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多維數據之互動數據開採及形象化 

摘要 

數據開採一向以來都是計算機科學的熱門題材，不少研究員花了很多 

努力去尋找怎樣可以從數據中攝取有用知識的有效方法。在眾多數據開採 

的題目中，最能引起研究員興趣的題目可算是：怎樣從大型數據庫中發掘 

關聯規則及數據分佈的形態。在眾多被建議的演算法中，確有不少成功的 

例子。但這些數據開採的演算法都擁有同類的缺點，就是缺乏與使用者之 

間的互動及沒有提供充足的勘察予使用者。在這篇論文中，本人將會介紹 

一個名為「互動數值資料分析」的演算法。 

「互動數值資料分析」的目標是解決兩個最常見的數據開採疑難，它 

們分別是數值屬性的開採關聯規則及聚類分佈之發現。這個演算法是屬於 

遞增模式。在開採過程中，能提供高度的使用者互動性。當與數據顯示器 

結合後，使用者更能探索到被發掘出的規則或聚類。若要處理高維數據 

時，還可以應用空間削減技巧來達到高性能的數據聚類過程。總括來說， 

「互動數值資料分析」是一個高效率的數據開採演算法。 

論文作者：朱康歧 

哲學碩士二年級學生 

香港中文大學電算機科學及工程學系 
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Abstract 

Data Mining has been a hot topic in computer science. Many researchers have 

been putting lots of efforts on how to extract explicit knowledge from large 

databases. Among the problems in data mining, discovering association rules 

and finding useful patterns in large databases has attracted lots of interest in 

recent years. There are many successful algorithms being proposed. However, 

most of the proposed algorithms for data mining problems are suffering from 

the same demerit: lack of user interaction and exploration. In this paper, a 

new algorithm called Interactive Data Analysis on Numeric-data: IDANis being 

introduced. 

IDAN is aimed to solve the two of the most common problems in data min-

ing: mining association rules and discovering clustering patterns with numeric 

attributes. This algorithm is incremental and providing more user interaction in 

the mining process. At the same time, it allows the user to explore the rules or 

clusters being found when integrated with a visualizer. By applying dimension-
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ality reduction techniques, IDAN can provide good performance for clustering 

high dimensional dataset. 
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Chapter 1 

Introduction 

Recent progress in data retrieving technologies has made us much easier to col-

lect massive amounts of data. Organizations ranging from private business to 

government bureaucracies are now able to gather a large amount of information, 

which they are interested. Many of them have accumulated a huge size of da-

ta over recent decades. Successful organizations treat such data, as important 

pieces of infrastructure. They can help them in business decision, like setting up 

marketing strategies. However as the size of data grows, it is much more difficult 

for us to analyze such a large amount of data. Methodologies of discovering use-

ful information from these data are highly in demand. This spurs a tremendous 

interest in the fields of knowledge discovery and data mining. 

The knowledge discovery or data mining can be defined as the process of 

nontrivial extraction of implicit, previous unknown and potentially useful infor-

mation from data in databases [9]. An example of information, which is most 

likely to be interested, is discovering correlation, or co-occurrences of transaction-

al events. We classify this type of problems as mining association rules. These 

rules being discovered are very useful, which can discover interesting relationship 

among attributes exist in the dataset. A typical example is the basket data mod-

el. People are interested in the relations between items bought by customers. 

1 
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They are looking for rules, which tell them the occurrence of a particular item 

will probably lead to the occurrence of another item. An example of such an 

association rule might be that 98% of customer that purchase bread also buy 

eggs. We call bread as the antecedent and milk as consequent of the rule. The 

following are some of the examples of associations may be interested: 

1. Finding all association rules with 'milk' as consequent. These rules may be 

very helpful for the shop to plan what to do to boost the sale of a particular 

items. 

2. Finding all association rules with 'chocolate cookie，as antecedent. These 

rules may be useful for the shop to identify which items will be affected if 

it discontinue to sell chocolate cookie. 

Discovering association rules is very useful when we are hunting for interesting 

relationships that might contain in database. Useful association rules may be 

very helpful for us to predict behavior. However, there are many associations 

rules within the database and not all of them are meaningful to us. So the 

problem of mining association rules involves not only identifying the rules, we 

also need to decide which rules is important and useful to us. 

Among the techniques in the field of data mining, cluster analysis is used to 

discover interesting distribution and patterns in the underlying data. Clustering 

analysis is one of the means for us to classify groups of objects by exploring data. 

Organizing data into sensible groups is one of the most fundamental modes of 

understanding and learning. In everyday life, children learn how to distinguish 

between cats and dogs, between tables and chairs, between men and women,..., 

etc, by continuously improving subliminal classification system. Classification 

has always played an essential role in science. The following are some of the 

examples: 
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1. In biology, people try to classify living organisms into different kingdoms or 

classes by investigating the common features of a particular kind of living 

一 things. 

2. In astronomy, people try to classified stars into various category by mea-

suring their light intensity and their surface temperature. 

3. In marketing, researchers try to identify market segments which are groups 

of customers with similar needs. 

In the past, clustering were usually performed in a subjective way, by relying 

on the perception and judgment of the researchers. They use a specific way, 

which is well suited to their situations, to perform clustering. In this paper, 

we will concentrate on clustering objects by means of different measurements or 

attributes. We use a multi-dimensional vector to represent the measurements of 

an object. 

1.1 Problem Definitions 

Now we have some brief idea on the problems of mining association rules and 

clustering database and how these problems is related to the everyday life. Before 

we go into the details, we try to introduce the mathematical representation of 

these problems. 

Association Rules 

For the problem of discovering association rules, we can formulate the problem in 

a systematic manner. Given a database T with attributes A = {Ao, ^ i , ^2,..., ^n}, 

generally an association rule can be expressed in the form: 
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Ci G X =^ C2 e Y 

where C1,C2 G A such that Ci n C2 二 0, and X, Y are some values within 

the domains of Ci and C2 respectively. 

We called Ci is the antecedent and C2 the consequent of the rule. We can 

extract over thousands of rules from the database T. There are some measures 

called support and confidence on the association rules which reflect the goodness 

of an association rule. The support measures the probability for a record to 

satisfy both the antecedent and consequent parts of the rule. It is defined as: 

support 二 F(Ci e X A C2 e Y) 

The confidence is somehow measuring the probability for a record to satisfy 

the consequent part given that it satisfies the antecedent part. It can be expressed 

as: 

, \ support 
conf = P{C2 e Y\p, e X) 二 尸 ( 二 X ) 

The support and confidence are having different physical meanings. Rules 

with high support value do not guarantee to have high confidence. Usually, a 

'good' rule should have both high support and confidence. 

Clustering 

Clustering analysis is the process of classifying objects into subsets. Suppose 

there are n objects which are denoted by the set X. 

AT = {X1,X2,X3, ...,Xn} 
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where x̂  is the zth object. A clustering, C, of Af separates A' into k subsets 

{Ci, C2, C3, "., Ck} satisfying the following: 

Ci^d) fori = [l,k\ 

C1UC2U...UCfc = A' 

Ci n Cj = 0 for i,j = [1, k] and i / j 

We call C a clustering of Af. A clustering is a collection of non-empty sets so 

that each set must contain at least one object. Besides no object belongs to more 

than one set. The union of all the sets must equal to the set of all objects. Usually 

we cluster the objects by looking at the measurements or attributes associated 

with the objects. Such information is often represented by a multi-dimensional 

vector. 

In this paper, we will concentrate on how to find out the clustering in databas-

es. Each record in the database is treated as a multi-dimensional point by apply-

ing simple transformations. We treat the clustering problem as follows: given n 

data points in a c/-dimensional metric space, separate or divide data points into 

k different groups such that data point within the same group are much more 

'similar，to each other than data points in different clusters. The similarity be-

tween two data points is usually measured by the distance between them. Data 

points that are close to each other are similar to each other. 

1.2 Experimental Setup 

In the research, I have done a series of experiments. These experiments are being 

done to test the effectiveness and efficiency of the new proposed algorithm. All of 

the experiments are being done on Ultrasparc 5 machines, with 512MB of main 
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memory. The experiments are written in C + + and the the operation system of 

the machines are SunOS 5.6. 

For the experiments, I have tried to use synthetic databases of different num-

ber of records and dimensions. Databases with various distributions are being 

examined. Besides, I have also tried the dataset used in the Serendip Data Min-

ing Project from Bell Labs. The purpose of using the dataset is to test the 

effectiveness of the new algorithm. 

The databases are in dimensions from 2 to 20 for clustering problem and 

are in dimensions from 2 to 9 for association rules discovery. The details of the 

experiments and the result being concluded will be discussed later. 

1.3 Outline of the thesis 

The thesis is outlined as follows. 

In Chapter 2，I will first state the previous works in the data mining, espe-

cially the problem of clustering and the mining of association rules. At the same 

time, I will try to point out the disadvantage of the traditional approaches and 

the motivation of my research. 

IDAN can also solve the problem of discovering quantitative association rules, 

In Chapter 3, I will talk about the modification on the algorithm and how it 

works. 

In Chapter 4，I will introduce the new algorithm - Interactive Data Analysis 

011 Numeric-data (IDAN). I will talk about the key idea of the algorithm and how 

the algorithm can handle the problem of discovering clustering patterns on large 

numeric data. I will also talk about how we can apply IDAN on high dimensional 

datasets. 
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Besides, I have done a series of experiments. In Chapter 5, I will state how the 

experiments are being done and the result I discovered from these experiments. 

In Chapter 6，I will introduction some techniques on visualizing different kind 

of data. 

Finally, I will conclude and discuss our works in Chapter 7. I will make a 

summary on what I have done in the research and what can be done in the 

future. 

j 



Chapter 2 

Survey on Previous Researches 

In this chapter, I will try to summarize the previous researches on the field of 

data mining. At the same time, I would like to discuss what I have learn from 

the previous researches and what makes me start my research in data mining. 

