
A SHARED MEMORY MULTI-

MICROPROCESSOR SYSTEM WITH

HARDWARE SUPPORTED MESSAGE PASSING

MECHANISMS

By

LAM Chin Hung

A THESIS

Submitted to

The Chinese University of Hong Kong

in partial fulfillment of the requirements

for the degree of

MASTER OF PHILOSOPHY

Department of Computer Science

May 1990

.
V

：
 .

 .
.
.
.
.

.

 vy,

9
 .
.
i
n

1
 -

 K
n

6

1
 0

3

V

 8

.

.
)
.
\

 o

‘
.
 .

 :
.
.
-

 -

\
 /

 >

 •
 ‘

 ,
 \

:

.

•

一

/

,

\

.

/

-
r
.
.
.
.
-
丄
：
c

.,

/
.

〈
/
;
!
.
.

‘
\

 〜

I
r
v
-

i

ABSTRACT P 哪 ^

ABSTRACT

Although message-passing is an elegant communication paradigm highly

recognized in areas such as object-oriented systems, parallel and distributed pro-

cessing systems, it is unfortunately not as efficient as the shared-memory

paradigm when implemented on bus-based multiprocessors. Since building

distributed global-memory systems around a common bus is a very simple,

flexible and economical way to taste the advantages of multiprocessing, a design

that combines the strong aspects of the two paradigms will help popularize

parallel processing.

We have taken a hardware approach to alleviate the problem. On top of a

shared-memory architecture, message-passing is supported by -hardware. A

dedicated processor called the Message-Passing Coordinator (MPC), which is

a value-added switch box, manages the message traffics in the system. While

point-to-point messages are handled in the form of DMA transfers, broadcasted

messages should be implemented in a way that can utilize the intrinsic

characteristics of a shared-bus. Thus, a 1-to-N DMA mechanism is introduced

which is a very effective way of handling broadcast messages on similar

architectures. The workstation introduced above is called SM3. It is suitable for

concurrent program development, distributed problem solving, and other

computation bounded jobs.

V-

ACKNOWLEDGEMENTS P^G^ 2

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my supervisor

Mr. K. H. Lee, who gave me invaluable advice and showed the greatest

patience. The gentle assistance from the staff of the Microprocessor Laboratory

are indispensable.

I also wish to thank Motorola Semi-conductor (HK) Ltd. for providing major

chips and helpful consultation, which makes this project possible.

The author is grateful to the Sir Edward Youde Memorial Fund Committee for

their appreciation and financial assistance.

V

TABLE OF CONTENTS PAGE 3

TABLE OF CONTENTS

ABSTRACT p �

ACKNOWLEDGEMENTS p』e 2

T A B L E O F c o n t e n t s : : • • : • • • P a g e 3

CHAPTER 1 INTRODUCTION P I

1.1 Gaining performance with multiprocessing p. 1

1.1.1 Software approach P. 2

1.1.2 hardware approach p 2
1.2 Parallel processing p 4

1.3 Gaining performance with multiprocessing p. 7
1.3.1 Multiprocessor configurations p. 7
1.3.2 Multiprocessor design issues p. 9
1.3.3 Using microprocessors p. 11

1.3.4 Bus based systems P. 12

1.4 Shared memory and message passing P. 13

1.4.1 Shared memory P. 13

1.4.2 Message passing p. 14

1.4.3 Comparisons of the two paradigms P. 16
1.5 Summary and comment P. 19

CHAFHER 2 AN OVERVIEW OF COMMON APPROACHES P 20
2.1 SUPRENUM p. 20

2.2 MEMSY : : : • : : : • : : • : P: 22

2.3 ELXSI p 24
2.4 Sequent P 25

2.5 YACKOS • • • : : : : : : : : : • : • • : • • : • P: 26

2.6 Summary p 3Q

CHAPTER 3 THE MFC APPROACH P. 32

3.1 A shared memory multiprocessor architecture • • • . P. 32
3.2 Message passer for inter-process communication P. 32

3.2.1 A review of the message passer approach P. 33
3.2.2 Pit-falls of the message passer approach p 34

3.3 The role of the MFC P: 35
3.3.1 The quest for the MPC p 35
3.3.2 Duties of the MPC •••••••• p' 37

3.3.2.1 Software aspects P. 37

3.3.2.2 Hardware aspects P. 40
3.4 Advantages and disadvantages p. 4 1

3.4.1 Advantages P. 41

3.4.2 Disadvantages P. 43

3.4.3 Other discussions P. 44
3.5 Summary p 44

TABLE OF CONTENTS P^G^ 4

CHAPTER 4 THE DESIGN OF SM3 P. 46

4.1 Introduction to SM3 . . . p' 45
4.2 Software aspects ••• . . • ^^

4.2.1 Programming model p 4g

4.2.1.1 Logical entities P. 48

4.2.1.2 Communication procedure P. 48
4.2.2 Message structure P 5 1

4.2.2.1 Broadcast versus point-to-point messages P. 52

4.2.2.2 Message priority P. 52

4.2.2.3 Blocking versus non-blocking p. 53
4.3 Hardware aspects p. 55

4.3.1 Overall architecture p. 55
4.3.2 The host machine p

4.3.3 Slave processor nodes P 57

4.3.4 The MFC : : : : : : : : : : : : : p' 59
4.4 Communication protocols p. 60

4.4.1 Short and long messages p. 60

4.4.2 Point-to-point messages p. 61

4.4.3 1-to-N DMA for broadcast messages P. 63

4.4.3.1 Introducing 1-to-N DMA p. 63

4.4.3.2 1-to-N DMA operation p. 64

4.4.3.3 Merits and demerits of 1-to-N DMA P. 67
4.5 Summary . p. 68

CHAPTER 5 IMPLEMENTATION ISSUES OF SM3 R 70

5.1 The shared bus - VMEbus • • p. 70

5.1.1 Why VMEbus : • • : : : : • • • • : : : : : : : P: 70
5.1.2 Customizing the VMEbus p. 71

5.2 The host machine P 7 1

5.3 Slave processor nodes p 72

5.3.1 Overview of a PN p. 74
5.3.2 The MC68030 microprocessor P 77

5.3.3 The DMAC M68442 P: 78

5.3.4 Registers • p 79

5.3.5 Shared-bus interface R 80

5.3.6 Communication logic P 80

5.4 The MPC : : : • • : : • : : : : : : : P 80

5.4.1 Overview of the MPC p' g^

5.4.2 Registers p. 81

5.4.3 Communication logic p. 83
5.5 Protocol implementation p §4

5.5.1 Point-to-point messages P. 84

5.5.2 Broadcast messages P. 86

5.5.2.1 Circular buffer queue P. 87

5.5.2.2 Participating entities p. 87

5.5.2.3 Protocol details p. 88
5.6 System start-up procedure p 94

5.6.1 Power up reset of PNs P. 94
v-

TABLE OF CONTENTS Page 5

5.6.2 Initialization of the processor pool P. 95

5.7 Summary P. 95

CHAPTER 6 APPLICATION EXAMPLES P. 96

6.1 Introduction P. 96

6.2 Matrix Multiplication P. 96

6.3 Parallel Quicksort P. 97

6.4 Pipeline Problems P. 99

CHAPTER 7 UNSOLVED PROBLEMS AND FUTURE

DEVELOPMENT P. 101

7.1 Current Status P. 101

7.2 Possible immediate enhancements P. 102

7.2.1 Enhancement to the PNs P. 102

7.2.2 Enhancement of the MPC P. 103

7.2.3 Communication kernel enhancement P. 103

7.3 Limitation of a shared bus P. 104

7.4 Number crunching capability P. 105

7.5 Parallel programming environment P. 105

7.5.1 Conform to serial language P. 105

7.5.2 Moving to parallel programming languages . … P. 106

7.5.2.1 Urn-processor Unix : . . P. 107

7.5.2.2 Porting Unix P. 108

7.5.2.3 Multiprocessor Unix P. 108

7.5.3 Object-oriented approach P. 110

7.6 Summary P. 112

CHAPTER 8 CONCLUSION P. 113

8.1 Thesis summary P. 113

8.2 Author's comment P. 114

8.3 Looking into the future P. 116

APPENDIX A BLOCK DIAGRAM P. 117

APPENDIX B CIRCUIT DIAGRAMS P. 119

APPENDIX C PCB LAYOUT P. 126

APPENDIX D VMEBUS ADDRESS MAP P. 132

APPENDIX E PROCESSOR NODE ADDRESS MAP P. 133

APPENDIX F REGISTER LAYOUT P. 134

F.l Registers on a PN P. 134

F.2 Registers on the MPC P. 134

APPENDIX G PAL DESIGN P. 136

V

TABLE OF CONTENTS Page 6

APPENDIX H COMMUNICATION SUB-BUS P. 146

H.l Signal definition P. 146

H.2 Pin assignment P. 146

APPENDIX I FEASIBILITY OF TASK DISTRIBUTION PLAN . . P. 147

APPENDIX J COMMUNICATION PRIMITIVES P. 148

APPENDIX K PHOTOGRAPHS OF SM3 P. 150

APPENDIX L PROTOCOL STATE DIAGRAMS P. 152

L.l Predefined partial state diagrams P. 152

L.2 Point-to-point messages P. 152

L.3 Broadcast messages P. 154

APPENDIX M BOOT-UP PROCEDURE OF SMS P. 159

PUBLICATIONS P. 161

REFERENCES P. 162

V

CH.1 INTRODUCTION p 1

CHAPTER 1

INTRODUCTION

1.1 Gaining performance with multiprocessing

Data processing power is in great demand in this information age. For instance,

the enormous amount of data sent back to the earth from space crafts has to be

stored on tapes because the computation power currently available cannot pro-

cess them immediately. It will take years to analyze the stored data. For the

example given in [Ware72], the intensive computation required to process

images from the spacecraft Mariner VI and VII was shown to be too demanding

for the computers available then. Unfortunately, the problem is getting worse.

Since any computer system consists of hardware and software, the performance

problem can be tackled in two different ways. By software method, we mean to

develop a better algorithm and to improve the coding manifestation of a good

algorithm. By hardware method, we refer to the improvement in the component

technologies or the parallel architecture where more operation units are

incorporated. Figure 1.1 summarizes this picture.

Computing

I 1
Software Hardware

r 1 I 1
Better Better Super Parallel
coding algorithm processor processing

I 1 •
Sequential Parallel :

. . • •

inter-related

Figure 1.1 Approaches to improve computing performance.
v-

CH.1 INTRODUCTION p 2

1.1.1 Software approach

To speed up a computation task, one can devise a faster algorithm. But unlike

the micro-electronics technology, the discovery of an algorithm with smaller time

complexity for a problem is somewhat unpredictable. For certain problems, we

do not even know whether we have already found the quickest algorithm or not.

Moreover, the behavior of algorithms is usually data dependent. As a result,

software efforts may be unrewarding during some occasions.

Coding skill is another important factor. Experienced programmers can devise

clever tricks and short cuts to gain speed. Unfortunately, the clarity of the pro-

gram is completely upset for incremental speed up. The state-of-the-art software

engineering principles stress elegance, reliability, and portability because of the

constantly rising software complexity and labor cost. The declination of hardware

cost has diminished the effect of small reductions in computation time and code

size. Thus, it is very difficult to multiply performance of a conventional uni-pro-

cessor computer by solely refining the software.

Parallel algorithms have revived the study of fast software. However, a truly

concurrent architecture is mandatory in order to benefit from them (figure 1.1).

Since this thesis will not focus on software aspects, we shall postpone our

discussion on software here and come back to it when we discuss the

performance and applications of the proposed architecture.

1.1.2 hardware approach

Of course, another way to speed up computations is to work on the hardware.

Two independent approaches are available. The first one is to build super-pro-

cessors. Such machines usually carry some of the following attributes:

-very fast logic circuits (high clock rate)

CH.1 INTRODUCTION p 3

-wide data path with high band width

-highly optimized, overlapped internal operations

-good vector processing power

-highly compact package

Although more delightful attributes can be appended to the above list as more

and more surprisingly powerful processors appear, we are not so optimistic

about the future of this direction of endeavors as the physical limitations are

within sight. Physicists pointed out that there is an ultimate limit to the speed

at which any component can operate. For example, it is impossible to eliminate

the delay due to the time required to charge the intrinsic capacitance of a

transistor using the finite current available. Even new technologies, such as

Gallium Arsenide (GaAs), have their limitations [Heard84]. Actually, no data

processing system can process information faster than C^/h (ie. 2x10"̂ ^ bits per

second-gram), where h is Planck's constant [Ware72]. Obviously, the speed of

light is a very tight limit.

Apart form the processing device, the memory also suffers from severe

limitations. The following example is given by [Landa61]. To store binary

information, we need a device that has two potential wells (stable states)

separated by a barrier. Energy must be inserted in order to change the state of

the device, and be removed when the new state is reached. [Marko65] shows

that the uncertainty principle imposes a time limit of about lO'̂ ŝ to inject

energy into or remove energy from any information storing device. Moreover,

energy is inevitably dissipated as heat, but dense packaging is inconsistent with

heat dissipation.

The current technology can produce VLSI chips that have certain parameters

within an order of magnitude away from the physical limit. For instance, the

internal power density of a p-n junction is within a factor of ten from the

maximum cooling rate at room temperature [Ware72 .̂

v-

CH.1 INTRODUCTION p 4

Over 99 percent of computer arithmetics are implemented in the form of binary

transistor logic. Contemporary machines can perform additions in 60-80%, multi-

plications in 25%-30%, of the Winograd time which is also a theoretical lower

bound [Winog65, Winog67]. This limit gives the minimum time required to

perform an operation on two numbers. It varies with the number length, radix,

fan-in and delay of logic elements. The only way to break this limit is to pre-

calculate all results and use the table look up method.

It is evident that to get more computing power out of a single processing device

will become quite difficult as we are approaching the physical limits. To cope

with the rapid growth of data volume, we have to exploit other ways. Parallel

processing is the other hardware approach we are going to discuss in detail.

1.2 Parallel processing

A natural way to overcome the speed limitation of any physical devices is to

arrange a large number of them to work concurrently. This idea is not restricted

to the central processor. Parallelism can be applied at program-level, unit-level

(multiple memory modules, peripheral devices), and even instruction-level

(multiple ALUs and other functional units). Although virtually there is no limit

to the degree of parallelism, but [EliMo83] shows that the throughput of a

parallel computer system will actually saturate at some point due to the

contention problem and coordination overhead. Figure 1.2 depicts this.

The seriousness of the saturation effect depends strongly on the particular

application. A number of physically implemented systems, although limited to

a small set of applications, can relieve this problem so well that actually they do

not degrade the performance significantly. An example system BBN Butterfly

consisting of 256 processors is shown to give close to linear speedup in

[RetTh86].

According to the degree and nature of parallelism, computers can be classified

v-

CH.1 INTRODUCTION p 5

Throughput

A I ^ ' E k l ^ ^

/ L e v e l i n g o f f

A ACTUAL

—广 :
Number of processors

Figure 1.2 The saturation effect.

C o mp u t e r s I
Serial Paral le l Paral lel

[s m j wii^sdJ m ^ d J

h • " “ l l ' ^ t > _ � �|||Arr”「~||tU:。i: |i|Tlghlly|C.r.!..y li|L00»«Vr|

|ALU ||Proc.»»ef •�。“…r_|p,。:•…,llcoupl “ [|co«p|,d ||Coupl ed •
von Neumann Mum. k DI 11 r I - • comput tr •
Machi net Pr。。."。r| but “ • I

Syit >nn • Sy tl >wt • "*'*。" •

Figure 1.3 Classification tree of parallel processor architectures.

hierarchically as shown in figure 1.3 [FatKr83]. Here，S，stands for Single,，M，

stands for multiple, T stands for instruction stream, ’D，stands for data stream.

Though SISDs are marked serial, they still exploit different levels of parallelism.

All contemporary computers, for instance VAX-11 and IBM 3090 series, have

their peripheral devices arranged to operate concurrently with the CPU. Even

in microprocessors such as the MC68030, instruction fetching, decoding, and

execution are pipelined and performed in parallel. However, SISD computers

V

CH.1 INTRODUCTION p 6

Still conforms to von Neumann's model.

MISD computers are usually designed for a special application. For instance, in

some encryption systems, a series of processing elements form a processor

pipeline and they work on the same data stream consecutively.

Most SIMD computers are number crunchers. They are specialized in matrix or

vector manipulations. Array processor is the most common form of SIMD

computers. Due to their high cost and limited applications, they are not so

popular. Illiac-IV is a well known example [GeRiM68".

MIMD computers can be general or special purpose. The degree of coupling

between processors is application dependent and it determines how the pro-

cessors should be linked. Communication capability is expressed in terms of

transmission band width and latency of inter-processor links [Cleme88c]. Based

on the degree of coupling, three major classes are identified:

a. In Loosely-coupled system (LCS), processors communicate with each

other by passing messages via physical channels provided by a local or wide area

network. Most LCSs only have simple bit-serial links because of cost

considerations. Inter-processor traffic must be kept light. Well known LCSs

include the Cm* [JonSc79] and the Syte workstation [BruMi84], which consists

of several processor modules based on NS-16032s.

b. Distributed system may be classified as moderately-coupled system (MCS)

but it must be stressed that there is no clear cut difference between this class

and LCSs. It is claimed that since the communication between processors is

more frequent, so each processing element is equipped with separated

application and communication processors [FatKr83]. The author agrees that

multi-microcomputer systems should be put under this category. In [Russo77],

readers can find an example system made up of COSMAC microprocessors.

v -

CH.1 INTRODUCTION p 7

c. Tightly-coupled systems (TCS) have a common clock for all the pro-

cessors. It is also refereed as multiprocessor systems. Due to the extensive

interaction between processors, more complex hardware is needed. The Balance

multiprocessor system [ShPaG88], which may have up to 30 processors, is a

typical example. LCSs or MCSs can be constructed by linking TCSs together,

where each multiprocessor is virtually a uni-processor. In other words, TCSs may

serve as the building block of large scale LCSs or MCSs. Examples will be

presented in chapter 2. The proposed workstation described here belongs to this

class so we shall restrict our discussion to TCSs.

1.3 Gaining performance with multiprocessing

A true multiprocessor system incorporates two or more processors in the same

housing, and the physical distance between the processors is important

Cleme88a]. The processors operate cooperatively on a logically coherent task.

They communicate intimately with each other and share common resources.

Since a given task can be carried out by several low-cost processors concurrently,

relatively little additional cost is needed to increase the power of a multipro-

cessor. This favors incremental growth of the system. Other known advantages

are the provision of graceful degradation and fault tolerance.

