _ .
. . • • ‘ • , • . • • • •
, 鲁 _ * • »
» • ‘ * . ‘ «

：：D in in ； • ；
|r==n 1̂ ““；~I 尋*=^ jpik^^K^
II I Macll BMCompatible 旧̂10001卩3他16 « ‘ • M K ^ i B
Macll 口营- ^^^^______Js .̂=. .

司 Q —•̂""""̂.----- 旧̂! Compatible .

H _ 晒 Q
= 9 DVE Server \

^ S r ^ Laptopcomputer

r ^ " ^ ^ ^ - ^ i |
(I n t e r n e t 1 ™ ,

V_^^^^
Figure 2.1: MSDVE architecture for our DVE system

to other avatars so as to keep the information of the virtual world consistent.

One simple way to maintain the consistency of the virtual world is to broadcast any

action taken by any avatar to all other avatars in the system. However, this will incur

a significant communication overhead. In general, each avatar only needs to know the

activities that happened near his/her vicinity, for example, any activity that is within

10 meters of his/her position in the virtual world. Therefore, one way to significantly

reduce the total communication overhead is to allow every avatar to define his/her own

area of interest (AOI). In general, AOI is the region of the virtual world that if there

is any activity happened in this region, the avatar needs to know so as to update it's

own state and to make his/her view consistent. Figure 2.2 illustrates the concept^ of

AOI. In this figure, we have three avatars, A1, A2 and A3. Since the AOI of A1 and

^Without the loss of generaJity, we use a circle to represent the AOI of each avatar.

Chapter 2 Distributed Virtual Environment ^

A2 intersects, therefore, any activity that happened in the intersection region can be

seen by both A1 and A2. On the other hand, the AOI of A3 does not cover any other

avataFS. Therefore, the server does not have to inform A3 about any activity that was

generated by avatars A1 or A2.

‘ 厂 、 \
/ f ^ 、 (^ j

\K '勺 j V 乂
、 」 乂 乂

Figure 2.2: Avatars and their area of interest

2.3 Dynamic Membership

It is important to point out the dynamic characteristic of avatar in joining and leaving

the virtual world. The dynamic characteristic of avatar in joining and leaving the

virtual world refer to the fact the number of clients who are exploring a virtual world

may be dynamically changing in time. For example, for the virtual world of business

meeting we described in Chapter 1, the number of clients is fixed through the virtual

world application (e.g. people are conducting a business meeting over the DVE sys-

tem). On the other hand, the virtual world of the COMDEX show we described in

Chapter 1, the number of clients can vary in time since a user may want to logon to the

DVE system and explore the COMDEX virtual world anytime, or a user may decide

to leave the COMDEX virtual world when he/she found the electronic gadget in mind.

This dynamic characteristic of avatar in joining and leaving the virtual world in-

crease the necessity of an efficient partitioning algorithm. Moreover, Since an avatar

can move from one location to another, it is very possible that an avatar can move out

of the region that is managed by a server, say Si, and move into another region that is

managed by another server Sj where i • j. It is easy to observe that if we do not ad-

Chapter 2 Distributed Virtual Environment]_£_

just the avatar-to-server assignment, eventually, the workload among servers will vary

significantly and the amount of traffic^ between servers may reach an unacceptable

level. Therefore, it is important to find an efficient algorithm that can partition the

workload in the virtual world evenly so that every server will carry the same amount

of workload and at the same time, minimize the server-to-server communication. The

partitioning problem will be explored in Chapter 3.

^The traffic between servers is to keep the view of every avatar in the system consistent.

1

Chapter 3

Bandwidth and Computat ion

Reduction Techniques

Distributed Virtual Environment systems have adopted widely disparate approaches

for disseminating information about entity motion and modeling those entities at re-

mote hosts. The broad range of techniques reflects the relative lack of experience in

developing such systems. In this chapter, we discuss techniques used to reduce the

bandwidth and computational demands of large scale DVE systems.

Given the limitation of hardware, we must seek to reduce the bandwidth and

computational demands of DVE systems without introducing additional latency for

iiiforinalion dissemination. Three basic approaches are available:

• Transmit less information about, each entity and/or transmit entity updates less

fro(]uenlly.

• Liiiiit the iuiniber of entities that are of interest to each host.

• Have each packet provide information about multiple entities.

ln following sections, we describe the major techniques based on the above ap-

proaches.

11

Chapter 3 Bandwidth and Computation Reduction Techniques lJ^

3.1 Network Communication

Three- distribution methods [23] are shown in Figure 3.1. Multicast services allow

arbitrarily-sized groups to communicate on a network via a single transmission by

the source. Multicast allows a host to send data simultaneously to a set of (but

not necessarily all) locations. With broadcast, data is sent to all hosts while unicast

establishes communication between two hosts.

Q Q

C]̂^̂]̂̂ Network ^__^^]]^ C^[^ Network ^][^3^

Q 0 © © G5) ©
0 、� "'''

Broadcast ^r^^ 、，,. Multicast
Y

d]]^^^ Network ^̂ ^̂ ^̂]̂

Q ~ Q Q

Unicast

Figure 3.1: Examples of broadcast, multicast and unicast

Most DVE systems have employed some form of broadcast or unicast. For exam-

ple, broadcast is used in the earliest military SIMulator NETwork (SIMNET)[25] and

unicast is used in the Distributed Interactive Virtual Environment (DIVE)[26] system.

NPSNET-IV [27] is the first DVE application to use the IP multicast protocol.

Broadcast is not appropriate for DVE systems because the network becomes flooded

with unwanted traffic and it is difficult to avoid routing loops. Moreover, IP broadcast

requires that all hosts examine a packet even if the information is not intended for that

host, incurring a major performance penalty for that host because it must interrupt

operations in order to perform this task at the operating system level. As the number of

simulator increases, the traffic generated by these simulators increases to an enormous

level. The resulting traffic load can easily overwhelm the communication networks and

a portion of the transmitted packets can be lost.

Chapter 3 Bandwidth and Computation Reduction Techniques ^

Unicast requires the establishment of a connection or path from each node to every

other node in the network for a total of N * {N - 1) virtual connections in a group. It

is also not appropriate for DVE.

A general problem of using multicasting is that the IP Multicast protocol is neither

reliable nor order preserving. Thus packets might get lost, be duplicated or arrive

in different orders. Communications reliability often forces a compromise between

bandwidth and latency. Reliable multicast protocols are currently not practical for

large groups because in order to guarantee that a packet is properly received at every

host in the group, an acknowledgment and retransmission scheme is required. With a

large distributed simulation, reliability, e.g., as provided in TCP, would penalize real-

time performance merely by having to maintain timers for each host's acknowledgment

and by holding up flow when a packet is lost for retransmission. Flow control introduces

delay to the network to reduce congestion. Therefore, it is also not appropriate for

DVE which can recover from a lost packet more gracefully than from late arrivals - it

is impossible for real-time simulations to go backward in time.

3.2 Dead Reckoning

Dead reckoning [10] is used to reduce the number of state update messages that need

to be transmitted by each simulator for the purpose of maintaining accurate state

representation. The basic idea is to predict the trajectory of a simulation entity based

on its speed and orientation. In a dead reckoning system, each simulator has a high

fidelity model which maintains accurate information (position, velocity, orientation,

etc.) of the state of its own entity. Each simulator also maintains a less accurate

model, called the dead-reckoning model, for each entity participating in the simulation.

The high fidelity model of an entity provides the exact position/orientation of that

entity. The corresponding low fidelity model provides the dead-reckoned (inaccurate)

position/orientation of the entity. When the state of an entity changes, the simulator

of this entity updates its high fidelity model and compares it with the corresponding

dead-reckoning model. If the entity's dead-reckoned position/orientation has deviated

from the exact position/orientation by more than a threshold value, the simulator of

that entity issues a new message to communicate to other hosts the actual information

Chapter 3 Bandwidth and Computation Reduction Techniques ^

of its entity. When any simulator receives a update message for one of the dead-

reckoned entities, it corrects the dead-reckoning model for that entity and begins a

new extrapolation based on the new information of the received message.

The earliest implementation of dead reckoning protocol in DVE is the Amaze multi-

player game. In this game, every host transmits position (â o) and velocity (t;) updates

about local player once per second. The dead reckoned position at time t is given by:

x{t) = Xo + V * t

The SIMulation NETworking (SIMNET) system moves away from the fixed-rate

update approach used by Amaze. The host transmits an update packet either when

the true and dead reckoned models differ by some error threshold or when no update

has been otherwise within a five second timeout period. The Distributed Interactive

Simulation (DIS) protocol, IEEE standard 1278, is similar to the SIMNET protocol

in most respect, though its update packets also include acceleration, orientation, and

angular velocity information. The dead reckoned position at time t is given by:

X {t) = xo + V * t + I * a * t^

Some studies concluded that second-order dead-reckoning is the recommended

mechanism since it gives a good balance between accuracy and complexity.

The current state-of-the-art in dead reckoning algorithm raises several limitations

l3]. First, all existing protocols are tightly coupled to their underlying network envi-

ronment. Most systems have been designed for use over a LAN providing high relia-

bility and predictable latency characteristics. Even the DIS protocol design, targeted

for WAN, does not directly address the variable performance of long-haul communica-

tion networks. Second, existing simulation protocols do not accommodate the variable

modeling fidelity needs at each remote simulation host but instead associate a single

dead reckoning error threshold with the source transmissions. As simulations contain

increasing numbers of entities, hosts cannot afford to model all entities in full detail.

Instead, the simulation needs to support a continuum from low-fidelity modeling to

high-fidelity modeling so that individual host can select the appropriate level-of-detail

Chapter 3 Bandwidth and Computation Reduction Techniques ^

based on local requirements. Finally, analyses of dead reckoning protocol behavior

have concentrated almost exclusively on single entity types. These analyses do not of-

fer a general-purpose technique for assessing the protocol's behavior over more general

entity motion.

3.3 Message Aggregation

Message aggregation [24] attempts to merge a group of entity updates into an up-

date packet, thereby reducing packet header overhead in the network and reducing

packet-processing overhead at receivers. This approach is a viable way to reducing

bandwidth and computational load, yet it must be designed with care. Message ag-

gregation means that the earlier packets will have to wait for the arrival of additional

packets to combine into larger packets. If this waiting period becomes too large, the

earlier packets in the bundle would become too old and transmitting them would be

no better than discarding them. The size of the bundle must therefore be limited by

taking into consideration the maximum end-to-end delay permitted in the DVE system

as well as by the maximum packet size allowed by the network protocol. A key chal-

lenge in message aggregation is determining which entities to group together. Three

approaches have been used in previous distributed simulation systems: network-based,

organization-based, and grid-based.

3.3.1 Network-Based Aggregat ion

Network-Based Aggregations group simulation entities by their physical location in

the network. This approach is best suited for environment in which the wide-area

network or network tail-circuits represent the primary bandwidth bottleneck. It is

most beneficial only when there is some correspondence between the entity locations

in the virtual world and their physical locations. However, entities on a LAN need not

share any relationship to one another, either in terms of entity type or entity location

within the virtual world. A receiver who subscribes to the aggregation would typically

receive a considerable volume of information from entities that are of no local interest.

Chapter 3 Bandwidth and Computation Reduction Techniques J^

3.3.2 Organ izat ion-Based Aggregat ions

Organization-Based Aggregations groups simulation entities by their organizational

hierarchy. Although it is easy to construct and maintain, this approach offers limited

value because each organization's member entities may travel within different regions

of the virtual world. For common operations such as collision detection and scene

rendering, each host wants data about all entities located within a nearby region of

the virtual world. If only organization-based aggregations are available, the host must

subscribe to information from all organizations represented within that region, even

though most ofthe organizations' member entities may actually be far from the viewer.