2.1 Association rules 

Given a database T with attributes {A0,A1,A2,…，义几}, an association rule can 

be expressed in the form of Ci � C2 where Ci is called the antecedent and C2 

is the consequent of the rule. The value of an attribute Ai of a record R in 

T is denoted by R.Ai. For Boolean association rules, both the antecedent and 

consequent are restricted to be a set if of items {Ai =，yes，). We simply denote 

item as I e {Ah Ai, A2,..., An}. We say that a record R supports Ci if Ci holds 

in R, i.e. Vz G Ci , R.i = 'yes，. 

There are two quantities support and confidence that are used to measure the 

quality of an association rules. The support of rule Ci 令 C2 is valued as s if s% 

of records in T are supporting Ci and C2. The confidence of rule Ci => C2 is 

valued as c if c% of records that are supporting Ci, also support C2. A rule is 

classified as "good" in the database T if the rule is with support and confidence 

8 
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excess the thresholds minsup and minconf that are set by the user in advance. 

These rules are very common in basket-data-type retail transactions. 

The problem can be decomposed into two subproblems: 

1. Finding all combinations of items that have transaction support above the 

minimum support. Call those combinations large itemsets. 

2. Use the large itemsets to generate the desired rules. For example, if ABCD 

and AB are large itemsets, then we can determine if the rule AB 玲 CD 

holds by computing the ratio c = support{ABCD)/support{AB). We say 

that the rule holds only if c <minimum confidence. 

Among the two subproblems, the first one is much more difficult and the 

computation is much more. Agrawal, Imielinski and Swami presented an efficient 

algorithm [1, 28] to discover large itemsets called Apriori Gen and had proved 

very successful. The key ideas of Apriori Gen is that we in fact no necessary to 

explore all the combinations of the items due the 'upward bounding' properties 

of large itemsets. For example, if an item ABCD is said to be large, then all the 

item which are combinations of A, B, C, D such as AB, AC, AD, BC, BD, CD 

ABC, ACD and BCD are also large. 

Boolean association rules are quite restrictive. They can be used in the 

database with Boolean attributes only. With some modification, categorical at-

tributes can also be processed. However, databases in the real world usually have 

numeric attributes, Boolean association rules are impractical in such situations. 

In order to tackle the problem, quantitative association rules were introduced 

31, 10]. Quantitative association rules retain the same format as Boolean as-

sociation rules. The difference between them is that in quantitative association 

rules, the antecedent and consequent can be conjunctions of item in the form of 

[Ai e [k, Ui]) where k < Ui and any value between k and Ui is within the domain 
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of Ai. We simply denote an item as I e< A,l,u�. A record R support Ci if 

Ci holds in R, i.e. Vz G C^,i(l) < R.i{A) < i{u). The definitions of support and 

confidence are similar to the ones mentioned above in Boolean association rules. 

Recently researches on quantitative association rules concentrate on how to 

divide the attributes in different ranges so that the problem can be transformed 

as a problem of discovering association rules with categorical attributes only. As 

a result, we can use the existing algorithm to mine quantitative rules. Of course, 

the problem of dividing the domain of an attributes into several ranges is not 

an easy task. There are many ways to do so and the most common one is the 

equal-depth bucket approach. 

2.2 Clustering 

In recent years, many successful clustering algorithms for large datasets have been 

proposed [18] [20]. These techniques are widely adopted in spatial databases 

23], which data points usually form different patterns. Moreover clustering is 

also an important technique for pattern recognition [7] [11] and machine learning 

26] [4]. Some researchers proposed to use medoids, the most centrally located 

point in clusters, to represent the various clusters. The objective is to find 

out the k best medoids, which can optimize the similarity within clusters under 

a predefined criterion function. The algorithm is based on randomized search 

and the problem can be transformed into a graph-searching problem. Later 

CLARANS [27] was introduced, which improved the performance of traditional 

k-medoid algorithms. CLARANS can successfully cluster data with high quality. 

However it requires several passes over the dataset, therefore the runtime cost 

may be unacceptable for large dataset. There are some modifications [8] on 

CLARANS such as applying R*-Tree [2] to improve I /O efficiency. 
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The algorithms mentioned above are mainly based on the randomized search. 

Later, researchers proposed a new algorithm to solve the problem. Instead of 

randomized search, the algorithm BIRCH [33] is proposed to adopt a hier-

archical approach to solve the problem. BIRCH improved I /O complexity by 

pre-clustering the original data into maximum possible and finest possible sub-

clusters, which can fit in the main memory. At the same time, it makes use of 

a CF-tree, which is a balanced tree structure similar to SS-tree [32]. Instead 

of using medoids to represent the whole cluster, BIRCH treats each node in the 

CF-tree as a single cluster. Each node stores the mean of all the points repre-

sented in the cluster. Similar to BIRCH, CURE [13] proposed later, also uses a 

hierarchical structure: k-d tree to make it easier to cluster large set of data. It 

first draws a set of random samples from the database and partitions the ran-

dom sample. It starts with each point as a separate cluster and then merges 

the closest cluster to form a new single cluster. To improve the I /O complexity, 

CURE uses a heap in each cluster to increase the performance on searching the 

closest cluster for merging. Rather than using medoids or centroids, CURE uses 

a number of representatives in the cluster to describe the whole cluster. 

In this paper, we are proposing a new algorithm for clustering large dataset-

s. This algorithm is named as Interactive Data Analysis on Numeric-data: I-

DAN. IDAN clusters large dataset in an incremental and interactive manner. It 

can partition large dataset into different clusters with good qualities and at the 

same time it provides good performance. When dealing with high dimensional 

database, IDAN makes use of dimensionality reduction techniques so that it can 

perform as good as working of database with few dimensions. 
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2.3 Motivation 

Among all the algorithms of discovering association rules, almost all of them are 

running in the way that we put the database, Minimum support threshold and 

minimum confident threshold as input of the algorithm. After running for a pe-

riod of time, the algorithm outputs all the rules that are satisfying the minimum 

support and minimum confident thresholds. The process is fully automatic and is 

running in black box style. No user interaction is required. Since the thresholds 

play an important role in the choosing of the correct rules, so if the thresholds 

are wrongly set, then the qualities of the rules being discovered will be greatly 

affected. The whole process has to be repeated from the very beginning if the 

user want to change any of the thresholds. 

Another problem is that most of the traditional algorithms for discovering 

quantitative association rules are be applicable to dynamic databases. If there 

are new data inserted in the database, the mining algorithm has to be started 

from the very beginning. This is very time consuming and impractical. 

For the problem of clustering, most of the traditional approaches are lack of 

user interaction and exploration. In the whole process of discovering patterns of 

clustering, the user usually needs to specify some parameters, like the sampling 

size and the total number of clusters to be discovered. Similar to the problem of 

mining association rules, the clustering process is also just like a black box. Once 

the user has input these parameters, the next thing the user has to do is just to 

sit right in front of the machine and wait for the result. However the clustering 

process is highly dependent on the quality of data. Different data may require 

different thresholds in order to provide good clustering result. It is impossible for 

the user to know the exact values of the parameters in advance without running 

the process for number of times or exploring the data distribution visually. Once 

the thresholds are wrongly set, the clustering process has to start from the very 
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beginning. So users have to pay a very expensive cost. The problem mentioned 

above is mainly due to the black-box manner of the traditional clustering algo-

rithms. The traditional algorithm focus too much on the correctness and the 

efficiency of the algorithm, on the other hand these algorithms are ignoring the 

importance of user participation. 

Moreover, some traditional clustering algorithms are suffering from another 

problem called mis-clustering . Traditional clustering algorithms can be classified 

into partitional and hierarchical approaches. Partitional clustering algorithms try 

to discover k partitions by optimizing a certain criterion function. Most of them 

are making use ofthe square-error as the standard ofjudging the similarity within 

the cluster. The square-error criterion can be summaries as below: 

k 

E = Y 1 Y 1 W p - r H i ||2 . 

i = i peCi 

where 7¾ = J2^ ̂  Q p and Ci is the set of points in i th cluster . 

However, this measure sometimes will result in mis-clustering. Normally clus-

tering using square-error criterion works well when the clusters are well separated 

with similar sizes. However when the clusters are in large differences in size and 

geometry, the square-error criterion will intend to split big cluster into smaller 

ones so that the sizes of clusters are similar. This situation can be illustrated in 

figure 2.1. 

Traditional hierarchical clustering algorithms also suffer from the problem 

of mis-clustering. They usually treat each data point as a single cluster at the 

beginning. Then a pair of clusters are selected and merged together to form a 

new single cluster. The merging process is repeated until the total number of 

clusters is reduced to k. The algorithms will choose the pair of clusters, which are 

the nearest to each other, among all the pairs for merging. The most commonly 

used measures of distance between cluster Ci and Cj are dmean, dmax and dmin-
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~ww 
(a) Two clusters with difference in (b) Big cluster is split and the small 
size cluster is merged with part of big 

cluster 

Figure 2.1: Problem of mis-clustering 

d m e a n { C i , C j ) 二 | |成 - 7 ^ | 

d m a x { C i , C j ) = ^^max | | p - ^ | | peCi,qeCj 
dmin{Ci,Cj) = min ||p-^|| 

peCi,qeCj 

where rfU = E ^ ^ Q. P and Ci is the set of points in the i th cluster . 

“ H 
(a) Distance measure dmean and (b) Distance measure dmin 
dfaax 

Figure 2.2: Examples of Mis-clustering 

When applying different distance measures, we will obtain different clustering 

patterns. These algorithms can usually partition the data points very well if the 



Chapter 2 Survey on Previous Researches 12_ 

data points are well-separated and the clusters are compact with respect to the 

distance between clusters. However problems arise when the clusters are close 

together, or the shape and sizes are not hyper-spherical. The distance measures 

dmean and d^ax will forc6 the clusters to become hyper-spherical. Long clusters 

will be split to form smaller clusters since the smaller ones like hyper-spheres 

more than the long one. The effect is demonstrated in figure 2.2(a). Distance 

measure dmin can work well for clusters with non-spherical or arbitrary shape. 

