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Abstract 

Databases have been used to store huge amount of raw data for a long time. 

Recently, people are interested in the information hidden in the databases. Dif-

ferent methods have been proposed to discover different kinds of knowledge in 

the databases. The discovered knowledge can be divided into several categories, 

e.g. characterization, clustering, classification, association and sequences. In this 

thesis, we concentrate on the discovery of association rules. Many algorithms 

have been proposed to find binary association rules in databases containing only 

binary attributes. 

In real life, however, database will contain not only binary attributes, but also 

categorical and numerical attributes. There are several mining algorithms [29, 10, 

11, 21] trying to find association rules in databases with quantitative attributes. 

In [29], an attribute domain partitioning algorithm has been proposed to find 

quantitative association rules. However, there are problems for both discrete and 

overlapped intervals. 

Therefore, we introduce the fuzzy association rule (FAR) to handle quantita-

tive attributes such that we can avoid the problems of [29] as well as give better 
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semantics to the discovered rules. We have introduced new interest measure for 

itemsets and rules so that we can incorporate the fuzzy set concepts in associa-

tion rule mining. We use significance factor to generate large itemsets and use 

certainty factor to test the usefulness of the discovered fuzzy association rules. 

The fuzzy association rule is of the form, “ If X is A then Y is B,,, where " X is A" 

is called antecedent and "F is B,, is called consequent of the rule. X and Y are 

sets containing attributes of the database. A and B are sets of fuzzy sets which 

describe X and Y respectively. Using fuzzy set concept, the discovered rules are 

more understandable to human because of the linguistic terms associated with 

the fuzzy sets. Moreover, fuzzy sets handle numerical values better than existing 

methods because fuzzy sets soften the effect caused by partitioning the attribute 

domain. From experimental results, we can see that fuzzy set concepts really 

solve the problems caused by sharp boundary. Moreover, one of our algorithms 

has compatible performance with respect to the interval partitioning method. 
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Chapter 1 

Introduction 

In the past, useful data are written on papers and stored in safe places. When 

people need to access these data, they will take them out and analyze by hu-

man eyes. However, with the rapid growth of businesses and industries, more 

and more data are generated from growing organizations. It is probably im-

possible to handle the vast amount of cumulated data by human. Database is 

one way to solve part of the problem, storing the huge amount of data. In re-

cent years, computing resources become widely available and the price become 

reasonably afFordable. These lead to the increase in the automation of business 

activities. More and more companies and organizations switch to store their data 

in databases such as the use of credit or the medical diagnosis. The growth of 

number and size of databases becomes faster than ever before. 

At the very beginning, the role of databases is a container. Users can store 

their data as well as performing some simple operation, e.g. sorting the records, 

indexing, issuing simple queries. However, the results of the queries are not sur-

prising to the users. Recently, this concept has been changed. People not only 

put data into databases, but also want to get some useful and interesting infor-

mation from databases since the most tedious tasks are performed by computer. 

As a result, data mining has been introduced. 

1 
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1.1 Data Mining 

Data mining or knowledge discovery is the tasks of finding implicit, previously 

unknown and potentially useful information hidden in databases [25]. Given a 

database, we want to find different kinds of regularities. The mining process 

and discovered knowledge should possess some special characteristics. The dis-

covered knowledge should be understandable by human so that they can use 

the knowledge directly. Moreover, the discovered knowledge should be accurate 

with respect to the database. Otherwise, people may get wrong information 

from the database. Furthermore, we should guarantee the interestingness of the 

discovered knowledge in order to fulfill users' expectation. Finally, the mining 

process should be efficient. We can summarize the characteristics of data mining 

as follows. 

• Understandability 

The representation of the discovered knowledge should be understandable 

by human. Therefore, if we can incorporate high level language into the 

discovered knowledge, the expressive power is better. 

• Accuracy 

We have to introduce some measuring criteria for the discovered knowledge 

with respect to the database. Otherwise, the discovered knowledge may be 

incomplete or misleading. 

• Interestingness 

In the mining process, we have to take the users' preference into account. 

The discovered knowledge is interesting if it satisfies the user-specified 

thresholds. Otherwise, we may spend time on discovering useless or trivial 

information. 

• Efficiency 
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We have to guarantee the mining process is efficient. The performance 

of mining process should not degrade exponentially as the database size 

increases. 

There are several kinds of knowledge hidden in databases and we can classify 

the discovered knowledge into three categories, e.g. classification, association and 

sequences. Classification tries to classify the given data set into different classes 

in order to reduce the database size. In [25], two of the tasks are summarization 

and discrimination. Summarization searches for common characteristic features 

of one class. However, discrimination tries to distinguish different classes. Se-

quences are patterns in time series data. In sequence data search, algorithms 

have been proposed to find exact or similar patterns. For example, we can find 

patterns in weather and stock market data. Association represents the knowledge 

in the form of a rule, i.e. X ~> Y. Example can be found in retail data. 

!•2 Association Rule Mining 

Many algorithms have been proposed in finding classification. However, mining 

association rules is still a new research area in data mining. 

During the past years, boolean association rule mining [3, 4, 23, 9, 26] has 

received considerable attention. Boolean association rule mining tries to find 

consumer behavior in retail data which are consumer transactions stored in 

databases of large retail companies. The domain of retail data is binary which 

indicates whether a customer has bought an item or not. Therefore, the discov-

ered rule can tell, e.g. people who buy butter and milk will also buy bread. Such 

rules can be used in customizing marketing program, advertisement and sales 

promotion. However, binary association rule mining limits the application area 

of the mining process since only binary attributes will be considered. 
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In practice, database will contain not only binary, but also categorical and 

numerical values. We cannot directly apply the algorithms of binary association 

rule to deal with attributes other than binary ones. In [29], mining quantitative 

association rule has been proposed. The algorithm first partitions the attribute 

domains into small intervals and combines adjacent intervals into larger one such 

that the combined intervals will have enough supports. Replacing the original 

attribute by its attribute-interval pairs, the quantitative problem has been trans-

formed to binary one. Although quantitative association rule mining can solve 

the problem introduced by numerical attributes, there are still other problems. 

We observe that one problem of partitioning is the sharp boundary between in-

tervals. The algorithm either ignore or over emphasize the elements near the 

boundary of an interval in the mining process. However, the interval method is 

not intuitive with respect to human mind. For example, the interval method may 

classify a person is young if age is less than 40 and old if age is greater than 40. 

The first problem is how we can classify a person whose age is 40. The second 

problem is how we can distinguish the degree of membership. For example, using 

the interval method, age of 45 and age of 90 will both be classified into old. By 

intuition, however, we know that ago of 90 is older than age of 45. They should 

not contribute the same to the interval. Therefore, we look for other ways to 

handle the quantitative attributes. 

In this thesis, we propose algorithm for mining fuzzy association rule of the 

form, "If X is A then V is B,,. " X is A，，is called the antecedent of the rule and "F 

is B,, is called the consequent of the rule. X, V are sets of attributes of database 

and A, B are sets containing fuzzy sets which characterize X and Y respectively. 

We use the fuzzy set concept to deal with the numerical attribute of the database 

so that we can also solve the problem of infinite values of numerical attribute. 

Moreover, we have also solved the problem of sharp boundary introduced by 

partitioning of attribute domain. It is because the fuzzy sets provide a smooth 
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transition between member and non-member of a set so that no sharp boundary 

exists. Moreover, the fuzzy association rule is more understandable because the 

semantics of the rule can be reflected clearly by the linguistic terms associated 

with the fuzzy sets. 

The thesis is organized as follows. In chapter 2, we will give some literature 

survey on different existing association rule mining algorithms. Both binary and 

quantitative algorithms will be covered. The problem definition will be presented 

in chapter 3. We will define the fuzzy association rule and the interest measure 

used in the mining process. After that, in chapter 4, the mining steps for fuzzy 

association rules and the implementation details will be covered. In chapter 5, 

we will compare our algorithms with the one in [29]. Moreover, we will have 

extensive experiments under different user specified thresholds. Chapter 6 is a 

brief discussion and we will give the conclusion in chapter 7. 



Chapter 2 

Background 

In this chapter, we will first define some general terms for association rule mining. 

These terms are commonly used in existing association rule mining algorithms. 

After that, we will describe several existing algorithms in finding binary and 

quantitative association rules. 

2.1 Framework of Association Rule Mining 

In [3], association rule mining has been divided into two subproblems. The first 

one is to find all frequent/large itemsets. The second subproblem is to use the 

discovered large itemsets to generate interesting rules. Therefore, we will first 

give the definition of large itemsets and then the definition of association rules. 

2.1.1 Large Itemsets 

Let T = {^1, t2, ..., tn} be the database containing n user transactions. Each 

transaction is represented by tk which shows the items bought by a customer in 

one purchase. All the possible items which can be appeared in a transaction is 

6 
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represented by I 二 {u , i2,…，^m}- Any subset of items in I can be contained in 

a transaction. 

For simplicity, given a set of items, we call it an itemset instead. For a set of 

k items, we will call it a k-itemset 

For an itemset X in I ( c /)，a transaction tk is said to supportX, if tk contains 

all items in X. The support of X , support{X), is defined to be the fraction of all 

transactions in T that support X. We define the large itemset as follows. Given a 

minimum support value, minsup, if we have support{X) > minsup, the itemset 

X is called large. The minsup is a user specified threshold which constrains 

ourselves to consider only those itemsets that appear often enough in T to be 

interesting. Those that do not have minimum support are called small itemsets 

and we will not use them to generate association rules. 

According to the definition of large itemsets and the support of itemset, 

we can find some interesting properties of large itemsets which are useful in 

association rules mining. The properties are as follows. 

• Subsets of Itemset 

Given two itemsets X and F, if X is a subset of Y^ then we can conclude 

that the support of X is not less than the support of F, i.e. support(X) > 

support{Y). The reason is that all transactions in T that support Y need 

to support X^ too. 

• Supersets of Small Itemset 

Given a small itemset X in T, i.e. support[X) < minsup, every superset 

Y of X will also be small itemsets because support{Y) < support[X) < 

minsup according to the above subset property. 

• Subsets of Large Itemset 
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Given a large itemset X in T, i.e. support{X) > minsup, every subset Y 

of X is also large itemsets because support{Y) > support{X) > minsup 

according to the subset property of itemset. However, it is not necessarily 

true for the supersets of a large itemset. 

2.1.2 Association Rules 

An association rule is of the form, X ~^ Y^ where X and Y are disjoint itemsets, 

i.e. X, Y C I and X A F = 0. X is called the antecedent and Y is called the 

consequent. The semantics of the rule is an implication, given those transac-

tions that support X, a fraction of these transactions will also support Y. The 

fraction of the transactions is called the confidence of the rule and is denoted by 

confidence{X ~^ Y). 

The confidence of a rule reflects the number of transactions which support X 

will also support Y and can be calculated as follows. 

support{X U Y) 
confidence(X — Y) 二 ~———̂ 〜、’ 

support[X) 

Both support and confidence is important to a rule. The support of a rule, 

X ")• y , is denoted by support{X U Y) which shows the fraction of transactions 

containing both X and Y. The support of a rule can reflects the importance of 

the rule. On the other hand, the confidence shows the strength of the rule. We 

say a rule holds if it has support and confidence greater than or equal to the 

user specified thresholds, minsup and minconf respectively. The minconf is the 

minimum confidence level that a rule has to attained. Furthermore, according to 

the property of large itemset, the antecedent and consequent of the rule should 

also be large itemsets such that the rule will hold. 

We use some examples to illustrate that a rule with only enough support 

or only sufficient confidence will not hold. If there is only one transaction in 
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T supporting a rule, we will have 100% confidence level. However, we do not 

have enough support for this rule since only one transaction contains the rule. 

Therefore, the rule is not likely to appear often in the database T. On the other 

hand, a rule with insufficient confidence may not be true. Suppose there are 

10,000 transactions that support the itemset X and Y respectively and only 100 

transactions that support both X and Y. Using the formula of confidence, the 

confidence of the rule is only 1% which is probably too low for a rule to be true. 

