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Abstract 

Localization is one of the fundamental problems in autonomous mobile 
robot navigation. High level tasks like path planning and object grasping would fail 
without precise information about robot's position and orientation. 

In this thesis, we study how to localize position and orientation of a mobile 
robot with respect to the world coordinate frame. This thesis presents a localization 
approach using natural landmarks in the environment. Specifically, the algorithm 
uses vertical lines in the environment to determine the robot position and uses 
vanishing point to determine the robot orientation. A stereo vision system is used 
to extract features in the environment. To improve the efficiency and eliminate 
noises, edges only in three prominent 3D orientations are extracted. 3D 
information of the features are obtained from a pair of stereo images used to 
construct a local map. A sequence of local maps are maintained and integrated 
together using odometry information of the robot to form a mature local map in 
order to improve accuracy of localization. Maps are represented as the projection 
of all the 3D edges in the environment to a horizontal plane parallel to the floor of 
the environment. Orientation of the robot is computed using a vision algorithm that 
relies on vanishing point. A single image is enough for the extraction of vanishing 
point and estimates the orientation accurately. Robot position is found by matching 
the global map and the mature local map by an iterated-hill climbing algorithm. A 
retroactive pose correction method is implemented to continuously localize the 
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robot's position and orientation. The proposed method is implemented on a RWI 
B21 robot with a stereo vision system and verified by several experiments. The 
experiments illustrated that the proposed approach can localize the robot's position 
and orientation in high accuracy without any artificial landmark and can work well 
in a corridor environment where people are moving around. 
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摘要 

在移動機械人自動化導航的領域中，機械人能夠自動定位是一個非常基 

本的問題。如果機械人不能夠確定自己的精確位置，一些比較高層次的工作例 

如路徑規劃或在工作環境中拿起一些物件等工作就不能須利完成。 

在這遍論文中，定位意思是指機械人能夠於一個工作環境的坐標系中認 

知自己所在的位置和方向。本論文將會詳述一種依靠自然環境來作地標的定位 

系統。具體來說，此系統禾_工作環境中的垂直線來確定自己位置’而水平線 

則用作方位的確定。—部裝在機械人上的立體視覺系統會選擇和探測一些在環 

境中有代表性〔有特定方向〕的直線，計算及記錄他們在基於機械人坐標系的 

三維信息，然後《會製成一個細小局部的地圖，再由數個局部地圖結合成一個較 

大的地圖。這些地圖的表達方式是二維的，他們是由那些在環境中的三維邊緣 

線投射到地平面而得出的。最終，機械人的位置是由一種稱爲\\爬山搜霸去夕 

的算法演算得出。這種方法的思想核心是利用一幅記錄著整個工作環境的地圖 

和一幅由立體相機拍攝的較小地圖作比較，然後逐一搜尋匹配，得到一個位置 

，使他們的差別最爲接近，而這個位置就是機械人目前的位置。這個較大的地 

圖是預先製成的，它記錄著工作環境中的所有細節。而機械人的方向是由影像 

的沒影點來推算的，單幅影像就能夠準確地計算出機械人相對於工作環境的方 

向。進一步，我們將先前所提及的方法，與一種有追溯性連續的位置更新算法 

結合，使機械人能夠連續更新它的位置和方向。 

最後，我們利用論文中所提及的新方法，在由&\¥1公司開發的621型機 

械人上做了大量的實驗，實驗結果的証明，這個系統能夠在無人工地標且有行 

人的走廊上，準確地計算出機械人的位置和方向。 
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Chapter 1 

Introduction 

In recent years, there has been increasing interest in investigating the use of 
autonomous service robot in indoor environment such as hospital, office, factory 
plants and nuclear reactor plants to perform mundane tasks. In a real indoor 
dynamic environment, the robot can never follow a predefined path to navigate due 
to motion uncertainty (e.g. wheel slipping), obstacle uncertainty and so forth. As 
long as the robot moves in an ambiguous location, it needs to determine its location 
in order to re-plan the path to goal position. Robot self-localization is the ability of 
the robot to determine its position and orientation within the working environment. 
Hence, robot localization is one of the fundamental but important problems of 
autonomous robot navigation. Odometer readings provide a real time checking of 
robot position but its error will accumulate over time. As a result, we have to find 
an alternative that gives more precise results and works efficiently. 

There are mainly three kinds of sensors currently used for mobile robot 
navigation — sonar, laser range finder and camera. Sonar sensors are very 
effective to detect empty space. However, they can only provide coarse 
information due to their wide field nature. Crosstalk and specular reflection 
bedevils the sonar to give accurate result. Laser range finder has higher resolution 
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but the sensing area is restricted at one level only. Its 2D nature prevents it to sense 
objects not inside the structure light plane. 

Stereo vision provides rich information about the environment that can 
determine object distance with good precision. Unlike laser range finder, it can 
sense the whole volume it facing. However, it needs much computational efforts. 
Depth information is lost due to image projection. There are two major approaches 
to recover the 3D information. The first one uses visual motion to recover depth. It 
takes a dense image sequence with a relative motion between images to recover 3D 
structure. The advantage is the correspondence problem is easy to solve. One 
drawback of this approach is that it needs a very long image sequence, up to 
hundreds of frame [26] to accurately recover depth. Whenever there has some 
moving objects appear in the frames, the depth recovery problem become difficult. 
Moreover, significant time is needed to process the long sequence of images. The 
second approach is stereo vision, which recovers depth by a pair of images. In 
stereo vision, one of the key issues is feature correspondence. Depth is recovered 
by first establishing feature correspondence between the two images, then depth 
extraction is only a simple triangulation problem. In contrast, the correspondence 
of stereo vision is not easy to solve. It was because if we want to recover depth 
accurately, the baseline between the two cameras should farther apart and hence, for 
each feature in one image, the search distance for the corresponding feature in 
another image is large. Much effort is still needed to match features across views 
although there has the spatial relationship between the two cameras that reduce the 
search space to lD along the epipolar line. [44] describes a useful and fast stereo 
vision system. To overcome the two approaches' disadvantages, we combine the 
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stereo vision and visual motion together to yield better results. In our 
implementation, we only establish stereo correspondence for vertical edges. So a 
simple and fast stereo matching method can be used to reduce the processing time. 
To have better result, several 3D information obtained by stereo vision is integrated 
together to minimize the effect of moving object in the scene. The integration is 
based on the motion predicted by wheel encoders of the robot between stereo image 
pairs. 

Tremendous research efforts have been make to robot localization in last two 
decades. A good survey on robot localization using different sensors and technique 
can be found in [1] and [2]. Existing approaches can be grouped into those using 
artificial landmarks and those without using artificial landmarks. 