However algorithm using dmin as distance measure is too sensitive to the existence 

ofoutliers. These algorithms will probably merge the two clusters shown in figure 

2.2(b) to a single one due to the existence of data point between the two clusters. 
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IDAN on discovering 

quantitative association rules 

Data are collections of facts. To provide useful and meaningful information, 

just to gather these facts different places is not enough. We have to work on a 

pro-processing stage after all of the essential data are collected. This stage is 

often regarded as data analysis. Due to the huge amount of data, the task of 

analyzing these data is usually very difficult. In the early days, the job of data 

analysis was usually left to the user and the system could at most provide a 

little help on summarizing the data such as calculating the minimum, maximum, 

average and the deviation of the data being worked on. Obviously, computers 

were not playing a significant role in data analysis. On account of the increasing 

importance of data analysis, people paid more and more efforts on developing 

powerful algorithm, which could do as much analytical jobs as possible. 

Up to now we have spent a lot of time on describing the problems. In the 

coming chapters, I am introducing a new algorithm called Interactive Data Anal-

ysis on Numeric Data - IDAN. This algorithm is an interactive approach of data 

analysis. By using this algorithm, user can take more control on the knowledge 

discovery process. Besides, IDAN can work on both the problem of discovering 

16 
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quantitative association rules and the problem of discovering clustering patterns 

within the dataset. In this chapter, I will concentrate on the details of the al-

gorfthm and how it can be applied on the problem of association rules. For the 

clustering problem, I will discuss it on the chapter 4 

3.1 Briefing 

IDAN can be divided into two phases: the tree-building phase and the visual-

ization phase. The first phase is mainly concentrating on the construction of an 

efficient index structure on association rules. This phase runs in an incremental 

manner. The visualization phase can support interactive browsing of data and 

extracting useful association rules from the index structure constructed in the 

previous phase. The key idea of IDAN is the use a hierarchical structure to repre-

sent different quantitative association rules with different levels of support. This 

hierarchical structure is named as A-Tree. A-Tree is a height-balanced tree. As 

mentioned before, the quantitative association rule is built from elements in the 

form of {Ai G [k, Ui]). It is obvious that a hyper rectangular block can represent 

a quantitative association rule. The structure of an A-Tree node is very similar 

to the one in R- Tree [14]. The choice of using the structure of a R-tree node 

as the skeleton of A-tree node is not a must. There are many spatial indexing 

structure can be used. All of them are suitable for the task provided that they 

are hierarchical in nature and they can access hyper rectangles efficiently. R-tree 

14], R*-tree [2], Quad tree [30] and X-tree [3] are some of the examples. The 

reason of choosing R-tree is mainly due to the simplicity of insertion of data and 

efficiency of spatial access of hyper rectangles. In addition, A-tree node contains 

two more attributes named as support and opposite. These additional attributes 

will give us how good the association rule represented by the node is. I will cover 

the details of the structure of an A-Tree node in section 3.2. 
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Once the A-tree is built, we can visualize the association rules discovered. 

This phase consists of an information visualizer. This can help us to explore the 

data tuples in the database. The visualizer can show us how the data tuples 

are distributed and at the same time, we can easily figure out the association 

rules graphically. Since most of the computation is done in the previous phase, 

the visualizer will only take care of how to display the information stored in 

the A-tree graphically. Therefore the visualizer can response quickly and we can 

also make use of the user interface to tune the minsup and minconf threshold 

interactively. 

3.2 A-Tree 

The structure of an A-tree node is shown in figure 3.1. In the structure of 

the node of A-tree, the fields lower and upper are used to store each item of 

a quantitative association rule. The dimension of these fields is determined by 

the number of numeric attributes of the database that we are working with. 

Size is used to store the number of tuples that are referenced by the the node. 

The field support is used to hold the number of tuples that are supporting the 

association rule represented by the node (bounded by lower and uppper). Note 

that the fields size and support are measuring different quantities. The first one 

is referring to the number of leaf nodes of the subtree rooted by the node. The 

second one, on the other hand, is concerning with the number of tuples spatially 

fall inside the bounding hyper rectangle represented by the node. Opposite is 

used to hold the number of tuples that support the antecedent part but not fall 

inside the hyper rectangular block represented by the node. Parent and ptr are 

pointers that point to the parent and the children of the node respectively. Each 

node can have at most N—MAX children. Except the root node, the number of 

children should be more than or equal to N_MIN. The support and opposite are 



Chapter 3 IDAN on discovering quantitative association rules 19 

struct A_node{ 
double lower[DIMENSION]; // li 
double upper[DIMENSION]； // ui 

- int size II number of tuples reference 
int support； // total support of the node 
int opposite； II number of tuples opposite the node 
int attribute; // indicate the type of the node 

II root, internal or leaf 
struct A_node *parent; // point to the parent 
struct A_node **ptr; // point to the children 

} 

Figure 3.1: Structure of an A-tree node 

the individual properties of the node and they are not the minsup and minconf 

thresholds, which are user-define properties. 

Data tuples in the database are mapped into N-dimensional points. These 

data points are stored in the leaf nodes. Therefore the number of leaf nodes in 

the tree is equal to the total number of tuples in the database. Each node is 

representing a hyper rectangle and the parent node must be a hyper rectangle 

bounding all the hyper rectangles of its children. The hyper rectangle of the 

parent node may not be the minimum bounding rectangles(MBi?) but it is ad-

visable to use MBR since it can reduce both the dummy area and overlap area 

with other nodes. This will increase the searching and inserting performance of 

A-tree. 

An A-tree will be built dynamically as new data objects are inserted. The size 

(total number of nodes) of the tree will be directly affected by the parameters 

NMIN and N.MAX. The larger N.MIN and N.MAX are, the smaller 

the tree is in size. Different values of N_MIN and N—MAX can affect the 

performance of building up the tree. An appropriate selection of the parameters 

is to make the size of a node to fully occupy a disk page. This will minimize the 

page accessing time when searching an existing node and inserting a new node. 

The overall data structure is shown in figure 3.2. 
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Figure 3.2: The A-tree structure 

Up to now, we have described the structure and the basic requirements of an 

A-tree node. We will then talk about the nature of the A-tree node. 

Lemma 1 Given a node N and ni, n2, n3, ... n^ are the children of N, then 

N.size is given by 
m 

y^ rii.size 
i=l 

The size of a leaf node is always equal to 1. The above lemma can be proved 

by induction easily. The proof is simple and is left to the readers. This property 

can help us to calculate the size of a node efficiently when we are inserting new 

node into the tree. 

Definition 1 Given two nodes Na and N ,̂ Na is overlapping with Nb iff 

Max[Na.k,Nb.li) < Min{Na.Ui, Nb.Ui), for i = [l,7V' 

where N 二 Dimension of the data points. 
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The relation overlap in definition 1 is commutative. The amount of overlap-

ping space will greatly affect the searching and inserting performance in A-tree. 

It is impossible to make all node not overlap with each others. We are going to 

discuss how the overlapping properties affect the performance. 

Lemma 2 Given two nodes Na and N ,̂ if Na is overlapping with Nb then Na is 

overlapping with Nb.parent 

Proof: From definition 1, if Na is overlapping with Nb, then for any i = [l,N]: 

Max{NaM,Nbdi) < Min(Na.Ui,Nb.Ui) 

Since Nb spatially fall completely inside Ni.parent, therefore the following must 

hold 

Nb.parent.li < N^.k 

Nf).parent.Ui > Nb.Ui 

Therefore, 

Max{Na.li, Nb.parent.li) < Max(J^a.k, Nt-h) 

< Min{Na.Ui,Nb.Ui) 

< Min{Na-Ui, Nb.parent.Ui) 

In lemma 2 we can figure out that the overlap relative apply on the parents 

of the nodes, if node Na overlaps with N ,̂ Na must also be overlapping with 

Nb.parent, N^.parent.parent, ... and so on. The overlapping relationship will 

propagate upwards. So Na is overlapping with all the ancestors of Nb. 

Lemma 3 Given two nodes Na and Nb, if Na is not overlapping with N^ then 

Na does not overlap with and nodes in the sub-tree rooted at N^ 
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Proof: By taking the counter positive of lemma 2, we find that if Na is not 

overlapping with Nb.parent, Na does not overlap with N^. Since Na is not over-

lapping with Nb, then Na does not overlap with any of the siblings and children 

of Nb. So Na does not overlap overlap with any descendants of N^.parent. This 

property is very important because with this property, we can prune out a lot of 

sub-trees when we are trying to locate all the overlapping nodes. 

Lemma 4 Given a node N and ni, n2, n3, ... n^ are the children of N, then 
m 

N.support 二 Xni.size 
i=l 

if N does not overlap with any nodes of the same depth. 

From lemma 3, if N is not overlapping with any nodes of the same depth, then 

there are no leaf nodes other than its children spatially fall inside the bounding 

rectangle specified in N. Since all leaf nodes spatially fall inside the bounding 

‘ rectangle of N are the children of iV, N.support is therefore equal to N.size. In 

this case, the support of a node can be directly determined by the size of its 

children. Therefore the computing time is limited by the number of children. 

However it is impossible to have no overlapping nodes. For a more general 

situation, the support of a node have the property in lemma 5. 

Lemma 5 Given a node N and ni, ri2, n3, ... n^ are the children of N, then 
m 

N.support > y^^Tij.size 
i=l 

Lemma 6 Given a node N, N.support can be determined by TV's children and 

the nodes overlapping it. Nodes not overlapping with N will not contribute any 

to N.support. i.e. all the leaf nodes in the subtree rooted in the node do no 

support the association rule represented by N. 
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Figure 3.3: Overlapping nodes 

Let 7Vi and N) be nodes in the A-tree. If N2 is not overlapping with Ni, then 

from lemma 3 we know that all the descendants of N2 will not overlap with Ni. 

Therefore all the leaf nodes in the subtree rooted at N2 will fall inside the hyper 

rectangle represented by N [ As a result, no tuple referenced in N2 supports the 

association rule represented by iVi. 

We have spent quite a lot of time on the attribute support of an A-Tree node. 

Now it is the time for opposite attribute. Before we can calculate the opposite, 

we have to go back to the definition of association rule first. An association rule 

can be divided into two parts: the antecedent and consequent Let A denote 

the set of attributes in the antecedent part and C denote the set of attributes in 

consequent part of an association rule. Then A n C 二 4> must hold otherwise the 

rule is not a valid one. To construct an A-tree, the user have to specify the set 

C first. Without knowing the set C, we cannot calculate the opposite of a node. 

