
INTERACTIVE D A T A MlNING A N D

VISUALIZATION 〇N MULTI-DlMENSIONAL

D A T A

B Y

C H U , HONG K l

SUPERVISED B Y ：

PROF. M . H. WONG

SUBMITTED TO THE DlVISION OF DEPARTMENT OF COMPUTER SCIENCE &

ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF PHILOSOPHY

AT THE

CHINESE UNIVERSITY OF HONG KONG

JuNE, 1 9 9 9

/ ^ ^ ^ ^ fiJ_^ ^^ n t g ^ A

；| 1 1 FB 1 3 j i

^ ¾ ^ ~ u i i i i 5 n " / £ /
\d̂ >4'BRARY smmy<^

^ ^ ^ P ^

多維數據之互動數據開採及形象化

摘要

數據開採一向以來都是計算機科學的熱門題材，不少研究員花了很多

努力去尋找怎樣可以從數據中攝取有用知識的有效方法。在眾多數據開採

的題目中，最能引起研究員興趣的題目可算是：怎樣從大型數據庫中發掘

關聯規則及數據分佈的形態。在眾多被建議的演算法中，確有不少成功的

例子。但這些數據開採的演算法都擁有同類的缺點，就是缺乏與使用者之

間的互動及沒有提供充足的勘察予使用者。在這篇論文中，本人將會介紹

一個名為「互動數值資料分析」的演算法。

「互動數值資料分析」的目標是解決兩個最常見的數據開採疑難，它

們分別是數值屬性的開採關聯規則及聚類分佈之發現。這個演算法是屬於

遞增模式。在開採過程中，能提供高度的使用者互動性。當與數據顯示器

結合後，使用者更能探索到被發掘出的規則或聚類。若要處理高維數據

時，還可以應用空間削減技巧來達到高性能的數據聚類過程。總括來說，

「互動數值資料分析」是一個高效率的數據開採演算法。

論文作者：朱康歧

哲學碩士二年級學生

香港中文大學電算機科學及工程學系

Acknowledgments

My deepest thanks go to my parents and my brothers. They support me on

everything related to my life, and my work.

My special thanks to Prof. Wong Man Hon, CUHK, who was my supervisor

in both of my final year project and researches. He gave me a lot of suggestions

and all of them are extremely important to my research. Without his help, I

am sure that I will not have the chance to present our paper in the conference

IDEAS 99 coming summer.

My great gratitude goes to Prof. Ada Fu W. C. and Prof. K. S. Leung, who

marked my term papers and participated in the term presentations. I woild like

to acknowledge their helpful comments on my works.

Moreover, I have to express my gratitude to the Department of Computer

Science k Engineering, CUHK. I have spent almost six years of wonderful time

in the department. I would especially like to thank all the staff in the department

for providing good equipments.

Finally, I thank my fellow collegues, who were extremely helpful in my stud-

ies. They are Chu Kam Wing, Choi Chun Hing, Kwong Wang Wai, Cheng Chun

Hung and Chan Kin Pong. I had learnt many things from them through discus-

sions. Sepcial thanks to Choi Chun Hing, Cheng Chun Hung, Kwong Wang Wai,

Kam Po Shan, Tse Ming Fun, Cuo Ping, Li Xue Wun and Li Yuan Yuan, who

helped me a lot in the tutorial works. I would especially like to thnak Chan Kin

Pong for his valuable suggestions to my researches. My special thanks to Lam

Shan Shan and Yueng Siu Man, who helped me to prove read my thesis.

...and they bring happiness to my university life.

ii

Interactive Data Mining And

Visualization On Multi-Dimensional
Data

submitted by

CHU，Hong Ki

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Data Mining has been a hot topic in computer science. Many researchers have

been putting lots of efforts on how to extract explicit knowledge from large

databases. Among the problems in data mining, discovering association rules

and finding useful patterns in large databases has attracted lots of interest in

recent years. There are many successful algorithms being proposed. However,

most of the proposed algorithms for data mining problems are suffering from

the same demerit: lack of user interaction and exploration. In this paper, a

new algorithm called Interactive Data Analysis on Numeric-data: IDANis being

introduced.

IDAN is aimed to solve the two of the most common problems in data min-

ing: mining association rules and discovering clustering patterns with numeric

attributes. This algorithm is incremental and providing more user interaction in

the mining process. At the same time, it allows the user to explore the rules or

clusters being found when integrated with a visualizer. By applying dimension-

iii

ality reduction techniques, IDAN can provide good performance for clustering

high dimensional dataset.

iv

j

Contents

• •

Acknowledgments u

Abstract iii

1 Introduction 1

1.1 Problem Definitions 3

1.2 Experimental Setup 5

1.3 Outline of the thesis 6

2 Survey on Previous Researches 8

2.1 Association rules 8

2.2 Clustering 10

2.3 Motivation 12

3 IDAN on discovering quantitative association rules 16

3.1 Briefing 17

3.2 A-Tree 18

V

3.3 Insertion Algorithm 25

3.4 Visualizing Association Rules 28

4 IDAN on discovering patterns of clustering 34

4.1 Briefing 34

4.2 A-Tree 36

4.3 Dimensionality Curse 37

4.3.1 Discrete Fourier Transform 38

4.3.2 Discrete Wavelet Transform 40

4.3.3 Singular Value Decomposition 42

4.4 IDAN - Algorithm 45

4.5 Visualizing clustering patterns 49

4.6 Comparison 51

5 Performance Studies 55

5.1 Association Rules 55

5.2 Clustering 58

6 Survey on data visualization techniques 63

6.1 Geometric Projection Techniques 64

6.1.1 Scatter-plot Matrix 64

6.1.2 Parallel Coordinates 65

6.2 Icon-based Techniques 67

vi

6.2.1 Chernoff Face 67

6.2.2 Stick Figures 68

6.3 Pixel-oriented Techniques 70

6.4 Hierarchical Techniques 72

7 Conclusion ”

Bibliography ^^

t：

I
^

j 1
i

j

i I
I i

1 I I
1 1
i I
I ！ t
I

I
I ••
！ Vll
I k
f .

List of Figures

2.1 Problem of mis-clustering 14

2.2 Examples of Mis-clustering 14

3.1 Structure of an A-tree node 19

3.2 The A-tree structure 20

3.3 Overlapping nodes 23

3.4 Flow of insertion algorithm 26

3.5 Update support 28

3.6 Original dataset 30

3.7 Rules with support 5% confidence 50% 31

3.8 Rules with support 15% confidence 50% 32

3.9 Rules with support 15% confidence 90% 33

4.1 Overview of IDAN 35

4.2 Structure of an A-Tree node 36

4.3 Fourier transform tries to break up function f{x) into components

of different frequencies 39

viii

4.4 Different Haar functions for d 二 4 42

4.5 Haar transformation matrices 43

4.6 Axes change from {x,y) to {x',y') by matrix V • . . . 44

4.7 Flow of insertion algorithm 46

4.8 Procedure for MergeCluster 49

4.9 Example of dataset 51

4.10 Example on clustering (Number of clusters = 4) 53

4.11 Example on clustering (Number of clusters == 5) 53

4.12 Example on clustering (Number of clusters 二 6) 54

5.1 Average insertion time 56

5.2 Dimension of antecedent 57

5.3 Performance with and without dimensionality reduction transform. 58

5.4 Average insertion time 59

5.5 Effect on different number of clusters 61

5.6 Scalability wrt. increasing N.MAX 62

6.1 A scatter-plot matrix graphs hypervariate data: measurements of

solar radiation, temperature, wind speed, and cube root ozone

concentration on 111 days at different places in the New York

metropolitan region 65

6.2 Example of parallel coordinates: This plot reveals that high-magnitude

earthquakes (highlighted in red) occurred at the same longitude

and latitude and on three particular days 66

ix

6.3 Example of Chernoff face representation 67

6.4 Stick figures visualization technique 69

6.5 General spiral arrangement 70

6.6 Example of pixel-oriented techniques: The graphs show datasets

of time series of financial data. The graphs are arranged line-by-

line 71

6.7 Examples of different arrangement of time series of financial data 71

6.8 Principle of dimensional stacking representation 72

X

Chapter 1

Introduction

Recent progress in data retrieving technologies has made us much easier to col-

lect massive amounts of data. Organizations ranging from private business to

government bureaucracies are now able to gather a large amount of information,

which they are interested. Many of them have accumulated a huge size of da-

ta over recent decades. Successful organizations treat such data, as important

pieces of infrastructure. They can help them in business decision, like setting up

marketing strategies. However as the size of data grows, it is much more difficult

for us to analyze such a large amount of data. Methodologies of discovering use-

ful information from these data are highly in demand. This spurs a tremendous

interest in the fields of knowledge discovery and data mining.

The knowledge discovery or data mining can be defined as the process of

nontrivial extraction of implicit, previous unknown and potentially useful infor-

mation from data in databases [9]. An example of information, which is most

likely to be interested, is discovering correlation, or co-occurrences of transaction-

al events. We classify this type of problems as mining association rules. These

rules being discovered are very useful, which can discover interesting relationship

among attributes exist in the dataset. A typical example is the basket data mod-

el. People are interested in the relations between items bought by customers.

1

2
Chapter1 Introduction L

They are looking for rules, which tell them the occurrence of a particular item

will probably lead to the occurrence of another item. An example of such an

association rule might be that 98% of customer that purchase bread also buy

eggs. We call bread as the antecedent and milk as consequent of the rule. The

following are some of the examples of associations may be interested:

1. Finding all association rules with 'milk' as consequent. These rules may be

very helpful for the shop to plan what to do to boost the sale of a particular

items.

2. Finding all association rules with 'chocolate cookie，as antecedent. These

rules may be useful for the shop to identify which items will be affected if

it discontinue to sell chocolate cookie.

Discovering association rules is very useful when we are hunting for interesting

relationships that might contain in database. Useful association rules may be

very helpful for us to predict behavior. However, there are many associations

rules within the database and not all of them are meaningful to us. So the

problem of mining association rules involves not only identifying the rules, we

also need to decide which rules is important and useful to us.

Among the techniques in the field of data mining, cluster analysis is used to

discover interesting distribution and patterns in the underlying data. Clustering

analysis is one of the means for us to classify groups of objects by exploring data.

Organizing data into sensible groups is one of the most fundamental modes of

understanding and learning. In everyday life, children learn how to distinguish

between cats and dogs, between tables and chairs, between men and women,...,

etc, by continuously improving subliminal classification system. Classification

has always played an essential role in science. The following are some of the

examples:

Q
Chapter 1 Introduction 1

1. In biology, people try to classify living organisms into different kingdoms or

classes by investigating the common features of a particular kind of living

一 things.

2. In astronomy, people try to classified stars into various category by mea-

suring their light intensity and their surface temperature.

3. In marketing, researchers try to identify market segments which are groups

of customers with similar needs.

In the past, clustering were usually performed in a subjective way, by relying

on the perception and judgment of the researchers. They use a specific way,

which is well suited to their situations, to perform clustering. In this paper,

we will concentrate on clustering objects by means of different measurements or

attributes. We use a multi-dimensional vector to represent the measurements of

an object.

1.1 Problem Definitions

Now we have some brief idea on the problems of mining association rules and

clustering database and how these problems is related to the everyday life. Before

we go into the details, we try to introduce the mathematical representation of

these problems.

Association Rules

For the problem of discovering association rules, we can formulate the problem in

a systematic manner. Given a database T with attributes A = {Ao, ^ i , ^2,..., ^n},

generally an association rule can be expressed in the form:

Chapter 1 Introduction i

Ci G X =^ C2 e Y

where C1,C2 G A such that Ci n C2 二 0, and X, Y are some values within

the domains of Ci and C2 respectively.

We called Ci is the antecedent and C2 the consequent of the rule. We can

extract over thousands of rules from the database T. There are some measures

called support and confidence on the association rules which reflect the goodness

of an association rule. The support measures the probability for a record to

satisfy both the antecedent and consequent parts of the rule. It is defined as:

support 二 F(Ci e X A C2 e Y)

The confidence is somehow measuring the probability for a record to satisfy

the consequent part given that it satisfies the antecedent part. It can be expressed

as:

, \ support
conf = P{C2 e Y\p, e X) 二 尸 (二 X)

The support and confidence are having different physical meanings. Rules

with high support value do not guarantee to have high confidence. Usually, a

'good' rule should have both high support and confidence.

Clustering

Clustering analysis is the process of classifying objects into subsets. Suppose

there are n objects which are denoted by the set X.

AT = {X1,X2,X3, ...,Xn}

K
Chapter 1 Introduction

where x̂ is the zth object. A clustering, C, of Af separates A' into k subsets

{Ci, C2, C3, "., Ck} satisfying the following:

Ci^d) fori = [l,k\

C1UC2U...UCfc = A'

Ci n Cj = 0 for i,j = [1, k] and i / j

We call C a clustering of Af. A clustering is a collection of non-empty sets so

that each set must contain at least one object. Besides no object belongs to more

than one set. The union of all the sets must equal to the set of all objects. Usually

we cluster the objects by looking at the measurements or attributes associated

with the objects. Such information is often represented by a multi-dimensional

vector.

In this paper, we will concentrate on how to find out the clustering in databas-

es. Each record in the database is treated as a multi-dimensional point by apply-

ing simple transformations. We treat the clustering problem as follows: given n

data points in a c/-dimensional metric space, separate or divide data points into

k different groups such that data point within the same group are much more

'similar，to each other than data points in different clusters. The similarity be-

tween two data points is usually measured by the distance between them. Data

points that are close to each other are similar to each other.

1.2 Experimental Setup

In the research, I have done a series of experiments. These experiments are being

done to test the effectiveness and efficiency of the new proposed algorithm. All of

the experiments are being done on Ultrasparc 5 machines, with 512MB of main

Chapter 1 Introduction ^

memory. The experiments are written in C + + and the the operation system of

the machines are SunOS 5.6.

For the experiments, I have tried to use synthetic databases of different num-

ber of records and dimensions. Databases with various distributions are being

examined. Besides, I have also tried the dataset used in the Serendip Data Min-

ing Project from Bell Labs. The purpose of using the dataset is to test the

effectiveness of the new algorithm.