From these examples, it is clear that a rule will hold only with enough support 

as well as sufficient confidence. 

The following properties of association rule are also important in association 

rule mining. Without using these properties, we may discover some duplicated 

mles, or even worse some incorrect rules. 

• Triviality 

In the definition of association rules, we have mentioned that the antecedent 

and consequent should be disjoint itemsets, i.e. X fl Y = 0. We now show 

why this restriction is necessary to the association rules. Given X with 

enough support, X — X will hold with 100%. This kind of rules, how-

ever, is not interesting because it is trivial to us. It gives us no surprising 

information. Moreover, given X ~^ X U F, we know that it is also not 

interesting because it is same as X ~> Y. Therefore, we let X and Y be 

disjoint itemsets such that there is no trivial or duplicated rule. 

• Composition 

The composition of association rules with either same consequent or an-

tecedent is not possible. Given X ~^ Z and Y ~^ Z with enough support 

and sufficient confidence, however, we cannot imply X U Y ~^ Z holds. It 

is because we only have the supports of the itemsets X , F, Z, X U Z and 

Y U Z. With only these values, we cannot know what is the exact value 
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of the support of X U Y U Z according to the property of large itemset. 

Therefore, we have to count the support of X U Y U Z in order to determine 

whether X U Y ^ Z holds. 

In a similar sense, the composition of rules with the same antecedent is 

shown to be impossible, i.e. given X ~^ Y and X ~^ Z�we also cannot 

imply X ^ Y U Z holds. 

• Decomposition 

The decomposition of association rules is also impossible or useless. We first 

describe the impossibility of decomposition of the antecedent. lfXUY ^ Z 

holds, X ~> Z and Y ~^ Z may not hold. For example, if Z appears in 

a transaction only if both X and Y are present, i.e. support{X U Y) 二 

support{Z). Then, if the support of X and Y is sufficiently greater than 

X U Y. X ~> Z and Y ~^ Z do not have enough confidence since support 

of X and Y is also sufficiently greater than support of Z. 

Nevertheless, given X — Y U Z with the required minsup and minconf, 

then X ~^ Y and X ~^ Z hold in T. It is because both support{X U Y) 

and support{X U Z) are greater than support{X U Y U Z). Therefore, the 

resulting rules have support and confidence greater than the user specified 

thresholds. However, the rules with more items in both antecedent and 

consequent are more desirable. Therefore, the decomposition of association 

rules is not very useful in this sense. 

• Transitivity 

We will show that the transitivity of rules does not hold in association rules. 

Even we know that X ~> Y and Y ~^ Z hold in T, we cannot infer X ~^ Z 

holds. Assume all transactions containing Z will also contain Y and all 

transactions containing Y will also contain X. Let confidence{X ~^ Y)= 

confidence{Y ~^ Z) = minconf. The following equations show how we 
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can get the confidence of X ~^ Z. 

confidence{Y ~^ Z) = minconf 
support(Y U Z) . 

^~-~ = minconj 
support{Y) 

support(Z) • „ 
j^ = minconj 

support[Y) 
support{Z) 

support[Y)= ： — 
minconj 

confidence{X ~> F) — minconf 
support(X U y ) . -

= minconj 
support[X) 

support(Y) • -
j~^ — minconj 

support{X) 
support(Z) . „2 

^^ — minconj 
support[X) 

support(X U Z) . „2 
j-^~~ 二 minconj 

support[X) 
confidence{X ~> Z) = minconp 

In the above equations, we know that the confidence of X ~^ Z is minconf^. 

Since minconf < 1, X — Z does not have enough confidence. Therefore, 

there is no transitivity in association rules. 

2.2 Association Rule Algorithms For Binary At-

tributes 

As mentioned above, association rule mining algorithms consist of generation of 

large itemsets and construction of rules from the discovered large itemsets. How-

ever, the rule construction is a straightforward procedure when we have found the 

necessary large itemsets. Therefore, the discovery of large itemsets is the most 

interesting part in association rule mining and different existing algorithms find 

large itemsets differently in order to give better performance. The algorithms 
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use one of the following data representations to store the database, i.e. item-

lists, candidate-lists and TID-lists. We will describe how these representations 

influence the performance of individual algorithms. 

2.2.1 AIS 

In [3], the problem of association rule mining was first introduced. Moreover, 

the algorithm is called AIS in [4]. In AIS, there are several passes and the entire 

database has to be read one transaction after the other in each pass. A candidate 

itemset is generated by extending frontier sets which are large itemsets in the 

previous passes. Initially, the frontier set is an empty set in the first pass. A 

candidate itemset is called a k-extension of a frontier set F if the candidate 

itemset is created by adding k items to F. As mentioned above, we assume all 

the items are sorted. Therefore, we can avoid duplicate candidate itemsets by 

adding items which are larger than the largest item in F. Moreover, we will not 

extend F with all items. On the contrary, we will only consider items appeared 

in the transactions. Given a transaction {1, 2, 3, 5, 6, 7, 8} and a frontier set 

F = {2, 3, 5}, 1-extension of F should be {2, 3, 5, 6}， { 2 , 3, 5, 7} and {2, 3, 

5, 8}. We can see that 1 does not appear in the 1-extension of F because it is 

smaller than the largest item in F. The 2-extension of F can be generated in 

similar way, i.e. {2, 3, 5, 6, 7}, {2, 3, 5, 6, 8} and {2, 3, 5, 7, 8}. Initially, F is 

an empty set. Therefore, the candidate 1-itemsets are those items appeared in 

all transactions. 

Each candidate itemset is associated with a counter. When it is first created, 

the counter will be set to 1. After that, the counter will be incremented when 

subsequent transactions contain that candidate itemset. Using the counter, we 

can calculate the support of the candidate itemset after a complete pass through 

all transactions. If the candidate itemset has support greater than the minimum 
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support threshold, it will become the new frontier set in next pass. After the 

new frontier sets have been generated, a new pass begins unless there is no large 

itemset in the previous pass. 

However, this algorithm will generate a large number of candidate itemsets 

which are expected to be large and turn out to be small. Therefore, sophisti-

cated pruning techniques are necessary to decide whether an extension should be 

included in the candidate itemsets. The algorithm uses the relative frequencies 

of items of candidate itemset to calculate its expected support such that a can-

didate itemset expected to be small will not be extended. The pruning function 

optimization is based on the total transaction price. If the price of extending an 

itemset is too high, it cannot possibly be large. 

2.2.2 SETM 

In SETM [16], it stores the database, candidate and large itemsets in the form, 

(TID,itemset). SETM will modify the entire database in each pass to perform 

candidate itemset generation, counting support and find out the large itemsets. 

Therefore, the database will contain candidate itemsets or large itemsets. Ta-

ble 2.1 is an example which illustrates the generation of candidate and large 

itemsets. The minimum support has been set to 2 records. 

The procedures of generating candidate and large itemsets are as follows. 

Suppose we have the (k-l)-itemsets, we first have to sort the large (k-l)-itemsets 

by the TIDs such that the creation of the candidate k-itemsets of a specific TID 

can be done byjoining the large (k-l)-itemset pairs, which must have (k-2) items 

in common, of that TID. After obtaining the candidate k-itemsets, we sort the 

records by itemsets such that we can delete the small k-itemsets by counting the 

number of TIDs of the k-itemsets. Therefore, we have our large k-itemsets ready 

for the generation of candidate (k+l)-itemsets. All size of candidate and large 
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> . 

Database Li C2 
TID Items TID Items TID Items 

1 2,3,5 1 2 1 2,3 
2 1,2,3,5 1 3 1 2,5 
3 2,5 1 5 1 3,5 

2 2 2 2,3 
2 3 2 2,5 
2 5 2 3,5 
3 2 3 2,5 
3 5 

L2 Cs Ls 
TID Items TID Items TID Items 

1 2,3 1 2,3,5 1 2,3,5 
1 2,5 2 2,3,5 2 2,3,5 
1 3,5 
2 2,3 
2 2,5 
2 3,5 
3 2,5 

Table 2.1: Example of SETM. 
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itemsets are generated in similar fashion. 

The advantage of SETM is that it generates fewer candidate itemsets than 

AIS. For example, if AIS use L2 as frontier sets, it will generate the candidate 

itemsets {1, 2, 3}, {1, 2, 5} and {1, 3, 5} according to the transaction with TID 

2. However, these itemsets are absolutely small since only one record contains 

item 1, SETM will never generate those candidate itemsets since the item 1 has 

already been dropped in L [ 

2.2.3 Apriori, AprioriTid and AprioriHybrid 

Apriori, AprioriTid and AprioriHybrid are introduced in [4]. They outper-

form the previous algorithms since they use a new candidate itemset generation 

method called Apriori-gen function. Apriori uses item-list to store the database 

and AprioriTid uses candidate-list to discard useless data in the database. We 

will briefly describe the candidate generation function followed by the description 

of the three algorithms and their data representation. 

Apriori-gen 

The Apriori-gen function uses the information of previous passes and the prop-

erty of subsets of large itemsets to generate the candidate itemsets of current 

pass. If we want to generate a k-candidate itemset, we will use the large (k-l)-

itemsets as input and search for pairs of itemsets that have their smallest (k-2) 

items in common. The candidate itemset is the union of two large itemsets. All 

its (k-l)-subsets should be large. Otherwise, the itemset will not be considered 

as candidate itemset. For example, given two large itemsets {1,2} and { l ,3} , we 

can generate a candidate itemset {l,2,3}. We have to check whether its subset 

{2,3} is large before putting it into the set of candidate itemsets. 
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We only use Apriori-gen to generate candidate itemsets and the counting step 

will not be performed in that function. The advantage of Apriori-gen is that it 

generates fewer candidate itemsets and the candidate itemsets will not be created 

repeatedly for every transaction. 

Apriori 

Apriori uses Apriori-gen to generate all size of candidate itemsets. In each pass, 

Apriori calls Apriori-gen to generate all candidate itemsets of a given size, e.g. 

candidate k-itemsets in k^ pass. Then, the support of all these candidate k-

itemsets will be obtained in the counting phase. In each counting phase, the 

entire database will be scanned. 

Apriori stores the data in item-list representation which is of the form, (TID,list 

of items). The transactions are stored as a sequence of sorted item-lists in this 

representation. Since Apriori has to read the entire database in each pass, if the 

useless items and transactions can be deleted, the performance will be better. 

However, the item-list representation prevents Apriori to do this optimization. 

We have to scan the database once more in order to get the knowledge of which 

items and transactions to discard. Nevertheless, the item-list representation has 

its own advantage. The database size will not grow through out the algorithm. 

AprioriTid 

To solve the shortcoming of Apriori, AprioriTid was proposed to prune the useless 

items and transactions during the process of the algorithm. AprioriTid also uses 

Apriori-gen to produce all candidate itemsets. However, the database is stored 

using candidate-list representation. Each transaction is associated with a list 

of candidate itemsets which are supported by it. Table 2.2 is an example of 
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candidate-list representation. AprioriTid will still use the initial database to 

generate candidate and large 1-itemsets. After the first pass, initial database will 

be transformed similar to table 2.2. In each pass, the generation of candidate 

and large itemsets will refer to the new database generated in the previous pass. 

Database Ci 
TID Items TID Candidate Itemsets 

1 2 , 3 , 5 1 { 2 } , { 3 } , { 5 } 

2 1,2,3,5 2 {1}, {2} , {3} , {5} 
3 2,5 3 {2}, {5} 

C2 C3 
TID Candidate Itemsets TID Candidate Itemsets 

1 {2,3}, {2,5}, {3,5} 1 {2,3,5} 
2 {2,3}, {2,5}, {3,5} 2 {2,3,5} 
3 { 2 , 5 } 

Table 2.2: Candidate-list representation. 

The disadvantage of candidate-list is that the size of intermediate results will 

be unexpected large, although it is much smaller than SETM. These intermediate 

results may be too large to fit into main memory such that the data may be 

needed to swap to disk. However, this situation will usually happen in second 

pass. After the second pass, the intermediate results are expected to be rather 

small. Moreover, the advantage of candidate-list is that the useless items and 

transactions are pruned automatically. AprioriTid outperforms Apriori after 

second pass. 