All the attributes other than the ones in C will form the set A. Without lost of 

generality, the other of the attributes in the database can be rearrange such that 

all the attributes in A comes before the attributes in C. Instead of specifying 

which attributes are belonging to C, the user can define an integer I such that 

for all i < /，Ai G A. Now we have to define what is meant by opposite. 
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Definition 2 A node Na is said to be opposing to an association rule repre-

sented by node N^ iff the following conditions hold 

Nb.lower{i] < Na.lower{i] < Na.upper[i] < Nb.upper[i] , for i G A 

Min{Na-upper[i],Nb.upper[i]) < Max{Na.lower[i],Nb.lower{i])，for i G C 

In general, there are two conditions for opposing. First of all, the antecedent 

part of Na must fall completely inside the antecedent part of Nb. Secondly, 

the consequent part of Na fall outside the consequent part of N^ and they do 

not overlap with each other. The opposite of a node N is the number of leaf 

nodes in an A-Tree opposing the association rule represented by N. Instead of 

counting the opposite of a node directly, we try to make a simple calculation. 

Consider all the records that are supporting the antecedent part of N only, we 

can classify these tuples into two classes: the supporting tuples and the opposing 

tuples. We have discussed the calculation on the support of a node previously 

so the number of supporting tuples can been found. If we can count to number 

of tuples supporting the antecedent part of N, we can calculate the opposite of 

a node. 

N.opposite = # of leaf nodes supporting the antecedent part of N — N.support 

The way of finding the number of leaf nodes supporting the antecedent part 

of a node N is very similar to finding N.support mentioned previously. The 

only difference is that N.support requires the leaf nodes to fall inside the hyper 

rectangle for all attributes but now it only requires those attributes found in the 

antecedent part. 
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3.3 Insertion Algorithm 

A-tree will be built dynamically when data are added into the database. The flow 

of the insertion algorithm can be summarize as in figure 3.4. When a new tuple 

is really to be added to the database, the first step is to identify the appropriate 

leaf node that the new tuple is going to be inserted. This step is being done by 

the procedure ChooseLeaf. ChooseLeaf will recursively traversal the tree until a 

leaf node is found. Then ChooseLeaf will return the parent of the leaf node just 

found. During the traversal of the tree, if there are more than one child in the 

node, we will first calculate the increase in margin after the insertion of the tuple 

and break the tie by considering the increase in area. The reason of choosing 

margin for comparison instead of using area is that using area may lead to some 

faulty attribution on the association rule. This situation occurs when the shape 

of the node is 'thin'. 

After choosing an appropriate node, the next job is to insert the new tuple 

into it. If the leaf is not full yet, the new tuple can directly insert to the leaf. 

However, if the leaf is already saturated, overflow treatment has to be done. In 

this stage, the overflow treatment procedure will split the saturated node into 

two. There are many alternatives can be done, such as reinsertions of the overflow 

nodes [2]. A good overflow treatment procedure can improve the performance 

of future insertion and the performance of query. 

To split a node into two, we first sort the children of the splitting node in 

ascending order by a particular dimension. We then choose a dimension such 

that the sum of area of all combinations will be the smallest. Then choose the 

index i = [N—MIN, count] such that the area sum of the two newly formed nodes 

is the smallest. After the splitting, the two newly formed nodes will be inserted 

to the parent recursively. The parent node may be overflow again. The overflow 

treatment will be carried on until no overflow happens again. 
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Figure 3.4: Flow of insertion algorithm 

Once the new tuple is inserted into the tree, we have to propagate the change 

from leaf to root. There are several things have to be modified. First of all, 

we have to modify the lower and upper attributes since the volume of the hyper 

rectangular block will expand or shrink after the insertion or splitting of nodes. 

We can calculate the minimal bounding rectangle of a node from its children. It 

is not necessary for us to update all the nodes in the tree. We can simply update 

the nodes being inserted (the new node and the nodes after splitting) and their 

ancestors only.After updating the lower and upper attributes, the next thing we 

have to update after insertion is the attribute size. The size of node has been 

discussed in detail in the previous section. We know that the size of a node is 
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determined by its children only. We can modify the size of the nodes involved in 

the insertion by backward tracing from the newly inserted node. 

In the updating stage, the most difficult thing is to update the support and 

opposite fields. When a new node is being inserted into the tree, the support of 

its ancestors of course have to be update. However since the hyper rectangle of 

the nodes have been modified, other nodes have to be updated as well. A simple 

solution to the problem is to parse the tree node by node and recalculate the 

support and opposite for each on the nodes. This requires too much computation 

and disk accessing time therefore it is impossible and impractical to do so. In 

fact, not all the nodes in the tree need updating. We can prune out those nodes 

and as a result we can improve the performance. 

In the previous section, we have proved that not all the nodes in the tree have 

contribution on the support of a particular node. Only those node overlapping 

with it will contribute to its support. By using this property, we can test the 

subtree before we parse it. If it does not overlap with the affected nodes, we can 

simply ignore them. The way we are using is to make use of three queues: the 

affected queue, support queue and opposite queue. When we do the insertion, 

we put the nodes that are being affected into the affected queue. These nodes 

include the newly inserted node and the nodes involved in splitting. After we 

have update the fields lower, upper and size, we then parse the tree from the 

root to leaf. We put those nodes overlapping with the ones in the affected queue 

into the support queue. At the same time we put the nodes overlapping the 

antecedent part of the ones in the affected queue into opposite queue. Now we 

have already filtered out the nodes that need updating. The thing that we have 

to do is to calculate the support and opposite in the support and opposite queues 

respectively. 
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Figure 3.5: Update support 

3.4 Visualizing Association Rules 

After integrated with an information visualizer, we can simply display the as-

sociation rules found by parsing the A-tree node by node. Of course, not all 

the nodes are informational since some of the nodes are with very low support 

or confidence. Therefore, we have to find an easy way to select the rules that 

are interesting to the user. The minsup and minconf thresholds are playing an 

important role in this stage. 

Before we parse the A-tree, we already know the exact number of tuples 

stored in the tree. There is no need to count the number of tuples since the total 

number of tuples is already found in the size or support fields of the root node. 

While we are parsing the A-tree, we first calculate the support and confidence 

value of the node. The support and the confidence of the node can be easily 

formulated as follow: 

s 
support =— 

confidence = 
o + s 
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where s is the support count of the node and o is the opposite count of the 

node 

Before plotting the hyper rectangular block represented by the node, we first 

compare the calculated support and confidence with the support and confidence 

thresholds set by the user. If the calculated ones are at least equal to the thresh-

olds, we can plot the hyper rectangular block directly, otherwise, we discard the 

whole sub-tree. This is due to the properties of an increasing support coun-

t along the path from leaf to root. There is no simple pruning algorithm for 

confidence since the confidence does not follow the increasing property like the 

support count. However the pruning of support count has already cut out a large 

number of candidates so without pruning out the those nodes with insufficient 

confidence, the performance is still satisfactory. There are some examples on the 

exploration of the association rule found in figures 3.6 - 3.9. 
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Figure 3.6: Original dataset 
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Figure 3.7: Rules with support 5% confidence 50% 
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Chapter 4 

IDAN on discovering patterns of 

clustering 

In the previous chapter, we have discussed the key idea of IDAN and how to 

apply the algorithm in the problem of discovering quantitative association rules. 

In this chapter, I will talk about how to apply IDAN on the problem of clustering 

and the corresponding modifications. Also, I will suggest solution for handling 

high dimensional datasets. 

4.1 Briefing 

IDAN adopts an interactive approach of analysis on numerical data. Its aim is 

to discover clustering patterns of high-dimensional metric data. IDAN can be 

divided into two phases: the tree-building phase and the visualization phase. The 

first phase is to build an efficient index structure on the dataset in an incremental 

manner. The visualization phase can support both interactive browsing of data 

and interactive formulation of the clustering being discovered in the previous 

phase. Once the tree-building phase finishes, the process is not necessary to start 

again when the user changes any of the parameters such as the total number of 

3 4 
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cluster to be discovered. Figure 4.1 shows the overview ofthe two phases involved 

in IDAN. 

Discovering Clusters 

广 \ f 1̂ 

Reading tuples Merging nodes to 
incrementally and \ satisfy the number 

updating the ^ of clusters to be 
A-Tree found 

1 J ^ ^ 

Tree-building phase Visualization phase 

Figure 4.1: Overview of IDAN 

The key idea of IDAN is the use of two data structures: R-Tree [14] and 

A-Tree. The first one is an index structure that stores all the data points in the 

database. It is a height-balanced tree that can support storing and retrieving 

multi-dimensional data objects efficiently . The second data structure is proposed 

by us, which is aimed to represent the clustering information within all the data 

points in the database. We will go into the details of the structure of an A-Tree 

node in the section 4.2. The relationship between the two data structures is that 

there are links between the leaf nodes of the two structure. Since both of the 

trees keep the data points on the leaf level, we can simply link up the leaves by 

pointers if the leaves are referring to the same data point. 

Once the A-Tree is built, we can visualize the discovered clustering patterns. 

The visualization phase consists of an information visualizer, which can help us 

to explore the data in the database. The visualizer can show us how the data 

distributed and at the same time, we can easily figure out the clustering patterns. 

Since most of the computation is done in the tree-building phase, the visualizer 

involves little computation and mainly concentrates on displaying the informa-

tion stored in the A-Tree graphically. Therefore the visualizer can response 
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quickly and allow the user to modify the parameters or thresholds interactively 

through its interface. 

4.2 A-Tree 

There are three kinds of nodes in an A-Tree: root node, internal nodes and leaf 

nodes. There is only one root node in an A-Tree, which is the ancestor of all 

the other nodes in the tree. The leaf nodes are used to store the data tuples. 

Data tuples in the database are mapped into TV-dimensional points. These data 

points are stored in the leaf nodes. Therefore the number of leaf nodes in the 

tree is equal to the total number of tuples in the database. A leaf node is said to 

be referenced by a node if and only if the node is the ancestor of the leaf node. 

