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ABSTRACT 

Although message-passing is an elegant communication paradigm highly 

recognized in areas such as object-oriented systems, parallel and distributed pro-

cessing systems, it is unfortunately not as efficient as the shared-memory 

paradigm when implemented on bus-based multiprocessors. Since building 

distributed global-memory systems around a common bus is a very simple, 

flexible and economical way to taste the advantages of multiprocessing, a design 

that combines the strong aspects of the two paradigms will help popularize 

parallel processing. 

We have taken a hardware approach to alleviate the problem. On top of a 

shared-memory architecture, message-passing is supported by -hardware. A 

dedicated processor called the Message-Passing Coordinator (MPC), which is 

a value-added switch box, manages the message traffics in the system. While 

point-to-point messages are handled in the form of DMA transfers, broadcasted 

messages should be implemented in a way that can utilize the intrinsic 

characteristics of a shared-bus. Thus, a 1-to-N DMA mechanism is introduced 

which is a very effective way of handling broadcast messages on similar 

architectures. The workstation introduced above is called SM3. It is suitable for 

concurrent program development, distributed problem solving, and other 

computation bounded jobs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Gaining performance with multiprocessing 

Data processing power is in great demand in this information age. For instance, 

the enormous amount of data sent back to the earth from space crafts has to be 

stored on tapes because the computation power currently available cannot pro-

cess them immediately. It will take years to analyze the stored data. For the 

example given in [Ware72], the intensive computation required to process 

images from the spacecraft Mariner VI and VII was shown to be too demanding 

for the computers available then. Unfortunately, the problem is getting worse. 

Since any computer system consists of hardware and software, the performance 

problem can be tackled in two different ways. By software method, we mean to 

develop a better algorithm and to improve the coding manifestation of a good 

algorithm. By hardware method, we refer to the improvement in the component 

technologies or the parallel architecture where more operation units are 

incorporated. Figure 1.1 summarizes this picture. 

Computing 

I 1 
Software Hardware 

r 1 I 1 
Better Better Super Parallel 
coding algorithm processor processing 

I 1 • 
Sequential Parallel : 

. . • ... . • 

inter-related 

Figure 1.1 Approaches to improve computing performance. 
v-
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1.1.1 Software approach 

To speed up a computation task, one can devise a faster algorithm. But unlike 

the micro-electronics technology, the discovery of an algorithm with smaller time 

complexity for a problem is somewhat unpredictable. For certain problems, we 

do not even know whether we have already found the quickest algorithm or not. 

Moreover, the behavior of algorithms is usually data dependent. As a result, 

software efforts may be unrewarding during some occasions. 

Coding skill is another important factor. Experienced programmers can devise 

clever tricks and short cuts to gain speed. Unfortunately, the clarity of the pro-

gram is completely upset for incremental speed up. The state-of-the-art software 

engineering principles stress elegance, reliability, and portability because of the 

constantly rising software complexity and labor cost. The declination of hardware 

cost has diminished the effect of small reductions in computation time and code 

size. Thus, it is very difficult to multiply performance of a conventional uni-pro-

cessor computer by solely refining the software. 

Parallel algorithms have revived the study of fast software. However, a truly 

concurrent architecture is mandatory in order to benefit from them (figure 1.1). 

Since this thesis will not focus on software aspects, we shall postpone our 

discussion on software here and come back to it when we discuss the 

performance and applications of the proposed architecture. 

1.1.2 hardware approach 

Of course, another way to speed up computations is to work on the hardware. 

Two independent approaches are available. The first one is to build super-pro-

cessors. Such machines usually carry some of the following attributes: 

-very fast logic circuits (high clock rate) 
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-wide data path with high band width 

-highly optimized, overlapped internal operations 

-good vector processing power 

-highly compact package 

Although more delightful attributes can be appended to the above list as more 

and more surprisingly powerful processors appear, we are not so optimistic 

about the future of this direction of endeavors as the physical limitations are 

within sight. Physicists pointed out that there is an ultimate limit to the speed 

at which any component can operate. For example, it is impossible to eliminate 

the delay due to the time required to charge the intrinsic capacitance of a 

transistor using the finite current available. Even new technologies, such as 

Gallium Arsenide (GaAs), have their limitations [Heard84]. Actually, no data 

processing system can process information faster than C^/h (ie. 2x10"̂ ^ bits per 

second-gram), where h is Planck's constant [Ware72]. Obviously, the speed of 

light is a very tight limit. 

Apart form the processing device, the memory also suffers from severe 

limitations. The following example is given by [Landa61]. To store binary 

information, we need a device that has two potential wells (stable states) 

separated by a barrier. Energy must be inserted in order to change the state of 

the device, and be removed when the new state is reached. [Marko65] shows 

that the uncertainty principle imposes a time limit of about lO'̂ ŝ to inject 

energy into or remove energy from any information storing device. Moreover, 

energy is inevitably dissipated as heat, but dense packaging is inconsistent with 

heat dissipation. 

The current technology can produce VLSI chips that have certain parameters 

within an order of magnitude away from the physical limit. For instance, the 

internal power density of a p-n junction is within a factor of ten from the 

maximum cooling rate at room temperature [Ware72 .̂ 

v-
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Over 99 percent of computer arithmetics are implemented in the form of binary 

transistor logic. Contemporary machines can perform additions in 60-80%, multi-

plications in 25%-30%, of the Winograd time which is also a theoretical lower 

bound [Winog65, Winog67]. This limit gives the minimum time required to 

perform an operation on two numbers. It varies with the number length, radix, 

fan-in and delay of logic elements. The only way to break this limit is to pre-

calculate all results and use the table look up method. 

It is evident that to get more computing power out of a single processing device 

will become quite difficult as we are approaching the physical limits. To cope 

with the rapid growth of data volume, we have to exploit other ways. Parallel 

processing is the other hardware approach we are going to discuss in detail. 

1.2 Parallel processing 

A natural way to overcome the speed limitation of any physical devices is to 

arrange a large number of them to work concurrently. This idea is not restricted 

to the central processor. Parallelism can be applied at program-level, unit-level 

(multiple memory modules, peripheral devices), and even instruction-level 

(multiple ALUs and other functional units). Although virtually there is no limit 

to the degree of parallelism, but [EliMo83] shows that the throughput of a 

parallel computer system will actually saturate at some point due to the 

contention problem and coordination overhead. Figure 1.2 depicts this. 

The seriousness of the saturation effect depends strongly on the particular 

application. A number of physically implemented systems, although limited to 

a small set of applications, can relieve this problem so well that actually they do 

not degrade the performance significantly. An example system BBN Butterfly 

consisting of 256 processors is shown to give close to linear speedup in 

[RetTh86]. 

According to the degree and nature of parallelism, computers can be classified 

v-
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Throughput 

A I ^ ' E k l ^ ^ 

/ L e v e l i n g o f f 

A ACTUAL 

—广 : 
Number of processors 

Figure 1.2 The saturation effect. 

C o mp u t e r s I 
Serial Paral le l Paral lel 

[ s m j wii^sdJ m ^ d J 

h • " “ l l ' ^ t > _ � �|||Arr”「~||tU:。i: |i|Tlghlly|C.r.!..y li|L00»«Vr| 

|ALU ||Proc.»»ef •�。“…r_|p,。:•…,llcoupl “ [|co«p|,d ||Coupl ed • 
von Neumann Mum. k DI 11 r I - • comput tr • 
Machi net Pr。。."。r| but “ • I 

Syit >nn • Sy tl >wt • "*'*。" • 

Figure 1.3 Classification tree of parallel processor architectures. 

hierarchically as shown in figure 1.3 [FatKr83]. Here，S，stands for Single,，M， 

stands for multiple, T stands for instruction stream, ’D，stands for data stream. 

Though SISDs are marked serial, they still exploit different levels of parallelism. 

All contemporary computers, for instance VAX-11 and IBM 3090 series, have 

their peripheral devices arranged to operate concurrently with the CPU. Even 

in microprocessors such as the MC68030, instruction fetching, decoding, and 

execution are pipelined and performed in parallel. However, SISD computers 

V 
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Still conforms to von Neumann's model. 

MISD computers are usually designed for a special application. For instance, in 

some encryption systems, a series of processing elements form a processor 

pipeline and they work on the same data stream consecutively. 

Most SIMD computers are number crunchers. They are specialized in matrix or 

vector manipulations. Array processor is the most common form of SIMD 

computers. Due to their high cost and limited applications, they are not so 

popular. Illiac-IV is a well known example [GeRiM68". 

MIMD computers can be general or special purpose. The degree of coupling 

between processors is application dependent and it determines how the pro-

cessors should be linked. Communication capability is expressed in terms of 

transmission band width and latency of inter-processor links [Cleme88c]. Based 

on the degree of coupling, three major classes are identified: 

a. In Loosely-coupled system (LCS), processors communicate with each 

other by passing messages via physical channels provided by a local or wide area 

network. Most LCSs only have simple bit-serial links because of cost 

considerations. Inter-processor traffic must be kept light. Well known LCSs 

include the Cm* [JonSc79] and the Syte workstation [BruMi84], which consists 

of several processor modules based on NS-16032s. 

b. Distributed system may be classified as moderately-coupled system (MCS) 

but it must be stressed that there is no clear cut difference between this class 

and LCSs. It is claimed that since the communication between processors is 

more frequent, so each processing element is equipped with separated 

application and communication processors [FatKr83]. The author agrees that 

multi-microcomputer systems should be put under this category. In [Russo77], 

readers can find an example system made up of COSMAC microprocessors. 

v -
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c. Tightly-coupled systems (TCS) have a common clock for all the pro-

cessors. It is also refereed as multiprocessor systems. Due to the extensive 

interaction between processors, more complex hardware is needed. The Balance 

multiprocessor system [ShPaG88], which may have up to 30 processors, is a 

typical example. LCSs or MCSs can be constructed by linking TCSs together, 

where each multiprocessor is virtually a uni-processor. In other words, TCSs may 

serve as the building block of large scale LCSs or MCSs. Examples will be 

presented in chapter 2. The proposed workstation described here belongs to this 

class so we shall restrict our discussion to TCSs. 

1.3 Gaining performance with multiprocessing 

A true multiprocessor system incorporates two or more processors in the same 

housing, and the physical distance between the processors is important 

Cleme88a]. The processors operate cooperatively on a logically coherent task. 

They communicate intimately with each other and share common resources. 

Since a given task can be carried out by several low-cost processors concurrently, 

relatively little additional cost is needed to increase the power of a multipro-

cessor. This favors incremental growth of the system. Other known advantages 

are the provision of graceful degradation and fault tolerance. 

1.3.1 Multiprocessor configurations 

Multiprocessor systems can be further subdivided into two classes of 

configuration known as processor-to-memory and processing-element-to-pro-

cessing-element (PE-PE). Figure 1.4 illustrates their differences [Cleme88a]. 

a. Processor-to-memory: 

As shown figure 1.4a, an interconnection network bridges M processors and N 

memory modules. Processors communicate by sharing memory modules. Omega, 

Butterfly, and cross-bar are typical interconnection networks. An introduction 

to interconnection networks can be found in [FengSl]. For performance impro-
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a . P r o c e s s o r - t o - m e m o r y 

P r o c e s s o r P r o c e s s o r P r o c e s s o r 
• • • • 

Me mo r y Me mo r y Me mo r y 

P r o c e s s i n g P r o c e s s i n g P r o c e s s i n g 
E l 8 me n t E l e me n t E l e m e n t -

b . P r o c e s s i n g • e I e m e n t - t o - p r o c e s s i n g - e l e m e n t 

Figure 1.4 Two multiprocessor models. 

vement, processors may have cache memory. The success of this configuration 

gears to the band width of the interconnection network and/or cache 

performance. The simplest form of the interconnection network is a time-shared 

bus, where requests from two or more processors are time-division multiplexed 

onto a single bus. Buses may be synchronous or asynchronous. 

Asynchronous bus may have centralized bus control/arbitration, where one pro-

cessor is the master, or distributed bus control which requires extra hardware 

and software to resolve the contention towards a consensus. Bus users can 

request for the mastership of the bus at any time and the right of use is granted 

to it if the bus is free and there is no other competitors. Asynchronous bus is 

suitable for systems with a very irregular bus request pattern. 

On a synchronous bus system, every processor can take control of the bus 

whenever it requires, like the asynchronous one, independent of the other pro-

V 
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cessors. A system clock on the bus synchronizes all the bus operations. To 

improve availability, the bus may be time shared evenly. A common way to pro-

vide each processor a time slot for this purpose is to shift the phase between the 

clocks of the processors. However, band width is wasted when free time slots are 

not fully utilized. More examples and information can be found in [Labib88�. 

b. PE-to-PE: 

Every PE consists of a processor and a private memory module as figure 1.4b 

shows. Each PE is nearly a complete computer except they don't have local 

peripheral devices (that distinguishes them from multi-computer systems). An 

interconnection network provides the PEs with a communication media. 

Information is exchanged in the form of messages. RIMMS described in 

LeDaR84] is a typical example. 

In most cases the PEs are not allowed to access directly the memory of other 

PEs, such a configuration is somewhat similar to the MCS described above. 

However, we have chosen an alternative that is also taken by a number of 

designers. The local memory of each PE is also accessible from other PEs. In 

other words, the memory modules form a distributed global memory. Actually 

this is generally not realizable for MCSs and LCSs, so it is an identification 

character of TCSs. Figure 1.5 summarizes the variations in the TCS. 

Tightly-coupled-systems 
I ‘ � 1 

Processor—to-Memory PE-to-PE 
I ‘ — — 1 

Asynchronous bus Synchronous bus 
. 1 ‘ — — I 

Centrallized control Distributed control 

Figure 1»5 Variations in the TCS class. 

V-
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A combination of the two models is possible. [FiJoS83] describes a system with 

both private (means，local，and，unshared，）and shared memory. Although the 

system looks complicated, the high flexibility it offers is surely an advantage. 

There are still many other techniques for inter-processor communication. On a 

system mentioned in [ClemeSSc] processors are coupled by multi-port memory. 

An even more interesting system shown in [HeMaN88] uses video-RAM to link 

up processors. In these systems the latency is rather small due to the ease of 

control and arbitration. But painfully, extensibility and compatibility with 

standard devices are traded. 

1.3.2 Multiprocessor design issues 

After we had summarized general parallel processing styles, let us focus on 

multiprocessor systems. The importance of this class calls for more attention. 

This is one of the most common trends of parallel processing because it may be 

the building block of larger systems. They are suitable for general purpose as 

well as special purpose computing. 

Several common design issues of multiprocessors (TCSs) are presented below. 

Most of them may be applied to MCSs and LCSs too. Readers may refer to 

Cleme88a] for more details. 

a. Metastability 

A general purpose machine with high flexibility requires a memory such that 

every word is accessible to every processor at any time, with access time 

comparable to that of an unshared memory. Usually an arbiter is responsible for 

the scheduling of the competing memory accesses. Communication between the 

processors via the shared memory must be reliable. Typically, a hardware 

semaphore is used. 

However, there is a finite possibility that a processor may request access at the 

exact moment that the arbiter is making a decision. The state of the system is 
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undefined in this cases. This phenomenon is known as the metastability pro-

blem, which is identified as a soft failure [Cleme88c]. The machine will not be 

brought down if it is robust enough. 

b. Distribution of tasks 

The distribution of tasks in a multiprocessor system is strongly determined by 

the nature of the particular application. An effective multiprocessor must be 

able to allocate resources to contending processors without seriously degrading 

the overall performance of the system. This is the duty of and also the challenge 

to the multiprocessor operating system designer. 

c. Interconnection topology of the processors 

The success of a multiprocessor system is closely geared to the effectiveness of 

the interconnection topology. Designer must consider the cost, band width, and 

reconfigurability of the network. Usually tradeoffs have to be made under the 

constraints imposed by an application. 

d. Management of the memory resources 

Design decisions on the control/arbitration logic, security measures, mode of 

memory access and cache organization are critical issues. Things will be much 

more complicated when virtual memory and multi-programming are supported. 

e. Avoidance of deadlock 

Deadlock may occur at different levels: from high level inter-processor 

communication to physical signal protocols used for system synchronization and 

control. A priority system is probably the simplest, and also the preferred 

solution in many systems. 

f. Control of input/output devices 

Subject to cost considerations, it is usually not necessary and also not feasible 

to allocate peripheral devices to every processor node. The question is who will 

control which device, and whether the operation of the devices will interfere 

V -
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with the normal work flow of the system. For instance, a device that is directly 

connected to the shared bus may degrade the performance of the multiprocessor 

when the application program is lO-bounded. Sharing, allocation and security 

protection of devices are difficult and also crucial problems. 

g. Choice of operating system 

Master-slave type operating system is straight forward, simple and efficient if the 

vulnerability of the controller is not a problem. On the contrary, the distributed 

control type is much more complicated but robust. 

1.3.3 Using microprocessors 

An old problem with multiprocessor systems is the cost. Connecting a number 

of powerful processors to work in parallel is quite expensive if not prohibitive. 

The solution to this problem is related to the fact that the performance of a pro-

cessor is not directly proportional to its cost [EliMo83], as figure 1.6 shows. 

• P e r f o r m a n c e / Q R O S C H ' S 
“ / LAW U N I T Y C U R V E 

/ / ^ ^ A C T U A L C U R V E 

C o s t 

Figure 1.6 Performance versus system cost. 

V -
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Grosch's Law [BauSe75] suggests that processor performance is proportional to 

the square of its cost. But this is no longer true now. 

Nowadays, a costly processor does not outperform a cheap processor by the ratio 

of their cost, as the lowest curve in the figure indicates. That means the designer 

should use a large number of low-cost processors to obtain more processing 

power instead of using a small number of powerful and expensive ones. Due to 

the rapid development of VLSI technology, microprocessors are now so cheap 

that large scale multiprocessors are realizable. Some mass-produced standard 

microprocessors such as MC680x0, M88000，80386，and NS32532 even have 

architectural support for multiprocessing [Tabak90]. They are the most basic 

building block of many existing multi-microprocessor systems. 

1.3.4 Bus based systems 

Recall that we have discussed the use of a shared bus as the simplest way of 

interconnecting PEs. The argument was made on the ground of cost and 

simplicity. This will be elaborated in the following paragraphs. 

Undoubtedly, a shared bus is the cheapest way of interconnecting processors. 

The hardware requirement is minimal because there is nearly no active logic. 

For instance, multi-stage networks and cross-bar need switch boxes plus many 

wires. On the other hand, no special software, such as routing algorithm, is — 

required for bus system. An important advantage is the ease of scaling up and 

down the system by varying the number of processors. Very few other network 

topologies provide this flexibility. Bus systems can simulate virtually all other 

topologies without much difficulties but the reverse is not true. It is an ideal 

choice for prototyping. 

A well known disadvantage of a shared bus is the limitation of the band width. 

Communication intensive computations may face a bottle neck at the shared 

bus. The degree of parallelism can be seriously degraded. Another difficulty with 
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bus systems is that heterogeneous systems are hard to build. Interfacing various 

types of processor nodes and devices to a single bus by force may degrade the 

performance of the system significantly. 

It is reasonable to assume processor nodes do not communicate with each other 

extensively, otherwise the problem should not be solved in a distributed way. A 

SIMD type computer may be employed instead. Apart from cost and simplicity 

considerations, fast prototyping is also a primary concern for many designers. 

Even if the design do not have a heterogeneous architecture in mind, this 

expansion is easy at a higher level, eg. at the MCSs or LCSs level as we have 

mentioned in section 1.2. So the use of a bus architecture does not close the 

expansion path. Basically, the tightly-coupled nature of multiprocessor systems 

do not encourage heterogeneity. 

1.4 Shared memory and message passing 

In multiprocessor systems, user processes are spread over several processor 

nodes. Usually, they are working cooperatively to achieve a common goal. 

Information exchange is inevitable. The two most common paradigms for inter-

process communication are called message passing and memory-sharing. Both 

paradigms are well applicable to uni-processor and multiprocessor systems. 

1.4.1 Shared memory 

The principle of this paradigm is simple. Two or more processes have access to 

a shared area, which may be as large as the whole memory space or as small as 

a single word, where communication data can be stored. This idea is roughly 

represented in figure 1.7a. 

Depending on the particular application, some processes may have 

READ/WRITE access right to the area while others have READ access right 

V-
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Figure 1.7 Two inter-process communication paradigms. 

only. All the processes that manipulate or read from this shared memory area 

must observe a set of predefined rules about the data structure, how to flag the 

availability of valid data, locking of resources, and so on. The programmer must 

pay attention to all this matters. The effect caused by a faulty program may be 

catastrophic so the programmer's duty is quite heavy. If security must be 

enforced, special hardware and/or software mechanisms must be incorporated. 

Note that so far we are talking about the communication between software pro-

cesses. Ultimately, having a shared virtual memory space is enough for this level 

of communication, no matter it is a uni- or multi-processor system. Programmers 

are not required to know how such an environment is provided. The mailbox 

concept in multi-programming uni-processor systems is an example. In 

Russo77], similar mailbox concept is applied to a shared memory multiprocessor 

system for inter-processor communication. 

1.4.2 Message passing 

The basic idea of message passing is no more complex than memory-sharing. 

Processes do not need to share an addressing space. They interact with each 

other by exchanging messages in the way figure 1.7b summaries. Such messages 

bear sender and receiver qualifiers. Normally, system calls are available for the 

V -
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processes to send, receive, reject, and acknowledge messages. The sophistication 

of message systems can range from fixed length un-typed messages with single 

priority, to variable length messages from a hierarchical type structure with 

priority levels. 

Message communication can be classified as synchronous and asynchronous. 

The former class implies that the message sender will be blocked (halted) until 

the receiver has acknowledged the message or the time out period expires. The 

sending of such messages also serves as a synchronization point of the sending 

process. Occasionally, the arrival of a message means much more than the data 

it carries. As a matter of fact this is a way of implementing synchronization 

primitives. Obviously, for this class of message systems the reservation of buffer 

area for a single message is enough. The communication logic is fairly simple 

too. However, parallelism is traded because the sender may be blocked 

frequently when it is coupled with a slow receiver, and vice versa.“ 

Asynchronous Sending means the sender does not wait for the acknowledgement 

from the receiver before it goes to the next program statement. The data field 

of the message contains all the information to be conveyed. A message queue 

must be maintained by the system in order to keep track of the sequence of the 

messages, and to decouple a fast sender and a slow receiver. However, the time 

and memory space overhead of manipulating this queue must be considered. 

Although this paradigm looks more sophisticated, the programmer's duty is even 

lighter than using shared memory since the burden of supporting message 

passing has shifted to the operating system. The programmer does not need to 

know how the messages are handled. In secure systems, user processes cannot 

access the memory spaces of other processes since message passing is the only 

way of communication. Hence, data encapsulation is easily enforced. 

1.4.3 Comparisons of the two paradigms 

Sr 
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This section tries to contrast the two paradigms. It is clear that none of them 

wins in all aspects. Table 1.1 lists the main points in our following discussion. 

’ I I 

Shared-memory Message-passing 

Speed Higher Lower 

Hardware requirement Memory controller Serial links 

Software requirement None Communication kernel 

Programmer's model Very Primitive Bases on processes 

Data encapsulation None Yes，ease to enforce 

Level of abstraction Lower Higher 

Portability not so good Good 

Security enforcement Difficult Easy 

Application examples Real-time systems Object-oriented systems 

Table 1.1 Summary of the two paradigms. 

Due to the fact of memory-sharing, the communication speed in such systems 

can be as fast as normal memory accesses in both multi- and um-processor 

systems. On the contrary, message passing systems are usually slower owing to 

the extra message queue manipulation overhead. In uni-processor system, this 

is merely the effect of extra software housekeeping work. But in multiprocessor 

system, bit-serial links are predominantly used (for cost cutting) so off-board 

communication is an order of magnitude slower than intra-board access. The — 

delay due to extra communication hardware logic and message buffering are also 

significant. Very few message systems can afford full inter-connection so delay 

caused by intermediate hops is great. Moreover, message passing is implemented 

at the subroutine level and it requires cooperation at the receiving end. 

A point worthy of mentioning is that the memory access time for shared memory 

systems is very uniform. In contrast, the long delay of messages forces the pro-

grammer (or operating system) to adjust his task assignment strategy on message 

passing system. In a word, memory-sharing normally implies better speed. 

v-
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However, we shall see later that this gap can be bridged. 

A good memory controller is all it needs for a shared memory system. The 

arbitration and control logic inevitably takes time. It contributes to the 

saturation effect mentioned in section 1.2. Fortunately the price is inexpensive. 

Message passing systems requires physical links, associated control logic and 

software. 

Concerning software requirements, shared memory systems require virtually no 

special provision as oppose to the need for a communication kernel in message 

passing systems. For message passing, the kernel is a set of communication 

primitives. Some useful primitives can be found in [Ng86]. According to 

"GentlSl], the semantics of primitives must be easy to understand, efficient to 

implement, encourage the execution of processes in parallel, and not error pro-

ne. The programmer interfaces with this kernel which is usually a part of the 

operating system. An example of such a kernel is introduced in section 2.5. 

The programmer's model for memory-sharing is quite primitive. Most critical 

issues, such as security and consistency, must be addressed by the programmer. 