AprioriHybrid 

Comparing Apriori and AprioriTid, Apriori outperforms AprioriTid in early 

passes since Apriori avoids swapping data to disk, hi later passes, however, 

AprioriTid gives better performance because it prunes out the useless items and 
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transactions from the database. AprioriHybrid is the combination of Apriori and 

AprioriTid. For the initial passes, Apriori is employed and is switched to Apri-

oriTid when the new database is expected to fit in main memory. AprioriHybrid 

performs better than Apriori as long as AprioriTid can be used long enough to 

compensate the overhead of switching from Apriori to AprioriTid. 

2.2.4 PARTITION 

In the previous algorithms, the database needs to be scanned several times be-

cause the number of possible itemsets to be tested is exponentially large if it 

must be done in one pass. Moreover, we do not know the number of passes in 

advance. In [26], an algorithm called PARTITION has been proposed. This 

algorithm only scans the database two times. In the first scan, it generates all 

candidate itemsets and count the support of these itemsets in the second scan. 

Therefore, the number of passes has been limited. Moreover, the algorithm uses 

the TID-list to store the database such that the database size will be pruned in 

later passes. 

The algorithm will first divide the database into equally sized horizontal 

partitions. For each partition, the algorithm will find the corresponding local 

candidate and large itemsets. The partition size is chosen such a way that the 

entire partition can reside in main memory. Therefore, no data has to be swapped 

to disk. 

Since the local large itemsets are only large in their own partitions, we have 

counted the database once again to obtain the global support of these local large 

itemsets in order to determine which of them are globally large. In this counting 

phase, we group all local large itemsets in a so called global candidate itemsets 

which is the set of all local large itemsets. All the itemsets in global candidate 

itemsets have to be counted, except for the ones that were large in every partition 
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because we already have their counts. After the counting phase, we will have our 

global large itemsets by pruning away those itemsets that do not have enough 

supports. The total 10 requirement is only two scans of the database. 

The PARTITION algorithm reduces the database size by using the TID-list to 

store the candidate and large itemsets. TID-list stores the itemsets and the TIDs 

of the supporting transactions. The representation is of the form, (Itemset,list 

of TIDs). Table 2.3 is an example of TID-list and the generation of candidate 

itemsets. The minimum support is 3 records in this example. 

Database Ci 
TID Items Candidate 1-itemsets TIDs 

1 1,2,3 {1} 1,4 
2 3,4,5,6 {2} 1,3 
3 2,4,6 {3} 1,2,4,5,6 
4 1,3,5 {4} 2,3 
5 3,5,6 {5} 2,4,5,6 
6 3,5,6 {6} 2,3,5,6 

C2 C3 
Candidate 2-itemsets TIDs Candidate 3-itemsets TIDs 

{3,5} 2,4,5,6 {3,5,6} 2,5,6 
{3,6} 2,5,6 
{5,6} 2,5,6 

Table 2.3: TID-list representation. 

In table 2.3, the initial database and the intermediate results of AprioriTID 

are presented. The TID-list for a candidate k-itemset can be obtained by in-

tersecting the TID-lists of its (k-l)-subsets. For example, the TID-list of the 

itemset {2,3} is the result of intersecting the TID-lists of itemsets {2} and {3}. 

For efficient computation, the intersection can be done with a merge-join opera-

tion. 

The intermediate results caused by TID-list are still unpredictable. However, 



Chapter 2 Background ]_20 

it is less severe than the candidate-list representation since the candidate gen-

eration and counting are both done in the merge-join phase. Although TID-list 

still has the size problem, it removes the useless data in later passes. Both the 

small itemsets and the useless transactions can be dropped automatically in the 

merge-join operation. 

2.3 Association Rule Algorithms For Numeric 

Attributes 

The previous algorithms are used to deal with database containing binary at-

tributes only. In this section, we talk about the algorithms for mining association 

rules in databases with numeric attributes. 

2.3.1 Quantitative Association Rules 

29] introduces the concept of quantitative association rules such that associa-

tion rule mining can be performed on databases with numeric attributes. The 

algorithm is a mapping from quantitative association rules problem into the 

boolean association rules problem. The mapping is as follows. If the categorical 

or quantitative attributes have only a few values, the most intuitive and simplest 

way to handle this kind of attributes is replacing the original attribute by its 

domain values. Let x be a quantitative attribute in the database and D^ be the 

domain of x. The value of x is represented by d]^ such that D^ = {dl, ¢/^,..., 

d^}. In this simple method, we will replace x by its attribute-value pairs, i.e. 

(x, ¢/^), {x, 0?^),...’ {x, d^). Table 2.4 is a sample database with two attributes. 

In table 2.5, we can see that Children is replaced by its attribute-value pair, 

i.e. {Children^ 0), {Children^ 1), {Children^ 2), {Children^ 3). Each of these 



Chapter 2 Background ]_21 

Retired Children 
~ " ^ 2 

No 3 
No 0 
No 1 
Yes 2 

Table 2.4: A Sample Database For Small Attribute Domain. 

attribute-value pairs will be considered as binary attributes in the database. In 

table 2.4 and table 2.5, both databases have the same number of records. How-

ever, the number of attributes in table 2.5 has been increased from 2 to 5. The 

increment of number of attribute can be calculated by a simple formula. If we 

have k quantitative attributes, we can use the following equation to calculate the 

number of attributes increased: 

E ( | A | - 1 ) 
i=l 

In the above equation, \Di\ represents the cardinality of the domain of the 产 

quantitative attribute. We can see that number of attribute increased as the size 

of domain grows. The result of the above formula will increase to infinity if one 

of \Di\ represents the domain of a numerical attribute. Therefore, this method 

can only apply to finite and small attribute domains. We need other methods to 

solve the problem caused by infinite domain. 

Retired {Children^ 0) {Children^ 1) {Children, 2) {Children, 3) 
1 0 0 1 0 

0 0 0 0 1 

0 1 0 0 0 

0 0 1 0 0 

1 0 0 1 0 

Table 2.5: Resulting Database After Discrete Value Replacement. 
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For a large attribute domain, an obvious approach is to first partition the 

attribute domain into intervals, e.g. ¢^ < intervall < d^^^^ and then map each 

attribute-interval pair to a binary attribute, i.e. {x^ intervall)^ {x^ interval^)^ 

…，{x, interval^). Table 2.6 and table 2.7 illustrate how attribute partitioning 

works. 

Graduate Salary 
^ 12500 
No 10000 
Yes 12000 
Yes 11000 
No 10000 

Table 2.6: A Sample Database For Large Attribute Domain. 

We can see that the domain of Salary in table 2.6 has been partition into three 

intervals, i.e. {Salary^ lOk-llk)^ {Salary, llk-12k)^ {Salary, 12k-l3k). This time, 

the number of columns in the new database can be calculated by 5^，= i {Num-

ber of intervals for i^^ attribute). Therefore, the problem of infinite number of 

attribute has been solved since we can limit the number of intervals for each 

attribute. 

Graduate {Salary^ lOk-llk) (Salary, llk-12k) {Salary^ 12k-13k) 
1 0 0 1 
0 1 0 0 

1 0 0 1 
1 0 1 0 
0 1 0 0  

Table 2.7: Resulting Database After Interval Replacement. 

The algorithm will first use the partial completeness level, which gives a handle 

on the amount of information lost by partitioning, to calculate the number of 

partitions for each quantitative attribute. 
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After partitioning the attribute domain, we have to find the support for each 

partition of the quantitative attribute. For each quantitative attribute, adjacent 

partitions are combined as long as their support is less than the user specified 

max support which prevents the resulting intervals becoming too large. These 

form the set of all large 1-itemsets, then we can find all large itemsets using the 

boolean algorithms. 

We can use the large itemsets to generate all the possible rules which is the 

same as that for binary association rules. However, this algorithm may produce 

redundant rules since there are some intervals with similar information will be 

generated in merging adjacent intervals. Therefore, we use a greater than expected 

value interest measure to prune the uninteresting rules in those possible rules. 

2.3.2 Optimized Association Rules 

In [11], algorithm have also been proposed to find association rules for numeric 

attributes. The rules are called optimized association rules and are of the form 

{A G [？；!, V2]) => C, where [vi^ v2] is the range that attribute A falls in and C 

is a condition containing boolean attribute. There are two kinds of optimized 

association rules. One is the optimized support rule which maximizes the support 

of A G 卜 1 ,仍 ] a n d the other is optimized confidence rule which maximizes the 

confidence of the rule. 

For attribute A, the algorithm first partition its domain into a sequence of 

disjoint intervals called buckets, i.e. Bi, B2, ..., Bu and B{ : [x{,yi] such that 

Xi < yi < â i+i. If Xi 二 yi, we call Bi a finest bucket. The range of an optimized 

association rule is the combination of consecutive buckets, i.e. Bp, _^+i，".，Bg. 

The number of tuples that values of A fall into B{ is denoted by U{ and the number 

of tuples that values of A fall into B{ and the corresponding tuples meet C is 

denoted by V{. Therefore, the support of A G [�,y^], support{p, g), is (Ej=p U{)/N 



Chapter 2 Background ]_24 

and the confidence of {A G [xp, yg]) => C, conf{p^ q), is {Yli=p Vi)/{J2i=g Ui). 

For computing U{ and ” “ the algorithm has to locate the values into buckets 

record by record. One way is to sort the database over the attribute A and 

divide the sorted data into finest buckets. However, the time needed to sort a 

huge database is long. Therefore, [11] uses an approximation algorithm to make 

equi-depth buckets. The algorithm first takes an 6'-sized random sample from 

database, then sorts the sample. Therefore, the time for sorting is reduced a 

lot. After that, the algorithm scans the sorted sample and locate the values into 

buckets. Finally, it scans the original database to assign values into buckets. 

Moreover, the process of assigning values into buckets can be parallel. Thus, the 

time needed for constructing buckets is further reduced 

After talking about the construction of buckets, we talk about how the algo-

rithm generates optimized confidence rules. It first creates a sequence of points 

Qk 二 (Z^f=i Ui,J2i=i ^i) for k = 1,..., M and let Qo = (0,0). We can see that the 

slope of the line QmQn is exactly ccm/(m + l, n) and the difference of x-coordinate 

of Qm and Qn is support[m + l, n). The algorithm uses the convex hull concept to 

find the line QmQn, where m +1 < n with largest slope such that the confidence 

of rule is maximized. 

The generation of optimized support rules is simpler. We only have to en-

sure that the confidence of the rules are not less than the threshold and try to 

maximize the support. Given a value of p < q and conf(p^ q) > threshold, the 

algorithm tries to maximize J2i=p Ui. 

In optimized association rule, there is only a single numeric attribute. In [11], 

the algorithm does not mention how to handle rules with multiple numeric at-

tributes. It only mentions the extension of the optimized association rules with 

multiple boolean attributes. 



Chapter 3 

Problem Definition 

Mining fuzzy association rules is the discovery of association rules using fuzzy set 

concepts such that the sharp boundary and problem with quantitative attributes 

can be solved. In this chapter, we will define the various terms used in mining 

fuzzy association rules. We will first describe the method used in solving the 

problem with quantitative attributes and then the definition and semantics of 

fuzzy association rule will be given. After that, we will discuss the interest 

measures in determining the large itemsets and interesting rules. 

3.1 Handling Quantitative Attributes 

In this section, we will first talk about the advantages and disadvantages of 

different methods in handling quantitative attributes. As we mentioned above, 

binary association rule algorithms cannot be directly applied to the quantitative 

attributes. Therefore, [29] first introduces the partitioning method which di-

vides the attribute domain into intervals. However, there are some limitations in 

both discrete and overlapped intervals. We will describe the problems caused by 

attribute partitioning and how the fuzzy set concept can solve those problems. 