The structure of an A-Tree node is shown in figure 4.2. The field mean, 

which is also a iV-dimensional vector, is the average of all the leaf nodes being 

referenced by the node. Size is used to store the number of leaf nodes that are 

referenced by the node. The pointer parent is used to indicate the parent node 

and ptr is an array of pointers that point to the children of the node. Attribute 

is used to indicate whether the node is a root, internal or leave node. Each node 

can have at most N.MAX children. Unlike R-Tree, there is no limitation on the 

minimum number of children of a node in A-Tree. 

struct A_node{ 
double mean[DIMENSION]； II Mean of data points referenced 
int size // number of tuples referenced 
int attribute； II indicate the type of the node 

// root, internal or leaf 
struct A_node *parent； // point to the parent 
struct A_node **ptr； // point to the children 

} 

Figure 4.2: Structure of an A-Tree node 
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An A-Tree will be built dynamically when new data objects are inserted. The 

size (total number ofnodes) ofthe tree will be directly affected by the parameter 

N.MAX. Different values of N.MAX can affect the performance of building 

up the tree. In order to minimize the page accessing time when searching an 

existing node and inserting a new node, selection of the parameter should allow 

a node to fit in a disk page completely. 

4.3 Dimensionality Curse 

Several data structures such as R-Tree, SS-Tree, SR-Tree [19] and TV-Tree 

25] are intended to provide fast searching in large multi-dimensional database. 

Experiments show that these data structures can work efficiently on small dimen-

sions (below 10 dimensions). However searching performance of these structures 

degrades as dimensionality grows. When searching data with high dimension-

ality, even a sequential search can out perform any searching using these data 

structures. This phenomenon is so called dimensionality curse, which can usually 

be found among these multi-dimensional data structures. 

In order to tackle the problem, the technique of dimensionality reduction is 

commonly employed. The key idea of dimensionality reduction is to remove a cer-

tain number of dimensions and at the same time to preserve as much information 

as possible. We first apply transformation on high dimension data, so that most 

information converge into a few number of dimensions. These dimensions are 

used for indexing by the mentioned data structures. Since the number of chosen 

dimensions is very small, so the mentioned data structure can provide very good 

query performance. There are many transformations such as Singular Value De-

composition (SVD) [29], Discrete Fourier Transform (DFT), Discrete Wavelet 

Transform (DWT). Different transformations work well on different kinds of da-

ta. For instance, DFT and DWT are used in the area of time series data and 
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image databases. For SVD, it studies the whole dataset and tries to maximize 

the variances in a few dimensions. I will try to introduce the central ideas of 

these transformations in the coming sections. 

4.3.1 Discrete Fourier Transform 

Discrete Fourier Transform (DFT) is a variation of Fourier transform (FT). In 

1807, Joseph Fourier announced his surprising results and his statement played 

an essential role in the evolution ofmathematicians' ideas. The Fourier transform 

is just like a mathematical prism, breaking up a function into the frequencies 

that compose it, as a prism break up light into different colors which are in fact 

electro-magnetic waves of different frequencies. 

Let f{x) be a continuous function of a real variable x. The Fourier transform 

of / (x ) , denote T{f{x)}, is defined by the equation 

Hf{^)} - F{u) 二 r m e - _ d x 
J—oo 

where j = \/^. 

Fourier transform of function f{x) exists if f{x) is continuous and integrable. 

However, we are not interested in continuous function. Data tuples exist in the 

form of discrete values rather than as a continuous function. So the discrete 

version of Fourier transform will be much useful for our problem. 

Suppose that a continuous function f{x) is separated into a sequence Xo, Xi, 

X2,..-,ocd-i by taking d samples A units apart which 

x, = f{x'^iA) 

Then the discrete Fourier transform applying to the sampled functions is 

given by 
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^ ^ ^ ^ ^ : ^ ^ 
(a) 0.5 sin(x) 

^ ^ ^ ^ ^ ^ ^ ^ ^ 
(b) 0.5 sin(x/2) 

\ ^ ^ / ^ ^ \ 
(c) sin{x/S) 

、、广飞 
(d) Function f{x) 

Figure 4.3: Fourier transform tries to break up function f{x) into components 
of different frequencies 

Fu = 4^ E X<—”' for u = 0,1, ...，d - 1 
vd i^Q 

DFT is a very useful transformation which works on image databases and time 

series data. Instead of working on these datasets directly, we have to extract 

feature vectors from them first. Let x = {x i ] fz l be a ci-dimensional feature 

vector. We treat each feature vector as a finite-length sequence of length d. 

Then we perform the DFT on the sequence and we get F = {Fu]^zl. 
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F is also a a finite-length sequence of length d. Usually, most of the informa-

tion will concentrate in the first few values of the sequence. So we can truncate 

the—sequence F in the frequency domain to k terms, to form Fk, which k < d. 

After truncation, the dimensionality of the dataset is reduced from d to k. 

Discrete Fourier transform turns a sequence into frequency domain. It works 

well with image database and time-series data. Moreover, there is fast algorithm 

for DFT with complexity of O{d'log2d) and it can be implemented on hardware. 

So DFT is widely applied on these systems. 

4.3.2 Discrete Wavelet Transform 

The fundamental idea behind wavelets is to analyze according to scale. In wavelet 

analysis, the scale that one uses in looking at data plays a special role. Wavelet 

algorithms process data at different scales or resolutions. The result in wavelet 

analysis is to "see the forest and the trees." 

Wavelet transform is similar to Fourier transform in the sense that both 

transforms can be viewed as a mapping from function space to a different domain. 

For wavelet transform, this new domain contains complicated basis functions 

called wavelets, mother wavelets or analyzing wavelets. So wavelet transform 

comprises an infinite set. Different wavelet families make different trade-offs 

between how compact the basis functions are localized in space and how smooth 

they are. 

Among different families of wavelet transform, Haar is the simplest one. So 

we take Haar wavelet as an example. The Haar transform is based on the Haar 

function 

‘1 0 < X < I 

¢ { 0 0 ) 三 - 1 i < a; < 1 

.0 otherwise 
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and 

- ^j,{x)=^{2^x-k) 

For d = 8，the Haar functions are defined as 

0̂0 二 咖） 

ihQ = ^(2x) 

¢11 = ^ ( 2 ^ ; - l ) 

¢20 = 州 工 ） 

^21 二 ¢(4^ - 1) 

¢22 = V'(4rr - 2) 

^23 = ^(4rc - 3) . 

With the help of Haar functions, any function f ( x ) can be written as a series 

expansion by 
00 2̂  -1 

/ �= C o + Y^ Y . Cjk^jk{x). 
j=0 k=0 

Let a function be defined on d intervals, with d = T. Then an arbitrary 

function can be considered as an d-dimensional vector F, and the coefficient in 

the expansion B can be determined by solving the matrix equation below. 

F = WdB 

With the Haar basis, we can construct Haar transformation matrix Wd of 

order d x d by formation of the ith row from elements of tp{x) The followings are 

examples of Haar transformation matrices. 
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1 -r 1- 1 -| - 1-|~~~ 

-1 - ,- -1 - '- -1 - ,-
1 1 1 

(a) (b) (c) 

1 ^ ^ .- 1 - 门 •- 1 门 

-1 - '- -1 - U ,- -1 - U ,-
1 1 1 

(d) (e) (f) 

1 - 门 -

1 - 门 ，-

-1 - U ,- -1 - L _ 
1 1 

(g) (h) 

Figure 4.4: Different Haar functions for d = 4 

4.3.3 Singular Value Decomposition 

In IDAN, we adopt singular value decomposition (SVD) as the dimensionality 

reduction function because SVD is much more suitable for most of the dataset. 

SVD does not require data to be related in the sense of 'frequency' or 'resolution'. 

It only studies the distribution of data points. Moreover, SVD works on the whole 

dataset and it will give higher precision when compared with transformation that 

processes each data point individually. 
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• 1 1 1 1 “ 

「 1 1 1 ” ， 1 1 - 1 —1 

^ = 1 —1 购二 1 - 1 0 0 

- [0 0 1 - 1 _ 

(a) d = 2 (b) d = 16 

Figure 4.5: Haar transformation matrices 

SVD methods are based on the theorem oflinear algebra. Firstly we represent 

every data points in an matrix. Suppose we have n c/-dimensional data points, it 

is trivial that we can use an n x d matrix to express them. For any n x d matrix 

X with number of rows n greater than or equal to its number of columns d, can 

be expressed as the product of an n x d column-orthogonal matrix 5, an d x d 

diagonal matrix W and the transpose of an d x d orthogonal matrix V. 

X 二 swv^ 

The matrix S is an n x d orthonormal matrix that is, S^S = h. W is an d x d 

diagonal matrix with positive diagonal elements W1,W2, "”Wn. These elements 

are so called singular value of X . Since VF is diagonal, W^ = W. The matrix 

V is an d x d orthonormal matrix, then V^V 二 Id. The SVD decomposition 

can also be carried out when n < d. In this situation the singular values Wj for 

j = n + 1, ...,n are all zero and the corresponding columns of S are also zero. 

Our goal is to compute the transformation matrix V. The transformation is 

illustrated in the figure 4.6. 

Now we consider the SVD of X ^ and X ^ X : 

XT = {SWV^)^ = VWS^ 

X^X = {VWS^){SWV^) = vw^v^ 
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yn 
/ • X， 

- . . : . . . . . • — \ : - ^ 
眷 TYansform \ 參 y ^ 

byV V ^ 
X 

• 

Figure 4.6: Axes change from {x,y) to {x',y') by matrix V. 

We can figure out that the matrix V is also the SVD transformation matrix 

of X ^ X . Since the transformation matrix F is the same in either of the case, 

it takes no difference to adopt which one. In IDAN, we use X ^ X instead of X 

directly. The reason is adopting X ^ X is to minimize the computation time and 

the memory usage in the SVD transformation. The dimensions of X and X^X 

are n x d and d x d respectively. For databases which are large in size, n should 

be much larger than d. It is trivial that the memory usage of X^X is much lower 

than the one for X . Besides, the computation time of SVD will also be lower for 

X^X when comparing with the one for X. 

However you may figure out that the cost of calculating X ^ X is very high. 