On the other hand, the idea of message passing is more elegant. The freedom 

of the programmer is limited but his duty is also lightened. In shared memory 

system, rarely any special software support is available so the program must 

handle all the details. Evidently, life is easier for a "message passing system" pro-

grammer. 

Although the portability of concurrent programs has never been satisfactory, 

message passing as a vehicle for expressing interaction has a leading edge. Due 

to the versatility of this model, the only variable in the system is the ratio of 

local memory access time and non-local message delay. This parameter governs 

the process scheduling policy. Other issues, such as interconnection topology and 

connectivity, are handled by the system software. For example, if a process graph 

is to be mapped onto a grid array of transputers, a layer in the operating system 
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has to hide the fact that each transputer has only four bi-directional channels for 

communication. This situation is typical because cost and fan out limitations 

restrict direct linkages to neighboring nodes only. 

On the contrary, programs for shared memory systems are hard to port due to 

their strong dependency on the particular hardware environment (address of the 

shared area，access protocol, etc.). In summary, we can say that the message 

passing paradigm has a higher level of abstraction. 

An interesting point is that after eliminating all the hardware parameters, 

memory-sharing is so simple that it has become a good computation model for 

parallel algorithm study. This model is know as PRAM [Akl89]. A possible 

explanation is that porting programs for a conventional serial computer onto a 

shared memory machine is easier than restructuring them in the message passing 

paradigm. ‘ 

For message passing, if the memory spaces of any two processes are strictly 

separated and isolated, then data encapsulation can be easily enforced. Security 

measures can be imposed because the communication kernel is a part of the 

operating system. Relatively, shared memory systems are more difficult to 

monitor and control. 

Both paradigms are extensively used as idealized computation models. Message 

passing is quite suitable for object-oriented systems due to its data encapsulation 

and abstraction property. General issues and examples of object-oriented 

architectures can be found in [SiMiM86, WiLoE87, TasP189]. A whole class of 

concurrent programming languages called Communicating Sequential Processes 

(CSP) [ShMiS78] employs this paradigm. Occam [Inmos83] is one example. In 

AthSi88] a number of message passing systems are discussed. On the other side, 

existing examples of memory sharing include the Balance system [ThGiF88] and 

Encore system [Tabak90]. 
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Along with the improvement of performance, it is now possible to build object-

oriented systems, which employ message passing, for real-time applications too. 

The project pdvPOOL described in [TasP189] is one of such new attempts. 

1.5 Summary and comment 

The above discussion focuses on qualitative aspects of the two paradigms. For 

computer architects, actual system performance is usually the primary concern. 

Both modelling and analytical studies have attracted wide attention. Since 

message passing systems vary significantly in complexity, and their performance 

depends strongly on the particular implementation, theoretical studies received 

less notice. In [Sangu86], the performance of a message-based multiprocessor is 

analyzed. It was shown that super-linear speed-up is possible for computation 

bounded workloads running in a mulit-programming environment. The treatment 

can be generalized to other message passing systems. 

Theoretical studies of the shared memory architecture can be found in 

[Nader88a, Nader88b, BodLi89, Zhang88]. Naderi modelled shared memory 

multiprocessor systems with Markovian chains and queuing network. The 

resulting expressions are later generalized for systems that have multiple shared 

memory modules. Zhang discussed the effects that influence the performance 

of bus-based multiprocessors while Bodnar and Li analyzed the performance of 

such systems with a probabilistic, hierarchical model. 

In this chapter, we figured out the background from which our proposed multi-

microprocessor workstation emerges. Other approaches of gaining computation 

power are briefed. The rationale supporting the choice of a shared-bus 

architecture was discussed. The seemingly contradicting communication 

paradigms, message passing and memory-sharing, are introduced. Actually, these 

two paradigms are not exclusive, and they can even cooperate smoothly as we 

shall see later. Before the proposed machine is presented, we shall look at 

several typical machines in chapter 2. 

v-
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CHAPTER 2 

AN OVERVIEW OF COMMON APPROACHES 

In this chapter, we shall examine others' research efforts related to this project. 

Due to the explosive increase of multiprocessor systems, this overview is by no 

means exhaustive. Emphasis will be placed on aspects that resemble or contrast 

with our approach. 

2.1 SUPRENUM 

CPU/SAC 
(MC68020) 
(MC68S82) 

|i| I I 

C . c h e l i ^ G e n e r a t o r | | 
( 64K ) I f l H H i B Comm. H m U m 

• 
4 J - CI u s t e r B u s ( 2 5 6 M B y t e / s ) 

Figure 2.1 The architecture of a GPPN. 

SUPRENUM is the German supercomputer project aiming at the development 

and construction of a distributed-memory multiprocessor system. The structure 

of a basic node, as the designer called GPPN (General Purpose Processor 

Node), is shown in figure 2.1. Maximally, 16 GPPNs connected to a shared bus 

form a cluster like the one in figure 2.2. At a higher level, 16 such clusters form 

a 4 by 4 grid as shown in figure 2.3. MC68020 is the heart of a GPPN. The 

communication processor is a dedicated to sending and receiving messages. The 

256 nodes are connected via a 2-level interconnection network of buses. Despite 

of the fixed topology, the logical structure of the software processes is 
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Figure 2.2 A cluster of GPPN's. 

dynamically reconfigurable so the system can be configured to fit different 

computation structures. The mapping library provides optimal processes-to-pro-

cessors mapping strategies for some standard process structures, and uses 

heuristic for unfamiliar irregular process structures. 

This multiprocessor aims at numerical applications such as the simulation of 

fluid dynamics systems. It exploits coarse gain parallelism. The message-based 

operating system PEACE employs distributed control and provides load 

balancing. Unix V is chosen as the front end for interfacing with the user. The 

programming model bases on the process concept. For more details on the 

machine and its operating system, reader can consult [SchSo90, Giloi87". 

2.2 MEMSY 

V-
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Figure 2.3 The grid topology using row and column buses. 

MEMS Y (Modular Expandable Multiprocessor System) [FrHeH90] is a very new 

MIMD multiprocessor with Distributed Shared Memory (DSM, similar to 

SM3's) organization. Since MEMSY aims at numerical simulation problems, it 

is designed to deal with the locality character of the physical problem. Data can 

be exchanged rapidly between two adjacent nodes. 

Figure 2.4 depicts the structure of a processor-memory module (PMM). P is a 

commercially available microprocessor which performs inter-node- and I/O-

communication. SP is a special processor, say i860 or 88100，dedicated to 

perform user's task. SP communicates with P via a dual-port memory SM. 

Standard and special software is stored in the local memory LM. The connection 

to the global bus will only be used at level B and C (figure 2.5). 

PMMs are arranged in a 3-level pryramidal hierarchy as shown in figure 2.5. 

Level A (256,1024，". nodes), which consists of worker-PMMs, computes the user 

problem while level B (64 or more nodes) accommodates the OS functions and 

performs I/O. Level C is a supervising PMM which connects the system to a 

host machine. At each level, the processors form a toroidally closed NN-system 

(Nearest Neighbor). Coupling between neighboring PMMs is realized by a multi-

port memory so data exchange between adjacent PMMs is particularly fast. The 

V 
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Figure 2.4 MEMSY node structure. T:test and monitoring interfaces. 

top processor is connected to the B level PMMs by a common bus with 

broadcasting feature. An array of 32x32 worker-PMMs could achieve 20 

GFLOPS peak. Watch dog processor WD is for fault diagnosis. 

Three major features of this system are: 

1. Scalable - a family concept allows for composing from small to large 

system. The interconnection network is regular and easily expandable. 

2. Distributed OS - each node has its local OS kernel. The OS supports an 

object-oriented programming environment. 

3. Observability - a hybrid monitor ZM4 helps to gain insight into 

parallelized execution of large jobs. 

In summary, MEMSY is an example of hierarchical structure systems. It 

combines the advantages of using a shared bus and multi-port memory. Note 

that I /O operations are distributed to level B nodes, which is a common feature 



CH.2 AN OVERVIEW OF COMMON APPROACHES p.25 

c 

® Processor-Memory-Module ( PMM) 
S y m m e t r i c m u l t i p o r t - m e m o r y c o n n a c t i o n 

- ^ • A s y m m e t r i c mu I t I p o r t - me mo r y c o n n e c t 1 o n | 
" • • " C o m m u n i c a t i o n b u s i 

Z I / 0 

Figure 2.5 Example of a 3-level MEMSY structure, 

for multi-computer systems but not for multiprocessor systems. 

2.3 ELXSI 

ELXSI System 6400 is a commercial product that features up to 12 CPUs. As 

shown in figure 2.6, all components are connected to a shared bus. ELXSI uses 

proprietary 64-bit CPUs. Depending on the processing requirement, 3 types of 

CPU can be chosen. Model 6410, 6420，and 6460 have the same architecture but 

increasing performance. Different models can coexist in a system. 

The CPUs support the IEEE floating point standard. Each CPU has 16 sets of 

V ' 
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Figure 2.6 Components of the ELXSI System 6400. 

16x64-bit general purpose registers and 16 sets of process context registers. 

Architectural support of the OS is evident. 

Gigabus is a very fast (25ns cycle time), 110-bit proprietary bus. Virtual address 

of 6400 is 4 GBytes, with 2 GBytes per program space. ELXSI offers a virtual 

machine interface called the System Foundation. 25 system processes form an 

OS environment. Unix is also supported as the front end. Inter-process and 

device controller communication are accomplished via message passing. 

In summary, this is a simple architecture with high performance bus and CPUs. 

But the use of proprietary devices raises the problem of incompatibility. 

Interested readers may see [Tabak90, Olson85, Sangu86] for more details. 

2.4 Sequent 

This well known bus based commercial multiprocessor system divides into the 

Balance (B) and the Symmetry (S) series. They are substantially different at the 

assembly language level but very similar at the high-level language level. A 
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general structure of the Sequent system is shown in figure 2.7. 
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Figure 2.7 The Sequent System. 

The B-series uses the NS32032 family, with the associated NS32081 floating 

point processor, and the NS32082 memory management unit. The S-series uses 

the i80386 and 180387 correspondingly. Up to 30 of these dual-processor boards 

can be connected in a system. Optionally, a floating point accelerator can be 

added for each S-series CPU. 

The shared bus is a 80 Mbytes/s Multibus. Every device connected to the bus 

has a System Link and Interrupt Controller (SLIC) proprietary IC chip. It 

manages the control of multiple processors. All SLICs are connected by a bit-

serial SLIC bus. It uses a high-speed, synchronous protocol independent of the 

— system bus. SLICs communicate by exchanging command and response packets 

that are 17 bytes long. 

The DYNIX operating system for the machine is UNIX compatible. It virtually 

supports any number of CPUs. System configuration is defined during start-up 

time. Ada is the chosen programming model and language. 

As a whole, this is a very flexible and powerful system. The design decisions are 

reasonable and typical. Compatibility is improved by the incorporation of the 

SCSI bus. Information about this system can be found in [Tabak90, ThGiF88]. 
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Although this system does not bear any surprising attribute, it is a commercial 

success and was used as the hardware background for the Yackos project 

described in section 2.5. 

2.5 YACKOS 

Although it is not a hardware construction project, this effort is closely related 

to our project. The support of message passing on top of a shared memory 

architecture is the project's main theme. Detials are given in [FinHe88]. 

YACKOS (Yet Another Communication-Kemel Operating System), like other 

communication-kernels, provides three major functions: process support, 

memory-management support, and inter-process communication. It aims at pro-

viding very high band width communication with very low latency. The message 

passing facilities have been implemented above DYNIX on the Sequent 

machine, which is described in section 2.4. 

The reason for building Yackos message passing on top of a shared memory 

architecture is to allow the user the convenience of message passing with nearly 

the performance of shared memory. Similar attempts have been made by many 

researchers. [RetTh86] says that shared memory can support message passing for 

easier program decomposition. 

Yackos reduces context switches by letting its processes communicate with the 

kernel by writing to and reading from a shared data area, the Interface Area. 

Processes may change part of their interface area by writing directly to it; some 

other parts may be changed only by calling interface functions that are linked 

with the process. The process and kernel together maintain busy and free pools 

for both incoming and outgoing messages. The headers for these pools are 

stored in the interface area. Processes allocate buffers by calling the function 

InitPool. Each process has its own set of buffers. 

V -
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Large message buffers are 1024 bytes while small ones are 32 bytes. Message 

headers are stored directly in the buffers. Messages are stored in the order of 

reception on the busy input queue. A process calls GetOutput and PutOutput 

to get a free buffer then enqueue the message on the busy output queue. 

Corresponding Getlnput and Putlnput are called to receive messages. Figure 2.8 

summaries the idea. Destinations are given as process identifiers. 

I n t e r f a c e A r e a 

Busy out put b u f f e r s 

Figure 2.8 Yackos input and output queues. 

Messages are sent either best-effort (try to complete a transmission but still 

allow it to fail) or reliably (every transmission must succeed). For this purpose, 

the sender's interface area variable InputStrategy together with the flag in the 

message header determines the kerael's actions when the receiver's input queue 

is full. The message is either discarded without notice, or returned to the sender, 

or kept in the sender's output queue. 

On a native uni-processor implementation, calling an interface function should 

not switch context to the kernel. Only calls to the service routine Block (until 

buffer available) and NoOperation cause context switching. This design allows 
V 
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a process to manipulate many messages before switching to the kernel for 

message passing operations. 

DYNIX allows different processes to map the same physical space into their 

virtual memory so independent heavy-weight processes may share memory. This 

is the key feature to combine shared memory and message passing with Yackos. 

The current implementation of Yackos uses DYNIX for process support and 

memory management. In place of a true native kernel, Yackos introduced a 

DYNIX process known as the message passer (MP). Processes that want to use 

Yackos for inter-process communication call an interface initialization function 

that maps the common data region into their virtual spaces and assigns them a 

Process IDentifier (PID). Given a PID, the MP can quickly find the interface 

area for a sender or receiver. 

After initialization, processes may look up PIDs of other processes. This feature 

helps to establish process connections. Buffer queues are arrays of addresses of 

message buffers and are organized as circular queues. Locks are not needed 

because each queue has only one producer and one consumer. 

Large message are not copied. The address of the message is placed in the busy 

output queue of the receiver, a free input buffer of the receiving process is 

removed and placed on the sender's free output queue (processes may share 

message space). Since small messages are only 32 bytes, they are copied. 

The MP continually looks for messages that need to be sent. To speed up the 

search for new messages, they employed a small circular hint queue. Processes 

write their PIDs into this queue as a side-effect of calling PutOutput to send a 

message. Access to this queue is not locked so entries may overwrite each other 

and stale entries may remain. Therefore, all hints must be checked against the 

appropriate outgoing message queue. The MP only cycles through outgoing 

message queues when the hint queue is empty. The hint queue is inspected 

V -
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again after each outgoing message queue. Current size of the hint queue is 5. 

The MP runs simultaneously with client processes so they are not blocked when 

they send or receive messages (ie. the sender and receiver are decoupled). 

With the trickily designed message passer of Yackos, the frequency of context 

switching can be cut down. The key point is that now processes can send more 

than one message before reaching a context switch, provided that it is common 

to send messages in an intermittent manner. Such a design does not benefit 

interleaved conversations. However, measurements show that Yackos is a fast 

method which supports message passing on top of a shared memory architecture. 

Typical speed-up factor is 2. 

In short, Yackos provides a faster way of message communication. Speed up 

comes from the saving of context switches and redundant memory copies for 

large messages. However, it is evident that context switching cannot be totally 

avoided if the message passer is executed by the same processor that is running 

the sender or receiver process. 

2.6 Summary 

Undoubtedly, shared memory multiprocessor systems built around a shared bus 

is a very cheap and direct way of getting cost effective computing power. That 

is the reason why they are commercially viable and competitive. However, it is 

not a good practice to let the programmer (user processes) handle all inter-pro-

cess communication details due to security and effectiveness considerations. 

Thus, some multiprocessor operating systems allow message passing even on 

shared memory architectures. 

Probably, the most straight forward approach is to provide system calls for 

sending and receiving messages. However, this is very ineffective because the 

service routines will be very bulky. Many other functions must be embedded into 

the service routines such as security checks, buffer allocation, synchronization 
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control, queue management, and so on. A better solution is necessary, otherwise 

the advantages of supporting message passing will be negated. 

Yackos exemplifies a typical solution. A system process known as the Message 

Passer (MP) is introduced. It is executed simultaneously with user processes. 

Processes send and receive messages by invoking primitives (they are relatively 

short) which write down the requests on the shared memory area. The message 

passer performs all the housekeeping and checking procedures. Security is 

improved because the user processes theoretically need not manipulate the 

shared area directly. 

Although the Yackos solution sounds good, the message delay is significant when 

the idea is implemented. It is evident that every message transfer involves at 

lease two context switches (to and from the message passer). The cost is so high 

that the user cannot benefit from the shared memory architecture. Even if the 

message passer is kept permanently resident in the main memory (not swapped 

out to the system disk), the two context switches still takes a long time for many 

microprocessors. So Yackos is forced to allow the primitives to allocate message 

buffers such that more than one messages can be sent before a context switch. 

Whereas the improvement is impressive, the problem is not yet eliminated. 

Actually, the assumption that messages appear in an intermittent manner may 

not hold for some applications. 

Up to this moment, we have figured out the status of supporting message 

passing on shared memory architectures. The next chapter will describe our 

solution to this problem and show how the message passing paradigm can be 

implemented effectively on a shared memory system. 

V -
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CHAPTER 3 

THE MPC APPROACH 

3.1 A shared memory multiprocessor architecture 

In order to explain the concept of Message Passing Coordinator, which involves 

both hardware and software, we have to give a brief description of our proposed 

machine architecture first. Details will be given later in this chapter. 

After the discussions in chapters 1 and 2，it is now clear that a bus-based shared 

memory multi-microprocessor system is a good choice for getting more pro-

cessing power. Advantages can be gained in many aspects: low cost, simplicity, 

fast implementation, expansibility, and so on. 

To reduce the use of the shared bus, each processor in the multiprocessor 

system should have local memory. A centralized, shared memory module is not 

necessary if the local memory of a processor can be accessed by other pro-

cessors. So we get a distributed shared memory multiprocessor architecture. 

Based on this architecture, we will start our discussion on message passing as a 

way of inter-process communication. 

3.2 Message passer for inter-process communication 

From the discussion in chapter 2, we learnt that the Message Passer (MP) 

approach is an elegant way to support message passing on top of a shared 

memory architecture. The MP approach can be dated back to the work 

published by University of Waterloo in 1981，or earlier. However, their 

motivation was somewhat different. Let us have a quick look at it. 

In [GentlSl], the Administrator concept was introduced for message passing 

between concurrent processes. The administrator is a software process for 

V 
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managing worker processes (similar to today's servers) by handling the messages 

for them. Client processes and worker processes are decoupled. Other features 

such as message format checking and deadlock detection are built into the 

administrator. We must stress that this is a pure software project. Actually they 

were trying to support message passing with the help of the operating system. 

The underlying machine may be any serial computer that supports multi-pro-

gramming. 

Unfortunately, the MP is not efficient when really implemented. To explain our 

solution, we have to look at message passing using the MP approach. 

3.2.1 A review of the message passer approach 

Figure 3.1 briefly illustrates the message passer approach. As a system process, 

the MP is executed concurrently with user processes. When process A wants to 

send a message to process B, a system call (also called primitive) is invoked 

which writes the request to the mailbox in the shared memory area. The MP, as 

a middle-man, services the request and then marks the arrival of a new message 

for process B. Once B wants to receive a message, it invokes a system call and 

gets the message from the mailbox. 

With the MP as a system process, security checks can be enforced. Functionally, 

_ the MP acts as a routing center. Point-to-point and broadcast messages can be 

handled efficiently. A hierarchical, typed message system is easy to support. The 

service routines in the communication kernel will be short and simple. They may 

be either run-time library routines or embedded into a high level programming 

language in the form of system macros. 

Collectively, the basic duties of the massage passer include: 

-manage the shared memory area 

-enforce protection scheme 
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Figure 3.1 The role of the message passer. 

-maintain message queues 

The operation of the MP is transparent to the programmer. The MP buffers the 

outgoing and incoming messages for the user processes so that the sender and 

receiver(s) are decoupled. This is the basic requirement for asynchronous 

communication. Thus, the message queues should be maintained by the MP. 

3.2.2 Pit-falls of the message passer approach 

As aforementioned, the inefficiency of the MP is basically due to the cost of two 

context switches for every message. Although this can be cut down using the 

Yackos approach (refer to section 2.5), the remedy does not universally apply 

to all applications. Actually, messages generation pattern may vary dynamically 

for an application. Moreover, a multiprocessor operating system with special 

support for mapping virtual memory to physical shared memory is required. 

One fatal problem concerns load balancing and the degree of parallelism. Recall 

that the MP may share a physical processor with other user processes, when user 

processes on other processor nodes request the service of the MP, context switch 
V 
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to the MP is necessary. Evidently, the processor node where the MP resides 

carries a workload that varies according to the communication requirement of 

the processes on other processor nodes. 

In order to deliver reasonable throughput, it is natural to raise the priority of the 

MP so that it can provide timely services. As a result, other user processes that 

share the same processor with the MP may suffer from series neglect. The 

overall effect of the problems mentioned in this paragraph makes the system 

behave in a complicated way. Consequencely, load balancing becomes quite 

difficult and the system performance is hard to predict and analyze. Finally, the 

degree of parallelism is lowered and uncontrollable. 

To illustrate the above discussion, let us consider the situation shown in figure 

3.2. When the message traffic in the system is light, more processes can be 

assigned to processor B that is running the MP so the given situation is possible. 

Some time later, most of other processes have finished their current jobs and try 

to exchange messages at roughly the same time. Processor B will then suddenly 

become overloaded and consequently most other processes have to wait, either 

for the MP or their conversation partner in processor B. The situation is even 

worse when some of the processes want to broadcast messages. 

I' ‘ I I I " I "-t I •• 1' ''' I I " 卜 ‘ I ： —J .•.•；•••： I I i I —Y III I I —-.•：•：•••••. 

P P P P P MP P P P p p p 

Processor A B C D 

P： user process, MP: message passer 

Figure 3.2 A scenario of the message passer system. 
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This simple example has demonstrated vividly that the simple message passer 

approach may cause series performance problems. Although Yackos [FinHe88' 

attempted an ingenious solution (section 2.5)，the problem is still there because 

the applicability of the solution is very limited. We need a better solution. 

3.3 The role of the MPC 

3.3.1 The quest for the MPC 

Recall that in section 3.2.2, we found that the work load the MP brings to a pro-

cessor is difficult to estimate, so it is difficult to allocate this process to a 

physical processor. During busy time, other user processes being executed must 

yield the right of execution to the MP so the equilibrium is destroyed. Even if 

the system supports process migration, it is too late to move the MP to a less 

busy processor. Moving the user processes around is also very costly. 

This line of through leads us to allocate a dedicated processor to execute the 

ME. An obvious motivation is that we must treat the MP differently because its 

behavior does not resemble other user processes. The first impact of taking this 

move is that a shared memory multiprocessor will no longer be homogeneous. 

To distinguish the processor that executes the MP, it is given the name Message 

Passing Coordinator/Controller (MPC), which is inherited from its message 

passer antecedent. We define it as a couple of a software process and a physical 

processor. In our later discussions, when we talk about the MPC the context will 

determine whether the software process or the processor is referred. 

For a message system using a MPC, the new picture is analogous to the PABX 

(Private Automatic Branch eXchange) [March77, ScoWa84] telephone system, 

where an "intelligent" switch box manages the message traffic. Such a switch box 

is usually computer-based. Figure 3.3 contrasts the two concepts. It is interesting 

to locate their similarities. 
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Figure 3.3 PABX switch and the MPC. 

The PABX switch box connects the local site to the outside world. The MPC 

also connects the pool of processors (or processes) to the host computer which 

interacts with the external world. The users of a PABX switch are physical 

devices while the users of the MPC are processors (or processes). 

The Switch 

part of a PABX switch box supports any connection combination 

(cross bar). The Control part is a computer that exercises the connection policy. 

The Service part provides dial tone, busy tone and other signals. Analogously, 

the Switch part of the MPC is the mailbox area connecting the processes. The 

Control part applies the predefined connection policy with the help of message 

queues. The Service part of the MPC provides ready signals, automatic acknow-

ledgement and other services. As a whole, the correspondence is obvious. 

3.3.2 Duties of the MPC 

The basic responsibility of the MPC remains intact after evolving from the MP: 

it acts as a message control center of the programming environment. The 

difference is that the message passer had changed from a floating software pro-

cess into a static, hardware and software combination. To look into the details, 

we have to consider software and hardware aspects separately. 