1.3.1 Multiprocessor configurations

Multiprocessor systems can be further subdivided into two classes of

configuration known as processor-to-memory and processing-element-to-pro-

cessing-element (PE-PE). Figure 1.4 illustrates their differences [Cleme88a].

a. Processor-to-memory:

As shown figure 1.4a, an interconnection network bridges M processors and N

memory modules. Processors communicate by sharing memory modules. Omega,

Butterfly, and cross-bar are typical interconnection networks. An introduction

to interconnection networks can be found in [FengSl]. For performance impro-

CH .1 INTRODUCTION p 8

^^^Me^oT^^ ^ e ^ T ^ V ^ • • • _ j ^ ^ n m j ^ ^

a . P r o c e s s o r - t o - m e m o r y

P r o c e s s o r P r o c e s s o r P r o c e s s o r
• • • •

Me mo r y Me mo r y Me mo r y

P r o c e s s i n g P r o c e s s i n g P r o c e s s i n g
E l 8 me n t E l e me n t E l e m e n t -

b . P r o c e s s i n g • e I e m e n t - t o - p r o c e s s i n g - e l e m e n t

Figure 1.4 Two multiprocessor models.

vement, processors may have cache memory. The success of this configuration

gears to the band width of the interconnection network and/or cache

performance. The simplest form of the interconnection network is a time-shared

bus, where requests from two or more processors are time-division multiplexed

onto a single bus. Buses may be synchronous or asynchronous.

Asynchronous bus may have centralized bus control/arbitration, where one pro-

cessor is the master, or distributed bus control which requires extra hardware

and software to resolve the contention towards a consensus. Bus users can

request for the mastership of the bus at any time and the right of use is granted

to it if the bus is free and there is no other competitors. Asynchronous bus is

suitable for systems with a very irregular bus request pattern.

On a synchronous bus system, every processor can take control of the bus

whenever it requires, like the asynchronous one, independent of the other pro-

V

CH.1 INTRODUCTION P.9

cessors. A system clock on the bus synchronizes all the bus operations. To

improve availability, the bus may be time shared evenly. A common way to pro-

vide each processor a time slot for this purpose is to shift the phase between the

clocks of the processors. However, band width is wasted when free time slots are

not fully utilized. More examples and information can be found in [Labib88�.

b. PE-to-PE:

Every PE consists of a processor and a private memory module as figure 1.4b

shows. Each PE is nearly a complete computer except they don't have local

peripheral devices (that distinguishes them from multi-computer systems). An

interconnection network provides the PEs with a communication media.

Information is exchanged in the form of messages. RIMMS described in

LeDaR84] is a typical example.

In most cases the PEs are not allowed to access directly the memory of other

PEs, such a configuration is somewhat similar to the MCS described above.

However, we have chosen an alternative that is also taken by a number of

designers. The local memory of each PE is also accessible from other PEs. In

other words, the memory modules form a distributed global memory. Actually

this is generally not realizable for MCSs and LCSs, so it is an identification

character of TCSs. Figure 1.5 summarizes the variations in the TCS.

Tightly-coupled-systems
I ‘ � 1

Processor—to-Memory PE-to-PE
I ‘ — — 1

Asynchronous bus Synchronous bus
. 1 ‘ — — I

Centrallized control Distributed control

Figure 1»5 Variations in the TCS class.

V-

CH.1 INTRODUCTION P 18

A combination of the two models is possible. [FiJoS83] describes a system with

both private (means，local，and，unshared，）and shared memory. Although the

system looks complicated, the high flexibility it offers is surely an advantage.

There are still many other techniques for inter-processor communication. On a

system mentioned in [ClemeSSc] processors are coupled by multi-port memory.

An even more interesting system shown in [HeMaN88] uses video-RAM to link

up processors. In these systems the latency is rather small due to the ease of

control and arbitration. But painfully, extensibility and compatibility with

standard devices are traded.

1.3.2 Multiprocessor design issues

After we had summarized general parallel processing styles, let us focus on

multiprocessor systems. The importance of this class calls for more attention.

This is one of the most common trends of parallel processing because it may be

the building block of larger systems. They are suitable for general purpose as

well as special purpose computing.

Several common design issues of multiprocessors (TCSs) are presented below.

Most of them may be applied to MCSs and LCSs too. Readers may refer to

Cleme88a] for more details.

a. Metastability

A general purpose machine with high flexibility requires a memory such that

every word is accessible to every processor at any time, with access time

comparable to that of an unshared memory. Usually an arbiter is responsible for

the scheduling of the competing memory accesses. Communication between the

processors via the shared memory must be reliable. Typically, a hardware

semaphore is used.

However, there is a finite possibility that a processor may request access at the

exact moment that the arbiter is making a decision. The state of the system is

CH.1 INTRODUCTION p.19

undefined in this cases. This phenomenon is known as the metastability pro-

blem, which is identified as a soft failure [Cleme88c]. The machine will not be

brought down if it is robust enough.

b. Distribution of tasks

The distribution of tasks in a multiprocessor system is strongly determined by

the nature of the particular application. An effective multiprocessor must be

able to allocate resources to contending processors without seriously degrading

the overall performance of the system. This is the duty of and also the challenge

to the multiprocessor operating system designer.

c. Interconnection topology of the processors

The success of a multiprocessor system is closely geared to the effectiveness of

the interconnection topology. Designer must consider the cost, band width, and

reconfigurability of the network. Usually tradeoffs have to be made under the

constraints imposed by an application.

d. Management of the memory resources

Design decisions on the control/arbitration logic, security measures, mode of

memory access and cache organization are critical issues. Things will be much

more complicated when virtual memory and multi-programming are supported.

e. Avoidance of deadlock

Deadlock may occur at different levels: from high level inter-processor

communication to physical signal protocols used for system synchronization and

control. A priority system is probably the simplest, and also the preferred

solution in many systems.

f. Control of input/output devices

Subject to cost considerations, it is usually not necessary and also not feasible

to allocate peripheral devices to every processor node. The question is who will

control which device, and whether the operation of the devices will interfere

V -

CH.1 INTRODUCTION p.12

with the normal work flow of the system. For instance, a device that is directly

connected to the shared bus may degrade the performance of the multiprocessor

when the application program is lO-bounded. Sharing, allocation and security

protection of devices are difficult and also crucial problems.

g. Choice of operating system

Master-slave type operating system is straight forward, simple and efficient if the

vulnerability of the controller is not a problem. On the contrary, the distributed

control type is much more complicated but robust.

1.3.3 Using microprocessors

An old problem with multiprocessor systems is the cost. Connecting a number

of powerful processors to work in parallel is quite expensive if not prohibitive.

The solution to this problem is related to the fact that the performance of a pro-

cessor is not directly proportional to its cost [EliMo83], as figure 1.6 shows.

• P e r f o r m a n c e / Q R O S C H ' S
“ / LAW U N I T Y C U R V E

/ / ^ ^ A C T U A L C U R V E

C o s t

Figure 1.6 Performance versus system cost.

V -

CH.1 INTRODUCTION p 1 3

Grosch's Law [BauSe75] suggests that processor performance is proportional to

the square of its cost. But this is no longer true now.

Nowadays, a costly processor does not outperform a cheap processor by the ratio

of their cost, as the lowest curve in the figure indicates. That means the designer

should use a large number of low-cost processors to obtain more processing

power instead of using a small number of powerful and expensive ones. Due to

the rapid development of VLSI technology, microprocessors are now so cheap

that large scale multiprocessors are realizable. Some mass-produced standard

microprocessors such as MC680x0, M88000，80386，and NS32532 even have

architectural support for multiprocessing [Tabak90]. They are the most basic

building block of many existing multi-microprocessor systems.

1.3.4 Bus based systems

Recall that we have discussed the use of a shared bus as the simplest way of

interconnecting PEs. The argument was made on the ground of cost and

simplicity. This will be elaborated in the following paragraphs.

Undoubtedly, a shared bus is the cheapest way of interconnecting processors.

The hardware requirement is minimal because there is nearly no active logic.

For instance, multi-stage networks and cross-bar need switch boxes plus many

wires. On the other hand, no special software, such as routing algorithm, is —

required for bus system. An important advantage is the ease of scaling up and

down the system by varying the number of processors. Very few other network

topologies provide this flexibility. Bus systems can simulate virtually all other

topologies without much difficulties but the reverse is not true. It is an ideal

choice for prototyping.

A well known disadvantage of a shared bus is the limitation of the band width.

Communication intensive computations may face a bottle neck at the shared

bus. The degree of parallelism can be seriously degraded. Another difficulty with

V-

CH.1 INTRODUCTION P 14

bus systems is that heterogeneous systems are hard to build. Interfacing various

types of processor nodes and devices to a single bus by force may degrade the

performance of the system significantly.

It is reasonable to assume processor nodes do not communicate with each other

extensively, otherwise the problem should not be solved in a distributed way. A

SIMD type computer may be employed instead. Apart from cost and simplicity

considerations, fast prototyping is also a primary concern for many designers.

Even if the design do not have a heterogeneous architecture in mind, this

expansion is easy at a higher level, eg. at the MCSs or LCSs level as we have

mentioned in section 1.2. So the use of a bus architecture does not close the

expansion path. Basically, the tightly-coupled nature of multiprocessor systems

do not encourage heterogeneity.

1.4 Shared memory and message passing

In multiprocessor systems, user processes are spread over several processor

nodes. Usually, they are working cooperatively to achieve a common goal.

Information exchange is inevitable. The two most common paradigms for inter-

process communication are called message passing and memory-sharing. Both

paradigms are well applicable to uni-processor and multiprocessor systems.

1.4.1 Shared memory

The principle of this paradigm is simple. Two or more processes have access to

a shared area, which may be as large as the whole memory space or as small as

a single word, where communication data can be stored. This idea is roughly

represented in figure 1.7a.

Depending on the particular application, some processes may have

READ/WRITE access right to the area while others have READ access right

V-

CH.1 INTRODUCTION p.15

^ I
^ ^ ~ (P r o c e s s \ DECEIVE

(a) S h a r e d - m e m o r y (b) M e s s a g e - p a s s i ng

Figure 1.7 Two inter-process communication paradigms.

only. All the processes that manipulate or read from this shared memory area

must observe a set of predefined rules about the data structure, how to flag the

availability of valid data, locking of resources, and so on. The programmer must

pay attention to all this matters. The effect caused by a faulty program may be

catastrophic so the programmer's duty is quite heavy. If security must be

enforced, special hardware and/or software mechanisms must be incorporated.

Note that so far we are talking about the communication between software pro-

cesses. Ultimately, having a shared virtual memory space is enough for this level

of communication, no matter it is a uni- or multi-processor system. Programmers

are not required to know how such an environment is provided. The mailbox

concept in multi-programming uni-processor systems is an example. In

Russo77], similar mailbox concept is applied to a shared memory multiprocessor

system for inter-processor communication.

1.4.2 Message passing

The basic idea of message passing is no more complex than memory-sharing.

Processes do not need to share an addressing space. They interact with each

other by exchanging messages in the way figure 1.7b summaries. Such messages

bear sender and receiver qualifiers. Normally, system calls are available for the

V -

CH.1 INTRODUCTION p 24

processes to send, receive, reject, and acknowledge messages. The sophistication

of message systems can range from fixed length un-typed messages with single

priority, to variable length messages from a hierarchical type structure with

priority levels.

Message communication can be classified as synchronous and asynchronous.

The former class implies that the message sender will be blocked (halted) until

the receiver has acknowledged the message or the time out period expires. The

sending of such messages also serves as a synchronization point of the sending

process. Occasionally, the arrival of a message means much more than the data

it carries. As a matter of fact this is a way of implementing synchronization

primitives. Obviously, for this class of message systems the reservation of buffer

area for a single message is enough. The communication logic is fairly simple

too. However, parallelism is traded because the sender may be blocked

frequently when it is coupled with a slow receiver, and vice versa.“

Asynchronous Sending means the sender does not wait for the acknowledgement

from the receiver before it goes to the next program statement. The data field

of the message contains all the information to be conveyed. A message queue

must be maintained by the system in order to keep track of the sequence of the

messages, and to decouple a fast sender and a slow receiver. However, the time

and memory space overhead of manipulating this queue must be considered.

Although this paradigm looks more sophisticated, the programmer's duty is even

lighter than using shared memory since the burden of supporting message

passing has shifted to the operating system. The programmer does not need to

know how the messages are handled. In secure systems, user processes cannot

access the memory spaces of other processes since message passing is the only

way of communication. Hence, data encapsulation is easily enforced.

1.4.3 Comparisons of the two paradigms

Sr

CH.1 INTRODUCTION p 1 7

This section tries to contrast the two paradigms. It is clear that none of them

wins in all aspects. Table 1.1 lists the main points in our following discussion.

’ I I

Shared-memory Message-passing

Speed Higher Lower

Hardware requirement Memory controller Serial links

Software requirement None Communication kernel

Programmer's model Very Primitive Bases on processes

Data encapsulation None Yes，ease to enforce

Level of abstraction Lower Higher

Portability not so good Good

Security enforcement Difficult Easy

Application examples Real-time systems Object-oriented systems

Table 1.1 Summary of the two paradigms.

Due to the fact of memory-sharing, the communication speed in such systems

can be as fast as normal memory accesses in both multi- and um-processor

systems. On the contrary, message passing systems are usually slower owing to

the extra message queue manipulation overhead. In uni-processor system, this

is merely the effect of extra software housekeeping work. But in multiprocessor

system, bit-serial links are predominantly used (for cost cutting) so off-board

communication is an order of magnitude slower than intra-board access. The —

delay due to extra communication hardware logic and message buffering are also

significant. Very few message systems can afford full inter-connection so delay

caused by intermediate hops is great. Moreover, message passing is implemented

at the subroutine level and it requires cooperation at the receiving end.

A point worthy of mentioning is that the memory access time for shared memory

systems is very uniform. In contrast, the long delay of messages forces the pro-

grammer (or operating system) to adjust his task assignment strategy on message

passing system. In a word, memory-sharing normally implies better speed.

v-

CH.1 INTRODUCTION p 18

However, we shall see later that this gap can be bridged.

A good memory controller is all it needs for a shared memory system. The

arbitration and control logic inevitably takes time. It contributes to the

saturation effect mentioned in section 1.2. Fortunately the price is inexpensive.

Message passing systems requires physical links, associated control logic and

software.

Concerning software requirements, shared memory systems require virtually no

special provision as oppose to the need for a communication kernel in message

passing systems. For message passing, the kernel is a set of communication

primitives. Some useful primitives can be found in [Ng86]. According to

"GentlSl], the semantics of primitives must be easy to understand, efficient to

implement, encourage the execution of processes in parallel, and not error pro-

ne. The programmer interfaces with this kernel which is usually a part of the

operating system. An example of such a kernel is introduced in section 2.5.

The programmer's model for memory-sharing is quite primitive. Most critical

issues, such as security and consistency, must be addressed by the programmer.

On the other hand, the idea of message passing is more elegant. The freedom

of the programmer is limited but his duty is also lightened. In shared memory

system, rarely any special software support is available so the program must

handle all the details. Evidently, life is easier for a "message passing system" pro-

grammer.

Although the portability of concurrent programs has never been satisfactory,

message passing as a vehicle for expressing interaction has a leading edge. Due

to the versatility of this model, the only variable in the system is the ratio of

local memory access time and non-local message delay. This parameter governs

the process scheduling policy. Other issues, such as interconnection topology and

connectivity, are handled by the system software. For example, if a process graph

is to be mapped onto a grid array of transputers, a layer in the operating system

CH.1 INTRODUCTION p 19

has to hide the fact that each transputer has only four bi-directional channels for

communication. This situation is typical because cost and fan out limitations

restrict direct linkages to neighboring nodes only.

On the contrary, programs for shared memory systems are hard to port due to

their strong dependency on the particular hardware environment (address of the

shared area，access protocol, etc.). In summary, we can say that the message

passing paradigm has a higher level of abstraction.

An interesting point is that after eliminating all the hardware parameters,

memory-sharing is so simple that it has become a good computation model for

parallel algorithm study. This model is know as PRAM [Akl89]. A possible

explanation is that porting programs for a conventional serial computer onto a

shared memory machine is easier than restructuring them in the message passing

paradigm. ‘

For message passing, if the memory spaces of any two processes are strictly

separated and isolated, then data encapsulation can be easily enforced. Security

measures can be imposed because the communication kernel is a part of the

operating system. Relatively, shared memory systems are more difficult to

monitor and control.

Both paradigms are extensively used as idealized computation models. Message

passing is quite suitable for object-oriented systems due to its data encapsulation

and abstraction property. General issues and examples of object-oriented

architectures can be found in [SiMiM86, WiLoE87, TasP189]. A whole class of

concurrent programming languages called Communicating Sequential Processes

(CSP) [ShMiS78] employs this paradigm. Occam [Inmos83] is one example. In

AthSi88] a number of message passing systems are discussed. On the other side,

existing examples of memory sharing include the Balance system [ThGiF88] and

Encore system [Tabak90].

I 香 港 中 文 大 學 g) 書 你 藏

CH.1 INTRODUCTION p 20

Along with the improvement of performance, it is now possible to build object-

oriented systems, which employ message passing, for real-time applications too.

The project pdvPOOL described in [TasP189] is one of such new attempts.

1.5 Summary and comment

The above discussion focuses on qualitative aspects of the two paradigms. For

computer architects, actual system performance is usually the primary concern.

Both modelling and analytical studies have attracted wide attention. Since

message passing systems vary significantly in complexity, and their performance

depends strongly on the particular implementation, theoretical studies received

less notice. In [Sangu86], the performance of a message-based multiprocessor is

analyzed. It was shown that super-linear speed-up is possible for computation

bounded workloads running in a mulit-programming environment. The treatment

can be generalized to other message passing systems.

Theoretical studies of the shared memory architecture can be found in

[Nader88a, Nader88b, BodLi89, Zhang88]. Naderi modelled shared memory

multiprocessor systems with Markovian chains and queuing network. The

resulting expressions are later generalized for systems that have multiple shared

memory modules. Zhang discussed the effects that influence the performance

of bus-based multiprocessors while Bodnar and Li analyzed the performance of

such systems with a probabilistic, hierarchical model.

In this chapter, we figured out the background from which our proposed multi-

microprocessor workstation emerges. Other approaches of gaining computation

power are briefed. The rationale supporting the choice of a shared-bus

architecture was discussed. The seemingly contradicting communication

paradigms, message passing and memory-sharing, are introduced. Actually, these

two paradigms are not exclusive, and they can even cooperate smoothly as we

shall see later. Before the proposed machine is presented, we shall look at

several typical machines in chapter 2.

v-

CH.2 AN OVERVIEW OF COMMON APPROACHES p_21

CHAPTER 2

AN OVERVIEW OF COMMON APPROACHES

In this chapter, we shall examine others' research efforts related to this project.

Due to the explosive increase of multiprocessor systems, this overview is by no

means exhaustive. Emphasis will be placed on aspects that resemble or contrast

with our approach.

2.1 SUPRENUM

CPU/SAC
(MC68020)
(MC68S82)

|i| I I

C . c h e l i ^ G e n e r a t o r | |
(64K) I f l H H i B Comm. H m U m

•
4 J - CI u s t e r B u s (2 5 6 M B y t e / s)

Figure 2.1 The architecture of a GPPN.