The first approach [3] refers to localization using artificial landmarks. 
Usually, these landmarks have specific patterns or forms that can be easily 
recognized from others features and have known location in the working 
environment. As long as the landmarks are detected, localization is automatically 
complete. The advantage is the algorithm is simple and can be executed very fast. 
However, when there have some temporary obstacles like humans accidentally hide 
the landmarks, the whole localization algorithm may fail. In [38], the landmark 
used is a kind of sound source, the robot is localized when it “hear，，the sound 
source, locate it and estimate the robot's position and orientation with respect to 
that sound source. Tashiro K. et al [40] used signboard system as landmark in 
which each signboard has 4 LEDs and has known position in the environment. The 
robot is localized when it determined its relative pose from the landmark. Use of 
laser reflectors and retro-reflective strips as artificial landmarks are also reported in 
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[41,42]. 
The second approach has more flexibility than the first approach. It mainly 

has two branches. The first branch uses computer vision for localization. A 3D 
CAD model of the environment is compared with the image taken at a particular 
instance to determine robot pose [8, 9]. This approach also called Model-based 
mobile robot localization [31]. Akio Kosaka and Juiyao Pan [10] use a CAD model 
to generate an expectation view of the environment, match with the image taken by 
the robot and use Kalman filter to yield the robot position vector. The advantage is 
that only a single image is needed to localization the robot. But it cannot handle the 
dynamic environment. Moreover, localization will only start when the position 
error is larger than a particular threshold, so resources are used for tracking the 
position uncertainty and more time is needed since the search distance is longer. In 
[22, 43] the robot has the ability of avoiding collision of obstacle while localizing 
itself. [46] is another example of method of collision avoidance using vision. In 
[39], the localization algorithm uses a stereo vision system to detect and recover the 
3D information of comers in the environment to localize the robot. The different 
between the use of features in [39] and the one we are using is that, we only recover 
the 3D information of vertical edges only. This kind of edges is very common in all 
human environments and the number of them is dominating the other kinds of 
feature and so, they can easily be detected. 

The second branch usually collects proximity sensor information together 
with, for instance, Bayesian techniques [32, 34] or Dempster-Shafer techniques [33] 
to construct a small local map in real-time fashion. Then the small local map is 
register with a stored global map to determine robot position and orientation. The 
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disadvantage of using proximity sensors is that they can only provide limited 
information. For instances, low resolution and radial error of sonar limits the 
potential of the localization algorithm. Although laser range finder can provide 
higher resolution, but it can sense the environment at a particular level only. The 
approach presented in [5] has proven to be robust with noisy sensors and inaccurate 
maps. But it still has problems working in dynamic environments. Alan and 
Adams use a continuous localization approach [6], successfully eliminate 
accumulated odometry errors with a constant error of five inches. In [7], map is 
built and updated by Frontier-Based exploration with continuous localization. 
Zelinsky describes a good mobile robot exploration algorithm [36], which makes 
the robot works in a partial known or completely unknown environment. The 
method in [45] use maximum likelihood estimation to correct the error when 
building map using wheel encoders. 

Many methods have been published for mobile robot localization. However, 
owing to their sensor disadvantages or computational time constrains, most of them 
are not suitable to use in an environment with human movement. This thesis tries 
to introduce a system that can improve their shortcomings while keeping the system 
reliable and efficiency working in such environment. 

Our implementation did not rely on any kind of artificial landmark. It uses a 
simple and fast vision algorithm to extract significant long edges in prominent 3D 
orientation in the working environment to eliminate noises, especially in a dynamic 
environment before further process. Advantage is those edges are very common in 
man-made environments. If some are hidden, there still have many to use. 
Moreover, this stereo algorithm can filter out most of the dynamic noises in the 
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image. Since we use vision to extract features, so the sensing area is not restricted 
to only a particular level like sonar or laser range finder. In fact, our map 
representation is suitable to integrate their readings to enrich the environmental 
representation. The stereo correspondence problem of features is simplified to 
match only the vertical edges to fasten the time for image processing. Vertical 
edges are used for creating a local map that determines the robot position, while 
horizontal edges are used to estimate the robot orientation. The robot is 
continuously localized by a retroactive updated method. By re-localizing the robot 
often, the pose error is known to be small and a fast-updating method can be 
employed. The registration between global and local maps includes a hill-climbing 
search within a predefine search space to yield a set of "offsets" to update the robot 
current position and orientation. 

The system is implemented and tested in a RWI B21 robot in an indoor 
environment to show its effectiveness. The experiments show that the system is 
capable of working in an environment with people moving around. Numerical 
results are presented in chapter 5. As discussed in this chapter, a simple extension 
of the algorithm can make it has the ability to update the global map. In chapter 2, 
we first describe the problem and outline the proposed algorithm and assumptions, 
and then chapter 3 describes the stereo algorithm and selection of useful features for 
the construction of a mature local map. In chapter 4，the localization system is 
presented in detail. The implementation on a RWI B21 robot and the experiment 
results are presented in chapter 5. Finally, we make conclusions in Chapter 6. 
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Chapter 2 

Algorithm Outline 

This chapter outlines the vision based robot localization system we developed. 
The proposed localization algorithm is capable of working in a corridor 
environment with normal movement of people. First, several assumptions are 
stated to simplify the problem. Then a brief description of the algorithm is 
presented. 

2.1 Assumptions 

The problem we are addressing is how to localize the position and orientation 
of a mobile robot in the working environment. To clearly defined and simplify the 
problem, we assume, 

• The robot is working in indoor environment where people are walking around. 
In other words, the robot is working in a dynamic indoor environment. 

• A world model of the working environment is given in advance. The model 
provides all the knowledge for the robot to localize within the working 
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environment. 
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Figure 1. Coordinate System. 

2.2 Robot Localization 

Figure 1 shows the world and robot coordinate systems used in this thesis. 
The robot has a mobile frame R is navigating in the environment with the fixed 
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world frame W. Since we assume that the floor of the environment is flat enough 
that the roll and pitch angle of the robot can be neglected, so the z-axes of the robot 
and world frames are both vertical and parallel together. But their x and y axis are 
not parallel in general as the robot's orientation changes. The robot-heading angle 
or the robot orientation angle is the angle between the y-axis of the mobile frame R 
and the y-axis of the fixed frame W. Robot position is the relative translation of the 
robot with respect to the world frame W. A stereo vision system is mounted on top 
of the robot. The axis of the camera frame is z along the principle axis and x and y 
parallel to the image plane; x along the horizontal (+ve right) and y vertical (+ve 
down). The cameras have a fixed relation with the robot base frame R and this 
relation can be found by eye/wheel calibration. Cameras are well calibrated in 
which all their intrinsic and extrinsic parameters are known. 

The transformation from the world frame to the camera frame is given by: 

^WP - Tcp ^RC ^WR 

Tcp is the perspective projection from the camera frame to image plane and is 
given by, 

~ccJ 0 Uo 0' 
0 a J Vo 0 

_ 0 0 0 1 

Where ¾̂ and a\, are the pixels per unit length in u and v direction, uo and vo 
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are the coordinates of the optical center of the camera (pixels) and f is the focal 
length of camera in mm. All these parameters can be obtained from camera 
calibration (Appendix Al), and so, it is a constant matrix. 

lRc is the transformation matrix from the robot frame to the camera frame and 
is a constant matrix determined by eye/wheel calibration (Appendix A3). 

TwR is the homogeneous coordinate transformation matrix from the world 
frame to the robot frame. In contrast, is not a constant matrix, it changes from time 
to time as the robot moves. As the roll and pitch angle of the robot can be 
neglected therefore, 

cos0 sin0 0 - X 
- s i n 0 cos0 0 - y 

T— - 0 0 1 0 
_ 0 0 0 1 _ 

Where 6 represents the orientation angle of the robot, ;c and >̂  are the position 
of the robot with respect to world coordinate frame W. 