The databases are in dimensions from 2 to 20 for clustering problem and

are in dimensions from 2 to 9 for association rules discovery. The details of the

experiments and the result being concluded will be discussed later.

1.3 Outline of the thesis

The thesis is outlined as follows.

In Chapter 2，I will first state the previous works in the data mining, espe-

cially the problem of clustering and the mining of association rules. At the same

time, I will try to point out the disadvantage of the traditional approaches and

the motivation of my research.

IDAN can also solve the problem of discovering quantitative association rules,

In Chapter 3, I will talk about the modification on the algorithm and how it

works.

In Chapter 4，I will introduce the new algorithm - Interactive Data Analysis

011 Numeric-data (IDAN). I will talk about the key idea of the algorithm and how

the algorithm can handle the problem of discovering clustering patterns on large

numeric data. I will also talk about how we can apply IDAN on high dimensional

datasets.

Chapter 1 Introduction ^

Besides, I have done a series of experiments. In Chapter 5, I will state how the

experiments are being done and the result I discovered from these experiments.

In Chapter 6，I will introduction some techniques on visualizing different kind

of data.

Finally, I will conclude and discuss our works in Chapter 7. I will make a

summary on what I have done in the research and what can be done in the

future.

j

Chapter 2

Survey on Previous Researches

In this chapter, I will try to summarize the previous researches on the field of

data mining. At the same time, I would like to discuss what I have learn from

the previous researches and what makes me start my research in data mining.

2.1 Association rules

Given a database T with attributes {A0,A1,A2,…，义几}, an association rule can

be expressed in the form of Ci � C2 where Ci is called the antecedent and C2

is the consequent of the rule. The value of an attribute Ai of a record R in

T is denoted by R.Ai. For Boolean association rules, both the antecedent and

consequent are restricted to be a set if of items {Ai =，yes，). We simply denote

item as I e {Ah Ai, A2,..., An}. We say that a record R supports Ci if Ci holds

in R, i.e. Vz G Ci , R.i = 'yes，.

There are two quantities support and confidence that are used to measure the

quality of an association rules. The support of rule Ci 令 C2 is valued as s if s%

of records in T are supporting Ci and C2. The confidence of rule Ci => C2 is

valued as c if c% of records that are supporting Ci, also support C2. A rule is

classified as "good" in the database T if the rule is with support and confidence

8

Chapter 2 Survey on Previous Researches 12_

excess the thresholds minsup and minconf that are set by the user in advance.

These rules are very common in basket-data-type retail transactions.

The problem can be decomposed into two subproblems:

1. Finding all combinations of items that have transaction support above the

minimum support. Call those combinations large itemsets.

2. Use the large itemsets to generate the desired rules. For example, if ABCD

and AB are large itemsets, then we can determine if the rule AB 玲 CD

holds by computing the ratio c = support{ABCD)/support{AB). We say

that the rule holds only if c <minimum confidence.

Among the two subproblems, the first one is much more difficult and the

computation is much more. Agrawal, Imielinski and Swami presented an efficient

algorithm [1, 28] to discover large itemsets called Apriori Gen and had proved

very successful. The key ideas of Apriori Gen is that we in fact no necessary to

explore all the combinations of the items due the 'upward bounding' properties

of large itemsets. For example, if an item ABCD is said to be large, then all the

item which are combinations of A, B, C, D such as AB, AC, AD, BC, BD, CD

ABC, ACD and BCD are also large.

Boolean association rules are quite restrictive. They can be used in the

database with Boolean attributes only. With some modification, categorical at-

tributes can also be processed. However, databases in the real world usually have

numeric attributes, Boolean association rules are impractical in such situations.

In order to tackle the problem, quantitative association rules were introduced

31, 10]. Quantitative association rules retain the same format as Boolean as-

sociation rules. The difference between them is that in quantitative association

rules, the antecedent and consequent can be conjunctions of item in the form of

[Ai e [k, Ui]) where k < Ui and any value between k and Ui is within the domain

Chapter 2 Survey on Previous Researches 12_

of Ai. We simply denote an item as I e< A,l,u�. A record R support Ci if

Ci holds in R, i.e. Vz G C^,i(l) < R.i{A) < i{u). The definitions of support and

confidence are similar to the ones mentioned above in Boolean association rules.

Recently researches on quantitative association rules concentrate on how to

divide the attributes in different ranges so that the problem can be transformed

as a problem of discovering association rules with categorical attributes only. As

a result, we can use the existing algorithm to mine quantitative rules. Of course,

the problem of dividing the domain of an attributes into several ranges is not

an easy task. There are many ways to do so and the most common one is the

equal-depth bucket approach.

2.2 Clustering

In recent years, many successful clustering algorithms for large datasets have been

proposed [18] [20]. These techniques are widely adopted in spatial databases

23], which data points usually form different patterns. Moreover clustering is

also an important technique for pattern recognition [7] [11] and machine learning

26] [4]. Some researchers proposed to use medoids, the most centrally located

point in clusters, to represent the various clusters. The objective is to find

out the k best medoids, which can optimize the similarity within clusters under

a predefined criterion function. The algorithm is based on randomized search

and the problem can be transformed into a graph-searching problem. Later

CLARANS [27] was introduced, which improved the performance of traditional

k-medoid algorithms. CLARANS can successfully cluster data with high quality.

However it requires several passes over the dataset, therefore the runtime cost

may be unacceptable for large dataset. There are some modifications [8] on

CLARANS such as applying R*-Tree [2] to improve I /O efficiency.

Chapter 2 Survey on Previous Researches 12_

The algorithms mentioned above are mainly based on the randomized search.

Later, researchers proposed a new algorithm to solve the problem. Instead of

randomized search, the algorithm BIRCH [33] is proposed to adopt a hier-

archical approach to solve the problem. BIRCH improved I /O complexity by

pre-clustering the original data into maximum possible and finest possible sub-

clusters, which can fit in the main memory. At the same time, it makes use of

a CF-tree, which is a balanced tree structure similar to SS-tree [32]. Instead

of using medoids to represent the whole cluster, BIRCH treats each node in the

CF-tree as a single cluster. Each node stores the mean of all the points repre-

sented in the cluster. Similar to BIRCH, CURE [13] proposed later, also uses a

hierarchical structure: k-d tree to make it easier to cluster large set of data. It

first draws a set of random samples from the database and partitions the ran-

dom sample. It starts with each point as a separate cluster and then merges

the closest cluster to form a new single cluster. To improve the I /O complexity,

CURE uses a heap in each cluster to increase the performance on searching the

closest cluster for merging. Rather than using medoids or centroids, CURE uses

a number of representatives in the cluster to describe the whole cluster.

In this paper, we are proposing a new algorithm for clustering large dataset-

s. This algorithm is named as Interactive Data Analysis on Numeric-data: I-

DAN. IDAN clusters large dataset in an incremental and interactive manner. It

can partition large dataset into different clusters with good qualities and at the

same time it provides good performance. When dealing with high dimensional

database, IDAN makes use of dimensionality reduction techniques so that it can

perform as good as working of database with few dimensions.

Chapter 2 Survey on Previous Researches H

2.3 Motivation

Among all the algorithms of discovering association rules, almost all of them are

running in the way that we put the database, Minimum support threshold and

minimum confident threshold as input of the algorithm. After running for a pe-

riod of time, the algorithm outputs all the rules that are satisfying the minimum

support and minimum confident thresholds. The process is fully automatic and is

running in black box style. No user interaction is required. Since the thresholds

play an important role in the choosing of the correct rules, so if the thresholds

are wrongly set, then the qualities of the rules being discovered will be greatly

affected. The whole process has to be repeated from the very beginning if the

user want to change any of the thresholds.

Another problem is that most of the traditional algorithms for discovering

quantitative association rules are be applicable to dynamic databases. If there

are new data inserted in the database, the mining algorithm has to be started

from the very beginning. This is very time consuming and impractical.

For the problem of clustering, most of the traditional approaches are lack of

user interaction and exploration. In the whole process of discovering patterns of

clustering, the user usually needs to specify some parameters, like the sampling

size and the total number of clusters to be discovered. Similar to the problem of

mining association rules, the clustering process is also just like a black box. Once

the user has input these parameters, the next thing the user has to do is just to

sit right in front of the machine and wait for the result. However the clustering

process is highly dependent on the quality of data. Different data may require

different thresholds in order to provide good clustering result. It is impossible for

the user to know the exact values of the parameters in advance without running

the process for number of times or exploring the data distribution visually. Once

the thresholds are wrongly set, the clustering process has to start from the very

Chapter 2 Survey on Previous Researches 12_

beginning. So users have to pay a very expensive cost. The problem mentioned

above is mainly due to the black-box manner of the traditional clustering algo-

rithms. The traditional algorithm focus too much on the correctness and the

efficiency of the algorithm, on the other hand these algorithms are ignoring the

importance of user participation.

Moreover, some traditional clustering algorithms are suffering from another

problem called mis-clustering . Traditional clustering algorithms can be classified

into partitional and hierarchical approaches. Partitional clustering algorithms try

to discover k partitions by optimizing a certain criterion function. Most of them

are making use ofthe square-error as the standard ofjudging the similarity within

the cluster. The square-error criterion can be summaries as below:

k

E = Y 1 Y 1 W p - r H i ||2 .

i = i peCi

where 7¾ = J2^ ̂ Q p and Ci is the set of points in i th cluster .

However, this measure sometimes will result in mis-clustering. Normally clus-

tering using square-error criterion works well when the clusters are well separated

with similar sizes. However when the clusters are in large differences in size and

geometry, the square-error criterion will intend to split big cluster into smaller

ones so that the sizes of clusters are similar. This situation can be illustrated in

figure 2.1.

Traditional hierarchical clustering algorithms also suffer from the problem

of mis-clustering. They usually treat each data point as a single cluster at the

beginning. Then a pair of clusters are selected and merged together to form a

new single cluster. The merging process is repeated until the total number of

clusters is reduced to k. The algorithms will choose the pair of clusters, which are

the nearest to each other, among all the pairs for merging. The most commonly

used measures of distance between cluster Ci and Cj are dmean, dmax and dmin-

Chapter 2 Survey on Previous Researches 12_

~ww
(a) Two clusters with difference in (b) Big cluster is split and the small
size cluster is merged with part of big

cluster

Figure 2.1: Problem of mis-clustering

d m e a n { C i , C j) 二 | |成 - 7 ^ |

d m a x { C i , C j) = ^^max | | p - ^ | | peCi,qeCj
dmin{Ci,Cj) = min ||p-^||

peCi,qeCj

where rfU = E ^ ^ Q. P and Ci is the set of points in the i th cluster .

“ H
(a) Distance measure dmean and (b) Distance measure dmin
dfaax

Figure 2.2: Examples of Mis-clustering

When applying different distance measures, we will obtain different clustering

patterns. These algorithms can usually partition the data points very well if the

Chapter 2 Survey on Previous Researches 12_

data points are well-separated and the clusters are compact with respect to the

distance between clusters. However problems arise when the clusters are close

together, or the shape and sizes are not hyper-spherical. The distance measures

dmean and d^ax will forc6 the clusters to become hyper-spherical. Long clusters

will be split to form smaller clusters since the smaller ones like hyper-spheres

more than the long one. The effect is demonstrated in figure 2.2(a). Distance

measure dmin can work well for clusters with non-spherical or arbitrary shape.

However algorithm using dmin as distance measure is too sensitive to the existence

ofoutliers. These algorithms will probably merge the two clusters shown in figure

2.2(b) to a single one due to the existence of data point between the two clusters.

Chapter 3

IDAN on discovering

quantitative association rules

Data are collections of facts. To provide useful and meaningful information,

just to gather these facts different places is not enough. We have to work on a

pro-processing stage after all of the essential data are collected. This stage is

often regarded as data analysis. Due to the huge amount of data, the task of

analyzing these data is usually very difficult. In the early days, the job of data

analysis was usually left to the user and the system could at most provide a

little help on summarizing the data such as calculating the minimum, maximum,

average and the deviation of the data being worked on. Obviously, computers

were not playing a significant role in data analysis. On account of the increasing

importance of data analysis, people paid more and more efforts on developing

powerful algorithm, which could do as much analytical jobs as possible.

Up to now we have spent a lot of time on describing the problems. In the

coming chapters, I am introducing a new algorithm called Interactive Data Anal-

ysis on Numeric Data - IDAN. This algorithm is an interactive approach of data

analysis. By using this algorithm, user can take more control on the knowledge

discovery process. Besides, IDAN can work on both the problem of discovering

16

Chapter 3 IDAN on discovering quantitative association rules 17

quantitative association rules and the problem of discovering clustering patterns

within the dataset. In this chapter, I will concentrate on the details of the al-

gorfthm and how it can be applied on the problem of association rules. For the

clustering problem, I will discuss it on the chapter 4

3.1 Briefing

IDAN can be divided into two phases: the tree-building phase and the visual-

ization phase. The first phase is mainly concentrating on the construction of an

efficient index structure on association rules. This phase runs in an incremental

manner. The visualization phase can support interactive browsing of data and

extracting useful association rules from the index structure constructed in the

previous phase. The key idea of IDAN is the use a hierarchical structure to repre-

sent different quantitative association rules with different levels of support. This

hierarchical structure is named as A-Tree. A-Tree is a height-balanced tree. As

mentioned before, the quantitative association rule is built from elements in the

form of {Ai G [k, Ui]). It is obvious that a hyper rectangular block can represent

a quantitative association rule. The structure of an A-Tree node is very similar

to the one in R- Tree [14]. The choice of using the structure of a R-tree node

as the skeleton of A-tree node is not a must. There are many spatial indexing

structure can be used. All of them are suitable for the task provided that they

are hierarchical in nature and they can access hyper rectangles efficiently. R-tree

14], R*-tree [2], Quad tree [30] and X-tree [3] are some of the examples. The

reason of choosing R-tree is mainly due to the simplicity of insertion of data and

efficiency of spatial access of hyper rectangles. In addition, A-tree node contains

two more attributes named as support and opposite. These additional attributes

will give us how good the association rule represented by the node is. I will cover

the details of the structure of an A-Tree node in section 3.2.