3.3.2.1 Software aspects 

Apart from message routing, the MPC must be responsible for other 
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housekeeping duties related to message traffic control. In some sense, it is a 

value-add MP. We shall start the discussion with its basic duties first: 

a. Message routing and multi-casting 

Each message (more precisely the message header) bears the sender and 

receiver PIDs. The MPC enqueues new messages on the input message queue 

of the receiving process, or a set of message queues when it is a broadcast 

message. The number of successful receptions is recorded. In order to achieve 

this purpose, processes that want to enjoy the service of the MPC have to 

register first. The MPC allocates mailboxes and creates message queues for 

freshly joined processes. 

b. Message buffer allocation 

We have stressed that it is very desirable to decouple the sending and receiving 

processes. To achieve this goal, the MPC must be able to buffer messages so 

that the sending process can resume its work once the message is handed to the 

MPC. Maintaining a free buffer pool is also a primary task of the MPC. 

c. Message queue manipulation 

In order to maintain the arrival sequence of the messages, there must be at least 

one input message queue for each participating process. The number of queues 

for each process depends on the complexity of the message system. For instance, 

- more queues may be necessary if priority is enforced. The MPC is solely 

responsible for the manipulation of these message queues. 

Now, let us turn to the optional duties of the MPC: 

The MPC can offer optional functionalities if the application requires them and 

the work load of the MPC allows. Obviously, if the message traffic in a system 

is heavy, the MPC may not have sufficient capacity to perform extra works 

efficiently. Otherwise, it will become a bottle neck again. 
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a. A message filter 

With the MPC as a middle-man, a process can specify the message type(s) that 

it interests in receiving, and the set of valid users. The MPC can automatically 

filter undesirable messages without disturbing the receiving process. 

b. Deadlock detection/prevention 

In message passing system, deadlocks can arise from the invocation of blocking 

Send and Receive primitives. With a centralized message controller, the problem 

of distributed deadlock detection may be avoided. Since the status of a process 

can be stored as a side effect when it invokes the communication primitives, the 

MPC can detect the existence of deadlock condition. Deadlocks can also be 

prevented by failing requests that lead to a deadlock situation. The detailed 

detection and prevention scheme is out of the scope of this thesis. If constructing 

a global process graph for deadlock detection is too expensive, the MPC may 

use a time stamp to check on unattended message and handle them accordingly. 

c. Security checking 

The message type, length, priority and destination PID can be checked by the 

MPC. Faulty messages can be found and discarded before they are actually pro-

cessed by the MPC or the receiving process. Receiving processes can assume 

that arriving messages are alright. Security is improved and the disturbance due 

to defective messages can be minimized. 

d. Acknowledgement generation 

In many cases, the sending process may like to receive an acknowledgement 

from the receiver before it resumes its work. The MPC can generate a reply 

signal instead of requesting the receiver to create another message. Once the 

MPC finds that a receiving process has picked up the message, an acknow-

ledgement signal is delivered to the sending process. This method is more 

economical and faster. 

e. Performance analysis 

V -



CH.3 THE MPC APPROACH p.41 

The programmer can monitor the message traffic using the MPC. The MPC is 

easy to collect information about message frequency, generation pattern, and 

length spectrum. Information such as average queue length, average wait time 

and other statistical data are useful for parallel algorithm design. For a pure 

shared memory system, it is relatively difficult and inefficient to take such data. 

f. Load balancing 

Although this functionality seems ambitious, it may be useful and feasible for 

some applications. Imagine that several processes in the system are different 

instances of a class of server. If these processes call a primitive that performs 

blocking Receive, the MPC can easily identify which process is idle and 

consequently passes the next request, which is in the form of a message, to an 

idle server. Even if all the servers are busy, it is sometimes possible to estimate 

their workload in the near future from their input queue length. Then the next 

request can be passed to the process with the lightest future workload. Since the 

workload of a process does not necessary reflect the workload � the physical 

processor that the process resides, this feature is more suitable for systems that 

every processor executes only one process. 

3.3.2.2 Hardware aspects 

Basic duty 

The primary duty of the MPC, form a hardware point of view, is to manage the 

shared memory and execute the MP program. Although the MPC can manage 

the shared area as good as MP, the MPC approach is more secure. 

Strictly speaking, each processor needs to have access to no other shared 

memory locations but its mailbox. Only the MPC must access all the shared 

memory areas that are mailboxes. Owing to the hardware nature of the MPC, 

it is easy to design a address decoder that prevents a processor from accessing 

(or writing to) other processors' mailbox areas. Hence, the security problem of 

the shared memory architecture can be solved for the case in which each pro-
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cesser executes a single process. Even if more than one process are allocated to 

one physical processor, the damage that a process can cause is restricted to the 

processes residing in the same physical processor. 

If the private memory of every processor is hardware-protected from external 

access, some mechanism must be devised to load the program into this area. The 

simplest solution is the use of Read Only Memory (ROM). Another method is 

to install a switch to enable or disable the protection. 

Optional duties 

Since the MPC has a hardware portion, it is possible to support message passing 

by additional hardware. For instance: 

In the MP approach, a process that wants to know whether a new message has 

arrived must invoke a primitive and request for the attention of the MP. The 

reply is very often "no message has arrived." Such polling operations will pro-

bably involve context switches as well as the use of the shared bus, given that 

the user process and the MPC are probably not on the same processor node. 

A hardware alternative is to add a signal, such as MESSAGE AVAILABLE, for 

each processor. When the MPC has handled a new message for a processor (the 

MPC knows the process-processor mapping), the signal for that receiving pro-

cessor is activated. A single instruction is enough for doing this. The status of 

this signal can be read from a status register on every processor node. In this 

way, the number of requests to the MPC and shared bus usages can be reduced. 

This technique can be applied to the detection of buffer full, acknowledgement, 

and other similar situations. With considerable simplicity in software design, 

extra hardware cost is justified. The simple MP approach can also apply this 

technique but the hardware cost will be nearly doubled. Since the MPC is not 

adhered to a fixed processor, every processor must be capable of reading from 

and writing to the signal line. Only the MPC needs to drive the signal. 
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3.4 Advantages and disadvantages 

At this juncture, the characteristics of the MP and MPC approach should be 

quite clear. Let us contrast the pros and cons of the MPC approach in the 

following sections. If not specified, the MP approach is used as a reference. 

3.4.1 Advantages 

a. Context switching is completely eliminated 

Since the MPC is a dedicated processor which runs a MP-like process 

exclusively. No context switching is necessary for user processes and the MPC. 

b. Hardware support is favored 

The MP approach discourages hardware support for message passing because 

the MP is a floating process. As the example in section 3.3.2.2 shows, it is easy 

to add hardware for performance improvement in the MPC approach. Of course, 

the system designer must make cost trade-offs according to the application. 

c. Improved security 

In section 3.3.2.2 we discussed the possibility of preventing a processor from 

corrupting other processor's memory area with the MPC approach. Message 

type, priority, and length checking are introduced in section 3.3.2.1. With the MP 

approach, these security measures are difficult to enforce since a bulky MP will 

eat up memory spaces for user processes and the MP lacks hardware support. 

d. Easy to monitor the system 

We have mentioned that the MPC is a good place to monitor the message traffic 

in the system. Statistical data can be easily collected. If cost justifies, special 

hardware can be installed for diagnostic and monitoring purpose. 

e. Easier to predict system performance 

Since the power of the MPC depends only on its hardware configuration, the 
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service standard of the MPC can be accurately controlled. Concurrency is easier 

to control. On the contrary, we have shown in section 3.2.2 that the performance 

of the MP approach depends strongly on the task assignment and communicat-

ion property of the processes. 

f. Flexible MPC power 

If the whole multiprocessor is dedicated to a single application, it is possible to 

estimate the communication load at the beginning of the hardware design stage. 

If communication is a bottleneck, a processor that is more powerful than other 

processors can be chosen for the MPC. Otherwise, a less powerful processor may 

be sufficient. Although object code compatibility should be maintained through 

out the system, alternatives are normally still available because many micropro-

cessors appear in families. Other parameters of the MPC, such as private 

memory size, clock rate, and bus access priority can be adjusted too. 

g. Primitives are kept simple 

One of the original motivation of using the MP approach is to simplify the work 

of the communicating processes. This will shorten the time required to execute 

the SendMessage primitive and will also reduce the size of the primitives. 

Hence, the processes in the system will have more memory space for the 

application program because they do not have to cany the bulky, redundant 

codes in their object programs. On the contrary, the Yackos approach violates 

this principle because their primitives are responsible for queue and buffer 

manipulation, and hence much more bulky. 

3.4.2 Disadvantages 

a. Vulnerability of the MPC 

All along our discussion, we have implicitly inherited from the MP approach that 

there is only one MPC in a multiprocessor system. But since the MPC is a 

dedicated processor, it may be difficult to replace if it crashes. There are several 

solutions for this problem: 

V 



CH.3 THE MPC APPROACH p.45 

1. Have one more standby MPC - it is a natural but costly choice. Actually, 

the existence of such a non-productive processor in a bus system with 

limited fan-out usually implies that the place for a productive processor 

is wasted. However, this approach exhibits the highest fault tolerance. 

The crash of the MPC does not need a system cold start to recover. 

2. Equip all processor with the capabilities of the MPC - if special 

hardware is designed for the MPC to enhance performance, then 

implement all or part of this extra hardware on other processors. In case 

of MPC crash, select one of the processors to take up the job of the 

MPC. The extra hardware may not be as efficient as the full MPC but 

degraded performance may be acceptable. 

3. Software emulation - a standby process that can emulate the function of 

the MPC is activated as soon as the MPC becomes non-operational. 

Remember we can resort to the MP approach in the worst case. 

b. The multiprocessor is no longer homogeneous 

Since the MPC approach encourages tailor-made MPC hardware, the system is 

no longer homogeneous. Usually, performance will not be degraded. But now 

we cannot use a single regular building blocks to construct the system. Apart 

from the lost of simplicity, the only implication is the vulnerability of the MPC. 

c. Additional hardware and software necessary 

This is an inevitable cost the designer has to pay. Fortunately, the amount of 

extra hardware and special software needed are subjected to the trade-offs 

between cost and performance. 

3.4.3 Other discussions 

Although the MPC approach is an improved solution for supporting message 

passing on top of a shared memory architecture, we must add that not all the 

problems are solved. A problem inherited from the MP approach is that the 

introduction of an agent between the message sender and receiver will more or 
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less lead in inefficiency, although the MPC approach has improved on this. 

Since every message transferred requires the service of the MPC, and the MPC 

itself must service the incoming requests in a round-robin manner, the MPC 

cannot deliver all the processing power to a sending process even other pro-

cesses are idle. The author had thought of using an interrupt driven MPC but 

it also becomes very inefficient when many processes raise requests in a short 

time. 

However, we can borrow the philosophy of the Yackos approach to gain some 

improvement: a process can register more than one messages before the MPC 

services this process; and a hint queue can be used to speed up the polling job 

of the MPC. But evidently, the primitives will become much more complicated 

and this somewhat violates our goal. Design trade-offs have to be made here. 

3.5 Summary 

In this chapter, I revealed the serious problems with the MP approach. 

Accordingly, the MPC was introduced, which in a sense can be viewed as a 

value-added MP running on a dedicated processor. This approach favors 

hardware support for message passing. The extra functionalities that could be 

put into the MPC was discussed. Finally, we looked at the advantages and 

disadvantages of the MPC approach. All in all, the MPC is a more effective 

method to support message passing on top of a shared memory architecture. 
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CHAPTER 4 

THE DESIGN OF SM3 

4.1 Introduction to SM3 

After we had decided to build a multiple processor workstation in order to get 

good processing power, we had also decide to use off-the-shelf microprocessors 

as basic building blocks. Their excellent availability, low cost, and high 

performance/cost ratio are strong reasons. 

To construct powerful systems, the coarse gain MIMD class shown in figure 1.3 

is a good choice for the basic model. The next major problem is how to 

interconnect these microprocessors. We found that a tightly-coupled system is 

favorable because loosely- or moderately-coupled systems can be built using 

TCSs as building blocks. Moreover, a TCS requires only one operating system. 

The amount of resources, such as wires and peripheral devices, is also minimal. 

When choosing among interconnection topologies, the shared-bus architecture 

emerged immediately when cost, simplicity, expansibility and ease of prototyping 

were considered. Additionally, it can simulate virtually all other topologies. 

Concerning the processor-memory interconnection style, the PE-to-PE type is 

adopted, with the local memory modules being globally accessible. In other 

words, this is a distributed shared memory system. Figure 4.1 illustrates such an 

architecture. It is a good choice because the great flexibility. The local memory 

for each processor node is for normal data processing while off-board memory 

access via the shared bus is strictly reserved for inter-processor communication. 

A processor should not place its data in the other processors' local memories. 

At last the bus characteristics must be determined. We found that a synchronous 

bus with centralized control is easy to work on and interface with. The hardware 
V-
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Figure 4.1 A distributed global memory multiprocessor system. 

required is simple and not costly. Hence, we can indicate the position of our 

multiprocessor workstation in figure 4.2 by a box. 

Tightly-Coupled-Systems 
I ^ 1 

Processor-to-Memory PE-to-PE 
I ‘ 1 

Asynchronous bus Synchronous bus 
^ 

Distributed control 
Centralized control 

Figure 4.2 Position of the proposed architecture. 

Since the workstation is a Shared Memory Multi-Microprocessor system, we 

called it SM3 for short. In addition to normal processors, a host computer 

interfaces the pool of processors to the outside world via the front end operating 

system Unix. Let's look at the software and hardware aspects of SM3 now. 

4.2 Software aspects 

Although SMS is a typical shared memory multiprocessor, we decided to support 

message passing on top of this architecture for easier programming. The details 

have been given in section 1.4. In chapter 3, we have introduced the MPC 
V 
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approach as a better way to support message passing in contrast with the MP 

approach. Message passing with the help of the MPC provides a good 

environment for programming and inter-process communication on SMS. 

4.2.1 Programming model 

In chapter 3，we have introduced the basic and optional duties of the MPC. The 

programming model of SM3 is described in this section according to the basic 

duties of the MPC. For the currently constructed SMS, not all the optional 

duties of the MPC are included. To simplify our discussion, the part of the pro-

gramming model concerning the optional duties will not be described in detail. 

4.2.1.1 Logical entities 

For the sake of simplicity, we assume that each processor executes one software 

process only. That is, the process-processor mapping is one-to-one. Note that the 

MPC approach does not impose this restriction. 

The two basic classes of entities are user processes and the MPC. Processes 

communicate by passing massages. All messages are processed by the MPC. To 

maintain the order of and to buffer messages, an Input Message Queue ( IMQ) 

is maintained for each process. This queue is created when the process registers 

to the MPC. Figure 4.3 is a simplified programming model of the MPC. 

4.2.1.2 Communication procedure 

After a process has registered in the MPC, it may converse with other 

participating processes by sending messages via the MPC. Every interaction 

involves the three phases described below. However, the procedure may differ 

slightly for various types of messages. We shall talk about the standard pro-

cedure first. 
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Figure 4.3 A simplified model of the MPC. 

a. Send message 

A communication primitive SendMessage is invoked whenever a process wants 

to send a message. Related information is passed as input arguments as the 

primitive is called. The caller must supply receiver PID, message content, type, 

priority, blocking option, and broadcast option. The primitive then writes the 

message header to the mailbox of the sending process. 

b. Route message 

The MPC cycles through the MBXs (MailBoX) endlessly. Once it finds a new 

message, it checks the validity of the message first. Then the message is 

enqueued onto the IMQ of the prospective receiving process. If it is a broadcast 

message, the header will be replicated and appended to all potential receivers' 

IMQs. The MBX of the sending process will be freed again after the message 

has been successfully processed. In case of buffer full, the message will remain 

in the MBX until free buffer is available. Although this phase is called Route 

Message, nearly all optional duties of the SM3 are performed in this phase. For 

instance, type checking and filtering before the routing is done. 

c. Receive message 
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When a process wants to pick up a message from the MPC, it will invoke a 

primitive ReceiveMessage. The primitive will read in the first available message 

from the IMQ of this process. After a message is read, a flag is set by the 

primitive to tell the MPC to get the next message. Now let us turn to the 

acknowledgement procedure. 

If the sending process waits for an acknowledgement before resuming its work, 

it is called a Blocking Send. Similarly, a receiving process waits until a new 

message arrives if it is performing a blocking Receive. In the first case, the 

acknowledgement is generated by the MPC. The detailed difference between 

blocking and non-blocking Send are: 

Non-blocking - after the SendMessage primitive has successfully written the 

request to the mailbox, it returns straightaway. For a non-blocking Receive, the 

primitive also returns as soon as it has found that there is no available message. 

This result is then reported to the receiving process. 

Blocking - after the SendMessage primitive has written the request to the 

mailbox，it then waits for the acknowledgement. When the MPC finds that the 

receiving process has picked up the message, it sets a status bit in the shared 

memory to inform the sender of the acknowledgement. To avoid busy waiting 

and shared-bus contention, the technique described in section 3.3.2.2 is applied. 

During the course of execution, some processes may want to transfer an urgent 

message. The following example will explain this requirement: 

Suppose SMS is working on a matrix chain product problem. Each processor is 

responsible for calculating the partial product of two or more matrices. Com-

putation job assignment is conveyed by a message. At an instance, a process may 

have several pending messages in its IMQ. If one of the processes found that the 

result of its partial product is zero, then the final answer is also zero and other 

pending computations can be canceled. This condition may be indicated by a 

V-



CH.4 THE DESIGN OF SM3 p.52 

message with higher priority in order to overtake other normal messages. 

In SMS, 3 priority levels are supported. In the order of decreasing priority, they 

are Express messages, Normal messages, and Broadcast messages. Express 

messages may be point-to-point or broadcast messages that are urgent. Normal 

messages means ordinary point-to-point messages. Since the receiver is less 

specific, broadcast messages yield priority to normal messages. 

In order to support these 3 levels of message priority, a separated IMQ is 

created for each priority level. The names of the IMQ for Express, Normal, and 

Broadcast messages are called EIMQ, NIMQ，and BIMQ respectively. Figure 

4.4 shows a view of the IMQs. 
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Figure 4.4 The 3 IMQs in the MPC. 

The SendMessage primitive writes the message frame to the mailbox as usual. 

The MPC will then despatch the incoming message to the appropriate IMQ of 

the receiving process. When the receiver calls ReceiveMessage to receive any 

new message, the IMQs are examined according to the priority order. Hence, 

higher priority messages will reach the receiver earlier. However, the receiving 

process can also specify that only messages from a specific queue is desired. 

V 
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4.2.2 Message structure 

A build-in hierarchically typed message structure is highly desirable for any 

message-based systems. Different messages types can be handled in different 

ways by the system in order to improve efficiency. Programmers can save their 

development effort because they don't need to deal with the operational details. 

The programmer is only required to pass suitable arguments to the 

communication primitives SendMessage. On top of a basic build-in message 

structure, the programmer can also add their user defined message types, such 

as finely classified message types. 

In SMS a hierarchical message structure shown in figure 4.5 is supported with 

the help of the MPC. Message type is determined by 3 basic properties: priority, 

blocking option, and broadcast option. We shall elaborate the tree structure 

according to these properties. 

P r o g r t m i I Dat a/ Colt r ol I “ , J , | _ ^ | 
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I I I I I -
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Figure 4.5 Message structure of SMS. 

4.2.2.1 Broadcast versus point-to-point messages 

Point-to-point is the most basic form of communication. A sending process 

identifies the receiving process uniquely by specifying the PID when the message 

is sent. All the MPC has to do is a check of the existence of the target process 

and status of the associated IMQ. 
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In any system with a number of cooperating processes working on the same pro-

blem, broadcasting is a very common form of communication. Although 

broadcasting can be done by the sender using a sequence of point-to-point 

messages, it is bothersome and inefficient. So, the burden of replicating 

messages for broadcasting is taken up by the MPC. 

Furthermore, it is easy to support selective broadcast (multi-casting). When a 

sending process calls the SendMessage primitive, a list (in the form of a bit-

mask) is supplied in place of the input argument receiver PID. The MPC is also 

responsible for keeping track of successful receptions and reporting them to the 

sending process for the sake of error handling. 

4.2.2.2 Message priority 

We discussed the reason for having more than one priority level in section 

4.2.1.2. The number of levels is kept small because it is evident that a separate 

message queue for each priority level is very expensive. So in the message 

structure hierarchy, we have 3 levels. Normal and Express messages were 

explained in enough detail in section 4.2.1.2. Broadcast messages require further 

elaboration. In the message structure, broadcast messages are divided into Pro-

grams and Data/Control Codes for slaves. 

The existence of program type is because during system start-up, the host 

machine must load programs into the local memory of each processor. In many 

cases, the programs running at all processors are the same, only data values are 

different. Thus the host can broadcast the program like a message to all pro-

cessors using this message type. This type is special because only the host 

machine may initialize such a request. Moreover, the MPC must directly write 

the message content, ie. the program, into the local memory of a processor 

instead of just leaving it in the mailbox. The program load origin and entry point 

must be generated by the MPC or supplied by the host pocesses. For this type 

of messages, the blocking and non-blocking option is inapplicable. 

V-
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Another broadcast type messages are initiated by slave processor. The message 

contents may be purely passive data or control commands. Normally no 

executable code will be send so starting address is not required. 

4.2.2.3 Blocking versus non-blocking 

When the blocking option is on, a sending process must wait for the 

acknowledge from the MPC before it returns from the communication primitive 

and continue its work. For a receiving process, the primitive does not return 

until a new message is available. Naturally, this message type can be used for 

inter-process synchronization as well as data passing. However, it should only be 

used if necessary because the processing time will be wasted. Degree of 

parallelism is also reduced. 

I f the non-blocking option is chosen, the SendMessage primitive returns 

immediately, without waiting for the acknowledgement, to the next statement in 

the user process. At the receiver's side, the ReceiveMessage returns immediately 

no matter a new message is available or not. Of course, this result wil l be 

reported to the process. Using this option, the sending and receiving processes 

are effectively decoupled. A fast sender wil l not be dragged down by a slow 

receiver, except when the IMQ of the receiver is full. This option is good for 

passing data or control commands because of the loose coupling. - — - -

Sometimes the receiving process has to supply more information with an 

acknowledgement. The blocking-Send with automatic generation of 

acknowledgement by the MPC is inadequate. A higher level acknowledgement 

is necessary. Figure 4.6 presents a simple solution. It is interesting to note that 

both the sender and receiver use blocking and non-blocking options. In 

particular, Sends are non-blocking while Receives are blocking. The following 

paragraph explains the solution. 

After the sender has used a non-blocking Send to deliver the message to the 
V' 
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Figure 4.6 High level acknowledgement. 

receiver, it initiates a blocking Receive to collect the expected acknowledgement. 

On the other side, the receiver uses a blocking Receive to get the incoming 

message. Once the message is captured, a non-blocking Send then transfers the 

acknowledgement message carrying the reply information to the sender. After 

this, the receiver can continue its work immediately. Upon receiving the 

acknowledgement, the sender can also return to its work. 

The two statement at each side can be grouped together to form a higher level 

blocking Send and blocking Receive, respectively. Such kind of communication 

allows the receiver to return a data message as the acknowledgement. Except 

the above interesting example, the same option, either blocking or non-blocking, 

are used consistently at both sides. 

4.3 Hardware aspects 

4.3.1 Overall architecture 

SM3 is a shared memory multi-microprocessor system. An asynchronous bus 

with a centralized controller is chosen as the backbone. A number of Processor 

Nodes (PNs) are attached to the shared bus, and so is the MPC. We have a host 

machine also attach to bus for handling peripheral devices. A portrait of this 

configuration is shown in figure 4.7. 
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Figure 4.7 An overview of SM3. 

The system controller in the figure is responsible for bus arbitration and control. 

I t may be integrated into the host machine or exist as a separate circuit board. 

For further expansion, an interface module can be attached to the bus in order 

to form a loosely- or moderately-coupled system at a higher level. A clustered 

approach can be found in figure 7.1. Although not shown in figure 4.7, additional 

pure memory modules can be added to the bus as a sort of shared resources. 

4.3.2 The host machine 

As shown in figure 4.7, the host machine is responsible for handling peripheral 

devices. Actually it is a complete microcomputer system with a uni-processor 

operating system. The host machine needs not base on the same microprocessor 

on the PNs. But for simpler operation, the host machine should be compatible 

with the PNs at object code level. The internal structure of the host machine 

dependents on the implementation choice. However, it will be particularly good 

if its organization is similar to that of PNs'. The duties of the host machine is 

detailed below. Some of them are basic duties while some are optional. 
V-
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a. Peripheral control 

Al l peripheral devices are connected to the host machine. A standard 

configuration includes: video display unit, keyboard, fixed and removable disk 

drivers, and printer. In order to control the devices, the host machine must be 

equipped with a good operating system. Besides, a good I /O co-processor is 

highly desirable for better external parallelism. 

b. User interface 

The user issues commands to the host machine to start the application program, 

monitor the system, collect results, and terminate the program. The host 

machine connects the pool of slave processors to the outside world - the user. 

For easier operation, a user friendly operating system should be chosen. 

c. Program development 

Very likely, program development will be conducted on the host machine. So 

text editor, compiler/assembler, linker, and loader must be present. A debugger 

is highly desirable too. Note that the programming language used need not have 

build-in concurrent constructs. At this first version of SMS, distribution of pro-

cesses is not done by the operating system since the host machine only has a 

uni-processor operating system. Task assignment is the programmer's duty so the 

underlying language can be a conventional one. 

d. System monitoring, control and diagnosis 

Since the host machine controls the operation of the whole system, it is natural 

that the user also monitors the operation of the system here. Actually, the host 

machine is like the operator's console of a large computer system. During 

development stage, the PNs and the MPC are tested by the host machine 

individually and then incorporated into the system. Then, integration test is 

conducted. A l l diagnostic work will become easier with the help of the host 

machine, especially due to the memory-sharing nature of SMS. The host 

machine must also be responsible for overall system control, such as cold reset, 

warm reset, shut down, and slave processor halting. 
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e. System initialization 

Before the execution of the application program, the host machine must 

distribute the object program modules to the slave PNs. The initialization of the 

MPC is also its duty. After the program modules have been loaded, the host 

signals the PNs to start their jobs. Note that all the PNs must be halted before 

the programs are loaded, and after the application programs have terminated. 