Hence, the goal of the localization is to estimate the transformation matrix TwR 
or more specifically, the position and orientation of the robot {x, y, 6) with 
respected to world coordinate frame W. 
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2.3 Algorithm Outline 

The robot navigates in a corridor environment with a stereo vision system. 
The stereo system extracts edges in 3D prominent orientation with length longer 
than a predefined threshold in the image to minimize the effects of noise. 3D 
prominent orientation means the vertical edges, and horizontal edges that 
perpendicular to each other in the environment. With this feature selection, most of 
the unwanted edges are filtered out and the remaining edges are used for 
localization. Figure 2 illustrates the use of these features. Vertical edges in the 
images are used to extract their 3D information for the construction of local map by 
a simple stereo algorithm. Horizontal edges that parallel or nearly parallel with the 
optical axis of the cameras are used to determine the vanishing point. Hence their 
orientation appear in the image is shown in the middle of figure 2 (second kind of 
horizontal edges), the dot near the center is the vanishing point. Only a single 
image is enough to determine the location of the vanishing point and this point is 
used to estimate the orientation of the robot. Hence, we can use the same stereo 
image pair for both constructing a local map and estimating the orientation of the 
robot. 

Both global and local maps are represented as 2D planes that give a top view 
of the environment. Global map gives a top view of the whole environment while 
local map gives a top view of its immediate environment. Hence, 3D vertical edges 
detected by the stereo vision system are projected on a 2D local map as points. As 
the robot moves, it keeps taking pictures so different local maps are obtained. 
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Several local maps are maintained in memory and combined together to form a 
mature local map. A local map is said to be mature if it contain enough 
information for registration provided that the accumulated positional error is small. 
In this thesis, local map refers to the map construct by 3D information of vertical 
edges in a single pair of stereo images. A mature local map is the integration of 
several local maps. 

Features 

_ ~~I | ^ \ / / I I “ I 
一—一| | / A ^ | |l I 
Horizontal Edges Horizontal Edges Vectica]Edges 

(First GiDup) (Second Group) 

Future Use Vanishing Point 3DInformation 

Robot Heading Local Map 

Figure 2. Features selection and their functions. 

When the mature local map is ready, a registration process is carried out. It 
involves a search in a predefined search space gives position that maximizing the 
match score between the mature local map and the global map. The registration 
process involves an iterated hill-climbing search within a particular configuration 
space. It climbs frorn an initial position feedback by wheel encoders until reaching 
a maximum score. The correlation based matching score measures the "similarity" 
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between the mature local map and the global map. As the vanishing point 
determined the robot orientation, the three-dimensional search in the configuration 
space becomes a two-dimensional search at a particular level of cross section in the 
configuration space (Figure 3), that is, only search for robot's x and y positions 
with respect to the world frame. 

A 2 D slice in 
^ x ' ^ / configuration space ^¾ 

X^^^；；><"^^^ 

Figure 3. The two-dimensional search space. 

Once the position and orientation are updated, the old coordinate is adjusted to 
follow the new system by a retroactively update approach. This makes the robot to 
re-localize while navigating in the environment without stop. Localization process 
will repeat continuously making small correction to further restrict the 2D search 
space as small as possible. 

To summarize, the localization system has the following properties: 
- It works in a normal indoor environment. Using the fast line detector [11], 

most of the edges not useful for localization are filtered out, including those 
contributed by human. 
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- The localization process is repeated regularly as the robot navigating. Duration 
is the runtime parameter of the system. This guarantee the search space is 
small and fast localization algorithm can be used. 

- Fast processing time. Since only vertical lines are needed to establish the 
stereo correspondence, processing time for stereo matching is reduced. In 
addition, the extracted vanishing point can be used to obtain robot heading by 
simple calculation. The position search is only a 2D search in the 
configuration space with restricted area. 

- The algorithm do not has the ability to update or build the global map. 
However, a simple modification can make it has the ability to locate any new 
edge in the environment (Chapter 5). 
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Chapter 3 

Global and Local Maps 

We use stereo vision to construct the local map. Stereo vision can recover 
depth information. If the baseline between two cameras is large enough and the 
two images have significant overlaps, stereo vision can give accurate result. 
However, stereo vision is limited by its fundamental problem - the correspondence 
problem. Although the stereo algorithm developed recently improves the 
computational complexity, but it is unavoidably to take a significant processing 
time. Instead of processing all the observable features, we can pick up the most 
useful information from huge amount of raw data and discard the others. This 
saves the time for processing the useless data. Moreover, accuracy is improved by 
a kind of local map integration that uses wheel encoder information. 

In our representation, local map is a 2D map that gives a top view of the robot 
immediately environment (Refers to the coordinate system in figure 1). Since only 
3D information of vertical edges are added into the local map, so they are appear as 
"dots" in the map. The only information we needed is the depth or the distance of 
the edges from the robot and their x positions from the robot. Their 7 positions are 
useless in this map representation. Once depth information is recovered, x position 
is automatically obtained. 
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Figure 4(e) 

Figure 4. (a) A corridor scene with a human standing in the middle, (b) Edges extracted in the scene. Edges extracted after filtering (c), (d) and (e). Note that most of the edges contributed by human are effectively filtered out. 
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3.1 Feature Selection 

Since we use vision as sensor to detect the environment, it can provide rich 
information. However, some of the information may not be useful for the 
localization process. In fact, the exceeding information including noises may cause 
the unnecessary workload and disturbance to the system. To avoid the unnecessary 
process and increase the efficiency, we select the most useful features in the 
environment and try to minimize the noises. Only line segments in three prominent 
3D orientations (one vertical and two horizontal perpendicular to each other) are 
extracted using a fast line detector [11]. The detector uses a priori knowledge of 
the orientation of edges to be extracted. Figure 4 shows edges extracted by the line 
detector. The advantage of choosing these features is that they are very common in 
all human environments. For example, doors, bookcases, desks, corridors, even 
temporary storage store boxes are all particular parallel lines in world coordinate 
system. Moreover, image processing time is reduced by ignoring the useless and 
noisy edges. With this selection of feature, we can see in figure 4 that most of the 
dynamic noises are filtered out before further process. 

Among these three groups of line segments (One vertical and two horizontal 
perpendicular to each other), we only pick up two groups: the vertical ones (Figure 
4c) and the set that nearly parallel with the optical center of the cameras in the 
environment. So they are appeared in the image as shown in figure 4d. The 
remaining group is leave for future use. As mentioned earlier, localization only 
uses the first group of line segments to recover depth information for the 
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construction of local map, so the correspondence problem can be simplified. 
Vanishing point can easily be extracted by locating the intersection of second group 
of segments (Figure 4d), and is used to estimate the orientation of the robot. Hence 
we only need to establish correspondence relationship between the vertical lines so 
that the computation time is significantly reduced. It should be noted that the 
vanishing point can be computed in real time. 