Chapter 3 IDAN on discovering quantitative association rules 18

Once the A-tree is built, we can visualize the association rules discovered.

This phase consists of an information visualizer. This can help us to explore the

data tuples in the database. The visualizer can show us how the data tuples

are distributed and at the same time, we can easily figure out the association

rules graphically. Since most of the computation is done in the previous phase,

the visualizer will only take care of how to display the information stored in

the A-tree graphically. Therefore the visualizer can response quickly and we can

also make use of the user interface to tune the minsup and minconf threshold

interactively.

3.2 A-Tree

The structure of an A-tree node is shown in figure 3.1. In the structure of

the node of A-tree, the fields lower and upper are used to store each item of

a quantitative association rule. The dimension of these fields is determined by

the number of numeric attributes of the database that we are working with.

Size is used to store the number of tuples that are referenced by the the node.

The field support is used to hold the number of tuples that are supporting the

association rule represented by the node (bounded by lower and uppper). Note

that the fields size and support are measuring different quantities. The first one

is referring to the number of leaf nodes of the subtree rooted by the node. The

second one, on the other hand, is concerning with the number of tuples spatially

fall inside the bounding hyper rectangle represented by the node. Opposite is

used to hold the number of tuples that support the antecedent part but not fall

inside the hyper rectangular block represented by the node. Parent and ptr are

pointers that point to the parent and the children of the node respectively. Each

node can have at most N—MAX children. Except the root node, the number of

children should be more than or equal to N_MIN. The support and opposite are

Chapter 3 IDAN on discovering quantitative association rules 19

struct A_node{
double lower[DIMENSION]; // li
double upper[DIMENSION]； // ui

- int size II number of tuples reference
int support； // total support of the node
int opposite； II number of tuples opposite the node
int attribute; // indicate the type of the node

II root, internal or leaf
struct A_node *parent; // point to the parent
struct A_node **ptr; // point to the children

}

Figure 3.1: Structure of an A-tree node

the individual properties of the node and they are not the minsup and minconf

thresholds, which are user-define properties.

Data tuples in the database are mapped into N-dimensional points. These

data points are stored in the leaf nodes. Therefore the number of leaf nodes in

the tree is equal to the total number of tuples in the database. Each node is

representing a hyper rectangle and the parent node must be a hyper rectangle

bounding all the hyper rectangles of its children. The hyper rectangle of the

parent node may not be the minimum bounding rectangles(MBi?) but it is ad-

visable to use MBR since it can reduce both the dummy area and overlap area

with other nodes. This will increase the searching and inserting performance of

A-tree.

An A-tree will be built dynamically as new data objects are inserted. The size

(total number of nodes) of the tree will be directly affected by the parameters

NMIN and N.MAX. The larger N.MIN and N.MAX are, the smaller

the tree is in size. Different values of N_MIN and N—MAX can affect the

performance of building up the tree. An appropriate selection of the parameters

is to make the size of a node to fully occupy a disk page. This will minimize the

page accessing time when searching an existing node and inserting a new node.

The overall data structure is shown in figure 3.2.

Chapter 3 IDAN on discovering quantitative association rules 32

3

ROGT
1 f)

n ^ ^ i i J J J 1 ^ ¾ ^

= " ^ H r f ^ S n S ^
2 门 门 门 门 门 门 M 厂

(a) Representation in 2D feature space (b) Tree representation used in memory
or on disk

Figure 3.2: The A-tree structure

Up to now, we have described the structure and the basic requirements of an

A-tree node. We will then talk about the nature of the A-tree node.

Lemma 1 Given a node N and ni, n2, n3, ... n^ are the children of N, then

N.size is given by
m

y^ rii.size
i=l

The size of a leaf node is always equal to 1. The above lemma can be proved

by induction easily. The proof is simple and is left to the readers. This property

can help us to calculate the size of a node efficiently when we are inserting new

node into the tree.

Definition 1 Given two nodes Na and N ,̂ Na is overlapping with Nb iff

Max[Na.k,Nb.li) < Min{Na.Ui, Nb.Ui), for i = [l,7V'

where N 二 Dimension of the data points.

Chapter 3 IDAN on discovering quantitative association rules ^

The relation overlap in definition 1 is commutative. The amount of overlap-

ping space will greatly affect the searching and inserting performance in A-tree.

It is impossible to make all node not overlap with each others. We are going to

discuss how the overlapping properties affect the performance.

Lemma 2 Given two nodes Na and N ,̂ if Na is overlapping with Nb then Na is

overlapping with Nb.parent

Proof: From definition 1, if Na is overlapping with Nb, then for any i = [l,N]:

Max{NaM,Nbdi) < Min(Na.Ui,Nb.Ui)

Since Nb spatially fall completely inside Ni.parent, therefore the following must

hold

Nb.parent.li < N^.k

Nf).parent.Ui > Nb.Ui

Therefore,

Max{Na.li, Nb.parent.li) < Max(J^a.k, Nt-h)

< Min{Na.Ui,Nb.Ui)

< Min{Na-Ui, Nb.parent.Ui)

In lemma 2 we can figure out that the overlap relative apply on the parents

of the nodes, if node Na overlaps with N ,̂ Na must also be overlapping with

Nb.parent, N^.parent.parent, ... and so on. The overlapping relationship will

propagate upwards. So Na is overlapping with all the ancestors of Nb.

Lemma 3 Given two nodes Na and Nb, if Na is not overlapping with N^ then

Na does not overlap with and nodes in the sub-tree rooted at N^

Chapter 3 IDAN on discovering quantitative association rules 34

Proof: By taking the counter positive of lemma 2, we find that if Na is not

overlapping with Nb.parent, Na does not overlap with N^. Since Na is not over-

lapping with Nb, then Na does not overlap with any of the siblings and children

of Nb. So Na does not overlap overlap with any descendants of N^.parent. This

property is very important because with this property, we can prune out a lot of

sub-trees when we are trying to locate all the overlapping nodes.

Lemma 4 Given a node N and ni, n2, n3, ... n^ are the children of N, then
m

N.support 二 Xni.size
i=l

if N does not overlap with any nodes of the same depth.

From lemma 3, if N is not overlapping with any nodes of the same depth, then

there are no leaf nodes other than its children spatially fall inside the bounding

rectangle specified in N. Since all leaf nodes spatially fall inside the bounding

‘ rectangle of N are the children of iV, N.support is therefore equal to N.size. In

this case, the support of a node can be directly determined by the size of its

children. Therefore the computing time is limited by the number of children.

However it is impossible to have no overlapping nodes. For a more general

situation, the support of a node have the property in lemma 5.

Lemma 5 Given a node N and ni, ri2, n3, ... n^ are the children of N, then
m

N.support > y^^Tij.size
i=l

Lemma 6 Given a node N, N.support can be determined by TV's children and

the nodes overlapping it. Nodes not overlapping with N will not contribute any

to N.support. i.e. all the leaf nodes in the subtree rooted in the node do no

support the association rule represented by N.

Chapter 3 IDAN on discovering quantitative association rules 35

Overlaping
^^^^^ area f >

~l~ > < Nodes with
/ \ same depth

^ ^ " ^ ^ r X X ^ ,
• • •

V J V J

(a) Spatial representation (b) Nodal representation

Figure 3.3: Overlapping nodes

Let 7Vi and N) be nodes in the A-tree. If N2 is not overlapping with Ni, then

from lemma 3 we know that all the descendants of N2 will not overlap with Ni.

Therefore all the leaf nodes in the subtree rooted at N2 will fall inside the hyper

rectangle represented by N [As a result, no tuple referenced in N2 supports the

association rule represented by iVi.

We have spent quite a lot of time on the attribute support of an A-Tree node.

Now it is the time for opposite attribute. Before we can calculate the opposite,

we have to go back to the definition of association rule first. An association rule

can be divided into two parts: the antecedent and consequent Let A denote

the set of attributes in the antecedent part and C denote the set of attributes in

consequent part of an association rule. Then A n C 二 4> must hold otherwise the

rule is not a valid one. To construct an A-tree, the user have to specify the set

C first. Without knowing the set C, we cannot calculate the opposite of a node.

All the attributes other than the ones in C will form the set A. Without lost of

generality, the other of the attributes in the database can be rearrange such that

all the attributes in A comes before the attributes in C. Instead of specifying

which attributes are belonging to C, the user can define an integer I such that

for all i < /，Ai G A. Now we have to define what is meant by opposite.

Chapter 3 IDAN on discovering quantitative association rules ^

Definition 2 A node Na is said to be opposing to an association rule repre-

sented by node N^ iff the following conditions hold

Nb.lower{i] < Na.lower{i] < Na.upper[i] < Nb.upper[i] , for i G A

Min{Na-upper[i],Nb.upper[i]) < Max{Na.lower[i],Nb.lower{i])，for i G C

In general, there are two conditions for opposing. First of all, the antecedent

part of Na must fall completely inside the antecedent part of Nb. Secondly,

the consequent part of Na fall outside the consequent part of N^ and they do

not overlap with each other. The opposite of a node N is the number of leaf

nodes in an A-Tree opposing the association rule represented by N. Instead of

counting the opposite of a node directly, we try to make a simple calculation.

Consider all the records that are supporting the antecedent part of N only, we

can classify these tuples into two classes: the supporting tuples and the opposing

tuples. We have discussed the calculation on the support of a node previously

so the number of supporting tuples can been found. If we can count to number

of tuples supporting the antecedent part of N, we can calculate the opposite of

a node.

N.opposite = # of leaf nodes supporting the antecedent part of N — N.support

The way of finding the number of leaf nodes supporting the antecedent part

of a node N is very similar to finding N.support mentioned previously. The

only difference is that N.support requires the leaf nodes to fall inside the hyper

rectangle for all attributes but now it only requires those attributes found in the

antecedent part.

Chapter 8 IDAN on discovering quantitative association rules ^

3.3 Insertion Algorithm

A-tree will be built dynamically when data are added into the database. The flow

of the insertion algorithm can be summarize as in figure 3.4. When a new tuple

is really to be added to the database, the first step is to identify the appropriate

leaf node that the new tuple is going to be inserted. This step is being done by

the procedure ChooseLeaf. ChooseLeaf will recursively traversal the tree until a

leaf node is found. Then ChooseLeaf will return the parent of the leaf node just

found. During the traversal of the tree, if there are more than one child in the

node, we will first calculate the increase in margin after the insertion of the tuple

and break the tie by considering the increase in area. The reason of choosing

margin for comparison instead of using area is that using area may lead to some

faulty attribution on the association rule. This situation occurs when the shape

of the node is 'thin'.

After choosing an appropriate node, the next job is to insert the new tuple

into it. If the leaf is not full yet, the new tuple can directly insert to the leaf.

However, if the leaf is already saturated, overflow treatment has to be done. In

this stage, the overflow treatment procedure will split the saturated node into

two. There are many alternatives can be done, such as reinsertions of the overflow

nodes [2]. A good overflow treatment procedure can improve the performance

of future insertion and the performance of query.

To split a node into two, we first sort the children of the splitting node in

ascending order by a particular dimension. We then choose a dimension such

that the sum of area of all combinations will be the smallest. Then choose the

index i = [N—MIN, count] such that the area sum of the two newly formed nodes

is the smallest. After the splitting, the two newly formed nodes will be inserted

to the parent recursively. The parent node may be overflow again. The overflow

treatment will be carried on until no overflow happens again.

Chapter 3 IDAN on discovering quantitative association rules 38

New tuple
to be inserted ，�

/ ^
ChooseLeaf:

__ Locate the leaf node with minimal
increase in margin

^ ^ ^
InsertNode: OverflowTreatment:
Insert the new tuple into the leaf Split the node into two along the ^
node index with minimal sum of areas

V >' ^ ^
Parent node

, , saturated

, �
InsertNode:
Insert the newly formed nodes ~ — ~ ~ ^
into the parent

V
Parent node
not saturated

^ ^
UpdateTree:
Propagate changes from leaf to
root of all affected paths

V
Vpdated Tree

Figure 3.4: Flow of insertion algorithm

Once the new tuple is inserted into the tree, we have to propagate the change

from leaf to root. There are several things have to be modified. First of all,

we have to modify the lower and upper attributes since the volume of the hyper

rectangular block will expand or shrink after the insertion or splitting of nodes.

We can calculate the minimal bounding rectangle of a node from its children. It

is not necessary for us to update all the nodes in the tree. We can simply update

the nodes being inserted (the new node and the nodes after splitting) and their

ancestors only.After updating the lower and upper attributes, the next thing we

have to update after insertion is the attribute size. The size of node has been

discussed in detail in the previous section. We know that the size of a node is

Chapter 3 IDAN on discovering quantitative association rules 27

determined by its children only. We can modify the size of the nodes involved in

the insertion by backward tracing from the newly inserted node.

In the updating stage, the most difficult thing is to update the support and

opposite fields. When a new node is being inserted into the tree, the support of

its ancestors of course have to be update. However since the hyper rectangle of

the nodes have been modified, other nodes have to be updated as well. A simple

solution to the problem is to parse the tree node by node and recalculate the

support and opposite for each on the nodes. This requires too much computation

and disk accessing time therefore it is impossible and impractical to do so. In

fact, not all the nodes in the tree need updating. We can prune out those nodes

and as a result we can improve the performance.

In the previous section, we have proved that not all the nodes in the tree have

contribution on the support of a particular node. Only those node overlapping

with it will contribute to its support. By using this property, we can test the

subtree before we parse it. If it does not overlap with the affected nodes, we can

simply ignore them. The way we are using is to make use of three queues: the

affected queue, support queue and opposite queue. When we do the insertion,

we put the nodes that are being affected into the affected queue. These nodes

include the newly inserted node and the nodes involved in splitting. After we

have update the fields lower, upper and size, we then parse the tree from the

root to leaf. We put those nodes overlapping with the ones in the affected queue

into the support queue. At the same time we put the nodes overlapping the

antecedent part of the ones in the affected queue into opposite queue. Now we

have already filtered out the nodes that need updating. The thing that we have

to do is to calculate the support and opposite in the support and opposite queues

respectively.