SUPRENUM is the German supercomputer project aiming at the development

and construction of a distributed-memory multiprocessor system. The structure

of a basic node, as the designer called GPPN (General Purpose Processor

Node), is shown in figure 2.1. Maximally, 16 GPPNs connected to a shared bus

form a cluster like the one in figure 2.2. At a higher level, 16 such clusters form

a 4 by 4 grid as shown in figure 2.3. MC68020 is the heart of a GPPN. The

communication processor is a dedicated to sending and receiving messages. The

256 nodes are connected via a 2-level interconnection network of buses. Despite

of the fixed topology, the logical structure of the software processes is

CH.2 AN OVERVIEW OF COMMON APPROACHES p.22

丨 …

t t j |

I • 14 I p l J

r ^ " 15 fail

凰 U D i : 。 山 J

广 ： ： ‘ C o m m u n i c a t i o n ~ I

Row c l u s t e r h II * '�^ ' … ‘ X ^ j u ^ i ^ J ^ i ^ ^ ^ j j j j i i ^ ^ ^ ^ W

^ ^ ^ F ™ " ™ ™ ^ ^ ! J „

I S 二 — :

丨 • M M ^ ^ ^
i 1 n W T SUPRENUM
\ J \ y \ y \ J B u s Net wor k

Figure 2.2 A cluster of GPPN's.

dynamically reconfigurable so the system can be configured to fit different

computation structures. The mapping library provides optimal processes-to-pro-

cessors mapping strategies for some standard process structures, and uses

heuristic for unfamiliar irregular process structures.

This multiprocessor aims at numerical applications such as the simulation of

fluid dynamics systems. It exploits coarse gain parallelism. The message-based

operating system PEACE employs distributed control and provides load

balancing. Unix V is chosen as the front end for interfacing with the user. The

programming model bases on the process concept. For more details on the

machine and its operating system, reader can consult [SchSo90, Giloi87".

2.2 MEMSY

V-

CH.2 AN OVERVIEW OF COMMON APPROACHES p.23

SBBBB
Col unn Bu s « • a

Figure 2.3 The grid topology using row and column buses.

MEMS Y (Modular Expandable Multiprocessor System) [FrHeH90] is a very new

MIMD multiprocessor with Distributed Shared Memory (DSM, similar to

SM3's) organization. Since MEMSY aims at numerical simulation problems, it

is designed to deal with the locality character of the physical problem. Data can

be exchanged rapidly between two adjacent nodes.

Figure 2.4 depicts the structure of a processor-memory module (PMM). P is a

commercially available microprocessor which performs inter-node- and I/O-

communication. SP is a special processor, say i860 or 88100，dedicated to

perform user's task. SP communicates with P via a dual-port memory SM.

Standard and special software is stored in the local memory LM. The connection

to the global bus will only be used at level B and C (figure 2.5).

PMMs are arranged in a 3-level pryramidal hierarchy as shown in figure 2.5.

Level A (256,1024，". nodes), which consists of worker-PMMs, computes the user

problem while level B (64 or more nodes) accommodates the OS functions and

performs I/O. Level C is a supervising PMM which connects the system to a

host machine. At each level, the processors form a toroidally closed NN-system

(Nearest Neighbor). Coupling between neighboring PMMs is realized by a multi-

port memory so data exchange between adjacent PMMs is particularly fast. The

V

CH.2 AN OVERVIEW OF COMMON APPROACHES p_24

t o g l o b a l b u s

Z W / A P r o c e s s o r
/ \ s u b n o d 0

/ \

T L o c a l bus

\ _ i - j ； ^ y

X v m y
P e r i p h e r a l j S ^ ^

X / W ^ 0 o t h e r CMs

^ f r o m o t h e r p r o c e s s o r

ri^^i^^^ f u b …

E D

Figure 2.4 MEMSY node structure. T:test and monitoring interfaces.

top processor is connected to the B level PMMs by a common bus with

broadcasting feature. An array of 32x32 worker-PMMs could achieve 20

GFLOPS peak. Watch dog processor WD is for fault diagnosis.

Three major features of this system are:

1. Scalable - a family concept allows for composing from small to large

system. The interconnection network is regular and easily expandable.

2. Distributed OS - each node has its local OS kernel. The OS supports an

object-oriented programming environment.

3. Observability - a hybrid monitor ZM4 helps to gain insight into

parallelized execution of large jobs.

In summary, MEMSY is an example of hierarchical structure systems. It

combines the advantages of using a shared bus and multi-port memory. Note

that I /O operations are distributed to level B nodes, which is a common feature

CH.2 AN OVERVIEW OF COMMON APPROACHES p.25

c

® Processor-Memory-Module (PMM)
S y m m e t r i c m u l t i p o r t - m e m o r y c o n n a c t i o n

- ^ • A s y m m e t r i c mu I t I p o r t - me mo r y c o n n e c t 1 o n |
" • • " C o m m u n i c a t i o n b u s i

Z I / 0

Figure 2.5 Example of a 3-level MEMSY structure,

for multi-computer systems but not for multiprocessor systems.

2.3 ELXSI

ELXSI System 6400 is a commercial product that features up to 12 CPUs. As

shown in figure 2.6, all components are connected to a shared bus. ELXSI uses

proprietary 64-bit CPUs. Depending on the processing requirement, 3 types of

CPU can be chosen. Model 6410, 6420，and 6460 have the same architecture but

increasing performance. Different models can coexist in a system.

The CPUs support the IEEE floating point standard. Each CPU has 16 sets of

V '

CH.2 AN OVERVIEW OF COMMON APPROACHES p_26

I C P U I I C P U I 『二 I I

I i / 0 I I / 0 ^ S e r v i c e ~ ^
P r o c e s s o r _ Pr o c e $ s o r l P r o c e s $ o r l

</> CO </} </J
=> = =3 =3

•O >0 XI JDi

I • I •

=3 3 =J =3
CO CO CO CO

o o o o
‘ — ^ — . —

Figure 2.6 Components of the ELXSI System 6400.

16x64-bit general purpose registers and 16 sets of process context registers.

Architectural support of the OS is evident.

Gigabus is a very fast (25ns cycle time), 110-bit proprietary bus. Virtual address

of 6400 is 4 GBytes, with 2 GBytes per program space. ELXSI offers a virtual

machine interface called the System Foundation. 25 system processes form an

OS environment. Unix is also supported as the front end. Inter-process and

device controller communication are accomplished via message passing.

In summary, this is a simple architecture with high performance bus and CPUs.

But the use of proprietary devices raises the problem of incompatibility.

Interested readers may see [Tabak90, Olson85, Sangu86] for more details.

2.4 Sequent

This well known bus based commercial multiprocessor system divides into the

Balance (B) and the Symmetry (S) series. They are substantially different at the

assembly language level but very similar at the high-level language level. A

CH.2 AN OVERVIEW OF COMMON APPROACHES p_27

general structure of the Sequent system is shown in figure 2.7.

I j m J H
CPU m a f m M . m o r y � � M . m o r y � ^ � ^ ^ ‘ • f H r C o n . o l •

Pr o c t i t o r | P " Con t r o l I 《 ^ ^ Exp … I o n � • � / 、

sue ^ L I ’ ‘
b u s / / \ � L o c a l

Sy»"iB b(], (go Mbyt < / I)) � Contol •
I Uul t I but""“. j H H j j ^ H SCSI
I nt trf tct IZ^ …
B o t r d \ r — D u � l « c h « n n � I

—— Multlbu. — Dl sk
\ A d a p t i r C o n t r o l l e r

卜… r ~T I ~ 1 ；X

MUX O t v l c t * U t p t J Dl t k l

Figure 2.7 The Sequent System.

The B-series uses the NS32032 family, with the associated NS32081 floating

point processor, and the NS32082 memory management unit. The S-series uses

the i80386 and 180387 correspondingly. Up to 30 of these dual-processor boards

can be connected in a system. Optionally, a floating point accelerator can be

added for each S-series CPU.

The shared bus is a 80 Mbytes/s Multibus. Every device connected to the bus

has a System Link and Interrupt Controller (SLIC) proprietary IC chip. It

manages the control of multiple processors. All SLICs are connected by a bit-

serial SLIC bus. It uses a high-speed, synchronous protocol independent of the

— system bus. SLICs communicate by exchanging command and response packets

that are 17 bytes long.

The DYNIX operating system for the machine is UNIX compatible. It virtually

supports any number of CPUs. System configuration is defined during start-up

time. Ada is the chosen programming model and language.

As a whole, this is a very flexible and powerful system. The design decisions are

reasonable and typical. Compatibility is improved by the incorporation of the

SCSI bus. Information about this system can be found in [Tabak90, ThGiF88].

CH.2 AN OVERVIEW OF COMMON APPROACHES p.28

Although this system does not bear any surprising attribute, it is a commercial

success and was used as the hardware background for the Yackos project

described in section 2.5.

2.5 YACKOS

Although it is not a hardware construction project, this effort is closely related

to our project. The support of message passing on top of a shared memory

architecture is the project's main theme. Detials are given in [FinHe88].

YACKOS (Yet Another Communication-Kemel Operating System), like other

communication-kernels, provides three major functions: process support,

memory-management support, and inter-process communication. It aims at pro-

viding very high band width communication with very low latency. The message

passing facilities have been implemented above DYNIX on the Sequent

machine, which is described in section 2.4.

The reason for building Yackos message passing on top of a shared memory

architecture is to allow the user the convenience of message passing with nearly

the performance of shared memory. Similar attempts have been made by many

researchers. [RetTh86] says that shared memory can support message passing for

easier program decomposition.

Yackos reduces context switches by letting its processes communicate with the

kernel by writing to and reading from a shared data area, the Interface Area.

Processes may change part of their interface area by writing directly to it; some

other parts may be changed only by calling interface functions that are linked

with the process. The process and kernel together maintain busy and free pools

for both incoming and outgoing messages. The headers for these pools are

stored in the interface area. Processes allocate buffers by calling the function

InitPool. Each process has its own set of buffers.

V -

CH.2 AN OVERVIEW OF COMMON APPROACHES p_29

Large message buffers are 1024 bytes while small ones are 32 bytes. Message

headers are stored directly in the buffers. Messages are stored in the order of

reception on the busy input queue. A process calls GetOutput and PutOutput

to get a free buffer then enqueue the message on the busy output queue.

Corresponding Getlnput and Putlnput are called to receive messages. Figure 2.8

summaries the idea. Destinations are given as process identifiers.

I n t e r f a c e A r e a

Busy out put b u f f e r s

Figure 2.8 Yackos input and output queues.

Messages are sent either best-effort (try to complete a transmission but still

allow it to fail) or reliably (every transmission must succeed). For this purpose,

the sender's interface area variable InputStrategy together with the flag in the

message header determines the kerael's actions when the receiver's input queue

is full. The message is either discarded without notice, or returned to the sender,

or kept in the sender's output queue.

On a native uni-processor implementation, calling an interface function should

not switch context to the kernel. Only calls to the service routine Block (until

buffer available) and NoOperation cause context switching. This design allows
V

CH.2 AN OVERVIEW OF COMMON APPROACHES p.30

a process to manipulate many messages before switching to the kernel for

message passing operations.

DYNIX allows different processes to map the same physical space into their

virtual memory so independent heavy-weight processes may share memory. This

is the key feature to combine shared memory and message passing with Yackos.

The current implementation of Yackos uses DYNIX for process support and

memory management. In place of a true native kernel, Yackos introduced a

DYNIX process known as the message passer (MP). Processes that want to use

Yackos for inter-process communication call an interface initialization function

that maps the common data region into their virtual spaces and assigns them a

Process IDentifier (PID). Given a PID, the MP can quickly find the interface

area for a sender or receiver.

After initialization, processes may look up PIDs of other processes. This feature

helps to establish process connections. Buffer queues are arrays of addresses of

message buffers and are organized as circular queues. Locks are not needed

because each queue has only one producer and one consumer.

Large message are not copied. The address of the message is placed in the busy

output queue of the receiver, a free input buffer of the receiving process is

removed and placed on the sender's free output queue (processes may share

message space). Since small messages are only 32 bytes, they are copied.

The MP continually looks for messages that need to be sent. To speed up the

search for new messages, they employed a small circular hint queue. Processes

write their PIDs into this queue as a side-effect of calling PutOutput to send a

message. Access to this queue is not locked so entries may overwrite each other

and stale entries may remain. Therefore, all hints must be checked against the

appropriate outgoing message queue. The MP only cycles through outgoing

message queues when the hint queue is empty. The hint queue is inspected

V -

CH.2 AN OVERVIEW OF COMMON APPROACHES p_31

again after each outgoing message queue. Current size of the hint queue is 5.

The MP runs simultaneously with client processes so they are not blocked when

they send or receive messages (ie. the sender and receiver are decoupled).

With the trickily designed message passer of Yackos, the frequency of context

switching can be cut down. The key point is that now processes can send more

than one message before reaching a context switch, provided that it is common

to send messages in an intermittent manner. Such a design does not benefit

interleaved conversations. However, measurements show that Yackos is a fast

method which supports message passing on top of a shared memory architecture.

Typical speed-up factor is 2.

In short, Yackos provides a faster way of message communication. Speed up

comes from the saving of context switches and redundant memory copies for

large messages. However, it is evident that context switching cannot be totally

avoided if the message passer is executed by the same processor that is running

the sender or receiver process.

2.6 Summary

Undoubtedly, shared memory multiprocessor systems built around a shared bus

is a very cheap and direct way of getting cost effective computing power. That

is the reason why they are commercially viable and competitive. However, it is

not a good practice to let the programmer (user processes) handle all inter-pro-

cess communication details due to security and effectiveness considerations.

Thus, some multiprocessor operating systems allow message passing even on

shared memory architectures.

Probably, the most straight forward approach is to provide system calls for

sending and receiving messages. However, this is very ineffective because the

service routines will be very bulky. Many other functions must be embedded into

the service routines such as security checks, buffer allocation, synchronization

CH.2 AN OVERVIEW OF COMMON APPROACHES p.32

control, queue management, and so on. A better solution is necessary, otherwise

the advantages of supporting message passing will be negated.

Yackos exemplifies a typical solution. A system process known as the Message

Passer (MP) is introduced. It is executed simultaneously with user processes.

Processes send and receive messages by invoking primitives (they are relatively

short) which write down the requests on the shared memory area. The message

passer performs all the housekeeping and checking procedures. Security is

improved because the user processes theoretically need not manipulate the

shared area directly.

Although the Yackos solution sounds good, the message delay is significant when

the idea is implemented. It is evident that every message transfer involves at

lease two context switches (to and from the message passer). The cost is so high

that the user cannot benefit from the shared memory architecture. Even if the

message passer is kept permanently resident in the main memory (not swapped

out to the system disk), the two context switches still takes a long time for many

microprocessors. So Yackos is forced to allow the primitives to allocate message

buffers such that more than one messages can be sent before a context switch.

Whereas the improvement is impressive, the problem is not yet eliminated.

Actually, the assumption that messages appear in an intermittent manner may

not hold for some applications.

Up to this moment, we have figured out the status of supporting message

passing on shared memory architectures. The next chapter will describe our

solution to this problem and show how the message passing paradigm can be

implemented effectively on a shared memory system.

V -

CH.3 THE MPC APPROACH p.33

CHAPTER 3

THE MPC APPROACH

3.1 A shared memory multiprocessor architecture

In order to explain the concept of Message Passing Coordinator, which involves

both hardware and software, we have to give a brief description of our proposed

machine architecture first. Details will be given later in this chapter.

After the discussions in chapters 1 and 2，it is now clear that a bus-based shared

memory multi-microprocessor system is a good choice for getting more pro-

cessing power. Advantages can be gained in many aspects: low cost, simplicity,

fast implementation, expansibility, and so on.

To reduce the use of the shared bus, each processor in the multiprocessor

system should have local memory. A centralized, shared memory module is not

necessary if the local memory of a processor can be accessed by other pro-

cessors. So we get a distributed shared memory multiprocessor architecture.

Based on this architecture, we will start our discussion on message passing as a

way of inter-process communication.

3.2 Message passer for inter-process communication

From the discussion in chapter 2, we learnt that the Message Passer (MP)

approach is an elegant way to support message passing on top of a shared

memory architecture. The MP approach can be dated back to the work

published by University of Waterloo in 1981，or earlier. However, their

motivation was somewhat different. Let us have a quick look at it.

In [GentlSl], the Administrator concept was introduced for message passing

between concurrent processes. The administrator is a software process for

V

CH.3 THE MPC APPROACH p.34

managing worker processes (similar to today's servers) by handling the messages

for them. Client processes and worker processes are decoupled. Other features

such as message format checking and deadlock detection are built into the

administrator. We must stress that this is a pure software project. Actually they

were trying to support message passing with the help of the operating system.

The underlying machine may be any serial computer that supports multi-pro-

gramming.

Unfortunately, the MP is not efficient when really implemented. To explain our

solution, we have to look at message passing using the MP approach.

3.2.1 A review of the message passer approach

Figure 3.1 briefly illustrates the message passer approach. As a system process,

the MP is executed concurrently with user processes. When process A wants to

send a message to process B, a system call (also called primitive) is invoked

which writes the request to the mailbox in the shared memory area. The MP, as

a middle-man, services the request and then marks the arrival of a new message

for process B. Once B wants to receive a message, it invokes a system call and

gets the message from the mailbox.

With the MP as a system process, security checks can be enforced. Functionally,

_ the MP acts as a routing center. Point-to-point and broadcast messages can be

handled efficiently. A hierarchical, typed message system is easy to support. The

service routines in the communication kernel will be short and simple. They may

be either run-time library routines or embedded into a high level programming

language in the form of system macros.

Collectively, the basic duties of the massage passer include:

-manage the shared memory area

-enforce protection scheme

CH.3 THE MPC APPROACH p.35

/ N
Me s s a g e
P a s s e r
Ke r n e I
P R O C E S S

〈 u … ^ V J ̂ A u …\
P r o c e s s g ^ M ^ ^ Pr o c e s s

乂 A 零 m B J
^ ^ ^ Co mmmu n i c a t i o n

K E R N E L �

\J
Figure 3.1 The role of the message passer.

-maintain message queues

The operation of the MP is transparent to the programmer. The MP buffers the

outgoing and incoming messages for the user processes so that the sender and

receiver(s) are decoupled. This is the basic requirement for asynchronous

communication. Thus, the message queues should be maintained by the MP.

3.2.2 Pit-falls of the message passer approach

As aforementioned, the inefficiency of the MP is basically due to the cost of two

context switches for every message. Although this can be cut down using the

Yackos approach (refer to section 2.5), the remedy does not universally apply

to all applications. Actually, messages generation pattern may vary dynamically

for an application. Moreover, a multiprocessor operating system with special

support for mapping virtual memory to physical shared memory is required.

One fatal problem concerns load balancing and the degree of parallelism. Recall

that the MP may share a physical processor with other user processes, when user

processes on other processor nodes request the service of the MP, context switch
V

CH.3 THE MPC APPROACH p.36

to the MP is necessary. Evidently, the processor node where the MP resides

carries a workload that varies according to the communication requirement of

the processes on other processor nodes.

In order to deliver reasonable throughput, it is natural to raise the priority of the

MP so that it can provide timely services. As a result, other user processes that

share the same processor with the MP may suffer from series neglect. The

overall effect of the problems mentioned in this paragraph makes the system

behave in a complicated way. Consequencely, load balancing becomes quite

difficult and the system performance is hard to predict and analyze. Finally, the

degree of parallelism is lowered and uncontrollable.