3.2 Line Correspondence 

After we filtered the useless edges, we can further process the image data. 
Since the features for stereo matching are simple and small in number, we can 
employ a basic stereo algorithm to recover the 3D information. 

Image data are first smoothed by convoluting a gaussian profile prior to the 
gradient calculation. Edge pixels are extracted by applying the canny edge detector 
[47]. Line segments are then fitted into the edgels by orthogonal regression. In 
order to minimize the effect of noise, those edges shorter than a predefined 
threshold are discarded. One should notice that edges not in the desired orientation 
are filtered out before the line fitting process. 

Stereo correspondence is established for vertical lines only. Based on the 
epipolar geometry (Appendix A4), the two end points of a segment in left image 
produce two epipolar lines, which enclose a region in right image. So the 
corresponding segment should find in that region. This simplifies in terms of 
computational efficiency, the subsequent stereo matching problem. Then the 
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matchability between lines is determined by three factors: similar orientation, 
similar contrast value and same contrast sign. The first two factors are thersholded 
and the third factor is a necessary condition. Every segment in the left image is 
forced to match exactly one segment in the right. Then depth is recovered by 
simple triangulation. All the features further than 4 meters from the camera are 
discarded to ensure the accuracy of position estimation. To guarantee significant 
overlaps of the stereo pair of images, the robot avoid taking image of an object near 
that 1-meter. 

The stereo algorithm may fail to find the correspondence and mismatch 
features across the left and right images when there have several similar edges that 
locate closed together in the environment. This result in producing some wrong 
edges in the local map. However, those kind of wrong edges generally have strange 
3D information that is outside the range for our feature selection. Moreover, in 
case those edges are added into the local map, the quality of the localization result 
will not degrade since other correct information are dominating. 
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Figure 5. Global map at the fourth fIoor of MMW building. 

3.3 Map Representation 

After we obtained the 3D information of the edges, this section describes how 
we use these information to model the 3D global and local environment into a 2D 
map. Maps are represented as the projection of edges into x-y plane in the 
environment, so all vertical edges appear as points on the map. All other edges 
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(two groups of horizontal edges) are represented as straight lines on the map. As 
these straight lines representing walls in the environment, so they provide a 
physical constraint that the robot cannot pass through these lines in the map. The 
entire map is divided into a discrete space as a number of 2D grids. Each grid 
contains a value range from 0 to 10 representing the probability that the 
corresponding location is being occupied by an edge; the larger the value, the more 
likely an edge is at that grid. The probability of a grid is modeled by Gaussian 
distribution with the exact edge location (either by measuring the environment 
when constructing the global map or by results from stereo vision when 
constructing the local map) as the center. Therefore the farther from the center, the 
less probability an edge is at that location. 

3.3.1 Global map 

The global map is the grid representation of the entire environment in which 
the robot navigating. The location of edges in the map is obtained by the building 
draft of the environment and by direct measurement. The map is produced in 
advance; it contains all the significant edge information in the environment. Figure 
5 shows a global map of a corridor environment. Crosses are the vertical edges in 
the environment and lines are the horizontal edges representing walls in the 
environment. Equation (1) gives a particular grid score of global map at position 
(xc, yc). 
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Where (Vajx, Vcjy) is the coordinates of7th global edge, cris a constant defined 
as follow: When the map is crowded with edges, we choose a small cr, otherwise set 
it large enough to make the search in the right direction. 

The construction of global map is based on the building draft and direct 
measurement of the environment. The locations of all the significant vertical edges 
in the environment are measured, hence the iih vertical edge in the global 
environment will has a Gaussian score with center at (v̂ /x, Vgiy) as stated in equation 
(1). Horizontal edges are also appeared in global map. However, we do not add all 
the horizontal edges found in the environment in the map but we will add those 
representing walls in the environment. Obviously, this kind of edges in the global 
map provides a physical constraint that the robot cannot pass through them. 

3.3.2 Local Map 

Local map represents the immediate environment of the robot as probability 
grids. It is constructed according to the 3D information of the detected edges, 
which only vertical edges are existed. The local map gives position {x^, y,) of 
vertical edges in the local environment with respected to the robot frame, then cell 
score in the local map Gt is determined by equation (2), 
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where (Vux, Viiy) is the location of /th local edge, ^ i s a constant same as equation 
� . 

In perfect case, a local map is a subset of global map, but in real situation, 
owing to the error in sensing the environment and the disturbance of obstacles, 
there are some missing edges or additional edges appear in the local map, but this 
will not degrade the localization process. Figure 6 shows a local map in grid 
representation in the lower center of the corridor in figure 5. White pixels show the 
locations have the probability that edges are presented. The brighter the pixel, the 
higher the probability an edge is at that location. We can see as compared with 

figure 6, figure 5 has some missing edges. 

• 

Figure 6. A grid representation of local map. 
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3.4 Integration of Multiple Local 2D Maps 

As mentioned earlier, we will integrate several local maps together to form a 
bigger map called a "mature local map" to register with the global map. This 
section describes how we merge the local maps together. The merging process uses 
the information from odometer readings. Robot odometry error usually 
accumulates over time, but within a short travel, odometer still is reliable. We 
make use of the odometer reading to estimate the motion between robot different 
locations in a short distance. Infer motion using long sequence of images is not 
feasible here since it generally needs long time to process and require relatively 
long motion distance. Local map here is a 2D map obtained from the projection of 
the 3D vertical edges from stereo. A local map model is constructed by integrating 
two or more local maps. 

Figure 7 shows the integration process. If there is no local map model M in 
memory, integrate two successive local maps to form a new one. If yes, combine 
the local map model and the new local map as follow: Suppose that at a particular 
instance ti，we have a local map model Mui obtained at ti_i and a local map Vi at ti to 
be integrated with Mi.i. From the wheel encoder reading we can estimate the 
motion from ti_i to ti, then define a transformation matrix according to that motion, 
and transform those features in Mui to the coordinate system as Vi. After 
establishing their correspondence, we can integrate them and form a new local map 
model Mi at ti. The integration process should be finished within the time interval 
between constructing two local maps. The number of local map for integration is 
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limited by the positional uncertainty. More positional error will be accumulated 
when the sequence of images is long. In our implementation, three pairs of stereo 
images are taken, with approximately 0.5m of travel, so three local maps are 
integrated for the construction of the mature local map. 

M.,——• ^ Fea tu re _ _ |ptegration ——• M, 
1-1 Co r respondence ^ i 

£ 
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Whee l 
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Read ing 

Figure 7. Local 2D maps integration. 

The feature correspondence problem to merge edges did not keep track of how 
far a feature in one frame moved in others. In fact, the motion cue is provided by 
the robot's encoder readings. In figure 8, R and T are the rotation and translation 
estimated by wheel encoder. Each edge Pi in the new local map has a 2D position 
with respect to its frame V/. We define a small uncertainty region around the 
location of each edge in frame Vi, so edge P/_/ in the frame Muj falls into that region 
is considered as "feature pair" (P/.； and P/) for merge. The dotted ellipse in the 
figure illustrates the uncertainty region. After established the correspondence, P is 
obtained by averaging the feature positions and a new local map mode M/ is 
obtained. Any edges in the frame V/ (or M,-.；) that cannot form "feature pair" are 
considered as new (or old) features and added to M/ as well in this stage. A global 
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check of all the features in M (the final model) is carried out after all the integration 
procedures finished and right before the construction of mature local map to 
remove those features that are not appear in successive frames. This minimizes the 
effect of noisy edges as well as some temporally edges in the scene. To summarize 
this section, we have developed a simple, fast and effective motion stereo scheme to 
construct a 2D local map model. Stereo vision and motion analyze are combined 
together to make the model construction more accurate. Such a fast image 
processing technique benefits the localization process. 