25 
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3.1.1 Discrete intervals 

Figure 3.1 shows one of the methods to partition the attribute domain. This 

method divides the attribute domain into equal discrete intervals such that each 

attribute value belongs to exactly one interval. Moreover, an element will con-

tribute a vote of value one to the interval where it is located. After summing 

these votes, we can use this value to estimate the importance of an interval. 

However, there are limitations when we use this partition method. Since we par-

tition the attribute domain into non-overlapped intervals, the sharp boundaries 

between intervals will prevent us from estimating the importance of an interval 

correctly. We will not consider the elements located near the outer boundaries 

of an interval when we calculate the support of that interval. Hence, we may 

exclude some possible interesting intervals, which have supports close to the user 

specified threshold, by ignoring some elements near the sharp boundaries. 
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Figure 3.1: Partitioning Attribute Values Into Discrete Intervals. 

The effect of sharp boundary is shown in figure 3.1. The first graph in fig-

ure 3.1 is the data distribution of age. It shows how many records contain specific 

attribute value. The middle one shows how the attribute domain of age has been 

partitioned. The vertical axis represents that each attribute value will contribute 
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a vote of one to the interval that it belongs when a record contains that value. 

We use the last graph to illustrate the problem of discrete intervals. We assume 

that 50% of records are evenly distributed in three intervals, i.e. 10 to 20, 20 to 

30 and 30 to 40, and the user specified support is 20%. Then, none of the three 

intervals will be considered as interesting. However, for the interval where age 

starts from 20 to 30, it is obvious that it should be interesting if we consider the 

values near the boundaries of both sides. We cannot avoid this kind of problems 

if we use discrete partitioning method to deal with quantitative attributes. 

3.1.2 Overlapped intervals 

Another attribute partitioning [29] is to divide the attribute domain into over-

lapped regions. Figure 3.2 shows the result of dividing the attribute domain into 

overlapped intervals. The data distribution in the first graph is the same as the 

one in figure 3.1. In the second graph, we can see that the size of the interval is 

larger than that of discrete intervals with overlapped boundaries. 
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Figure 3.2: Partitioning Attribute Values Into Overlapped Intervals. 

As a result, the elements may locate in more than one interval and contribute 

their votes to all these intervals. Comparing with discrete intervals, we may have 
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more interesting intervals in the overlapped case. However, it is not reasonable 

for an element near the boundary to contribute the same as those located in the 

middle of interval. This may overemphasize the importance of an interval. When 

interpreting a rule, intervals will correspond to some higher level concepts, e.g. 

age : young, old. In such concepts, a clear boundary is not intuitive, e.g. we 

cannot say age of 35 is strictly young or old. We may consider the lesser the 

value is, the stronger is the value considered young. Therefore, we need other 

methods to solve both of the above problems. 

3.1.3 Fuzzy sets 

The above attribute partitioning methods are subject to the effect of sharp 

boundary, i.e. an element is either in an interval but not both, or an element 

contributes to more than one interval with equal weight. The problem is caused 

by the characteristic of classical set theory. In classical set theory, the value of 

membership of an element can only be either 0 or 1. It means that an element is 

located either in a set or outside a set but not both. We can, however, have set 

inclusion property that differs from the classical one when we use fuzzy sets. For 

each fuzzy set, a membership grade/value is associated with the attribute value. 

In fuzzy set concept, an element can belong to more than one set associated 

with its membership value. The membership value, which falls between [0,1], 

represents the degree of set inclusion. Larger values denote higher degrees of set 

membership. This value is assigned by the membership function associated with 

each fuzzy set. Basically, we can view fuzzy set as a mapping from the attribute 

domain to [0,1]. For example, let x be the attribute and Dx be the domain of 

X. For a given value in x, we can use the membership function m/工 to map the 

value to a membership grade. The mapping is as follows: 

mjXx) ： D^ ^ [0,1； 
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Instead of the abrupt change, a fuzzy set provides a smooth transition between 

the boundaries and the effect is shown in figure 3.3. The second graph offigure 3.3 

shows a traditional fuzzy set of which curve of the membership function is a bell 

shape curve. However, in practice, we will only use several points to represent 

a fuzzy set. In the third graph, we can see that the values located outside the 

interval, 20 to 30, have been considered. Therefore, the sharp boundary problem 

has been tackled. Moreover, the contribution of a value has been restricted by 

the membership function of the fuzzy set as illustrated in figure 3.3. Hence, the 

boundary elements will not be overemphasized when we use fuzzy set to deal 

with quantitative attributes. 
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Figure 3.3: Fuzzy Set Soften The Effect Of Sharp Boundary. 

Using fuzzy set, we have two ways to find fuzzy association rules. 

1. The first one is similar to the one in [29]. We can transform the fuzzy asso-

ciation rule mining problem into a binary association rule mining problem. 

We replace the original attribute by their attribute-fuzzy set pairs which are 

binary attributes. The values are computed according to the membership 

functions and the user specified membership threshold. 

2. The second method is to store the membership grades in the newly gener-
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ated table and use the new database to find the fuzzy association rules. 

Given the attribute Age has the fuzzy set mid-age associated with it, the 

transformation of database is illustrate in table 3.1. 

Age (A^e, mid-age) {Age,mid-age) 
~ W ~ 0：9 1 
10 0 0 

28 1 1 
31 0.9 1 
34 0.1 0  

Table 3.1: Database Transformation. 

The original values of the attribute Age are shown in the first table of ta-

ble 3.1. The second table is the membership grades calculated by the member-

ship function of the fuzzy set mid-age. The third table is generated from the 

values in the second table by setting the user specified membership threshold 

to 0.2. In the first method, if the membership value is not less than the user 

specified threshold, we put 1 in the corresponding position. Otherwise, we will 

put 0 in the database. After obtaining the binary database, we can apply exist-

ing binary association rule mining algorithms with little modification. Using the 

first method, it reflects the number of records supporting the attribute-fuzzy set 

pair. In the second method, we will directly use the membership grades as the 

database. Therefore, we have to use new interest measures for the determination 

of interesting itemsets and rules. Nevertheless, this method reflects the number 

of records as well as the degree of support which satisfy the attribute-fuzzy set 

pair. In this thesis, we will use the second method to transform the original 

database to database with membership grades. 
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3.2 Fuzzy association rule 

Let T = {ti, t2, •", tn} be the database containing n records and ti represents 

the corresponding ‘认 tuple in the database. In this context, we will use the 

terms record and tuple interchangeably. Moreover, we use I 二 {“，Z2, •••，im] to 

represent all attributes that appear in the database T and ij to represent the 产 

attribute of T. Here, the terms attribute and item will be used interchangeably, 

too. Since I contains a set of items, we call I an itemset which is the same as 

previous papers [3] in data mining. Table 3.2 shows a sample database with 

three attributes which contains five records. 

Retired Children Salary 
^ Y S 2 0~~ 

No 3 15000 
No 0 10000 
No 1 20000 
Yes 2 0 

Table 3.2: A Sample Database With Three Attributes. 

In table 3.2, T : {ti, t2, t3, t4, t^} and I = {Retired, Children, Salary}. We 

can retrieve the value of attribute ik in the 产 record of the database T simply by 

tj[ik]. For example, if we want to know the value of Salary of the fourth record, 

we can use t/\[Salary\ and get the value 20000. 

Besides, each attribute ik will associate with one or more fuzzy sets. We use 

Fik = {//^, f?k, ..., / 4 } , where 1 > 1, to represent the set of fuzzy sets associated 

with ik and //^ represent the 产 fuzzy set of ik. For example, if the attribute 

Salary in T has three fuzzy sets: high, medium and low, we will have Fsaiary 

二 {high, medium, low}. Here, we do not assume any order to exist in those 

fuzzy sets. Furthermore, we assume that the fuzzy sets and the corresponding 

membership functions are provided by domain experts. 
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Given a database T with attributes I and those fuzzy sets associated with 

attributes in I, we want to find out some interesting and potentially useful reg-

ularities in a guided way. Our proposed fuzzy association rule has the following 

form: 

If X is A then F is B. 

In the above rule, X = {a î, ^ 2 , . " , � } and Y — {yi, y2, •", Vq] are itemsets. 

X and Y are subsets of I and they are disjoint. That means that they share no 

common attributes. A = { /… f^^ , . . . ， / ^ ； ^ } and B = { / 奶 ， f y ” ..., / y J contain 

the fuzzy sets associated with the corresponding attributes in X and Y. For 

example, an attribute Xk in X will have a fuzzy set f^j^ in A such that f^^ 6 î ^̂  

is satisfied. 

The first part of the rule ^X is A' is called the antecedent and 'K is B, is 

called the consequent of the rule. The semantics of the rule is when ^X is A' is 

satisfied, we can imply that 'F is B, is also satisfied. Here, satisfied means there 

are sufficient amount of records which contribute their votes to the attribute-fuzzy 

set pairs and the sum of these votes is greater than a user specified threshold. 

For a rule to be interesting, it should have enough significance as well as 

sufficient certainty. We use a significance factor to test the satisfiability of an 

itemset and use a certainty factor to determine the strength of a rule. In the 

following sections, we will describe both significance and certainty factors in 

detail. 

3.3 Significance factor 

In generating fuzzy association rule, we have first to find out all large k-itemsets 

which are itemsets with significance not less than the value specified by the user. 
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Given a large itemset L, we will take all possible subsets, X, of the large itemset L 

as antecedent and take the remaining Y = L — X as the consequent. Moreover, 

we also need to measure the significance of the antecedent and consequent. 

Therefore, calculating the significance of itemsets is very important in finding 

fuzzy association rules. The significance factor is calculated by first summing 

all votes of each records with respect to the specified itemset, then dividing it 

by the total number of records in database T. Each record contributes a vote 

which falls between 0 and 1 to a series of itemsets. Therefore, significance factor 

reflects not only the number of records supporting the itemset, but also shows 

their degree of support. Before we talk about the calculation of the significance 

factor, we first introduce some symbols and functions in table 3.3. 

T Database with quantitative attributes 
Xj Attribute in database 
aj Fuzzy set corresponds to Xj 
t{ 产 record in T 
ti[xj] Value of Xj in 产 record 
mg^{ti[xj]) Membership function of a fuzzy set aj 
opr^ Any function that is used in fuzzy set, 

e.g. max, min, multiplication(n) 
total{T) Number of records in T 

Table 3.3: Table of symbol. 

Let X = {xi^ ^2, ..•，xi} and A = {ai, «2, ..., « / } be ordered sets and 

ai corresponds to X{. We use the following formula to calculate the significance 

factor of an itemset X with respect to fuzzy sets A associated with the attributes 

Xj in X, i.e. S(̂ x,A)-
. . . Sum of votes satisfying (X, A) 

Number of records in database T 
^ — J2ueToprx,exWa,{ti[xj])} 
�x’： - total{T) 

= T.ueTUx,exWaj{U[xj])} 
— total{T) 
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, 
rriaj{ti[xj]) if rriâ  > threshold, 

‘ where c^aj(ti[xj])= 
0 otherwise. 

V 

In the above equation, {X, A) represents the itemset-fuzzy set pair, where X is 

the itemset containing attributes Xj and A is the set of fuzzy set containing fuzzy 

sets CLj associated with Xj. A record satisfies {X, A) means that the vote of the 

record is greater than the one specified by user. The vote of a record is calculated 

by the membership grade of each Xj in that record and is described as follows. 

We use ti[xj] to obtain the value of Xj in the P" records, then transform this 

value into membership grade by nia^{ti[xj]) which is the membership function of 

fuzzy set aj. After obtaining all membership grades of each Xj in a record, we 

use opVxjex{oiaj [ii[xj])} to calculate the vote of record ti, where opr can be any 

function that is used in fuzzy set. For example, we can use minimum, maximum 

or multiplication. In the above equation, we use multiplication(n) as opr, i.e. 

opr^^ex{o^aj{U[xj])} is replaced by Ux^ex{^aj{U[xj])}. After summing up all 

these votes from each record t“ we can divide this value by total{T) to get the 

desired significance factor of (X, v4). 