Chapter 3 IDAN on discovering quantitative association rules 40

‘ I New node to
^-*^ — be inserted 1 ‘

/i-- 1 ； 「 ri
- ‘i : I

t L ’ U
T̂ >tn> "»"̂ Vf» ̂^ **"T V"»" j I • I

: h 1 / ^ I
； I I /̂t̂ ^^^^^^ I

I I Nodes needed to update support | I

(a) Before insertion (b) After insertion

Figure 3.5: Update support

3.4 Visualizing Association Rules

After integrated with an information visualizer, we can simply display the as-

sociation rules found by parsing the A-tree node by node. Of course, not all

the nodes are informational since some of the nodes are with very low support

or confidence. Therefore, we have to find an easy way to select the rules that

are interesting to the user. The minsup and minconf thresholds are playing an

important role in this stage.

Before we parse the A-tree, we already know the exact number of tuples

stored in the tree. There is no need to count the number of tuples since the total

number of tuples is already found in the size or support fields of the root node.

While we are parsing the A-tree, we first calculate the support and confidence

value of the node. The support and the confidence of the node can be easily

formulated as follow:

s
support =—

confidence =
o + s

Chapter 3 IDAN on discovering quantitative association rules 41

where s is the support count of the node and o is the opposite count of the

node

Before plotting the hyper rectangular block represented by the node, we first

compare the calculated support and confidence with the support and confidence

thresholds set by the user. If the calculated ones are at least equal to the thresh-

olds, we can plot the hyper rectangular block directly, otherwise, we discard the

whole sub-tree. This is due to the properties of an increasing support coun-

t along the path from leaf to root. There is no simple pruning algorithm for

confidence since the confidence does not follow the increasing property like the

support count. However the pruning of support count has already cut out a large

number of candidates so without pruning out the those nodes with insufficient

confidence, the performance is still satisfactory. There are some examples on the

exploration of the association rule found in figures 3.6 - 3.9.

Chapter 3 IDAN on discovering quantitative association rules 30

,'Ry4!j^CT5^^^^^^^^^^^^^”,‘‘,边要',*、'二:‘^, ‘ 】
0,1) n'”

S S ’ ^ ^ m

_

_ 鼸

I

匪
[o.o) n̂ oj

Figure 3.6: Original dataset

Chapter 3 IDAN on discovering quantitative association rules 31

：伊 gft.,_,.^fipM.,,_.,'iii:�i . , ^̂̂̂n .:,/.''i-.i..'lA.:iiil: i.fijy,̂ .̂ ̂ ii ,>;,.y ir>t-̂ ^̂^ ^rMqfej|tef̂ .̂ '
lO,l) 1'”

H ^ ™ J _ • „ « _ ^
？

Support ,

|5 _： _“、
J _ o o
fVwCrirf̂ j">f̂ !• Cfinĉrf ^ uumopncv � • _ • - - V

_ F - ^ ‘
m J ~ “ ’ . ,
國 :i2 : _
m

L I J
[0,0) �hOl

Figure 3.7: Rules with support 5% confidence 50%

Chapter 3 IDAN on discovering quantitative association rules 32

^ ^ ^ ^ ^ ' S ! 5 S T i i r r T r ^ ^ T ^ ^ i r ^ s ? T ^ ; ^ ; : ^ ! r "
10,” 1'”

M ^ ^
_ _
_ •

mmmmammm
I

/丨>
SuPPot

， F ~ r ^
Jr—卜 “
Confidence ^ “ ^ I

I - .::.?:...
關

^

(0.0) n-oj

Figure 3.8: Rules with support 15% confidence 50%

Chapter 3 IDAN on discovering quantitative association rules 33

^ ^ ^ ^ 5 ^ r i i > y ^
[OJ) 1'1J

p s i^^^m""^
M ^ ^ ™
_ w
_ 圃

ff^%TT^'^TT^^^^^^'^
U 1 ：广“二‘）ŝ-.>̂.：：..,̂.

i ^ ^ ' i f M ^ - ' ：

： 亡 霸
I : : : ‘ �̂ ― ，

圓 二、‘〜、___iiL_Li

^ —

to.o) n ^

Figure 3.9: Rules with support 15% confidence 90%

Chapter 4

IDAN on discovering patterns of

clustering

In the previous chapter, we have discussed the key idea of IDAN and how to

apply the algorithm in the problem of discovering quantitative association rules.

In this chapter, I will talk about how to apply IDAN on the problem of clustering

and the corresponding modifications. Also, I will suggest solution for handling

high dimensional datasets.

4.1 Briefing

IDAN adopts an interactive approach of analysis on numerical data. Its aim is

to discover clustering patterns of high-dimensional metric data. IDAN can be

divided into two phases: the tree-building phase and the visualization phase. The

first phase is to build an efficient index structure on the dataset in an incremental

manner. The visualization phase can support both interactive browsing of data

and interactive formulation of the clustering being discovered in the previous

phase. Once the tree-building phase finishes, the process is not necessary to start

again when the user changes any of the parameters such as the total number of

3 4

Chapter 4 IDAN on discovering patterns of clustering ^Z.

cluster to be discovered. Figure 4.1 shows the overview ofthe two phases involved

in IDAN.

Discovering Clusters

广 \ f 1̂

Reading tuples Merging nodes to
incrementally and \ satisfy the number

updating the ^ of clusters to be
A-Tree found

1 J ^ ^

Tree-building phase Visualization phase

Figure 4.1: Overview of IDAN

The key idea of IDAN is the use of two data structures: R-Tree [14] and

A-Tree. The first one is an index structure that stores all the data points in the

database. It is a height-balanced tree that can support storing and retrieving

multi-dimensional data objects efficiently . The second data structure is proposed

by us, which is aimed to represent the clustering information within all the data

points in the database. We will go into the details of the structure of an A-Tree

node in the section 4.2. The relationship between the two data structures is that

there are links between the leaf nodes of the two structure. Since both of the

trees keep the data points on the leaf level, we can simply link up the leaves by

pointers if the leaves are referring to the same data point.

Once the A-Tree is built, we can visualize the discovered clustering patterns.

The visualization phase consists of an information visualizer, which can help us

to explore the data in the database. The visualizer can show us how the data

distributed and at the same time, we can easily figure out the clustering patterns.

Since most of the computation is done in the tree-building phase, the visualizer

involves little computation and mainly concentrates on displaying the informa-

tion stored in the A-Tree graphically. Therefore the visualizer can response

Chapter 4 IDAN on discovering patterns of clustering ^Z.

quickly and allow the user to modify the parameters or thresholds interactively

through its interface.

4.2 A-Tree

There are three kinds of nodes in an A-Tree: root node, internal nodes and leaf

nodes. There is only one root node in an A-Tree, which is the ancestor of all

the other nodes in the tree. The leaf nodes are used to store the data tuples.

Data tuples in the database are mapped into TV-dimensional points. These data

points are stored in the leaf nodes. Therefore the number of leaf nodes in the

tree is equal to the total number of tuples in the database. A leaf node is said to

be referenced by a node if and only if the node is the ancestor of the leaf node.

The structure of an A-Tree node is shown in figure 4.2. The field mean,

which is also a iV-dimensional vector, is the average of all the leaf nodes being

referenced by the node. Size is used to store the number of leaf nodes that are

referenced by the node. The pointer parent is used to indicate the parent node

and ptr is an array of pointers that point to the children of the node. Attribute

is used to indicate whether the node is a root, internal or leave node. Each node

can have at most N.MAX children. Unlike R-Tree, there is no limitation on the

minimum number of children of a node in A-Tree.

struct A_node{
double mean[DIMENSION]； II Mean of data points referenced
int size // number of tuples referenced
int attribute； II indicate the type of the node

// root, internal or leaf
struct A_node *parent； // point to the parent
struct A_node **ptr； // point to the children

}

Figure 4.2: Structure of an A-Tree node

Chapter 4 IDAN on discovering patterns of clustering ^Z.

An A-Tree will be built dynamically when new data objects are inserted. The

size (total number ofnodes) ofthe tree will be directly affected by the parameter

N.MAX. Different values of N.MAX can affect the performance of building

up the tree. In order to minimize the page accessing time when searching an

existing node and inserting a new node, selection of the parameter should allow

a node to fit in a disk page completely.

4.3 Dimensionality Curse

Several data structures such as R-Tree, SS-Tree, SR-Tree [19] and TV-Tree

25] are intended to provide fast searching in large multi-dimensional database.

Experiments show that these data structures can work efficiently on small dimen-

sions (below 10 dimensions). However searching performance of these structures

degrades as dimensionality grows. When searching data with high dimension-

ality, even a sequential search can out perform any searching using these data

structures. This phenomenon is so called dimensionality curse, which can usually

be found among these multi-dimensional data structures.

In order to tackle the problem, the technique of dimensionality reduction is

commonly employed. The key idea of dimensionality reduction is to remove a cer-

tain number of dimensions and at the same time to preserve as much information

as possible. We first apply transformation on high dimension data, so that most

information converge into a few number of dimensions. These dimensions are

used for indexing by the mentioned data structures. Since the number of chosen

dimensions is very small, so the mentioned data structure can provide very good

query performance. There are many transformations such as Singular Value De-

composition (SVD) [29], Discrete Fourier Transform (DFT), Discrete Wavelet

Transform (DWT). Different transformations work well on different kinds of da-

ta. For instance, DFT and DWT are used in the area of time series data and

Chapter 4 IDAN on discovering patterns of clustering ^

image databases. For SVD, it studies the whole dataset and tries to maximize

the variances in a few dimensions. I will try to introduce the central ideas of

these transformations in the coming sections.

4.3.1 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a variation of Fourier transform (FT). In

1807, Joseph Fourier announced his surprising results and his statement played

an essential role in the evolution ofmathematicians' ideas. The Fourier transform

is just like a mathematical prism, breaking up a function into the frequencies

that compose it, as a prism break up light into different colors which are in fact

electro-magnetic waves of different frequencies.

Let f{x) be a continuous function of a real variable x. The Fourier transform

of / (x) , denote T{f{x)}, is defined by the equation

Hf{^)} - F{u) 二 r m e - _ d x
J—oo

where j = \/^.

Fourier transform of function f{x) exists if f{x) is continuous and integrable.

However, we are not interested in continuous function. Data tuples exist in the

form of discrete values rather than as a continuous function. So the discrete

version of Fourier transform will be much useful for our problem.

Suppose that a continuous function f{x) is separated into a sequence Xo, Xi,

X2,..-,ocd-i by taking d samples A units apart which

x, = f{x'^iA)

Then the discrete Fourier transform applying to the sampled functions is

given by

Chapter 4 IDAN on discovering patterns of clustering ^Z.

^ ^ ^ ^ ^ : ^ ^
(a) 0.5 sin(x)

^ ^ ^ ^ ^ ^ ^ ^ ^
(b) 0.5 sin(x/2)

\ ^ ^ / ^ ^ \
(c) sin{x/S)

、、广飞
(d) Function f{x)

Figure 4.3: Fourier transform tries to break up function f{x) into components
of different frequencies

Fu = 4^ E X<—”' for u = 0,1, ...，d - 1
vd i^Q

DFT is a very useful transformation which works on image databases and time

series data. Instead of working on these datasets directly, we have to extract

feature vectors from them first. Let x = {x i] fz l be a ci-dimensional feature

vector. We treat each feature vector as a finite-length sequence of length d.

Then we perform the DFT on the sequence and we get F = {Fu]^zl.

Chapter 4 IDAN on discovering patterns of clustering ^Z.

F is also a a finite-length sequence of length d. Usually, most of the informa-

tion will concentrate in the first few values of the sequence. So we can truncate

the—sequence F in the frequency domain to k terms, to form Fk, which k < d.

After truncation, the dimensionality of the dataset is reduced from d to k.

Discrete Fourier transform turns a sequence into frequency domain. It works

well with image database and time-series data. Moreover, there is fast algorithm

for DFT with complexity of O{d'log2d) and it can be implemented on hardware.

So DFT is widely applied on these systems.

4.3.2 Discrete Wavelet Transform

The fundamental idea behind wavelets is to analyze according to scale. In wavelet

analysis, the scale that one uses in looking at data plays a special role. Wavelet

algorithms process data at different scales or resolutions. The result in wavelet

analysis is to "see the forest and the trees."

Wavelet transform is similar to Fourier transform in the sense that both

transforms can be viewed as a mapping from function space to a different domain.

For wavelet transform, this new domain contains complicated basis functions

called wavelets, mother wavelets or analyzing wavelets. So wavelet transform

comprises an infinite set. Different wavelet families make different trade-offs

between how compact the basis functions are localized in space and how smooth

they are.

Among different families of wavelet transform, Haar is the simplest one. So

we take Haar wavelet as an example. The Haar transform is based on the Haar

function

‘1 0 < X < I

¢ { 0 0) 三 - 1 i < a; < 1

.0 otherwise

Chapter 4 IDAN on discovering patterns of clustering ^

and

- ^j,{x)=^{2^x-k)

For d = 8，the Haar functions are defined as

0̂0 二 咖）

ihQ = ^(2x)

¢11 = ^ (2 ^ ; - l)

¢20 = 州 工 ）

^21 二 ¢(4^ - 1)

¢22 = V'(4rr - 2)

^23 = ^(4rc - 3) .

With the help of Haar functions, any function f (x) can be written as a series

expansion by
00 2̂ -1

/ �= C o + Y^ Y . Cjk^jk{x).
j=0 k=0

Let a function be defined on d intervals, with d = T. Then an arbitrary

function can be considered as an d-dimensional vector F, and the coefficient in

the expansion B can be determined by solving the matrix equation below.

F = WdB

With the Haar basis, we can construct Haar transformation matrix Wd of

order d x d by formation of the ith row from elements of tp{x) The followings are

examples of Haar transformation matrices.