Consequently, organization-based aggregations are most beneficial only when there is

some correspondence between the static entity organization and the dynamic entity

location within the virtual world.

3.3.3 Gr id-Based Aggregat ions

Grid-Based Aggregations [28] group simulation entities by their location within the

virtual world. The virtual world is divided into rectilinear or hexagonal grids whose

associated aggregation transmits packets bundling information about entities in that

region. Most existing implementation of grid aggregations dispense with a designated

aggregation entity and instead simply associate a multicast address to each grid. Each

entity transmits updates to the multicast group associated with its current virtual

world location, so although the data is not bundled into the same packet, the multicast

group allows remote hosts to select the virtual world region of interest. Grid-based

aggregations pose several disadvantages. They mask the organizational relationships

between the various entities. Moreover, establishing an optimal grid size for use by

all simulation hosts is difficult because the ideal grid size depends on the amount of

inter-host interaction in the simulation scenario and on the number of entities running

on each host.

Chapter 3 Bandwidth and Computation Reduction Techniques lJ_

3.4 Relevance Filtering

Large-scale distributed simulations model the activities of thousands of entities inter-

acting in a virtual environment simulated over wide area networks. Originally these

systems used protocols which dictated that all entities broadcast messages about all

j 'tivities, including remaining immobile or inactive, to all other entities, resulting in

explosion of incoming messages for all entities, most of which are of no interest.

Relevance filtering works by entirely eliminating the transmission ofirrelevant pack-

ets. Specifically, relevance filtering refers to the process of analyzing the semantic

contents of packets and selecting only the ones that meet certain criterion. Relevance

filtering can be effectively used to overcome the restricted bandwidth of WANs. Fil-

tering can also be used when the total traffic is large enough to overwhelm the small

bandwidth of a local site or when the slow nodes in this site cannot handle the fast

rate of message arrival.

3.4.1 Ent i ty-Based F i l ter ing

The filtering scheme uses a one-dimensional vector of distances for each simulated

avatar. The vector is stored in the gateway of the LAN where the simulator of this

avatar resides. Assuming that avatars in the simulated environment are numbered 1

through M, the vector for the ith avatar will be stored in the form

D{ — (dii, di2,..., dii 二 0,..., diM)

Where dij is the distance between avatar i and avatar j. We use ,,area of interest”

to specific a neighborhood region such that the avatars located within that region are

important to avatar i (e.g., they are visible to avatar i or can be affected by it). State

update messages from avatars outside this reachability region need not be delivered to

avatar i. Relevance filtering is based on the concept of distance computations. Filtering

is performed by network gateways at the transmission and reception of a message.

Filtering at transmission is the main process that could eliminate the majority of

irrelevant messages. Filtering at reception performs a final check and eliminates any

irrelevant messages that have not been detected during the transmission phase.

Chapter 3 Bandwidth and Computation Reduction Techniques ^

Algorithm Filter-at-Reception

/* This algorithm is executed in the gateway of site s, 1 < s < N */

/* Nodes in site s are numbered from Mg-i + 1 to Mg */

loop

wait for a new external packet

denote this packet by Ek and let node k be its sender

/* note that either k < Ms-i + 1 or k > Ms */

L - 0 /* L is a list of local nodes that should receivê ；^ */

/* update the position of object Ok */

for i = Ms-i + 1 to Ms do /* check all local nodes */

update dik based on the contents of Ek

if dik < Ri then L = L U {i} endif;

endfor;

if L = 0 then discard Ek

else send Ek locally to members of L endif;

endloop;

Algorithm Filter-at- Transmission

Loop

Wait for a new local packet

Denote this packet by Ei and let node i be its sender

G — 0 /* G is a list of gateways that should receive Ei */

For g e {l,2,..., iV} - {s} do /*check relevance of Ei for all other sites */

Relevance = false;

For k = Mg_i + 1 to Mg do

Recompute dik based on the contents of Ei

If dik < Rk then Relevance = true; exit inner loop; endif;

Endfor;

If Relevance = true then G = G U {^f)endif

Endfor;

If G — 0 then discard Ei

Else send Ei to each gateway in G endif;

Endloop;

Chapter 3 Bandwidth and Computation Reduction Techniques ^

Figure 3.2 shows an example offiltering. Consider a state update message generated

by a node in the first site(the sender node is denoted by S). Other local nodes in this

site as well as gateway Gi receive this message without much delay. Gateway Gi then

executes the filter-at-transmission algorithm. In the scenario shown in Figure 3.2,

gateway Gi determines that no node in the third site needs to receive the message.

Gateway Gi therefore sends the message to gateways G2 and G4 (but not to G3).

Each of gateways G2 and G4 executes the filter-at-reception algorithm and sends the

message only to those local nodes that need to receive it(receiver nodes are denoted

by R).

^ ^ ^ &
^^^^"^^"^^^3^^3:t l I lo

^ G1 . ^ _ ^ G4 ^ ^ ^ Z ^ ~ ^ ^

^ ^ ^
Figure 3.2: Filtering with four sites

Because of filtering, gateways may be deprived of receiving some critical packets

from external simulators. This makes the information maintained by each gateway

less accurate and can render their subsequent filtering decisions incorrect. We may use

Gateway Dead Reckoning or Periodic Broadcast to reduce or eliminate filtering errors.

We should notice that some entities simulated on the same site or LAN may far apart

in the virtual environment while entities simulated far apart on the WAN may be very

close in the virtual environment. This filtering approach filtered messages before they

being sent from gateways, irrelevant messages on the WAN are reduced dramatically.

3,4.2 Grid-Based F i l ter ing

Under grid-based filtering approach, the virtual world is decomposed into regions,

each of which has a state server to maintain the states of the simulation entities and

Chapter 3 Bandwidth and Computation Reduction Techniques ^

environment objects in that region. The set of nodes in a region form a multicast group.

Whenever a simulation entity changes its state, the update is sent to the multicast

group-associated with the region which the entity is currently in. When a simulation

entity crosses region boundaries, it will join the multicast groups corresponding to the

regions that are now within its sensing range, and leave those multicast groups that are

associated with regions which become outside of its sensing range. When a node joins

a multicast group, the corresponding region's environment state server will transport

the current state of those entities in the region to the node to bring it up to date.

= ; g 5 G = =
_ _ ^ ^ ^ J

丁 ^ \ . x y

- ^ ^ ^ — — -

Figure 3.3: The virtual world is decomposed into rectangular cells

The entity-based filtering is generally more computationally expensive than its grid-

based counterpart but is also a more efficient bandwidth reduction method. The grid

system has the potential of delivering irrelevant data to entities located outside the

circular region of interest but inside the grids covering this circular region. There is a

tradeoff in the choice of the grid size. Small size grids result in better filtering efficiency

at the cost of more overheads due to the management of a large number of multicast

groups. In [33], the use of hexagonal grids (rather than square grids) is advocated on

the ground that hexagons have uniform orientation and uniform adjacency and would

better approximate a circular area of interest than squares.

3.5 Quiescent Entities

If an entity becomes totally stationary (zero velocity and acceleration) and does not

move any articulated part, the dead-reckoning model implies that no state updates

Chapter 3 Bandwidth and Computation Reduction Techniques ^

would be emitted from this entity. Many DVE systems require such a quiescent entity

to regularly emit its state at a low rate (e.g. once every 5 seconds). These redundant

state updates, also called "keep-alive" messages or "time-out" packets, can comprise

70% of traffic in large scale DVE systems [33, 34]. One benefit of the keep-alive mes-

sages is that hosts joining an exercise in progress can correctly build their database and

confirm the existence of all other entities participating in the exercise. To reduce the

amount of extra traffic generated by stationary entities, we can consider two variable

timeout schemes: a tiered-timeout approach and a exponential-backoff approach.

The tiered-timeout approach defines a small number of specific timeout levels that

are selected explicitly by the entity based on its behavior. For example, when the entity

becomes idle, it transmits an timeout-length-announce message, announcing that it will

use a longer transmission timeout with its(less frequent) update packets. When the

entity's behavior becomes more dynamic, a corresponding timeout-length-announce

message restores the transmission timeout to the original(short) duration.

Using the exponential-backoff approach, the entity's timeout value is determined

implicitly based on its recent update behavior. Under this approach, the entity applies

exponential backoff to increase the transmission timeout if it has not transmitted

any update packets within the previous timeout period. The timeout is bounded by

some maximum value, and any position update transmission immediately restores the

timeout to the original(short duration) value.

3.6 Spatial Partitioning

It's clearly not practical to download an entire virtual universe every time you enter it,

nor could you store it all in memory on a normal computer system. Even if you could,

the sheer complexity of the virtual world would bring the 3-D rendering subsystem to

its knees. What we need to do is somehow partition the virtual world into smaller

pieces. Only the pieces that we can actually see would be downloaded, stored in

memory, and rendered.

Chapter 3 Bandwidth and Computation Reduction Techniques ^

3.6.1 Necessity of Spat ia l Pa r t i t i on i ng

One of the main reasons VRML [5] browsers appear to be so slow, especially for

indoor scenes such as building interiors, is that they must render everything in the

entire world. If the user is in a small room next to a huge concert hall, the browser

must still draw every single chair, every fold of curtain, every door and stairwell and

banister in the concert hall - even though the user can not see any of those objects.

This must be done for every single frame the computer renders. Therefore, the number

of frames per second that can be generated is quite small. Low frame rates not only

make the world less fun to explore, they can also make it nearly impossible to navigate

though the environment.

The use of Level of Detail(LOD) nodes can help a little, but they operate strictly

on the basis of distance and are therefore of limited use in this type of situation. More

importantly, they are of little use in indoor scenes where there is a high level of depth

complexity. Ideally, we never want to draw anything that the user cannot see. We can

move closer to this goal by using a technique known as spatial partitioning.

Spatial partitioning works by taking a volume of space and subdividing it into

smaller regions, then computing region-to-region visibility information. At any given

time, only a subset of the overall environment needs to be visible to the user; this dra-

matically reduces the amount of rendering that must be done and, therefore, increases

the frame rate.

There are a number of different approaches to partition a virtual world. The most

important ones are bounding boxes, quad trees, octtrees, and BSP trees. Binary Space

Partitioning (BSP)[32] trees are the approach most commonly used in computer games,

such as Quake. Regardless of which approach is used, the basic technique is the same.

On each frame, the user's viewpoint location is compared to a set of data structures

in order to determine which region the user is in. Once this region is found, the set of

visible regions is identified, and those regions that are not visible are flagged as being

hidden. In VRML, this hiding is accomplished using a Switch node whose whichChoice

evenIn is set to -1 for a hidden region.

Cfiapter 3 Bandwidth and Computation Reduction Techniques 23

3.6.2 B i n a ry Space Pa r t i t i on i ng Tree

A Binary Space Partitioning (BSP) tree is a data structure that represents a recur-

sive, hierarchical subdivision of n-dimensional space into convex subspaces. BSP tree

construction is a process which takes a subspace and partitions it by any hyperplane

that intersects the interior of that subspace. The result is two new subspaces that can

be further partitioned by recursive application of the method.

A “ hyperplane" in n-dimensional space is an n-1 dimensional object which can be

used to divide the space into two half-spaces. For example, in three-dimensional space,

the “hyperplane" is a plane. In two-dimensional space, a line is used.

3.6.3 B S P Tree Cons t ruc t ion

The BSP tree is constructed via a recursive algorithm. At each level, the process takes

a subspace and partitions it by a selected hyperplane which intersects the interior of

that subspace. This partitioning results in two new convex subspaces. The process

can then be recursively called to further partition these two subspaces.