Otherwise, free-running of the PNs will cause unpredictable effects. 

f. Execution of the root process 

When the system initialization is completed and the PNs are started, the host 

machine must issue data packets and/or control commands to the PNs. Hence, 

the execution of the root process is also a primary duty of the host machine. 

When the results become available, the host machine collects them from the 

PNs possibly in the form of messages. 

4.3.3 Slave processor nodes 

Figure 4.8 is a simplified functional architecture of a PN. A detailed diagram for 

the current implementation of SM3 wil l be presented in chapter 5. Again, a PN 

employs the bus structure, which this is the universal choice for single board 

computers due to efficiency and cost considerations. 

— The Bus Interface links the local bus to the shared bus. I f the local bus is not 

completely compatible with the external shared bus, conversion logic is 

necessary. The Shared memory is a part of the system address space so we 

placed an index i there. The actual address format will be given in chapter 5. 

This local memory can be accessed from the shared global bus via the Bus 

Interface. Of course, the Microprocessor is the heart of a PN. It may access 

other off-board memory as well as the local memory. 

The Communication Logic part connects the PN to the MPC. Hand shaking pro-

tocols are implemented here for supporting message passing. Some of the signals 
V-
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Figure 4.8 General architecture of a processor node. 

between a PN and the MPC are optional. They are added for reducing global 

bus access and MPC interrogation as described in section 3.3.2.2. 

Other devices, such as DMA controllers and mathematical co-processors, can be 

added to the PN local bus for better performance. 

4.3.4 The MPC 

The MPC structurally resembles a PN. Figure 4.9 is a simplified diagram of the 

MPC. The Microprocessor should be object-code compatible with that on PNs. 

The Bus Interface and Shared memory parts are virtually identical to their 

counterparts on PNs, although the memory size need not be the same. If the 

MPC software is bug free, it can be burnt into a PROMM (Programmable Read 

Only Memory) chip in order to save the initialization time and to ensure 

reliability. But it should be noted that PROM are usually slower than R A M 

(Random Access Memory). In our prototype design, PROM is not necessary. 

The Communication Logic links up the MPC and PNs. The ultimate goal is to 

provide an alternative channel for handshaking signals that speeds up message 
V-
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passing. Actually, it may be called a communication sub-bus. We must stress 

that the communication logic is not mandatory because handshaking can be 

done with software. However, the advantage of minimizing of global bus access 

usually forces the designer to add this logic. 

4.4 Communication protocols 

The communication protocols discussed in this section are not for high level 

message exchange between processes. Instead, they are designed for supporting 

efficient message transfers at the processor level. According to the nature of 

different message types, specific mechanisms are designed to handle them in the 

most suitable way. Table 4.1 summarizes the mechanisms used. We shall 

elaborate this table in the remainder of this section. 

4.4.1 Short and long messages 

From the basic principle of the MP and MPC approach, we found that messages 

are stored in message queues before they reach their target processes. 

Obviously, it is not feasible to put long messages into the queues because of the 
V-
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Long messages Short messages 

Point-to-point Normal D M A Shared-memory 

Broadcast 1-to-N D M A Shared-memory 

.….：..• .'•.'••：.... ''••'.:... •• • . . : . . .:.....? . ...... . . ....... ..... ‘.. ...... . .. • .....:.,... .... ... 

Table 4.1 Mechanisms for message-passing. 

memory size limitation. The time wasted in copying long messages may also be 

very significant. But the most critical point is the hold up of the shared bus, 

which is a potential bottle neck. 

For the above reasons, the SendMessage primitive only puts the pointer to the 

message body into the message header, which is actually enqueued onto the 

IMQs, if it finds the message is a long one. The receiving process is responsible 

for reading the message body from the local memory of the sending process, 

using the pointer given in the message header it has received. Note that this 

mechanism is feasible only on distributed shared memory systems such as SM3. 

On the contrary, using this indirection method for short messages will be quite 

inefficient because two memory accesses are required. Thus, the SendMessage 

primitive will embed the message body into the message header if it finds that 

the message is short enough. Upon arrival, the receiving process just extract the 

message body from the message header. This mechanism does not require all 

the memory be globally accessible. Only the mailboxes must be shared. 

4.4.2 Point-to-point messages 

Recall that a point-to-point message has exactly one sending and one receiving 

processes defined uniquely. Short point-to-point messages are efficiently handled 

by the simple shared memory access mechanism described in last section. 

Long messages require a lot of consecutive off-board memory accesses initiated 

by the receiving process, in order to bring the message body from the sending 

processor to the local memory of the receiving processor. Such a job fits a 
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DMAC (Direct Memory Access Controller) perfectly. Figure 4.10 illustrates the 

whole picture. 
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Figure 4.10 DMA transfer for point-4o-point messages. 

After the receiving process has read in the header, it will initialize the D M A C 

on that PN based on the information provided in the header. The header 

supplies the pointer to the starting address and the message length. The 

argument passed to ReceiveMessage supplies the buffer address. The DMAC 

can use these 3 parameters to perform a memory-to-memory transfer. Let us 

look at the advantages of such an indirection method: 

a. The bus is not used extensively until the receiver really wants the data. 

For early termination, bus cycles are not wasted. 

b. The receive buffer organization is not complicated. On each PN, one 

buffer queue for each possible receiver is enough. Note that these buffer 

queues are inevitable if asynchronous communication is supported. 

c. When a sender suddenly issues many long messages, the MPC will not 

suffer from buffer shortage and subsequently cause performance 

degradation. It is the sender who suffers. This is more reasonable. 

d. The system bus holdup due to long messages is relieved because each 

I 香 港 中 文 大 學 a i 肯 你 藏 " F " 
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message go through the bus just once. It can be generalized for broadcast 

messages. We will see that the savings is great, 

e. Sender and receiver are decoupled effectively. 

On the contrary, there are some draw backs: 

a. The receiving PNs have to read the sender's memory, this inevitably 

affects the operation of the sender. 

b. If many receivers want to read the long messages sent by a PN 

simultaneously, contention arises. For the case that the message body is 

embedded into the header, there is no contention because the 

transmissions are serialized by the sender or the MPC. Moreover, the 

average wait time of receivers is roughly half of the total time for all 

messages. We assumed that messages are fixed in length. On the 

contrary, the average wait time is nearly the whole transmission period 

for all messages when using the indirection method - if each receiver 

accesses the sender's memory in an interleaved way due to contention 

and random bus arbitration. 

c. When the receiver needs data immediately, delay due to the DMA is 

undesirable, although the DMA is fast. But actually, any transfer of data 

to the receiver's memory affects the receiver so it is not an extra cost. 

One question with this DMA method is how to find suitable program code for 一 

the CPU to execute while the DMAC is in operation. Although the CPU and 

DMAC can operate in parallel with the DMAC programmed in the cycle 

stealing mode, sharing of the local bus between the two devices limited the 

concurrency. Moreover, if the message body is not yet available, user code may 

be unable to proceed and thus it becomes pointless to use the cycle stealing 

mode. Hence, the DMAC is programmed in burst mode. 

4.4.3 1-to-N DMA for broadcast messages 

V -
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Although broadcast messages can be treated in the same way as a series of 

point-to-point messages, we found that it is very inefficient even with the D M A 

method described in section 4.4.2. The message has to go through the shared bus 

(N + 1) times if the message is bufferred in the MPC, and N times if the D M A 

method is used, where N is the number of receivers. Such long hold-ups of the 

shared bus will degrade the system performance. Obviously, this is an inherent 

property of the MP and MPC approach. 

Fortunately, the author found that the problem can be solved satisfactory on 

SM3-like architectures. The necessary condition is the presence of the MPC, a 

shared bus, dual-mode DMACs, and some clever hardware logic. We shall 

explain the details below. 

4.4.3.1 Introducing 1-to-N DMA 

Although the bus topology favors broadcasting, it is not directly available for use 

at the high level programming language level. Moreover, there is a fundamental 

difference between the kind of broadcasting that a "bare bus" (with no additional 

software or hardware) supports and the kind of message broadcasting me are 

looking for. A "bare bus" only provides "blind" broadcast. That is, all PNs can 

listen to the broadcast and they determine whether to get the data or not. But 

we should allow the sending process to choose potential receivers too. Other 

PNs not chosen should not listen to the message. Another difficulty is that the 

PNs are running asynchronously so that a chosen PN may not be prepared to 

receive a broadcast because it is lagging behind the sending process. These pro-

blems made the "bare bus" unusable for broadcasting. 

The basic idea of 1-to-N DMA is quite simple. It can be viewed as a 

conventional DMA that has multiple destinations. When the sending process 

broadcasts a message, the selected PNs are coerced to perform the D M A 

operation in parallel. 



CH.4 THE DESIGN OF SMS p.66 

Before we look at the 1-to-N D M A mechanism, the two modes of a typical 

DMAC should be understood first. Some modern DMACs have more than one 

channels, Each channel of the DMAC can be independently programmed into 

explicit mode or implicit mode. The implicit mode, also called memory-device 

mode, means that the "peripheral device" is already available on the bus and no 

addressing is needed. Thus, the DMAC only issues one address for the memory. 

Conversely, the explicit mode, also called memory-memory mode, means the 

"peripheral device" must be addressed explicitly, so the DMAC has to issue 2 

addresses in 2 bus cycles. Figure 4.11 shows the two modes of a typical DMAC. 

4.4.3.2 1-to-N DMA operation 

Every PN has a buffer area for communication. Without loss of generality, 

message length is limited to L bytes (a block) and the buffer area can hold N 

messages. The buffer area is treated as a FIFO (First In First Out) circular 

queue. 

When a message is to be broadcasted, the sender first mails the header to the 

MPC as before. Then with the assistance from the MPC, a 1-to-N D M A is 

carried out and the message is transferred to all potential receiving PNs. The 

message is stored into the circular buffer of each receiver (recall that for a long 

point-to-point message, a DMA brings the message to a target location explicitly 

specified by the receiving process). 

When a receiving PN really wants to accept a message, it can read the message 

header from the MPC, which will inform it that the message body is already in 

its message buffer. In other words, messages can be received m advance. Figure 

4.12 highlights the roles of the 1-to-N D M A and the MPC. This figure is similar 

to figure 4.10 so explanation is not necessary. Note the event sequence is 

different this time. 

The 1-to-N D M A operation via the global bus is feasible only if all the receivers 
V-



CH.4 THE DESIGN OF SM3 p.67 

I s o 

QC\ (D I 
/ .1 - Sx f il ^ ^ I 

. m \ < \ m * O � 
S o : ^ ^ ^ S o 謹 

^ < ® : � 
. [ p - S i - o �� I I 
\ CO \ K O K O t � 

� « « — � 
/ ,1 ̂  f ,1 ^ •一 I 

� . S . I 
画 \ > ^ o > ^ o 一 圏 
I \ <i> ® a o. I 

c L i l i l J ^ 

> ; z “ I 
; 的 产 I : ® r^^^ I 
\ O � _ • o � 
� ( Il • � : � � 
� O ® : i i o I 

^ \ 二 ： o c « - « - a 
i i ^ z - ^ i � ! 

g Q s } O - w • ^ c � 
a \ + — w ^ T? « C w _ 
I : o , o - •一 1： ^ . • ! r - 麗 
I 、 S o s I o � S � S. - o I 
i 、 21�= - < ^ - - - i 
n \ / � • • 一 e S • O > « ta H 
� \ £1. - a cc < m a I 
麗 、 ® E •• 圓 
I \ K « . o O bc . . o a: � 
画 v \ \ \ 一 一 O < UJ O -J I - O H � � 、 、 、 、 ^ lu s <r < o o o a 
I I g |j : I " I 

Figure 4.11 The two modes of a DMAC. 

can pick up the data driven onto the bus by the sender in an orderly manner. 

The key is that every party in the deal has the illusion that k is communicating 

with a single partner. From the sender's point of view, the message is 

transferred to a virtual device connected to the global bus. From the receiver's 

point of view, a virtual device on the global bus supplies data to it. With little 

modification to the conventional hardware configuration for DMA, a mechanism 

is designed to overlap these two scenes and to ensure that every critical event 

is synchronized. 

V -
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Figure 4.12 Roles of the 1-to-N DMA and the MPC. 

In principle, the DMAC of the sender simply puts a data word onto the shared 

bus while all receivers grab the data as if it is performing a simple 1-to-l DMA. 

So a 1-to-N DMA is the parallel collective result of (N + 1) normal DMAs. 

After a word has been transferred via the global bus, the buffer addresses for 

the sender's and the receiver's memories have to be incremented by the DMACs 

automatically. In this case, the DMAC is operating in the device-memory mode. 

Since most common DMACs have two or more channels, it is convenient to pro-

gram one channel into the memory-memory mode and one channel into the 

device-memory mode. 

By adapting common DMACs, only a little control logic has to be added on 

each PN. This control logic coordinates the operation of the DMAC and the 

memory, and synchronize the sender and the receivers. Its ultimate goal is to 

create the illusion of a virtual device with which the sender and the receivers 

communicate. Figure 4.13 is a scenario of the 1-to-N DMA process. 

One necessary condition for performing the 1-to-N DMA is: 

AU the potential receivers must be halted and forced to receive the broadcast 

message before they can resume their works. 

Since all parties are running asynchronously, a receiver chosen by the sender 
V-
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Figure 4.13 A scenario of the 1-to-N DMA process. 

may not be prepared for the message. As only one transmission across the 

shared bus is allowed, all parties must participate in the 1-to-N D M A 

simultaneously, no matter a receiver is ready or not. 

In order to ensure the broadcast can be done without intervention of global bus 

requests due to the other PNs, cycle stealing mode D M A is NOT used (similar 

to the case of point-to-point messages). In case of receive buffer full or other 

problems, the PIDs of the questionable receivers are recorded and reported to 

the sender later. 

4.4.3.3 Merits and demerits of 1-to-N DMA 

Table 4.2 contrasts the merits and demerits of the 1-to-N D M A mechanism. The 

speed up of this mechanism depends partly on the number of receivers in a 

broadcast, and partly on the message length. For a typical distributed global 

memory system, about 10-16 PNs can be attached to the same bus depending 

ont the granularity of the problem [Paker83]. So a ten-fold speed up is 

achievable. 

V 
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Advantages Disadvantages 

Greatly speed up the broadcast. Additional communication logic 
and synchronization signals 
necessary. 

The cost is low since conventional Additional receive buffers on each 
DMACs, which are used for point- PN required, 
to-point messages too, can carry 
out a large part of the operations. 

Completely transparent to the Hardware becomes more 
application program. complicated. 

Table 4.2 Merits and demerits of the 1-to-N DMA mechanism. 

Although some PNs may refuse the broadcast message, it does not lead to a 

waste of time because the message goes through the global bus just once, 

independent of the number of receivers. The PN that ignores the message may 

be slightly delayed due to the data transfer, but in general this rarely happens. 

We implicitly assumed it is very unlikely that no one wants to receive the 

message. Only in this case the 1-to-N D M A wil l be a waste of time. For the 

receivers, it is a matter of bringing forward the required D M A operation. 

Comparing with conventional broadcasting systems such as Ethernet [MetRo76], 

our mechanism is much faster. The speed of such conventional systems is tightly 

bounded by the bandwidth of the serial links. In contrast, most wide buses (32-

bits, say) can attain much higher transfer rate. The broadcasting power of our 

— prototype system is essentially the same as that of a star topology. In general, 

the star topology is more efficient for broadcasting compared with other 

topologies such as the token-wing [IEEE83]. 

Another advantage of the 1-to-N D M A mechanism over its conventional 

counterparts is the absence of message arrival interrupt for a non-receiver (who 

is not a potential receiver recommended by the sender). This simplifies the 

control logic and keeps the disturbance of a broadcast to the lowest level. 

Unauthorized receivers cannot listen to the broadcast so security is enforced. 

V 
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4.5 Summary 

As it is always difficult to separate the software and hardware aspects of a 

computer system, I prefer to present an outline of our workstation architecture 

before we start the discussion on the software programming model of SM3. 

Then we explained the hardware design and the associated rationales. It is 

followed by the presentation of the communication protocols of SMS. In 

particular, a novel 1-to-N DMA mechanism suitable for SM3-like architectures 

was introduced. Al l along our discussion in this chapter, I have tried my best to 

present only the implementation independent aspects of the software and 

hardware features of SMS. The details of a particular implementation of SMS, 

and more specifically the MPC, will be presented in chapter 5. 
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CHAPTER 5 

IMPLEMENTATION ISSUES OF SM3 

5.1 The shared bus - VMEbus 

5.1.1 Why VMEbus 

A number of criterions have to be considered when choosing a shared bus for 

a multiprocessor system. Some typical issues are: 

-ease of interfacing 

-components support 

-compatibility 

-speed and mode of operation (eg. synchronous or asynchronous) 

-cost and availability 

-multiprocessor support 

-expansibility 

In the current prototype SMS, we selected the VMEbus as the backbone of the 

workstation. The VMEbus specification was firstly developed by Motorola, 

Mostek, and Signetics/Philips. This VMEbus project is described in [Fisch84�. 

It is an asynchronous bus having 3 available configurations: 8-, 16-, and 32-bits. 

The highest bandwidth is 24 Mbytes/sec. It has a master/slave asynchronous 

non-multiplexed data transfer structure so interfacing is easy and control is 

simple. Since its introduction in 1981，the bus have been accepted by more than 

100 manufacturers worldwide so compatibility and components support are 

excellent. It has become an IEEE (P1014) and lEC standard. 

The signals of the VMEbus are simple and well defined. The VMEbus is 

suitable for building multiprocessor systems. In fact, the VMSbus which supports 

serial communication is defined as a sub-bus of the VMEbus for multiprocessor 
V 
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systems. For an introduction to the VMEbus and VMSbus please see [Motor84 . 

If the VMEbus was not available, another good choice for building bus-based 

multiprocessor systems is the MultiBus. It is a widely recognized bus, designed 

to suit for multiprocessor systems. While the MC680X0 family uses VMEbus, the 

i80X86 family employs MultiBus. 

5.1.2 Customizing the VMEbus 

In the VMEbus, there are 64 user-defined pins so it is easy to customize the bus 

for special functionalities. It is a common practice to customize industrial 

standard buses for special applications. Development time and cost can be cut 

down while compatibility is partially preserved. An example in [Bybee89] shows 

how the VMEbus can be adapted for a bus-based multiprocessor graphics system 

using these pins. To support message-passing by hardware and the MPC, SM3 

also uses the 64-user defined pins so we shall have a closer look at it. 

Physically, the VMEbus consists of two 96-pin connectors like the one shown in 

figure 5.1. They are called PI and P2 respectively. Al l the pins of PI are defined, 

while row a and c of P2 are not defined. Since there are 32 pins in a row, totally 

there are 64 undefined pins. SM3 uses them for conveying handshaking signals. 

� • m m m m m m c m m n i ^ 

� U U U U U U U U U U U U U U U U U U U U U U U U I c 

12345678901234567890123456789012 
1 2 3 

Figure 5.1 A 3-row, 96-pin VMEbus connector. 

V 
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5.2 The host machine 

Obviously, the choice of a suitable host machine for SMS is closely connected 

to the choice of the system bus. For convenience, the host machine must be 

plug-compatible with the VMEbus. The choice of the microprocessor on the host 

machine partially determines the microprocessor type for the PNs because they 

must belong to the same family for object code compatibleness. Other important 

issues include: availability of a mature operating system, peripheral devices 

support, high-level language development environment, and diagnostic tools. 

There are many VME-modules that are well designed Single Board Computers 

(SBC). A wide spectrum of peripheral devices is available for these VME-based 

computers. We selected a relatively new product from Motorola called 

MVME147SA-1 [Motor89]. A short profile of the technical aspects of this SBC 

is shown in figure 5.2. The presence of the SCSI implies that a great variety of 

peripheral devices, such as floppy disk drivers, fixed disk drivers, and tape 

drivers are immediately accessible. The CPU from the MC68000 family offers 

us many choices for the processors on the PNs and the MPC to satisfies our 

requirement for easy object code compatibility. A key feature is the VMEbus 

controller capability. Slaves can be plugged onto the bus directly without extra 

interface adapter. 

-MC68030 CPU with floating processor 
-32-bit data and address buses 
- 8 Mbytes of sharable dynamic memory 
- V M E controller feature 
-SCSI controller 
- 2 Kbytes static RAM 
- 2 5 Mhz clock rate 
-Real-time clock and watch dog timer 
-Serial/centronics port 
-build-in DMAC 

Figure 5.2 A short profile of MVME147SA-1. 
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As important as the high performance of this host machine, a well designed 

debugging package called 147BUG [Motor88b] is available in the non-volatile 

memory. This is a good tool for system diagnosis. 

The current setting of the host machine also includes a 80 Mbytes fixed disk and 

a dump terminal. Figure 5.3 shows current SMS configuration. 

^^ 星、[；̂^̂劝 
' ^ • • • i h h J I Dump y u m m m a J i 

W ^ t e r m i n a l ^ ^ H a r d d i s k 

冬/ � 

_ 專 暴 暴 

P N 2 I ^ P N ^ J ���� 
Figure 5.3 The current configuration of SMS. 

i 
I 

5.3 Slave processor nodes ‘ 

i r 

While the host machine is a commercial product, the PNs are specifically 

designed for SM3. Slave PNs in SM3 are basically SBCs that are attached to the 

VMEbus. There is no peripheral devices allocated for the slave PNs because 

they are designed to be pure computation machines. We shall examine each part 

of a PN in detail. A simplified view of a PN is shown in figure 5.4. It can be 

compared with the general structure of a PN shown in figure 4.8. 