Chapter 4 IDAN on discovering patterns of clustering ^

1 -r 1- 1 -| - 1-|~~~

-1 - ,- -1 - '- -1 - ,-
1 1 1

(a) (b) (c)

1 ^ ^ .- 1 - 门 •- 1 门

-1 - '- -1 - U ,- -1 - U ,-
1 1 1

(d) (e) (f)

1 - 门 -

1 - 门 ，-

-1 - U ,- -1 - L _
1 1

(g) (h)

Figure 4.4: Different Haar functions for d = 4

4.3.3 Singular Value Decomposition

In IDAN, we adopt singular value decomposition (SVD) as the dimensionality

reduction function because SVD is much more suitable for most of the dataset.

SVD does not require data to be related in the sense of 'frequency' or 'resolution'.

It only studies the distribution of data points. Moreover, SVD works on the whole

dataset and it will give higher precision when compared with transformation that

processes each data point individually.

Chapter 4 IDAN on discovering patterns of clustering ^Z.

• 1 1 1 1 “

「 1 1 1 ” ， 1 1 - 1 —1

^ = 1 —1 购二 1 - 1 0 0

- [0 0 1 - 1 _

(a) d = 2 (b) d = 16

Figure 4.5: Haar transformation matrices

SVD methods are based on the theorem oflinear algebra. Firstly we represent

every data points in an matrix. Suppose we have n c/-dimensional data points, it

is trivial that we can use an n x d matrix to express them. For any n x d matrix

X with number of rows n greater than or equal to its number of columns d, can

be expressed as the product of an n x d column-orthogonal matrix 5, an d x d

diagonal matrix W and the transpose of an d x d orthogonal matrix V.

X 二 swv^

The matrix S is an n x d orthonormal matrix that is, S^S = h. W is an d x d

diagonal matrix with positive diagonal elements W1,W2, "”Wn. These elements

are so called singular value of X . Since VF is diagonal, W^ = W. The matrix

V is an d x d orthonormal matrix, then V^V 二 Id. The SVD decomposition

can also be carried out when n < d. In this situation the singular values Wj for

j = n + 1, ...,n are all zero and the corresponding columns of S are also zero.

Our goal is to compute the transformation matrix V. The transformation is

illustrated in the figure 4.6.

Now we consider the SVD of X ^ and X ^ X :

XT = {SWV^)^ = VWS^

X^X = {VWS^){SWV^) = vw^v^

Chapter 4 IDAN on discovering patterns of clustering f i

yn
/ • X，

- . . : • — \ : - ^
眷 TYansform \ 參 y ^

byV V ^
X

•

Figure 4.6: Axes change from {x,y) to {x',y') by matrix V.

We can figure out that the matrix V is also the SVD transformation matrix

of X ^ X . Since the transformation matrix F is the same in either of the case,

it takes no difference to adopt which one. In IDAN, we use X ^ X instead of X

directly. The reason is adopting X ^ X is to minimize the computation time and

the memory usage in the SVD transformation. The dimensions of X and X^X

are n x d and d x d respectively. For databases which are large in size, n should

be much larger than d. It is trivial that the memory usage of X^X is much lower

than the one for X . Besides, the computation time of SVD will also be lower for

X^X when comparing with the one for X.

However you may figure out that the cost of calculating X ^ X is very high.

We agree with you if we have to compute X^X from X only. The computation

of X ^ X takes 0 (n * d?) time. However if we incrementally update the matrix

X ^ X , the computation of updating X ^ X , when a new record is being inserted,

is only 0{dP). Let Xi be a d-dimensional vector representing i th data tuple and

Xi be the matrix representing all the first i th data tuples. Then Xf_^iXi^i can

be computed by:

Xj_^^Xi^i = XfXi + xjj^^xi^i

After calculating the transformation matrix V, the next thing to do is to

extract the most significant components. We then sort the rows of matrix V

Chapter 4 IDAN on discovering patterns of clustering ^Z.

in the descending order of the corresponding singular values. Since the singular

value Wi indicates the variances along the ith dimension, so we extract the first

d' dimensions so that they must contain most of the information within the data.

We compute the sum of all the singular values in W and then extract the first

d' dimensions which contain more the threshold 0% of the sum of the singular

values. Note that the parameter 0 will only affect the performance of the overall

algorithm and will not affect the accuracy of the algorithm. Then we build the

index structure on the dimensionality reduced dataset. In IDAN, we use R-Tree,

the choice of R-Tree is simply based on the simplicity of insertion and searching

operations.

The cost of computing SVD transformation matrix is high. When we apply

SVD on dynamic database, it is impossible for us to update the transformation

matrix V every time when a new record is being inserted. The way we work is to

measure the loss in accuracy and update the transformation matrix only when

the loss become too large. We will discuss this later.

4.4 IDAN - Algorithm

As mentioned in the previous sections, IDAN clusters multi-dimensional database

in an incremental and interactive manner. It keeps the most updated information

on the clustering patterns of the database. New records are inserted into the

database incrementally and IDAN will update these information dynamically.

The insertion procedure is shown in figure 4.7.

IDAN tries to group similar tuples together to form a cluster. When a new

tuple is added to the database, we have to identify which data point in the

database will merge with the new tuple. Without the help of the dimensionality

reduced R-Tree, we have to perform a nearest neighbor search on the A-Tree. It

Chapter 4 IDAN on discovering patterns of clustering ^Z.

New tuple
to be inserted

/ ^

UpdateMatrix:
“ Update matrix XX

\ • y
/ i

厂 \

ChooseLeaf:
Locate the leaf node in the

dimensionality reduced R-Tree with
data point closest to the new tuple.

Compute node visiting ratio
^ “ J

亡 ， L • L Leaf node Leaf node not ‘ ^ . L - saturated saturated
� f ^̂

/ 工 ^ r ^
OverflowTreatment:

InsertNode: Split the node into two according to the ^ ~
Insert the new tuple into the leaf node. splitting criterion.

V J \ I , I y
十 parent node

广 ^ saturated
InsertNode:

Insert the newly formed nodes into the — ^
parent.

V J
parent node

广 ^ not saturated
AdjustTree:

^ Update the attributes of nodes being ^ ‘
affected,

\ J

VR < threshold
> r- O t h e r w i s e

^ >1
AdjustDimension:

Recomput SVD and re-build the
dimensionality reduced R-Tree.

\ y
^

> f

Updated Tree

Figure 4.7: Flow of insertion algorithm

works well for databases which are rather low in dimensionality. However for high

dimensional database, the performance of the search will degrade significantly.

Even a simple linear search will work better that using any multi-dimensional

data structure. In IDAN, we will apply the idea of the dimensionality reduction

techniques. It is the reason why we have to use R-Tree together with A-Tree.

The dimensionality reduced R-Tree is mainly used in searching of the nearest

Chapter 4 IDAN on discovering patterns of clustering ^Z.

neighbor, however the A-Tree is used to store the clustering information. We

will first search for the dimensionality reduced R-Tree and locate the data point

which is nearest to the new tuple. Then with the help of the links between the

leaves of R-Tree and A-Tree, we can locate the leaf node of the A-Tree which the

new record will be merged into it to form a cluster.

Since the R-Tree index the dimensionality reduced data points, information

must be lost. When we are searching the nearest point from the R-Tree, the

leaf node being found may not be the correct one in full-dimension scale. In

IDAN, we first perform a A;-nearest neighbor search on the R-Tree and at the

same time, we count and record the number of leaf nodes being visited in the

search as r_count. The next step is to compute the full dimensional distance of

these neighbors. Then we perform a range query on the R-Tree with the smallest

distance ^ being found. We search all the data points in the R-Tree which the

distance to the query point is smaller than ^. Again we count and record the

number of leaf nodes being visited in the search as f_count. Since ^ is in full

dimensional distance, we will not miss the nearest data point.

After choosing an appropriate node, the next job is to insert the new tuple

into it. If the leaf is not full, the new tuple can be directly inserted to the leaf.

However, if the leaf is already saturated, overflow treatment has to be done. In

this stage, the overflow treatment procedure will split the saturated node into

two. There are many alternatives can be done, such as re-insertion ofthe overflow

nodes [2]. A good overflow treatment procedure can improve the performance

of future insertion and the performance of query.

To split a node into two, we first compute the distances between every pairs

of children in the overflowing node and store the inter-nodal distances in a

{N.MAX + 1) X {N.MAX + 1) matrix. Note that {N.MAX + 1) is the total

number of children in an overflowing node. After calculating all the distances,

we select a pair of nodes, which are farthest apart as the seeds. Then we group

Chapter 4 IDAN on discovering patterns of clustering ^Z.

the node, which is closest to the selected seeds, together with the corresponding

seed to form a new node. The process will be repeated until all the children in

the-overflowing node have been assigned. The number of children in the newly

formed node will be ranging from [1, NMAX]. After the splitting, the two new-

ly formed nodes will be inserted to the parent recursively. The parent node may

be overflow again. The overflow treatment will be carried on until no further

overflow occurs.

Once the new tuple is inserted into the tree, we have to propagate the change

from leaf to the root. We have to modify the mean and size attributes in the

A-Tree. These attributes can be directly computed from its children. It is not

necessary for us to update all the nodes in the tree. We can simply update

the nodes being inserted (the new node and the nodes after splitting) and their

ancestors only.

Now we have finished updating the A-Tree, but we still have to update the

R-Tree as well. When a new record in inserted in the database, the SVD trans-

formation matrix V will no longer be accurate. Although V is not accurate, it

is still a good approximation to the actual V. As more and more records are

inserted into the database, the accuracy of F will be degraded. This will greatly

affect the performance of searching the nearest point mentioned in the previous

step. We have to set up some mechanism to monitor the precision of the SVD

transformation matrix V. Remember we have recorded the number of leaf nodes

being visited in r_count and f—count. The visiting ratio {VR) r_count: f_count,

in fact, is representing the quality of the SVD transformation matrix V. If VR

is smaller than the threshold, we update the SVD transformation matrix V and

adjust all the nodes in the R-Tree.

Chapter 4 IDAN on discovering patterns of clustering ^Z.

4.5 Visualizing clustering patterns

After integrated with an information visualizer, we can simply display the clus-

tering patterns by parsing the A-Tree. We are interested in the distribution of

each cluster in the domain. IDAN is supposed to provide an interactive way of

visualizing the clustering patterns. The user can change the number of clusters

interactively and the visualizer will response with the correct clustering immedi-

ately.

procedure MergeCluster(var NodeType list[],int n)
begin

var list: array of NodeType;
level :=0;
count := 0;
/* find the level in the tree which the total number of nodes > n */
while (count < n) do {

count := CountCluster(root,level)；

level := level + 1;
}
/* store the nodes in the level in an array list */
list := BuildList(root,level);
while (count > n) do {

/* compute intemodal-dist in list */
InterNodalDistance(list,count,inte_dist);
/* find the pair of clusters which is nearext to each other */
for(x:=0,y:=l,i:=0;i<count;i++) {

for(j:=i+l;j<count;j++) {
if(inter_dist[x][y] > inter_dist[i]^]){

x : = i ; y : = j ;
}

}
}
list[x] := MergeNode(list[x] ,list[y])；

for(i=y;i<count;i++)
list[i] :=list[i+l];

}
end;

Figure 4.8: Procedure for MergeCluster

Chapter 4 IDAN on discovering patterns of clustering ^Z.

As mentioned in the previous section, we state that each node in the A-

Tree forms a cluster. However the number of nodes in the A-Tree may not be

matching with the user's defined number of clusters. To archive our goal, the

merging process has to be performed. The merging process is simple. Firstly, we

scan the A-Tree level by level until the number of nodes in the same level just

exceeds the number of clusters to be found, which is specified by the user. Then

we use a list to store all the nodes in that level. At this moment, the merging

process can be started. Suppose the number of nodes in the list is K , we first

compute the inter-nodal distances between every nodes in the list and store them

in a square matrix of K x K. Then we merge the nodes that are closest to each

other to form a new node. Now the number of nodes in the list is reduced to

K 一 1. After that the inter-nodal distances are computed again and the merging

process is repeated until the total number of nodes in the list is just equal to

the number of clusters to be found. The details of the procedure is shown in the

figure 4.8.

After the merging process, we have found k clusters and the information of

each cluster is stored in a node. The next thing is to display the tuples within

the same cluster in the visualizer. The thing we have to do is simply to explore

the tree rooted at each node being found and to display them is different colors.

Figure 4.9 shows an example of datasets being investigated. This dataset is

obtained from the homepage http://www.bell-labs.com/project/serendip. The

result ofthe clustering pattern is similar to the one computed by CURE [13], but

IDAN can support interactive change in the number of clusters to be discovered.

At the same time, IDAN does not require any other parameters while CURE is

too sensitive to many parameters. We will discuss the comparison of IDAN with

the other successful clustering algorithms in the coming chapter. The results of

different number of clusters are demonstrated in figure 4.10 — 4.12.

http://www.bell-labs.com/project/serendip

Chapter 4 IDAN on discovering patterns of clustering ^Z.

_ ̂ P __
Figure 4.9: Example of dataset

4.6 Comparison

Among the existing clustering algorithms, IDAN is the most similar to BIRCH.

Both of the algorithms are using tree structures. IDAN uses A-Tree while BIRCH

uses CF-Tree. However IDAN does not suffer from the problem of BIRCH - mis-

clustering. The reason for BIRCH to mis-cluster the dataset is that BIRCH

uses the centroid (or mean) to represent the whole cluster. It will discard the

information like sizes and geometry of the clusters. However in IDAN, we are

not using centroid to represent the cluster. Instead, we use an A-Tree node to

represent a cluster. All the data points within the same cluster will fall within

the same subtree. At the same time, MBR of the node will describe the size

and geometry of the cluster. As a result, IDAN can get rid of the problem of

mis-clustering. For BIRCH, it uses the minimal bounding sphere to hold the

data points within a cluster. However minimal bounding sphere in fact does not

represent too much useful geometrical information. At the same time, it requires

every data points within the minimal bounding sphere to form a single cluster.