Uncentainty Region 

/ 
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/ ...-••"" :• p . / ..-•• ... 1 Mi.i / ....--•••• / P 

i x > [ / 
R,T ^ " ^ ~ ~ - ^ t ^ Mi Vi 

Figure 8. Merging edges from different local maps 
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Chapter 4 

Localization Algorithm 

The previous chapter describes how to construct and represent maps, this 
section mention how to use the mature local map and the global map to compute the 
position and orientation of the robot. Figure 9 shows an overview of the 
localization algorithm. A stereo camera system is used to detect features in the 
environment, those features include the three groups of edges we discussed before. 
Then the algorithm splits into two parts, the first part estimates the robot orientation 
while the second part evaluates the robot position through a map registration 
process. 

Horizontal edges are used to locate the vanishing point. Then the robot 
orientation is estimated based on this vanishing point. 3D information of the 
vertical edges is extracted using a simply stereo algorithm and add to the local map. 
Several local maps are merged together to form a bigger map called “mature local 
map”. Then a registration process is carried out to register the mature local map 
with the global map together with the odometer readings to have the robot position. 
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Figure 9. Overview of the localization algorithm. 

4.1 Robot Orientation 

As mentioned before, vanishing point (〜，Vyp) can easily be extracted by using 
a single image. To have better precision, robot roll and heading angle should be 
computed with a vanishing point that varies most with them. In our 
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implementation, we use the vanishing point near the center of the left camera 
image. Let 0be the orientation angle of robot, therefore 0is the arctangent of, 

-(u,-uJ/(aJ) ...(3) 

Where uo and vo are the coordinates of the optical center of the camera (pixels), 
ofu and a^ are the pixels per unit length in u and v direction (Appendix A1). 
Although the robot roll angle is not used in localization algorithm, but it still can be 
found for future use, 

Roll Angle = arctan {-(v�一 〜 ) / (aJ)] ... (4) 

Hence, the orientation of the robot can be obtained using (3) and the search 
space will be reduced to only two-dimensional. Searching neighborhoods per 

/ ^ 

iteration are reduced to 8 (3 - 1) pose cells and this will fasten the searching time. 
The accuracy of the estimation of the orientation angle is depended on the accuracy 
of the vanishing point extraction and the precision of camera calibration. Chapter 5 
illustrates the quality of the estimation of the robot heading. 

4.2 Robot Position 

The robot position is estimated by a registration process that measures the 
similarity between the mature local map and the global map. The registration 
process involves a search in the space of offset in translation that uses the current 
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pose of the robot from the wheel encoder to start the search until reached the state 
that the matching score is maximum. Then the solution state is directly applied to 
the robot odometry and became the current robot pose. 

4.2.1 Match Function 

The match function is defined as the feature similarity between the mature 
local map and the global map. Suppose the mature local map size is M x N, one 
well know similarity measurement is the sum of square error: 

^"•)=SS[SGL(^，",VLx’Vz^�-SGc;(Z. + — � " ' + " + �,VG,'，％)]2 … � 
m n 

Where Gi is the local cell score at location (m, n) and Go is the global cell 
) » 

score at (i+m, j+n). (Vox, Vcy) is the global edge location express as the 
coordinate system of the mature local map. 0乂 and Oy are the initial offsets between 
the mature local map and the global map. This measurement E(i, j) gives the 
dissimilarity between two map, so our goal is to find i and j that minimize E. 
Equation (5) can be further simplified by expanding and eliminating constant terms 
- i s equivalent to maximizing, 

M N , , 

E . ( � , ^ = SS[SGL(^’"’VLr，VLy).SGG(/ + m + (?rj. + " + OrVG,.，VG}’）] ...(6) 
m n 
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Hence the match function defined is the product match between the global and 
the mature local map cell scores and the matching score is obtained by aligning the 
mature local map with the global map then multiply the cell score between them, 
summation over the area of the mature local map. 

4.2.2 Search Algorithm 

The search space, with the robot orientation determined, become an area of a 
two-dimensional space with x and y axis. Where x and y are translation offsets 
from the current robot pose. As the robot performs self-localization often, the 
search space is restricted to a small area. Our implementation defines the space as 
all the possible poses within 土 30cm in translations of robot's current pose. Current 
pose can be predicted by wheel encoder readings. 

The search method uses is iterated hill-climbing search. It uses an initial pose 
as the search center and starts to climb. The search divides the search space into 
pose cells by an initial resolution. Then computes the match scores between the 

2 
mature local map and the global map at the current pose and the 8 (3 - 1) 
immediately neighboring pose cells. If a neighbor cell has a higher score, then 
repeat the search using that cell as center. If no better score, the search repeats with 
a higher resolution. The search stops when the predefined resolution is reached. 
Our implementation defines the initial resolution as 8cm in translations, while the 
final resolution is lcm. 

If the robot is put in an unknown location initially, it has to find out where it 
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currently is from the knowledge of global map. In this case, the search space will 
becomes 3D (with x, y, and 6 axis) and a global search is performed to look for 
every possible position and orientation. This kind of search is very time 
consuming. In our case, it takes about 2.6 minus to locate itself in a 5.4m by 15m 
area. 

4.3 Continuous Localization with Retroactive 
Pose Update 

The idea of continuous localization is first described in [6] for continuously re-
localizing the robot using evidence grids. A Bayesian map updated technique is 
used to construct the global map and local map using both sonar and laser range 
finder readings. In our case, the global map is constructed in advance and we use 
stereo vision to detect the 3D position of vertical edges to construct the mature local 
map. 

Our goal is to make the robot navigates smoothly along a corridor. However, 
the localization process needs significant time for processing and this results in the 
robot halting until all vision and localization processes have finished. What we 
really need is the robot to continue to navigate while self-localizing. That is, offsets 
of translation from localization module are retroactively combined with odometer 
readings to update robot's current location. This is core idea of the proposed 
retroactive updating method. 
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Figure 10. One localization cycle. 

Our implementation is a slight modification of the method reported in [12]. It 
contains two parts: Localization process and retroactive pose update process. 
Figure 10 shows one cycle of the localization process. Local maps are constructed 
as the robot navigates, several are maintained in memory. They are integrated with 
a new local map using encoder information as described in section 3.4. After 
sufficient local maps are integrated together to form a mature local map, the 
registration process is carried out to update robot position in the environment. In 
our implementation, three local maps are stored in memory and merged together. A 
new localization process begins immediate after the previous the old process has 
finished, so the whole process is called continuous localization. 

Time is needed for image processing and searching pose. Instead of making 
the robot stop to wait until localization result comes out, the robot continues to 
travel and uses the retroactive update method. Figure 11 shows the retroactive pose 
updating process. 
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Figure 11. Continuous localization with retroactive pose update. 