5.3.1 Overview of a PN 

Physically, a PN module is a double-height Euro-card (VMEbus standard) pro-
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V M E b u s 拿 ( T o o t h e r s l a v e s / M P C ) 

~~~bTT t 1 2 8 K s t a t i c ! 

I n t e r f a c e ! M e m o r y I 

T T 糞 _ 
B r o a d c a s t i n g I M C 6 8 0 3 0 I M C 6 8 4 4 2 | 

C o n t r o l I e r | C P U I D M A C [ 

灰MPC 
Figure 5.4 A simplified view of a PN. 

cessor board with an attached extension board (Appendix C). The major 

components on the board is shown in figure 5.5. The major components wil l be 

described in the following sub-sections while minor components are mentioned 

below. Currently, the chip count of a PN is roughly 70. The Board Diagram and 

Schematic Circuit Diagrams can be found in Appendix A and B respectively. 

Memory 

There are 128 Kbytes of Static Random Access Memory (SRAM), expansible 

to 1 Mbytes. The use of this kind of memory is for easier circuit design and 

faster response time. The basic PN memory consists of four 32K x 8-bit 

MCM60256P10 SRAM chips. It supports byte-, word-, and longword- accesses. 

The address map is shown in Appendix E. 

Local System Clock 

A local oscillation circuity delivers a 30 MHz 50% duty cycle clock signals as the 

time base for every PN. This signal is bufferred and divided. The Programmable 

Array Logic (PAL) chips where the finite-state machines reside are driven by 

the 30 MHz clock and the CPU is running on the 15 MHz clock. This signal is 

further divided to 7.5 MHz for the DMAC, which uses a lower clock rate then 
V 
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the CPU. Figure 5.6 summarizes the clock system. 

OSC. +2 ——~— —— 

30 MHz 15 MHz 7.5 MHz 
> PALS > CPU L >DMAC 

Figure 5.6 An overview of the clock generator. 

Reset 

The reset circuit and switch provides local reset to make diagnosis and control 

easier. The local reset circuit is responsible for system power up reset and 

initialization. 

Bus time out (BTO) counter 

Since bus accesses are asynchronous, a separate watch-dog timer is required to 

count the time-out period. When the time-out period of a bus access expires, no 

matter that is a local or an off-board one, a Bus Error ( /BERR) is generated 

to signal this event to the initiator. (From now on, active-low signals wi l l be 

prefixed by，/，or suffixed by，*，•） 

DTACK generation 

In the MC68000 family, bus accesses must be acknowledged due to the 

asynchronous design. A DaTa ACKnowledgemet ( /DTACK) signal serves this 

purpose. It should be activated when the addressed device, most likely the 

memory, has finished (or should have finished) the operation. It is generated by 

a timing circuit similar to the BTO counter just described. 

Address decoder 

The decoder must look at both the incoming VMEbus address and the local 

address bus in order to generate Board Select (/BSEL), Remote Access, and 

other local enable ( /LOCAL) signals. The VMEbus address of a PN can be set 
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by a DIP switch. The address spaces, which is specific to the case of using 

VME147SA-1, to be decoded is shown in Appendix D and E. The address 

format for 1-to-N DMA is show in table 5.1. For normal memory access, the last 

3 fields are merged to give a 20-bit field (1 Mbytes). 

Physical PID Buffer offset Tail pointer Byte offset 
(4-bit Dip switch) (6 bits) (4 bits) (10 bits) 

Table 5.1 Global address format for the PNs of SM3. 

Bus arbiter 

Around the local bus, there are three active requesters. The CPU and the 

DMAC are local requesters while the request from the VMEbus can be view as 

a remote one. Since the local bus is an extension of the CPU bus, the CPU is 

the primary bus arbiter while the external bus arbiter handles the requests from 

the DMAC and the VMEbus. Figure 5.7 shows the two-level arbitration pro-

cedure. Currently, VMEbus access is given higher priority but this can be easily 

reversed if necessary. 

DMAC 
Bus 

VMEbus Arbiter Arbiter 

CPU 

Figure 5.7 The two^level arbitration procedure. 

5.3.2 The MC68030 microprocessor 

Currently the MC68030 is adopted as the CPU. The MC68000 family micropro-

cessors are elegantly designed and have good performance. New members, such 

as MC68020 and MC68030, have special support for multiprocessing [Beims84'. 

A bus arbitration scheme is designed to allow several M68000 bus masters to 

share the same bus (in our case the DMAC and the CPU share the local bus), 
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and 3 instructions that use interlocked bus cycles for inter-processor 

communication in a loosely-coupled system is available. Moreover, there are 5 

instructions that utilize the M68000 Family Coprocessor Interface to 

communicate with tightly coupled coprocessors. However, SMS does not benefit 

from these features directly. 

Another good reason for using the MC68000 family is that we can choose micro-

processors from a wide spectrum of processors. Code compatibility is virtually 

maintained from MC68000 to MC68040. This matches our goal described in 

chapter 4. 

Due to their popularity, the MC68020 and MC68030 are well documented. 

Informative books such as [Harma89, JaBaP88] are extremely helpful to the 

design work. The manufacturer also publishes supplementary information, for 

example, "The M68000 family reference" [Motor88a . “ 

A great number of projects employed processors from the M68000 family so we 

can gain valuable experience by studying these projects. The SUPRENUM pro-

ject described in chapter 2 is a good example. As briefed in [Pount88], a 

VMEbus-based system with 12 MC68030 boards having 4 Mbytes each is 

constructed for parallel operating system research. A multi-microprocessor 

system using M68000s for image processing and pattern recognition, which can 

be configured into SIMD or MIMD mode is introduced in [KuSiP82]. More 

examples can be found in [AthSi88'. 

Although the local bus is an extension of the CPU bus, buffers are required to 

isolate the CPU and DMAC when memory accesses from the VMEbus are 

serviced. 

5.3.3 The DMAC M68442 

Once the CPU is selected, there are not many choices for a DMAC (Direct 

V 
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Memory Access Controller). For cost and availability reasons, we adopted 

MC68442. This is a Dual-channel DMAC (as the manufacturer called DDMA) . 

Detailed information can be found in [Motor88a]. As we described in section 

4.3.3，one channel can be programmed into the implicit mode for 1-to-N D M A 

while the other channel operates in the explicit mode for normal DMA. 

We must reiterate that the DMAC is optional if efficiency is unimportant. In 

SM3，memory-to-memory DMA that handles long, point-to-point messages can 

be replaced by simple shared-memory access without suffering from great 

performance drop. The effect of losing the 1-to-N DMA capability depends on 

the proportion of broadcast messages. 

Although the chosen DMAC is also in the same family as MC68030, some 

interface logic is necessary when it is used with MC68030 because this chip was 

designed for older members in the M68000 family. Obviously, the CPU and 

D M A C are operating in an exclusive manner so they can shared the same row 

of address gates. 

5.3.4 Registers 

There are 3 registers for each PN. They can be viewed as a part of the 

communication logic. Each register is 8-bit wide currently and can be expanded 

to 32 bits. The addresses of these registers are shown in Appendix E while the -

detailed layout is shown in Appendix F. A l l registers can be reached from a 

remote processor like a normal shared-memory location. 

PN Status Register (PNSR) 

A process running on a PN can monitor several hardware signals by accessing 

this read-only register. Signals such as /BFn (Buffer Full for the n-th PN) and 

/ V G R A N T (a local signal VMEbus GRANT) are localized PN signals. They are 

included in the PNSR for diagnostic purpose. Signal/MPCRDY (MPC ReaDY) 

can help to reduce shared bus and MPC usage by the method explained in 

'广 
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section 3.3.2.2. Hand-shaking signals for carrying out the 1-to-N D M A efficiently 

are shown in table 5.2. 

Signal Meaning 

GPGL Global signal PCL for the DMAC 

/BROADCAST BRQADCASTing a long message 

/SYNGDMA SYNGhronization signal for 1-to-N D M A 

/BCST Broadcast STart 

Table 5.2 Hand-shaking signals in the PNSR. 

I 
PN Control Register (PNCR) 

I 

This write-only register allows the software to set values for physical signals. : 

/BCEND (Broadcast ENDed) is a system-wide signal while /VMESEL2 (VME i 

SELect, for keeping the VMEbus mastership) is a local signal. More signals can 

be added for diagnostic and monitoring purpose. 

f � 

Buffer Pointer Register (BPR) . 

BPR is a read-write register which is separated into two 4-bit nibbles. They are 、》 

the head and tail pointers to the 16-block circular message queue (will be � 

introduced later 
in this chapter) for 1-to-N DMA. Buffer full condition is n 

jl 
generated by comparing the two pointers using hardware logic. , 

I 
5.3.5 Shared-bus interface 

Apart from gating between the VMEbus and the local bus, this bus interface 

must be also responsible for VMEbus hand-shaking signals. For instance, the 

VMEbus request acknowledgement originated from the bus controller pro-

pagates in a daisy chain. The bus interface must participate in this operation. 

The VME signals that must be asserted by a PN when it becomes a VME-

master or -slave are also generated by the state machines in this interface. 

Besides, the bus interface is responsible for bus conversion work. The local bus 
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is not completely compatible with the VMEbus because it is designed for older 

members in the M68000 family. Data conversion is necessary in order to change 

the signals of the local bus, which is an extension of the CPU (MC68030 is 

relatively new member in the family) bus, into VME signals. 

5.3.6 Communication logic 

Actually this part is active only when the PN is performing 1-to-N D M A for 

broadcasting messages. It cooperates with the hardware logic of the MPC via the 

communication sub-bus to create the illusion of a memory-device DMA. The 

majority of this logic is implemented in PAL. There are roughly two parts, one 

for broadcasting and one for receiving. The functionality of this logic is best 

introduced in section 5.5 where the implementation of the communication pro-

tocols are presented. 

5.4 The MPC 

Although the MPC is more sophisticated than a PN concerning the functional 

complexity, the hardware architecture of the MPC is even simpler then a PN. 

Since we have made a trade-off between speed and flexibility, many functions 

that can be implement by custom hardware logic are reserved for the software. 

It is reasonable for such a prototype system. Figure 5.8 depicts the MPC 

architecture using functional blocks. This figure should be compared with the PN 

architecture shown in figure 5.4. 

5.4.1 Overview of the MPC 

The MPC module is also a double-height Euro-card circuit board with an ex-

tension board. Its physical size and floor plan can be found in Appendix C. 

Circuit diagram of the MPC can be found in Appendix B. Currently, the chip 

count of the MPC is roughly 60. The major functional blocks of the MPC 

architecture is shown in figure 5.9. This figure should be compared with figure 
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V M E b u s ( T o s l a v e P N s a n d h o s t m a c h i n e ) 

bTs I 1 2 8 K S t a t i c | 

I n t e r f a c e ! M e m o r y I 

� � 
# . # ‘ 

B r o a d c a s t i n g I M C 6 8 0 3 0 | 
C o n t r o l l e r f o r | I 

I M P C I C P U I 

^ " " " ^ ^ P T T a ^ P N s 

Figure 5.8 A simplified view of the MPC architecture. 

5.5 which is for a PN. . 

Note that a DMA controller is not necessary for the MPC because it wil l not 

initiate message transfers. The VMEbus Interface, Static Memory, Micropro-

cessor, BTO Counter, DTACK Generator, and Reset Circuit are identical to and 

that of a PN. For uniformity and further expansion, the Local Bus Arbiter for 

a PN is used but with the input request line from the DMAC disabled. The 

Address Decoder is modified because the MPC has a slightly different register 

file definition. This will be discussed in the next sub-section. The address areas 

to be decoded can be found in Appendix D and E. 

5.4.2 Registers 

There are 4 special purpose registers on the MPC. They are allocated to nearly 

the same area as their counterparts on slave PNs. Their layout is shown in 

Appendix F. These registers are closely related to the broadcasting logic. They 

can be reached from the VMEbus like shared-memory. 

MPC Status Register (MPCSR) 
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This read-only register corresponds to the PNSR of a PN. /BCEND (Broadcast 

ENDed) is asserted by the PNs to indicate the completion of a broadcast. 

GPCL，/BROADCAST, SYNCDMA, /BCST, and /VGRANT are the same 

signals found in the PNSR of a PN. 

MPC Control Register (MPCCR) 

Similar to the PNCR, control signals are injected into the communication sub-

bus through this write-only register by the MPC. /BROADCAST (1-to-N D M A 

for BROADCASTing in progress) and /MPCRDY (signal a blocked process that 

the MPC is ReaDY for competition) are for hand-shaking and efficiency 

enhancing respectively. 

MPC Buffer Full Register (MPCBFR) 

This read-only register reflects the 1-to-N DMA circular buffer queue status of 

all the PNs. The status is represented by the signals /BFn (Buffer Full of PN 

number n). Each bit is for one PN so there are at most 8 PNs. 

Halt Register (HALTR) 

Each bit of this write-only register is connected to the HALT pin circuity of a 

PN. The control process, either the MPC or the root process, may use this 

register to temporary stop any processor selectively. Up to 8 PNs, including the 

MPC can be handled. The current prototype system does not provide special 

protection for Writing to this and other control registers. However, protection 

from unauthorized writes by user processes is desirable for a later version. 

5.4.3 Communication logic 

We will learn from this section that the MPC needs very little control logic for 

supporting 1-to-N DMA. Although the control logic is easy to implement in 

hardware, we still deliberately keep it in the software for flexib^ty and easy 

modification in this prototype system, although full speed cannot be achieved. 

By software control, we mean program-controlled logic using the control 
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registers. Thus, the communication logic of the MPC is only a register file plus 

some interface circuities. 

5.5 Protocol implementation 

The implementation strategy of communication protocols discussed in section 

4.4 depends strongly on the underlying architecture. Before the protocols are 

described in detail, a simplified model of SM3 is included in figure 5.10 which 

also summarizes the design philosophy. Note the difference the PNs, the MPC 

and the host machine. 

The mechanisms that handle different sort of messages are shown in table 4.1. 

Evidently short messages are easier to handle because they do not occupy much 

buffer space and do not cause series system bus hold up. Only long messages 

need special treatment. The following discussion will emphasis on long messages. 

5.5.1 Point-to-point messages 

Recall that whenever a process wants to send or receive a message, the 

SendMessage or the ReceiveMessage primitive is invoked. The sequence of 

events had been described in chapter 4. It is suitable to summarize the function 

of the two primitives at this moment. Table 5.3 outlines the operations of the 

two primitives. 

Communication primitives are written in the form of device drivers for the com-

munication channel. Apart from SendMessage and ReceiveMessage, other desir-

able primitives may be included. For instance, IMQ status enquiry and flushing. 

When ReceiveMessage finds that an incoming message is a long point-to-point 

one, the DMAC channel working in explicit mode is initialized with the source 

address, destination address, and message length. The DMAC will interrupt the 

CPU upon completion. Then the application program can read the message 
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Figure 5.10 Simplified view of the SM3 prototype system. 
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Sender Receiver 

� Invoke the SendMessage Call the ReceiveMessage 
primitive. primitive. 

2. I f an acknowledgement is not I f a new message is available, 
required, the primitive returns, read the message header and the 

primitive returns. 
3. Wait for the acknowledgement I f this is a non-blocking receive, 

from the MPC. primitive returns. 

4. Primitive returns. Wait until a new message arrives. 

5. Read the message header and 
the primitive returns. 

Table 5.3 Summary of the primitives SendMessage and ReceiveMessage. 

from the local memory of the PN. The whole protocol and its direct 

implementation are simple comparing with that of broadcast messages. 

When this message system is actually implemented for an application, a hidden 

problem may show up. When the PNs in the system have performed a certain 

amount of computation, they may ask for more data to process or exchange 

results at roughly the same time due to the even distribution of tasks. Exactly 

one of the PNs will win and the communication requests will henceforth be 

serialized. The PNs will be running at shifted computation phrases. I f 

communication cost is low compared with computing delay, there will be no 

serious contention. — 

If the first PN comes round for more message before other slaves have finished 

their tasks, that implies the task distribution strategy is not suitable. Appendix 

I discusses an experimental way to judge whether the computation overhead is 

too heavy for a particular task distribution plan. 

5.5.2 Broadcast messages 

Recall that long broadcast messages are handled by 1-to-N DMA. The protocol 
V 
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for this kind of message transfers must be designed with great care because 

performance will suffer if there are many redundant operations as in the 

conventional approach. Architectural support and special software are both 

critical for the success of this protocol. Let us start with the special hardware 

required. 

5.5.2.1 Circular buffer queue 

In order to support 1-to-N DMA, every PN has to buffer the broadcast message 

itself. Hence, there is a 16-block circular queue on every PN for buffering 

messages as shown in figure 5.11. Two 4-bit pointers in a hardware registers 

point to the head and tail of the FIFO queue respectively. These two pointers 

are NEQ-ed (Not EQual) to give the signal /BFn (Buffer Full for the n-th pro-

cessor). This signal tells the MPC that a slave processor is ready for accepting 

a broadcast message. The block size is arbitrary chosen to be 1 Kbytes, which 

is also the choice of some researchers [FinHe88]. The buffer full and empty 

conditions shown in the figure are designed to favor the detection of buffer full. 

Note that only 15 out of 16 buffer blocks are usable with this convention. 

When a 1-to-N DMA transfer is initiated, the message will be place at the empty 

slot indicated by the tail pointer. After the transfer, the communication kernel 

must update the tail pointer. We will see that this is done in an Interrupt Service 

—Routine (ISR). Later, when the user process calls the ReceiveMessage primitive, 

the head pointer is read and the oldest message is captured. The head pointer 

is advanced subsequently. A subtle point that I must clarify is that there is no 

lost update although the ReceiveMessage primitive and the ISR may access the 

register in an inter-locked way. It is simply because they are updating separate 

parts of the register (as just described) without corrupting the other part (use a 

bit-mask to select the active region for updating). 

5.5.2.2 Participating entities 

V-
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\ B6 \ / BI / block 

Figure 5.11 Circular buffer for 1-to-N DMA. 

To delineate the scope of our future discussion, a view of the hardware entities 

and signals participating in the 1-to-N D M A is presented in figure 5.12. This 

figure can be viewed as a static summary of the protocol. For simplicity, the 

MPC and other possible receivers have been omitted. Interestingly, the MPC 

takes on a minor role in this protocol and it is not involved in the actual data 

transfer stage. The DMACs are active components so they are distinguished by 

circles. 

5.5.2.3 Protocol details 

The SendMessage primitive does not return to the calling process even if the 

non-blocking option was active once the broadcast message is longer than a 

predefined limit. It must cooperate with the MPC and other PNs to finish the 

transfer. 

The protocol can be divided into 3 phrases as shown in figure 5.13. Bold broken 

lines separate different nodes attached to the VME bus. Normal broken lines 
V 
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Figure 5.12 Entities and signals involved in a 1-to-N DMA. 

differentiate discrete components on a node. Arrows manifest the precedence 

of events. The following three sub-sections are detailed descriptions of figure 

5.13. The control flow between the phases is shown in figure 5.14. 

Prologue phase Prologue 

At the beginning, the sender notifies j 

the MPC of a broadcast request. Then V — 

the sending PN, under the control of T r a n s f e r <—. more 
1 d a t a 

the SendMessage primitive, programs 
the implicit mode channel of the V no more data 
D M A C into the sender mode E p i l o g u e 

(Initially, this channel is set to receiver | r e t u r n 
V 

mode). For the sender, the transfer is 
.• .. .... • • ......... ... .. ........••：：：•：：:.,:.... •.•••• • • ,.. 

from the memory to a，device，. After 
Figure 5.14 1-to-N protocol control flow. 

gaining the mastership of the VME 

bus by activating the /VMESEL2 
V 
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Figure 5.13 Detailed 1-to-N DMA protocol example. 
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signal in the PNCR, it waits for the signal /BROADCAST from the MPC. The 

role of the MPC in this protocol is like a traffic-light. 

Upon acceptance of the broadcast r e q u e s t , � receivers except those being 

masked (sender's choice) and/or lacking buffer are halted by the MPC. Figure 

5.15 shows the detail. Then, the MPC asserts /BROADCAST to instruct the 

sender to proceed. 

After the sender has received /BROADCAST, it asserts /BCST to indicate that 

it has finished the preparation work and the broadcasting can commence. The 

sender and all receivers subsequently request the service of their DMACs 

immediately. The assertion of SYNCDMA by M receivers signifies the 

completion of this stage and tells the sender to go ahead. 

/HALTPNn = /MASKn and /BTn, 
ie. processor n is halted if /MASKn is 1 

and BFn is 1* 

Figure 5.15 Halting of active receivers in 1-to-N DMA. 

SYNCDMA is a tri-state signal. It is normally pulled HIGH at idle state. At any 

stage of the protocol, a PN sets it to LOW to indicate the PN is NOT ready, and 

to H IGH to show readiness. Only when all the receivers are ready will the send-

er find SYNCDMA to be HIGH. This signal is important for synchronization. 

Transfer phase 

Upon completion of the prologue phase, the sender and all receivers are ready 

to transfer data. The transfer phase is run repeatedly until all the data words 

have been transferred. The assertion of PCL/GPCL (refer to figure 4.11 and 

5.13) by the sender means the，device，is ready for the DMAC. 

During a transfer cycle each DMAC involved executes either a read (sender) or 

a write (receivers) cycle. Signals like /AS, AO-23 are asserted accordingly. Due 
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to the design of the MC680X0 family of processors, the memory must return the 

acknowledgement signals /DSACKO and /DSACKl , which flag the success of 

the memory access and confirms the word length. As soon as the sender's 

memory can drive a word out and all the receivers have started their write cycles 

(indicated by the SYNCDMA line), the sender strobes the data word out to the 

VMEbus using /DS. This will complete the write cycles of the receivers. 

After the sender's DMAC has accepted the acknowledgement from its local 

memory after the read cycle, it asserts / D T C to mark the end of one transfer. 

The sender informs its DMAC the completion of a word transfer only after all 