In this thesis, we use multiplication to calculate the votes of each record 

because it magnifies the effect of low membership grade in the calculation. 

Moreover, the multiplication operator gives a simple and meaningful relationship 

among attributes in an itemset. Table 3.4 illustrates why we use multiplication 

operator instead of others. 

M^~~Mln~~Mul 
0.9 0.2 0 0.9 0 0 
0.9 0.9 0.2 0.9 0.2 0.162 
0.3 0.3 0.2 0.3 0.2 0.018 

Table 3.4: The Effect Of Different Operators. 

In table 3.4, we can see that both Max and Min operators ignore the member-



Chapter 3 Problem Definition 35 

ship values of other attributes except the one with maximum or minimum values. 

In the first and the second records, Max finds the same significance values even 

though there is a zero in the first record. In the second and the third record, 

Min also finds the same significance although the membership values of the two 

records are extremely different. On the contrary, the Mul operator does not take 

the value of a single attribute as the vote of a record. Instead, it uses the values 

of all attributes of an itemset to generate the vote of a record. Therefore, Mul 

gives the correct vote of a record and this resulting vote reflects the membership 

grades of all attributes of an itemset. 

{Salary^ high) {Balance^ low) 
0 ^ 
0.2 0.7 
0.5 0.4 
0.3 0.7 
0.6 0.3 

Table 3.5: Database Containing Membership Values. 

Given a partial database in table 3.5, examples are provided to illustrate the 

computation of significance factor. We want to find the significance factor of an 

itemset-fuzzy set pair {X^ A), where X = {Salary, Balance] and A = {high^low}. 

In table 3.5, the attribute values have been already transformed into membership 

grades. Therefore, the significance o f � X , A) is as follows. 

o (0.9 X 0.2) + (0.2 X 0.7) + (0.5 x 0.4) + (0.3 x 0.7) + (0.6 x 0.3) 
% ， A > = 5  

=0.182 

where X — {Salary^ Balance}^ A = {high, low} 

In the above calculation, we have assumed the user membership threshold 

value is zero. However, we may not want to consider the low membership grade. 

The following example shows how we can prevent these membership grades from 
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contributing to a record. We set the threshold of membership grade to 0.4 and 

the significance will be as follows. 

^ (0.9 X 0) + (0 X 0.7) + (0.5 X 0.4) + (0 x 0.7) + (0.6 x 0) 
V ， 々 = 5 

= 0.04 

where X = {Salary, Balance), A = {high, low} 

We can see that the membership grades which are less than the user specified 

threshold are eliminated from the calculation of significance factor such that the 

resulting value is different. Using the above equation, we can obtain all itemsets 

with sufficiently high significance. These itemsets are called large itemsets and 

we will use these large itemsets to generate the fuzzy association rules. In the 

following section, we will discuss the way we determine a rule as interesting. 

3.4 Certainty factor 

As we mentioned above, not all itemsets will be considered as interesting. We 

have to use significance factor as a measure to screen out those itemsets that 

are not important to us. For fuzzy association rules, the situation is similar. 

We use the discovered large itemsets to generate the rules and we have to use 

some measure to drop those uninteresting rules. The criteria for considering 

importance of a rule is called certainty factor. If a rule has enough significance 

and sufficient certainty, this rule will be considered as interesting. In this section, 

we will describe two ways to calculate the certainty factor of a potential fuzzy 

association rule. 
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3.4.1 Using significance 

When we obtain a large itemset (Z, C), where Z = {zi^ 幻, . . . ,zi} and C = {ci, 

C2, ..., c/} are ordered sets and Cj corresponds to Zĵ  we want to generate fuzzy 

association rules of the form, 'If X is A then Y is B.\ where X is a subset of Z 

and Y = Z-X^ A is a subset of C and B — C — A. If X 二 {a^i,�...，工知}, then 

A 二 {ai, tt2,…，ak]. Having the large itemset, we know the significance factor 

of this large itemset as well as its subsets according to the property of subsets 

of large itemsets. Therefore, we can use the following formula to calculate the 

certainty factor of fuzzy association rules. 

C t • t Significance of (Z, C) 
Significance of (X, A) 

p — Y:ueToprz,ezWc,{U[zk])} 
C _ Y , B � �= E . , . O p r . ^ , H - a . ( t . N ) } 

= EueTUz,ez{o^cM^k])} 
Ei,GT Yl^,exWa,{ti[xj])} 

where Z = X U F, C = A U B 
r 

mcf̂ {ti[z]̂ ) ifmcfc > threshold, 
^ck{ti[^k]) 二 7 

0 otherwise. 
V 

Since the significance factor of an itemset is the measure of degree of support 

given by records, we use significance to help us estimate the interestingness of 

the generated fuzzy association rules. In the above equation, we divide the 

significance of (Z, C) by significance of (X, A). The certainty factor reflects the 

fraction of votes supporting (X, A) that will also support (Z, C). Again, we 

replace the opr operator by the multiplication operator such that the result 

can reflect the contribution of each attribute in the records. We will use the 

information in table 3.5 to illustrate the calculation of certainty factor. We let 

Z = {Salary, Balance} and C 二 {high,low}. Given this large itemset, we want 

to calculate the certainty of the rule, 'If Salary is high then Balance is low.,. We 

assume that the values of user specified membership and significance threshold 
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are zero. 

_ (0.9 X 0.2) + (0.2 X 0.7) + (0.5 x 0.4) + (0.3 x 0.7) + (0.6 x 0.3)  
{{x,A),{Y,B)) = 0.9 + 0.2 + 0.5 + 0.3 + 0.6 

=0.364 

where X = Salary, A — high, 

Y — Balance, B 二 low. 

We may wonder why the rule has certainty factor more than 30% even though 
there are so many low membership grades. It is because we have consider these 
low membership values in the computation of the certainty factor. We use an-
other example to illustrate the computation of certainty factor. Suppose the user 
specified membership threshold is 0.4, the calculation of the certainty factor is 
as follows. 

_ (0.9 X 0) + (0 X 0.7) + (0.5 X 0.4) + (0 x 0.7) + (0.6 x 0) 
C^ x̂,AUY,B)) = 0.9 + 0 + 0.5 + 0 + 0.6 

= 0 . 1 

where X 二 Salary, A — high, 

Y = Balance, B 二 low. 

After eliminating the low membership values, the certainty value is 10% which 

seems more reasonable with respect to the given database. Therefore, users can 

change the membership threshold to obtain more rules but less precision, or fewer 

rules but higher precision. 

3.4.2 Using correlation 

Another way to calculate the certainty factor of a rule is to compute a kind of cor-

relation between (X, A) and {y, B). However, the calculation of the correlation 

is somewhat different from the one commonly used in statistics. The treatment 

of (X, A) and (F, B) are not symmetrical and we call the correlation of (X, A) 
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over {Y, B), XYCorrelation, When we calculate the XYCorrelation, we have to 

take {X, A) into account. For both covariance and variance, we have to compute 

the expectation in order to get the certainty. The calculation of expectation of 

the antecedent is similar to statistics except that we have taken the user specified 

membership grade into account. The vote of record will be considered as zero 

if the membership grade of {X, A) in that record is less than a user specified 

threshold. However, in calculating the expectation of the consequent, we will 

also consider the vote of consequent only if the vote of the antecedent is not less 

than the user specified threshold. We use the following equation to calculate the 

correlation of the antecedent {X^ A) and the consequent (Y, B) as the certainty 

factor of the rule, i.e. C(̂ {̂ x,A),{Y,B))-

Certainty = XYCorrelation of {X, A) and {Y, B) 
C — Covariance{{X, A), {Y, B)) 

‘ ‘ ’ ^Variance[{X,A)) x Variance{{Y^B)) 
_ E[{X U y, A U B}] - E[(X, A}] x E'l(V, B)  

—^J{E[{X,AY] - E[{X,A)Y) x[E'[{Y,BY] - E'[{Y,B)Y) 
where 

p r / ^ .\1 — ^.ueT Ylx,ex{o^aj[U[xj])} 
么 队 州 = T^^) 

• 

^aj{ii[xj]) if rriâ  > threshold, 
O^aj{U[Xj]) = ~ 

0 otherwise. 

rpn/v D\1 _ ^uerf^lk 
五 [ � ^ ,召 � ]- t o t a l ( T ) f 

^. Uy,eYWbk{U[yk])} if Ux,exWaj{ti[xj])} > threshold, 
P[til 二 . 

I 0 otherwise. 

We modify the calculation of expectation because of the meaning of corre-

lation in statistics. In statistics, we say X and V are correlated means that X 

implies Y as well as Y implies X. However, fuzzy association rules do not neces-

sarily have this property. In data mining, a rule X ~> Y usually means X implies 
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Y and we do not assume Y also implies X because of the data distribution of 

X and Y. Therefore, we change the calculation of expectation such that we can 

accommodate the meaning of fuzzy association rules. In the above equations, we 

can see that the calculation of E[{X, A)] is similar to an ordinary expectation 

except it has taken the membership threshold into account. Moreover, we use 

E'[{Y^ B)] to calculate the expectation of the consequent of a rule. Ifthe product 

of membership grades of the antecedent of a record is less than the threshold, we 

will not consider the membership grades of the consequent. 

The value of the certainty is ranging from -1 to 1. We are only interested 

in the positive XYCorrelation values since we have modified the semantics of 

correlation in statistics. A zero means that there is no relationship between 

the antecedent and consequent. A positive value tells that the antecedent and 

consequent are positively related. A high XYCorrelation value means that we 

expect a high membership grade will appear in the consequent if we have a high 

membership in the antecedent. Therefore, if the rule 'If X is A then V is B., 

holds, the certainty of this rule should be at least greater than zero. 

Given the database in table 3.5, we can use the above formula to compute the 

certainty factor of the rule, 'If Salary is high then Balance is low.,. The following 

example illustrates the computation of certainty factor of the rule. 

E[{Z, C)] = (0.18 + 0.14 + 0.2 + 0.21 + 0.18)/5 

E[{X, Af] = (0.92 + 0.22 + 0.52 + 0.32 + 0.62)/5 

E'[{Y, Bf] 二 (0.22 + Qy2 + Q42 + 0.72 + 0.32)/5 

E[(X, A)] = (0.9 + 0.2 + 0.5 + 0.3 + 0.6)/5 

E'l(V, B)j = (0.2 + 0.7 + 0.4 + 0.7 + 0.3)/5 
— 0.182 一 0.5 X 0.46 

C((x,mY,B)) 二 ^(0.31 - 0.25)x(0.254 - 0.2116T 
_ -0.048 
= 0.05 
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= -0.96 

where Z = X U F, C = A U B 

X 二 Salary, A — high, 

Y — Balance, B = low. 

The result tells us that the rule, 'If Salary is high then Balance is low.\ does 

not hold since the certainty value are negative. Referring to table 3.5, we can see 

that {Salary^ high) has high membership grade when there is a low membership 

grade in {Balance^ low). 

In the above example, the membership threshold has been set to zero. In 

the following example, we let the membership threshold be 0.4 such that we can 

ignore the low membership values. 

E[{Z,C)] = (0 + 0 + 0.2 + 0 + 0)/5 

E[{X,Ay] = (O.g2 + 0 + 0.52 + 0 + 0.62)/5 

E'[{Y,By] = (0 + 0 + 0.42 + 0 + 0)/5 

E[{X, A)] = (0.9 + 0 + 0.5 + 0 + 0.6)/5 

E'[{Y, B)] = (0 + 0 + 0.4 + 0 + 0)/5 
_ 0.04 - 0.4 X 0.08 

{{X,A),{Y,B)) y/(0.284 - 0.4) X (0.032 - 0.08) 
— 0.008 
= 0.075 
= 0.107 

where Z = X U F, C = A U B 

X — Salary, A = high, 

Y 二 Balance, B = low. 

We can see that the certainty is about 10% which is similar to the result of the 

first method which uses significance to calculate the certaintyfactor. It is because 
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the low membership values have been eliminated from the computation of the 

certainty factor. Therefore, we have to calibrate the membership threshold such 

that membership values which are too low should be dropped when we calculate 

the certainty factor. 