2 n 2 outdoor n 1

Storage

AC〇 ‘ ^ n 二
„ b

., Room
left

side right

side

5 SGI Lab S U N Lab

V R ~l

Room

4

a corridor

Figure 3.4: The floor plan with partitioning planes added

The algorithm can be summarized as follows:

Chapter 3 Bandwidth and Computation Reduction Techniques ^

1. Select a partition hyperplane.

2. Partition the set of objects with the hyperplane.

3. Recurse with each of the two new sets.

For example, let us look at a floor plan in Figure 3.4 . We add the planes that

partition it into regions, and assign a number to each of those planes. The binary tree

corresponding to this partitioning is shown in Figure 3.5.

A .

W —t

/ K Side
left f 3)

- / H
outdoor r 4)

A > ^
ACO VR Storage y L 2
Room Room / \ ^

SGI Lab SUN Lab

Figure 3.5: The BSP tree for the lab

By traversing the tree and always rendering the far side of each partition first, the

correct drawing order is obtained. This avoids the need for Z-buffer testing, which

is an expensive per-pixel operation. In VRML, we might use Switch nodes to hide

regions that are not visible from the region that the user is in, so at least we do not

waste time to render things the user can not see.

The use of spatial partitioning can not only lead to dramatic improvements in

rendering performance, it can also be the basis for filtering of updates in a multi-user

environment. For example, if a user is standing in the ACO room, they don't need to

receive updates from someone standing in the SUN lab.

Chapter 4

Partitioning Algorithm

In this chapter, we present the partitioning problem of the DVE system. We first

formulate the partitioning problem and illustrate that it is an NP-complete problem

in general. We then present the iterative partitioning algorithm. The effectiveness of

this algorithm will be illustrated in Chapter 5.

4.1 Problem Formulation

Let us define the following notation.

P — Number of partitions or servers in the DVE system.

n 二 Number of avatars in the DVE system.

ai 二 Avatar i where i = 1, 2，... , n.

w{') = A function that maps the processing of messages from an avatar to

the computational cost of a server. For example, w{ai) represents the

computational workload for avatar ai.

/(a,6) 二 A function that maps the information exchange between avatars a and b

to the network communication cost.

Wi = A non-negative relative weight to represent the computational workload

cost on a server.

W2 = A non-negative relative weight to represent the importance of the

server-to-server communication cost. Note that Wi + W2 = 1.0.

C^ = Computation workload cost for a given partition configuration V.

C^ — Communication cost for a given partition configuration V.

25

Chapter 4 Partitioning Algorithm 26

Cp = Total cost for a given partition configuration V.

We can use a graph to represent the DVE system. Given a graph G = (V, E) where V

represents the set of avatars in the DVE system and E represents a set of edges so that

eij G E represents that avatar ai and aj should communicate with each other. Let V

be a partition that divides V into P (number of servers) disjoint subset Vi, V2,.. . , Vp

such that Vi n 巧.=0 for i • j and ufL^Vi 二 V. In other words, all the avatars in the

subset Vi will be assigned to the i ^ server in the system.

Given a partition V, we can define the workload cost C^ of this partition strategy

as:

P (\

C^ = ^ Y1 w{ai) — w* (4.1)

J = 1 \ a^eVj J

where w* = ^^^1 w{a{)/P is the computational workload per server under the per-

fectly balanced workload partition strategy. Therefore, C^ measures the deviation

from the ideal load balancing partitioning strategy.

For the communication cost between servers under a partition strategy V, we have

to consider the AOI of each avatar. Specifically, if avatar ai is within the AOI of avatar

cLj, then any action taken by the avatar a{ needs to be sent to aj. We let /(a^, aj) be

a function that assigns the communication cost between ai and aj. We define the

following indicator function between an avatar u and a partition Vf.

, _ T, 、 1 if 3 V G Vi such that avatars u and v are in V and l{u, u) > 0;
ADJ{u, Vi)= < 、 》

I 0 otherwise.

Then, given a partition strategy V, let Cij be the communication cost between partition

Vi and Vj. The communication cost Cij can be expressed as:

Cij = Y 1 max{/(w, v) * ADJ{u, Vj)} + V max{/(n, v) * ADJ(u, Vi)} (4.2)

^ ¼ "e^ n t ^ wK

Chapter 4 Partitioning Algorithm 27

Let Cp be the communication cost for the partition strategy V, we have:

-c^ = E E Q (4.3)
i=l j>i

Therefore, C^ represents the total server-to-server communication cost given the parti-

tion V. The overall cost^ for the partition strategy V, denotes by C^, can be expressed

as:

Cv = W i C ^ + W2C^ (4.4)

where Wi and W2 represent the relative importance of the workload cost and the

communication cost respectively. For example, to implement a DVE system across the

Internet, we can assign more weighting to W2 so as to reduce the communication cost.

Lastly, the DVE partitioning problem is to find an optimal partition V* such that

C^ = rmn {Cr} (4.5)

Before we discuss the proposed partitioning algorithm, we need to show the following

important result[l, 2 .

Theorem 1 The workload partitioning problem given in Equation (4.5) is NP-complete.

Proof: Let us consider the simplified version of the workload partition problem where

W2 = 0 (which corresponds to the case that the network has an infinite communication

bandwidth and therefore the server-to-server communication cost is negligible). Given

a set of nodes in V, we partition them into P disjoint subsets ^ , . . . , Vp such that

^f=iVi — V and the partitioning cost is:

P

Cj> = ^ ^ w{a) — w*

i=l aEVi

i ln this paper, we assume the communication cost between avatars which are assigned to the same

server to be negUgible as compare to the communication cost of avatars which are in different servers.

This assumption can be easily relaxed and be included in the total cost Cv.

Chapter 4 Partitioning Algorithm 28

The main idea is to transform the partitioning problem to the subset sum problem[14],

which is known to be NP-complete.

The subset sum problem can be described as follows. Given a set of real numbers

Af = {n1,n2,.. . ,A^v} and a real value k, the subset sum problem is to determine

whether there exists a partitioning of the set Af into disjoint partitions Afi，...，Afi

such that the sum of the elements in each Afi is equal to k.

Given an instance of the subset sum problem, the transformation works as follows.

We create an avatar for each element Ui G N , and the value of rii is equal to w{ai)^

the computational workload of the avatar a^. The number of partitions P for the

workload partitioning problem is equal to ^ J2meAf ^i^i)- If ^^ input instance of the

subset sum problem should return a yes, then it implies that the workload partitioning

problem can evenly divide up the workload among P servers. If the answer is no, this

implies that the workload partitioning problem will have a load imbalance cost which

is greater than zero. Since we can transform the subset sum problem in polynomial

time and then use the workload partitioning problem to solve the subset sum problem,

therefore, the workload partitioning problem is also NP-complete. •

4.2 Exhaustive Partition (EP) Algorithm

One way to partition the avatars among different servers is by the exhaustive approach,

that is, given n avatars in the DVE system and P servers, then each avatar can have

at most P choices, therefore, the total number of partition policies is

丨列={P){P)---(P) = P^ (4.6)

Note that although the exhaustive algorithm can find the optimal partition (e.g., par-

tition with the minimum cost C^), however, this algorithm can only be applied to a

small DVE system. For example, for n = 16, P = 2, the system needs to evaluate 65536

different partition policies. For a moderate sized DVE system with n = 16，P = 4, the

exhaustive algorithm requires approximately 4.3 x 10^ evaluations to find the optimal

partition.

Chapter 4 Partitioning Algorithm 29

L e m m a 1 The complexity of Exhaustive Partition Algorithm is 0{P^^^rP).

Proof: Let the number of avatars and the number of servers be n and P, respec-

tively. The complexity for calculating the cost between two servers is 0{n^). For one

evaluation of the cost between P servers, the complexity is 0{P^v?). We need P^

evaluations to get an optimal solution because there are P^ partition policies. Thus,

the overall complexity of the EP algorithm is 0(F"+^n^). •

4.3 Partitioning Algorithm

Due to the NP-completeness nature of the problem in Equation (4.5), we propose the

following partitioning algorithm. In general, the algorithm has the following steps:

Partitioning Algorithm:

1. begin

2. Use the recursive bisection partitioning(RBP) algorithm to find the initial partition Vi]

3. current_cost = Cj>;,

4. difference = oo;

5. while (difference > c/*){

6. Use the layering partitioning(LP) algorithm to find a new partition V2]

7. Given V2, use the communication refinement partitioning(CRP) algorithm

8. to find a new partition V'2]

9. difference = \Ĉ ' — current_cost|;

10. current_cost = C<p';
^2

11. }

12. final partition is v'2]

13. end

As illustrated, the partitioning algorithm has three components, namely, 1) the

recursive bisection algorithm, 2) the layering partitioning algorithm and, 3) the com-

munication refinement partitioning algorithm. The recursive bisection algorithm is

a divide-and-conquer approach in finding the initial partition Vi that reduces the

Chapter 4 Partitioning Algorithm 30

workload deviation and inter-server communication cost. The layering partitioning

algorithm and the refinement partitioning algorithm are based on linear optimization

techn-ique[6, 7, 8] to minimize the the workload deviation and the inter-server commu-

nication respectively. The algorithm will iterate the layering partitioning algorithm

and the communication refinement partitioning algorithm until a difference of the to-

tal partitioning cost is less than some pre-defined threshold d*. In Chapter 5, We will

show that the proposed partitioning algorithm can efficiently find a partition strategy

that can reduce the total cost.

4.3.1 Recurs ive Bisect ion Par t i t i on (R B P) A l g o r i t h m

The main idea about the recursive bisection partitioning algorithm is to divide up the

avatars in the virtual world into groups and then based on divide-and-conquered to

find a partitioning strategy V. In the recursive bisection algorithm, we first assume

that the AOI of avatar is in the form of a circle with an average diameter of V. We

then divide up the virtual world into N disjoint squared cells such that the area of a

cell is equal to V^. The rationale of dividing the virtual world into cells is that with

high probability, most of the communication between avatars is between neighboring

cells. Figure 4.1 illustrates that the virtual world is divided into 32 disjoint cells.

1 5 9 13 17 21 25 29
• •

• • .-•• . • / a---••••;-•.
•

•： /• '； '•-,

2 6 • 10 l'4, \ 1̂8 \ 22 26 30

>-----D / .-..,
二 ^] U ^ i _ 2

3 7 • 11 15 . \rt9^ 23-、—-----•' 27 31

• • \ .•• AOI • • • •
4 8 i2Y^Zi6 20 24 28 32

• Avatar • , 書

Figure 4.1: A virtual world represented by 32 disjoint cells

Given the state ofthe DVE system, we can construct a graph GnBP = {VRBP, ERBp)

as follows:

1. For each cell q, 1 < i < N, create a node Vi in VnBp.

Chapter 4 Partitioning Algorithm 31

2. Compute the workload for cell c ,̂ which is equal to Y^^j^ci ^o,j-

3. For any two adjacent cell Ci and Cj, there is an edge Ei j between Vi and Vj such

that C(Eij), the cost of Eij, is:

C{Eij) = ^ max{/(w, v) * ADJ{u, cj)} + ^ max{/(^, v) * ADJ(u, c,)}
^"』V^Cj V^ C{
ueci uecj

The recursive bisection partitioning algorithm is based on the concept of divide-

and-conquered. Without the loss of generality, let us first present the RBP algorithm

for N cells system and the number of servers {P) is equal to two. Let Vj^ be the

partition for the k^ server (where k = 1, 2 , . . . , P) with n < N cells, and initially, we

set:

V^" = VRBP^{VI ,V2, . . . ,VN} ； P? = 0 (4.7)

Let Vi be the i^^ partition configuration and let Cp-, the cost based on Equation

(4.4), be the cost of partition configuration Vi. Based on the initial partition, we have

Vo 二 (Vj；^, V2) and the corresponding C^v We can then find Vi by moving one cell

from V(^ to V2 and compute the cost Cp^. Note that the cell can be chosen in such a

way that the total cost CV>i is minimized, which can be achieved by considering each

cell in Vl^ and this process takes a linear time with respect to the total number of cells

in the system. Formally, we have:

Vi = { V ^ - W i) z = 0 , l , . . . , i V (4.8)

where 7^(i+i) can be derived by:

n^+i) - (l̂ r-“.+i))，g+i)

= (v f ^ - 0 - { � } ’ vl U {i;,}) for Vj E V^^-'^ and 6^(晰）is minimized (4.9)

Note that Cp^ and Cv^ represent the two extremes of the highest load imbalanced cost

(i.e., all cells are assigned to one server and there is no server-to-server communication).