Therefore, BIRCH can be only suitable for clustering database which clusters

Chapter 4 IDAN on discovering patterns of clustering ^Z.

are in the shape of hyper-sphere. Reminded that IDAN is requiring data within

the same cluster to fall inside the same sub-tree (MBR), in stead of requiring all

data within the MBR of a node to form a cluster. So IDAN is not suffering from

same problems as BIRCH, which can only cluster spherical clusters.

For CURE, it is also capable of discovering clusters with different sizes and

geometry. However, the algorithm of CURE will be very dependent on the

sampling phase. If the qualities of samples are not good, it will greatly affect the

clusters being found. However, IDAN does not require sampling to improve the

performance since itself is an incremental algorithm, it makes use of the result

previously found so that it can achieve high performance. CURE is a good

clustering algorithm in the sense that it does not suffer from the problem of mis-

clustering. The reason is that CURE tries to shift the data point towards the

mean by shrinking the distance between the point and the mean by a fraction of o;

and it uses multiple representatives to denote a cluster instead of using a single

point like centroid or medoid. However, the disadvantage of this mechanism

is that the clustering quality is very dependent on the choice of a. It is very

difficult for the user to determine the correct a in order to give good clustering

result. Besides, the number of representatives is very critical too. If the number

of representatives is set to be too large, it will affect the performance of the

algorithm. If the number of representatives is too small, the information on

cluster size and the geometry will be discarded. It is very difficult to determine

the number representatives so that to give good quality of clustering. For IDAN,

there is a few number of parameters and all of them will affect the performance

of the algorithm only and does not influence the result.

Chapter 4 IDAN on discovering patterns of clustering ^Z.

(0,1) “ i'i)

F ^ ^ ~ ~ ~ ~ ~ ™ ~ ~ ~ ~
...• .jgMBBaS^BBMSk’: •： 'i^BSSBBsB^BBBKSsBSBF

!̂ *̂ fflMfftfflMfflWWF^ .• • v̂̂ ŵBSBSBBBMBSIHBBI8̂̂"*，•
% ;- . ' ^ * W | ^ ' * F " ' .̂ .-.

, • • , ' ‘ • .̂ f • ‘ •• • j • ； /• •.,. %. ̂ ,‘ ..丨丨 • I I . • • ••丨•
••.-:,: ...:"-:r..., .-•�-�. - •,.:•-•:.::.-.:- :•-•:••:-.. • , . - ‘ • •• • -. • ：• -•• • •.. .-)、：• •.. • • ,'• • •. -. • ..'•：；•.； ' ' -><^-' v ' . . - . ^ . . , =, •； •;::.. :、‘..• ：：••• •,
；.•；.:,.:.'::..":.::‘.....‘.. :•..,•;'.:::.•?::.. ：• :'.•'... •；： ；••=.' :.： •-.: _ .

‘ ‘ • � .:^>:^^^^>i^ � y‘- .::.::.::.
H l i ^ m ^ * E ^ W W ^
: . : : , ; ^ ^ ^ ^ ^ ^ _ ; : : _

^ ^ m n m

^ ^ ^ m ^

^ t o i i i
^ ^ ^ ^ 丨 患 | : : : ; : : , 鐘

�0,01̂~~~~ “ n̂ o)

Figure 4.12: Example on clustering (Number of clusters = 6)

Chapter 4 IDAN on discovering patterns of clustering ^Z.

ojl 1'”

p ^ " ^ ^ ^ ^ j ^ .. ! e ^ p ^ ' w � � - ,
^ g w a i l r … • .

i'-： T^^SQî ^HBBV^^ . ""“ ' :cJ^r^vw� ,"^

::•:,:-:. ；；.. •-,- "V^'V ,二.：:�‘ •- j ..:''•;•. •- -、• ._••»； • 5 - - r •— • • - .• . • • - ^ •• - . • • . • . : � • .‘-.̂ :. . • - - , • • .、 一 •
‘ .' .' .

.• 产———

• • W � � - r ::-,̂ .¾̂ ¾̂¾̂ :.:::.::::::::.:.:.:
- ^ ^ ^ ' r m

^ ^ M | , . , ,
m ^ ^ ^ m ^
^ ^ ^ m ^ m
. ' m i ^ ^ ^ m ^ ‘ “

1 : : : ^ ^ ^ . : :::: :.I

[0.0) ” (l'0)

Figure 4.10: Example on clustering (Number of clusters = 4)
0.1) “ 1.1)

^ —~—

^ 1 ¾ ¾ ¾ ¾ ¾ ! ¾ ! ¾ ^] ‘
v ^ M B ^ ^] I

'• ‘ .. . — ^ n
- ^ 4^ I ——_^___L—

、-崎:、::、;<:.〜,.!̂^ . • •

.+:•:：鄉；物，)̂ ^ ^ .
.,?,?秘知 ^々̂ /饥缺:〜. -：
'JF - • n >： • /.*.' '̂ vr; . '/ v- '^^^^<^ <' , . • -

,.-;>̂ V̂ :Jf̂ ̂ ^ v̂ >̂;fe;r;-:;0->;r>:̂ , • • '-,:i%..-̂ >-i"'tt. V ‘̂ :̂ V-̂ 'vS"*'-î -̂ C>' •"•'. fHflfci i
，.嫁均:崎.赤_^^4，^^教=^ . j f l n
滅 弥 磁 : 狗 ^ ^ 1 ; 级 離 m

mmm-0m^mi^^ ^ . . ^ P
i'"j^ ’:：，，. .- .v .w r ‘，• .,* -’）-..rTi- ： , 'r ‘.t .: «*- , , v* V-^S- * - j

- ¾ : ^ ' ¾ ^ : ^ - - . ¾ : : — : V - � < � V j . V , : ' : ” ; y . : i > A C ^ 丄 r X ^
t.'-.< .̂:'c(�‘-r ;i:i""A)'. >^�\ >-f V- '••>< • .v- ̂ 2p~~—————
一 _ 彰 霸 翁 麵 難 . 幾 . . . ： .
^ ^ ^ ^ _ 截 _ 纖 _ • -;-0'^v.:v';,v^^/;'Vi:r'"-v*-i-''^ ?；'•?'•-> M/mfm •••̂•v'T ''- ' '- • ^j'̂ v^vs. -' -"' ' - -v >̂ V7i-i B̂jffiBM ；:/^v.:--;;/.v<:r>^iv-^^:-.v,>ar^k^ M M

-V i > . v*" , .' ̂ ‘ .4L« � “ •：卜 > ') � v ^ • /)< 1 ytUaS^Ki 、％s?c,'�.,;#hfv.,\>‘f:.,;::>j ’:，丨 .V|^ i
； 鴻 挪 藝 ： 難 勝 ^ h i
: . , 擬 義 嚇 寶 ’ i 卜 i

• .乂:-«̂广7.,(、《'、).,:':'；；..:"-.‘ . .- 丨 I
• “ c •• •：* <_:r:,.;.,-. I . j

(0.0) n.oi
Figure 4.11: Example on clustering (Xumber of clusters = 5)

Chapter 5

Performance Studies

Up to now, we have described the new algorithm being proposed. In this chapter,

we would like to evaluate the performance of IDAN. We will address the result

we found in solving the problem of mining quantitative association rules. Then

we will talk about the performance of IDAN in solving the clustering problem.

5.1 Association Rules

We implemented the algorithm IDAN in C++ . We evaluated the performance

on a Ultra Spar 1 machine with 686MB of main memory running Solaris 2.5. As

mentioned in chapter 3, the visualization stage involves very little calculations

and disk accesses, they are negligible. We are focusing on the first stage: A-tree

building stage since most of the computation is taken place in this stage.

First of all, different dimensional data have been tested. We have worked on

3, 5, 10 and 20 dimensional data. For each dimension, we have tried to insert

50,000 records of a synthetic dataset into an A-tree. We recorded the insertion

time of each record and compared the average insertion time and the size of

dataset. The result is being shown in figure 5.1.

55

Chapter 5 Performance Studies ^

0.8 I 1 1 1 1 ‘ 1 ‘ ^ ‘
Dim = 3 ^ e ~
Dim = 5 - — - j：

0.7 - Dim = 10 -o-- , ,
Dim = 20 "X…“

....
. - / .

X -
0.6 -

/•
/ •

/ •

0.5 - .X' _

I o o 0) -
« 0.4 - X
S
Q
E ,.J 1

: 一 .•‘ • -h- V- ."' -
0.3 - , Z � - - .

,Z ..---'
0.2 - _...-^"' _

�.i_ _ : ^ ^ : : i ^ ^ ^ ^ ^ ^ ^ ^ " ^ ^ ^ :
丨1̂::::::iiS：：：：：̂ "̂̂ ^̂ ?̂ "̂ "̂"""̂^ , , , . • I

° 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Data Size

Figure 5.1: Average insertion time

We expect the performance of the algorithm will decrease linearly as the

size of dataset is increasing. The result is confirmed and is shown in figure 5.1.

For each of the number of dimension being tested in the experiments, all of

them behave quite linearly for all the datasets. At the same time, we expect

when the number of dimensions increases, the performance will be slow down.

From the experiments done, we find that for small dimensional datasets, the

performance will not be affected very much. We found that the performance of

3-dimensional dataset and 5-dimensional dataset is almost the same. However

for high-dimensional datasets, the performance will be affected quite obviously.

In the experiment of 20-dimensional dataset, we found that it halved the per-

formance of the performance in 10-dimensional dataset. The reason is mainly

due to the increase of node size and the increase of numeric calculation for high

dimensional data. As the number of dimensions increases, the physical size ofthe

node increases directly. So the page size cannot hold as much nodes as before. It

will increase the number of disk access and will greatly affect the performance.

Chapter 5 Performance Studies ^

After that we started another series of experiments. This time we are inter-

ested on how the number of antecedents affect the performance of IDAN. We

fixed the total dimensions of the datasets at 10. Then we vary the number of

antecedents and see whether the performance will be affected. We have worked

on 3, 5, 7 and 9 antecedents. The result on average insertion time against the

size of dataset is plotted in the figure 5.2

1.4 1 ~i " ‘ ‘

Ant = 3 - ^
Ant = 5 -—- - �>

1 p _ Ant = 7 -曰…. /
Ant = 9 x...... /

i _ / _
W 0

1 � . 8 - / _

I /
① / -

E 0.6 - X

: Z . . . Z . z
0.2 - ^ ^ „ - " " 1̂

^ ^ z Z 曰

^ ^ ^ - + ._-B ��

3 ,1 ^......^^r^^^^^^^^^^^^^^^^ -：等二 :-： ,
0 5000 10000 15000 20000 25000 30000

Data Size

Figure 5.2: Dimension of antecedent

From the result ofthe experiments, we found that the performance with large

antecedent will be better. The average insertion time of antecedent of 3 is double

the one for antecedent of 5. The gain in performance of increase in antecedent

is almost linear. This is reasonable since we are discovering rules from more

dimensions of antecedent part. This means that we are mining rules from more

information given. As a result, the computation time should be less than the

others with smaller number of antecedents.

r o
Chapter 5 Performance Studies

5.2 Clustering

The proposed algorithm has been written in C + + . We perform the evaluation

on a Ultra Sparc 5 machine with 192MB of main memory running Solaris 2.5.

Again we are focusing on the first stage: A-tree building stage, since most ofthe

computation is taken place in this stage and the computation cost in visualization

stage is negligible.

We have done several series of experiments to test the performance of IDAN.

First of all, we would like to investigate how dimensionality reduction technique

help us on clustering high dimensional database. We prepared datasets of 50,000

data points with number of dimensions varying from 5 to 20. We recorded the

average insertion time of each record and did the experiments on both with and

without dimensionality reduction transform. The result is plotted in figure 5.2.

2 I~ 1 1 1 1 1 I 7 ‘
/

Reduced Dimension " 0 ~ / _
1.8 - Full Dimension -—-• /

/
/

1.6 - / -
/

/
/

/

1.4 - J “
/

/
/

召 1.2 - / _

§ /
8 / .
⑴ 1 - /
.E /

E / P 0.8 - / -
•

/
/

/

0.6 - / -
/

0.4 - Z , ^ ^ ^ ^ ^ ^ " " “ ^ ^ ^ _

�.2 - ^^^^::::rr::r::^^^"^"""^^^^ _
0 + — — | " 1 I 1 1 1 ‘

6 8 10 12 14 16 18 20
No. of Dimensions

Figure 5.3: Performance with and without dimensionality reduction transform.

From the figure we found that without dimensionality reduction, IDAN works

better for datasets with dimensionality below 10. It is reasonable since the gain

C Q

Chapter 5 Performance Studies ^

0.25 1 1 ‘ ‘ “ ~ ~ ^ '

z .
Dim = 2 ^ ~ , z
Dim = 3 - — Z .
Dim = 5 -o-- , ,
Dim = 7 -x…… fi/ _

0.2 - Dim = 9 各 - Z

- X
Z z y

么‘. z
X -

I 0.15 - ,,
8 z ><..••••••••'-
0) , ' ..--̂
« A., ,...-X-
C ,,X,
g Vx..
‘ 0 . 1 - / Z -

Z. ...X'"
y •,.••. X z-X z .-X" [1

/• v-" 凡-'""
A x...... e--Q-"^

Z y,.......X r^--•^^" ^--
_A ..--^ p,.---Q __+——+^ -

0.05 - / . . . -x- E>----o-- . — ^ — ^ “

/ . Z 『.-曰----:二一一-一一一
/ ...-^ ―,.'-^ ^

a- ...X- n " ' " ^ ^ " ^ '

Z z % : # f : i - - " 1 _ _ _ _ ^ ^ ^ ^ ^ " ^ ^ ^ ^ " ^ ^ ^ ^ ^ > — z¥:^^^^i£::t~^-^~^-^^"^""^~""^^^ ,
0 20000 40000 60000 80000 100000

Data Size
Figure 5.4: Average insertion time

in performance of searching along the R-Tree cannot overcome the the cost on

computation for dimension reduction on low-dimensional data. However as the

number of dimensions increases, the performance degrades sharply and becomes

unacceptable. If we apply dimensionality reduction technique on IDAN, we find

that the insertion time of new record increases gently as the number of dimen-

sions increases. The result shows that with the help of dimensionality reduction

techniques, IDAN can cluster high-dimensional databases very efficiently.