To illustrate the above discussion, let us consider the situation shown in figure

3.2. When the message traffic in the system is light, more processes can be

assigned to processor B that is running the MP so the given situation is possible.

Some time later, most of other processes have finished their current jobs and try

to exchange messages at roughly the same time. Processor B will then suddenly

become overloaded and consequently most other processes have to wait, either

for the MP or their conversation partner in processor B. The situation is even

worse when some of the processes want to broadcast messages.

I' ‘ I I I " I "-t I •• 1' ''' I I " 卜 ‘ I ： —J .•.•；•••： I I i I —Y III I I —-.•：•：•••••.

P P P P P MP P P P p p p

Processor A B C D

P： user process, MP: message passer

Figure 3.2 A scenario of the message passer system.

V

CH.3 THE MPC APPROACH p.37

This simple example has demonstrated vividly that the simple message passer

approach may cause series performance problems. Although Yackos [FinHe88'

attempted an ingenious solution (section 2.5)，the problem is still there because

the applicability of the solution is very limited. We need a better solution.

3.3 The role of the MPC

3.3.1 The quest for the MPC

Recall that in section 3.2.2, we found that the work load the MP brings to a pro-

cessor is difficult to estimate, so it is difficult to allocate this process to a

physical processor. During busy time, other user processes being executed must

yield the right of execution to the MP so the equilibrium is destroyed. Even if

the system supports process migration, it is too late to move the MP to a less

busy processor. Moving the user processes around is also very costly.

This line of through leads us to allocate a dedicated processor to execute the

ME. An obvious motivation is that we must treat the MP differently because its

behavior does not resemble other user processes. The first impact of taking this

move is that a shared memory multiprocessor will no longer be homogeneous.

To distinguish the processor that executes the MP, it is given the name Message

Passing Coordinator/Controller (MPC), which is inherited from its message

passer antecedent. We define it as a couple of a software process and a physical

processor. In our later discussions, when we talk about the MPC the context will

determine whether the software process or the processor is referred.

For a message system using a MPC, the new picture is analogous to the PABX

(Private Automatic Branch eXchange) [March77, ScoWa84] telephone system,

where an "intelligent" switch box manages the message traffic. Such a switch box

is usually computer-based. Figure 3.3 contrasts the two concepts. It is interesting

to locate their similarities.

V

CH.3 THE MPC APPROACH p.38

：麗•？丨丨丨:
t e l e p h o n e v H H H B H l ^ ^ ^ ― — M

(a) PABX s wi t c h (b) MPC

Figure 3.3 PABX switch and the MPC.

The PABX switch box connects the local site to the outside world. The MPC

also connects the pool of processors (or processes) to the host computer which

interacts with the external world. The users of a PABX switch are physical

devices while the users of the MPC are processors (or processes).

The Switch

part of a PABX switch box supports any connection combination

(cross bar). The Control part is a computer that exercises the connection policy.

The Service part provides dial tone, busy tone and other signals. Analogously,

the Switch part of the MPC is the mailbox area connecting the processes. The

Control part applies the predefined connection policy with the help of message

queues. The Service part of the MPC provides ready signals, automatic acknow-

ledgement and other services. As a whole, the correspondence is obvious.

3.3.2 Duties of the MPC

The basic responsibility of the MPC remains intact after evolving from the MP:

it acts as a message control center of the programming environment. The

difference is that the message passer had changed from a floating software pro-

cess into a static, hardware and software combination. To look into the details,

we have to consider software and hardware aspects separately.

3.3.2.1 Software aspects

Apart from message routing, the MPC must be responsible for other

V- L

CH.3 THE MPC APPROACH p.39

housekeeping duties related to message traffic control. In some sense, it is a

value-add MP. We shall start the discussion with its basic duties first:

a. Message routing and multi-casting

Each message (more precisely the message header) bears the sender and

receiver PIDs. The MPC enqueues new messages on the input message queue

of the receiving process, or a set of message queues when it is a broadcast

message. The number of successful receptions is recorded. In order to achieve

this purpose, processes that want to enjoy the service of the MPC have to

register first. The MPC allocates mailboxes and creates message queues for

freshly joined processes.

b. Message buffer allocation

We have stressed that it is very desirable to decouple the sending and receiving

processes. To achieve this goal, the MPC must be able to buffer messages so

that the sending process can resume its work once the message is handed to the

MPC. Maintaining a free buffer pool is also a primary task of the MPC.

c. Message queue manipulation

In order to maintain the arrival sequence of the messages, there must be at least

one input message queue for each participating process. The number of queues

for each process depends on the complexity of the message system. For instance,

- more queues may be necessary if priority is enforced. The MPC is solely

responsible for the manipulation of these message queues.

Now, let us turn to the optional duties of the MPC:

The MPC can offer optional functionalities if the application requires them and

the work load of the MPC allows. Obviously, if the message traffic in a system

is heavy, the MPC may not have sufficient capacity to perform extra works

efficiently. Otherwise, it will become a bottle neck again.

CH.3 THE MPC APPROACH p.40

a. A message filter

With the MPC as a middle-man, a process can specify the message type(s) that

it interests in receiving, and the set of valid users. The MPC can automatically

filter undesirable messages without disturbing the receiving process.

b. Deadlock detection/prevention

In message passing system, deadlocks can arise from the invocation of blocking

Send and Receive primitives. With a centralized message controller, the problem

of distributed deadlock detection may be avoided. Since the status of a process

can be stored as a side effect when it invokes the communication primitives, the

MPC can detect the existence of deadlock condition. Deadlocks can also be

prevented by failing requests that lead to a deadlock situation. The detailed

detection and prevention scheme is out of the scope of this thesis. If constructing

a global process graph for deadlock detection is too expensive, the MPC may

use a time stamp to check on unattended message and handle them accordingly.

c. Security checking

The message type, length, priority and destination PID can be checked by the

MPC. Faulty messages can be found and discarded before they are actually pro-

cessed by the MPC or the receiving process. Receiving processes can assume

that arriving messages are alright. Security is improved and the disturbance due

to defective messages can be minimized.

d. Acknowledgement generation

In many cases, the sending process may like to receive an acknowledgement

from the receiver before it resumes its work. The MPC can generate a reply

signal instead of requesting the receiver to create another message. Once the

MPC finds that a receiving process has picked up the message, an acknow-

ledgement signal is delivered to the sending process. This method is more

economical and faster.

e. Performance analysis

V -

CH.3 THE MPC APPROACH p.41

The programmer can monitor the message traffic using the MPC. The MPC is

easy to collect information about message frequency, generation pattern, and

length spectrum. Information such as average queue length, average wait time

and other statistical data are useful for parallel algorithm design. For a pure

shared memory system, it is relatively difficult and inefficient to take such data.

f. Load balancing

Although this functionality seems ambitious, it may be useful and feasible for

some applications. Imagine that several processes in the system are different

instances of a class of server. If these processes call a primitive that performs

blocking Receive, the MPC can easily identify which process is idle and

consequently passes the next request, which is in the form of a message, to an

idle server. Even if all the servers are busy, it is sometimes possible to estimate

their workload in the near future from their input queue length. Then the next

request can be passed to the process with the lightest future workload. Since the

workload of a process does not necessary reflect the workload � the physical

processor that the process resides, this feature is more suitable for systems that

every processor executes only one process.

3.3.2.2 Hardware aspects

Basic duty

The primary duty of the MPC, form a hardware point of view, is to manage the

shared memory and execute the MP program. Although the MPC can manage

the shared area as good as MP, the MPC approach is more secure.

Strictly speaking, each processor needs to have access to no other shared

memory locations but its mailbox. Only the MPC must access all the shared

memory areas that are mailboxes. Owing to the hardware nature of the MPC,

it is easy to design a address decoder that prevents a processor from accessing

(or writing to) other processors' mailbox areas. Hence, the security problem of

the shared memory architecture can be solved for the case in which each pro-

CH.3 THE MPC APPROACH p.42

cesser executes a single process. Even if more than one process are allocated to

one physical processor, the damage that a process can cause is restricted to the

processes residing in the same physical processor.

If the private memory of every processor is hardware-protected from external

access, some mechanism must be devised to load the program into this area. The

simplest solution is the use of Read Only Memory (ROM). Another method is

to install a switch to enable or disable the protection.

Optional duties

Since the MPC has a hardware portion, it is possible to support message passing

by additional hardware. For instance:

In the MP approach, a process that wants to know whether a new message has

arrived must invoke a primitive and request for the attention of the MP. The

reply is very often "no message has arrived." Such polling operations will pro-

bably involve context switches as well as the use of the shared bus, given that

the user process and the MPC are probably not on the same processor node.

A hardware alternative is to add a signal, such as MESSAGE AVAILABLE, for

each processor. When the MPC has handled a new message for a processor (the

MPC knows the process-processor mapping), the signal for that receiving pro-

cessor is activated. A single instruction is enough for doing this. The status of

this signal can be read from a status register on every processor node. In this

way, the number of requests to the MPC and shared bus usages can be reduced.

This technique can be applied to the detection of buffer full, acknowledgement,

and other similar situations. With considerable simplicity in software design,

extra hardware cost is justified. The simple MP approach can also apply this

technique but the hardware cost will be nearly doubled. Since the MPC is not

adhered to a fixed processor, every processor must be capable of reading from

and writing to the signal line. Only the MPC needs to drive the signal.

v-

CH.3 THE MPC APPROACH p.43

3.4 Advantages and disadvantages

At this juncture, the characteristics of the MP and MPC approach should be

quite clear. Let us contrast the pros and cons of the MPC approach in the

following sections. If not specified, the MP approach is used as a reference.

3.4.1 Advantages

a. Context switching is completely eliminated

Since the MPC is a dedicated processor which runs a MP-like process

exclusively. No context switching is necessary for user processes and the MPC.

b. Hardware support is favored

The MP approach discourages hardware support for message passing because

the MP is a floating process. As the example in section 3.3.2.2 shows, it is easy

to add hardware for performance improvement in the MPC approach. Of course,

the system designer must make cost trade-offs according to the application.

c. Improved security

In section 3.3.2.2 we discussed the possibility of preventing a processor from

corrupting other processor's memory area with the MPC approach. Message

type, priority, and length checking are introduced in section 3.3.2.1. With the MP

approach, these security measures are difficult to enforce since a bulky MP will

eat up memory spaces for user processes and the MP lacks hardware support.

d. Easy to monitor the system

We have mentioned that the MPC is a good place to monitor the message traffic

in the system. Statistical data can be easily collected. If cost justifies, special

hardware can be installed for diagnostic and monitoring purpose.

e. Easier to predict system performance

Since the power of the MPC depends only on its hardware configuration, the

CH.3 THE MPC APPROACH p.44

service standard of the MPC can be accurately controlled. Concurrency is easier

to control. On the contrary, we have shown in section 3.2.2 that the performance

of the MP approach depends strongly on the task assignment and communicat-

ion property of the processes.

f. Flexible MPC power

If the whole multiprocessor is dedicated to a single application, it is possible to

estimate the communication load at the beginning of the hardware design stage.

If communication is a bottleneck, a processor that is more powerful than other

processors can be chosen for the MPC. Otherwise, a less powerful processor may

be sufficient. Although object code compatibility should be maintained through

out the system, alternatives are normally still available because many micropro-

cessors appear in families. Other parameters of the MPC, such as private

memory size, clock rate, and bus access priority can be adjusted too.

g. Primitives are kept simple

One of the original motivation of using the MP approach is to simplify the work

of the communicating processes. This will shorten the time required to execute

the SendMessage primitive and will also reduce the size of the primitives.

Hence, the processes in the system will have more memory space for the

application program because they do not have to cany the bulky, redundant

codes in their object programs. On the contrary, the Yackos approach violates

this principle because their primitives are responsible for queue and buffer

manipulation, and hence much more bulky.

3.4.2 Disadvantages

a. Vulnerability of the MPC

All along our discussion, we have implicitly inherited from the MP approach that

there is only one MPC in a multiprocessor system. But since the MPC is a

dedicated processor, it may be difficult to replace if it crashes. There are several

solutions for this problem:

V

CH.3 THE MPC APPROACH p.45

1. Have one more standby MPC - it is a natural but costly choice. Actually,

the existence of such a non-productive processor in a bus system with

limited fan-out usually implies that the place for a productive processor

is wasted. However, this approach exhibits the highest fault tolerance.

The crash of the MPC does not need a system cold start to recover.

2. Equip all processor with the capabilities of the MPC - if special

hardware is designed for the MPC to enhance performance, then

implement all or part of this extra hardware on other processors. In case

of MPC crash, select one of the processors to take up the job of the

MPC. The extra hardware may not be as efficient as the full MPC but

degraded performance may be acceptable.

3. Software emulation - a standby process that can emulate the function of

the MPC is activated as soon as the MPC becomes non-operational.

Remember we can resort to the MP approach in the worst case.

b. The multiprocessor is no longer homogeneous

Since the MPC approach encourages tailor-made MPC hardware, the system is

no longer homogeneous. Usually, performance will not be degraded. But now

we cannot use a single regular building blocks to construct the system. Apart

from the lost of simplicity, the only implication is the vulnerability of the MPC.

c. Additional hardware and software necessary

This is an inevitable cost the designer has to pay. Fortunately, the amount of

extra hardware and special software needed are subjected to the trade-offs

between cost and performance.

3.4.3 Other discussions

Although the MPC approach is an improved solution for supporting message

passing on top of a shared memory architecture, we must add that not all the

problems are solved. A problem inherited from the MP approach is that the

introduction of an agent between the message sender and receiver will more or

V-

CH.3 THE MPC APPROACH p.46

less lead in inefficiency, although the MPC approach has improved on this.

Since every message transferred requires the service of the MPC, and the MPC

itself must service the incoming requests in a round-robin manner, the MPC

cannot deliver all the processing power to a sending process even other pro-

cesses are idle. The author had thought of using an interrupt driven MPC but

it also becomes very inefficient when many processes raise requests in a short

time.

However, we can borrow the philosophy of the Yackos approach to gain some

improvement: a process can register more than one messages before the MPC

services this process; and a hint queue can be used to speed up the polling job

of the MPC. But evidently, the primitives will become much more complicated

and this somewhat violates our goal. Design trade-offs have to be made here.

3.5 Summary

In this chapter, I revealed the serious problems with the MP approach.

Accordingly, the MPC was introduced, which in a sense can be viewed as a

value-added MP running on a dedicated processor. This approach favors

hardware support for message passing. The extra functionalities that could be

put into the MPC was discussed. Finally, we looked at the advantages and

disadvantages of the MPC approach. All in all, the MPC is a more effective

method to support message passing on top of a shared memory architecture.

CH.4 THE DESIGN OF SMS p.47

CHAPTER 4

THE DESIGN OF SM3

4.1 Introduction to SM3

After we had decided to build a multiple processor workstation in order to get

good processing power, we had also decide to use off-the-shelf microprocessors

as basic building blocks. Their excellent availability, low cost, and high

performance/cost ratio are strong reasons.

To construct powerful systems, the coarse gain MIMD class shown in figure 1.3

is a good choice for the basic model. The next major problem is how to

interconnect these microprocessors. We found that a tightly-coupled system is

favorable because loosely- or moderately-coupled systems can be built using

TCSs as building blocks. Moreover, a TCS requires only one operating system.

The amount of resources, such as wires and peripheral devices, is also minimal.

When choosing among interconnection topologies, the shared-bus architecture

emerged immediately when cost, simplicity, expansibility and ease of prototyping

were considered. Additionally, it can simulate virtually all other topologies.

Concerning the processor-memory interconnection style, the PE-to-PE type is

adopted, with the local memory modules being globally accessible. In other

words, this is a distributed shared memory system. Figure 4.1 illustrates such an

architecture. It is a good choice because the great flexibility. The local memory

for each processor node is for normal data processing while off-board memory

access via the shared bus is strictly reserved for inter-processor communication.

A processor should not place its data in the other processors' local memories.

At last the bus characteristics must be determined. We found that a synchronous

bus with centralized control is easy to work on and interface with. The hardware
V-

CH.4 THE DESIGN OF SMS p.48

PN1 PN2 PN3 pNi

[\ r\ K

0 0 0 r

M1 M2 M3 Mi

^ ^ 4
/ / / /
/ / / /
/ / / /
/ / / / / / / / ^ ^

Global bus ^

P N i - Processor Node i
Ml - Me mo r y Module I

Figure 4.1 A distributed global memory multiprocessor system.

required is simple and not costly. Hence, we can indicate the position of our

multiprocessor workstation in figure 4.2 by a box.

Tightly-Coupled-Systems
I ^ 1

Processor-to-Memory PE-to-PE
I ‘ 1

Asynchronous bus Synchronous bus
^

Distributed control
Centralized control

Figure 4.2 Position of the proposed architecture.

Since the workstation is a Shared Memory Multi-Microprocessor system, we

called it SM3 for short. In addition to normal processors, a host computer

interfaces the pool of processors to the outside world via the front end operating

system Unix. Let's look at the software and hardware aspects of SM3 now.

4.2 Software aspects

Although SMS is a typical shared memory multiprocessor, we decided to support

message passing on top of this architecture for easier programming. The details

have been given in section 1.4. In chapter 3, we have introduced the MPC
V

CH.4 THE DESIGN OF SM3 p.49

approach as a better way to support message passing in contrast with the MP

approach. Message passing with the help of the MPC provides a good

environment for programming and inter-process communication on SMS.

4.2.1 Programming model

In chapter 3，we have introduced the basic and optional duties of the MPC. The

programming model of SM3 is described in this section according to the basic

duties of the MPC. For the currently constructed SMS, not all the optional

duties of the MPC are included. To simplify our discussion, the part of the pro-

gramming model concerning the optional duties will not be described in detail.

4.2.1.1 Logical entities

For the sake of simplicity, we assume that each processor executes one software

process only. That is, the process-processor mapping is one-to-one. Note that the

MPC approach does not impose this restriction.

The two basic classes of entities are user processes and the MPC. Processes

communicate by passing massages. All messages are processed by the MPC. To

maintain the order of and to buffer messages, an Input Message Queue (IMQ)

is maintained for each process. This queue is created when the process registers

to the MPC. Figure 4.3 is a simplified programming model of the MPC.

4.2.1.2 Communication procedure

After a process has registered in the MPC, it may converse with other

participating processes by sending messages via the MPC. Every interaction

involves the three phases described below. However, the procedure may differ

slightly for various types of messages. We shall talk about the standard pro-

cedure first.