Therefore, the RBP algorithm is to choose a configuration that:

7 ^ = {Vi 丨 Cp ,=og i^{C7^ j . }} (4.10)

Chapter 4 Partitioning Algorithm 32

The above bisection algorithm applies for P - 2. For a larger number of P, we can

first use the bisection partitioning algorithm presented above, then choose a partition

that has the largest cost and then apply the bisection partitioning algorithm again.

At the end of the RPB algorithm, we obtain a partition strategy VuBP that partition

the graph GnPB into P disjoint regions (or VuPB — {Vi U . . . U Vp}) such that all the

nodes in V{ will be assigned to the i ^ server.

Lemma 2 The complexity of Recursive Bisection Partition Algorithm is 0{N^{P —

1)) .

Proof: Let the number of cells and the number of servers be N and P, respectively.

The number of evaluation of the partitioning configurations is N[P-1). For each eval-

uation, we need to calculate the cost between two servers, the complexity is 0{N^).

Therefore, the overall complexity of RBP Algorithm is 0[N^{P — 1)). •

4.3.2 Layering Par t i t i on i ng (LP) A l g o r i t h m

Although the RBP algorithm can produce a partition strategy T*RBP, there are several

shortcomings in the approach. For example, the computational complexity is high (as

illustrated in Chapter 5) and at the same time, the overall cost Cj>^̂ ^p for pRBP can

still be reduced further. The main idea about the layering partitioning algorithm is

to label each avatar using a server number. The label (or server number) serves as a

possibility of moving an avatar to that partition. The decision of whether to move the

avatar can be formulated as a linear programming optimization which we illustrate in

this chapter.

Since we have obtained a partition VnBP from the bisection partitioning algorithm,

we can relax the assumption that the DVE world is divided up into cells. We first have

to construct a graph GLP 二 (VLP, ̂ p) such that each node in the graph represents

an avatar. An edge e,-j G E represents that avatar 04 is within the AOI of avatar

«i and the cost of this edge eij is /(a^, aj). In general, construction of the graph

GhP = {VLP, ELp) is:

Chapter 4 Partitioning Algorithm 33

Graph Const ruc t ion A lgo r i t hm :

1. begin

2. for each avatar ai, create a node V{ in GiP]

3. for each Vi G G iP , do { /* initiaze */

4. inltiaUze variables connected[t;i]=false;

5. initiaUze variables server_number[t;i] = k where Vi G Vk and 1 < k < P\

6. /* note that the server index k for Vk can be obtained from the output of the RBP algorithm */

7. }

8. for Vi G VLP do {

9. /* create edges and mark those nodes along the partition boarder as connected */

10. for Vj G VLP where i — j, do {

11. i f Vj is within the AOI of Vi then {

12. create an edge eji in E ip] /* Cji is an edge between Vj and Vi where Vi, Vj 6 VLP */

13. set the weight of eji = l{vj, Vi)]

14. i f (server_num[ui] ^ server_num[fj]) then {

15. connected[t;i] = connected[fj] = true; }

16. }
17. }

18.}

19. for aU Vi G G i p do{ /* connect the remaining nodes */

20. i f (connected[fi] = false) then {

21. i f ((there exists a node Vj which is a neighbor of Vi) /* Vj is a neighbor of Vi if eij exists*/

22. and (connected[fj] = true)) then

23. connected[wi] = true;

24. i f (connected[t;i] =false) do {

25. find a nearest node Vk such that connected[t;A:]=tme and server_num[t;t]=server_num[ufc];

26. create an edge eik G ELP;

27. set weight of eik = l{vi,vk) or e > 0;

28. connected[i;i]=tme;

29. }

30. if(connected[ui]=false) do {

31. find a nearest node Vk € G i p such that connected[t;A:]=tme；

32. create an edge eik € ELP;

33. set weight of eik = /(fi, Ufc) or e > 0;

34. connected[fi]=tme;

35. }

36. }

37. }

38. end

Chapter 4 Partitioning Algorithm 34

The purpose of the constructing graph GiP is to produce a connected graph so

that we can perform the layering step^, which can be described as follows.

First, a node Vi is considered as a hoarder node when there exists a node Vj such

that 1) there exists an edge eij G ELP and, 2) server_num[i;J + server_num[t;j]. In

other words, node vi is along a partition boarder. Let Shn be the set of all boarder

nodes in the graph GiP- For each node Vi G <S&n, we find a partition j* such that the

sum of weight from node V{ to partition j* is

max(E l{e,k)) for 1 < j * < P

Vk^Vj*

Then we set the layer number of the node ”“ denotes by layer_num[?;^], as j*. At this

point, we let <S/ to denote the set of nodes that has an assigned layer number. Note

that S! C Vip. The remaining step is to consider all those nodes in GLP which have

no layer number yet. To accomplish this, let us consider a node V{ which has no layer

number. For this node V{, we find a label j* such that the sum of weight from node V{

to nodes with label j* is

max(^ ^ l{eik)) where layerjnum[vk] =j*

Vk^^l

then we set layer_num[i'J, the layer number of node V{, as j*. Now for all those nodes

that have the newly assigned layer number, we add them to the set 5/. We repeat the

layer number assignment process for all those nodes in GLP that have no layer number.

Figure 4.2 illustrates a graph GLP with the corresponding edge weight and all the

boarder nodes are high lighted. Note that graph GLP is divided into three partitions,

namely, ^ , Vj and Vk. Figure 4.3 shows the assignment of layer number for the boarder

nodes and Figure 4.4 illustrates the assignment of layer number for the remaining

nodes.

After we finished layering all nodes in the graph G^p, we can consider moving

some of the nodes with layer number i to server i, where 1 < i < P, so as to reduce

the workload deviation (e.g., reduce the workload cost according to Equation (4.1)).

^The pmpose of the layering is to identify which node can be assigned to a different servers.

Chapter 4 Partitioning Algorithm 35

一 一 z - - r ---、、、

weight^^ ^ / ^ _,^^Or | ^ ^ , . < r ^ ^ ' ^H2^ ^ ^ 1 1 ^ ^ non-boarder

^ r ^ ^ ^ ^ - ^ P ^ "°a"
: ^ ^ ^ ^ 二

nodes < ^ = ^ ^ ^ ^ ^ V ^ ^ ^ ^ ^ ^ ^ : ^ ^

、、、、、、y Vk 乂 ^ -、 一

Figure 4.2: Graph G i P with boarder nodes (nodes in bold circle), edge weight and

three partitions Vf, Vj and Vk

_

、 、 、 、 、 , 、 ， _ — " " "

Figure 4.3: Assigning layer numbers to boarder nodes in GLP

The number of nodes that can be moved can be formulated as an linear optimization

problem. Let cqj represents the number of nodes in partition V{ that can be moved to

partition Vj (e.g., these are the nodes that are in partition V{ and with layer number

equal to j). For example, in Figure 4.3(b), cqj — 2. Let |̂ -| represents the total

number of nodes in partition Vi (e.g. in Figure 4.3(b), |V̂-| = 7). Let X{j to be the

decision variable of the number of nodes that we eventually move from partition Vi to

Vj so as to reduce the workload cost of the DVE system. We would like to minimize

the total number of movement, or minimize J2i<i^j<p ^ij, so as to achieve workload

balancing property.

Chapter 4 Partitioning Algorithm 36

_

、 、 、 、 、 . : 、 ， • - 二 “ "

Figure 4.4: Assigning layer numbers to other nodes in G iP

The formulation of the linear optimization is:

Minimize ^ X{j (4.11)

i<i^j<P

subject to

0 < Xij < aij < |K-| (4.12)

1 N
E (工。.-：•?‘）= 1 巧 . 丨 - p J 2 < ^ i) for 1 < j < P (4.13)

l<i<P i=l

The constraint in Equation (4.12) is to ensure that the number of nodes that we move

from partition V{ to partition Vj is less than or equal to the feasible number of candidate

nodes. The constraint in Equation (4.13) is to ensure that the difference of the total

number of nodes that move into server i and the total number of nodes that move out

of server i is equal to the workload deviation of server i under the ideal load balanced

situation. In other words, we try to make sure the workload in server i is as close to

the ideal workload balanced situation as possible.

Lemma 3 The complexity of Layering Partitioning Algorithm is 0{P^).

Proof: Let the number of partitions be P. We will have P{P — 1) variables and

P(P - l) + P = P^ constraints. The number of iterations required for linear program-

ming is problem dependent. A better estimate is 2(p2 + p (p _ i)) . The time required

Chapter 4 Partitioning Algorithm 37

for one iteration of the linear programming is 0{P(P — 1) * P^). Thus, the overall

complexity for the linear programming is 0(P^). •

To illustrate this linear optimization problem, let us consider the graph in Figure

4.4. The formulation is given as follows.

Min im i ze X{j + Xik + Xji + Xjk + Xki + Xkj

subject to: Xij < 2; Xik < 5; Xji < 3; Xjk < 2; Xki < 2; Xkj < 4

Xij + Xik — Xji — Xki 二 7 - 6 = 1

Xj{ + 3)jk — ^ij — ^kj — 5 — 6 — —1

Xki + Xkj - Xik - Xjk 二 6 - 6 = 0

The solution to the above optimization problem is X{j — 1, Xik = Xji = Xjk 二 Xki —

Xkj = 0. Therefore, we choose the node that has a layer number equal to j in partition

Vi and move it to partition Vj. In selecting which node to move, we start from the

boarder nodes, then to the nodes in the inner layers. Note that during the node

movement, only those nodes which will not increase the communication cost will be

moved. After we moved a node vi from partition V{ to Vj, we re-assign the server

number of node vi as server_num(f/)= j. The process stops when the number of nodes

moved is equal to the solution. The new partitioning policy VLP for the graph G^p in

Figure 4.4 is given in Figure 4.5.

_

�̂ I Tr Z
、、J Vk Z _ ’ 一 —,

Figure 4.5: New partition

Chapter 4 Partitioning Algorithm ^

Let the workload weighting Wi and the communication cost weighting W2 be 0.5

and 0.5, respectively. Assume the workload for maintaining an avatar is 10.

Before we apply the LP algorithm,

P / \

c^ = J2 E ^K') — ^*
j=l \ aiEVj J

二 10 X (|7 6| + |5 — 6| + 16 — 6|) = 20

C^ = Cij + Cji + Cik + Cki + Cjk + Ckj

= (2 + 3) + (1 + 3) + (4 + 2 + 3) + (4 + 4 + 3) + (4 + 5) + (5 + 2)

= 4 5

Cv = WiC^ + W2C^

二 0.5 x 20 + 0.5 x 45 = 32.5

After we applied the LP algorithm,

P (\
C^ = ^ ^ w{ai) - w*

3 = 1 \ a^ev, /
二 10 X (|6 一 6| + |6 6| + |6 - 6|) = 0

C^ — Cij + Cji + Cik + Cki + Cjk + Ckj

= (1 + 3) + (1 + 3) + (4 + 2 + 3) + (4 + 4 + 3) + (4 + 5) + (5 + 2)

= 4 4

Cv = WiC^ + W2C^

二 0 . 5 x 0 + 0 . 5 x 4 4 = 22

We can see that the cost is reduced by more than thirty percent. In Chapter 5, we

illustrate that by using the layer partitioning algorithm there is a large reduction in

the overall partition cost.