Next, we try to see how IDAN work on low dimensional datasets. We have

worked on 2, 3, 5, 7 and 9 dimensional data. For each dimension, we have tried

to insert 100,000 records of a synthetic dataset into an A-tree. We recorded the

insertion time of each record and compared the average insertion time and the

size of dataset. The result is shown in figure 5.2.

We expect that the performance of the algorithm will decrease linearly as

the size of dataset increases. This is confirmed from the result shown in figure

5.2. For each of the number of dimension being tested in the experiments, all

Chapter 5 Performance Studies ^

of them behave quite linearly for all the datasets. At the same time, we expect

that as the number of dimensions increases, the performance will be slow down.

From the experiments done, we find that for small dimensional datasets, the

performance will not be affected very much. We found that the performance of

3-dimensional dataset and 5-dimensional dataset is almost the same. However for

high-dimensional datasets, the performance will be affected quite obviously. In

the experiment of9-dimensional dataset, we found that it halved the performance

of the performance in 5-dimensional dataset. The reason is mainly due to the

increase of node size and the increase of numeric calculation for high dimensional

data. As the number of dimensions increases, the physical size of the node

increases directly. So the page size cannot hold as much nodes as before. It will

increase the number of disk access and will greatly affect the performance.

After that we started another series of experiments. This time we are inter-

ested in how the number of clusters in the dataset affects the performance of

IDAN. We fixed the total dimensions of the datasets at 2. Then we vary the

number of clusters and see whether the performance will be affected. We have

synthesized different datasets with different number of clusters for the experi-

ments. We have worked on datasets with 2, 4, 5，8 and 10 clusters and each of

them is consisting of 50,000 data tuples. The result on average insertion time

against the size of dataset is plotted in figure 5.2. From the result of the exper-

iments, we found that the performance of the algorithm is not affected by the

data distribution. We can observe from figure 5.2 that almost all the curves lie

nearly to each others. Some of the hierarchical clustering algorithms are very

sensitive on the distribution of the datasets. Some distribution of data points

will have very poor performance. From this set of experiments we can conclude

that IDAN is immune from the distribution of datasets.

Finally, we have worked on a set of experiments, which is aimed to investigate

the effect of N.MAX on the performance of the algorithm. We synthesized a

n i
Chapter 5 Performance Studies

‘ ‘ ‘ ‘ ‘ ‘ “ ‘ ~Pi
0.016 - C = 2 — ^ / < ^ '

C = 4 - — - . Z : ; 0 '
C = 5 - B - ^ ^ i ^ ' .
C = 8 -x…… ^ /<^ '¾ -

0.014 - C = 10 ^ - 乂 0 7

- ^ ^

_ - y

1 ° " _ / ^ _
•̂ 0.008 - ^^^ ‘
I ^ ^

0 � � 6 _ ^ ^ _
0.004 - ^ f ^ ^ -

0.002 - -

0 1 I I 1 ‘ ‘ ‘
10000 15000 20000 25000 30000 35000 40000 45000 50000

Data Size

Figure 5.5: Effect on different number of clusters

dataset of dimension 2 with 50,000 records. Then we use different values of

N.MAX and use our algorithm to cluster the same dataset. We have tried to

use 5, 10 ’ 15, 20 and 25 as examples of N_MAX to see whether the performance

of the algorithm will be affected. The result is plotted in figure 5.2. We expect

the performance of the algorithm will increase as the value of N.MAX increases.

As mentioned in the previous chapters, insertion in IDAN requires parsing the

tree from the root to a leaf once only. So the performance greatly depends on

the height of the tree. If we set the parameter of N_MAX to a smaller value,

the tree will be "thinner" and "taller". We have to spend more time to parse

the tree. On the other hand, if we set a larger value of N_MAX, the tree will

be flat and as a result, the height of the tree will be reduced. This will improve

the computation time on parsing the tree from the root to a leaf. From figure

5.2，we can figure out that the performance of small N.MAX will be affected

more than that of large N_MAX. The curve for N.MAX = 5 is higher than the

others in a large amount. However, from the curves of N—MAX = 15, 20 and

fi2
Chapter 5 Performance Studies

1 1 T r- ‘ ‘ “ “ " 7 ^
0.014 - N = 5 一 Z _

N = 10 - — - . Z
N = 15 - • - - / X
N = 20 -x ^ X

0.012 - N = 25 — y<^ ;

X / ' , 5^ - i
_ _ / z � f .

I X z i Z -
I 画 _ / z:-:.:"'
I Z z < s ^ -
F 0.006 - X .̂ '.,-̂ î "̂'

y . ^ '
0.004 , ^.；<^^-" _

: > " ' _
0.002 -

n L I 1 1 1 ^ ‘
10000 15000 20000 25000 30000 35000 40000 45000 50000

Data Size

Figure 5.6: Scalability wrt. increasing N_MAX

25, we find that the performance are very similar tp each other. The reason is

that the height of the tree is 0{logN.MAx{n)), so the height of the tree will not

reduce too much for large NJAAX.

Chapter 6

Survey on data visualization

techniques

Due to great improvement in data collection techniques, now people are much

more easy to obtain useful data. The amount of data is increasing in an unbe-

lievable rate. For example, satellites going around the Earth are transmitting

large amount of data all the time. The amount of data is measured in the unit of

gigabyte per hour. Traditional database management system, which are usually

text based, are capable to store the data and most of them work very well in

data retrieval. However, it is very difficult for the user to explore the data in the

traditional database management systems.

Data visualization techniques is a right solution to the problem. The basic

idea of data visualization techniques is to represent as many data as possible

on the screen by mapping every data records to some graphical representations

which users are able to have an overview on the dataset.

One ofthe most important visualization techniques is scatter-plot. Each data

value is mapped to a single point in the visualization domain. As we are living in

3-dimensional space, scatter-plot is a perfect way to represent data visually for

data with dimensionality below 3. However, for multidimensional data, scatter-

63

Chapter 6 Survey on data visualization techniques ^

plot cannot provide good result. In this chapter, we would like to introduce some

important visualization techniques for multidimensional data. We try to classify

the techniques into 4 groups: Geometric Projection, Icon-based, Pixel-oriented

and Hierarchical techniques. In fact, there are many other techniques, but due

to limited time and space, we just address the most common and important ones

here.

6.1 Geometric Projection Techniques

The key idea of geometric projection techniques is to construct interesting pro-

jections on multidimensional data. To apply the techniques, we have to find out

the interesting projections first. There are many ways such as principal compo-

nent analysis, factor analysis and multidimensional scaling, which is aimed to

find out these projections. We classify these methods as the field of projection

pursuit [15 .

6.1.1 Scatter-plot Matrix

The first technique we introduce here is scatter-plot matrices technique [6]. A

scatter-plot matrix consists of a number of 2-dimensional scatter-plots with dif-

ferent projections of the multidimensional dataset. Suppose the original dataset

is in A:-dimensional. The scatter-plot matrix will consist of k^|2 - k differen-

t scatter-plots. The advantage of the scatter-plot matrix is human readability

since people are very familiar with 2-D scatter-plots. On the other hand, scatter-

plot-matrix cannot indicate the relationship more than 2 attributes since each

scatter-plot in the matrix is in 2-dimensional space only.

Chapter 6 Survey on data visualization techniques IL

1 3 5 60 80 100

H L_ ^ | i _ _ . _ _ L _ ^ ^ ^ _ ^ _ ^ | p - ~ ~ ‘ " " ^ ‘ ~ ~ ^

2 � f ^ ^ ir^ 7 1 � � �
-15_ 母二。 ；〈、。。:£:。〉:•-: WindSpeed _

i O - � � � � ? � S f C � �彻。。二。 ^务。由尹乂� � ^ ^ 4；。 （mph) -
® V �。 。 - " 。 仍 。 。 。 8 吻 。 。 .

5 - 0 < : 。 o 广 。 %

_g_2_ ~^ 100
i � l l 氣。。。- <b 4, °
'h -。》念。 ?£>。。

_ -og^!oO��,,�^�V<«^^� Temperature 。<̂ ^̂ ^呼甲 _80
^^f： 。：。r。。，i��� （。F) : : 5 � � °�
� ^ c c � � r - � � � ^ r� -��,�:� ��� �|| g�。。卜 6�
7 7 ^ II II oV 0~~r® II 7 4 ° 一 300 - :����f^o^.� ^̂ �• o .8So> 8^¾ V �
o^K*:。 。召。免化。°。。�"cfîOoO

200 - <1?0<̂蕃。 SolarRadiation o��®���>��^�。#承°。°§ “
| / o S ° � � （langleys) ^gS J : � /

100- � "&0�0� ���� �<«�oO < g o � 8 � ° �� -
。。。/,$。 >。。#。,。 。。条。。8。。-

11 5 II 5 ir®
- og 0� o � 0 °o o ° 8 Oo _ 5 o<̂>:S 0̂ ¾ o � ^ � � O Cube Root ���。，^。s 為、 ��4Q> 0 Ozone °:°o��'o Xo"o? �� r̂oS|o - ¾ ô �- 3
“(PPb-) $,:<C》令。:。。。;。等， , 3 0�
-n r-——nJ[̂~~-——i——r̂U" 1 1^~~‘~~‘~~^ ^

0 100 200 300 5 10 15 20

Figure 6.1: A scatter-plot matrix graphs hypervariate data: measurements of
solar radiation, temperature, wind speed, and cube root ozone concentration on
111 days at different places in the New York metropolitan region

6.1.2 Parallel Coordinates

Another geometric projection technique is the parallel coordinates technique [16，

17]. Parallel coordinates technique tries to transform the A;-dimensional data

records into 2-dimensional visual space. There are k equidistant axes in the

visual space and these axes are arranged to be parallel to each other. Each axe

is corresponding to one of the dimension in the dataset and the axe is linearly

scaled from the minimum to the maximum value of corresponding dimension.

Unlike scatter-plot matrix, data values are mapped into polygonal lines in-

Chapter 6 Survey on data visualization techniques _^

Date Time Latitude Longftude Magnitude
19 9.52 35.36 118.44 4.10

•
13 3.00E-02 32.45 115.15 2

Figure 6.2: Example of parallel coordinates: This plot reveals that high-
magnitude earthquakes (highlighted in red) occurred at the same longitude and
latitude and on three particular days.

stead of points. The polygonal lines are intersecting each of the axes at the right

place which is corresponding to the value of the data in that dimension. The

advantage of the parallel coordinates techniques is that it can give us a wide

range of characteristics such as the distribution of the data and the functional

dependencies. However, since the polygonal lines may overlap to each other, so

it is very difficult for people to read the graph for large dataset. Sometimes, we

will use different color to represent each polygonal line and it can increase the

readability of the graph.

Chapter 6 Survey on data visualization techniques IL

Y ① （^

0 U
一 ^ @ ©

① ① ^ ③
� � ® \ Q © � ^ ^ A stranger

© ‘ 0:D �
A ®
^ ^ 绝 © A
• • # � © ®

腿

©
X

Figure 6.3: Example of Chernoff face representation

6.2 Icon-based Techniques
Another class of visualization techniques are the icon-based-techniques. Some

people call them as iconic display techniques. The key idea of these techniques

is to construct different icons to represent data records of different values.

6.2.1 Chernoff Face

Chernoff face [5] visualization technique is the most well known one among all

the icon-based techniques. Suppose the dimensionality of the dataset is k, which

k > 2. Two of the dimension of the dataset is mapped into the X and Y axes.

The remaining dimensions are mapped to the properties of different parts on the

face such as the appearance of the face, ears, eyes and mouth.

Chernoff face visualization uses different appearances of human faces to rep-

resent different data values. It is an intelligent way since people are very sensitive

Chapter 6 Survey on data visualization techniques ^

to the appearance of human faces and facial features. By using this technique,

we can easily find out data which are in the same cluster. Outlying faces and

those inconsistent with others in the neighbor are treated as 'strangers' and can

be eliminated immediately. On the other hand, ChernofF face cannot work very

well in large databases since the space that the faces occupying is quite large and

it is very difficult to visualize a large number of data items. Besides, the number

of the dimensions that Chernoff face technique can handle is quite limited

6.2.2 Stick Figures

Stick figures [12] is another icon-based visualization technique. Again, two of

the dimensions of the dataset are represented in the X and Y axes. For the

other dimensions, this time we use different shape of the 'sticks' to represent the

different data values instead of using the appearance of the facial features. Two

of the attributes of the data are mapped to the display axes and the remaining

attributes are mapped to the angle and/or length of the limbs.

For example, if the dimensionality of the dataset is 7’ we map two of the

dimensions of the data to the display axes. Then the remaining 5 dimensions

of the data are mapped to the angles of the limbs of a 5 segments stick. By

observing the texture patterns in the visualization, we can find out the data

characteristics.

Stick figures can represent more data items when compare with ChernofF

face technique. Again the number of the dimensions represented, cannot be too

large since people cannot observe the difference between sticks if the number of

segments is too large.

^

s

6

 \
<
J
/

 5
v
x
i

V
N
J
/
 y
\
l

)
〜
-
.
?
 ,1

 •-.

p
y
.

.

n

I

/

鹏

 0
&
¾
¾
^
^
.

¾
^
^
^
^

 .f.

/
 .
邮

 s

\
_

y
\
l

 c
|

 ̂̂
/
^
r

 .
f
^
.
^
.
^
,

%
,
£
^
 ̂̂
v

 -

衝

_

v
^

\

,
c

%
^
^

 ̂#
^
^
¾
^
^
.

¾

 ̂

 ̂

f
 ̂

 力
翁
慕
如
警
管
舞
广
 I

^

.

/
x
x
l
/
x
 \
c
l

“

^
¾
^
^
^
¾
^
^
¾
¾
 ̂¾
^
^
^

I
 .
腿

^

<

/

- ̂
^
^
¾
^
¾
¾
^
.
^
^
^
¾
¾

、

咖

^

.
1

\

广

I

^
^
^
¾
¾
¾
^
¾
^
%
¾
^
.