the receivers have caught the data successfully (also flagged by the SYNCDMA 

line). After the DMAC of the sender has confirmed the success of the transfer 

by asserting /DTC, the sender's communication logic wil l assert GPCL again to 

trigger another data transfer cycle. 

The whole phase described is repeated until the counters of all the DMACs, 

both on the sending and the receiving nodes, have reached the target. Since the 

message length is fixed, all counters wil l reach zero at the same time and all 

nodes are expected to stop simultaneously. 

Epilogue phase 

The DMACs issue /DONE after the transmission of the last word in a block. 

This causes the sender's communication logic to release /BCST. Although all 

the DMACs wil l interrupt their microprocessors upon completion of the transfer, 

only the interrupt at the sender node wil l be serviced because all the receivers 

are still halted by the MPC. 

ISR of the sender informs the MPC the completion of the broadcast by issuing 

/BCEND. The MPC then deactivates /BROADCAST and frees all the receivers 

by releasing /HALTPN for each receiver. The sender's ISR then sets its D M A C 

back to the receiver mode and relinquishes the VMEbus. In the mean time, the 

MPC records the list of successful receivers in a bit-map for future use (retry). 
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The receivers�ISRs are now executed because their processors have been 

released by the MPC. The arrival of a message is marked. The tail pointer in 

BPR (Buffer Pointer Register) is updated to prepare for the next message. 

Up to this point, the message body is available at the buffer of every potential 

receiver. When a receiver wants to get a message, the header will be read from 

the MPC. Then the receiver will recognize that the message is already residing 

in its buffer and no remote access is necessary. The ReceiveMessage primitive 

picks up from the front of the circular buffer and updates the head pointer in 

the BPR accordingly. 

Hardware logic 

To realize this protocol, the communication logic on each PN works according 

to the finite state machine depicted in figures 5.15 and 5.16. These figures will 

not be explained in detail because they follow naturally from the protocol shown 

in figure 5.13. 

Sender l og i c for 1 - t o - N DMA 
\ SYNCOMA -0 V ( \ - _ /OSACKO-1 ‘ i DSACK1 

I /DSACKO, t I/broadcasts ‘ i / ICST-O \ /ACK-0 / MEQ-l 1 \ 

\ J \ \ ^ ^ / y h c d i u - I ‘ 

^ \\ V Y / = > " 
/BROADCAST -1 V / HALT -0 / 

/ A 
/ / M A C « , 1 、 / PCL.O \ 
I | < � _ — 1 f /OS(V«E).« 1 

• 。 “ y V /<\ 
/ VOS(VME) -t/ \ VMEDO-U J \ 
IOTC-I ^ ^ ^ ^ 

I /DONE, l / 

Figure 5.15 State diagram for sender. 



CH.5 IMPLEMENTATION ISSUES OF SM3 P.97 

R e c e i v e r l o g i c f o r 1 / N D M A 

PCL-« 1 ‘ "**•”><-» ^ W.I I 1 1 \ 

m m /BROADCA»T-0 I • I BCiT-1 ) 

^ / I /iHOAOCAST-t \ 

f 1 . /OONCI ^ i ' " " . 1 m �� f \ \ 

I DTC-1 ‘ / DONI-1 \ 

Z • t««cl FCL-0 K LlL-2 • Lfttil PCL-1 • 、 

X 1 •YMCDIIA-1 m I aVNCDMA-O I J 

C KJ^ 
I 0«( VME) - I 

Figure 5.16 State diagram for receiver. 

The logic of a PN use /HALTPN to determine its identity as a sender or 

receiver, given that the sender is not halted by the MPC. Signals added to the 

VMEbus for the purpose of hand-shaking include: /BROADCAST, /BCST, 

SYNCDMA, GPCL, and /BCEND. Other supplementary signals includes 

/MPCRDY, /BFn and /HALTPNn. A l l these signals are transmitted via the 

spare pins of the VME bus. The pin assignments are given in Appendix H. 

In our prototype machine five global signals (/BROADCAST, /BCST,…）are 

introduced for hand-shaking. This number varies with different hardware 

implementations (choice of bus and processor). The number of supplementary 

signals like /HALTPNn and /BFn depends on the number of slave PN，s. 

5.6 System start-up procedure 

The start-up procedure can be divided into 2 phases. Firstly, the PNs are power 

up and a reset sequence is executed. Secondly, the slave PNs cannot cooperate 

with each other before they are properly initialized by the root process on the 
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host machine. 

5.6.1 Power up reset of PNs 

As soon as the MC68030 on a PN is powered up, it goes through a reset 

sequence. The program counter and stack pointer are read from the first two 

long words (address 00000000 - 00000007) of the memory. In order to prevent 

a PN from accessing these locations via the VMEbus, the first 64K bytes 

(00000000 - OOOOFFFF) in the address space of a PN are mapped onto the 

locations starting at OOmOOOOO, where m is (PID + 8). The PID can be set by 

DIP-switch setting. This location is just the starting point of a PN，s local 

memory. Hence, remote access for reset vectors is eliminated. Once powered up, 

the PNs are all halted until they are explicitly released by the root process. 

5.6.2 Initialization of the processor pool 

Before a PN is released for free running, a program is load into its local 

memory. The reset vector, including the program counter and stack pointer, are 

initialized by the host machine (or alternately the MPC). Then, / H A L T P N is 

deactivated so the microprocessor of a PN can fetch its reset vector correctly. 

Before the real application is executed, an optional diagnostic program can be 

mn. For example, the host may load a very short program (eg. add two numbers 

to give an answer byte) to a PN, then starts the program to see if the PN is in 

normal condition. Failed processors are not used for future processing. 

After all the initialization, the PNs are now ready to execute the application pro-

gram. The first task is to identify themselves to the MPC by calling a registration 

primitive. A message will be sent to the MPC (or host machine) for error 

detection and availability test. 

5.7 Summary 
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In this chapter, the implementation details of SMS is discussed. The hardware 

and software aspects are treated separately. The communication protocol is the 

most substantial significant design work so a lot of pages are devoted to this 

part. The 1-to-N DMA mechanism is the focus. Afterwards, the start up pro-

cedure of SM3 is briefly mentioned. 

Note that the current implementation of the 1-to-N DMA bases on an 

asynchronous bus (VMEbus). It can be anticipated that less hand-shaking signals 

(5 in our case) are needed to be introduced if a synchronous system bus (and 

synchronous CPU bus) is used. In the mean time, the protocol shown in figure 

5.13 will be simpler because some synchronization points can be removed. 
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CHAPTER 6 

APPLICATION EXAMPLES 

6.1 Introduction 

An efficient message passing environment is useful for concurrent program 

development, parallel execution of logic programs and parallel algorithm design. 

SM3 can be adapted to work as the message driven OR-parallel machine 

described in [DelRe89], or to execute the algorithms for solving equation 

systems presented in [YanWe89]. 

To deal with distributed problems, the broadcasting feature in SMS is suitable 

for informing the slave PNs of the problem configuration to be exploited. The 

host can use a normal message to instruct a slave PN which alternative it should 

exploit. Express messages can be used for conveying urgent information. 

Three simple applications are given here to show how SMS can be adapted to 
a particular problem. 

6.2 Matrix Multiplication 

Matrix multiplication is one of the problem classes that can benefit from the use 

of parallel computers. Suppose there are 16 square matrices and 4 PNs (in-

cluding the host) are available. Figure 6.1 is a feasible plan to find the chain 

product. The steps are: 

1. Host computer initiates the system, down-loads application programs to 

the slave processor nodes. 

2. Each slave processor accepts 2 matrices from the host. These 8 matrices 

are multiplied by the slaves and 4 partial products are passed back to the 

host. 
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6 A 
rf^^i 

2 3 

Figure 6.1. Muitipiication plan of square matrices.* 
3. Repeat step 2 with the remaining 8 matrices. 
4. The host distributes the 8 partial products to the 4 slave processors for 

multiplication. 

5. The 4 partial products are collected by the host and redistributed to 2 

slaves for multiplication. 

6. The host collects the 2 partial products and performs the final multi-
plication. 

The matrices mentioned above are transported by normal messages. I f any of 

the processor detects a zero matrices, the slave PN can tell the host this fact by 

sending him an express message. The host may shut down the system and return 

the answer zero matrix immediately. 

From figure 6.1, we found that there are 15 multiplications. With a parallel 

computer like SM3 with 3 slave PNs and the host machine (degree of para-

llelism is 4) to do data processing, the result can be obtained in roughly 5 multi-

plication time units plus the communication overhead. Maximum practical speed 
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up is 15/5 = 3，which is smaller than the ideal factor 4. 

6.3 Parallel Quicksort 

Another example is a multiprocessor implementation of the well known 

Quicksort algorithm. Parallel Quicksort is a straight forward enhancement of 

the classical sequential Quicksort [Quinn87]. Although this is not an efficient 

parallel sorting algorithm, it qualifies as a clear demonstration example due to 

its simplicity and popularity. The basic idea is illustrated below: 

Every slave PN executes an instance of the parallel algorithm. The elements to 

be sorted are stored in an array in the global memory (probably at the host 

machine). A stack, maintained by the host machine stores the indices of sub-

arrays that are still unsorted. The picture is shown in figure 6.2. 

O r i g i n a l a r r a y a t h o s t 

I M M I g : 

I n d e x s t a c k ^ ^ H K y / ^ � 

•K -
Figure 6.2 The index stack and unsorted sub-arrays. 

When a PN is free, it attempts to pop the indices for an unsorted sub-array off 

the global stack by sending a request message to the host machine. If it is 

successful, a sub-array is delivered to the PN in the form of a message. The PN 

then partitions the sub-array, based on a supposed median element, into two 

smaller arrays, containing elements less than or greater than the supposed 
V 
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median value. After the partitioning step, which is identical to the partitioning 

step performed by the serial Quicksort algorithm, the process pushes the indices 

of one of the sub-arrays onto the global stack ofunsorted sub-arrays and repeats 

the partitioning process on the other sub-array. 

In order to improve the performance of this algorithm, sub-arrays smaller than 

a certain number of elements may be sorted using other algorithms such as 

merge sort. Gehringer [GeJoS82] discusses how to reduce the stack access 

frequency, this helps to minimize the communication overhead of the algorithm. 

6.4 Pipeline Problems 

Some scientific calculations involve the transformation procedure. A series of 

matrices is to be multiplied to a set of vectors or matrices. Each transformation 

matrix performs an operation on the incoming data. This type of computation 

is very common in graphics systems. 

Status broadcasting � 

I v 

B u l l r Buffer p ^ - v Buffer 
r - ^ E M - ^ PN 1 h ^ E M - ^ PN 2 I — — P N n I 

^ ^ 

Stage 1 Stage 2 stage n 

Input vectors or mat r i cesl i 
Host 

^ i h I Result 

Figure 6.3 SM3 as a processor pipeline for data transformation. 
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The PNs in SM3 may be configured into a functional pipeline for this applicat-

ion, as shown in figure 6.3. The Buffer queues in the figure are the IMQ on the 

MPC. Each PN performs a particular operation on the incoming data and passes 

the result to the next PN logically following this PN. The PNs execute their pro-

grams asynchronously so the input and output requests of the PNs generally 

arrive at different instances. Since the pipeline is asynchronous, bus contention 

should not be too serious if communication overhead is not excessive. Since the 

PNs are coupled by non-blocking message-passing，the pipeline is very flexible 

and efficient (physical pipelines are synchronous). Status information are 

conveyed by broadcast messages while the vehicle for control commands may be 

express messages. 

V 
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CHAPTER 7 

UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT 

7.1 Current Status 

Due to the extensive hardware construction exercise in the project, time has 

been tight. Since wire-wrapping was chosen as the implementation method, the 

amount of time needed was probably greater than using the printed-circuit board 

method. Subject to time and cost considerations, 3 slave PN and one MPC 

modules would be constructed. 

The circuit design and floor plan design stages have been completed. Since the 

MPC is simpler than a PN, we tried to construct a PN first. Another reason is 

that the workstation can be operated under the direct control of the host without 

the MPC. 

One complete PN has been constructed but not yet fully debugged. That in-
I 

dudes all the PAL design work and the wire-warp exercise. The PN has been 

attached to the VMEbus with the host machine. Local memory of the PN could 
• 

be accessed (read and write) from the host machine correctly. That implies the ； 

following parts are operational: Clock system, VMEbus Interface as a slave, “ 

Address decoder, /DTACK generation, /BERR generation, Memory System, 

Local Bus Controller and Arbiter, Reset circuity, and Register File. 

Furthermore, an off-line test showed that the Communication Logic on PAL 

chips were functionally correct. 

The remaining 2 PNs and 1 MPC modules have been equipped with the follow-

ing parts because they were verified to be correct: Clock system, Local Bus 

Gate, VMEbus Gate, Watch-dog Timer, and Memory System. Moreover, the 

memory of on all modules had been confirmed to be correctly accessible (read 

and write). As the sockets for all chips had been fixed onto the circuits boards, 
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it would be easy to duplicate more parts onto these incomplete modules once 

the parts were fully debugged. 

Although the debugging phase has not yet been completed, some possible 

immediate improvements can be identified. The future development direction 

can also be figured out from the current trend, state-of-the-art and experience. 

7.2 Possible immediate enhancements 

Since the current version of SMS is a prototype system, many parameters are 

arbitrary and very conservative. Let us examine the major components one by 

one and see what improvements are possible. 

More peripherals should be added to the host machine whenever possible. A 

backup tape and a printer are in great demand for the current configuration. A 

floppy disk driver will make data exchange easier. A l l these equipment are 

already available and can be installed once the workstation becomes operational. 

7.2.1 Enhancement to the PNs 

Microprocessor MC68030 

Although at the time this thesis was written MC68040 had been announced, it 

was not available in large quantities and at a low cost. Before it becomes a 

popular CPU, documentation and support chips are difficult to access. 

Moreover, should the MC68040 becomes available, because the interface 

requirement of MC68040 is different from its predecessor, the PNs must be 

modified. A simpler upgrade is to replace the current 16 MHz MC68030s with 

25 Mt tz ones. However, faster SRAMs and clock rate are required. 

DMAC MC68442 

The current DMAC is a 10 MHz one, a faster one is highly desirable. Moreover, 

a 32-bit one may replace the operating 16-bit one. Since the current D M A C has 
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a slightly different bus definition comparing with that of the CPU (eg. some data 

and address lines are multiplexed), signal conversion is needed. This inefficiency 

should be eliminated as soon as possible. 

Static memory 

Expanding the memory size to nearly 1 Mbytes per PN is straight forward. For 

cost consideration, dynamic R A M will be more desirable for such a size. 

However, a memory size larger than 1 Mbytes will call for a redesign of the 

decoder logic. The use of dynamic R A M will complicate the 1-to-N D M A logic 

due to refresh requirement. I f refreshing on all PNs are synchronous (currently 

the clocks are independent so modification is necessary) then the work wil l be 

easier. 

Virtual memoiy 

This is a natural enhancement since the memory size of even 1 Mbytes for each 

PN may be inadequate for some applications. However, I /O requirement wil l 

be intensive so it must be carefully designed. The load balancing and task 

distribution strategy must be reviewed. 

7.2.2 Enhancement of the MPC 

The architecture of the MPC resembles that of the PNs so similar enhancements 

can be applied. The shift of the software communication protocol logic to 

hardware is a possible move. Finally, a fast PROM may house the MPC software 

so more space is available for buffer queues. Diagnostic and performance 

monitoring hardware are essential for the production model. 

From the software point of view, the MPC can support many functions in 

addition to its basic duties. Message filtering, security check, and load balancing 

are good features to incorporate. 

7.2.3 Communication kernel enhancement 
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More communication primitives are required in order to provide a convenient 

and powerful environment. The following primitives may be added: 

a. primitives for high level acknowledgement - the idea is shown in section 

4.2.2.3. It is desirable to provide a construct for this purpose. 

b. dynamic IMQs manipulation - in order to cope with the change of 

communication demand during the course of execution, a process may 

like to vary its maximum IMQ size dynamically. Moreover, it is desirable 

to allow a process to delete or create one or more of its 3 IMQs. 

7.3 Limitation of a shared bus 

The well known problem of a shared bus is contention. Depending on the 

application and the particular bus characteristics, the maximum number of nodes 

that can be attached to a shared bus varies from 4 to around 16 (eg. 

SUPRENUM system). The direct expansion by adding extra PNs onto the 

shared bus is not practical. A different way of expansion is necessary. 

Research works shown that a ring bus structure provides quite good 

cost/performance ratio [Halst87]. For SM3 we can employ about 6-8 PNs in a 

cluster with one MPC. Clusters are then inter-connected with a ring bus as 

shown in figure 7.1. 

In [RetTh86] several ways to relieve contention problems on shared-memory 

multiprocessor systems are introduced. Processor-memory interconnect 

contention, especially for the case of common bus, was studied and a number 

of interconnection networks are suggested. Besides, contention for a path 

through the interconnect, for a memory module, and for memory locations are 

also discussed. We can adapt some suggested solutions to SM3 if necessary. 

7.4 Number crunching capability 

V 
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Figure 7.1 A clustered approach to expand SMS. 

I f SMS is adapted to a numeric computation problem, the floating-point/ multi-

plication power of the MC68030 will be insufficient. A floating point coprocessor 

MC68881 (or the enhanced model M68882) [Motor88a] should be added. Since 

this chip can be directly interfaced to the MC68030 bus, the amendment to the 

PN circuit will be minor. It is not included in our current prototype due to cost 

problem. The address decoder and local bus arbiter must be modified to 

incorporate this new component. 

I f the computation workload consists of many vectors operations, a vector copro-

cessor is also desirable. In the SUPRENUM project, each processor node has 

a vector coprocessor. Although this enhancement is rather expensive, we should 

avoid adding the vector coprocessor to only some of the PNs since the 

uniformity of the system will be scarified. 

7.5 Parallel programming environment 
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Providing a user-friendly parallel programming environment is a burning issues 

for all parallel computers. SM3 is not an exception. In general, there are 2 

directions for us to choose: 

7.5.1 Conform to serial language 

It is also the current choice of SM3. The advantage of this approach is that it 

does not required a multiprocessor operating system. The programmer uses 

conventional sequential programming language, such as Fortran and C, to write 

programs. When a sequential language with no extension is used, as for the case 

of SM3, the parallelization of application programs is done manually. As SMS 

explores coarse gain parallelism at the procedure level, the job of the pro-

grammer is not so tedious. But it is somewhat inconvenient and error prone. Let 

us see an example. In the SUPRENUM project mentioned in chapter 2，nearly 

1/3 of the effort was on software issues. While one major task is to parallelize 

conventional numeric algorithms by hand. 

Life of the programmer will be much easier if parallelization can be automated. 

That will be the parallelizing compiler's duty to exploit hidden parallelism in a 

programs written in a sequential high level programming language. However, 

procedure level parallelism is more difficult to detect and control comparing 

with fine gain (instruction level) parallelism because the behavior of a procedure 

(the scheduling unit) is extremely difficult, if not impossible, to predict while the 

behavior of an instruction is well known. 

For the case of SM3, a parallelizing compiler can be constructed in an over-

simplified way. Using the parallel quicksort described in chapter 6 as an ex-

ample, we can detect the major recursion (or iteration) in the serial version of 

quicksort automatically. If this part is written in the form of a function or pro-

cedure, the compiler can generate the root process code, initialization code, task 

distribution code, and message communication code in a mechanical way. Of 

course, the effectiveness a task assignment plan strongly depends on the data 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 111 

dependency, and hence the communication pattern, between interacting pro-

cesses. Since this problem is still an active research area, an immediate remedy 

is to allow the programmer to assist in the task distribution work interactively. 

7.5.2 Moving to parallel programming languages 

Using a parallel language can greatly increase the reliability of an application 

program and significantly simplifies the work of the programmer. Parallel 

languages can range from very primitive and propriety ones, such as P L / M from 

Intel, to quite abstract and popular ones, such as CSP (Communicating 

Sequential Process) languages. These parallel languages requires a parallelizing 

compiler and an execution environment. 

Now the duties of the compiler is to handle those parallel language constructs. 

For scientific and prototyping purpose. A multiprocessor operating system (OS) 

is not mandatory because the user may directly control the system. On the other 

hand, a standard multiprocessor OS must be available if we supports general 

purpose computing. Compatibility with existing commonly used uni-processor 

OSs is a critical issue for the popularity of multiprocessor systems. Since the 

advance of software technology is lagging behind that of hardware technology, 

this point is even more important then the hardware enhancements described 

in earlier sections in this chapter. 

Moreover, we can release the requirement that each PN in SMS executes a 

single process. Task distribution and load balancing will be automated. Then, the 

system will be more user friendly, and will be able to serve a wider range of 

users. 

We shall discuss this point in greater details. The evolution path from a uni-pro-

cessor OS to a multiprocessor OS is traced. 

7.5.2.1 Uni-processor Unix 
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Unix is widely claimed as the most standardized, most portable, and full-function 

operating system. Although Unix started out as a "departmental-level" OS, it has 

expanded both upwards and downwards. In fact, Unix is the first full-function OS 

that runs on many types of computers belonging to a wide range of manufactures 

Jeffr84]. It has become an industrial standard for small workstation-class micro-