Suppose the localization process start at time tn-i is finished at tn. The x, y, and 
orientation offsets results are the pose correction at time tn-i. They combined with 
the odometry changes from tn-i to tn gives robot's current pose. This pose also 
contains some error due to the odometry error from tn-i to tn, but is corrected at time 
tn+i. Moreover, this odometry error will not accumulate as the previous error is 
corrected. With this retroactive pose correction, the robot can navigate without 
stopping for self-localization. 
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Chapter 5 

Implementation and Experiments 

Several experiments were performed to determine the effectiveness of the 
proposed localization algorithm. The algorithm is implemented in C language in a 
RWI B21 robot (Figure 12). It is controlled by an onboard Pentium processor 
running Linux. Although there have other sensors to use, including sonar and 
infrared sensors, we only use a stereo vision system in experiments. All the 
experiments assume that the cameras are well calibrated. That is, the spatial 
relationship between cameras and the relation from the camera frame to the robot 
frame are known. Calibration information can be found in Appendix. We will 
show the results of experiment in dynamic environments with moving objects. 

^ ^ ^^¾ 
D^^BO 
• 

Figure 12. The RWI B21 Robot. 
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5.1 Computing Robot Orientation 

Robot orientation is one of the three localization parameters we have to 
determine. It is a very important parameter since a very little orientation error may 
result in a very large translation error after long distance travel. The accuracy of the 
computation of robot orientation is depended on the accuracy of camera calibration 
and the extraction of position of the vanishing point. Vanishing point can be 
located easily and accurately in a corridor environment. 

In these experiments, the robot is commanded to rotate in increment of 5 
degree start from -10 degree to 10 degree. We will add some disturbances in the 
environment to check the quality of the estimation. Each result is obtained from a 
single image from the left camera. Table 1 shows the results of the estimation of 
robot orientation in a clear corridor while table 2 is the results with human walking 
along the corridor. 

m 
r # ' � ！ 
• v > y 

Figure 13. A corridor without moving obstacle (Corridor 1). 

3 6 



Corridor 1 Corridor 2 
Angle (Degree) ~~Estimated~~ ABS Error Estimated ABS Error 

(Degree) (Degree) (Degree) (Degree) 
10 10.776933 0.776933 10.138600 0.138600 
5 4.874607 0.125393 4.868680 “ 0.131320 
0 0.568738 ~ 0.568738 0.580160 “ 0.580160 — 
-5 -4.802665* ~ 0.197335 -5.165905 “ 0.165900 — 

-10 -9.511093 0.488907 -10.289980* 0.289980 “ 

Table 1. Estimation of heading angle in a clear corridor. Data marked with (*) is 
the result from figures 13 and 14 respectively, ^ p / | 

¥m 
Figure 14. A scene in corridor 2. 

H t M ^ i 
p « 

Wm 
Figure 15. Same corridor as figure 13 with a human walking. 
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Angle (Degree) Corridor 1 
Estimated ABS Error 

10 — 11.100676 1.100676 
5 — 5.352859* 0.352859 
Q — 0.763003 0.763003 
-5 — -4.521051 0.478949 

-10 -9.807420 0.192580 ~ " 

Table 2. Estimation of heading angle in a corridor with human movement. 

Noteworthily, the computation of orientation angles still works in a dynamic 
environment. Table 3 illustrates the results from figure 16. Figure 16 is a classical 
dynamic environment. A bookshelf, a chair and a moving human that does not 
appear in the global map are added in the environment. 

The results show that the errors are not depended on how the environment 
changes; the location of vanishing point determines the accuracy. Only use few 
edges can locate the vanishing accurately. Among all the estimation, the maximum 
error is 1.364582 degree and the average error is 0.46107955 degree. 

'-'-^rnrnm^^^mm ^ ^ ^ P | 

mm 
, M J 

Figure 16. A new bookshelf, chair and human appear in the environment. 

3 8 



Angle (Degree) Corridor 1 
Estimated ABS Error 

10 — 11.364582 1.364582 
5 5.317281 0.317281 
0 “ 0.601916 0.601916 — 
-5 -5.548377 0.548377 

-10 -10.038102* 0.038102 — 

Table 3. Estimation of heading angle in a dynamic corridor. 

To illustrate the usefulness of the robot orientation computation, the robot is 
commanded to follow a rectangular trajectory in a corridor with total travel distance 
14.5 meters and with presence of human. Only orientation correction is performed 
in this experiment. The broken line in figure 17(a) is the actual path which the 
robot is using odometry correction. The odometry error is small at the beginning, 
then accumulate as the robot travels. As the robot orientation error accumulates, 
the final translation error is large after a long distance travel. Figure 17(b) shows 
the path of the robot with correction by vision; it keeps the robot to move parallel to 
the corridor. Correction is carried out every time the detected heading error is larger 
than 2 degree. During the experiment, a human is wandering around to disturb the 
robot. Although there still has error in position, however the result shows that the 
robot orientation angle correction effectively eliminates the accumulated odometry 
errors and the final translation error is small. Moreover, the moving human does 
not affect the accuracy of results. 
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(a) (b) 
Figure 17. (a) Path of the robot using odometer. (b) With orientation correction. 

We can notice that the estimation of robot orientation is not affected by people 
moving around nor affected by the dynamical environment. However, the 
estimation will degrade if large portion of the field of view is occluded by the 
people as shown in figure 18(a), as the significant 3D edges cannot be detected. 
Figure 18(b) is another example showing not enough significant 3D edges for the 
determination of robot orientation. In this case, since we still have vertical edges in 
the mature local map, the robot orientation can be found together with the robot 
position. That is, all of the three localization unknowns (jc, j , 6) are determined by 
the iterated hill-climbing search with a 3D search space (With ;c, y, and 6 axis). 
Since the search space become 3D, the search will take more time to finish as the 
immediate neighborhood pose cells become 27(3^ - 1) instead of 8. (Figure 19). 
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Figure 18. An example of scene that makes the orientation accuracy degrades, (a) 
Significant 3D edges are occluded by human, (b) Significant edges cannot be 
detected. 
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Figure 19. Relaxation of search space. 
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5.2 Robot Position by Map Registration 

In the previous experiment, we have shown that with the robot orientation 
angle corrected, translation error is small when the travel distance is small. 
However, translation error still accumulates as the travel distance increase. Hence, 
in this experiment, the robot is commanded to move in a hallway with total distance 
of approximately 23 meters while localizing 12 times in the environment and 
evaluating all the localization parameters, i.e. the position and orientation of the 
robot with respected to the world coordinate frame. 