 ̂

广

c

I

^

 Y
<

 T

 S

靈
囊
息
箸
痛
4
0
\

e

 ̂

 1

1

(

,
,

M
f
w
$
#
.
.

讓

i

.̂

X

/
Y
X
 y^
&
^
y
i
y

 ̂¾¾̂
,.̂

¾̂̂
^̂
^
.
 £

 牌

^

^

)

Y
^

嚴
籠
_
每
蟹
露
、

L

 J

滅

¾̂¾̂
,.-̂
v.̂
 ̂,.ŝ

 ̂̂
^̂
^̂
¾.

二

她

.
画

A
^
(
v
i
y
,
s
;
^
H
(
k
)
c
^
5
i
&
l
K
l
.

^
 §，

^

“

^
^
.
^
k
r
f
^
 ,¾
 ̂̂
^̂
v

 ,>.̂
¾¾
 v̂
^̂

.

^
 1

 ̂

•
1

/
 n

書
>
』
/
“
&
名
每
圣
&
&
热
？
一

=

2

^

/

園

vt>..̂
<̂

 K
^
>
&

 rv̂
.ŝ
-̂

 ,¾
^
^
^

^
^
 e

抓

/

N
J
\

.
化

^
^
y

 K,
.
r
c
^
^
^
K
r
n
,
^
^
^
^
3
s
^
^

 ̂̂
-¾

_
改
，
肌

•

\

.
v
^
 i

 1
,

¾
,

¾

¾
½
^
¾
¾
¾
¾
)
 -
J

 i
^

f
 ̂

%
^

\

两

I

刚
|

I

I

,r..̂
n

Chapter 6 Survey on data visualization techniques 1^

6• 3 Pixel_oriented Techniques

Pixel-oriented techniques [21, 22]use different sub-windows to represent different

attributes of the dataset. The basic idea of the techniques is to map each data

item to a single pixel in each of the sub-windows. The advantage of using this

kind of techniques is that we can visualize a large amount of data since each data

only requires a single pixel to represent itself. Data are at first sorted according

to some attributes and then we fill the windows pixel by pixel.

There are many variations of pixel-oriented techniques. We can obtain differ-

ent results by using different arrangements of pixels. Line by line, snake spiral,

Peano Hilbert spiral and Morton spiral are some of the most commonly used

arrangement.

" p H l l i p i p I r p B |
^ ^ ^ ^ ^ ^ S(M b5^ ^ § ^ ¾
^ g n n ^ ^ 5 ^ i ^ 驗

i i M l - " i i i l i » « ®

(a) snake spiral (b) Peano Hilbert spiral (c) Morton spiral

Figure 6.5: General spiral arrangement

Line by line arrangement, in general, cannot produce the useful visual pat-

terns. The reason is that the way we look at the visual patterns is not line by

line. We usually concentrate on a particular area of the pattern. So it is better

for us to arrange items which are close together in the area nearby. So spiral

arrangement like snake, Peano Hilbert and Morton can produce much useful

patterns.

Chapter 6 Survey on data visualization techniques IL

i^/v^j^,G 〜云删‘"̂ ‘、丧)?，二'<'\”]
<j V i 争 , . ^ J ^ j ‘ » >� m s |wiBwlr^7fi i W f f l ® | W l B I _ i l l t I #] n i f ^ i _ wmi t W w J • - 1 产 r^a^! ^ I

iiiilimmi BHMBBL

_画
^ ^ ^ f f 5 l ^ ^ ^ ^ ^
飞。,1 : �. n 4iii!a^&MJ 'Vi

龜_
^ n i Wf
• f y p s B B i a ^ B i M ^ — g d ^ ^ S ^ S 5 s ^ S j

Figure 6.6: Example of pixel-oriented techniques: The graphs show datasets of
time series of financial data. The graphs are arranged line-by-line

IBM DOLLAR „ ,_, ,̂̂ l^M^„--_^„„-^__—«^„„»S2 ;̂̂ LBMi

Q M n i i ^ i O H H I I D I

M H
i^HH ^Pmm.
5 Bk,:—. - M H H H m j j j B H H B B B B S S I iiH^H5T^=«:t."i";3^^^^S!^S|^^^^^^^'

l ^ _ _ _ ^ ^ ^ g ^ g ^ J _ _ l ^ L D . U S $ DOW JONES GOLD.US$

(a) Peano Hilbert spiral (b) Morton spiral
Figure 6.7: Examples of different arrangement of time series of financial data

• 79
Chapter 6 Survey on data visualization techniques L_

6.4 Hierarchical Techniques

Th^ key concept of hierarchical visualization techniques is to subdivide the k-

dimensional space and represent the subspaces in hierarchical fashion. Dimen-

sional stacking is one of the well-known techniques belonging to this class.

For dimensional stacking [24], we subdivide the A:-dimensional space into a

number of 2-dimensional subspaces. The first two dimensions span the X and

Y axes. We obtain a number of grid cells by dividing the domain along X and

Y axes into a number of equally sized intervals. Then for each of the grid cell,

we further divide the cell into smaller cells along X and Y axes. This time the

X and Y axes with the cell represent the other two dimensions. The dividing

process will be carried on until all the k dimensions have been embedded. The

advantage of hierarchical visualization techniques is that they can handle high

dimensional datasets.

、 一.-
<N 一^；；二.… w
B "3
^ ^

I < … ~ ~
Attribute 3

Attribute 1

Figure 6.8: Principle of dimensional stacking representation

i •__i__圓丨•••

Chapter 7

Conclusion

In this paper, we have addressed the problems of traditional algorithms on dis-

covering clustering patterns in large databases. The traditional algorithms are

suffering from: (i) lack of user interaction and exploration, (ii) problem of mis-

clustering. The whole process is just like running in a black box and the user

takes no interaction except setting up the parameters for the algorithms. Once

the parameter has been changed, the whole process has to be repeated from the

very beginning. User is not able to preview the distribution of data so that the

user cannot set up the most appropriate parameters for the algorithms. We pro-

posed a new algorithm called IDAN, which is aimed at providing fast and user

friendly way to discover knowledge from numerical data. The followings are the

features of IDAN:

Hierarchical Algorithm IDAN makes use of a hierarchical index structure

called A-tree. This provides good performance to the algorithm. IDAN

will explore the tree node by node and efficient pruning mechanism can be

employed such that a large number of nodes can be ignored when doing a

particular task.

Incremental Algorithm IDAN supports incremental update on the dataset.

New tuples can be inserted efficiently and the mining process will only

73

i BiwMiiii 11

process on the newly inserted data. It needs not to start from the very

beginning.

Interactive Algorithm IDAN is divided into two phases: tree-building and

visualization phases. The tree-building phase studies the distribution of the

data and does not require any user parameters. The user can change their

parameters in the visualization phase and IDAN can response immediately.

From the experiments we have done, we proved the effectiveness and efficiency

ofIDAN. The experiments have demonstrated that IDAN not only provides good

performance and at the same time it also provides good quality on the knowledge

being mined.

74

I —

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules

in large databases. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo,

editors, 20th International Conference on Very Large Data Bases, September

12-15, 1994, Santiago, Chile proceedings, pages 487-499, Los Altos, CA

94022, USA, 1994.

[2] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. R*-tree. an efficient and robust access method for points and rect-

angles. SIGMOD Record (ACM Special Interest Group on Management of

Data), 19(2):322-331, June 1990.

[3] S. Berchtold, D. A. Keim, and H,P. Kriegel. The X-tree: An index structure

for high-dimensional data. In T. M. Vijayaraman et aL, editors, Proceedings

of the twenty-second international Conference on Very Large Data Bases,

September 3-6, 1996, Mumbai (Bombay), India, pages 28-39, Los Altos, CA

94022, USA, 1996.

.4] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): theory and

results. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth,

and Ramasamy Uthurusamy, editors, Knowledge Discovery in Data Bases

//，chapter 6, pages 153-180. AAAI Press / The MIT Press, Menlo Park,

CA, 1995.

75

[5] H. Chernoff. The use of faces to represent points in k-dimensional space

graphically. Journal of the American Statistical Association, 68:361-368,

1973.

[6] William S. Cleveland. Visualizing Data. Hobart Press, 1994.

[7] R. 0 . Duda and P. E. Hart. Pattern Classification and Scene Analysis. John

Wiley and Sons, New York, 1974.

[8] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with noise.

In Evangelos Simoudis, Jia Wei Han, and Usama Fayyad, editors, Proceed-

ings of the Second International Conference on Knowledge Discovery and

Data Mining (KDD-96), page 226. AAAI Press, 1996.

[9] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhr Smyth, and Ra-

masamy Uthurusamy, editors. Advances in Knowledge Discovery and Data

Mining. M.LT. Press, March 1996.

10] Takeshi Fukuda, Yasuhido Morimoto, Shinichi Morishita, and Takeshi

Tokuyama. Mining optimized association rules for numeric attributes.

In ACM, editor, PODS，96. Proceedings of the Fifteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, PODS

1996, Montreal, Canada, June 3-5, 1996, volume 15，pages 182—191，New

York, NY 10036, USA, 1996. ACM Press.

11] K. Fukunaga. Introduction to Statistical Pattern Recognition, Second Edi-

tion. Academic Press, Boston, MA, 1990.

12] Grinstein G. G. and Pickett R. M. Iconographic displays for visualizing

multi-dimensional data. 1988.

13] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clus-

tering algorithm for large databases. In Proceedings of the ACM SIGMOD

76

InternaUonal Conference on Management of Data (SIGMOD-98), vol^e

27,2 of ACM SIGMOD Record, pages 73-84, New York, Junel-4 1998.

- A C M Press.

[14] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.

SIGMOD Record (ACM Special Interest Group on Management of Data),

14(2):47-57, 1984.

15] P. J. Huber. Projection pursuit (with discussion). Annals of Statistics,

13:435-525, 1985.

[16] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing

multidimensional geometry. In IEEE Visualization ,90 Proceedings, pages

361-378. IEEE Computer Society, October 1990.

17] Alfred Inselberg. A survey of parallel coordinates. In Hans-Christian Hege

and Konrad Polthier, editors, Mathematical Visualization, pages 167-179.

Springer Verlag, Heidelberg, 1998.

18] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,

Englewood Cliffs, NJ, 1988.

[19] Norio Katayama and Shin'ichi Satoh. The SR-tree: An index structure

for high-dimensional nearest neighbor queries. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, volume 26,2 of

SIGMOD Record, pages 369-380, New York, Mayl3-15 1997. ACM Press.

20] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. An Introduction

to Cluster Analysis. Wiley, New York, 1990.

21] D. A. Keim. Pixel-oriented database visualizations. SIGMOD RECORD,

December 1996.

7 7

[22] D. A. Keim, H.-P. Kriegel, and M. Ankerst. Recursive pattern: A technique

for visualizing very large amounts of data. In Proc. Visualization,95, pages

297-286, 1995.

[23] A. Kumar. A study of spatial clustering techniques. Lecture Notes in Com-

puter Science, 856:57-??, 1994.

[24] J. LeBlanc, M. 0 . Ward, and N. Wittels. Exploring N-dimensional databas-

es. In IEEE Visualization ,90 Proceedings, pages 230-239. IEEE Computer

Society, October 1990.

[25] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-tree 一 an in-

dex structure for high-dimensional data. VLDB J.: Special Issue on Spatial

Database Systems, 3(4):517-542, October 1994.

26] R. S. Michalski and R. Stepp. Learning from observation: conceptual clus-

tering. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Ma-

chine Learning: An Artificial Intelligence Approach. Springer-Verlag, Berlin,

1984.

27] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial

data mining. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, editors,

20th International Conference on Very Large Data Bases, September 12-

15, 1994, Santiago, Chile proceedings, pages 144—155, Los Altos, CA 94022,

USA, 1994. Morgan Kaufmann Publishers.

[28] Jong Soo Park, Ming-Syan Chen, and P. S. Yu. An effective hash-based algo-

rithm for mining association rules. SIGMOD Record (ACM Special Interest

Group on Management of Data), 24(2):175-186, June 1995.

29] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-

bridge University Press, Cambridge, 2 edition, 1992.

78

iiiiHWMnfMMTTmrarTMFTMfTnMmnnriiiiiiBiiiiaimiHiiiiiii iiiiiiiiii iminmiiimiiiii_iniiMmmrnmrm

[30] Hanan Samet. The quadtree and related hierarchical data structures. ACM

Computing Surveys, 16(2):187-260, June 1984.

[31] Ramakristman Srikant and Rakesh Agrawal. Mining quantitative association

rules in large relational tables. SIGMOD Record (ACM Specml Interest

Group on Management of Data), 25(2):1-12, 1996.

[32] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Pro-

ceedings of the 12th International Conference on Data Engineering, pages

516-523, Washington - Brussels - Tokyo, February 1996. IEEE Computer

Society.

[33] Tian Zhang, Raghu Ramakrishnan, and M i ^ Livny. BIRCH: an efficient

data clustering method for very large databases. In Proceedings of theACM

SIGMOD International Conference on Management of Data, volume 25, 2

of ACM SIGMOD Record, pages 103-114, New York, June4-6 1996. ACM

Press.

79

I I I I I 1 1 | | | | | • | | | | | | | H | | _ | | | | | 1 1 I i m i i i i i I H | | | | | • | | | | I | | | I | | | _ _ l i m w - g S

WF- ^ H | H H M H M H H M W ^ ^ ^ ^ ^ ^ " |

u ‘

^ • ^ ： • …CP-
I 4 1 s (•

f'

:|
I

.I
:,:A

-i
v.-i
•;:,丨
‘ . i ".i

•fi
H
1 :H

. . . j

-1
i "1
•i

厂丨
,

:U •=•H
• • 'M

• i I
.."'!
..,:!

7i

-̂ i

. I
.1

―― I
CUHKLibraries i

_ 圓 _ 1 : ！
0D37E3SEE