computers intended for multi-tasking or multi-user applications. The vast amount 

of software available such as word-processors, type-setters and engineering 

packages adds extra value to this small, elegant operating system. 

Unix consists of a kernel of about 15,000 lines of source codes, and 300,000-odd 

lines of utilities programs mostly written in C [Jeffr84]. The kernel is the heart 

of an operating system, as shown in figure 7.2 [JaAnV86]. It includes a number 

of mechanisms from which a set of OS primitives and policies can be flexibly, 

efficiently, and reliably constructed. 

S h e l l 

/ V ^ ~ “ 
/ • : X S y s t e m c a l l s X - \ 

/ 二 / / ^ r n T l X \ ； 

I I 
H a r d w a r e 

Figure 7.2 The Unix operating system. 

7.5.2.2 Porting Unix 

Porting Unix to a new machine is not an easy job despite Unix is the most 

portable OS. Figure 8.3 summarizes the major issues. About 20-30% of the 

kernel has to be changed which includes the device drivers, the memory 
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management unit (MMU), the process management unit, and the resources 

allocation codes. The utilities have to be examined for accidentally introduced 

machine-dependent codes. Compatibility between different releases of Unix must 

also be catered for [Jeffr84]. 

P o r t i n g U n i x 

I 
Ut i I i t i e s & K e r n e l 
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^ " " " " ^ r - ^ 
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r Pii CPU 
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CPU CPU “ 7 
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\ / / MMU . _ 

D i f f e r e n t / J / ‘ 
U n i x L — — \ ^ ^ 
V e r s i o n s M u c h r F 

W o r k N e w Sa me 
d r i v e r s d r i v e r s 

Figure 7.3 Considerations of porting Unix 

Although Unix looks good for general purpose and engineering computing, it is 

unable to cope with the need for multiprocessing as the workload grows. 

Originally, Unix was a uni-processor OS. 

7.5.2.3 Multiprocessor Unix 

To implement a multiprocessor OS, there are two approaches [JaAnV86]: 

a. Design a new operating system in a new or existing language. The special 

features supported by the system can be exploited. However, portability 

and design cost are fatal problems. 

b. Adapt an existing operating system for the new hardware. The system can 
V 
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be brought up quickly at a reasonable cost. 

The latter approach is usually chosen under cost and compatibility considerat-

ions. The kernel of Unix, which is not requested like a system call, performs 

scheduling and it makes Unix a multi-tasking system. In [JaAnV86], a systematic 

approach to modify Unix is presented. We are going to discuss this briefly. 

The protection mechanisms for critical sections in the Unix kernel must be 

modified when Unix is adapted for a multiprocessor environment. We have to 

detect and protect the critical sections of the Unix kernel. It is necessary to scan 

the complete Unix kernel source codes and examine every line to see whether 

or not it belongs to a critical section. But for reasons of optimization, Unix does 

not always follow its algorithm exactly. Experience showed that it is easy to 

detect the beginning of a critical section but very difficult to detect precisely 

where the critical section ends. Other problems are: 

a. Unix kernel is not highly structured. 

b. Owning to optimization, similar codes are by no means amenable to 

standard structures. 

c. Because critical sections can be nested, deadlock can arise. 

d. Multiple paths frequently offer a way to remain at a certain place in the 

kernel code. 

There are three possible solutions to those problems : 

a. Really go through the complete kernel. Examine every line and its 

environment and add locks if necessary. A completed project shows that 

there are many difficulties. For details please see [BacBu84". 

b. Allowing only one processor at a time to execute kernel code. Parallel 

processing is applicable only to user processes. The Munix project 

AnrJaSS, MeyHa75] follows this approach. But statistics shows that the 

CPU of a single processor system uses half of its time to execute kernel 
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processes so concurrency cannot be fully exploited [JaAnV86:. 

c. Rewrite Unix. It presents an opportunity to improve modularity, 

understandability, and reliability at the same time. But a considerable 

amount of effort is required. For example, the internal structure of Tunis, 

which is a Unix-compatible system, is completely different from that of 

Unix. It was written in a concurrent language named Concurrent Euclid 

[EwHoF86, Holt82]. 

7.5.3 Object-oriented approach 

Since message-passing is the only way of communication in a object-oriented 

system, SMS can be tailored to support an object-oriented software environment. 

The programming model will be even simpler and more elegant than the current 

model. We shall briefly discuss this approach. 

A t the very beginning, programmers wrote straight-line codes to command the 

computer to carry out a series of operations that mimics operations in the real 

world. Then procedures were widely used for task partitioning and program 

structuring. But actually, the world is more process-shaped rather than pro-

cedure-shaped. The majority of available software doesn't reflect that reality. 

The process is a better modularization vehicle than the procedure because we 

can scatter processes over a collection of computers [Pete88]. This favors para-

llel processing. Process-oriented parallel languages such as Occam [Inmos83] are 

becoming more and more popular. Interacting processes need special coordinat-

ion mechanisms to make sure that they are operating correctly [ShMiS78:. 

Based on the process-oriented approach mentioned, a higher-level method to 

conceptualize the world is introduced. In the object-oriented approach, a system 

is decomposed into objects. The decomposition may yield coinciding notions for 

both information hiding and protection, and concurrent execution. Objects in the 

system may communicate by exchanging messages. The internal details of an 

object is hidden from the outside world. Small-talk, and POOL-T [Ameri86] are 
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typical object-oriented languages. 

To facilitate efficient execution of programs written in object-oriented languages, 

architectural support is desirable [WiLoE87]. Object-oriented architectures have 

the following characteristics [RoberSl]: 

a. Specification of data in programs is kept separated from how the data are 

referenced by program instructions or represented in memory. 

b. Hardware or software controls access to different types of data with 

passwords (descriptors). Programmers can use modular programming and 

structured design more efficiently. 

c. Hardware algorithms to check whether each type of object is associated 

with operators that make sense for it. 

The object-oriented style is very promising among parallel systems. This natural 

method for structuring and partitioning, combined with a message-passing 

mechanism for communication and synchronization, greatly relieve these aspects 

of the programming task [WiLoE87]. Released from these responsibilities, pro-

grammers can concentrate on the problems at hand. Since SM3 supports 

message passing in an efficient way, it is very desirable to adopt an object-

oriented environment on SM3. 

7.6 Summary 

We have enumerated some possible enhancements for short-term and long-term 

development of SM3. Both hardware and software aspects are covered. Although 

performance improvement is desirable, providing a good programming environ-

ment for the user should be given first attention. Without a standardized, easy 

to use multiprocessor OS, SM3-like systems are accessible for expert users only. 

Unix is a suitable choice for the application domain that SM3 aims to serve. 

To provide a better programming environment, SM3 can be further developed 
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into a object-oriented architecture with ease because of the message-based 

background. A library of generic object manipulation functions, such as creation, 

destruction, and migration, must be developed. Data encapsulation and object 

distribution must be supported by the operating system. Thus, an object-oriented 

environment has to be integrated into the operating system. This is really a large 

piece of challenging work. 

V 
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CHAPTER 8 

CONCLUSION 

8.1 Thesis summary 

At the beginning of this thesis, we started our discussion by justifying the quest 

for parallel processing. A quick tour of the current status of parallel processing 

was presented, using Micheal Flynn's classification scheme [FatKr83] as a road 

map. Then we converged to multiprocessor systems, which is recognized as the 

basic building block for larger systems. We appreciated the cost effectiveness 

and simplicity of shared-memory bus architectures. 

To solidify our discussion, several real machines are briefly introduced. That 

include the SUPRENUM, MEMSY, ELXSI, and SEQUENT. Al l of them are, 

more or less, bus-based shared-memory systems. Some of them employ the 

cluster approach for higher level expansion. Yackos is a software project aiming 

at providing faster message transfer on top of a shared-memory architecture. We 

noticed that the software MP approach was unsatisfactory. 

To eliminate the context switching problem of the MP approach and enforce 

performance stability, a dedicated processor is reserved for the MP process. We 

called this software and hardware combination the Message-Passing Coordinator, 

or MPC for short. The basic idea is analogous to a PABX telephone switch box. 

We are pleased to find that the MPC can deliver much better functionalities 

than the MP. Expectedly, some drawbacks were found but all of them are minor 

problems. 

After the MPC had been introduced, we presented the design of the multipro-

cessor workstation SMS. From a hardware point of view, SMS is a simple 

distributed shared-memory bus-based multi-microprocessor system. The MPC 

and the host machine are the traffic and control centers of SMS. In software 
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aspects, SM3 offers a message-passing environment for inter-process 

communication. With the MPC as an agent, message traffic is regulated while 

delay is small. A hierarchically-typed message structure for SM3 was discussed. 

Most importantly, message communication protocols were tailor-made for 

different message types for better performance and ease of use. 

We explored the intrinsic broadcasting nature of the shared bus, a 1-to-N D M A 

concept was devised for handling broadcast message in an efficient way. This is 

a by-product of employing the MPC approach. Actually, it is a generalized D M A 

transfer that can be implemented with many conventional DMA devices. The 

savings will be significant when there are many receivers. A good property of the 

1-to-N DMA mechanism is that it allows the sender to select potential receivers. 

After the general issues of building SM3 had been presented, we looked into the 

implementation details. Design decisions concerning both software and hardware 

were explained. We particularly included the start-up procedure of SMS for a 

better understanding of the system operations. 

Application examples served to illustrate how SM3 can be adapted to solve 

some common problems using a message-passing environment, with the 

hierarchical message system and the help of priority levels. In these examples, 

it is evident that automatic exploration of coarse gain parallelism is quite 

difficult. That is one of the unsolved problems. The availability of a standard 

multiprocessor OS in the near future is another question. Enhancement issues 

of the software and hardware of SMS was discussed too. Future developments 

may be based on the improvements that are achievable in a short period. 

In conclusion, we have designed a low cost, easy to program workstation that 

applies the idea of multiprocessing. The shared-memory offers a lot of 

advantages for communication. Such a system is suitable for prototyping, 

industrial engineering calculations, parallel program development, object-

oriented system support and parallel execution of logic programs. 

V 
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8.2 Author's comment 

Undoubtedly, designing and implementing a multiprocessor system is laborious 

but extremely rewarding. Design trade-offs can only be made on the ground of 

personal experience, which is exactly what the author initially lacked but now 

had gained. As parallel computing is the current trend, the invaluable experience 

of designing and building a parallel computer outweighs the inevitable 

frustrations it brings. 

Let us return to SMS and the MPC approach. Although parallel computers have 

not walk out of the ivory tower completely, the practical experience that brought 

to us during the design and implementation of SM3 will certainly be helpful to 

the literacy of parallel computers. Definitely, the author enjoys the achievements 

of the very pragmatic design of SM3, the advancement of the MPC approach, 

and the delighting discovery of the 1-to-N DMA mechanism. The flexibility and 

expansibility of the SMS workstation offer a very promising development 

opportunity, in particular for the design of concurrent programs for distributed 

problem solving, and for the provision of an architecture suitable for supporting 

an object-oriented environment. 

The author would like to point out that the movement from the MP approach 

to the MPC approach exhibits the favor of software oriented architecture. 

Traditional computer architects satisfy on delivering machines that can execute 

any program, which may be � mix of machine instructions, correctly and 

smoothly. But the current trend is to put the programming model into con-

sideration early in the architectural design phase. In these system, acceptance by 

the programmer is much better, and very likely the performance is also impro-

ved due to the architectural support of a predefined, extensively used com-

putation model. In this sense, the MPC approach is certainly an advance, (fixing 

a process to a processor seems a stepping-back action because the process 

cannot migrate and share the processor with others. From the operating system 

point of view, we have retreated from multiprogramming to conventional single-
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programming mode. This is a backwards move.) 

SM3-like multiprocessor workstations will not win the appreciation of the 

general user if good parallelizing compilers and a standard multiprocessor OS 

are not available. Moreover, a friendly and elegant programming environment 

is indispensable. Although some initial works had been done, such as the 

MUPPET programming environment for message-based multiprocessors de-

scribed in [MuLiS86], no widely accepted system has yet emerged. The author 

believes that object-oriented systems will gradually win the competitioiL 

8.3 Looking into the future 

Recall that SM3 explores coarse gain parallelism. It is foreseeable that future 

multiprocessors will explore all levels of parallelism, with a very high degree of 

automation. Although we emphasis software oriented architecture, it does not 

mean that we should build hardware in a fixed software-dependent way. On the 

contrary, performance fluctuation due to data variation will eventually pull out 

a lot of reconfigurable designs. As the size of computer systems grows 

monotonically, fault-tolerance will continue to be a desirable feature of multi-

processor systems that lies anywhere in the multiprocessing spectrum. 

In the short term, software advances is much more desirable because there are 

already many parallel computers that cannot be easily programmed. Actually, 

SMS is one of the vast amount of projects that attempts to surmount that bar-

rier. In the long term, the number of processors in a system and their perform-

ance will be climbing upwards in different rates, giving more variations of 

machines, and also more programmability problems for our energetic fellow 

researchers. 
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APPENDIX A 

BLOCK DIAGRAM 

The block diagram of a PN/MPC is shown on the next page. A MPC does not 

have the DMAC that a PN have. 
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APPENDIX B 

CIRCUIT DIAGRAMS 

The circuit diagrams of SMS, including the PNs and the MPC, is printed on the 

following 6 pages. Parts for the MPC specifically are highlighted. 
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APPENDIX C 

PCB LAYOUT 

The PCB layout diagrams of the PNs and the MPC are printed on the following 

pages. 
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APPENDIX D 

VMEBUS ADDRESS MAP 

Given that 24 out of the 32 VME bus address lines are used, the active 

addressing space is 16 MBytes at most. We represent the VME address by 8 

hexadecimal digits. The address map is shown in figure D.l . 

VME addr. Space allocation 

00000000 Host machine“ 
007FFFFF 

00800000 MPC 
008FFFFF 

00900000 PN2 
009FFFFF 

OOAOOOOO PN3 
OOAFFFFF 

OOBOOOOO PN4 • • 
• • 

OOFFFFFF PN8 

OlFOOOOO Reserved 

FFFFFFFF || 

Figure D.1 VME address map 

The map implies that each processor node may equip up to 1 Mbytes private 

memory. The maximum number of add-on boards is 8 regardless of whether it 

is a slave PN or a MPC, except the host machine. 
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APPENDIX E 

PROCESSOR NODE ADDRESS MAP 

Local addr. PN definition MPC definition 

_ 0 0 0 0 Private RAM Private RAM 
xxOOFFFF 

xxOlFFFF VME address VME address 
xxTFFFFF 

xxnOOOOO Private RAM Private RAM 
xxnlFFFF 

xxn20000 RAM expansion RAM expansion 
xxnFFEEF 

xxnFFEFO reserved HALTR 

xxnFFEF3 

xxnFFEF4 PNCR MPCCR 

xxnFFEF? 

xxnFFEFS PNSR MPCSR 

xxnFFEFB 

xxnFFEFC BPR MPCBFR 

xxnFFEFF 

xxnFFFOO DDMA registers reserved 
xxnFFFFF 

Figure E.I Local address map of a PN/MPC. 

The local address map for a PN/MPC is presented in figure E.l. Notice that the 

register assignment for this two kind of boards are slightly different. According 

to the address map shown in appendix D,，n，is 8 for MPC, 9 for PN2 and so 

forth. Another irregularity is that the first 64 Kbytes starting at 00000000 are 

mapped to the PRIVATE memory of a PN/MPC instead of the host. It is due 

to the reset vector requirement described in chapter 5. 
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APPENDIX F 

REGISTER LAYOUT 

F.l Registers on a PN 

The Buffer Pointer Register (BPR) of a PN is simply an index to the message 

Bit Bit 

_ 0 _ /MPCRDY :���0|| | | /BCEND 

_ 1 _ GPCL 1 undefined 

_ 2 _ /BROADCAST _ /VMESEL2 

J _ /SYNCDMA 3 undefined 

J � _ /BCST _ 4 _ undefined 

J _ /VGRANT 5 undefined 

6 /BFn 6 undefined 

7 0 7 undefined 

PNSR PNCR 

Figure F.2 Definition of PNCR and PNSR 

queue. The picture is shown in figure F.l. The definition of the Status Register 

and Control Register is shown in figure F.2. 

0 1 2 3 4 5 6 7 bit 

Head pointer Tail pointer 

Figure F.2 Definition of the BPR. 

F.2 Registers on the MPC 
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The definition of the Status Register and Control Register is shown in figure 

F.3. The definition of HALTR can be found in figure F.4. 

Bit Bit 

_ 0 _ /BCEND 0 /BROADCAST 

J _ 0 1 /MPCRDY 

2 0 2 undefined 

3 0 3 undefined 

4 0 4 undefined 

5 0 5 undefined 

6 0 6 undefined 

7 0 7 undefined 

MPCSR MPCCR 
Figure F.2 Definition of the MPCCR and MPCSR. 

Bit Bit 

_ 0 _ /HALTPNl (MPC) 0 / B F l (MPC) 

J _ /HALTPN2 J _ /BF2 

2 /HALTPN3 2 /BF3 

__3_ /HALTPN4 3 /BF4 

4 /HALTPN5 (future use) 4 /BF5 

J _ /HALTPN6 (future use) 5 /BF6 

_ 6 _ /HALTPN7 (future use) 6 /BF7 

7 /HALTPN8 (future use) 7 /BF8 

HALTR MPCBFR 
Figure F.3 Definition of the HALTR and MPCBFR. 
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APPENDIX G 

PAL DESIGN 

；************************************************************** 

；* P A L s - D O C U M E N T A T I O N F I L E * 

PAL16L8 ； R e g i s t e r s i g n a l s decoder (U4) 
/PNSRS /DSKO /DS /PNCRS RW /BPRS /VMESl /VMES2 /ENl GND 
/EN2 /VMESEL /REGBUFG /BPROP BPRG PNCRG /PNSROP /RDSKl /RDSKO VCC 
/PNSROP = /PNSRS*RW*/EN2 
/PNCRG = DS + PNCRS + EN2 
/BPRG = BPRS + RW + EN2 
/BPROP = RW*/BPRS*/EN2 
/REGBUFG = / PNSRS *RW*/EN2 + RW*/BPRS*/EN2 
/RDSKO = EN2*/EN2 ； 0 
/RDSKl = EN2 + /EN2 ； 1 
/VMESEL = /VMES1*/EN1 + /VMES2*/EN1 ； * * no t a 3 - s t a t e s i g n a l ！ * * 
• ^̂  ^ ^ ̂  ̂ ^ ^ ̂  ̂ ^ 
/ “ 

PAL16R4 ； B u f f e r f u l l gene ra t i on (U6) 
CLK AO A1 A2 A3 BO B l B2 B3 GND 
/EN /BPROP /FBO NC NC /BFULL NC /FBI /FB2 VCC 
/FBO = AO*BO + /AO*/BO 
/ F B I = A1*B1 + /A1* /B1 
/FB2 = A2*B2 + /A2*/B2 
/BFULL ••= /BPROP*/FBO*/FB1*/FB2*A3*B3 + /BPROP*/FBO*/FB1*/FB2*/A3*/B3 
• ̂ ^ ̂  ̂ ^ ̂  ̂ ^ ̂ ^ ̂ ^ ̂  ̂ ^ ̂ ^ ̂  ̂  ̂  ̂ ^ 

/ 一 — — 一 一 — — — — 一 — — — — — — 一 一 — — — — — — — — — — — — — — — — — — — — — — 

PAL16L8; MPC r e g i s t e r s decoder (U7) 
/DS /MPCCR RW /RESET /HALTRS /MPCSRS /MPCBFRS /DSACKO /EN l GND 
/EN2 /RDSACKl /RDSACKO NC HALTRG /MPCRBG /MPCBFROP /MPCSROP MPCCRG VCC 
/RDSACKl = /EN + EN ; 0 

RDSACKl.TRST = /DSACKO 
/RDSACKO = /EN* EN ； 1 

RDSACKO.TRST = /DSACKO _ 
/HALTRG = DS*RESET + HALTRS *RESET 
/MPCBFROP = /MPCBFRS*RW 
/MPCSROP = /MPCSRS*RW 
/MPCRBG = /MPCBFRS*RW 4- /MPCSRS*RW 

/MPCCRG = MPCCR + DS + RW 
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• f 

PAL16L8 ； MPC HALT-REG DECODER (UIO) 
DO D1 D2 D3 /HALTPNO /HALTPNl /HALTPN2 /HALTPN3 /RESET GND 
/EN NC NC NC NC HD3 HD2 HDl HDO VCC 
/HDO = /DO + /RESET 

HDO.TRST = /EN 
/HD l = /D1 + /RESET 

HDl.TRST = /EN 
/HD2 = /D2 + /RESET 

HD2.TRST = /EN 
/HD3 � /D3 + /RESET 

HD3.TRST = /EN 
• 

/ — — — — — — — — — — 

PAL16R4 ； PN Sender l o g i c (U14) 
CLK /BROADCAST /HALTI /ACK SYNCDMA /DSACKO /DSACKl /DTC /DONE GND 
/EN /RESET NC /S3 /S2 / S I /SO PCL /HB VCC 
/SO � = RESET*S2*S1*SO*HALTI*/BROADCAST + RESET*S2*S1*/S0 

+ RESET*S2*/S1*/S0*/SYNCDMA + RESET*S2*/S1*/S0*DSACK0*DSACK1 
+ RESET*/S2*/S1*S0 + RESET*S2*/S1*SO*/DTC*DONE 
+ RESET*/S2*/S1*/S0*/SYNCDMA 

/ S I � = RESET*S2*S1*/S0*/ACK*SYNCDMA + RESET*S2*/S1*/S0 
+ RESET*/S2*/S1*S0 + RESET*/S2*/S1*/S0 + RESET*S2*/S1*SO*DONE 

/S2 �� RESET*S2*/S1*/S0*SYNCDMA*/DSACK0 + RESET*/S2*/S1*S0*SYNCDMA 
+ RESET*S2*/S1*/S0*SYNCDMA*/DSACK1 + RESET*/S2*/S1*S0*/SYNCDMA 
+ RESET*/S2*/S1*/S0*/SYNCDMA 

/HB = /HALTI "BROADCAST 
PCL.TRST = S2*/S1*/S0 

/PCL = /HALTI*HALTI ； GPCL=1 3-STATE 

• ^^ ^^ ^ ^ ^^ ^ 

/ 

PAL16R4 ； PN Sender l o g i c (U14) 
CLK /BROADCAST /HALTI /TEM SYNCDMA /DSACKO /DSACKl /DTC /DONE GND 
/EN /ACKIN /ACKOUT /S3 /S2 / S I /SO PCL /HB VCC 
/SO � = S2*S1*S0*HALTI*/BROADCAST + S2*S1*/S0 

+ S2*/S1*/S0*/SYNCDMA + S2*/S1*/S0*DSACK0*DSACK1 
+ /S2* /S1*S0 + S2*/S1*SO*/DTC*DONE 
+ /S2*/S1*/S0*/SYNCDMA 

/ S I � = S2*S1*/S0*/TEM + S2*/S1*/S0 + /S2* /S1*S0 + S2*/Sl*SO*DONE 
+ /S2* /S1* /S0 

/S2 � = S2*/S1*/S0*SYNCDMA*/DSACK0 + S2 */Sl*/SO*SYNCDMA*/DSACKl 
+ /S2*/S1*S0*/SYNCDMA + /S2*/S1*S0*SYNCDMA 

+ /S2*/S1*/S0*/SYNCDMA 
/HB = /HALTI "BROADCAST 
/PCL = /HALTI*HALTI ； GPCL=1 3-STATE 

PCL.TRST = S2*/S1*/S0 
/ACKOUT = /ACKIN*SYNCDMA ； E x t e r n a l feedback , 
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• ^^ ^ ^^ ^^ 
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PAL16R4 ； PN Rece i ve r l o g i c (U15) 
CLK3 3 /BCST /ACK GPCL /AS /DSVME /DTC /DONE /HB GND 
/EN /RESET /REQ /TM /S2 / S I /SO SYNCDMA PCL VCC 
/SO � = RESET*S2*S1*S0*/HB + RESET*S2*S1*/S0 + RESET*S2*/Sl*/SO*ACK 

+ RESET*/S2*/S1*S0*/AS + RESET*/S2*S1*/S0*DSVME 
/ S I � = RESET*S2*S1*/S0*/BCST + RESET*S2*/S1*/S0 + RESET*S2*/Sl*SO 

+ RESET*/S2*/S1*S0*AS + RESET*/S2*S1*S0*/DTC*DONE 
/S2 � = RESET*S2*/S1*S0*GPCL + RESET*/S2*/S1*S0 + RESET*/S2*S1*/S0 

+ RESET*/S2*S1*SO*DTC*DONE 
/TM � = RESET*S2*S1*S0*/HB + RESET*S2*S1*/S0 + RESET*S2*/S1*/S0*ACK 

+ RESET*S2*/S1*S0*GPCL + RESET*/S2*/Sl*SO*AS 
+ RESET*/S2*S1*/S0*/DSVME + RESET*/S2*S1*SO*DTC*DONE 

/REQ = /BCST + BCST ； /REQ = 0 i f S2* /S1* /S0 o t h e r w i s e X 
REQ.TRST = S2* /S1* /S0 

/SYNCDMA = /BCST + BCST ； O:no t r e a d y , 1 : p u l l e d up , X:OK 
SYNCDMA.TRST = /TM 

/PCL = /BCST*BCST ； /PCL = 1 i f /S2* /S1*S0 o t h e r w i s e X 
PCL.TRST = /S2* /S1*S0 

• 

f 

PAL16R4 ； PN Rece i ve r l o g i c (U15) [ [ [ OLD VERSION ] ] ] 
CLK3 3 /BCST /ACK GPCL /AS /DSVME /DTC /DONE /HB GND 
/EN TEMP /REQ /S3 /S2 / S I /SO SYNCDMA PCL VCC 
/SO � = S2*S1*S0*/HB + S2*S1*/S0 + S2*/Sl* /SO*ACK + /S2* /S1*S0* /AS 

+ /S2*S1*/S0*DSVME 

/ S I � = S2*S1*/S0*/BCST + S2* /S1* /S0 + S2*/S1*S0 + /S2* /S l *SO*AS 
+ /S2*S1*SO*/DTC*DONE 