The robot is commanded to move with average speed of 15 cm/s in the 
hallway at 4̂ ^ floor of MMW building with human moving around using the tele-
operation interface we developed (Appendix A.5). The black line in figure 20 is the 
planed path, dotted lines are 1 meter on each side. For each localization, three local 
maps are merged together to form a mature local map and register with the global 
map. Time for processing each pair of stereo images is approximately 3 seconds, 
so it takes nearly 9 seconds to merge the three local maps together (each mature 
local map contains the environmental information gathered in the most recent 52cm 
of travel). Time for the iterated hill-search is another 2 seconds, hence the 
localization cycle repeats approximately every 12 seconds. Crosses in the figure 
show the actual path of the robot in which localization are finished and robot 
position are measured at these points. The odometry error we define is the 
odometer readings minus the robot actual position, and the localization error is the 
result from map registration minus the actual position. 
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Figure 20. Robot trajectory in the experiment. X's are the actual robot trajectory. 
A moving human A is crossing the corridor while the robot localizing itself. 
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Figure 21. Image sequence for constructing a mature local map for the last 
localization cycle. Note that the moving human contribute no edge in local maps. 
This proves the effectiveness of our dynamic noise-filtering scheme. 
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At the beginning of the navigation, since there has not enough edges for 
determining the robot orientation, the robot drifts from the original path. At 
position 1，the robot rotate 90-degree and facing a long corridor as in figure 13, 
orientation of the robot is corrected and it continue to move while keeping its 
orientation parallel to the corridor. The robot makes a 'U' tums in position 2 and 
keeps travel forward to the end point. Figure 21 shows the sequence of stereo 
image pair taken at from position 3 to 4. Each stereo pair outputs a local map and 
three of them are merged to form a mature local map. During taking these images, 
a human A is crossing the corridor and appeared in the image sequence. Note that 
no edge contribute by the moving human is added into the local map. For the 
experiment reported here, the initial resolution of the iterated hill-climb search is 
8cm and the final resolution is lcm. Figure 22 is the error comparison between 
odometry error and the error using the proposed localization algorithm. The 
distance between the robot's odometer position and the actual position is measured 
at the cross-positions as marked in figure 20. We can observe that the robot's 
odometry error accumulates as the robot travel. The localization algorithm 
proposed successfully keeps the position error to an average value about lOcm. 
This error includes the orientation error since orientation error reflects error as a 
translation error. 

We can notice that at the first two localization cycles, the positional error is 
very closed to the odometry error. It was because the vision algorithm cannot 
determine the robot's orientation due to not enough edges for computation as in 
figure 18(b). One way to solve this is to release the search space to a 3D search 
(search for position and orientation). That is, instead of only finding the robot 
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position, the iterated hill-climbing search evaluates the robot orientation also 
(Figure 19). The drawback is the searching time increases to 8 seconds. Look at 
the table 4，after releasing the search space to 3D，the positional errors are reduced 
which makes the overall average positional error equals to 9.6cm. The error plot 
after released the search space is in figure 23 and we can see the position error is 
reduced. The numerical data can be found in table 4. 
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Figure 22. Odometry error V.S. localized error. 
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Distance Traveled Odometry Error Localized Error Localized Error 
(cm) (cm) using a 2D search using a 2D search 

space (cm) space (cm) 
200 — 8.0623 9.3238 —— 9.4523 cm — 
400 15.5563 15.2438 今 10.8732 cm 
600 12.7059 11.4802 
800 30.8423 9.2089 
1000 — 51.9278 10.3744 
1200 57.7690 10.3847 “ 
1400 60.8908 9.3347 
1600 “ 65.5433 8.3348 
1800 “ 68.3008 8.2884 
2000 — 75.4345 9.2486 
2200 — 89.4530 8.8398 
2400 103.5672 9.3844 

Table 4. Numerical results. 

Since the localization algorithm cannot determine the robot orientation at the 
first two localization cycles only, so the relaxed search is carried out for those two 
cycles. For the rest of the localization process, the search is remained as a 2D 
search to fasten the localization process. 

5.2.1 Error Analysis 

The constant average error in this experiment can be explained by the 
following source of errors: 

• Error in sensing the environment. We use stereo vision to sense the 
environment. Recovery of 3D information using stereo has two sorts of errors: 
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error in stereo correspondence of feature points in left and right images and 
depth error due to limited camera resolution. First kind of error refers to the 
mismatch of features in the stereo pair of images. When we recover depth 
information using the wrong pair of features in left and right images, the 
triangulation process estimates the wrong 3D information. Second kind of error 
occurs because of the limited resolution of cameras. Image position error 
causes error in depth. Moreover, the resolution of the cameras are limited, error 
is larger when object far away from the cameras. 

• Odometry error. As we can see in figure 11, the robot pose is updated by a 
retroactive update method, the robot current pose is obtained by combining the 
localization result from the previous localization process and the odometer 
readings, hence error is introduced by the odometer readings. It is a constant 
error as the previous localization process localizes the robot and this small error 
will not accumulate. 

• Error in the iterated hill climbing search. Due to the time constrain problem, it 
is not feasible to have a global search in the configuration space to obtain a 
global solution. Iterated hill climbing search is a steepest-ascent search method 
that use an evaluation function to check how close a given state is to a goal 
state. The evaluation function we use is the matching function described in 
section 4.2.1. It is much faster than the global search, however, it may be 
trapped in local maxima in which the global goal state may not be found. So 
there has error if the local goal state is used as the solution in the search. 
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5.3 Discussions 

The localization approach presented in this thesis only relies on the vertical 
edges to determine the robot position, and only one group of horizontal edges is 
used to estimate the robot orientation. The remaining group of edges may also be 
added to the mature local map to provide more information for determining the 
robot position. This group of edges is those horizontal edges that appear nearly 
perpendicular with the cameras optical axis. So they appear as horizontal edges in 
the image. Hence we can add them as lines in the mature local map in which only 
their depth or distance from the robot is useful as shown in figure 24. Crosses are 
the vertical edge and lines in the local map are the horizontal edges detected. These 
kind of horizontal edges are very useful to determine the robot's >' position and 
orientation in the environment. However, adding the horizontal edges increases the 
image processing time since the stereo correspondence is also needed. 

The map representation introduced in this thesis is suitable to integrate with 
the sonar or laser range finder information with the camera information. Proximity 
sensors usually update the local map using the evidence grid representation [32,33]. 
Evidence grids [35] are Cartesian grids, it divides the environment into cells, which 
stores the probability that the cell is being occupied. Evidence grids are similar to 
the map representation uses in this thesis. Since both Bayesian and Gaussian 
methods used in this thesis are probability representation, only a small modification 
will allow the fusion of proximity sensor readings with those obtained from 
cameras to enhance the information. 
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Figure 24. Horizontal edges are added in the local map. 