We agree with you if we have to compute X^X from X only. The computation 

of X ^ X takes 0 (n * d?) time. However if we incrementally update the matrix 

X ^ X , the computation of updating X ^ X , when a new record is being inserted, 

is only 0{dP). Let Xi be a d-dimensional vector representing i th data tuple and 

Xi be the matrix representing all the first i th data tuples. Then Xf_^iXi^i can 

be computed by: 

Xj_^^Xi^i = XfXi + xjj^^xi^i 

After calculating the transformation matrix V, the next thing to do is to 

extract the most significant components. We then sort the rows of matrix V 
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in the descending order of the corresponding singular values. Since the singular 

value Wi indicates the variances along the ith dimension, so we extract the first 

d' dimensions so that they must contain most of the information within the data. 

We compute the sum of all the singular values in W and then extract the first 

d' dimensions which contain more the threshold 0% of the sum of the singular 

values. Note that the parameter 0 will only affect the performance of the overall 

algorithm and will not affect the accuracy of the algorithm. Then we build the 

index structure on the dimensionality reduced dataset. In IDAN, we use R-Tree, 

the choice of R-Tree is simply based on the simplicity of insertion and searching 

operations. 

The cost of computing SVD transformation matrix is high. When we apply 

SVD on dynamic database, it is impossible for us to update the transformation 

matrix V every time when a new record is being inserted. The way we work is to 

measure the loss in accuracy and update the transformation matrix only when 

the loss become too large. We will discuss this later. 

4.4 IDAN - Algorithm 

As mentioned in the previous sections, IDAN clusters multi-dimensional database 

in an incremental and interactive manner. It keeps the most updated information 

on the clustering patterns of the database. New records are inserted into the 

database incrementally and IDAN will update these information dynamically. 

The insertion procedure is shown in figure 4.7. 

IDAN tries to group similar tuples together to form a cluster. When a new 

tuple is added to the database, we have to identify which data point in the 

database will merge with the new tuple. Without the help of the dimensionality 

reduced R-Tree, we have to perform a nearest neighbor search on the A-Tree. It 
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New tuple 
to be inserted 

/ ^ 

UpdateMatrix: 
“ Update matrix XX 

\ • y 
/ i  

厂 \ 

ChooseLeaf: 
Locate the leaf node in the 

dimensionality reduced R-Tree with 
data point closest to the new tuple. 

Compute node visiting ratio 
^ “ J 

亡 ， L • L Leaf node Leaf node not ‘ ^ . L - saturated saturated 
� f ^̂   

/ 工 ^ r ^ 
OverflowTreatment: 

InsertNode: Split the node into two according to the ^ ~ 
Insert the new tuple into the leaf node. splitting criterion. 

V J \ I , I y 
十 parent node 

广 ^ saturated 
InsertNode: 

Insert the newly formed nodes into the — ^ 
parent. 

V J 
parent node 

广 ^ not saturated 
AdjustTree: 

^ Update the attributes of nodes being ^ ‘ 
affected, 

\ J 

VR < threshold 
> r- O t h e r w i s e 

^ >1 
AdjustDimension: 

Recomput SVD and re-build the 
dimensionality reduced R-Tree. 

\ y 
^  

> f 

Updated Tree 

Figure 4.7: Flow of insertion algorithm 

works well for databases which are rather low in dimensionality. However for high 

dimensional database, the performance of the search will degrade significantly. 

Even a simple linear search will work better that using any multi-dimensional 

data structure. In IDAN, we will apply the idea of the dimensionality reduction 

techniques. It is the reason why we have to use R-Tree together with A-Tree. 

The dimensionality reduced R-Tree is mainly used in searching of the nearest 
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neighbor, however the A-Tree is used to store the clustering information. We 

will first search for the dimensionality reduced R-Tree and locate the data point 

which is nearest to the new tuple. Then with the help of the links between the 

leaves of R-Tree and A-Tree, we can locate the leaf node of the A-Tree which the 

new record will be merged into it to form a cluster. 

Since the R-Tree index the dimensionality reduced data points, information 

must be lost. When we are searching the nearest point from the R-Tree, the 

leaf node being found may not be the correct one in full-dimension scale. In 

IDAN, we first perform a A;-nearest neighbor search on the R-Tree and at the 

same time, we count and record the number of leaf nodes being visited in the 

search as r_count. The next step is to compute the full dimensional distance of 

these neighbors. Then we perform a range query on the R-Tree with the smallest 

distance ^ being found. We search all the data points in the R-Tree which the 

distance to the query point is smaller than ^. Again we count and record the 

number of leaf nodes being visited in the search as f_count. Since ^ is in full 

dimensional distance, we will not miss the nearest data point. 

After choosing an appropriate node, the next job is to insert the new tuple 

into it. If the leaf is not full, the new tuple can be directly inserted to the leaf. 

However, if the leaf is already saturated, overflow treatment has to be done. In 

this stage, the overflow treatment procedure will split the saturated node into 

two. There are many alternatives can be done, such as re-insertion ofthe overflow 

nodes [2]. A good overflow treatment procedure can improve the performance 

of future insertion and the performance of query. 

To split a node into two, we first compute the distances between every pairs 

of children in the overflowing node and store the inter-nodal distances in a 

{N.MAX + 1) X {N.MAX + 1) matrix. Note that {N.MAX + 1) is the total 

number of children in an overflowing node. After calculating all the distances, 

we select a pair of nodes, which are farthest apart as the seeds. Then we group 
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the node, which is closest to the selected seeds, together with the corresponding 

seed to form a new node. The process will be repeated until all the children in 

the-overflowing node have been assigned. The number of children in the newly 

formed node will be ranging from [1, NMAX]. After the splitting, the two new-

ly formed nodes will be inserted to the parent recursively. The parent node may 

be overflow again. The overflow treatment will be carried on until no further 

overflow occurs. 

Once the new tuple is inserted into the tree, we have to propagate the change 

from leaf to the root. We have to modify the mean and size attributes in the 

A-Tree. These attributes can be directly computed from its children. It is not 

necessary for us to update all the nodes in the tree. We can simply update 

the nodes being inserted (the new node and the nodes after splitting) and their 

ancestors only. 

Now we have finished updating the A-Tree, but we still have to update the 

R-Tree as well. When a new record in inserted in the database, the SVD trans-

formation matrix V will no longer be accurate. Although V is not accurate, it 

is still a good approximation to the actual V. As more and more records are 

inserted into the database, the accuracy of F will be degraded. This will greatly 

affect the performance of searching the nearest point mentioned in the previous 

step. We have to set up some mechanism to monitor the precision of the SVD 

transformation matrix V. Remember we have recorded the number of leaf nodes 

being visited in r_count and f—count. The visiting ratio {VR) r_count: f_count, 

in fact, is representing the quality of the SVD transformation matrix V. If VR 

is smaller than the threshold, we update the SVD transformation matrix V and 

adjust all the nodes in the R-Tree. 
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4.5 Visualizing clustering patterns 

After integrated with an information visualizer, we can simply display the clus-

tering patterns by parsing the A-Tree. We are interested in the distribution of 

each cluster in the domain. IDAN is supposed to provide an interactive way of 

visualizing the clustering patterns. The user can change the number of clusters 

interactively and the visualizer will response with the correct clustering immedi-

ately. 

procedure MergeCluster(var NodeType list[],int n) 
begin 

var list: array of NodeType; 
level :=0; 
count := 0; 
/* find the level in the tree which the total number of nodes > n */ 
while (count < n) do { 

count := CountCluster(root,level)； 

level := level + 1; 
} 
/* store the nodes in the level in an array list */ 
list := BuildList(root,level); 
while (count > n ) do { 

/* compute intemodal-dist in list */ 
InterNodalDistance(list,count,inte_dist); 
/* find the pair of clusters which is nearext to each other */ 
for(x:=0,y:=l,i:=0;i<count;i++) { 

for(j:=i+l;j<count;j++) { 
if(inter_dist[x][y] > inter_dist[i]^]){ 

x : = i ; y : = j ; 
} 

} 
} 
list[x] := MergeNode(list[x] ,list[y])； 

for(i=y;i<count;i++) 
list[i] :=list[i+l]; 

} 
end; 

Figure 4.8: Procedure for MergeCluster 
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As mentioned in the previous section, we state that each node in the A-

Tree forms a cluster. However the number of nodes in the A-Tree may not be 

matching with the user's defined number of clusters. To archive our goal, the 

merging process has to be performed. The merging process is simple. Firstly, we 

scan the A-Tree level by level until the number of nodes in the same level just 

exceeds the number of clusters to be found, which is specified by the user. Then 

we use a list to store all the nodes in that level. At this moment, the merging 

process can be started. Suppose the number of nodes in the list is K , we first 

compute the inter-nodal distances between every nodes in the list and store them 

in a square matrix of K x K. Then we merge the nodes that are closest to each 

other to form a new node. Now the number of nodes in the list is reduced to 

K 一 1. After that the inter-nodal distances are computed again and the merging 

process is repeated until the total number of nodes in the list is just equal to 

the number of clusters to be found. The details of the procedure is shown in the 

figure 4.8. 

After the merging process, we have found k clusters and the information of 

each cluster is stored in a node. The next thing is to display the tuples within 

the same cluster in the visualizer. The thing we have to do is simply to explore 

the tree rooted at each node being found and to display them is different colors. 

Figure 4.9 shows an example of datasets being investigated. This dataset is 

obtained from the homepage http://www.bell-labs.com/project/serendip. The 

result ofthe clustering pattern is similar to the one computed by CURE [13], but 

IDAN can support interactive change in the number of clusters to be discovered. 

At the same time, IDAN does not require any other parameters while CURE is 

too sensitive to many parameters. We will discuss the comparison of IDAN with 

the other successful clustering algorithms in the coming chapter. The results of 

different number of clusters are demonstrated in figure 4.10 — 4.12. 

http://www.bell-labs.com/project/serendip
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_ ̂ P __ 
Figure 4.9: Example of dataset 

4.6 Comparison 

Among the existing clustering algorithms, IDAN is the most similar to BIRCH. 