4.3.3 C o m m u n i c a t i o n Re f inement Par t i t i on ing (C R P) A l g o r i t h m

The layering partitioning (LP) algorithm is to reduce the overall workload cost of the

system. In the communication refinement partitioning (CRP) algorithm, the objective

Chapter 4 Partitioning Algorithm 39

is to re-assign some nodes (or avatars) to another partition so as to reduce the server-

to-server communication cost.

Given the partitioned graph GhP = { V L P , ^ p } from the LP algorithm, let us

consider all the boarder nodes. Again, a node Vi is considered as a boarder nodes

when there exists a node Vj such that 1) there is an edge from e{j G E i p and, 2)

server_num(t'i) + server_num(”j). Let Shn be the set of all boarder nodes. For each

Vi G Skn, we compute Tj, the communication cost to partition Vj, as:

r , = ^ l{eik) for 1 < j < P (4.14)

vkeVj

Let Tj* = maxi<j<p{rj}. Then Fj* is the maximum communication due to node v^

and this communication is to partition Vj*. Then the node V{ G Sbn will be assigned

a label j*, that is, communication_number[vi)=j*. The motivation of finding the

communication_number is that if we move node V{ to partition Vj*, then it is possible

for us to reduce the communication cost. We repeat this process for all nodes in

Sbn- At the end of this communication number assignment, we have determined the

possible partition assignment of all those boarder nodes so as to reduce the system

communication cost.

In order to determine the final partition assignment, we can formulate the problem

as a linear optimization problem. Let /3ij denotes the number of nodes in partition Vi

that has the communication_number assignment equal to j. We define yij to be the

decision variable of the number of nodes that we eventually move from partition Vi

to Vj so as to reduce the communication cost of the system. We can formulate the

problem as:

Maximize ^ yij (4.15)

i<i^j<P

subject to

0 < Vij < (3” for 1 < i ^ j < P (4.16)

Z ! {Vij - Vji) = 0 (0 < j < P) (4.17)
l<i<j

Chapter 4 Partitioning Algorithm 40

The constraint in Equation (4.16) is to ensure that the number of nodes that we move

from partition Vi to partition Vj is less than or equal to the feasible number ofcandidate

nodes. The constraint in Equation (4.17) is to ensure that the number of nodes that

move into server i and the number of nodes that move out of server i is the same so

as to maintain the workload balancing property.

Lemma 4 The complexity of Communication Refinement Partitioning Algorithm is

0(P6).

Proof: This algorithm also uses linear programming technique. Let the number of

partitions be P. We will have P{P — 1) variables and P[P - 1) + P = P^ constraints.

The number of iterations required for linear programming is problem dependent. A

better estimate is 2{P^ + P{P — 1)). The time required for one iteration of the linear

programming is 0(P{P — 1) * P^). Thus, the overall complexity for the linear pro-

gramming is 0(P^). •

Let us illustrate the refinement algorithm given that we have the partitioned graph

GLP in Figure 4.5. The optimization formulation is:

Maximize Xij + X{k + Xji + Xjk + Xki + Xkj

subject to: Xij < 0; Xik < 1； Xji < 0; Xjk < 0; Xki < 1； Xkj < 1

^ij + ^ik — ^ji — ^ki — 0

^ji + ^jk — ^ij — ^kj ~ 0

^ki + ^kj _ ^ik _ ^jk = 0

The solution is X{k = 1, x^i — 1， all other values are zero. Therefore, we can ex-

change one node between partitions V{ and Vk to reduce communication cost. The

new partitioning is given in Figure 4.7.

Chapter 4 Partitioning Algorithm 41

_

、 、 、 、 、 丄 ’ : ， 一 " " 7

Figure 4.6: Before refinement

_

、、、、、、 、 、 � ' ’ 、 -、 、一

Figure 4.7: After refinement

After we apply the CRP algorithm,

P / \

c^ = E E _) - ^ *
j=l \ o,,^Vj J

= 1 0 X (|6 - 6| + |6 - 6| + |6 6|) = 0

C^ = Cij + Cji + Cik + Cki + Cjk + Ckj

= 1 + 1 + (4 + 2 + 3) + (4 + 2 + 3) + (4 + 5) + (3 + 5 + 2)

= 3 9
Cv 二 WiC^ + W2C^

= 0 . 5 X 0 + 0.5 X 39 = 19.5

Chapter 4 Partitioning Algorithm 42

4.4 Parallel Approach

DVE-systems are growing to include more entities and clients. As the number of clients

places a heavy burden on both the networking resources and computational resources

available to the system, we will have to add more servers to maintain the virtual

world. As the number of clients and servers increases tremendously, the processing

time of our previous algorithm also increases tremendously. To keep the system cost

at a lower level, we need a partitioning algorithm with high efficiency. We introduce

a parallel approach to improve the performance. In general, the parallel approach has

the following steps:

Para l le l App r o a ch :

1. beg in

2. Divide the virtual world into four smaUer virtual worlds;

3. Distribute the smaller virtual worlds to different processors;

4. for each processor i do {

5. Use the recursive bisection partitioning(RBP)

6. algorithm to find the initial partition Vi；

7. ciuTent_cost 二 Cp^ ；

8. difference = oo;

9. wh i l e (difference > d*){

10. Use the layering partitioning algorithm(LP) to find a new partition 7̂ 2；

11. Given V2, use the communication refinement partitioning(CRP) algorithm

12. to find a new partition V】.,

13. difference = |C^/ — current_cost | ；

14. current_cost = C„/ ；

‘2

15. }

16. }
17. Combine the smaUer virtual worlds into one large virtual world;

18. Use LP algorithm to find, a new partition V3;

19. Use CRP algorithm to find a new partition V3 based on V3；

20. final partition is P3;

21. end

Consider the partitioning of a virtual world with 16 servers. This can be completed

in two stages: in the first stage, we can roughly divide the virtual world into four smaller

Chapter 4 Partitioning Algorithm 43

virtual worlds. In the second stage, we apply the partitioning algorithm we discussed

in section 4.3 to partition each of the small virtual worlds. The partitioning processes

can be carried out in different machines. From the experiments in chapter 5, we can

see that the parallel approach can have a comparable partitioning cost as compare to

the unparallel approach. The advantage of this approach is that the time required for

applying RBP, LP and CRP algorithms to each small virtual world will be much less

than the time required for applying those algorithms to the whole large virtual world.

We may add one more stage to this approach. In this additional stage, we combine all

small virtual worlds and then apply LP and CRP algorithms to the combined virtual

world once. We can see that the result is much better than the result of unparallel

approach.

4.5 Further Observation

We can integrate the filtering approaches we discussed in chapter 3 with our proposed

partitioning algorithm to cancel much of the WAN traffic. We can first apply the

proposed algorithm to partition/map clients and entities to different servers. We then

use filtering approaches to further reduce communication and computation cost. Al-

though the good intrinsic behavior induced by the initial mapping will be likely to

deteriorate slowly over time (as avatars move and interact), the overall benefit of a

good initial mapping will still be significant. For many DVE systems (meetings lasting

only few hours or shows dominated by slow moving visitors), the positive impact of a

good initial mapping will most likely persist throughout the duration of the exercise.

This suggests that proper consideration needs to be given to the initial entity-to-host

mapping during the preparation and planning for an exercise. Another related issue

with similar potential benefits concerns entities belonging to the computer controlled

objects. These entities are not associated with actual clients and do not therefore have

to be tied up to a fixed machine. As these entities move and change state over time,

a dynamic migration protocol can be used to remap each entity to the host in DVE

systems that will most preserve the locality behavior mentioned above. The design

and evaluation of this migration protocol is one task worthy of investigation.

Chapter 5

Experiments

In this chapter, we present experiments for the algorithms that we discussed in the

previous chapter and apply them to both a small and a large virtual world. For the

small virtual world experiment, since the problem state space is manageable, we can

compare the performance of our proposed algorithm with the exhaustive partitioning

algorithm, which guarantees to produce the optimal partition P*. We also carry out

experiments to investigate the dynamic characteristics of avatars and the effectiveness

of parallel approach. In general, we use three different methods to generate the position

of each avatar in the virtual world. These methods are:

• Uniform Distribution: Let the position of an avatar be {x, y) and the values of

X and y are uniformly distributed between (0, Vx) and (0, Vy) where Vjr is the

horizontal dimension of the virtual world and Vy is the vertical dimension of the

virtual world.

• Skewed Distribution: Given the size of the DVE world as (T4, V^), we divide the

number of avatars in the DVE system into four equal sized groups, namely, Gi,

i = 1,2,3,4. Let (a:, y) be the position of the avatar in group Gi. The value of

(x, y) is generated in such a way that x is uniformly distributed between (0,华）

and y is uniformly distributed between (0,令).Under this scheme, most of the

avatars will be positioned within the square area defined by the two coordinates

[0,0] and [^,¾^].

• Clustered Distribution: Given the size of the DVE world as (T4, V^), we will

generate avatars around k > 1 clusters. First, we randomly generate k points

44

Chapter 5 Experiments 57

{xi, yi),... , {xk, Vk) such that Xi and yi are uniformly distributed between (0, K)

and (0, Vy) respectively. Then we divide the number of avatars in the DVE system

-into k equal-sized groups, namely, G1,G2, . . . ,Gk. For each avatar in group Gi,

we generate its position in {x, y) where

‘ 0 if Xi + dx X Q < 0

X = V^ if a;,- + dx X Q > Va： (5.1)

、Xi + dx X Q otherwise

’ 0 if yi + dy x Q < 0

y = y^ if yi + dy X Q > y^ (5.2)

、yi + dy X r̂ otherwise

In our experiments, dx and dy are generated uniformly between (-1,1) and the

parameter Q depends on the size of the virtual world. For example, we set

Q — 0.4 for the virtual world composed of 4 x 4 units and Q, 二 3.0 for the virtual

world composed of 25 X 25 units.

5.1 Experiment 1: Small Virtual World

In this experiment, we use a small virtual world which is composed of 4 X 4 units with

the total number of avatars equal to 13 and the number of servers P equal to three.

We set both the workload weighting, Wi and the communication cost weighting, W2

to 0.5. The AOI of each avatar is equal to 1.

Table 5.1, 5.2 and 5.3 illustrate the experimental results under the uniform, skewed

and clustered location distributions respectively. It is important to observe that the

proposed algorithm can have a comparable partitioning cost as compare to the exhaus-

tive algorithm and at the same time, only requires a very small fraction of processing

time.

Chapter 5 Experiments 46

Algorithm II Exhaustive || RBP LP CRP~[

System Cost Cy 11 3.47 11 3.47 3.47 3.47

Computation Time (secs) || 1202.12 || 0.01 <0.01 <0.01

Table 5.1: Small virtual world under uniform distribution

f "A^o r i t hm || Exhaustive || R B P LP CRP

r s7s t em Cost Cp 11 5.45 11 9.66 7.45 7.45

" ^ m p u t a t i o n T i m e (s e c s) || 1290.88 || 0.01 0.01 <0.01

Table 5.2: Small virtual world under skewed distribution

5.2 Experiment 2: Large Virtual World

In this experiment, we use a large virtual world which is composed by 25 x 25 units

with the total number of avatars equal to 2500 and the number of servers, P = 8. The

AOI of each avatar is equal to 0.5. Figure 5.1 illustrates this virtual world under three

different location distributions.