V

CH.4 THE DESIGN OF SM3 p.50

MPC

H i _ _ m m ^ ^ ^

M B X 2 \ Q

I MQ3

_ l l

I MQ: I n p u t M e s s a g e Q u e u e � M a s s a g e

MBX� Mai I b o x • S h a r e d . m e m o r y

P: P r o c e s s

Figure 4.3 A simplified model of the MPC.

a. Send message

A communication primitive SendMessage is invoked whenever a process wants

to send a message. Related information is passed as input arguments as the

primitive is called. The caller must supply receiver PID, message content, type,

priority, blocking option, and broadcast option. The primitive then writes the

message header to the mailbox of the sending process.

b. Route message

The MPC cycles through the MBXs (MailBoX) endlessly. Once it finds a new

message, it checks the validity of the message first. Then the message is

enqueued onto the IMQ of the prospective receiving process. If it is a broadcast

message, the header will be replicated and appended to all potential receivers'

IMQs. The MBX of the sending process will be freed again after the message

has been successfully processed. In case of buffer full, the message will remain

in the MBX until free buffer is available. Although this phase is called Route

Message, nearly all optional duties of the SM3 are performed in this phase. For

instance, type checking and filtering before the routing is done.

c. Receive message

V

CH.4 THE DESIGN OF SMS p.51

When a process wants to pick up a message from the MPC, it will invoke a

primitive ReceiveMessage. The primitive will read in the first available message

from the IMQ of this process. After a message is read, a flag is set by the

primitive to tell the MPC to get the next message. Now let us turn to the

acknowledgement procedure.

If the sending process waits for an acknowledgement before resuming its work,

it is called a Blocking Send. Similarly, a receiving process waits until a new

message arrives if it is performing a blocking Receive. In the first case, the

acknowledgement is generated by the MPC. The detailed difference between

blocking and non-blocking Send are:

Non-blocking - after the SendMessage primitive has successfully written the

request to the mailbox, it returns straightaway. For a non-blocking Receive, the

primitive also returns as soon as it has found that there is no available message.

This result is then reported to the receiving process.

Blocking - after the SendMessage primitive has written the request to the

mailbox，it then waits for the acknowledgement. When the MPC finds that the

receiving process has picked up the message, it sets a status bit in the shared

memory to inform the sender of the acknowledgement. To avoid busy waiting

and shared-bus contention, the technique described in section 3.3.2.2 is applied.

During the course of execution, some processes may want to transfer an urgent

message. The following example will explain this requirement:

Suppose SMS is working on a matrix chain product problem. Each processor is

responsible for calculating the partial product of two or more matrices. Com-

putation job assignment is conveyed by a message. At an instance, a process may

have several pending messages in its IMQ. If one of the processes found that the

result of its partial product is zero, then the final answer is also zero and other

pending computations can be canceled. This condition may be indicated by a

V-

CH.4 THE DESIGN OF SM3 p.52

message with higher priority in order to overtake other normal messages.

In SMS, 3 priority levels are supported. In the order of decreasing priority, they

are Express messages, Normal messages, and Broadcast messages. Express

messages may be point-to-point or broadcast messages that are urgent. Normal

messages means ordinary point-to-point messages. Since the receiver is less

specific, broadcast messages yield priority to normal messages.

In order to support these 3 levels of message priority, a separated IMQ is

created for each priority level. The names of the IMQ for Express, Normal, and

Broadcast messages are called EIMQ, NIMQ，and BIMQ respectively. Figure

4.4 shows a view of the IMQs.

/ \ :
/ NL M Q

�� ^ Aclcnowl«dq»n»nt c…\
c • 11 WiiM I

\ 1 El MQ y

U . -
0«v lc«

BL M Q
I M Q : I n y u t U t i t a g t Q u t u * 5 D r i v i r t

:=; : : : :。 -^m
-- - BI.MQ: Br oadcot td I MO

M P C J
Figure 4.4 The 3 IMQs in the MPC.

The SendMessage primitive writes the message frame to the mailbox as usual.

The MPC will then despatch the incoming message to the appropriate IMQ of

the receiving process. When the receiver calls ReceiveMessage to receive any

new message, the IMQs are examined according to the priority order. Hence,

higher priority messages will reach the receiver earlier. However, the receiving

process can also specify that only messages from a specific queue is desired.

V

CH.4 THE DESIGN OF SMS p.53

4.2.2 Message structure

A build-in hierarchically typed message structure is highly desirable for any

message-based systems. Different messages types can be handled in different

ways by the system in order to improve efficiency. Programmers can save their

development effort because they don't need to deal with the operational details.

The programmer is only required to pass suitable arguments to the

communication primitives SendMessage. On top of a basic build-in message

structure, the programmer can also add their user defined message types, such

as finely classified message types.

In SMS a hierarchical message structure shown in figure 4.5 is supported with

the help of the MPC. Message type is determined by 3 basic properties: priority,

blocking option, and broadcast option. We shall elaborate the tree structure

according to these properties.

P r o g r t m i I Dat a/ Colt r ol I “ , J , | _ ^ |

(H o . t) I Coda , (L , v„) I … m a l I E x p r e s s •

I I I I I -

^^oT^UcuT^ ^^^uTkTnT^ ^on^jTTkU^ ^TuckT^^^ ^No^i^cTTn^

Figure 4.5 Message structure of SMS.

4.2.2.1 Broadcast versus point-to-point messages

Point-to-point is the most basic form of communication. A sending process

identifies the receiving process uniquely by specifying the PID when the message

is sent. All the MPC has to do is a check of the existence of the target process

and status of the associated IMQ.

CH.4 THE DESIGN OF SMS p.54

In any system with a number of cooperating processes working on the same pro-

blem, broadcasting is a very common form of communication. Although

broadcasting can be done by the sender using a sequence of point-to-point

messages, it is bothersome and inefficient. So, the burden of replicating

messages for broadcasting is taken up by the MPC.

Furthermore, it is easy to support selective broadcast (multi-casting). When a

sending process calls the SendMessage primitive, a list (in the form of a bit-

mask) is supplied in place of the input argument receiver PID. The MPC is also

responsible for keeping track of successful receptions and reporting them to the

sending process for the sake of error handling.

4.2.2.2 Message priority

We discussed the reason for having more than one priority level in section

4.2.1.2. The number of levels is kept small because it is evident that a separate

message queue for each priority level is very expensive. So in the message

structure hierarchy, we have 3 levels. Normal and Express messages were

explained in enough detail in section 4.2.1.2. Broadcast messages require further

elaboration. In the message structure, broadcast messages are divided into Pro-

grams and Data/Control Codes for slaves.

The existence of program type is because during system start-up, the host

machine must load programs into the local memory of each processor. In many

cases, the programs running at all processors are the same, only data values are

different. Thus the host can broadcast the program like a message to all pro-

cessors using this message type. This type is special because only the host

machine may initialize such a request. Moreover, the MPC must directly write

the message content, ie. the program, into the local memory of a processor

instead of just leaving it in the mailbox. The program load origin and entry point

must be generated by the MPC or supplied by the host pocesses. For this type

of messages, the blocking and non-blocking option is inapplicable.

V-

CH.4 THE DESIGN OF SMS p .55

Another broadcast type messages are initiated by slave processor. The message

contents may be purely passive data or control commands. Normally no

executable code will be send so starting address is not required.

4.2.2.3 Blocking versus non-blocking

When the blocking option is on, a sending process must wait for the

acknowledge from the MPC before it returns from the communication primitive

and continue its work. For a receiving process, the primitive does not return

until a new message is available. Naturally, this message type can be used for

inter-process synchronization as well as data passing. However, it should only be

used if necessary because the processing time will be wasted. Degree of

parallelism is also reduced.

I f the non-blocking option is chosen, the SendMessage primitive returns

immediately, without waiting for the acknowledgement, to the next statement in

the user process. At the receiver's side, the ReceiveMessage returns immediately

no matter a new message is available or not. Of course, this result wil l be

reported to the process. Using this option, the sending and receiving processes

are effectively decoupled. A fast sender wil l not be dragged down by a slow

receiver, except when the IMQ of the receiver is full. This option is good for

passing data or control commands because of the loose coupling. - — - -

Sometimes the receiving process has to supply more information with an

acknowledgement. The blocking-Send with automatic generation of

acknowledgement by the MPC is inadequate. A higher level acknowledgement

is necessary. Figure 4.6 presents a simple solution. It is interesting to note that

both the sender and receiver use blocking and non-blocking options. In

particular, Sends are non-blocking while Receives are blocking. The following

paragraph explains the solution.

After the sender has used a non-blocking Send to deliver the message to the
V'

CH.4 THE DESIGN OF SMS p.56

f S e n d i n g p r o c e s s R e c e i v i n g p r o c e s s

： M : 1

f s e n d M d s s a g e ^ ^ ^ ^ ^ ^ ^ _ _ Recel v s M e s s a g e

Figure 4.6 High level acknowledgement.

receiver, it initiates a blocking Receive to collect the expected acknowledgement.

On the other side, the receiver uses a blocking Receive to get the incoming

message. Once the message is captured, a non-blocking Send then transfers the

acknowledgement message carrying the reply information to the sender. After

this, the receiver can continue its work immediately. Upon receiving the

acknowledgement, the sender can also return to its work.

The two statement at each side can be grouped together to form a higher level

blocking Send and blocking Receive, respectively. Such kind of communication

allows the receiver to return a data message as the acknowledgement. Except

the above interesting example, the same option, either blocking or non-blocking,

are used consistently at both sides.

4.3 Hardware aspects

4.3.1 Overall architecture

SM3 is a shared memory multi-microprocessor system. An asynchronous bus

with a centralized controller is chosen as the backbone. A number of Processor

Nodes (PNs) are attached to the shared bus, and so is the MPC. We have a host

machine also attach to bus for handling peripheral devices. A portrait of this

configuration is shown in figure 4.7.

CH.4 THE DESIGN OF SMS p.57

S y s t e m K e y b o a r d H o s t
C o n t r o l l e r � M a c h i n e

I I 尊 尊
S I a v e S I a " S I a v e

MPC P N 0 P N 1 • • • • P N N

M P C : M a s s a g e - P a s s i n g C o o r d i n a t o r
P N : P r o c e s s o r N o d e

Figure 4.7 An overview of SM3.

The system controller in the figure is responsible for bus arbitration and control.

I t may be integrated into the host machine or exist as a separate circuit board.

For further expansion, an interface module can be attached to the bus in order

to form a loosely- or moderately-coupled system at a higher level. A clustered

approach can be found in figure 7.1. Although not shown in figure 4.7, additional

pure memory modules can be added to the bus as a sort of shared resources.

4.3.2 The host machine

As shown in figure 4.7, the host machine is responsible for handling peripheral

devices. Actually it is a complete microcomputer system with a uni-processor

operating system. The host machine needs not base on the same microprocessor

on the PNs. But for simpler operation, the host machine should be compatible

with the PNs at object code level. The internal structure of the host machine

dependents on the implementation choice. However, it will be particularly good

if its organization is similar to that of PNs'. The duties of the host machine is

detailed below. Some of them are basic duties while some are optional.
V-

CH.4 THE DESIGN OF SMS p.58

a. Peripheral control

Al l peripheral devices are connected to the host machine. A standard

configuration includes: video display unit, keyboard, fixed and removable disk

drivers, and printer. In order to control the devices, the host machine must be

equipped with a good operating system. Besides, a good I /O co-processor is

highly desirable for better external parallelism.

b. User interface

The user issues commands to the host machine to start the application program,

monitor the system, collect results, and terminate the program. The host

machine connects the pool of slave processors to the outside world - the user.

For easier operation, a user friendly operating system should be chosen.

c. Program development

Very likely, program development will be conducted on the host machine. So

text editor, compiler/assembler, linker, and loader must be present. A debugger

is highly desirable too. Note that the programming language used need not have

build-in concurrent constructs. At this first version of SMS, distribution of pro-

cesses is not done by the operating system since the host machine only has a

uni-processor operating system. Task assignment is the programmer's duty so the

underlying language can be a conventional one.

d. System monitoring, control and diagnosis

Since the host machine controls the operation of the whole system, it is natural

that the user also monitors the operation of the system here. Actually, the host

machine is like the operator's console of a large computer system. During

development stage, the PNs and the MPC are tested by the host machine

individually and then incorporated into the system. Then, integration test is

conducted. A l l diagnostic work will become easier with the help of the host

machine, especially due to the memory-sharing nature of SMS. The host

machine must also be responsible for overall system control, such as cold reset,

warm reset, shut down, and slave processor halting.

CH.4 THE DESIGN OF SMS p.59

e. System initialization

Before the execution of the application program, the host machine must

distribute the object program modules to the slave PNs. The initialization of the

MPC is also its duty. After the program modules have been loaded, the host

signals the PNs to start their jobs. Note that all the PNs must be halted before

the programs are loaded, and after the application programs have terminated.

Otherwise, free-running of the PNs will cause unpredictable effects.

f. Execution of the root process

When the system initialization is completed and the PNs are started, the host

machine must issue data packets and/or control commands to the PNs. Hence,

the execution of the root process is also a primary duty of the host machine.

When the results become available, the host machine collects them from the

PNs possibly in the form of messages.

4.3.3 Slave processor nodes

Figure 4.8 is a simplified functional architecture of a PN. A detailed diagram for

the current implementation of SM3 wil l be presented in chapter 5. Again, a PN

employs the bus structure, which this is the universal choice for single board

computers due to efficiency and cost considerations.

— The Bus Interface links the local bus to the shared bus. I f the local bus is not

completely compatible with the external shared bus, conversion logic is

necessary. The Shared memory is a part of the system address space so we

placed an index i there. The actual address format will be given in chapter 5.

This local memory can be accessed from the shared global bus via the Bus

Interface. Of course, the Microprocessor is the heart of a PN. It may access

other off-board memory as well as the local memory.

The Communication Logic part connects the PN to the MPC. Hand shaking pro-

tocols are implemented here for supporting message passing. Some of the signals
V-

CH.4 THE DESIGN OF SMS p.60

Shar ed bus � (To。 ther slaves / MPC)

^ I Shared
I nt pr f arflI Memor y

^ ^ ^ ^ ^ M o d u U ^)

• . �

I 4
B r o a d c a s t i n g I Micro- I
Cont r ol I erI processor I

�MPC

Figure 4.8 General architecture of a processor node.

between a PN and the MPC are optional. They are added for reducing global

bus access and MPC interrogation as described in section 3.3.2.2.

Other devices, such as DMA controllers and mathematical co-processors, can be

added to the PN local bus for better performance.

4.3.4 The MPC

The MPC structurally resembles a PN. Figure 4.9 is a simplified diagram of the

MPC. The Microprocessor should be object-code compatible with that on PNs.

The Bus Interface and Shared memory parts are virtually identical to their

counterparts on PNs, although the memory size need not be the same. If the

MPC software is bug free, it can be burnt into a PROMM (Programmable Read

Only Memory) chip in order to save the initialization time and to ensure

reliability. But it should be noted that PROM are usually slower than R A M

(Random Access Memory). In our prototype design, PROM is not necessary.

The Communication Logic links up the MPC and PNs. The ultimate goal is to

provide an alternative channel for handshaking signals that speeds up message
V-

CH.4 THE DESIGN OF SMS p.61

拿 Sh a r e d b u s (T o s l a v e s)

B u s S h a r e d I oonu I

I n t e r f a c e M e m o r y (i) | P � |

^ ^ ^

C o m m u n i c a t i o n ! M i C T 0 - I

Logic I p r o c e s s o r I

零SI a V e s

passing. Actually, it may be called a communication sub-bus. We must stress

that the communication logic is not mandatory because handshaking can be

done with software. However, the advantage of minimizing of global bus access

usually forces the designer to add this logic.

4.4 Communication protocols

The communication protocols discussed in this section are not for high level

message exchange between processes. Instead, they are designed for supporting

efficient message transfers at the processor level. According to the nature of

different message types, specific mechanisms are designed to handle them in the

most suitable way. Table 4.1 summarizes the mechanisms used. We shall

elaborate this table in the remainder of this section.

4.4.1 Short and long messages

From the basic principle of the MP and MPC approach, we found that messages

are stored in message queues before they reach their target processes.

Obviously, it is not feasible to put long messages into the queues because of the
V-

CH.4 THE DESIGN OF SMS p.62

Long messages Short messages

Point-to-point Normal D M A Shared-memory

Broadcast 1-to-N D M A Shared-memory

.….：..• .'•.'••：.... ''••'.:... •• • . . : . . .:.....? ‘.. •:.,...

Table 4.1 Mechanisms for message-passing.

memory size limitation. The time wasted in copying long messages may also be

very significant. But the most critical point is the hold up of the shared bus,

which is a potential bottle neck.

For the above reasons, the SendMessage primitive only puts the pointer to the

message body into the message header, which is actually enqueued onto the

IMQs, if it finds the message is a long one. The receiving process is responsible

for reading the message body from the local memory of the sending process,

using the pointer given in the message header it has received. Note that this

mechanism is feasible only on distributed shared memory systems such as SM3.

On the contrary, using this indirection method for short messages will be quite

inefficient because two memory accesses are required. Thus, the SendMessage

primitive will embed the message body into the message header if it finds that

the message is short enough. Upon arrival, the receiving process just extract the

message body from the message header. This mechanism does not require all

the memory be globally accessible. Only the mailboxes must be shared.

4.4.2 Point-to-point messages

Recall that a point-to-point message has exactly one sending and one receiving

processes defined uniquely. Short point-to-point messages are efficiently handled

by the simple shared memory access mechanism described in last section.

Long messages require a lot of consecutive off-board memory accesses initiated

by the receiving process, in order to bring the message body from the sending

processor to the local memory of the receiving processor. Such a job fits a

CH.4 THE DESIGN OF SMS p.63

DMAC (Direct Memory Access Controller) perfectly. Figure 4.10 illustrates the

whole picture.

S e n d e r M e s s a g e - p a s s e r R e c e i v e r

� DMA t r a n s f e r / J
M e s s a g e / / k M e s s a g e

y B o d y [~ " " B o d y \

Figure 4.10 DMA transfer for point-4o-point messages.

After the receiving process has read in the header, it will initialize the D M A C

on that PN based on the information provided in the header. The header

supplies the pointer to the starting address and the message length. The

argument passed to ReceiveMessage supplies the buffer address. The DMAC

can use these 3 parameters to perform a memory-to-memory transfer. Let us

look at the advantages of such an indirection method:

a. The bus is not used extensively until the receiver really wants the data.

For early termination, bus cycles are not wasted.

b. The receive buffer organization is not complicated. On each PN, one

buffer queue for each possible receiver is enough. Note that these buffer

queues are inevitable if asynchronous communication is supported.

c. When a sender suddenly issues many long messages, the MPC will not

suffer from buffer shortage and subsequently cause performance

degradation. It is the sender who suffers. This is more reasonable.

d. The system bus holdup due to long messages is relieved because each

I 香 港 中 文 大 學 a i 肯 你 藏 " F "

CH.4 THE DESIGN OF SM3 p.64

message go through the bus just once. It can be generalized for broadcast

messages. We will see that the savings is great,

e. Sender and receiver are decoupled effectively.

On the contrary, there are some draw backs:

a. The receiving PNs have to read the sender's memory, this inevitably

affects the operation of the sender.

b. If many receivers want to read the long messages sent by a PN

simultaneously, contention arises. For the case that the message body is

embedded into the header, there is no contention because the

transmissions are serialized by the sender or the MPC. Moreover, the

average wait time of receivers is roughly half of the total time for all

messages. We assumed that messages are fixed in length. On the

contrary, the average wait time is nearly the whole transmission period

for all messages when using the indirection method - if each receiver

accesses the sender's memory in an interleaved way due to contention

and random bus arbitration.

c. When the receiver needs data immediately, delay due to the DMA is

undesirable, although the DMA is fast. But actually, any transfer of data

to the receiver's memory affects the receiver so it is not an extra cost.