Both of the algorithms are using tree structures. IDAN uses A-Tree while BIRCH 

uses CF-Tree. However IDAN does not suffer from the problem of BIRCH - mis-

clustering. The reason for BIRCH to mis-cluster the dataset is that BIRCH 

uses the centroid (or mean) to represent the whole cluster. It will discard the 

information like sizes and geometry of the clusters. However in IDAN, we are 

not using centroid to represent the cluster. Instead, we use an A-Tree node to 

represent a cluster. All the data points within the same cluster will fall within 

the same subtree. At the same time, MBR of the node will describe the size 

and geometry of the cluster. As a result, IDAN can get rid of the problem of 

mis-clustering. For BIRCH, it uses the minimal bounding sphere to hold the 

data points within a cluster. However minimal bounding sphere in fact does not 

represent too much useful geometrical information. At the same time, it requires 

every data points within the minimal bounding sphere to form a single cluster. 

Therefore, BIRCH can be only suitable for clustering database which clusters 
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are in the shape of hyper-sphere. Reminded that IDAN is requiring data within 

the same cluster to fall inside the same sub-tree (MBR), in stead of requiring all 

data within the MBR of a node to form a cluster. So IDAN is not suffering from 

same problems as BIRCH, which can only cluster spherical clusters. 

For CURE, it is also capable of discovering clusters with different sizes and 

geometry. However, the algorithm of CURE will be very dependent on the 

sampling phase. If the qualities of samples are not good, it will greatly affect the 

clusters being found. However, IDAN does not require sampling to improve the 

performance since itself is an incremental algorithm, it makes use of the result 

previously found so that it can achieve high performance. CURE is a good 

clustering algorithm in the sense that it does not suffer from the problem of mis-

clustering. The reason is that CURE tries to shift the data point towards the 

mean by shrinking the distance between the point and the mean by a fraction of o; 

and it uses multiple representatives to denote a cluster instead of using a single 

point like centroid or medoid. However, the disadvantage of this mechanism 

is that the clustering quality is very dependent on the choice of a. It is very 

difficult for the user to determine the correct a in order to give good clustering 

result. Besides, the number of representatives is very critical too. If the number 

of representatives is set to be too large, it will affect the performance of the 

algorithm. If the number of representatives is too small, the information on 

cluster size and the geometry will be discarded. It is very difficult to determine 

the number representatives so that to give good quality of clustering. For IDAN, 

there is a few number of parameters and all of them will affect the performance 

of the algorithm only and does not influence the result. 
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Figure 4.12: Example on clustering (Number of clusters = 6) 
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Figure 4.11: Example on clustering (Xumber of clusters = 5) 



Chapter 5 

Performance Studies 

Up to now, we have described the new algorithm being proposed. In this chapter, 

we would like to evaluate the performance of IDAN. We will address the result 

we found in solving the problem of mining quantitative association rules. Then 

we will talk about the performance of IDAN in solving the clustering problem. 

5.1 Association Rules 

We implemented the algorithm IDAN in C++ . We evaluated the performance 

on a Ultra Spar 1 machine with 686MB of main memory running Solaris 2.5. As 

mentioned in chapter 3, the visualization stage involves very little calculations 

and disk accesses, they are negligible. We are focusing on the first stage: A-tree 

building stage since most of the computation is taken place in this stage. 

First of all, different dimensional data have been tested. We have worked on 

3, 5, 10 and 20 dimensional data. For each dimension, we have tried to insert 

50,000 records of a synthetic dataset into an A-tree. We recorded the insertion 

time of each record and compared the average insertion time and the size of 

dataset. The result is being shown in figure 5.1. 
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Figure 5.1: Average insertion time 

We expect the performance of the algorithm will decrease linearly as the 

size of dataset is increasing. The result is confirmed and is shown in figure 5.1. 

For each of the number of dimension being tested in the experiments, all of 

them behave quite linearly for all the datasets. At the same time, we expect 

when the number of dimensions increases, the performance will be slow down. 

From the experiments done, we find that for small dimensional datasets, the 

performance will not be affected very much. We found that the performance of 

3-dimensional dataset and 5-dimensional dataset is almost the same. However 

for high-dimensional datasets, the performance will be affected quite obviously. 

In the experiment of 20-dimensional dataset, we found that it halved the per-

formance of the performance in 10-dimensional dataset. The reason is mainly 

due to the increase of node size and the increase of numeric calculation for high 

dimensional data. As the number of dimensions increases, the physical size ofthe 

node increases directly. So the page size cannot hold as much nodes as before. It 

will increase the number of disk access and will greatly affect the performance. 
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After that we started another series of experiments. This time we are inter-

ested on how the number of antecedents affect the performance of IDAN. We 

fixed the total dimensions of the datasets at 10. Then we vary the number of 

antecedents and see whether the performance will be affected. We have worked 

on 3, 5, 7 and 9 antecedents. The result on average insertion time against the 

size of dataset is plotted in the figure 5.2 
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Figure 5.2: Dimension of antecedent 

From the result ofthe experiments, we found that the performance with large 

antecedent will be better. The average insertion time of antecedent of 3 is double 

the one for antecedent of 5. The gain in performance of increase in antecedent 

is almost linear. This is reasonable since we are discovering rules from more 

dimensions of antecedent part. This means that we are mining rules from more 

information given. As a result, the computation time should be less than the 

others with smaller number of antecedents. 
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5.2 Clustering 

The proposed algorithm has been written in C + + . We perform the evaluation 

on a Ultra Sparc 5 machine with 192MB of main memory running Solaris 2.5. 

Again we are focusing on the first stage: A-tree building stage, since most ofthe 

computation is taken place in this stage and the computation cost in visualization 

stage is negligible. 

We have done several series of experiments to test the performance of IDAN. 

First of all, we would like to investigate how dimensionality reduction technique 

help us on clustering high dimensional database. We prepared datasets of 50,000 

data points with number of dimensions varying from 5 to 20. We recorded the 

average insertion time of each record and did the experiments on both with and 

without dimensionality reduction transform. The result is plotted in figure 5.2. 
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Figure 5.3: Performance with and without dimensionality reduction transform. 

From the figure we found that without dimensionality reduction, IDAN works 

better for datasets with dimensionality below 10. It is reasonable since the gain 
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in performance of searching along the R-Tree cannot overcome the the cost on 

computation for dimension reduction on low-dimensional data. However as the 

number of dimensions increases, the performance degrades sharply and becomes 

unacceptable. If we apply dimensionality reduction technique on IDAN, we find 

that the insertion time of new record increases gently as the number of dimen-

sions increases. The result shows that with the help of dimensionality reduction 

techniques, IDAN can cluster high-dimensional databases very efficiently. 

Next, we try to see how IDAN work on low dimensional datasets. We have 

worked on 2, 3, 5, 7 and 9 dimensional data. For each dimension, we have tried 

to insert 100,000 records of a synthetic dataset into an A-tree. We recorded the 

insertion time of each record and compared the average insertion time and the 

size of dataset. The result is shown in figure 5.2. 

We expect that the performance of the algorithm will decrease linearly as 

the size of dataset increases. This is confirmed from the result shown in figure 

5.2. For each of the number of dimension being tested in the experiments, all 
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of them behave quite linearly for all the datasets. At the same time, we expect 

that as the number of dimensions increases, the performance will be slow down. 

From the experiments done, we find that for small dimensional datasets, the 

performance will not be affected very much. We found that the performance of 

3-dimensional dataset and 5-dimensional dataset is almost the same. However for 

high-dimensional datasets, the performance will be affected quite obviously. In 

the experiment of9-dimensional dataset, we found that it halved the performance 

of the performance in 5-dimensional dataset. The reason is mainly due to the 

increase of node size and the increase of numeric calculation for high dimensional 

data. As the number of dimensions increases, the physical size of the node 

increases directly. So the page size cannot hold as much nodes as before. It will 

increase the number of disk access and will greatly affect the performance. 

After that we started another series of experiments. This time we are inter-

ested in how the number of clusters in the dataset affects the performance of 

IDAN. We fixed the total dimensions of the datasets at 2. Then we vary the 

number of clusters and see whether the performance will be affected. We have 

synthesized different datasets with different number of clusters for the experi-

ments. We have worked on datasets with 2, 4, 5，8 and 10 clusters and each of 

them is consisting of 50,000 data tuples. The result on average insertion time 

against the size of dataset is plotted in figure 5.2. From the result of the exper-

iments, we found that the performance of the algorithm is not affected by the 

data distribution. We can observe from figure 5.2 that almost all the curves lie 

nearly to each others. Some of the hierarchical clustering algorithms are very 

sensitive on the distribution of the datasets. Some distribution of data points 

will have very poor performance. From this set of experiments we can conclude 

that IDAN is immune from the distribution of datasets. 

Finally, we have worked on a set of experiments, which is aimed to investigate 

the effect of N.MAX on the performance of the algorithm. We synthesized a 
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Figure 5.5: Effect on different number of clusters 

dataset of dimension 2 with 50,000 records. Then we use different values of 

N.MAX and use our algorithm to cluster the same dataset. We have tried to 

use 5, 10 ’ 15, 20 and 25 as examples of N_MAX to see whether the performance 

of the algorithm will be affected. The result is plotted in figure 5.2. We expect 

the performance of the algorithm will increase as the value of N.MAX increases. 

As mentioned in the previous chapters, insertion in IDAN requires parsing the 

tree from the root to a leaf once only. So the performance greatly depends on 

the height of the tree. If we set the parameter of N_MAX to a smaller value, 

the tree will be "thinner" and "taller". We have to spend more time to parse 

the tree. On the other hand, if we set a larger value of N_MAX, the tree will 

be flat and as a result, the height of the tree will be reduced. This will improve 

the computation time on parsing the tree from the root to a leaf. From figure 

5.2，we can figure out that the performance of small N.MAX will be affected 

more than that of large N_MAX. The curve for N.MAX = 5 is higher than the 

others in a large amount. However, from the curves of N—MAX = 15, 20 and 
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Figure 5.6: Scalability wrt. increasing N_MAX 

25, we find that the performance are very similar tp each other. The reason is 

that the height of the tree is 0{logN.MAx{n)), so the height of the tree will not 

reduce too much for large NJAAX. 



Chapter 6 

Survey on data visualization 

techniques 

Due to great improvement in data collection techniques, now people are much 

more easy to obtain useful data. The amount of data is increasing in an unbe-

lievable rate. For example, satellites going around the Earth are transmitting 

large amount of data all the time. The amount of data is measured in the unit of 

gigabyte per hour. Traditional database management system, which are usually 

text based, are capable to store the data and most of them work very well in 

data retrieval. However, it is very difficult for the user to explore the data in the 

traditional database management systems. 