3.4.3 Significance vs. Correlation 

In previous paragraphs, We have described two methods to compute the certainty 

factor. The first one uses significance factor of the antecedent and the union of 

antecedent and consequent to calculate the certainty which reflects the fraction 

of votes which contributes to the antecedent will also contribute to the union of 

antecedent and consequent. The second method computes the XYCorrelation 

of the antecedent over the consequent as the certainty which reflects the mem-

bership relation of the antecedent and consequent, for example, high certainty 

means that high membership in antecedent will imply high membership in con-

sequent. There is a tradeoff between accuracy and speed. Since the first method 

only uses the significance of itemsets which are already known when we generate 

the large itemsets. We need not search the database again. Therefore, the speed 

of the first method is comparably faster. On the contrary, the second method 

has to compute the XYCorrelation of the antecedent over the consequent. For 

computing XYCorrelation, we have to know the relationship of antecedent and 

consequent record by record. The significance factor does not convey this kind 

of information. Therefore, we have to search the database again in order to com-

pute the XYCorrelation. However, the accuracy of the second method should 

be higher than the first method since the correlation reflects the relationship of 

antecedent and consequent in statistical way. Therefore, we can choose either 

method under different situations. 



Chapter 4 

Steps For Mining Fuzzy 

Association Rules 

In this chapter, we will talk about the basic steps for fuzzy association rule min-

ing and the implementation of our algorithms. As mentioned above, the basic 

framework for association rule mining includes finding all large k-itemsets and 

generating all interesting rules from these large itemsets. For fuzzy association 

rule mining, we first transform the original database into a database which con-

tains only membership values. This step consists of replacing original attributes 

to their attribute-fuzzy set pairs and converting the data value into membership 

grades. After this transformation, we can use a candidate generation function, 

which is similar to Apriori-gen, to find all candidate k-itemsets. After that, we 

have to calculate the significance factor of the discovered candidate itemsets and 

keep those candidate itemsets with enough significance as large itemsets. The 

rest of mining process is to generate all possible rules from all discovered large 

itemsets. We will consider a rule as interesting ifit has sufficient certainty factor. 

The steps for fuzzy association rule mining can be summarized as follows. 

1. Transforming the original database 

43 
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2. Generating candidate k-itemsets from the large (k-l)-itemsets 

3. Generating large k-itemsets from candidate k-itemsets 

4. Generating interesting rules from all large k-itemsets 

In the following sections, we will use pseudo-codes to illustrate the implemen-

tation of the generation of candidate itemsets, large itemsets and fuzzy association 

rules. 

4.1 Candidate itemsets generation 

Before we can generate fuzzy association rules, we have to first find out the 

potential itemsets which will be used in generating the interesting rules. We 

call these potential itemsets, candidate itemsets. We will generate candidate 

itemset according to the Apriori-gen function in mining binary association rules. 

We have modified the candidate generation function such that it is suitable for 

fuzzy association rule mining. The function generates candidate k-itemsets Ck 

using the large (k-l)-itemsets Lk-i. However, in mining binary association rules, 

the candidate 1-itemsets will be all the attributes appeared in the database. In 

mining fuzzy association rule, we can use the property of fuzzy set concept to 

reduce the number of candidate 1-itemsets such that the number of itemsets 

generated in later stages is reduced. We will first talk about the fuzzy set order 

before we continue the description of the generation of candidate itemsets. 

In fuzzy sets, we can use their membership functions to identify their orders. 

Figure 4.1 shows two fuzzy sets, / i and /2. Given an attribute age and its domain 

Dage, let /1 and /2 be the fuzzy sets of age. We said /1 > /2 if the following 

holds. 

^di G Dage,^jMi) > ^/2(^0 



Chapter \ Steps For Mining Fuzzy Association Rules 57 

In figure 4.1, we can see that the curve of /2 is contained in / i . As we 

mentioned above, we can use this ordering property of fuzzy sets to reduce the 

number of candidate 1-itemsets generated in the mining process. 

1 | ~ ~ . I ~ r ~ r ~ ~ ‘ ~ r - * ‘ ‘ 
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0.9 - fu2zy SGt, f1 / 1 • 

fuzzy set, 12 i \ 
O.B- / / \ -

• \ 
0.7 • / \ -

i \ 

广 _ ‘‘ / 、. \ -
£> / > 
| o . s - / \ -

1 / \ 
0 . 4 - , '. -

i \ 
0.3 - / , -

/ ', 
0.2 - / 、 -

！ \ 
！ , 

o.i - • \ -
！ ^ 

o l i i 1 . . . — — i ~ ~ ‘ i ‘ 
0 5 10 1S 2 0 2 5 3 0 3 5 4 0 4 5 5 0 

ag© 

Figure 4.1: Fuzzy Set Order. 

4.1.1 Candidate 1-Itemsets 

As we mentioned above, we have first to sort the fuzzy sets of each attribute. 

For example, we try to sort the fuzzy sets of the attribute age. There are four 

fuzzy sets for the attribute age as illustrated in figure 4.2, i.e. Fag& = {/1, /2, /3, 

/4}. Our aim is to divide the set of fuzzy sets Fage into subsets such that Fage 

={F^g^^ F ĝe, "., ^^e}- Every fuzzy set in F̂ ĝ  will be in descending order. In 

this example, Fage 二 {F^e^ F ; , F^eh where F^g^ 二 { / i } , F%e = {f2, / 3 } and 

F^e 二 { /4} . We have to ensure the relationship /2 > /3 in F̂ ĝ  such that our 

algorithm works. 
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Figure 4.2: Fuzzy Sets For Attribute Age. 
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Given the above settings, we will talk about how we can reduce the number 

of candidate 1-itemsets generated. Since we have four fuzzy sets for attribute 

age, we replace age by four attribute-fuzzy set pairs. The intuitive method to 

generate candidate 1-itemsets is to consider these attribute-fuzzy set pairs as our 

candidate 1-itemsets and calculate their significance factors. However, in our 

algorithm, we have first sorted the fuzzy sets of each attribute in descending 

order. The following pseudo-code illustrates how the algorithm works. 

let Ci = 0 

for each attribute X{ in X 

for each. subset i^: of Fx-

for each fuzzy set fk in F^. 

if the attribute-fuzzy set pair (x,-, fk) is not significant 

consider other subsets of F^^ 

else 

add {xi,fk) into Ci 

In the above pseudo-code, we can see that not every attribute-fuzzy set pair 

will be considered as candidate itemset because of the fuzzy set ordering. We 

will not consider the subset of fuzzy sets Fĵ  when the fuzzy set in F .̂ is not 

significant such that the remaining fuzzy sets in F̂ ^ will not be added into 

candidate itemsets. For example, if /2 in F̂ ĝ  is not significant, we need not 

calculate the significance of /3 since /2 is greater than /3. It is because: 

ydi e Dage,mf^{di) > nif^{di) 

Y^ rrif^{ti[age]) > ^ mf^{U[age]) 
ueT ueT 

^{ageJ2) ^ ^{age,h) 
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There are two effects in using this algorithm. First, the number of accesses 

to the database is reduced because there are fewer number of attribute-fuzzy set 

pairs considered as candidate 1-itemsets. Moreover, we will reduce the number of 

uninteresting candidate and large itemsets in later stages since we have reduced 

the number of candidate 1-itemsets in the very beginning of the mining process. 

The generation of candidate 1-itemsets is in fact the generation of large 1-itemsets 

since the resulting attribute-fuzzy set pair will have enough significance. 

4.1.2 Candidate k-Itemsets (k > 1) 

After talking about the generation of candidate 1-itemsets, we will use the 

pseudo-code to describe the generation of candidate k-itemsets, where k is the 

number of items in an itemset and k is greater than one. Following is the pseudo-

code for generating candidate k-itemsets. 

f o r k = 2 to number of attributes 

l e t Ck = 0 

f o r each large itemset k in Lk-i 

f o r each large itemset lj in Lk-i 

i f the f i r s t k-2 items of l{ and lj are the same 

and the k - l ^ item of li i s less than lj 

c = li U k-l^^ item of lj 

i f a l l (k - l ) subsets of c in Lk-i 

add c into Ck 

We can see that the candidate k-itemset is generated from the large (k-l)-

itemsets, i.e. Lk-i x Lk-i- However, we will not consider all itemsets in Lk-i x 

Lk-i as candidate itemsets. Otherwise, we will have many duplicated candidate 

itemsets. For every two large (k-l)-itemsets k and lj in Lk-i, if the first k-2 items 
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of these large itemsets are the same and the last items of U is less than lj, we will 

consider the union of k and lj as the newly generated candidate k-itemset. In 

fact, this is how the candidate generation function Apriori-gen works. However, 

we have to modify this function such that the attribute-fuzzy set pairs from the 

same attribute will not join together. Since we have associated numbers with 

both attributes and fuzzy sets, we can identify the order of attribute-fuzzy set 

pair easily. After talking about the generation of candidate itemsets, we can 

proceed to the implementation for discovery of large itemsets. 

4.2 Large itemsets generation 

When we have generated the candidate k-itemsets, we can use these itemsets to 

generate the desired large k-itemsets. All itemsets in candidate itemsets have 

potential to be large itemsets. Therefore, we have to verify whether they are 

really large. Otherwise, we may generate many false large itemsets. We calcu-

late the significance of the candidate itemsets and use it as the interest measure 

to eliminate candidate itemsets of which significance is lower than user specified 

significance threshold. We prevent the generation of uninteresting rules by elim-

inating those candidate itemsets with low significance. The large itemsets are 

generated as follows. 

for k = 2 to number of attributes 

let Lk = 0 

for each candidate itemset c in Ck 

calculate the significance of c 

if the significance is not less than threshold 

add c into Lk 

When we calculate the significance factor of candidate itemsets, we have also 
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taken the user specified membership threshold into account such that we will 

treat the membership grade which is lower than the threshold as zero. Therefore, 

elements that are too far away from the sharp boundary will not contribute their 

votes to the itemsets. 

4.3 Fuzzy association rules generation 

After obtaining all the large k-itemsets, we can generate rules using these large 

itemsets. For each large itemset L, we use the subset X of the large itemset L as 

the antecedent and Y 二 L — X as the consequent to generate all possible rules. 

The discovered rules are of the form, 'If X is A then Y is B.\ The following 

pseudo-code shows the generation of interesting rules. 

f o r k = 2 to number of attributes 

l e t R = 0 

f o r each large itemset 1 in Lk 

f o r each subset X of 1 

Y = l-X 

r = X ^ Y 

calculate the certainty of r 

i f the certainty i s not less than threshold 

add r into R 

When we generate the rule, we have to measure its strength such that we 

can decide whether we will include the rule in our result. The interest measure 

of rule is called the certainty factor. We can use either method mentioned in 

chapter 3 to calculate the certainty factor of each rule, i.e. using significance or 

correlation. The first method will lead to shorter execution time and the second 
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one will give more accurate relationship between the antecedent and consequent 

of the rule. 



Chapter 5 

Experimental Results 

After describing the definitions and steps of fuzzy association rule mining, we 

would like to verify the correctness of our algorithms. We will first compare our 

algorithms with the interval method to examine the accuracy and performance. 

Moreover, we will present several experiments which examine the accuracy and 

performance of our algorithms under different parameters, e.g. different signifi-

cance threshold, membership threshold and certainty threshold. We want to see 

how our algorithms will be affected by these parameters. In the following sec-

tions, we will describe the experiment settings and explain the results of different 

methods. 

5.1 Experiment One 

In this experiment, we use two attributes to illustrate how the fuzzy set concept 

can solve the problem of sharp boundary. We assume that the interval method 

only uses discrete and fixed intervals and there are three intervals/fuzzy sets for 

each attribute. Therefore, using the interval method, there are 9 regions in the 

data distribution. The data distribution is shown in figure 5.1. 

51 
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Figure 5.1: Data Distribution of Experiment One. 