One question with this DMA method is how to find suitable program code for 一

the CPU to execute while the DMAC is in operation. Although the CPU and

DMAC can operate in parallel with the DMAC programmed in the cycle

stealing mode, sharing of the local bus between the two devices limited the

concurrency. Moreover, if the message body is not yet available, user code may

be unable to proceed and thus it becomes pointless to use the cycle stealing

mode. Hence, the DMAC is programmed in burst mode.

4.4.3 1-to-N DMA for broadcast messages

V -

CH.4 THE DESIGN OF SMS p.65

Although broadcast messages can be treated in the same way as a series of

point-to-point messages, we found that it is very inefficient even with the D M A

method described in section 4.4.2. The message has to go through the shared bus

(N + 1) times if the message is bufferred in the MPC, and N times if the D M A

method is used, where N is the number of receivers. Such long hold-ups of the

shared bus will degrade the system performance. Obviously, this is an inherent

property of the MP and MPC approach.

Fortunately, the author found that the problem can be solved satisfactory on

SM3-like architectures. The necessary condition is the presence of the MPC, a

shared bus, dual-mode DMACs, and some clever hardware logic. We shall

explain the details below.

4.4.3.1 Introducing 1-to-N DMA

Although the bus topology favors broadcasting, it is not directly available for use

at the high level programming language level. Moreover, there is a fundamental

difference between the kind of broadcasting that a "bare bus" (with no additional

software or hardware) supports and the kind of message broadcasting me are

looking for. A "bare bus" only provides "blind" broadcast. That is, all PNs can

listen to the broadcast and they determine whether to get the data or not. But

we should allow the sending process to choose potential receivers too. Other

PNs not chosen should not listen to the message. Another difficulty is that the

PNs are running asynchronously so that a chosen PN may not be prepared to

receive a broadcast because it is lagging behind the sending process. These pro-

blems made the "bare bus" unusable for broadcasting.

The basic idea of 1-to-N DMA is quite simple. It can be viewed as a

conventional DMA that has multiple destinations. When the sending process

broadcasts a message, the selected PNs are coerced to perform the D M A

operation in parallel.

CH.4 THE DESIGN OF SMS p.66

Before we look at the 1-to-N D M A mechanism, the two modes of a typical

DMAC should be understood first. Some modern DMACs have more than one

channels, Each channel of the DMAC can be independently programmed into

explicit mode or implicit mode. The implicit mode, also called memory-device

mode, means that the "peripheral device" is already available on the bus and no

addressing is needed. Thus, the DMAC only issues one address for the memory.

Conversely, the explicit mode, also called memory-memory mode, means the

"peripheral device" must be addressed explicitly, so the DMAC has to issue 2

addresses in 2 bus cycles. Figure 4.11 shows the two modes of a typical DMAC.

4.4.3.2 1-to-N DMA operation

Every PN has a buffer area for communication. Without loss of generality,

message length is limited to L bytes (a block) and the buffer area can hold N

messages. The buffer area is treated as a FIFO (First In First Out) circular

queue.

When a message is to be broadcasted, the sender first mails the header to the

MPC as before. Then with the assistance from the MPC, a 1-to-N D M A is

carried out and the message is transferred to all potential receiving PNs. The

message is stored into the circular buffer of each receiver (recall that for a long

point-to-point message, a DMA brings the message to a target location explicitly

specified by the receiving process).

When a receiving PN really wants to accept a message, it can read the message

header from the MPC, which will inform it that the message body is already in

its message buffer. In other words, messages can be received m advance. Figure

4.12 highlights the roles of the 1-to-N D M A and the MPC. This figure is similar

to figure 4.10 so explanation is not necessary. Note the event sequence is

different this time.

The 1-to-N D M A operation via the global bus is feasible only if all the receivers
V-

CH.4 THE DESIGN OF SM3 p.67

I s o

QC\ (D I
/ .1 - Sx f il ^ ^ I

. m \ < \ m * O �
S o : ^ ^ ^ S o 謹

^ < ® : �
. [p - S i - o �� I I
\ CO \ K O K O t �

� « « — �
/ ,1 ̂ f ,1 ^ •一 I

� . S . I
画 \ > ^ o > ^ o 一 圏
I \ <i> ® a o. I

c L i l i l J ^

> ; z “ I
; 的 产 I : ® r^^^ I
\ O � _ • o �
� (Il • � : � �
� O ® : i i o I

^ \ 二 ： o c « - « - a
i i ^ z - ^ i � !

g Q s } O - w • ^ c �
a \ + — w ^ T? « C w _
I : o , o - •一 1： ^ . • ! r - 麗
I 、 S o s I o � S � S. - o I
i 、 21�= - < ^ - - - i
n \ / � • • 一 e S • O > « ta H
� \ £1. - a cc < m a I
麗 、 ® E •• 圓
I \ K « . o O bc . . o a: �
画 v \ \ \ 一 一 O < UJ O -J I - O H � � 、 、 、 、 ^ lu s <r < o o o a
I I g |j : I " I

Figure 4.11 The two modes of a DMAC.

can pick up the data driven onto the bus by the sender in an orderly manner.

The key is that every party in the deal has the illusion that k is communicating

with a single partner. From the sender's point of view, the message is

transferred to a virtual device connected to the global bus. From the receiver's

point of view, a virtual device on the global bus supplies data to it. With little

modification to the conventional hardware configuration for DMA, a mechanism

is designed to overlap these two scenes and to ensure that every critical event

is synchronized.

V -

CH.4 THE DESIGN OF SMS p.68

Sender / " " N X ^ x M e s s a g 0 - passer

/ Header Header

^y^ Me s s age J /
/ I bô dy I 4 (g)/ Recel ve (J) Recalva

~ / ^ H e a d e r \ _ _ / ^ Header \

f I Y//h I J I I � \
V Me s sage • J I Mess ag e /

R e c e i v e r � : b 。 b o d y : |
Recei V Qr \ ^ ^ ^

Figure 4.12 Roles of the 1-to-N DMA and the MPC.

In principle, the DMAC of the sender simply puts a data word onto the shared

bus while all receivers grab the data as if it is performing a simple 1-to-l DMA.

So a 1-to-N DMA is the parallel collective result of (N + 1) normal DMAs.

After a word has been transferred via the global bus, the buffer addresses for

the sender's and the receiver's memories have to be incremented by the DMACs

automatically. In this case, the DMAC is operating in the device-memory mode.

Since most common DMACs have two or more channels, it is convenient to pro-

gram one channel into the memory-memory mode and one channel into the

device-memory mode.

By adapting common DMACs, only a little control logic has to be added on

each PN. This control logic coordinates the operation of the DMAC and the

memory, and synchronize the sender and the receivers. Its ultimate goal is to

create the illusion of a virtual device with which the sender and the receivers

communicate. Figure 4.13 is a scenario of the 1-to-N DMA process.

One necessary condition for performing the 1-to-N DMA is:

AU the potential receivers must be halted and forced to receive the broadcast

message before they can resume their works.

Since all parties are running asynchronously, a receiver chosen by the sender
V-

CH.4 THE DESIGN OF SM3 p.69

S* n d • r R� c �� v � r c • I v e r
I I In 1 1 I rs I I [I N

DMAC DMAC DMAC

/ V y \ o o o o 乂 \
——眷”“• ———"署— -.—— D D D Ml —̂ C M2 ^ C Mn ^ C

\ _ I I \ I i \ . "" ； I

\ ‘ I

^ G l o b a I B u s

Ai : But f • r a d d r • s s Control t i g n a I s
Mi: M* mo r y mo d u I • ^ Da t a / A d d r • s s
C: Control logic linos
DMAC: DMA controller

I D: Data word

Figure 4.13 A scenario of the 1-to-N DMA process.

may not be prepared for the message. As only one transmission across the

shared bus is allowed, all parties must participate in the 1-to-N D M A

simultaneously, no matter a receiver is ready or not.

In order to ensure the broadcast can be done without intervention of global bus

requests due to the other PNs, cycle stealing mode D M A is NOT used (similar

to the case of point-to-point messages). In case of receive buffer full or other

problems, the PIDs of the questionable receivers are recorded and reported to

the sender later.

4.4.3.3 Merits and demerits of 1-to-N DMA

Table 4.2 contrasts the merits and demerits of the 1-to-N D M A mechanism. The

speed up of this mechanism depends partly on the number of receivers in a

broadcast, and partly on the message length. For a typical distributed global

memory system, about 10-16 PNs can be attached to the same bus depending

ont the granularity of the problem [Paker83]. So a ten-fold speed up is

achievable.

V

CH.4 THE DESIGN OF SM3 p.70

Advantages Disadvantages

Greatly speed up the broadcast. Additional communication logic
and synchronization signals
necessary.

The cost is low since conventional Additional receive buffers on each
DMACs, which are used for point- PN required,
to-point messages too, can carry
out a large part of the operations.

Completely transparent to the Hardware becomes more
application program. complicated.

Table 4.2 Merits and demerits of the 1-to-N DMA mechanism.

Although some PNs may refuse the broadcast message, it does not lead to a

waste of time because the message goes through the global bus just once,

independent of the number of receivers. The PN that ignores the message may

be slightly delayed due to the data transfer, but in general this rarely happens.

We implicitly assumed it is very unlikely that no one wants to receive the

message. Only in this case the 1-to-N D M A wil l be a waste of time. For the

receivers, it is a matter of bringing forward the required D M A operation.

Comparing with conventional broadcasting systems such as Ethernet [MetRo76],

our mechanism is much faster. The speed of such conventional systems is tightly

bounded by the bandwidth of the serial links. In contrast, most wide buses (32-

bits, say) can attain much higher transfer rate. The broadcasting power of our

— prototype system is essentially the same as that of a star topology. In general,

the star topology is more efficient for broadcasting compared with other

topologies such as the token-wing [IEEE83].

Another advantage of the 1-to-N D M A mechanism over its conventional

counterparts is the absence of message arrival interrupt for a non-receiver (who

is not a potential receiver recommended by the sender). This simplifies the

control logic and keeps the disturbance of a broadcast to the lowest level.

Unauthorized receivers cannot listen to the broadcast so security is enforced.

V

CH.4 THE DESIGN OF SMS p.71

4.5 Summary

As it is always difficult to separate the software and hardware aspects of a

computer system, I prefer to present an outline of our workstation architecture

before we start the discussion on the software programming model of SM3.

Then we explained the hardware design and the associated rationales. It is

followed by the presentation of the communication protocols of SMS. In

particular, a novel 1-to-N DMA mechanism suitable for SM3-like architectures

was introduced. Al l along our discussion in this chapter, I have tried my best to

present only the implementation independent aspects of the software and

hardware features of SMS. The details of a particular implementation of SMS,

and more specifically the MPC, will be presented in chapter 5.

CH.5 IMPLEMENTATION ISSUES OF SM3 p.72

CHAPTER 5

IMPLEMENTATION ISSUES OF SM3

5.1 The shared bus - VMEbus

5.1.1 Why VMEbus

A number of criterions have to be considered when choosing a shared bus for

a multiprocessor system. Some typical issues are:

-ease of interfacing

-components support

-compatibility

-speed and mode of operation (eg. synchronous or asynchronous)

-cost and availability

-multiprocessor support

-expansibility

In the current prototype SMS, we selected the VMEbus as the backbone of the

workstation. The VMEbus specification was firstly developed by Motorola,

Mostek, and Signetics/Philips. This VMEbus project is described in [Fisch84�.

It is an asynchronous bus having 3 available configurations: 8-, 16-, and 32-bits.

The highest bandwidth is 24 Mbytes/sec. It has a master/slave asynchronous

non-multiplexed data transfer structure so interfacing is easy and control is

simple. Since its introduction in 1981，the bus have been accepted by more than

100 manufacturers worldwide so compatibility and components support are

excellent. It has become an IEEE (P1014) and lEC standard.

The signals of the VMEbus are simple and well defined. The VMEbus is

suitable for building multiprocessor systems. In fact, the VMSbus which supports

serial communication is defined as a sub-bus of the VMEbus for multiprocessor
V

CH.5 IMPLEMENTATION ISSUES OF SM3 p.73

systems. For an introduction to the VMEbus and VMSbus please see [Motor84 .

If the VMEbus was not available, another good choice for building bus-based

multiprocessor systems is the MultiBus. It is a widely recognized bus, designed

to suit for multiprocessor systems. While the MC680X0 family uses VMEbus, the

i80X86 family employs MultiBus.

5.1.2 Customizing the VMEbus

In the VMEbus, there are 64 user-defined pins so it is easy to customize the bus

for special functionalities. It is a common practice to customize industrial

standard buses for special applications. Development time and cost can be cut

down while compatibility is partially preserved. An example in [Bybee89] shows

how the VMEbus can be adapted for a bus-based multiprocessor graphics system

using these pins. To support message-passing by hardware and the MPC, SM3

also uses the 64-user defined pins so we shall have a closer look at it.

Physically, the VMEbus consists of two 96-pin connectors like the one shown in

figure 5.1. They are called PI and P2 respectively. Al l the pins of PI are defined,

while row a and c of P2 are not defined. Since there are 32 pins in a row, totally

there are 64 undefined pins. SM3 uses them for conveying handshaking signals.

� • m m m m m m c m m n i ^

� U I c

12345678901234567890123456789012
1 2 3

Figure 5.1 A 3-row, 96-pin VMEbus connector.

V

CH.5 IMPLEMENTATION ISSUES OF SM3 p.74

5.2 The host machine

Obviously, the choice of a suitable host machine for SMS is closely connected

to the choice of the system bus. For convenience, the host machine must be

plug-compatible with the VMEbus. The choice of the microprocessor on the host

machine partially determines the microprocessor type for the PNs because they

must belong to the same family for object code compatibleness. Other important

issues include: availability of a mature operating system, peripheral devices

support, high-level language development environment, and diagnostic tools.

There are many VME-modules that are well designed Single Board Computers

(SBC). A wide spectrum of peripheral devices is available for these VME-based

computers. We selected a relatively new product from Motorola called

MVME147SA-1 [Motor89]. A short profile of the technical aspects of this SBC

is shown in figure 5.2. The presence of the SCSI implies that a great variety of

peripheral devices, such as floppy disk drivers, fixed disk drivers, and tape

drivers are immediately accessible. The CPU from the MC68000 family offers

us many choices for the processors on the PNs and the MPC to satisfies our

requirement for easy object code compatibility. A key feature is the VMEbus

controller capability. Slaves can be plugged onto the bus directly without extra

interface adapter.

-MC68030 CPU with floating processor
-32-bit data and address buses
- 8 Mbytes of sharable dynamic memory
- V M E controller feature
-SCSI controller
- 2 Kbytes static RAM
- 2 5 Mhz clock rate
-Real-time clock and watch dog timer
-Serial/centronics port
-build-in DMAC

Figure 5.2 A short profile of MVME147SA-1.

CH.5 IMPLEMENTATION ISSUES OF SM3 p.75

As important as the high performance of this host machine, a well designed

debugging package called 147BUG [Motor88b] is available in the non-volatile

memory. This is a good tool for system diagnosis.

The current setting of the host machine also includes a 80 Mbytes fixed disk and

a dump terminal. Figure 5.3 shows current SMS configuration.

^^ 星、[；̂^̂劝
' ^ • • • i h h J I Dump y u m m m a J i

W ^ t e r m i n a l ^ ^ H a r d d i s k

冬/ �

_ 專 暴 暴

P N 2 I ^ P N ^ J ����
Figure 5.3 The current configuration of SMS.

i
I

5.3 Slave processor nodes ‘

i r

While the host machine is a commercial product, the PNs are specifically

designed for SM3. Slave PNs in SM3 are basically SBCs that are attached to the

VMEbus. There is no peripheral devices allocated for the slave PNs because

they are designed to be pure computation machines. We shall examine each part

of a PN in detail. A simplified view of a PN is shown in figure 5.4. It can be

compared with the general structure of a PN shown in figure 4.8.