Data visualization techniques is a right solution to the problem. The basic 

idea of data visualization techniques is to represent as many data as possible 

on the screen by mapping every data records to some graphical representations 

which users are able to have an overview on the dataset. 

One ofthe most important visualization techniques is scatter-plot. Each data 

value is mapped to a single point in the visualization domain. As we are living in 

3-dimensional space, scatter-plot is a perfect way to represent data visually for 

data with dimensionality below 3. However, for multidimensional data, scatter-
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plot cannot provide good result. In this chapter, we would like to introduce some 

important visualization techniques for multidimensional data. We try to classify 

the techniques into 4 groups: Geometric Projection, Icon-based, Pixel-oriented 

and Hierarchical techniques. In fact, there are many other techniques, but due 

to limited time and space, we just address the most common and important ones 

here. 

6.1 Geometric Projection Techniques 

The key idea of geometric projection techniques is to construct interesting pro-

jections on multidimensional data. To apply the techniques, we have to find out 

the interesting projections first. There are many ways such as principal compo-

nent analysis, factor analysis and multidimensional scaling, which is aimed to 

find out these projections. We classify these methods as the field of projection 

pursuit [15 . 

6.1.1 Scatter-plot Matrix 

The first technique we introduce here is scatter-plot matrices technique [6]. A 

scatter-plot matrix consists of a number of 2-dimensional scatter-plots with dif-

ferent projections of the multidimensional dataset. Suppose the original dataset 

is in A:-dimensional. The scatter-plot matrix will consist of k^|2 - k differen-

t scatter-plots. The advantage of the scatter-plot matrix is human readability 

since people are very familiar with 2-D scatter-plots. On the other hand, scatter-

plot-matrix cannot indicate the relationship more than 2 attributes since each 

scatter-plot in the matrix is in 2-dimensional space only. 
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Figure 6.1: A scatter-plot matrix graphs hypervariate data: measurements of 
solar radiation, temperature, wind speed, and cube root ozone concentration on 
111 days at different places in the New York metropolitan region 

6.1.2 Parallel Coordinates 

Another geometric projection technique is the parallel coordinates technique [16， 

17]. Parallel coordinates technique tries to transform the A;-dimensional data 

records into 2-dimensional visual space. There are k equidistant axes in the 

visual space and these axes are arranged to be parallel to each other. Each axe 

is corresponding to one of the dimension in the dataset and the axe is linearly 

scaled from the minimum to the maximum value of corresponding dimension. 

Unlike scatter-plot matrix, data values are mapped into polygonal lines in-
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Date Time Latitude Longftude Magnitude 
19 9.52 35.36 118.44 4.10 

• 
13 3.00E-02 32.45 115.15 2 

Figure 6.2: Example of parallel coordinates: This plot reveals that high-
magnitude earthquakes (highlighted in red) occurred at the same longitude and 
latitude and on three particular days. 

stead of points. The polygonal lines are intersecting each of the axes at the right 

place which is corresponding to the value of the data in that dimension. The 

advantage of the parallel coordinates techniques is that it can give us a wide 

range of characteristics such as the distribution of the data and the functional 

dependencies. However, since the polygonal lines may overlap to each other, so 

it is very difficult for people to read the graph for large dataset. Sometimes, we 

will use different color to represent each polygonal line and it can increase the 

readability of the graph. 
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Figure 6.3: Example of Chernoff face representation 

6.2 Icon-based Techniques 
Another class of visualization techniques are the icon-based-techniques. Some 

people call them as iconic display techniques. The key idea of these techniques 

is to construct different icons to represent data records of different values. 

6.2.1 Chernoff Face 

Chernoff face [5] visualization technique is the most well known one among all 

the icon-based techniques. Suppose the dimensionality of the dataset is k, which 

k > 2. Two of the dimension of the dataset is mapped into the X and Y axes. 

The remaining dimensions are mapped to the properties of different parts on the 

face such as the appearance of the face, ears, eyes and mouth. 

Chernoff face visualization uses different appearances of human faces to rep-

resent different data values. It is an intelligent way since people are very sensitive 
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to the appearance of human faces and facial features. By using this technique, 

we can easily find out data which are in the same cluster. Outlying faces and 

those inconsistent with others in the neighbor are treated as 'strangers' and can 

be eliminated immediately. On the other hand, ChernofF face cannot work very 

well in large databases since the space that the faces occupying is quite large and 

it is very difficult to visualize a large number of data items. Besides, the number 

of the dimensions that Chernoff face technique can handle is quite limited 

6.2.2 Stick Figures 

Stick figures [12] is another icon-based visualization technique. Again, two of 

the dimensions of the dataset are represented in the X and Y axes. For the 

other dimensions, this time we use different shape of the 'sticks' to represent the 

different data values instead of using the appearance of the facial features. Two 

of the attributes of the data are mapped to the display axes and the remaining 

attributes are mapped to the angle and/or length of the limbs. 

For example, if the dimensionality of the dataset is 7’ we map two of the 

dimensions of the data to the display axes. Then the remaining 5 dimensions 

of the data are mapped to the angles of the limbs of a 5 segments stick. By 

observing the texture patterns in the visualization, we can find out the data 

characteristics. 

Stick figures can represent more data items when compare with ChernofF 

face technique. Again the number of the dimensions represented, cannot be too 

large since people cannot observe the difference between sticks if the number of 

segments is too large. 
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6• 3 Pixel_oriented Techniques 

Pixel-oriented techniques [21, 22]use different sub-windows to represent different 

attributes of the dataset. The basic idea of the techniques is to map each data 

item to a single pixel in each of the sub-windows. The advantage of using this 

kind of techniques is that we can visualize a large amount of data since each data 

only requires a single pixel to represent itself. Data are at first sorted according 

to some attributes and then we fill the windows pixel by pixel. 

There are many variations of pixel-oriented techniques. We can obtain differ-

ent results by using different arrangements of pixels. Line by line, snake spiral, 

Peano Hilbert spiral and Morton spiral are some of the most commonly used 

arrangement. 

" p H l l i p i p I r p B | 
^ ^ ^ ^ ^ ^ S(M b5^ ^ § ^ ¾ 
^ g n n ^ ^ 5 ^ i ^ 驗 

i i M l - " i i i l i » « ® 

(a) snake spiral (b) Peano Hilbert spiral (c) Morton spiral 

Figure 6.5: General spiral arrangement 

Line by line arrangement, in general, cannot produce the useful visual pat-

terns. The reason is that the way we look at the visual patterns is not line by 

line. We usually concentrate on a particular area of the pattern. So it is better 

for us to arrange items which are close together in the area nearby. So spiral 

arrangement like snake, Peano Hilbert and Morton can produce much useful 

patterns. 



Chapter 6 Survey on data visualization techniques IL 

i^/v^j^,G 〜云删‘"̂ ‘、丧 )?，二'<'\” ] 
<j V i 争 , . ^ J ^ j ‘ » >� m s |wiBwlr^7fi i W f f l ® | W l B I _ i l l t I # ] n i f ^ i _ wmi t W w J • - 1 产 r^a^! ^ I 

iiiilimmi BHMBBL 

_画 
^ ^ ^ f f 5 l ^ ^ ^ ^ ^ 
飞。,1 : �. n 4iii!a^&MJ 'Vi 

龜_ 
^ n i Wf 
• f y p s B B i a ^ B i M ^ — g d ^ ^ S ^ S 5 s ^ S j 
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time series of financial data. The graphs are arranged line-by-line 
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Figure 6.7: Examples of different arrangement of time series of financial data 
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6.4 Hierarchical Techniques 

Th^ key concept of hierarchical visualization techniques is to subdivide the k-

dimensional space and represent the subspaces in hierarchical fashion. Dimen-

sional stacking is one of the well-known techniques belonging to this class. 

For dimensional stacking [24], we subdivide the A:-dimensional space into a 

number of 2-dimensional subspaces. The first two dimensions span the X and 

Y axes. We obtain a number of grid cells by dividing the domain along X and 

Y axes into a number of equally sized intervals. Then for each of the grid cell, 

we further divide the cell into smaller cells along X and Y axes. This time the 

X and Y axes with the cell represent the other two dimensions. The dividing 

process will be carried on until all the k dimensions have been embedded. The 

advantage of hierarchical visualization techniques is that they can handle high 

dimensional datasets. 
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Figure 6.8: Principle of dimensional stacking representation 

i •__i__圓丨•••   



Chapter 7 

Conclusion 

In this paper, we have addressed the problems of traditional algorithms on dis-

covering clustering patterns in large databases. The traditional algorithms are 

suffering from: (i) lack of user interaction and exploration, (ii) problem of mis-

clustering. The whole process is just like running in a black box and the user 

takes no interaction except setting up the parameters for the algorithms. Once 

the parameter has been changed, the whole process has to be repeated from the 

very beginning. User is not able to preview the distribution of data so that the 

user cannot set up the most appropriate parameters for the algorithms. We pro-

posed a new algorithm called IDAN, which is aimed at providing fast and user 

friendly way to discover knowledge from numerical data. The followings are the 

features of IDAN: 

Hierarchical Algorithm IDAN makes use of a hierarchical index structure 

called A-tree. This provides good performance to the algorithm. IDAN 

will explore the tree node by node and efficient pruning mechanism can be 

employed such that a large number of nodes can be ignored when doing a 

particular task. 

Incremental Algorithm IDAN supports incremental update on the dataset. 

New tuples can be inserted efficiently and the mining process will only 
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process on the newly inserted data. It needs not to start from the very 

beginning. 

Interactive Algorithm IDAN is divided into two phases: tree-building and 

visualization phases. The tree-building phase studies the distribution of the 

data and does not require any user parameters. The user can change their 

parameters in the visualization phase and IDAN can response immediately. 

From the experiments we have done, we proved the effectiveness and efficiency 

ofIDAN. The experiments have demonstrated that IDAN not only provides good 

performance and at the same time it also provides good quality on the knowledge 

being mined. 
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