/S2 � = S2*/S1*S0*GPCL + /S2* /S1*S0 + /S2*S1* /S0 + /S2*S1*SO*DTC*DONE 
/REQ = /BCST + BCST ； /REQ = 0 i f S2* /S1* /S0 o t h e r w i s e X 

REQ.TRST = S2* /S1* /S0 
/TEMP = S2* /S1* /S0 + /S2*S0 + S2*S1*/S0 

/SYNCDMA = /BCST + BCST ； 0 : n o t r e a d y , 1 : p u l l e d up , X:OK 
SYNCDMA.TRST = /TEMP 

/PCL = /BCST*BCST ； /PCL = 1 i f /S2* /S1*S0 o t h e r w i s e X 
PCL.TRST = /S2* /S1*S0 

V 
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PAL16L8 ； PN Sender FSM decoder (U16) 
SO S I S2 S3 /VMEEN NC NC NC NC GND 
NC GPCL /REQ /DSACKO /DSACKl /VMEDEN /VDS /TEMP /BCST VCC 
/TEMP = /S2* /S1* /S0 + /S2*/S1*S0 + S2* /S1* /S0 + S2*/S1*S0 + S2*S1*/S0 
/BCST = /VMEEN + VMEEN ； 0 

BCST.TRST = /TEMP 
/GPCL = /VMEEN*VMEEN ； 1 

GPCL.TRST = S2* /S1* /S0 
/REQ = /VMEEN + VMEEN ； 0 
REQ.TRST = S2*S1*/S0 

/DSACKO = VMEEN*/VMEEN ； 1 
DSACKO.TRST = S2*/S1*S0 

/DSACKl = VMEEN + /VMEEN ； 0 
DSACKl.TRST = S2*/S1*S0 

/VDS = /BCST*/S2* /S1 + /S2*/S1*S0 ； ==> /S2* /S1 
/VMEDEN = /VMEEN 4- /BCST* /S2* /S l + /S2* /S1*S0 

• mm mmm vm ^m ^m MB W ^ ^ ^^ ^^ ^^ ^^ ^ ^^ ^^ 

/ 

PAL16L8 ； VME address decoder (U17) 
DIPO D I P l DIP2 DIPS /VAS A20 A21 A22 A23 GND 
/ E N l NC B l B2 B3 B4 NC NC /BSEL VCC 
/ B l = A20* /DIP0 + /A20*DIP0 ； i n t e r n a l feedback 
/B2 = A21* /D IP1 + /A21*DIP1 ； i n t e r n a l feedback 
/B3 = A22*/DIP2 + /A22*DIP2 ； i n t e r n a l feedback 
/B4 = A23*/DIP3 + /A23*DIP3 ； i n t e r n a l feedback 
/BSEL = B1*B2*B3*B4*/VAS*/EN1 

• ^m mmm mmm ^m ^m mm ^ mm ^ ^ ^ ^ mtm mmm ^ mm ^ ^ ^ ^ ^ ^ 

/ — 

PAL16L8 ； VME t o PN decoder 1 (U25) 
/BERRI /WRITEI /ASI /BERRVMEI RWI >ASVMEI /VAS /VMEEN /VGRANT GND 
NC NC DDIR /ASVMEO /ASO /WRITEO /BERRO RWO /BERRVMEO VCC 
/BERRVMEO = /BERRI 

BERRVMEO.TRST = /VMEEN*VGRANT ； as a s l a v e , o u t p u t BERR 
/RWO = /WRITEI 
RWO. TRST = /VMEEN*VGRANT 

/BERRO = /BERRVMEI 
BERRO. TRST = /VMEEN*/VGRANT ； as a master 

/WRITEO = /RWI - -
WRITEO .TRST = /VMEEN*/VGRANT 

/ASO = /ASVMEI 
ASO. TRST = /VMEEN*VGRANT 

/ASVMEO = /ASI*/VAS ； /VAS 
ASVMEO. TRST = /VMEEN*/VGRANT 

/DDIR = VGRANT*WRITEI + /VGRANT*/RWI 
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PAL16L8 ； VME to PN decoder 1 (U25) 

/BERRI /WRITEI /ASI /BERRVMEI RWI /ASVMEI /VAS /VMEEN /VGRANT GND 
NC NC NC /ASVMEO /ASO /WRITEO /BERRO RWO /BERRVMEO VCC 

/BERRVMEO = /BERRI 

BERRVMEO. TRST = /VMEEN*VGRANT ； as a slave, output BERR 

/RWO = /WRITEI 

RWO. TRST = /VMEEN*VGRANT 

/BERRO = /BERRVMEI 

BERRO. TRST = /VMEEN*/VGRANT ； as a master 

/WRITEO � /RWI 

WRITEO .TRST = /VMEEN*/VGRANT 

/ASO = /ASVMEI 

ASO . TRST = /VMEEN*VGRANT 

/ASVMEO = /ASI*/VAS 

ASVMEO. TRST = /VMEEN*/VGRANT 

； D S l I 0 0 0 0 1 1 1 1 

；DSO I 0 0 1 1 0 0 1 1 

；LWD I 0 1 0 1 0 1 0 1 ； + 

； S I l I 0 0 1 1 1 1 1 1 
； S I O I 0 1 0 0 0 0 1 1 
；AO I 0 0 0 0 1 1 1 1 “ 

； D K l I 0 0 x 1 x 1 1 1 

；DKO I 0 1 0 0 0 0 1 1 

PAL16L8 ； VME to PN decoder 2 (U26) 

/DSO /DSl /LWORD /DTACK /VMEEN /VGRANT NC NC NC GND 

NC /NEWSIZl NEWAO AO /DSACKl /DSACKO /DS SIZl SIZO VCC 

/SIZO = /DSO*/LWORD + /DS1*DS0 + DS1*/DS0 

SIZO .TRST = /VMEEN*VGRANT ； as a slave 

/SIZl = /DSO*/LWORD + /DS1*/DS0 + /DS1*LW0RD 

SIZl .TRST = /VMEEN*VGRANT 

/DS = /DSO + /DSl 

DS.TRST = /VMEEN*VGRANT 

/DSACKO = /DTACK*/DSO*/LWORD + / DTACK*/DS1*DS0 + /DTACK*DS1*/DS0 

DSACKO. TRST = /VMEEN*/VGRANT 

/DSACKl = /DTACK*/DS 0 */LWORD + /DTACK*/DS1*/DS0 + 

/DTACK*/DSl*LWORD 

DSACKl. TRST = /VMEEN*/VGRANT 

/AO = /DSO / void, should be deleted ilii 

AO.TRST = /VMEEN*VGRANT 

/NEWAO = /DSl 

NEWAO . TRST = /VMEEN*VGRANT 

/NEWSIZl = /DS1*/DS0 

NEWSIZl.TRST = /VMEEN*VGRANT 

； S l j O O O O l l l l 

； S O j O O l l O O l l 

； A 0 | 0 1 0 1 0 1 0 1 ； + 

； D l | 0 0 0 0 1 0 1 1 

； D O j O O O O O l l l 
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PAL16L8 ； PN to VME decoder (U27) 

/DSACKO /DSACKl /DS SIZO SIZl /VMEEN /VGRANT /VDS AO GND 

NC NC NC NC NC /DTACK /LWORD /DSl /DSO VCC 

/LWORD = /SIZ0*/SIZ1 

LWORD . TRST = /DS*/VMEEN*/ VGRANT 

/DTACK = /DSACKO + /DSACKl 

DTACK. TRST = /VMEEN*/VGRANT 

/DSl = /SIZl + /SIZO*AO + /VDS 

DSl. TRST = /DS*/VMEEN* / VGRANT 

/DSO = /SIZl + /SIZO*/AO + /VDS 
DSO. TRST = /DS*/VMEEN*/VGRANT 
• ̂^ ̂^ ̂  ̂̂  ̂̂  ̂̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂̂  

A ^ ——— — — — 
PAL16L8 ； SRAM controller 1 (U36) 
RW A1 AO SIZO SIZl /RAMS /DSKOUT /RDSKO /RDSKl GND 

/REGS DSKl DSKO /E3 /E2 /El /EO /W /G VCC 

/G = RW*/RAMS ‘ 

/W = /RW*/RAMS 

/EO = /A1*/A0*/RAMS 

/El = /A1*A0*/RAMS + /A1*SIZ0*/RAMS + /A1*/SIZ1*/RAMS 

/E2 = A1*/A0*/RAMS + /A1*/A0*/SIZ0*/SIZ1*/RAMS 

/E3 = A1*A0*/RAMS + A1*SIZ0*/RAMS + /A0*/SIZ1*/SIZ0*/RAMS 

/DSKO = /RDSKO*/REGS + /RAMS*SIZO 

DSKO.TRST = /DSKOUT 

/DSKl = /RDSK1*/REGS + /RAMS*SIZ1 
DSKl.TRST = /DSKOUT 
• -

/ 

PAL16L8 ； Local address decoder (U39) 

A2 0 A21 A22 A23 /AS DIPO DIPl DIP2 DIP3 GND 

/ENl /VMESELl LI L2 L3 L4 /VMESEL2 /VMESEL /LOCAL VCC 

/LI = A20*/DIP0 + /A20*DIP0 ； internal feedback 

/L2 二 A21*/DIP1 + /A21*DIP1 ； internal feedback 

/L3 = A22*/DIP2 + /A22*DIP2 ； internal feedback 

/L4 = A23*/DIP3 + /A23*DIP3 ； internal feedback 

/LOCAL = L1*L2*L3*L4*/AS*/EN1 + /A20*/A21*/A22*/A23*/AS*/EN1 

/VMESEL = /AS*/L1*/EN1 + /AS*/L2*/EN1 + /AS*/L3*/EN1 + /AS*L4*/EN1 

/VMESELl = /AS*/L1*/EN1 + /AS*/L2*/EN1 + /AS*/L3*/EN1 + /AS*/L4*/EN1 

/VMESEL2 = /AS*/L1*L0CAL*/EN1 + /AS*/L2 *L0CAL*/EN1 

+ /AS*/L3*L0CAL*/EN1 + /AS*/L4*L0CAL*/EN1 
• ^ OT mm w ^m mmm ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
/ — — — — — — — — — — — _ — — — _ 一 — — 

PAL16L8 ； local address decoder 2 (U40) 

A2 A3 A8 A9 AlO All A17 A18 A19 GND 

/LOCAL NC /HALTRS /PNCRS /PNSRS /DMAS /BPRS /REGS /RAMS VCC 

/HALTRS = /A2*/A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/PNCRS = A2*/A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/PNSRS = /A2*A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/DMAS = A8*A9*A10*A11*A17*A18*A19*/LOCAL 

/BPRS = A2*A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/REGS = A17*A18*A19*/L0CAL 

/RAMS = /A17*/LOCAL + /A18*/L0CAL + /A19*/LOCAL 
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PAL16R4 ； Local bus arbiter (U41) 

CK /BRO /BRl /BGACKO /BGACKl /BG /RESET NC NC GND 

/EN /BGl /BGO NC /S2 /SI /SO /BGACK /BR VCC 

/SO � = RESET*S2*S1*S0*/BR0 + RESET*S2*S1*/S0 + RESET*/S2*S1*/S0*BGACK0 
/SI � = RESET*S2*S1*S0*BR0*/BR1 + RESET*S2*/S1*S0 + 

RESET*/S2*/S1*S0*BGACK1 
/S2 � = RESET*S2*S1*/S0*/BG + RESET*/S2 *S1 */SO + 
RESET*/S2*S1*S0*/BGACK0 

+ RESET*/S2*S1*S0*/BGACKl + RESET*S2*/S1*S0*/BG + 
RESET*/S2*/S1*S0 
/BR = S2*S1*/S0 + S2*/S1*S0 

/BGACK = /S2*S1*S0 
/BGO = /S2*S1*/S0 

/BGl = /S2*/S1*S0 
• 

I 

PAL16R4 ； Local bus controller (U42) 

CLK3 3 /BG /VMESEL /BSEL /VGRANT /LOCAL /BERR /DSACKO /DSACKl GND 

/EN /VMEEN /RESET /CDEN S2 SI SO /BGACK /VSEL VCC 

/SO � = RESET*S2*S1*S0*/VMESEL*BSEL + RESET*S2*S1*/S0 

+ RESET*S2*/S1*/S0*/VGRANT + RESET*/S2 *S1*/S0 + RESET*/S2*/S1*/S0 

+ RESET*/S2*/S1*/S0*/BSEL 

/SI � = RESET*S2*S1*S0*/BSEL + RESET*S2*/Sl*SO 

+ RESET*/S2*/S1*S0*BERR*DSACK0*DSACK1 + RESET*/S2*S1*/S0*/BG 

+ RESET*/S2*/S1*/S0*BERR*DSACK0*DSACK1 

+ RESET*S2*S1*/S0*/VGRANT + RESET*S2 */Sl*/SO*/VGRANT 

+ RESET*/S2*/S1*/BSEL 

/S2 � = RESET*S2*/S1*S0*/BG + RESET*S2 *S1*SO*/LOCAL*BSEL 

+ RESET*S2*S1*/S0*/BSEL + RESET* / S2*/S1* / SO *BERR*DSACKO *DSACK1 

+ RESET*/S2*/S1*S0*BERR*DSACK0*DSACK1 

+ RESET*/S2*S1*S0*BERR*DSACK0*DSACK1 + RESET*/S2*S1*/S0 

+ RESET*/S2*/S1*/BSEL 

/CDEN � = RESET*S2*S1*SO*/LOCAL*BSEL + 

RESET* / S2 * S 1*S0*BERR*DSACK0*DSACK1 

+ RESET*S2*S1*/S0*/VGRANT + RESET*S2 */Sl*/SO*VGRANT 

/VMEEN = /BG + BG ； /VMEEN=0 if /S2*/S1, otherwise X 

VMEEN.TRST = S2*/S1 ； ！!! wrong i！1 should be /S2*/S1 
/BGACK = /BG + BG ； /BGACK=0 if /S2*/S1, otherwise X 

/VSEL = /BG + BG ； 0 

VSEL.TRST = S2*/S0 

•V 
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PAL16R4 ； VME master logic (U43) 

CLK3 3 /VSEL /BG3IN /DTACK /VBERR /BROADCAST /BCST /OSO /RESET GND 

/EN /VAS /VMEEN /U43TEMP S2 SI SO /BBSY /VBR VCC 

/SO � = RESET*S2*/S1*S0 + RESET*S2*/S1*/S0 + RESET*S2*S1*/S0 

+ RESET*/S2*S1*/SO*BROADCAST + RESET* / S2*/S1* / SO *DTACK* VBERR 

/SI � = RESET*S2*S1*S0*/VSEL + RESET*S2*/S1*S0 + RESET*S2*/S1*/S0*BG3IN 
+ RESET*/S2*S1*/SO*BROADCAST + RESET*/S2*/S1*/S0 

+ RESET*/S2*S1*S0*BCST 

/S2 � = RESET*S2*S1*/S0*BG3IN + RESET*/S2*S1*/S0 + RESET*/S2*S1*S0 

+ RESET*/S2*/S1*/S0 

/U43TEMP � = S2*/S1*/S0*/BG3IN + /S2*S1*/S0 + S2*S1*/S0 

+ /S2*/S1*/S0*DTACK*VBERR + /S2*S1*S0*/BCST 

/VAS = RESET*/S2*/S1*/S0 

/VMEEN = /VSEL + VSEL 

VMEEN.TRST = /OSO 

/BBSY = /VSEL + VSEL 

BBSY.TRST = /U43TEMP 

/VBR = /VSEL + VSEL 

VBR.TRST = /VSEL*S2 
• 一 

f — — — — — 一 — — — — — — — — 一 — — — 一 — — — — 一 — — _ 面 — _ _ — 一 — 

PAL16R4 ； VME slave logic (U44) 

CLK3 3 /BSEL /BG /AS /BG3IN ISO ISl IS2 /U43TEMP GND 

/EN /VGRANT /RESET /BG30UT /OSO SI SO /CBR /BGACK VCC 

/SO := RESET*S1*S0*/BSEL + RESET*S1*/S0 + RESET*/S1*/S0*/AS 

/SI � = RESET*S1*/S0*/BG + RESET*/S1*/S0*/AS + RESET*S1*S0*/BG3IN 

+ RESET*/S1*S0*/BG3IN 

/OSO � = RESET*IS2*IS1*/IS0*BG3IN 

/BG30UT ：= RESET*S1*S0*/BG3IN + RESET*/S1*S0 ； 1-st board diff. 
/CBR = /BG + BG ； 0 

CBR.TRST = S1*/S0 

/BGACK = /BG + BG ； 0 

BGACK.TRST = /S1*/S0 

/VGRANT = /BG + BG ； 0 

VGRANT.TRST = /U43TEMP 
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PAL16R4 ； BERR generation (U45) 

CLK3 3 Q /VGRANT /DSACKO /DSACK1 /AS ISO ISl IS2 GND 

/EN /A /CLR /S3 /S2 /SI /SO /BRl /BERR VCC 

/SO ：= S3*S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 1101*/C1 

+ S3*S2*/S0*/AS*DSACK0*DSACK1*VGRANT ； 11?0*/C1 

+ S3*/S2*S1*/AS*DSACK0*DSACK1*VGRANT ； 101?*/C1 

+ /S3*/S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 000?*/Cl 

+ /S3*S2*S1*S0 ； 0111 

/SI ：= S3*S2*S1*S0 + /S3*S2*S1*/S0 ； 1111 + 0110 

+ S3*S2*S1*/S0*/AS*DSACK0*DSACK1*VGRANT ； 1110*/C1 

+ /S1*/S0*/AS*DSACK0*DSACK1*VGRANT ； ？?00*/Cl 
+ S3*/S2*/S1*S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 1001*C3 

+ /S3*/S2*S1*S0*/Q*/AS*DSACK0*DSACK1*VGRANT ； 0011*C2 

+ /S3*/S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 0001*/C1 

+ /S3*S2*/S1*S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 0101*C3 

/S2 ：= S3*S2*/S1*/S0*/Q*/AS*DSACK0*DSACK1*VGRANT ； 1100*C2 

+ S3*/S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 100?*/C1 

+ /S2*S1*/AS*DSACK0*DSACK1*VGRANT ； ？01?*/C1 

+ /S3*/S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 0001*/C1 

+ /S3*/S2*/S1*/S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 0000*C3 

/S3 � = S3*/S2*S1*/S0*/Q*/AS*DSACK0*DSACK1*VGRANT / 1010*C2 

+ /S3*/S2*/AS*DSACKO *DSACK1*VGRANT ； 0 0 ? ? * / C l 
+ /S3*S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 010?*/C1 

+ /S3*S2*S1*S0 ； 0111 
/ B R l = I S 2 * / I S 1 * I S 0 + / I S 2 * I S 1 * / I S 0 
/BERR = Q + /Q 
BERR.TRST = /S3*S2*S1 

/A = S3*S2*S1*/S0 + S3*/S2*/S1*/S0 + S3*/S2*S1*S0 ； 1110 + 1000 + 1011 

+ /S3*/S2*S1*/S0 + /S3*/S2*/S1*S0 ； 0010 + 0001 + 0100 

+ /S3*S2*/S1*/S0 

/CLR = S3*S2*S1*S0 

� mm ^ ^m ^m ^m ^ ^ mm mm mm ^ ^ ^ ^^ ^ • ^^ ^ ^ ^ ^ ^ ^ mm ^ ^ ^ ^ ^ ^ib ^ ^ ^^ ^ ^ ^ ^ mm mmm ^ mm ^ w ^m ^m ^m m mm 

PAL16R4 ； DSACK generation + SRAM (U46) 

CK /AS /DMASEL /VMESEL ISl IS2 /BSEL NC DEL GND 

/EN /ASO /DSKO NC SI SO /DSACKOUT /BGACKO /VMEEN VCC 

/DSACKOUT ：= DSACKOUT*/AS*DMASEL*VMESEL + /DSACKOUT*/AS ； cfcsolete 

/BGACKO = /AS + AS _ 

BGACKO . TRST = /IS2*/IS1 

/VMEEN = /AS + AS 

VMEEN.TRST = /IS2*/IS1 

/ASO = /BSEL*/VMEEN*DSACKOUT + /DSACKOUT 

+ /DSACKOUT*/VMEEN 

/DSKO = S1*/S0 

DSKO. TRST = DMASEL*VMESEL 

/SO := /S1*S0*DEL + /S1*/S0 + S1*/S0*/AS*/VMEEN + /S1*S0*/DEL 

+ S1*S0*/AS*/VMEEN*/DEL 

/SI � = S1*S0*/AS*/VMEEN*DEL + /S1*S0*DEL 

• ^ ^ ^^ ^ ^^ ^^ ^^ ^^ ^ ^ ^ MM aw ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^m ^m ^m ^ ^ MM ^ ^ ws m ^ • ^ ^ ^ «« ^^ ^ ^ as ^ ^ ^^ 

t 
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PAL16L8 ； CPU bus converter (U57) 

/DSIN SIZIIN SIZOIN /UDSIN /LDSIN /DMASEL /OWN /CPUAS CPURW GND 

NC NC /BUFDIR /LDSOUT /UDSOUT SIZOOUT SIZIOUT /DSOUT /BUSAS VCC 

/DSOUT = /UDSIN + /LDSIN 

DSOUT.TRST = /OWN 

/SIZIOUT = LDSIN 

SIZIOUT.TRST = /OWN 

/SIZOOUT = /UDSIN + LDSIN 

SIZOOUT.TRST = /OWN 

/UDSOUT = /DSIN*SIZ1IN 

UDSOUT.TRST = /DMASEL 

/LDSOUT = /DSIN*SIZ1IN + /DSIN*SIZOIN 

LDSOUT.TRST = /DMASEL 

/BUSAS = /DMASEL + DMASEL 

BUSAS.TRST = /CPUAS 

/BUFDIR = CPURW 
• ^m ^m ^ ^ ^ mmm mmm ^m mm ^ ^ ^^ ^^ ^ ^^ ^ ^ ^^ ^ ^ ^ ^^ ^^ ^^ ^ ^^ 

/ 

PAL16L8 ； Miscellaneous functions (U67) 

/RES /INHIBIT RW /HALT /BERR NC NC NC NC GND 

NC /BECl /BECO /RETRY NC NC NC NOTRW /RESET VCC 

/RESET = /RES + /INHIBIT 

/NOTRW = RW 

/BECl = /RETRY + /BERR + /RES + /INHIBIT 

/BECO = /RETRY + /HALT + /RES + /INHIBIT 

/RETRY = /BERR*/HALT + /BERR*/RETRY + /HALT*/RETRY " 

• - -... - • -

, 一 一 — 一 — 一 — — 
PAL16L8 ； VME signals demux/mux (U68) 

/HALTO /HALTl /HALT2 /HALT3 /HALT4 DIPO DIPl DIP2 DIP3 GND 

/BF NC NC /HALTI /BFO /BFl /BF2 /BF3 /BF4 VCC 

/HALTI = /HALT0*/DIP0*/DIP1*/DIP2*/DIP3 

+ /HALT1*DIP0*/DIP1*/DIP2*/DIP3 + /HALT2*/DIP0*DIP1*/DIP2*/DIP3 

+ >HALT3*DIP0*DIP1*/DIP2*>^DIP3 + /HALT4*/DIP0*/DIP1*DIP2 *)DIP3 

/BFO = /BF 

BFO.TRST = /DIP0*/DIP1*/DIP2*/DIP3 

/BFl = /BF 

BFl.TRST = DIP0*/DIP1*/DIP2*/DIP3 

/BF2 = /BF 

BF2.TRST = /DIP0*DIP1*/DIP2*/DIP3 

/BF3 = /BF 

BF3.TRST = DIP0*DIP1*/DIP2*/DIP3 

/BF4 = /BF 
BF4.TRST = /DIP0*/DIP1*DIP2*/DIP3 
• ̂  ̂  ̂̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^̂  ̂  ̂̂  ̂  ̂  ^^ ^̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂  ̂  ^ ̂̂  ̂  ̂  ̂  ̂̂  ̂̂  ̂̂  ̂̂^ ̂  ̂  ̂̂  ̂  ̂  

PAL16L8 ； VME buffer control (U69) 

/VMEDEN SIZO SIZl AO A1 NC NC NC NC GND 

NC NC NC NC /E5 /E4 /E23 /El /EO VCC 

/EO = A0*/A1*/SIZ0*/VMEDEN + /A0*/A1*/SIZ1*/VMEDEN 

/El = /A0*/A1*/SIZ0*/VMEDEN 4- /A0*/A1*/SIZ1*/VMEDEN 

/E23 = /SIZ0*/SIZ1*/A0*/A1*/VMEDEN 

/E4 = A0*A1*/SIZ0*/VMEDEN + /A0*A1*/SIZ1*/VMEDEN 

/E5 = /A0*A1*/SIZ0*/VMEDEN + /A0*A1*/SIZ1*/VMEDEN 
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APPENDIX H 

COMMUNICATION SUB-BUS 

H.l Signal definition 

Signal Meaning 

/BROADCAST BROADCASTing using 1-to-N D M A in progress. 
SYNCDMA SYNChronization signal for 1-to-N D M A 
GPCL Global PCL (means ready) derived from the DMAC. 
/MPCRDY MPC is ReaDY for servicing new requests. 
/BCST Broadcasting using 1-to-N D M A STarted. 
/BCEND Broadcasting using 1-to-N D M A ENDed. 
/HALTPNn HALTs the PN with number n. 

H.2 Pin assignment 

Signal P2 pin Signal P2 pin 

/BROADCAST C I /HALTPN3 C12 

SYNCDMA C2 /HALTPN4 C13 

GPCL C3 / B F l C17 

/MPCRDY C4 /BF2 C18 

/BCST C5 /BF3 C19 

/BCEND C6 /BF4 C20 

/HALTPNO C9 

/ H A L T P N l CIO 

/HALTPN2 C l l 
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APPENDIX I 

FEASIBILITY OF TASK DISTRIBUTION PLAN 

A major principle of task distribution on a multiprocessor system is to make sure 

that the communication overhead is small relative to the computation workload. 

We must pin-point the cases in which the computation should be done locally 

instead of distributing it because of the excessive communication overhead. 

Assume the PNs are prioritized from the view point of the bus arbiter. Let 

PN(1) has the highest priority while PN(n) has the lowest. This configuration is 

easily achievable because the VMEbus supports fixed priority interrupt and a 

daisy-chained acknowledgement propagation mechanism is available. 

I f the task is evenly distributed to the PNs at the beginning, it is obvious that 

they will finish the first stage of their jobs almost simultaneously. Then the PNs 

wil l compete for the use of the global bus for getting messages. PN(1) wil l win 

and the bus requests will be serialized. However, if the computation workload 

is not large compared with the communication overhead, PN(1) will need more 

information before all the bus requests have been serviced. Since PN(1) has the 

highest priority, he will get the bus, obtain more information and then start the 

third stage of the computation. At this moment, PN(n) just has not started his 
- •- — - . 

second stage of computation. Eventually, PN(1) will finish its job far ahead of 

PN(n). 

Now, the symptom of excessive communication overhead can be identified: low 

priority PNs need substantially longer time to finish their jobs than the high 

priority PNs. We can check this condition easily: Each PNs should send a 

message to the host machine when it has completed its share of the task. Hence, 

the start and finish time of the PNs are available. We can check the above 

condition to estimate the feasibility of the task distribution plan. 

V 
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APPENDIX J 

COMMUNICATION PRIMITIVES 

Four proposed communication primitives are discussed below. They are 

implemented in the form of device drivers in the communication kernel. 

SendMessage( SenderPID: integer, { input } 

ReceiverPID: integer, { input } 

MessagePtr: pointer, { input } 

MessageLength: integer, { input } 

Messageiype: integer, { input } 

BlockingOption: integer) { input } 

This primitive sends out a message when it is called. SenderPID and 

ReceiverPID are the logical PID number of the sending and receiving PN 

respectively. I f ReceiverPID is BROADCASTING, which is a pre-defined 

constant equal to zero, then the message wil l be broadcasted. Otherwise, it is a 

point-to-point message. MessagePtr and MessageLength describes the location 

and length of the message body. MessageType can be EXPRESS or NORMAL, 

both are pre-defined constants. BlockingOption can be BLOCKING or 

NON BLOCKING. 

ReceiveMessage( SenderPID: integer, { input/output } 

MessagePtr: pointer, { output } 
MessageLength: integer, { output } 
MessageType: integer, { input/output } 
BlockingOption: integer) { input } 

This primitive tries to accept a message when it is called. SenderPID may be 

A N Y or a valid logical PID. The caller declares from whom the next message 

is accepted. When the call returns, the logical PID of the actual sender is 

available if the ANY option is given when the primitive is called. MessagePtr 

and MessageLength describes the message body received. Note that MessagePtr 

points to a local memory location. The MPC initiates a DMA to transfer a 

message to the receiving PN before the ReceiveMessage primitive completes. 
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I f the BlockingOption is NON一BLOCKING, the returned MessageLength is 0 

and MessagePtr is NULL if there is no message available. 

GetStatus( MyPID: integer, { input } 
NIMQLength: integer, { output } 

EIMQLength: integer, { output } 
BIMQLength: integer) { output } 

GetStatus returns the status of the message queues for a PN. MyPID is the 

logical PID of the caller. The queue lengths of the three message queues are 

returned. 

FlushQueue( MyPID: integer, { input } 
FlushNIMQ: integer, { input } 
FlushEIMQ: integer, { input } 
FlushBIMQ: integer) { input } 

A PN may clear/initialize its message queues by calling this primitive. I f the 

NIMQ is to be flushed, then the user should set the FlushNIMQ argument to 

ON, otherwise, it is set to OFF. Other queues are treated similarly. 
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APPENDIX K 

PHOTOGRAPHS OF SM3 

Figure K.I SM3 host machine (in the VME-rack) and a PN board. 
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III" II I l i y ^ ^ � � i i i n i f f i : ff^BDilBM 
h i — • • 1 Uk. 
Figure K.2 The wire-wrap side of the PN shown in figure J.I (leftmost), the 

MPC (middle-left), and two PNs (rightmost). 

J 
Figure K.3 Current configuration of SM3: hard disk (back), terminal (right), 

and the VME rack (left). 
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APPENDIX L 

PROTOCOL STATE DIAGRAMS 

L.l Predefined partial state diagrams 

There are three predefined partial state diagrams shown in figure L . l . The 

upper-left one shows how a sender writes the message header to the mailbox at 

the MPC. Before the actual writing, the sender must check that the mailbox is 

free, ie. the previous one has been processed by the MPC. A simple status bit 

in the mailbox serves this purpose. Whenever the MPC has processed a message, 

the signal /MPCRDY is asserted to awake all waiting processes at all pro-

cessors. They should accordingly check the status bit of their mailbox. Now 

senders only need to poll the local status register (PNSR) once they find that the 

MPC has not processed their previous messages. This simple technique can 

prevent processes from using the system bus extensively for busy-waiting. 

The upper right one in figure L . l illustrates a similar situation when a receiver 

wants to read from its mailbox. Note that only when the non-blocking option was 

used for the previous Receive (Send) would the Receiver (Sender) possibly find 

the mailbox was not ready. 

The lower one in the figure depicts how a the sender polls the local status 

register (PNSR) in order to capture the acknowledgement from the MPC. Since 

there is only one /MPCRDY signal but there may be many processes waiting, 

the sender must check the status bit again and find out whether that assertion 

of the /MPCRDY really benefits it. This argument also applies to the previous 

two cases. 
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L«2 Point-to-point messages 

Figure L.2 includes the state diagrams for the three parties involved in a point-

to-point communication. The sending PN is initially running the user process. 

The SendMessage primitive writes the header to the mailbox when a message 

is to be sent. The user process is resumed if it is a non-blocking Send. 

Otherwise, the sender must capture the acknowledgement from the MPC. 

The MPC is normally at the busy-waiting state. After routing a newly arrived 

non-blocking message to a suitable IMQ, the job of the MPC is over. For a 

blocking message, the MPC must acknowledge the sender once the receiver has 

accepted the header (not including the body for a long message). Of course, the 

MPC has to service other requests while it is waiting for the response from the 

receiver. 

The receiver distinguishes between long and short messages (cf. blocking and 

non-blocking messages for a sender). For a long message, a D M A brings the 

message body from the sender. 

L.3 Broadcast messages 

State diagram for the sender of a broadcast message is shown in figure L.3. The 

sender (and also the MPC) must distinguish between long and short, blocking 

and non-blocking messages. For short messages, the sender behaves exactly like 

the case for point-to-point messages. For a long message, the sender uses 1-to-N 

D M A to broadcast the message via the VMEbus. The assertion of /BCST and 

/BCEND marks the beginning and ending of a transfer. After the 1-to-N DMA, 

the SendMessage primitive determines whether it should return to the user pro-

cess or wait for an acknowledgement. 

The procedure of the MPC is identical to the case of point-to-point messages if 

the broadcast message is short. Otherwise, the MPC halts checks the availability 
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of receive buffers and halts potential receiving PNs. Then it initiates the 1-to-N 

D M A by asserting /BCST. It knows the transfer is over when /BCEND is 

asserted by the sender. After that, the MPC can treat the message like a short 

one. 

The state diagram for the receiver can be found in figure L.4. The left side one 

highlights that for a long message, the receiver must read the message body 

form the circular buffer and update the pointer accordingly. Note that if the 

receiver is running ahead of the sender, then it will be blocked (for a blocking 

Receive) at the state Read-Header-From-Buffer. The right side one shows how 

the 1-to-N DMA affects the receiver. The details can be found in the core of 

this thesis so it is not explained here. 
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Figure L4 Receiver state diagram for broadcasting. 
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APPENDIX M 

BOOT-UP PROCEDURE OF SM3 

Figure M . l illustrates the proposed boot-up procedure for the current 

implementation of SM3. When the system is powered up, the host machine 

executes its original boot-up procedure independently. The hardware logic on 

the PNs and the MPC will hold the /RESET line for at least 512 cycles as 

specified in the data sheet. Before this period expires, hardware logic on the 

MPC initiates the HALTR (refer to APPENDIX F) to assert the /HALTPNn 

line. A l l PNs and the MPC are halted in this way so they cannot proceed even 

after the reset period has expired. 

Once the host machine is up, it initializes the reset and interrupt vector tables 

of the PNs and the MPC. Programs are then load onto all processor boards. At 

last, the host can clear the HALTR directly and release the PNs and the MPC. 

Now, they can start their cold reset routines, which are the user programs. 

Termination of execution can be achieved by writing to the HALTR directly. 
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