5.3.1 Overview of a PN

Physically, a PN module is a double-height Euro-card (VMEbus standard) pro-

CH.5 IMPLEMENTATION ISSUES OF SM3 p.76

V M E b u s 拿 (T o o t h e r s l a v e s / M P C)

~~~bTT t 1 2 8 K s t a t i c ! 

I n t e r f a c e ! M e m o r y I 

T T 糞 _ 
B r o a d c a s t i n g I M C 6 8 0 3 0 I M C 6 8 4 4 2 | 

C o n t r o l I e r | C P U I D M A C [ 

灰MPC 
Figure 5.4 A simplified view of a PN. 

cessor board with an attached extension board (Appendix C). The major 

components on the board is shown in figure 5.5. The major components wil l be 

described in the following sub-sections while minor components are mentioned 

below. Currently, the chip count of a PN is roughly 70. The Board Diagram and 

Schematic Circuit Diagrams can be found in Appendix A and B respectively. 

Memory 

There are 128 Kbytes of Static Random Access Memory (SRAM), expansible 

to 1 Mbytes. The use of this kind of memory is for easier circuit design and 

faster response time. The basic PN memory consists of four 32K x 8-bit 

MCM60256P10 SRAM chips. It supports byte-, word-, and longword- accesses. 

The address map is shown in Appendix E. 

Local System Clock 

A local oscillation circuity delivers a 30 MHz 50% duty cycle clock signals as the 

time base for every PN. This signal is bufferred and divided. The Programmable 

Array Logic (PAL) chips where the finite-state machines reside are driven by 

the 30 MHz clock and the CPU is running on the 15 MHz clock. This signal is 

further divided to 7.5 MHz for the DMAC, which uses a lower clock rate then 
V 



f 
-

�
I

•
•

•
^ 

I 
S

t 
a

t 
i 

c 
I

 
� 

� 
C

o 
m

m
. 

m
 

V
M

E
b

u
s 

I 
A

d
d

r
e

s
s 

L
o

c
a

l 
C

lo
c

k 
2 

M
em

or
y 

• 
L

o
g

ic
 

ED
 

I 
n

t e
r 

f 
ac

e 
I 

n
…

B
u

s 
ci

rc
ui

t 
«
 

^ 
(

1
2

8 
K

b
y 

t 
e

)
| 

D
e

c
o

d
e

r 
{ 

15
 

M
HZ

) 
>

 
n 

J
 

^-
^m

m
^^

m
am

m
^J

i 
A

rb
it

e
r 

R
e

g
. 

d
 

s _
•
革
"
评

Y
Y

V
 i 

L
O

C
A

L 
D

A
T

A 
B

U
S

 
I

—
^ 

i 
、
备

 
_ 
i 

•
 

•
_

 
•

�
—

隱 
g
 

I 
L

O
C

A
L 

A
D

D
R

E
S

S 
B

U
S

 
w

 

®
 

^
H

l
t

M
i

l
l

B
l

i
i

l
l

l 
L 

Q
C

A
L 

C
O

N
T

R
O

L 
B

U
S

 
j

S
M

M
M

W
l

l
J

i
M

H
^ 

i T
fTT

 t 
t 

nr
nr

 
� 

M
ic

ro
- 

B
T

O
 

n
r 

a
c
w
 

D
M

A
 

R
es

et
 

9 
n

r 
K

 
C

on
t 

ro
ll

e
r 

？
M
二

二
)

 
G

e
n

e
r

a
to

r 
(M

C
6

8
4

4
2

) 
�

 
I 

I 
^ 

* 
^

—
—

I 
^ 

B
T

O
: 

B
u

s
 T

i 
hn

e 
O

u
t 

f—
 

” 
R

e
s

e
t 

D
T

A
C

K
: 

D
a 

T 
a 

A
C

K
n

o
w

l 
e

d
g

e 
s

w
it

c
h 

"O
 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.78 

the CPU. Figure 5.6 summarizes the clock system. 

OSC. +2 ——~— —— 

30 MHz 15 MHz 7.5 MHz 
> PALS > CPU L >DMAC 

Figure 5.6 An overview of the clock generator. 

Reset 

The reset circuit and switch provides local reset to make diagnosis and control 

easier. The local reset circuit is responsible for system power up reset and 

initialization. 

Bus time out (BTO) counter 

Since bus accesses are asynchronous, a separate watch-dog timer is required to 

count the time-out period. When the time-out period of a bus access expires, no 

matter that is a local or an off-board one, a Bus Error ( /BERR) is generated 

to signal this event to the initiator. (From now on, active-low signals wi l l be 

prefixed by，/，or suffixed by，*，•） 

DTACK generation 

In the MC68000 family, bus accesses must be acknowledged due to the 

asynchronous design. A DaTa ACKnowledgemet ( /DTACK) signal serves this 

purpose. It should be activated when the addressed device, most likely the 

memory, has finished (or should have finished) the operation. It is generated by 

a timing circuit similar to the BTO counter just described. 

Address decoder 

The decoder must look at both the incoming VMEbus address and the local 

address bus in order to generate Board Select (/BSEL), Remote Access, and 

other local enable ( /LOCAL) signals. The VMEbus address of a PN can be set 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.79 

by a DIP switch. The address spaces, which is specific to the case of using 

VME147SA-1, to be decoded is shown in Appendix D and E. The address 

format for 1-to-N DMA is show in table 5.1. For normal memory access, the last 

3 fields are merged to give a 20-bit field (1 Mbytes). 

Physical PID Buffer offset Tail pointer Byte offset 
(4-bit Dip switch) (6 bits) (4 bits) (10 bits) 

Table 5.1 Global address format for the PNs of SM3. 

Bus arbiter 

Around the local bus, there are three active requesters. The CPU and the 

DMAC are local requesters while the request from the VMEbus can be view as 

a remote one. Since the local bus is an extension of the CPU bus, the CPU is 

the primary bus arbiter while the external bus arbiter handles the requests from 

the DMAC and the VMEbus. Figure 5.7 shows the two-level arbitration pro-

cedure. Currently, VMEbus access is given higher priority but this can be easily 

reversed if necessary. 

DMAC 
Bus 

VMEbus Arbiter Arbiter 

CPU 

Figure 5.7 The two^level arbitration procedure. 

5.3.2 The MC68030 microprocessor 

Currently the MC68030 is adopted as the CPU. The MC68000 family micropro-

cessors are elegantly designed and have good performance. New members, such 

as MC68020 and MC68030, have special support for multiprocessing [Beims84'. 

A bus arbitration scheme is designed to allow several M68000 bus masters to 

share the same bus (in our case the DMAC and the CPU share the local bus), 



CH.5 IMPLEMENTATION ISSUES OF SMS p.80 

and 3 instructions that use interlocked bus cycles for inter-processor 

communication in a loosely-coupled system is available. Moreover, there are 5 

instructions that utilize the M68000 Family Coprocessor Interface to 

communicate with tightly coupled coprocessors. However, SMS does not benefit 

from these features directly. 

Another good reason for using the MC68000 family is that we can choose micro-

processors from a wide spectrum of processors. Code compatibility is virtually 

maintained from MC68000 to MC68040. This matches our goal described in 

chapter 4. 

Due to their popularity, the MC68020 and MC68030 are well documented. 

Informative books such as [Harma89, JaBaP88] are extremely helpful to the 

design work. The manufacturer also publishes supplementary information, for 

example, "The M68000 family reference" [Motor88a . “ 

A great number of projects employed processors from the M68000 family so we 

can gain valuable experience by studying these projects. The SUPRENUM pro-

ject described in chapter 2 is a good example. As briefed in [Pount88], a 

VMEbus-based system with 12 MC68030 boards having 4 Mbytes each is 

constructed for parallel operating system research. A multi-microprocessor 

system using M68000s for image processing and pattern recognition, which can 

be configured into SIMD or MIMD mode is introduced in [KuSiP82]. More 

examples can be found in [AthSi88'. 

Although the local bus is an extension of the CPU bus, buffers are required to 

isolate the CPU and DMAC when memory accesses from the VMEbus are 

serviced. 

5.3.3 The DMAC M68442 

Once the CPU is selected, there are not many choices for a DMAC (Direct 

V 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.81 

Memory Access Controller). For cost and availability reasons, we adopted 

MC68442. This is a Dual-channel DMAC (as the manufacturer called DDMA) . 

Detailed information can be found in [Motor88a]. As we described in section 

4.3.3，one channel can be programmed into the implicit mode for 1-to-N D M A 

while the other channel operates in the explicit mode for normal DMA. 

We must reiterate that the DMAC is optional if efficiency is unimportant. In 

SM3，memory-to-memory DMA that handles long, point-to-point messages can 

be replaced by simple shared-memory access without suffering from great 

performance drop. The effect of losing the 1-to-N DMA capability depends on 

the proportion of broadcast messages. 

Although the chosen DMAC is also in the same family as MC68030, some 

interface logic is necessary when it is used with MC68030 because this chip was 

designed for older members in the M68000 family. Obviously, the CPU and 

D M A C are operating in an exclusive manner so they can shared the same row 

of address gates. 

5.3.4 Registers 

There are 3 registers for each PN. They can be viewed as a part of the 

communication logic. Each register is 8-bit wide currently and can be expanded 

to 32 bits. The addresses of these registers are shown in Appendix E while the -

detailed layout is shown in Appendix F. A l l registers can be reached from a 

remote processor like a normal shared-memory location. 

PN Status Register (PNSR) 

A process running on a PN can monitor several hardware signals by accessing 

this read-only register. Signals such as /BFn (Buffer Full for the n-th PN) and 

/ V G R A N T (a local signal VMEbus GRANT) are localized PN signals. They are 

included in the PNSR for diagnostic purpose. Signal/MPCRDY (MPC ReaDY) 

can help to reduce shared bus and MPC usage by the method explained in 

'广 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.82 

section 3.3.2.2. Hand-shaking signals for carrying out the 1-to-N D M A efficiently 

are shown in table 5.2. 

Signal Meaning 

GPGL Global signal PCL for the DMAC 

/BROADCAST BRQADCASTing a long message 

/SYNGDMA SYNGhronization signal for 1-to-N D M A 

/BCST Broadcast STart 

Table 5.2 Hand-shaking signals in the PNSR. 

I 
PN Control Register (PNCR) 

I 

This write-only register allows the software to set values for physical signals. : 

/BCEND (Broadcast ENDed) is a system-wide signal while /VMESEL2 (VME i 

SELect, for keeping the VMEbus mastership) is a local signal. More signals can 

be added for diagnostic and monitoring purpose. 

f � 

Buffer Pointer Register (BPR) . 

BPR is a read-write register which is separated into two 4-bit nibbles. They are 、》 

the head and tail pointers to the 16-block circular message queue (will be � 

introduced later 
in this chapter) for 1-to-N DMA. Buffer full condition is n 

jl 
generated by comparing the two pointers using hardware logic. , 

I 
5.3.5 Shared-bus interface 

Apart from gating between the VMEbus and the local bus, this bus interface 

must be also responsible for VMEbus hand-shaking signals. For instance, the 

VMEbus request acknowledgement originated from the bus controller pro-

pagates in a daisy chain. The bus interface must participate in this operation. 

The VME signals that must be asserted by a PN when it becomes a VME-

master or -slave are also generated by the state machines in this interface. 

Besides, the bus interface is responsible for bus conversion work. The local bus 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.83 

is not completely compatible with the VMEbus because it is designed for older 

members in the M68000 family. Data conversion is necessary in order to change 

the signals of the local bus, which is an extension of the CPU (MC68030 is 

relatively new member in the family) bus, into VME signals. 

5.3.6 Communication logic 

Actually this part is active only when the PN is performing 1-to-N D M A for 

broadcasting messages. It cooperates with the hardware logic of the MPC via the 

communication sub-bus to create the illusion of a memory-device DMA. The 

majority of this logic is implemented in PAL. There are roughly two parts, one 

for broadcasting and one for receiving. The functionality of this logic is best 

introduced in section 5.5 where the implementation of the communication pro-

tocols are presented. 

5.4 The MPC 

Although the MPC is more sophisticated than a PN concerning the functional 

complexity, the hardware architecture of the MPC is even simpler then a PN. 

Since we have made a trade-off between speed and flexibility, many functions 

that can be implement by custom hardware logic are reserved for the software. 

It is reasonable for such a prototype system. Figure 5.8 depicts the MPC 

architecture using functional blocks. This figure should be compared with the PN 

architecture shown in figure 5.4. 

5.4.1 Overview of the MPC 

The MPC module is also a double-height Euro-card circuit board with an ex-

tension board. Its physical size and floor plan can be found in Appendix C. 

Circuit diagram of the MPC can be found in Appendix B. Currently, the chip 

count of the MPC is roughly 60. The major functional blocks of the MPC 

architecture is shown in figure 5.9. This figure should be compared with figure 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.84 

V M E b u s ( T o s l a v e P N s a n d h o s t m a c h i n e ) 

bTs I 1 2 8 K S t a t i c | 

I n t e r f a c e ! M e m o r y I 

� � 
# . # ‘ 

B r o a d c a s t i n g I M C 6 8 0 3 0 | 
C o n t r o l l e r f o r | I 

I M P C I C P U I 

^ " " " ^ ^ P T T a ^ P N s 

Figure 5.8 A simplified view of the MPC architecture. 

5.5 which is for a PN. . 

Note that a DMA controller is not necessary for the MPC because it wil l not 

initiate message transfers. The VMEbus Interface, Static Memory, Micropro-

cessor, BTO Counter, DTACK Generator, and Reset Circuit are identical to and 

that of a PN. For uniformity and further expansion, the Local Bus Arbiter for 

a PN is used but with the input request line from the DMAC disabled. The 

Address Decoder is modified because the MPC has a slightly different register 

file definition. This will be discussed in the next sub-section. The address areas 

to be decoded can be found in Appendix D and E. 

5.4.2 Registers 

There are 4 special purpose registers on the MPC. They are allocated to nearly 

the same area as their counterparts on slave PNs. Their layout is shown in 

Appendix F. These registers are closely related to the broadcasting logic. They 

can be reached from the VMEbus like shared-memory. 

MPC Status Register (MPCSR) 



tV
M

E
b

u
s 

SI
 a

ve
 

PN
s 

~ 
^ 1 

s
t

a
t

i
c 

~
, 

C
o 

m
m

. 
�

 

V
M

E
b

u
s 

A
d

d
re

ss
 

L
o

ca
l 

ci
 o

ck
 

g 
In

te
r

fa
c

e 
D

ec
od

er
 

BU
S 

ci
rc

uM
 

L
o

g
ic

 
m

 
(1

2 
8 

K
b

y
te

) 
D

e
c

o
d

e
r 

( 
15

 
m

h
z)

 
h 

A
rb

it
e

r 
R

eg
 . 

q 

I 
,t

t|
 W

T
T

 
t 

i 
� 

^
^

^
M

j
^

P
J

B
^ 

L 
O

C
A

L 
D

A
T

A 
B

U
S 

J
B

H
^

j
l

l
i

l
U

p
i

p
K 

Z 

I 
0

£
A 

L 
A 

D
T 

R
 E

 S
 S

 
B 

U
! 

§ 
i 

^
B

^
j

w
d

l
m

f 
J

T
^

a
l 

^
n

t
r

o
l
~

B
U

S
 

h
h

S
—

i
t

k
k
 

s 
iil

 
t 

i 
r 

M
i 

c 
r 

0 
- 

B
T

O
 

D
T

A
C

K 
R

e
s

e
t 

p
r

o
c

e
s

s
o

r 
C

o
u

n
t 

e
r 

G
e

n
e

ra
to

r 
C

i 
r 

C
 U

 i 
t 

(M
C

6 
8 

0 
3 

0
) 

G
e

n
e

r 
a

t 
o

r 

I 
—

—
• 

^
 

B
T

O
: 

B
u

s 
T

i 
m

e 
� 

O
u 

t 
r

—
~

•
—

—
 

R
es

et
 

D
T

A
C

K
: 

D
a

T
a 

A
C

K
n

o
w

l 
e

d
g

e 
S

w
it

c
h 

。
 

—
~

—
 

0
0 

—
 

—
 

cn
 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.86 

This read-only register corresponds to the PNSR of a PN. /BCEND (Broadcast 

ENDed) is asserted by the PNs to indicate the completion of a broadcast. 

GPCL，/BROADCAST, SYNCDMA, /BCST, and /VGRANT are the same 

signals found in the PNSR of a PN. 

MPC Control Register (MPCCR) 

Similar to the PNCR, control signals are injected into the communication sub-

bus through this write-only register by the MPC. /BROADCAST (1-to-N D M A 

for BROADCASTing in progress) and /MPCRDY (signal a blocked process that 

the MPC is ReaDY for competition) are for hand-shaking and efficiency 

enhancing respectively. 

MPC Buffer Full Register (MPCBFR) 

This read-only register reflects the 1-to-N DMA circular buffer queue status of 

all the PNs. The status is represented by the signals /BFn (Buffer Full of PN 

number n). Each bit is for one PN so there are at most 8 PNs. 

Halt Register (HALTR) 

Each bit of this write-only register is connected to the HALT pin circuity of a 

PN. The control process, either the MPC or the root process, may use this 

register to temporary stop any processor selectively. Up to 8 PNs, including the 

MPC can be handled. The current prototype system does not provide special 

protection for Writing to this and other control registers. However, protection 

from unauthorized writes by user processes is desirable for a later version. 

5.4.3 Communication logic 

We will learn from this section that the MPC needs very little control logic for 

supporting 1-to-N DMA. Although the control logic is easy to implement in 

hardware, we still deliberately keep it in the software for flexib^ty and easy 

modification in this prototype system, although full speed cannot be achieved. 

By software control, we mean program-controlled logic using the control 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.87 

registers. Thus, the communication logic of the MPC is only a register file plus 

some interface circuities. 

5.5 Protocol implementation 

The implementation strategy of communication protocols discussed in section 

4.4 depends strongly on the underlying architecture. Before the protocols are 

described in detail, a simplified model of SM3 is included in figure 5.10 which 

also summarizes the design philosophy. Note the difference the PNs, the MPC 

and the host machine. 

The mechanisms that handle different sort of messages are shown in table 4.1. 

Evidently short messages are easier to handle because they do not occupy much 

buffer space and do not cause series system bus hold up. Only long messages 

need special treatment. The following discussion will emphasis on long messages. 

5.5.1 Point-to-point messages 

Recall that whenever a process wants to send or receive a message, the 

SendMessage or the ReceiveMessage primitive is invoked. The sequence of 

events had been described in chapter 4. It is suitable to summarize the function 

of the two primitives at this moment. Table 5.3 outlines the operations of the 

two primitives. 

Communication primitives are written in the form of device drivers for the com-

munication channel. Apart from SendMessage and ReceiveMessage, other desir-

able primitives may be included. For instance, IMQ status enquiry and flushing. 

When ReceiveMessage finds that an incoming message is a long point-to-point 

one, the DMAC channel working in explicit mode is initialized with the source 

address, destination address, and message length. The DMAC will interrupt the 

CPU upon completion. Then the application program can read the message 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.88 

I A 
QL 

- X rr ^ ^ 
W I I X 

- 0 a 
— y 

• • 

o T ^ ~ 
Q. - h 1 X : � � � � 
IS I 

T - I ] O 2 o ® © — o _ 
O) <d _ o � o 

J . I •• •、.：.•..•. . . . . . . . . • — 1 — 1 — 
'' j; a> 1—1 I—I _ ^ c Q- o o c o 

2 ^ ~ � •: � 
a. J _ r n o 3 2 

cvj o ffl Q 
> 奶 • • � 

3 O X Q 
LU 

> « 
o | 00 

s I " J e t E ^ ^ • - ‘ 
n JL, r i -o ® 

N s - o _ Y <0 "O </> o 
<D o S 
U CO o 00 >, 
t - O 

〇 Q. O O o o E 
L O 
O Q- S 

O 一 

2 I I 
〇 I 2 Q. a. 2 

V 
Figure 5.10 Simplified view of the SM3 prototype system. 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.89 

Sender Receiver 

� Invoke the SendMessage Call the ReceiveMessage 
primitive. primitive. 

2. I f an acknowledgement is not I f a new message is available, 
required, the primitive returns, read the message header and the 

primitive returns. 
3. Wait for the acknowledgement I f this is a non-blocking receive, 

from the MPC. primitive returns. 

4. Primitive returns. Wait until a new message arrives. 

5. Read the message header and 
the primitive returns. 

Table 5.3 Summary of the primitives SendMessage and ReceiveMessage. 

from the local memory of the PN. The whole protocol and its direct 

implementation are simple comparing with that of broadcast messages. 

When this message system is actually implemented for an application, a hidden 

problem may show up. When the PNs in the system have performed a certain 

amount of computation, they may ask for more data to process or exchange 

results at roughly the same time due to the even distribution of tasks. Exactly 

one of the PNs will win and the communication requests will henceforth be 

serialized. The PNs will be running at shifted computation phrases. I f 

communication cost is low compared with computing delay, there will be no 

serious contention. — 

If the first PN comes round for more message before other slaves have finished 

their tasks, that implies the task distribution strategy is not suitable. Appendix 