The horizontal-axis indicates the data distribution of Balance and the vertical-

axis is the data distribution of Salary. The database is generated in such a way 

that no single region will be considered as important for reasonably high signifi-

cance threshold. However, we can see that most of the data are clustered around 

the center region as well as its boundary. Therefore, we expect that there should 

be some interesting information existed in the database. For example, a rule 

indicates that people with medium salary will imply they have medium balance 

or people with medium balance will imply they have medium salary. 

Significance = 0.15 Significance = 0.2 
Candidate Large Rule Candidate Large Rule 

Discrete 15 7 — 0 15 ~ " 7 ~ ~ 0 
Significance 15 11 6 15 ~ 7 ~ ~ 2 
Correlation 15 11 6 15 7 2 

Table 5.1: Result Of Experiment One. 

Table 5.1 shows the experimental result. We can see that all methods have 

similar number of candidate and large itemsets. However, the discrete interval 

method cannot find any rule of which confidence is greater than 50%. It is because 
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that method does not consider elements located outside interval boundaries. 

On the contrary, the other two methods have handled the boundary problem. 

Therefore, we can discover rules from the above database with certainty greater 

than 50%. We have set the confidence and certainty threshold to 50% such that 

the discovered rules are more reasonable. Moreover, we have set the user specified 

membership grade threshold to 0.6 such that records with low membership grade 

will not contribute to the discovered rules. 

5.2 Experiment Two 

This experiment is similar to the experiment one. We also use two attributes 

and there are three intervals/fuzzy sets for each attribute. However, the interval 

method will vary its intervals such that overlapped intervals may be produced. 

In this experiment, we want to show that even the overlapped intervals may 

cause problem in the mining process. 
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Figure 5.2: Data Distribution of Experiment Two. 

In figure 5.2，the horizontal axis represents attribute A and the vertical axis 

represents attribute B. We generate the database such that records are clustered 
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in the inner box. Therefore, we only expect that there are interesting information 

in the inner box. In this experiment, the confidence and certainty have been set 

to 50% to guarantee the usefulness of the discovered rules. Moreover, we have 

set the user specified membership threshold to 0.6. Discretel uses the inner box 

as the interesting region and Discrete2 uses the outer box. 

Significance — 0.25 
Methods Candidate Large Rule 
Discretel 15 6 0 
Discrete2 3 3 2 
Significance 7 3 2 
Correlation 7 3 2 

Table 5.2: Result Of Experiment Two. 

We can see that Discretel discovered more candidate and large itemsets, how-

ever, none of them can produce an interesting rule. To overcome the small inter-

val problem, therefore, Discrete2 is used to find some interesting rules. However, 

the region is so large that the semantics of the rules becomes meaningless. On 

the contrary, the significance and correlation methods discovered fewer candidate 

and large itemsets than Discretel but they can find rules from the interesting 

regions. Moreover, the semantics of the rules is preserved because the fuzzy sets 

have not overemphasized the sparse elements. 

5.3 Experiment Three 

We assume there is a relation between the working hour and the GPA of a 

student. The relation of the two attributes is shown in figure 5.3(a). The meaning 

of the relation is the GPA of a student will be high if he works hard. Otherwise, 

he will get a low GPA. The data are generated according to the relation curve 
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in figure 5.3(a). In figure 5.3(b), we can see the data distribution of the two 

attributes and we can still see the shape of the curve in figure 5.3(a). 
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(a) The Relation Curve. (b) Data Distribution. 
Figure 5.3: Database of Experiment Three. 

The two attributes, Hour and GPA^ have three intervals/fuzzy sets such that 

the plane of Hour and GPA is divided into nine regions. The relation curve 

passes through five of those regions. In figure 5.3(b), therefore, we can see that 

there are at least four areas which are heavily shaded out of the nine regions. 

This means there should be several rules existed in the database. For simplicity, 

fixed interval partition will be employed in this experiment. 

The result of this experiment is shown in table 5.3. The results are quite 

similar to those of previous experiment. Moreover, the settings are also similar, 

i.e. membership threshold is 0.6 and certainty threshold is 50%. The significance 

threshold of this experiment has been set to 0.2 and 0.25. 

In this experiment, we can see that both significance and correlation outper-

form the discrete interval method. They can discover more candidate and large 

itemsets as well as interesting rules. When significance threshold is 0.2, signifi-

cance method can find 5 rules and correlation method can discover 10 rules. The 

discrete interval method can only find 2 rules. All the discovered rules are lo-
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Significance = 0.2 Significance 二 0.25 
Candidate Large" Rule Candidate Large Rule 

Discrete — l5 7~~ 2 15 6 一 0 
Significance 15 11 5 15 10 5 
Correlation 15 11 10 15 10 8 

Table 5.3: Result Of Experiment Three. 

cated in the heavily shaded region which means the rules should be considered as 

interesting. When significance threshold increased to 0.25, our methods can still 

discover rules satisfying all thresholds. However, the discrete interval method 

find nothing but only some candidate and large itemsets. 

5.4 Experiment Four 

We have shown that the methods utilize fuzzy set concept can find more rules 

than the discrete interval method. In this section, we will give the experimen-

tal results on the performance of the three methods, i.e. discrete, significance 

and correlation. We will measure the performance of these methods when the 

database size is changing. For a fair comparison, we fix the number of rules to 

be discovered such that all methods will find the same number of rules. 

In this experiment, there are three attributes in the database. Each attribute 

has three intervals/fuzzy sets. For discrete interval method, we assume the inter-

val size will not change for simplicity. We have set the user specified parameters 

such that all three methods will give the same number of rules. We have run the ‘ 

programs with database size ranging from 5000 to 100000 records. Figure 5.4, 

shows the execution time of the three methods. 

In figure 5.4, the execution of all methods grow linearly as the number of 
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Figure 5.4: Performance Of Three Methods With Fixed Number Of Rules. 

records increases. Therefore, we need not worry about the time for mining as-

sociation rules will grow exponentially as the database size increased. There are 

three curves in figure 5.4. The first curve indicates the execution time of cor-

relation method. The second one is the performance curve for discrete interval 

method and the third one is for significance method. 

As we can see, the first curve tells us that the correlation method needs 

more time than the other two. From the other curves, moreover, we can see 

that the discrete interval and significance methods have similar performance. 

As mentioned above, the correlation method uses some augmented statistical 

concepts to compute the certainty of rule. Therefore, it can discover more rules 

than other methods. The performance of this method, however, turns out to 

be the worst because we have to scan the database again when we calculate 

the certainty factor of the discovered rules. The significance method, on the 

other hand, need not scan the database such that the significance method is 

faster than the correlation method. Moreover, the significance method gives 

comparable performance with respect to the discrete interval method and finds 

more rules than the discrete interval method. Therefore, the trade-off between 
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significance and correlation methods is performance and number of rules to be 

discovered. 

5.5 Experiment Five 

We have compared our algorithms with the interval method in the previous 

sections. In this section, we will give extensive experiments on our proposed 

algorithms. We will compare the characteristics of our methods under differ-

ent situations. We will vary the value of significance, membership and certainty 

threshold to test the generation of interesting itemsets, i.e. the number of candi-

date and large itemsets, discovery of interesting rules as well as the performance 

of the two algorithms. Hence, we can understand how the various thresholds 

affect the accuracy and performance of our algorithms. In this experiment, we 

use database with five attributes and each attribute will have three fuzzy sets 

associated with it. 

5.5.1 Number of Itemsets 

Our algorithms use the same itemset generation procedure to find all interesting 

candidate and large itemsets. In this experiment, we will test the itemset gener-

ation function against different significance and membership thresholds. We will 

not consider the certainty threshold in this experiment since it does not affect 

the generation of candidate and large itemsets. In this experiment, we have fixed 

the membership threshold to 0.6 and the certainty threshold to 50% such that 

the discovered itemsets and rules will be reasonably interesting and useful. 

In figure 5.5, we have shown the number of candidate and large k-itemsets 

generated under different significance thresholds. The threshold values have been 
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set to 10%, 20%, 30% and 40%. The curves in figure 5.5(a) represent the number 

of candidate itemsets generated under the above significance threshold settings 

and the curves in figure 5.5(b) show the number of large itemsets generated in 

the experiment. 
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Figure 5.5: Number of Itemsets Under Different Significance Threshold. 

We can see that the number of itemsets reduce a lot when the significance 

threshold increases. In figure 5.5(a), the effect is obvious when the significance 

value changes from 10% to 20%. It is because the significance threshold is used 

for pruning uninteresting itemsets. Therefore, the itemsets without enough sig-

nificance values will be discarded as the significance threshold increases. By 

varying the significance threshold, we can only increase or decrease the number 

of generated candidate and large itemsets. However, the significance threshold 

does not affect the significance value of an itemset. 

After testing the effect of significance threshold, we will show the effect of 

membership threshold. We want to illustrate how the membership threshold 

affects the generation of candidate and large itemsets. In this experiment, We 

have fixed the significance threshold to 20% and certainty threshold to 50%. 

The membership threshold have been set to 0.2, 0.4, 0.6 and 0.8. The results are 
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presented in figure 5.6. 
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Figure 5.6: Number of Itemsets Under Different Membership Threshold. 

In figure 5.6, we can see the changes in number of candidate and large item-

sets as we vary the membership threshold. The reason is that the significance 

value of an itemset will be affected by the changes of membership threshold. If 

the membership value of an attribute is less than the threshold, the value will 

be considered as zero. Therefore, if the membership threshold is high, fewer 

boundary elements contribute their votes to an itemset such that decreasing the 

significance value of the itemset. However, the boundary elements only partially 

contribute their votes to an itemset. Therefore, the effect of varying membership 

threshold is less obvious than the effect of varying significance threshold. We can 

use the membership threshold to control the consideration of boundary elements. 

5.5.2 Number of Rules 

Figure 5.7 shows number of rules generated by our algorithms with varying sig-

nificance and membership thresholds. In figure 5.7(a), the effect of varying sig-

nificance threshold is presented. Similar to the previous experiment, we have 

fixed the membership threshold to 0.6 and certainty threshold to 50%. The 
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significance threshold has been set to 10%, 20%, 30% and 40%. The result of 

varying membership threshold is shown in figure 5.7(b). The significance and 

certainty threshold have been set to 10% and 50% respectively. The membership 

threshold being tested is 0.2, 0.4, 0.6 and 0.8. 

400| 1 1 1 1 1 1 1 1 1 1 

: 、 . 、 I I 400| 1 1 1 1 1 1  
350 - 、.、 correlation -

、•、.、.、 —s ign i f i cance | _ ! - - c o r r e l a t i o n ~ ~ 

300 - 、.、•、. - 380):- ^ 、 、 、 . 、 卜 _ 咖 " I _ 

坊 棚 ； \ ^ 、 \ 、 \ \ \ 、 > ^ -X 

® ^ " " - - - ^ 、\. 360 -

5 ^ - \ 、、 s 
|200- ^ ^ 、、 - 1 

I \^N !34�- -
z i s o - \ •、. - i 

\、、 z 
\ .、 320 • -1��. � -

50- ^ - 300： ^ -

\ ^ ^ ^ - - - ^ ^ _ _ 
0' ‘ ‘ ‘ ‘ ‘ « ‘ ‘ ‘ J «00 I 1 I I > ^ ^ “ “ � 

10 12 14 16 18 20 22 24 26 28 30 o.2 0.3 0.4 0.5 0.6 07 0.6 0.9 
SignKicance(%) Membership Threshold 

(a) Varying Significance Threshold (b) Varying Membership Threshold 

Figure 5.7: Number of Rules Generated. 

As mentioned above, significance threshold greatly reduces the number of 

candidate and large itemsets such that there are fewer rules generated in the 

mining process when the significance threshold increases. However, the effect is 

not so obvious when the membership threshold is changed. There are only several 

rules which have been dropped when the membership threshold increases. The 

experimental results in figure 5.7 conform to the properties of significance and 

membership threshold mentioned above. 