In order to make the robot work in dynamic environments, the global map 
should change from time to time, for instance, if a new bookshelf is added or 
something in the environment have been moved away, all these action will make 
the global map change. So the robot should have the ability to update the 
environment information. Detection of new environment changes can be done by 
comparing the mature local map and global map after map registration. We exploit 
the fact that the two maps should be in nearly perfect registration immediately after 
the robot has localized itself in the environment. So the discrepancy between the 
global and the mature local map is most probably caused by unexpected obstacle 
that should be saved in memory. It should be added to the global map only when it 
was detected several times as the robot navigates to avoid wrong updating. From a 
local point of view, the immediate mismatched edges should be the new obstacle 
information and may give the information to the robot to avoid collision. It should 
be reminded that our features used are those edges in 3D prominent orientation in 
the environment (one vertical and two horizontals, perpendicular to each other). 
Most likely, moving objects such as people do not have these kinds of edges. Only 
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stationary objects like bookshelf, doors have those kind of edges. Hence, the 
particular noteworthy to our selection of features is that they can be used for both 
localization and obstacle detection that trace any changes in the global map. Once 
the robot has the ability to update the global map, it can work in a partially known 
or totally unknown environment and build the map incrementally. 
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Chapter 6 

Conclusion 

In this thesis, we have presented a vision based mobile robot localization 
system. A simple vision-filtering scheme is constructed to extract natural 
landmarks in the environment while minimizing the effect of dynamical noises. 
The system uses vertical edges to determine robot position and uses horizontal 
edges to determine robot orientation. In our representation, the local map only 
contains the 3D information of vertical edges in the environment and several of 
them are integrated together to form a mature local map. This map contains enough 
information for the registration with the global map. The registration involves an 
iterated hill-climbing search that determines the position of the robot in which the 
matching score is maximum. The matching score is a measurement of the 
"similarity" between global map and the mature local map. To improve the 
accuracy of the localization and keeping the search space to be small, a continuous 
localization approach is employed which repeats the localization processing 
continuously. A retroactive pose updating approach is employed keeping the robot 
navigates smoothly while localizing. The most important contribution in this work 
is we only uses vertical and horizontal edges to localize the robot continuously in 
the environment. 
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The proposed method is implemented in a RWI B21 robot and experiments 
show that the proposed algorithm can work in the environment where has human 
moving around, in other words, in a dynamic environment. Typically, the 
algorithm can eliminate the accumulated odometry error to constant of lOcm. The 
average processing time for extracting 3D-information from each pair of stereo 
image is 3 seconds while time for robot pose searching is 2 seconds. This is an 
advantage, which can allow the robot to travel at a maximum speed of 15cnVs 
without get lost in the environment. 

Future works include combining the localization system with others modules 
like obstacle avoidance and path planning to make a autonomous mobile robot 
system and add the ability for updating the global map as described in chapter 5. 
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Appendix 

A.1 Intrinsic and Extrinsic Parameters 
Ref: [16,20] 

Intrinsic parameters include focal length f, pixels per unit length (0Cu and 
oCv)，coordinates of the optical center of the camera (uo and vo). Extrinsic 
parameters include the translate and rotation difference between camera and the 
world frame. 

Camera manufacturer provides two of the intrinsic parameters we needed — 
pixels per unit length in u and v direction (0Cu and 0Cv). Other parameters can be 
found as follows. 

The relationship M (3x4 matrix) between the world coordinate (X, Y, Z) 
and image coordinate (u, v) assuming no lens distortion is: 

r n 「 X ~ su Y ^v = M Z s 
L � 1 

� 0 w� 0}穴 t \ 
with M = 0 a v. 0 丁 丁 

V 0 Q 1 
0 0 1 0 � ^ 

Where a^ and a^ are conversion factors (pixels per unit length), f is the 
effective focal length defined in pinhole camera model, uo and vo are the 
coordinates of the optical center of the camera (pixels). R j and i j are the rotation 
and translation matrixes from world to camera frame. 
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Matrix M is estimated by using least-squares error method that establishing all 
the point correspondences between the world and image frame to determine the 
entities of M by a set of over-determined system of equations. Point 
correspondences of features in image and world frame is established manually by 
first face the camera to the calibration pattern, usually are dots or squares painted 
on a paper, then save their image position and the corresponding world coordinates. 

A.2 Relation Between Cameras (Stereo Camera 
Calibration) 

Ref: [20,28] 
The translation and rotation relationship between two cameras can be found by 

using the extrinsic parameters. The loop in figure A2 shows the estimation of this 
relationship. Two cameras is facing at the same calibration pattern, then relations 
Ai and A2, which are the extrinsic parameter of the cameras, forming a loop with 
the calibration frame. Hence, both the translation and rotation relationship can 
easily be found by closing the loop: A = A2 Ai' \ 

Ca!ibration 
Frarae 

^ ^ y ^ � \ 

/LcftCacDcc/ / Right Caroeca 

^ \ ^ _ ^ _ > 
A 

Figure A2. Relation between cameras and the calibration pattern. 
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A.3 Wheel-Eyes Calibration 
Ref: [18,29] 

The idea is same as stereo camera calibration but we have a larger loop this 
time. From the center loop in figure A3, an equation relating A, B and X can be 
immediately established: 

A X = X B 

C1 and C2, P1 and P2 are two different locations of the left camera frame and 
the pan-tile base frame respectively. When the pan-tilt system moves to any new 
position, different A's and B's will come out. Let n be the number of different 
positions of the pan-tilt system with respected to a fixed calibration frame. From 
equation 2, a set of n-1 matrix equations is formed: 

A i X = X B i A2X = XB2 
A i X = X B i 

A n - l X = X B n - l 

Ai = Transformation between position i and position i+1 of the camera frame. 
Bi = Transformation between position i and position i+1 of the pan-tilt frame. 
Matrix X is estimated by solving the above set of n-1 matrix equations. AiS can be 
found from A1, the pan-tilt angles and the dimension of links of the pan-tilt system 
define BiS. 

There are many solution methods in the literature for this problem. The one 
we use can be found in [18]. It first decomposing equation AX = XB in two 
equation with R and T separated, then predict matrix X by a linear error 
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minimization method. Detail results can be found in a MAE 5020 term project 
report, named “Wheel-Eye Calibration", in 1998’ 1'̂  term. T is a matrix from the 
dimension specifications of the robot from RWI. Hence, with X known, the wheel-
eyes calibration is finished. 

Calibration 
Frame 
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Figure A 3 . A v i e w s h o w i n g i w o ditTerenl pos i t ions ot" lhe pan-li lt dev i ce . 
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A.4 Epipolar Geometry 
Epipolar constraint is very useful in stereo vision, it reduce the 2D-search 

space to lD space. 
In figure A4, a projection point p in the left image is the projection of a world 

point P, which lie on the line passing through left camera center C and p. The plane 
containing the two camera center C and C and p defines the epipolar plane. This 
plane intersects the right image as a line called epipolar line. The projection of the 
world point P on the right image must lie on this epipolar line. 

I'pifwibr plunc; ” / / 
H(p) .' // / 

卜 s J . . 
npi[y,lur (i.K：: l(p) k V / 入.，/ / / .' 

_ , , > ^ jAfei 
/ ^<X .̂W-̂ ^̂ p̂ilxVlurf.ne:T(p) / X f ^ ^ ' 

Figure A4. A parallel axis stereo camera system. Note that in general, the two 
camera axis may not be paralleled. 
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A.5 The Tele-operate Interface 
This section describes the tele-operation interface we developed and used in 

this project. The main function of the interface is to control the movement of the 
robot with a computer under human control. Instead of using the joystick 
connected to the robot, the robot can be commanded to navigate safely under the 
control of human through the interface. During the navigation, the all needed 
sensory data are recorded simultaneously. Figure A5 shows the tele-operation 
interface. You can command the robot to move under different speed and different 
acceleration (Translation and Rotation) and adjust the pan and tilt angle of the 
stereo system. The latest sonar readings are shown graphically in the Sonar Map 
window and images taken by camera are also displayed. 
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