Table 5.4, 5.5 and 5.6 illustrate the experimental results under the uniform, skewed

and clustered location distributions respectively. Since the size of the virtual world is

large, it is impossible to use the exhaustive algorithm (since it has 8^^°° possible parti-

tion schemes). It is important to observe that by applying the proposed algorithm, we

can generate a good partition with much lower execution time. For all location distri-

butions, we iterate the partitioning algorithm three times. During the first iteration,

we execute the RBP, LP and the CRP algorithms. For the second and third iteration,

we only need to iterate the LP and the CRP algorithms. After three iterations, the

system cost converges to a fixed value.

Algorithm || Exhaustive || RBP LP CRP

Sys temCos tCp 11 4.39 11 9.42 7.12 7.12

I Computation Time (secs) || 1199.68 || 0.01 0.01 <0.01

Table 5.3: Small virtual world under clustered distribution

Chapter 5 Experiments 59

14oa

12oa

f f
1 ooa *

800. -1 0" B P

^ _ L P

600. g C R P

'h
、 j p] ^ n

1 I I
0]_MJB__L_^ •~L_ , • ~ L ^

1 2 3

Iteration Count 1 1 1 2 2 3 3

Algor i thm K B P LP C H P LP C R P LP C R P ~ f

Systeni Cost Cp 1 l(>Q.03 443.58 441.06 399.61 399.61 358.07 358.07

‘ C u t n p u t a t i o n T imc (st-cs) 162 0. >1 0.38 0.4 0.26 0.35 0.2.1

Table 5.4: Exj)criinental results under uniforin distribution

5.3 Experiment 3: Moving of Avatars

In this cxporimeiit, wc uso lho same setting as Experiment 2. W'e a.ssunie lliat the

;iviilars in the secoiKl exj)eriivient will niovo to anotlior position with a probability of

0.3 aiui slay in current position willi a probability of 0.7. If an avatar should inove,

it will movo to a raiulom location wliich is wilhin its AOI . Since lho initial partition

is already known (o.g., this is 1 lie partition we obtained fr()m l.:X|)(、riin(”it 2), all \vc

neotl tc) j)(^rform is to itoratr l!io l,P and lho (' R P algorithms. Ap;aiii, 1 lio syslnn cost

C(MJvergos to a sniall value aftor tliroe iterations.

rahle 5.7. 5.8 aiui 5.9 illustrate tho oxperimcMilal resuIls uiidcr tlic iiiiiforin, skewed

aiul cluslertnl location di.slril)iitions respectivcly. It is imporlaiit lo observe tlial by ap-

plying; thc LP aiul ('RI^ partitioning algorithms itoralively, wr can p;et a ^^ood |)artit_.ioii

within sliort l ime intervals.

Chapter 5 Experiments 48

500a

4 5 0 a

— n
400a

3 5 0 Q

300a _Ft 已 P

2 5 0 a i L p

2ooQ ra^ m^ r | "| nc R p

15。’ 1 I
1 0 0 Q 1 ¾ 1 \

丨 j

500- i ‘

0 國,~~LJ_J_,__LJ_U
1 2 3

Iteration Count 1 1 1 2 2 3 3

fATgorithm RBP LP CRP LP CRP LP CRP

System Cost Cy 4405.73 2188.83 2188.83 2143.36 2143.36 2136.24 2136.24

t Computation Time (secs) 226.1 0.39 0.39 0.36 0.33 0.35 0.31

Table 5.5: Experimental results under skewed distribution

5.4 Experiment 4: Dynamic Joining and Leaving

In this experiment, we use the same setting as the one found in Experiment 3. That is,

the avatars in the second experiment will move to another position with a probability

of 0.3 and stay in current position with a probability of 0.7. Moreover, approximate

50 avatars left the virtual world and at the same time, approximate 150 avatars joined

the virtual world. Again, the system cost converges to a small value after several

iterations.

Table 5.10, 5.11 and 5.12 illustrate the experimental results under the uniform,

skewed and clustered location distributions respectively. It is important to observe

that within a short period of time (less than 5 seconds), we can get a good partition

scheme.

Chapter 5 Experiments 49

1200a

- ioooa

8000.
^ 1 " B P
rB_

6 0 0 0 - ^ p r n 圔匕卩

教, H •。R P

4000. ^； H
s"<̂ ^H

% I
2000- '̂-.； 圖

？ 、 ' ^ ^ ^ ¾
： ^ •

0 ^ I I"“^飄 I

1 2 3

Iteration Count 1 1 1 2 2 3 3

t"Algorithm RBP LP CRP LP CRP LP C R P _ [

System Cost Cp 9714.83 6974.77 6531.38 6120.48 6114.32 5668.01 5668.01

Computation Time (secs) 166.5 0.33 0.39 0.36 0.31 0.36 0.27

Table 5.6: Experimental results under clustered distribution

Iteration Count 1 1 2 2 3 3

Algorithm moved LP CRP LP CRP LP CRP

System Cost Cp 4839.62 485.01 485.01 462.78 462.78 462.78 462.78~[

Computation Time (secs) - 0.41 0.44 0.39 0.47 0.45 0.48~~[

Table 5.7: Experimental results under uniform distribution after avatars moved

5.5 Experiment 5: Parallel Approach

In this experiment, we use a very large virtual world which is composed by 30 x 30 units

with the total number of avatars equal to 25000 and the number of servers, P = 16.

The AOI of each avatar is equal to 0.5.

Table 5.13, 5.14 and 5.15 illustrate the experimental results under the uniform,

skewed and clustered location distribution using the same approach as experiment

2. Since the size of the virtual world is 10 times larger than the large virtual world

in experiment 2, we need to add more servers to maintain the virtual world. As

both clients and servers increase tremendously, the time consumed in partitioning the

Chapter 5 Experiments 50

Iteration Count 1 1 2 2 3 3

t "X I j ^ r i t hm moved LP CRP LP CRP LP _ g H ^

System Cost Cy 4405.73 2188.83 2188.83 2143.36 2143.36 2136.24 2136.24

Computation Time (secs) - 0.43 0.42 0.40 0.35 0.38 0.34

Table 5.8: Experimental results under skewed distribution after avatars moved

Iteration Count 1 1 2 2 3 3

] " ^ o r i t h m moved LP CRP LP CRP LP CRP J

f ^ y s t e m Cost Cy 34317.51 9160.67 8817.35 6643.21 6643.21 6643.21 6643.21 |"

tT)omputat ion Time (secs) - 0.36 0.39 0.35 0.25 0.36 0.31 |

Table 5.9: Experimental results under clustered distribution after avatars moved

virtual world also increases tremendously. To improve the performance, we use a

parallel approach which is described in previous chapter. It is important to observe

that by using the parallel approach, we can generate a good partition with much lower

execution time. First, we divide the very large virtual world into four smaller virtual

worlds. For all divided virtual worlds, we iterate the partitioning algorithm twice.

During the first iteration, we execute the RBP, LP and the CRP algorithms. For the

second iteration, we only iterate the LP and CRP algorithms. After two iterations, the

parallel approach can have a comparable partitioning cost as compare to the unparallel

approach used in experiment 2. At the same time, the parallel approach only requires

a very small fraction of processing time. The result will be much better if we take

more time to execute the LP and CRP algorithms once on the combined virtual world.

Table 5.16, 5.17 and 5.18 illustrate the experimental results. Figure 5.2 illustrates the

processing time under different approaches. Figure 5.3 illustrates the partitioning cost

under different approaches.

Iteration Count 1 1 2 2 3 3

Algorithm Dynamic LP CRP LP CRP LP CRP |

System Cost Cp 1469.15 1215.09 1055.30 1055.30 1019.90 1019.90 1013.36

Computation Time (secs) - 0.60 0.40 0.70 0.44 ~ 0.59 0.46 “

Table 5.10: Dynamic join and leave under uniform distribution

Chapter 5 Experiments 51

Iteration Count 1 1 2 2 3 3

f -A j ^ r i t hm Dynamic LP CRP LP CRP LP _ _ C R ^

fSys tem Cost Cy 9066.94 6061.10 5849.96 5828.21 5461.38 5461.38 5456.71 j"

Computation Time (secs) - 0.63 0.44 0.62 0.52 0.64 0.50

Table 5.11: Dynamic join and leave under skewed distribution

Iteration Count 1 1 2 2 3 3

] - ^ r i t h m Dynamic LP CRP LP CRP LP C H Q

T ^ s t e m Cost Cy 39662.02 17T99.05 10889.81 10825.43 10359.41 9825.01 8 8 7 3 . 6 ^

rC ^mpu t a t i o n Time (secs) - 0.43 0.39 0.43 0.32 0.44 0 . 3 4 ~

Table 5.12: Dynamic join and leave under clustered distribution

1 2 3

Algorithm Bi-P Layering Refinement

f " ^ s t 73013.99 40453.82 38656.35

‘T ime (s) 641.22 44.91 38.02

Table 5.13: Uniform, 30x30 cells, 16 partitions, 25000 avatars

1 2 3

Algorithm Bi-P Layering Refinement

Cost 195224.53 130151.50 126849.17

Time(s) 811.00 34.61 31.10

Table 5.14: Skewed, 30x30 cells, 16 partitions, 25000 avatars

1 2 3

Algorithm Bi-P Layering Refinement

Cost 265481.66 163869.56 157648.94

Time(s) 749.25 51.13 35.82

Table 5.15: Clustered, 30x30 cells, 16 partitions, 25000 avatars

1 2 3

Algorithm Parallel Layering Refinement

FCost 56931.76 37818.00 37694.41

Time(s) 7.00 44.61 27.59

Table 5.16: Combined uniform world, 30x30 cells, 16 partitions, 25000 avatars

Chapter 5 Experiments 52

[."''.V. . .. ;.-.s'- •••.• ..,::、 ；~•- ； '• C '̂-- :. .. •'•' :.. • ••• . •；
:..” ‘^ ;... •.••• /.. • 二.： • 、.,..，••.....• , • •" .

* •/. '... .?..' • .V'.y ...• :.•••, .v-i . •'；. ••••_

：• • • 、.H •• ••• •/• •• • • • • • • . • •/ • • • • • • • • • • • ••
。'：••：.； •：••• , M-. “::。.…..’••=•：•；••/•. :...:̂ 、•..：•:：•
.....-V •；.；•.•..' ；,.. ; ,/. . .-.、••.". ••_• . :•. .-.....-.'..
:- ::.V .>..i-.v >.：•：':： :：>^?.-；：：/；；>." ：•；•...
r;: —:••..‘;•；::. :.-.-'^:.^.-v/、•:">::•• r:,;...:-.V5;: \ • • ,. • . • ••• • • • • » ••_• • • S •• •• • • • • •« « • •• • •• • » • _ • • • •* • • • • . •• • • • •

〜 . . , .，• •..' •..,:• :••• ..• •.•:. •• ••••-:?.、.....•...•：•,：':"

.、•- ...、.-- -.<,•• • w " . . ' . . . _. :v,. 二、. ..-', ..••».•
• • . . • , • . . , . . •• •• •• • . ••• • • • • • ... •• • - • > . . . •

-.:•••.•,.....•. ...••?• • :• ••...-•• •.••:.•、•:•. •：••..•.. - ； •.••.•••
；'•.、-.;>V:/.广..•.:、....-7 •-.?•. •• .(•••..<.、. r、.，
>••〉《. .: . /.. -^-.::.A:.:::...::.rcL:::. :.-. •：•.：•

.•••.•广.二.:::-: ‘ •• • .;.v;- --̂ •；•••••• :v?,v. ..x、-:
. . : - ； ^ - ^ :... ••：> ： •• >•••：： •；•. - V . . . ： ' ； i ; : 7 v ; v 〜.：:•

::。、• ;>\' A： ' '：- - VvV. . ；；/ -； -;: '-=.;::̂ V
.:、:..•• . Vf.v ..'. 、‘ ••,、. /.々：'.广，、：..-....::.厂

.:••、；M.X.:.:,-.:? ；•：: .:.• \<. / : . 乂 V 〉 . ： : . 〉 .