5.6 Experiment Six 

After describing the behavior of itemsets and rule generation under different 

significance and membership thresholds, we will discuss the performance of the 

methods under different significance, membership and certainty thresholds. The 
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database settings are similar to that of experiment four. 

5.6.1 Varying Significance Threshold 

We will first talk about the performance of the two algorithms under varying sig-

nificance threshold. Figure 5.8 shows the performance of the two algorithms. As 

mentioned above, the significance method outperforms the correlation method 

several times. This can be reflected by the figure itself. However, the perfor-

mance curves of the two algorithms have similar trends, i.e. the execution time 

becomes faster when the significance threshold increases. It is because the can-

didate and large itemsets generated by both the algorithms decrease greatly as 

the significance threshold increases. Therefore, the time spent in counting the 

database will be reduced. 
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Figure 5.8: Performance Under Different Significance Threshold. 
5.6.2 Varying Membership Threshold 

Figure 5.9 shows similar trends as in figure 5.8. It is because the membership 

threshold also affects the number of generated candidate and large itemsets. 



Chapter 5 Experimental Results 63 

However, the effect is soft and not so obvious. Therefore, the performance un-

der different membership thresholds does not change greatly. In figure 5.9, the 

performance curves of significance method have been clustered together because 

the execution time of this algorithm is dominated by the generation of candi-

date and large itemsets. Since the changes of candidate and large itemsets is 

not significant, there are less changes in the execution time. On the other hand, 

the performance of the correlation method is dominated by both itemset and 

rule generation. If there are fewer itemsets, we can be sure that there will be 

fewer rules generated such that the program will become faster. As a result, the 

changes of the performance curves of the correlation method are greater than 

those of significance method. 
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Figure 5.9: Performance Under Different Membership Threshold. 
5.6.3 Varying Confidence Threshold 

Finally, we will show the effect of varying certainty threshold. We have fixed the 

significance and membership thresholds to 20% and 0.6. Moreover, the certainty 

threshold is ranging from 20% to 80%. In figure 5.10, the performance curves are 

clustered together for both the methods. It is because the certainty threshold 
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does not affect the generation of candidate and large itemsets. Therefore, the ex-

ecution time of significance method is nearly unchanged under different certainty 

thresholds since the dominant factor of the algorithm is the number of generated 

candidate and large itemsets. However, the performance of correlation method 

is based on both itemsets and rule generation but it still have nearly constant 

execution time under different certainty threshold. It is because the potential 

interesting rules generated by the large itemsets are the same. We still have to 

calculate the certainty values of these rules under different certainty threshold. 

Therefore, the execution time of the correlation method is not affected by the 

certainty threshold. 
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Figure 5.10: Performance Under Different Certainty Threshold. 



Chapter 6 

Discussions 

In the previous chapters, we have concentrated on the comparison of discrete 

interval. In this chapter, we will compare our algorithm with the algorithm in 

29] which partition the attribute domain into small discrete intervals and then 

merge these intervals into either discrete or overlapped intervals. We will discuss 

the advantages and disadvantages of our algorithm and the one in [29]. We will 

also describe the problem introduced by overlapped intervals. 

6.1 User guidance 

In [29], the algorithm first partitions the attribute domain into small intervals 

and then combines those intervals into larger discrete or overlapped intervals 

which are expected to have greater support. However, the partitioning and 

merging of intervals is heuristic and blind such that there are some problems 

using the interval methods. 

Suppose the interval method can generate overlapped intervals from small 

intervals and we have the data distribution of attributes A and B in figure 6.1. 

From the data distribution graph, we can see that only one area is heavily shaded. 

65 
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In figure 6.1, the interval method generates three intervals/regions which cover 

the same area. 
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Figure 6.1: Duplicated Intervals. 

However, we know that they convey no extra information. Therefore, we 

should discard one of them such that we will not have intervals which have 

duplicated information. We should eliminate the duplicated intervals as early 

as possible because the extra intervals will become new attributes and potential 

candidate and large itemsets such that influence the performance of the mining 

process. In [29], the elimination is done in the rule generation process and the 

time costed in counting the extra candidate and large itemsets still slows down 

the mining process. Hence, an elimination scheme should present in the mining 

process such that the duplicated intervals will be dropped in the early stage of 

the discovery process, i.e. the process of finding candidate and large itemsets. 

Besides, the interval method will cause another problem. In figure 6.2, we can 

see that data are clustering around two intervals/regions and these two regions 

are separated very far. The two little boxes indicate the intervals. These two 

intervals have insufficient support. Therefore, the interval method will try to 
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merge two intervals into one in order to generate an interval with enough support, 

i.e. the larger box. 
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Figure 6.2: Meaningless Interval. 

However, as we can see, the two intervals are separated so far such that the 

new interval is quite large. It covers more than a half of the range of attribute 

A. If we use this interval to generate rules, the semantics of the rules will be 

changed. Moreover, if this interval is the right one, we need not partition the 

attribute domain in the first place. 

6.2 Rule understanding 

The semantics of the discovered rule is very important in knowledge discovery. 

Although humans are familiar with numbers , word description is more desirable. 

Moreover, the expressive power of words is stronger than numbers. Therefore, if 

we can accomplish some linguistic terms in the discovered rules, the expressive 

power of the rules will surely be increased. 

The discrete and overlapped intervals only use lower and upper bounds as 
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indication. Users can hardly understand the meaning of rules with those num-

bers. Therefore, extra mapping may be needed such that users can have a clearer 

understanding of those rules. On the contrary, users can understand the fuzzy 

association rules without any difficulty because we have placed linguistic terms 

in the rules other than numbers. For each fuzzy set, there is a linguistic term 

associated with it and the meaning is defined by domain experts or knowledge en-

gineers. These fuzzy sets are used to characterize the attributes in the database. 

Therefore, we need not perform extra mapping in our algorithm since the lin-

guistic terms have already reflected the meaning of the fuzzy association rules 

sufficiently. 

6.3 Number of rules 

In our algorithm, the fuzzy sets of each attribute used by the mining process are 

defined by domain expert or knowledge engineer. The number of these fuzzy sets 

is expected to be small and finite. As a result, the number of rules discovered 

will be limited by the number of fuzzy sets defined by the experts. There are, 

however, several ways to increase the number of rules. 

As we mentioned above, each fuzzy set is associated with a membership 

function which tells whether an element belongs to the fuzzy set. Since the 

membership function is a mapping from an attribute domain to [0,1], we can 

increase the number of rules simply by modifying the membership function. The 

simplest and intuitive function which can apply to the membership are square 

and square root functions. For example, if we have a fuzzy set young and its 

membership function rUyoung, we will have fuzzy sets called quite young as well 

as very young and their membership functions are as follows: 

V(f G Dyoung, '^quite young (^) ~ \J^young (^) 
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^very young (^) ~ ^young (^) 

Another way to increase the number of rules is to utilize the partition method 

in [29]. After partitioning the attribute domain into intervals, we can assign 

fuzzy sets to these intervals and hence increase the number of fuzzy association 

rules. Using this method, we not only can increase the number of rules, but also 

can handle the problem introduced by attribute partitioning method. 



Chapter 7 

Conclusions and Future Works 

In this thesis, we have proposed a method to handle quantitative attributes. We 

assign each attribute with several fuzzy sets which characterize the quantitative 

attribute. Using the fuzzy set concept, we want to find the fuzzy association rules 

of the form, 'If X is A then Y is B\ The antecedent and consequent of the rule 

contain multiple attribute-fuzzy set pairs. If a rule is considered as potentially 

interesting, there must be sufficiently large amount of records supporting the 

antecedent and consequent. It means that the significance of both antecedent 

and consequent should be as high as the user specified value. However, it is not 

sufficient to determine the usefulness of the rules. An interesting and useful rule 

should also have enough certainty value. 

We have described the procedure to find fuzzy association rules and perform 

several experiments. In those experiments, we have shown that our algorithm 

has solved the problem introduced by partitioning the attribute domain into 

intervals. We have utilized the fuzzy set concept such that we can handle the 

sharp boundary without over-emphasizing the boundary elements. We have used 

two methods to measure the interestingness of the fuzzy association rules. One 

of the method uses the significance of the large itemsets to compute the certainty 

factor. The other uses the correlation of the antecedent and consequent of the 

70 
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rule as the certainty factor. In the experiments, we have found that the method 

uses significance to calculate certainty factor will give a better performance. 

However, the method uses correlation as certainty factor will give more accurate 

results. Therefore, users can make use of the two interest measures by their 

interests. 

In this thesis, the fuzzy association rule has the form, 'If X is A then Y is 

B,, where X = {xi, X2, ..., a；/}, Y = {y i , y2, ..., Vk}, A = {ai，a2, ..., a J and 

B = {6i, h2, ..., bk} are ordered sets. Moreover, â  and bj correspond to X{ and 

jj respectively. Moreover, we use the multiplication operator as the fuzzy set 

function to calculate the significance and certainty so that the semantics of the 

rule is as follows. 

If (â i is ai) and {x2 is a2) and ... and {xi is a/) 

then (yi is bi) and (y2 is 62) and {yk is bk). 

In the above rule, the antecedent and consequent are conjunction of attribute-

fuzzy set pairs. However, fuzzy association rules can have other forms which give 

different semantics. The following are possible forms of fuzzy association rule. 

• Disjunction of attribute-fuzzy set pairs 

One of the possible forms of fuzzy association rule is to replace and in the 

above rule by or. The resulting rule is as follows. 

If {xi is ai) or [x2 is a2) or ... or {xi is a,) 

then (yi is bi) or {y2 is 62) or {yk is bk). 

The attribute-fuzzy set pairs are joined by or. Finding this form of rules, 

we have to augment the calculation of significance and certainty. One of 

the possible ways is to use the maximum operator as opr operator, i.e. 
. . . Sum of votes satisfying (X, A) 

Number of records in database T 
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c;r — J2ueT op^xj ex{cygj {U [xj])} 
‘ 、 “ 〉 = M ^ ) 

= Et,er 她 0 ^ 巧 ex{o^aj {U [ x j ] ) } 

— total{T) , 
maj[ti[xj]) if rriaj > threshold, 

where aaj{ti[xj])= 
0 otherwise. 

However, we must be careful when we use the maximum operator. Since 

the maximum operator will find the largest membership value, it will ignore 

the effects of low membership values so that it may generate incorrect large 

itemsets and rules. We can prevent this problem by defining a threshold 

value. For example, we have a set of membership values {0.5, 0.6, 0.4, 0.7, 

0.9} and two threshold values 0.4 and 0.6. For the first threshold value, 

the maximum operator will return 0.9. For the second one, we will have 

zero instead. 

• Conjunction of fuzzy sets 

As mentioned above, each attribute is associated with a fuzzy set in a 

fuzzy association rule. It is, however, possible to have several fuzzy sets 

correspond to an attribute in a fuzzy association rule. The possible form 

of fuzzy association rule is as follows. 

If a:i is (/二 and …and /^J then yi is (/̂ \ and ... and /̂ ^J. 

In fuzzy set concept, the conjunction of fuzzy sets produces a new fuzzy set. 

Let fx represents the conjunction of the fuzzy sets, / ; . The membership 

function of fx is as follows. 

yde D^,mf^{d) = Min{nif^{d)) 

For each attribute value, the value of m/工 is the lowest value of my|. Af-

ter obtaining the new fuzzy sets, we can generate large itemsets and fuzzy 
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association rules without modifying the calculation of significance and cer-

tainty. 

• Disjunction of fuzzy sets 

Similar to conjunction of fuzzy sets, an attribute can associate with dis-

junction of fuzzy sets. The following is the new form of fuzzy association 

rule. 

If 1̂ is (/二 or …or /&) then yi is (/̂ \ or …or /JJ. 

The fuzzy set which represents the disjunction of fuzzy sets is produced by 

the maximum membership value of mfi. The following formula is similar 

to the one representing conjunction of fuzzy sets. 

Wd G Dx,m“�d) 二 Max[mj^) 

Threshold may be needed if we do not want to consider low membership 

values. 
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