':。":’：•’•• .r .rx -.：：'-：-^ ..y. . [.<.:",::•:.:•:. ...'.、...:• .、 - >,. •...: •'广.••• ：... ••:"• V.,...: . -.••. '• . .. ••• ；. :.-...../.'•*•..•••" . , v..•" •>• .-.•.... ..•• ••
•,:.-、 .,:..二：.-.>....- .•〔••.... •..::.'..•、•..•..'•... •.:

. • • . . • • - • • . : : , : . • . . ••• •..•�.... ••• •••••• . V . - . ' . . '..••:......
,.•：•..••• ••• -v: , , ••：:••.• •• ...•- •• ••-• ••.*••;•/•.：.：•

(a)
p^^^"^^：• •• •• “̂•• ./ •• •: . • :. :. •....
.••• •. . . • • . • • ..:• •• • : • • •• • . . •

•• ； • : • / . ••• : . . • .• •• •••..

•,• • •••. •• •.. ： _••..

/ • 一 ‘ • • • • .• • • • • • • • • • • • • • • • •
• , •• •• •• • • • • •• - • • 一 • • • •： . • • • • .••: • . . • . ••• 、 • .- ••广.•、•: •• ..

• •• : V-' • 、• • ，•• '., • • ： •• •

• • . •• • r : ••• • • • • •• }• •• « • ••• •
. ••• ••• •• • ： •• • . •• • ‘ • • • •, •• • ̂ •••

.:-.... ; -f...'v.-.-::-V^ -.. ：••,：• •••• . . • . : ,

.•.•： • .•• :.. .、•• . . :•• ••： • .

• '•：< •".:::, ：、 . . 1 .
,、• . • , .. . ••. • • .: •；- •• . • • • •
;.、:•?•:•• ..-̂ -iV.'::v::Sv!. • • . : ‘ .••••• •,.•, • ：
J、....-:、 .:, 、.-"•..•:、•;.、：. • . ’、....• • .• ••
•.；••；..'.•；• ..::.".. .:.).":lr ..?:•: .'•• • •• ...:• .. •• . ..V"、.....-.i-.-:"..-�.'.:...- V. >. .. • .. •
• • •«： xv . V:̂ :';:V -;V-.;;.:̂ .： . • •• •• .. ••••

丨 弼 ^ ^ ： 招 树 : : : , ： ： ： : . : ; ： - • ,

| « ^ ^ ^ 义 勢 . ， : . 、 乂 : 、 : ： : ' • - : .
^ ^ 絲 斌 : . 。 。 : ? 、 •

^ ̂ ^'jf*s JVv -7̂V • • ••• • »• \ * • • • •

绞 ^ ^ 糊 ： 添 ： : . , . . . : . - 1
^

— ； ~ - • . 7
y »'"̂：：：：/̂ :•••

• . -.0M'f^y>-^"

_::、. - V ^ ^ t >
_ : . . • : : : 讀 饭
_ V T : :.. • -::. V，•• .^,::-. . .. • .. •

^¾<¾:^^-.. . • . .V , . . ^V:- • • . .
^ ¾ ; - : . . " : ¾ ¾ ¾ ! ^ • • • . .
:•:/•••••::. : ^ | p f e ; . : .
•• • r : . H f e ^ A . .

• . -̂. -V',..........

• .. 、.>r-- • •• .
.• » • . • ：• •. • •

(c)

Figure 5.1: Virtual world with a 25 X 25 cells under under (a) Uniform (b) Skewed

(c) Clustered location distribution

Chapter 5 Experiments 53

1 2 3

.- Algorithm Parallel Layering Refinement

Cost 128759.35 81014.57 80542.74

|Time(s) 8.00 25.22 32.28

Table 5.17: Combined skewed world, 30x30 cells, 16 partitions, 25000 avatars

1 2 3

—Algorithm- Parallel Layering Ref inement|

Cost 172824.14 148949.02 145532.83

J ^ W (s) 9.00 28.50 37.61

Table 5.18: Combined clustered world, 30x30 cells, 16 partitions, 25000 avatars

1000 n

900 -

800 - [困

700 - •
i.^

600 - n C R P

500 - HLP

400 - H Parallel/Unparallel

300 -

200 -

100 -

EZ1 ^H r7Tj

0 H~—~"I~™"~~I~~’~I~‘™®"~I~~~" ~I~“™'~I

1 2 3 4 5 6

Distribution Uniform Skewed Clustered

Algorithm Unparallel Parallel Unparallel Parallel Unparallel Parallel

Time 641.22 Y^ 811.00 8.0 — 749.25 9.0

「 T i m e (L P) 44.91 44.61 34.61 25.22 51.13 28.50

Time(CRP) 38.02 27.59 31.10 — 32.28 35.82 37.61

Figure 5.2: Processing time under different approaches

Chapter 5 Experiments 66

300000 n

250000 -

200000 - p
_ Parallel/Unparallel

150000 - n n^ _ L P

i~l n n C R P
100000 - 1

fTl I 1 1

50000 - '' n H ^

m |] I ^
0 |卜_ l|l ^ '| ' ' | ' M l | l _ 1|1、釅 I

1 2 3 4 5 6
fT)istribution Uniform Skewed Clustered

Algorithm Unparallel Parallel Unparallel Parallel “ Unparallel Parallel

"~^st 73013.99 56931.76 195224.53 128759.35 265481.66 172824.14

" P ^ s t (L P) 40453.82 37818.00 130151.50 81014.57 163869.56 148949.02

Cost(CRP) 38656.35 37694.41 126849.17 80542.74 157648.94 145532.837

Figure 5.3: Cost under different approaches

Chapter 6

Implementation Considerations

Software design and implementation is complicated by issues such as complex interac-

tions among models, real time man-in-loop requirements, and transparently integrating

real systems with virtual components so the DVE presents a consistent and realistic

virtual environment. Having studied the related techniques of DVE, I mention some

considerations in designing our DVE system.

6.1 Different Environments

Most work in distributed virtual environment has been done on vehicle simulation.

However, the DVE we implemented is mainly indoor environment. Although there are

many similarities between vehicle simulators and building walkthrough systems, there

are several important differences [31]. First, typical vehicle simulator models contain

terrain data augmented with plants, buildings, roads, etc. In these models, space

tends to be "sparsely occluded". In contrast, building models typically contain walls,

ceilings, and floors which partition space into rooms. These models tend to be "densely

occluded". Second, in a vehicle simulator, the observer viewpoint navigation is limited

to movements possible by the vehicle. During normal execution, the observer does not

generally move sideways, or change direction suddenly. As a result, there is a large

amount of coherence in the observer position from frame to frame, and it is relatively

easy to predict future observer viewpoints from the current observer viewpoint and

direction of travel. In addition, since the observer rarely travels close to detailed

55

Chapter 6 Implementation Considerations ^

model features, realistic-looking detail can be achieved using texture maps applied

to relatively few, distant polygons. In contrast, in a building system, the observer

may step in any direction, spin around quickly, or look very closely at any feature of

the model. Therefore, many of the optimizations used by vehicle simulators based on

assumptions of observer navigation are not possible in a indoor environment system.

All these differences must be carefully studied in implementing indoor walkthrough

system.

6.2 Platform

Our previous virtual environment implementation was developed in performer on SGI

platform. The rendering quality is quite good by using this combination. However,

our application could not run on other platforms because performer is only supported

by SGI machines. As a result, we do not have enough machines to test our large scale

DVE systems because there are less than fifty SGI machines in our department. To

make our application run on cross platforms, we implement our new DVE by using

Java and VRML. This work has been done by a group of final year students supervised

by Professor John C.S. Lui.

New languages like Java and VRML [36, 37](Virtual Reality Modeling Language)

provide innovative methods for building virtual worlds. Java may provide the capa-

bility to migrate processes and objects across diverse platforms by using active mes-

saging. VRML is a language for describing multi-participant interactive simulations

-virtual worlds networked via the global Internet and hyperlinked with World Wide

Web. VRML merely describes a 3D scene and methods for interacting with models.

Though VRML 2.0 allows the use of Java to provide object behaviors, VRML itself

does not provide a mechanism for communication among distributed users. Java and

VRML complement each other like no other creative tools in existence. As both of

these languages are object orientated, we can create an easy to use and maintainable

software library. Other people may use our software library to develop their applica-

tions or plug-ins for our DVE system.

In our DVE system, the virtual environment is built by using VRML, and the

Chapter 6 Implementation Considerations ^

client and server is coded in Java. The primary advantage is that Java is a powerful,

portable language. We may take advantage of its multithreading capabilities, both in

the client and in the server. We might also use Java's synchronization capabilities and

its automatic memory management.

Since Java classes are portable, both our client and our server are able to run on

any platform that has a Java VM and networking capabilities, and clients running on

one platform are able to communicate with servers running on a different platform.

The primary disadvantage of using Java is performance. An all-Java solution is too

slow to handle a very large number of clients, and doing real time streaming audio is

out of the question. However, the situation is improved because SUN released a new

Just-in-Time Compiler(named Hot Spot).

As we began to implement the test bed for our DVE algorithms by using Java and

VRML, I found that VRML worlds were much slower than state-of-the-art 3-D com-

puter games. The speed difference maybe the tradeoffs that have been made between

speed and generality. Computer games are extremely limited in their capabilities rel-

ative to VRML, as a result, they can use rendering techniques that are not applicable

to the more general-purpose worlds that are being built in VRML.

However, some of the techniques used in computer games can be adapted in the

construction of VRML worlds, in a way that does not require anything more than a

standard VRML browser with support for scripting in Java. In previous chapter, I

described the most important of these techniques: spatial partitioning.

6.3 Lessons learned

The most important lesson learned during this work is that generating interesting, de-

tailed models is difficult. In developing our previous system VINCENT, approximately

six "person months" were spent during creating multi-resolution models for the floor

of Department of Computer Science and Engineering. Clearly, modeling tools must be

developed that are more user-friendly and more automatic in order to make interac-

tive visualization of complex 3D virtual environments a reality, even a virtual reality.

Recent research in image-based rendering techniques [38] allow us to walk through a

Chapter 6 Implementation Considerations ^

real world environment created by real photos. How to integrate these techniques with

our DVE system is one task worthy of study.

i

i
i

I i

Chapter 7

Conclusion

In this thesis, we discussed the scalability problem in DVE and presented related tech-

niques to solve this problem. To build a scalable DVE system, we have to resort to

the multiple servers DVE architecture. Under the MSDVE architecture, there is a

necessity to balance the workload and at the same time, reduce the server-to-server

communication of a DVE systems. We formulate the partitioning problem and show

that it is NP-complete in general. We then propose a computation effective parti-

tioning algorithm so that we can quickly obtain a good partitioning policy V. Our

experiments show that our proposed algorithm can achieve significant reduction in

both communication and computation cost. We also illustrate that we can adopt the

partitioning algorithm to a virtual world wherein users move from one position to an-

other position and the situation that avatars can dynamically join or leave the virtual

world. We also investigate the possibility of paralleling the partition algorithm so as to

obtain a partition policy for a large virtual world that allows many clients and servers.

With increasing video resolution, network bandwidth, and processor speed, DVE

systems are becoming increasingly common in the scientific, industrial, and entertain-

ment industries. People's expectations of DVE systems have also increased consid-

erably. More entities are expected to be supported. Moreover, there is a growing

demand to increase the realism and fidelity of DVE systems. Modeling and imple-

menting real-time atmospheric effects, including wind, smoke, clouds, haze, rain and

snow, will produce a flood of traffic that may exceed state update messages in cur-

rent DVE systems. We believe that the techniques we discussed and the partitioning

algorithm we proposed can enable the scalability of DVE systems.

59

Appendix A

Simplex Method

A linear programming problem [7，8] is designed to identify a set of nonnegative vari-

ables minimizing a linear objective function subject to a set of linear constraints. A

standard form of the linear program is:

minimize z = c^x (A.1)

subject to Ax = b (A.2)

x > 0 (A.3)

where A is a given matrix of order m x n, m < n, c is an n-vow cost vector, b is an

m vector, and x is an unknown vector of n components. The superscript T denotes

vector transposition.

Consider a linear programming problem in its standard form[A.l, A.2, A.3], and

assume that the rank of A is m. If B is any nonsingular m x m submatrix of A, and

N is the remaining submatrix of A, we can write (A.2) as

厂 1 厂 X B 1

B,N b =b (A.4)
- J L Xjsj' J

where Xs and X^ have m and n — m components, respectively. It is assumed for

convenience that B consists of the first m columns of A.

If Xpj = 0, the solution to (A.4) is said to be a basic solution Xs — B~^h and the

nonsingular matrix B is the basis. If , in addition, Xs > 0, we say that Xs is a basic

feasible solution.

60

Theorem 2 If there is a feasible solution [satisfying constrains A.2 and A.3], there is

a basic feasible solution. Furthermore, if there is an optimal solution minimizing z,

there is an optimal basic solution.

This fundamental theorem is crucial to developing the simplex algorithm, the most

powerful solution method for the general linear programming problems. There exist

several distinct versions of this method and many numerical implementations. We

used the primal simplex method in its revised version, which is the most common

linear program solver.

An iteration of the revised simplex algorithm proceeds as follows:

Step 1. Given the basis B such that

XB = B-H>0

Step 2. Solve

B^X = CB

for the vector of simplex multipliers A.

Step 3. Select a column a^ of N such that

Pk = CNk — \Tak < 0

We may, for example, select the a& which gives the largest negative

value of pk' If

pT = c^ - X^N > 0

stop; the current solution is optimal.

Step 4. Solve for y the system of equations

By = cLk

Step 5. Find

^ = ^ i = m i n i <K^ , , , > o [f ^

If none of the yi,s are positive, then the set of solutions to Ax 二 b, x > 0

is unbounded and z can be made an arbitrarily large negative number. Terminate

the computation.

Step 6. Update the basic solution:

^i — X{ 一 Oyi, 2 ^ k

Xk = 0

where Xk is the new basic variable.

61

Step 7. Update the basis B and repeat from Step 2.

Step 1 assumes that an initial feasible basic solution is available. In order to find

such a solution to Ax — b, x > 0, consider an auxiliary minimization problem

m

min ^ yi (A.5)

i = i

subject to Ax + Iy — b

X > 0

y > 0

where y is a vector of artificial variables. If we can find an optimal feasible solution to

(A.5) such that

m

X > = o
z=l

then we have also obtained a basis yielding solution X s , If (A.5) has minimum value

greater than 0, there is no feasible solution to Ax = 6, x > 0. Problem (A.5) is easy

to solve using the same simplex method since it has an obvious initial feasible solution

X = 0, y = b, for B — I. This two-phase method is implemented in our program to solve

the optimization problem. Phase I is used to find a feasible solution to Ax = b, x > 0,

or to determine that no feasible solution exists. Phase II uses the basic feasible solution

generated in phase I and solves problem A.1, A.2, A.3.

62

Bibliography

1] John C.S. Lui, M.F . Chan, Efficient Partitioning Algorithm for the Distributed

Virtual Environment System, 6th International Conference on Distributed Multi-

media Systems(DMS'99), 1999.

'2] John C.S. Lui, M.F. Chan, K.Y. So, T.S. Tam, Balancing Workload and Com-

munication Cost for a Distributed Virtual Environment^ The Fourth International

Workshop on Multimedia Information Systems (MIS'98), 1998.

；3] John C.S. Lui, M.F. Chan, T.F. Chan, W.S. Cheung, W.W. Kwong. Virtual

Exploration and Information Retrieval System: Design and Implementation^ The

third International Workshop on Multimedia Information Systems (MIS'97), 1997.

4] John C.S. Lui, Oldfield K.Y.So, Peter T.S. Tam, Deriving Communication Sub-

graph and Optimal Synchronizing Interval for a Distributed Virtual Environment

System. IEEE Multimedia System'99.

5] Hanqiu Sun, M.F. Chan, K.K. Hung, T.S. Tam, Feedback Mechanisms in Assist-

ing the Performance of Virtual Ping-Pong Game, extended version of the paper

appeared in Proceedings of 1998 Workshop on Computer Graphics.

6] Chao-Wei Ou, Sanjay Ranka, Parallel Incremental Graph Partitioning. IEEE

Transactions on Parallel and Distributed Systems, Vol. 8, No. 8, August 1997.

7] Wayne L. Winston, Introduction to Mathematical Programming - Applications and

Algorithms. Duxbury Press, 1995.

8] Maciej M. Syslo, Narsingh Deo, Janusz S. Kowalik, Discrete Optimization Algo-

rithms. Prentice-hall, 1983.

63

'9] T. Ballardie, P. Francis, J . Crowcroft. Core Based Tree: An Architecture for Scal-

able Multicast Routing. ACM S IGCOMM '93, pp. 85-95, September 1993.

10] J im Williams and Ming-Hsing Chiu, Performance and Reliability Analysis ofRele-

vance Filtering for Scalable Distributed Interactive Simulation, A C M Transactions

on Modeling and Computer Simulation, July 1997, Pages 293-331.

11] W . Broll. Distributed Virtual Reality for Everyone: a Framework for Networked

VR on the Internet. Proceedings of the IEEE Virtual Reality Annual International

Symposium, March 1997.

12] D. E. Comer. Internetworking with TCP/IP: Volume I’ Principles, Protocols, and

Architecture. Prentice Hall, 1995.

13] Sandeep Kishan Singhal, Effective Remote Modeling in Large Scale Distributed

Simulation and Visualization Environments^ Ph.D. thesis, Department of Com-

puter Science, Stanford University, 1996.

14] M.R . Garey and D.S. Johnson. Computers and Intractability: a Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1978.

15] P.A. Bernstein, V. Hadzilacos, N. Goodman Concurrency Control and Recovery

in Database Systems, Addison Wesley, 1987.

16] S.E. Deering, D .R . Cheriton. Multicast Routing in Datagram Internetworks and

Extended LANs. ACM Transaction on Computer Systems, Vol. 8，pp. 85-110, May

1990.

17] V. Firoiu, D. Towsley. Call Admission and resource Reservation for Multicast

Sessions. IEEE INFOCOM Conference, San Francisco, 1996.

18] R. Muntz, J .R. Santos, and S. Berson. RIO: A Real-time Multimedia Object

Server, ACM Performance Evaluation Review, ACM Press, vol. 25, no. 2, p.29-35,

September, 1997.

19] R.R. Muntz, J. Renato Santos, S. Berson. A Parallel Disk Storage System for

Realtime Multimedia Applications, accepted for publication in the Journal of In-

telligent Systems. For more information about the Virtual World Data Server

project, please refer to http://dml.cs.uda.edu/vwds/projects.

64

http://dml.cs.uda.edu/vwds/projects

20] M. R. Macedonia, D.P. Brutzman, M.J. Zyda, D. R. Pratt, P.T. Barham, J.

Falby and J . Locke. NPSNET: A Multi-player 3D Virtual Environment over the

-Internet, Proceedings of ACM Symposium on Interactive 3D graphics, April 1995.

.21] 0 . Stahl and M. Anderson, DIVE: A Toolkit

for Distributed VR Applications, Swedish Institute of Computer Science, SICS.

http://www. sics. se /dive/description, html.

'22] R. C. Waters, J. W . Barrus. The rise of shared virtual environments, IEEE Spec-

trum, pp. 20-25, March, 1997.

23] Michael R. Macedonia, Michael J. Zyda, A Taxonomy for Networked Virtual En-

vironments, IEEE Multimedia'96.

'24] Calvin, James 0 . , Application Control Techniques System Architecture, Techni-

cal Report RITN-1001-00, MIT Lincoln Laboratories, Lexington, Massachusetts,

February, 1995.

25] McDonough, J., Doorways to the Virtual Battlefield, Proceedings of Virtual Re-

ality'92, pp. 104-114.

26] C. Carlsson and 0 . Hagsand, DIVE - a multi-user virtual reality system, Proc.

IEEE VRAIS'93, pages 394-400, Sept 1993.

27] Michael R. Macedonia and Donald P. Brutzman, NPSNET: A Multi-Player 3D

Virtual Environment over the Internet, Proceedings of the A C M - 1995 Sympo-

sium on Interactive 3D Graphics, 9-12, April 1995.

28] Katherine L. Morse, Interest Management in Large-Scale Distributed Simulations,

Technical Report ICS-TR96-27, UC Irvine.

29] Hai Xie, Sami Tabbane and David J. Goodman, Dynamic Location Area Manage-

ment and Performance Analysis, IEEE conference, 1993.

30] Behrokh Samadi and Wing S. Wong, Optimization Techniques for Location Area

Partitioning, 8th ITC Special Seminar on Universal Personal Telecommunications,

OCT 1992.

65

http://www

31] Thomas Allen Funkhouser, Database and Display Algorithms for Interactive Vi-

sualization ofArchitectural Models, Ph.D. thesis, Computer Science, UC Berkeley,

-1993.

.32] Fuchs, Kedem and Naylor, On Visible Surface Generation by A Priori Tree Struc-

tures, SIGGRAPH '80, ppl24-133.

33] Macedonia, M., Zyda, M., Pratt, D., and Barham, P., Exploiting reality with mul-

ticast groups: a network architecture for large scale virtual environments^ Proceed-

ings of the 11th DIS Workshop on Standards for the Interoperability ofDistributed

Simulation, Sept. 1994, pp503-510.

.34] Van Hook, D., Calvin, J., Newton, M., and Fusco, D., An approach to DIS scala-

bility, Proceedings of the 11th DIS Workshop on Standards for the Interoperability

of Distributed Simulation, Sept. 1994, pp347-355.

'35] Russo, K., Schuette, L., Smith, J., and Mcguire, M., Effectiveness of various new

reduction techniques in ModSAF, Proceedings of the 13th DIS Workshop on Stan-

dards for the Interoperability of Distributed Simulation, Institue for Simulation

and Training, Orlando, Sept. 1996, pp587-591

36] Bernie Roehl, Justin Couch, and Geoff Brown, Late Night VRML 2.0 with Java,

Ziff-Davis Press, 1997.

:37] Rodger Lea, Matsuda and Miyashita, JAVA for 3D and VRML Worlds, New

Riders Publishing, 1996.

38] Y.F.Chan, M.H.Fok, C.W.Fu, P.A.Heng and T.T.Wong, A Panoramic-based

Walkthrough System using Real Photos, Pacific Graphics '99.

66

^

t •

I

(

j

1
I

i

i

" 釀

i
r

C U H K L i b r a r i e s

圓_1__11
0 0 3 7 E 3 5 M D