I discusses an experimental way to judge whether the computation overhead is 

too heavy for a particular task distribution plan. 

5.5.2 Broadcast messages 

Recall that long broadcast messages are handled by 1-to-N DMA. The protocol 
V 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.90 

for this kind of message transfers must be designed with great care because 

performance will suffer if there are many redundant operations as in the 

conventional approach. Architectural support and special software are both 

critical for the success of this protocol. Let us start with the special hardware 

required. 

5.5.2.1 Circular buffer queue 

In order to support 1-to-N DMA, every PN has to buffer the broadcast message 

itself. Hence, there is a 16-block circular queue on every PN for buffering 

messages as shown in figure 5.11. Two 4-bit pointers in a hardware registers 

point to the head and tail of the FIFO queue respectively. These two pointers 

are NEQ-ed (Not EQual) to give the signal /BFn (Buffer Full for the n-th pro-

cessor). This signal tells the MPC that a slave processor is ready for accepting 

a broadcast message. The block size is arbitrary chosen to be 1 Kbytes, which 

is also the choice of some researchers [FinHe88]. The buffer full and empty 

conditions shown in the figure are designed to favor the detection of buffer full. 

Note that only 15 out of 16 buffer blocks are usable with this convention. 

When a 1-to-N DMA transfer is initiated, the message will be place at the empty 

slot indicated by the tail pointer. After the transfer, the communication kernel 

must update the tail pointer. We will see that this is done in an Interrupt Service 

—Routine (ISR). Later, when the user process calls the ReceiveMessage primitive, 

the head pointer is read and the oldest message is captured. The head pointer 

is advanced subsequently. A subtle point that I must clarify is that there is no 

lost update although the ReceiveMessage primitive and the ISR may access the 

register in an inter-locked way. It is simply because they are updating separate 

parts of the register (as just described) without corrupting the other part (use a 

bit-mask to select the active region for updating). 

5.5.2.2 Participating entities 

V-



CH.5 IMPLEMENTATION ISSUES OF SM3 p.91 

“ 4 \ x y x 
Buffer f u l l : \ J J y ^ 

^ . , ^ 4 乂 ̂ ^ B U F F E R - F U L L Head - Tai I w 
Buffer empty: j a l I Head I 

NEXT( Head) -Tai I 
Bi t 0 

Enqueue a 1 6 BI 0 C k s ^ ^ 

b i o c T \ c i r c u l a r 
b u f e r Dequeue a 

\ B6 \ / BI / block 

Figure 5.11 Circular buffer for 1-to-N DMA. 

To delineate the scope of our future discussion, a view of the hardware entities 

and signals participating in the 1-to-N D M A is presented in figure 5.12. This 

figure can be viewed as a static summary of the protocol. For simplicity, the 

MPC and other possible receivers have been omitted. Interestingly, the MPC 

takes on a minor role in this protocol and it is not involved in the actual data 

transfer stage. The DMACs are active components so they are distinguished by 

circles. 

5.5.2.3 Protocol details 

The SendMessage primitive does not return to the calling process even if the 

non-blocking option was active once the broadcast message is longer than a 

predefined limit. It must cooperate with the MPC and other PNs to finish the 

transfer. 

The protocol can be divided into 3 phrases as shown in figure 5.13. Bold broken 

lines separate different nodes attached to the VME bus. Normal broken lines 
V 



CH.5 IMPLEMENTATION ISSUES OF SMS p.92 

Sender Receiver 

Mem. D O . 1 5 _ _ D O . 15 • Mem. 

I ^ i 
。 DDMA � DDMA S 

Ht 
5 . • QPCL I � . . . g 
< o i c J / o O g d < 

� � I gTSf • bcst* ^ ^ P BCST* 2 
Comm. ~ ^ Comm. 

^ l o g i c ^ ^ ^ l o g i c 

Figure 5.12 Entities and signals involved in a 1-to-N DMA. 

differentiate discrete components on a node. Arrows manifest the precedence 

of events. The following three sub-sections are detailed descriptions of figure 

5.13. The control flow between the phases is shown in figure 5.14. 

Prologue phase Prologue 

At the beginning, the sender notifies j 

the MPC of a broadcast request. Then V — 

the sending PN, under the control of T r a n s f e r <—. more 
1 d a t a 

the SendMessage primitive, programs 
the implicit mode channel of the V no more data 
D M A C into the sender mode E p i l o g u e 

(Initially, this channel is set to receiver | r e t u r n 
V 

mode). For the sender, the transfer is 
.• .. .... • • ......... ... .. ........••：：：•：：:.,:.... •.•••• • • ,.. 

from the memory to a，device，. After 
Figure 5.14 1-to-N protocol control flow. 

gaining the mastership of the VME 

bus by activating the /VMESEL2 
V 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.93 

1 - t o - N DMA P r o t o c o l 

MPC Recel vers 

Prol ogu� pr octdur » 

} f t > UPO 

> I I • •ff 

I t . OOMA 應》 »«a4«r 
Fl “ t l I PH[ I 1 tu t t 

I 1 Mt %%4%fl I 1 %%«-t 
» 參 有 爾 if lt^r^hl， *t VUIk«« ‘ 

I t I A«*«r t • I � » l | • I 

DDMA M.mory Com. Logic / 
^ DDMA Utmor y Com. Logic 

%%»REQ [、“Bccjuu“ 
xxtAcxĵ r̂r . 一 

\ � ― 
tYNCDMA •‘ t I 

Dtt � tftnsf^r p r 0 c # d u r• � > ^ 
i f tmeoMA-i, M 

^ t 9 —- , 

^ ^ ^ h L - , 
1 : � u n � … — I — ‘ ' I 

“••" • “• 一 ̂  «YWCOM** t I 
| t«. 1 %%• - • • 

• r«f f I» i pr. 

|dB. 1 •【‘ YMf I: ̂ S � ^ 
‘ — � • I >iiYxct»irA«rn 

I iiu ot̂  yR •〜_ 
^^^ lYMCOMl-l I 

^ ^ ^ i r “ ‘ 
I I 1%% 

^ 11 lYMCOMA*]̂  

o o 
o 0 

� proc»dur> 

A«4»r t • " Asi f f I • 

� ,•""”， EZJHHEHI} ' ^—^cu • • , • , " " “ 

vutki. I J , " " " I ^ 
‘ ’ « • • • , “ … “ PM* « I • … " • … L 

I … * I t k * r M f . Mp4%t • I P ! J r t i t I n« 

A.. • _• [Wjj M w f t I 

• H ^ r d � � logic I nvot V td I n t h I t •I •p 

Figure 5.13 Detailed 1-to-N DMA protocol example. 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.94 

signal in the PNCR, it waits for the signal /BROADCAST from the MPC. The 

role of the MPC in this protocol is like a traffic-light. 

Upon acceptance of the broadcast r e q u e s t , � receivers except those being 

masked (sender's choice) and/or lacking buffer are halted by the MPC. Figure 

5.15 shows the detail. Then, the MPC asserts /BROADCAST to instruct the 

sender to proceed. 

After the sender has received /BROADCAST, it asserts /BCST to indicate that 

it has finished the preparation work and the broadcasting can commence. The 

sender and all receivers subsequently request the service of their DMACs 

immediately. The assertion of SYNCDMA by M receivers signifies the 

completion of this stage and tells the sender to go ahead. 

/HALTPNn = /MASKn and /BTn, 
ie. processor n is halted if /MASKn is 1 

and BFn is 1* 

Figure 5.15 Halting of active receivers in 1-to-N DMA. 

SYNCDMA is a tri-state signal. It is normally pulled HIGH at idle state. At any 

stage of the protocol, a PN sets it to LOW to indicate the PN is NOT ready, and 

to H IGH to show readiness. Only when all the receivers are ready will the send-

er find SYNCDMA to be HIGH. This signal is important for synchronization. 

Transfer phase 

Upon completion of the prologue phase, the sender and all receivers are ready 

to transfer data. The transfer phase is run repeatedly until all the data words 

have been transferred. The assertion of PCL/GPCL (refer to figure 4.11 and 

5.13) by the sender means the，device，is ready for the DMAC. 

During a transfer cycle each DMAC involved executes either a read (sender) or 

a write (receivers) cycle. Signals like /AS, AO-23 are asserted accordingly. Due 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.95 

to the design of the MC680X0 family of processors, the memory must return the 

acknowledgement signals /DSACKO and /DSACKl , which flag the success of 

the memory access and confirms the word length. As soon as the sender's 

memory can drive a word out and all the receivers have started their write cycles 

(indicated by the SYNCDMA line), the sender strobes the data word out to the 

VMEbus using /DS. This will complete the write cycles of the receivers. 

After the sender's DMAC has accepted the acknowledgement from its local 

memory after the read cycle, it asserts / D T C to mark the end of one transfer. 

The sender informs its DMAC the completion of a word transfer only after all 

the receivers have caught the data successfully (also flagged by the SYNCDMA 

line). After the DMAC of the sender has confirmed the success of the transfer 

by asserting /DTC, the sender's communication logic wil l assert GPCL again to 

trigger another data transfer cycle. 

The whole phase described is repeated until the counters of all the DMACs, 

both on the sending and the receiving nodes, have reached the target. Since the 

message length is fixed, all counters wil l reach zero at the same time and all 

nodes are expected to stop simultaneously. 

Epilogue phase 

The DMACs issue /DONE after the transmission of the last word in a block. 

This causes the sender's communication logic to release /BCST. Although all 

the DMACs wil l interrupt their microprocessors upon completion of the transfer, 

only the interrupt at the sender node wil l be serviced because all the receivers 

are still halted by the MPC. 

ISR of the sender informs the MPC the completion of the broadcast by issuing 

/BCEND. The MPC then deactivates /BROADCAST and frees all the receivers 

by releasing /HALTPN for each receiver. The sender's ISR then sets its D M A C 

back to the receiver mode and relinquishes the VMEbus. In the mean time, the 

MPC records the list of successful receivers in a bit-map for future use (retry). 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.104 

The receivers�ISRs are now executed because their processors have been 

released by the MPC. The arrival of a message is marked. The tail pointer in 

BPR (Buffer Pointer Register) is updated to prepare for the next message. 

Up to this point, the message body is available at the buffer of every potential 

receiver. When a receiver wants to get a message, the header will be read from 

the MPC. Then the receiver will recognize that the message is already residing 

in its buffer and no remote access is necessary. The ReceiveMessage primitive 

picks up from the front of the circular buffer and updates the head pointer in 

the BPR accordingly. 

Hardware logic 

To realize this protocol, the communication logic on each PN works according 

to the finite state machine depicted in figures 5.15 and 5.16. These figures will 

not be explained in detail because they follow naturally from the protocol shown 

in figure 5.13. 

Sender l og i c for 1 - t o - N DMA 
\ SYNCOMA -0 V ( \ - _ /OSACKO-1 ‘ i DSACK1 

I /DSACKO, t I/broadcasts ‘ i / ICST-O \ /ACK-0 / MEQ-l 1 \ 

\ J \ \ ^ ^ / y h c d i u - I ‘ 

^ \\ V Y / = > " 
/BROADCAST -1 V / HALT -0 / 

/ A 
/ / M A C « , 1 、 / PCL.O \ 
I | < � _ — 1 f /OS(V«E).« 1 

• 。 “ y V /<\ 
/ VOS(VME) -t/ \ VMEDO-U J \ 
IOTC-I ^ ^ ^ ^ 

I /DONE, l / 

Figure 5.15 State diagram for sender. 



CH.5 IMPLEMENTATION ISSUES OF SM3 P.97 

R e c e i v e r l o g i c f o r 1 / N D M A 

PCL-« 1 ‘ "**•”><-» ^ W.I I 1 1 \ 

m m /BROADCA»T-0 I • I BCiT-1 ) 

^ / I /iHOAOCAST-t \ 

f 1 . /OONCI ^ i ' " " . 1 m �� f \ \ 

I DTC-1 ‘ / DONI-1 \ 

Z • t««cl FCL-0 K LlL-2 • Lfttil PCL-1 • 、 

X 1 •YMCDIIA-1 m I aVNCDMA-O I J 

C KJ^ 
I 0«( VME) - I 

Figure 5.16 State diagram for receiver. 

The logic of a PN use /HALTPN to determine its identity as a sender or 

receiver, given that the sender is not halted by the MPC. Signals added to the 

VMEbus for the purpose of hand-shaking include: /BROADCAST, /BCST, 

SYNCDMA, GPCL, and /BCEND. Other supplementary signals includes 

/MPCRDY, /BFn and /HALTPNn. A l l these signals are transmitted via the 

spare pins of the VME bus. The pin assignments are given in Appendix H. 

In our prototype machine five global signals (/BROADCAST, /BCST,…）are 

introduced for hand-shaking. This number varies with different hardware 

implementations (choice of bus and processor). The number of supplementary 

signals like /HALTPNn and /BFn depends on the number of slave PN，s. 

5.6 System start-up procedure 

The start-up procedure can be divided into 2 phases. Firstly, the PNs are power 

up and a reset sequence is executed. Secondly, the slave PNs cannot cooperate 

with each other before they are properly initialized by the root process on the 



CH.5 IMPLEMENTATION ISSUES OF SMS p gg 

host machine. 

5.6.1 Power up reset of PNs 

As soon as the MC68030 on a PN is powered up, it goes through a reset 

sequence. The program counter and stack pointer are read from the first two 

long words (address 00000000 - 00000007) of the memory. In order to prevent 

a PN from accessing these locations via the VMEbus, the first 64K bytes 

(00000000 - OOOOFFFF) in the address space of a PN are mapped onto the 

locations starting at OOmOOOOO, where m is (PID + 8). The PID can be set by 

DIP-switch setting. This location is just the starting point of a PN，s local 

memory. Hence, remote access for reset vectors is eliminated. Once powered up, 

the PNs are all halted until they are explicitly released by the root process. 

5.6.2 Initialization of the processor pool 

Before a PN is released for free running, a program is load into its local 

memory. The reset vector, including the program counter and stack pointer, are 

initialized by the host machine (or alternately the MPC). Then, / H A L T P N is 

deactivated so the microprocessor of a PN can fetch its reset vector correctly. 

Before the real application is executed, an optional diagnostic program can be 

mn. For example, the host may load a very short program (eg. add two numbers 

to give an answer byte) to a PN, then starts the program to see if the PN is in 

normal condition. Failed processors are not used for future processing. 

After all the initialization, the PNs are now ready to execute the application pro-

gram. The first task is to identify themselves to the MPC by calling a registration 

primitive. A message will be sent to the MPC (or host machine) for error 

detection and availability test. 

5.7 Summary 



CH.5 IMPLEMENTATION ISSUES OF SM3 p.99 

In this chapter, the implementation details of SMS is discussed. The hardware 

and software aspects are treated separately. The communication protocol is the 

most substantial significant design work so a lot of pages are devoted to this 

part. The 1-to-N DMA mechanism is the focus. Afterwards, the start up pro-

cedure of SM3 is briefly mentioned. 

Note that the current implementation of the 1-to-N DMA bases on an 

asynchronous bus (VMEbus). It can be anticipated that less hand-shaking signals 

(5 in our case) are needed to be introduced if a synchronous system bus (and 

synchronous CPU bus) is used. In the mean time, the protocol shown in figure 

5.13 will be simpler because some synchronization points can be removed. 



CH.6 APPLICATION EXAMPLES p. i qo 

CHAPTER 6 

APPLICATION EXAMPLES 

6.1 Introduction 

An efficient message passing environment is useful for concurrent program 

development, parallel execution of logic programs and parallel algorithm design. 

SM3 can be adapted to work as the message driven OR-parallel machine 

described in [DelRe89], or to execute the algorithms for solving equation 

systems presented in [YanWe89]. 

To deal with distributed problems, the broadcasting feature in SMS is suitable 

for informing the slave PNs of the problem configuration to be exploited. The 

host can use a normal message to instruct a slave PN which alternative it should 

exploit. Express messages can be used for conveying urgent information. 

Three simple applications are given here to show how SMS can be adapted to 
a particular problem. 

6.2 Matrix Multiplication 

Matrix multiplication is one of the problem classes that can benefit from the use 

of parallel computers. Suppose there are 16 square matrices and 4 PNs (in-

cluding the host) are available. Figure 6.1 is a feasible plan to find the chain 

product. The steps are: 

1. Host computer initiates the system, down-loads application programs to 

the slave processor nodes. 

2. Each slave processor accepts 2 matrices from the host. These 8 matrices 

are multiplied by the slaves and 4 partial products are passed back to the 

host. 



CH.6 APPLICATION EXAMPLES p. I qo 

6 A 
rf^^i 

2 3 

Figure 6.1. Muitipiication plan of square matrices.* 
3. Repeat step 2 with the remaining 8 matrices. 
4. The host distributes the 8 partial products to the 4 slave processors for 

multiplication. 

5. The 4 partial products are collected by the host and redistributed to 2 

slaves for multiplication. 

6. The host collects the 2 partial products and performs the final multi-
plication. 

The matrices mentioned above are transported by normal messages. I f any of 

the processor detects a zero matrices, the slave PN can tell the host this fact by 

sending him an express message. The host may shut down the system and return 

the answer zero matrix immediately. 

From figure 6.1, we found that there are 15 multiplications. With a parallel 

computer like SM3 with 3 slave PNs and the host machine (degree of para-

llelism is 4) to do data processing, the result can be obtained in roughly 5 multi-

plication time units plus the communication overhead. Maximum practical speed 



CH.6 APPLICATION EXAMPLES p.102 

up is 15/5 = 3，which is smaller than the ideal factor 4. 

6.3 Parallel Quicksort 

Another example is a multiprocessor implementation of the well known 

Quicksort algorithm. Parallel Quicksort is a straight forward enhancement of 

the classical sequential Quicksort [Quinn87]. Although this is not an efficient 

parallel sorting algorithm, it qualifies as a clear demonstration example due to 

its simplicity and popularity. The basic idea is illustrated below: 

Every slave PN executes an instance of the parallel algorithm. The elements to 

be sorted are stored in an array in the global memory (probably at the host 

machine). A stack, maintained by the host machine stores the indices of sub-

arrays that are still unsorted. The picture is shown in figure 6.2. 

O r i g i n a l a r r a y a t h o s t 

I M M I g : 

I n d e x s t a c k ^ ^ H K y / ^ � 

•K -
Figure 6.2 The index stack and unsorted sub-arrays. 

When a PN is free, it attempts to pop the indices for an unsorted sub-array off 

the global stack by sending a request message to the host machine. If it is 

successful, a sub-array is delivered to the PN in the form of a message. The PN 

then partitions the sub-array, based on a supposed median element, into two 

smaller arrays, containing elements less than or greater than the supposed 
V 



CH.6 APPLICATION EXAMPLES P. I qo 

median value. After the partitioning step, which is identical to the partitioning 

step performed by the serial Quicksort algorithm, the process pushes the indices 

of one of the sub-arrays onto the global stack ofunsorted sub-arrays and repeats 

the partitioning process on the other sub-array. 

In order to improve the performance of this algorithm, sub-arrays smaller than 

a certain number of elements may be sorted using other algorithms such as 

merge sort. Gehringer [GeJoS82] discusses how to reduce the stack access 

frequency, this helps to minimize the communication overhead of the algorithm. 

6.4 Pipeline Problems 

Some scientific calculations involve the transformation procedure. A series of 

matrices is to be multiplied to a set of vectors or matrices. Each transformation 

matrix performs an operation on the incoming data. This type of computation 

is very common in graphics systems. 

Status broadcasting � 

I v 

B u l l r Buffer p ^ - v Buffer 
r - ^ E M - ^ PN 1 h ^ E M - ^ PN 2 I — — P N n I 

^ ^ 

Stage 1 Stage 2 stage n 

Input vectors or mat r i cesl i 
Host 

^ i h I Result 

Figure 6.3 SM3 as a processor pipeline for data transformation. 



CH.6 APPLICATION EXAMPLES p. 104 

The PNs in SM3 may be configured into a functional pipeline for this applicat-

ion, as shown in figure 6.3. The Buffer queues in the figure are the IMQ on the 

MPC. Each PN performs a particular operation on the incoming data and passes 

the result to the next PN logically following this PN. The PNs execute their pro-

grams asynchronously so the input and output requests of the PNs generally 

arrive at different instances. Since the pipeline is asynchronous, bus contention 

should not be too serious if communication overhead is not excessive. Since the 

PNs are coupled by non-blocking message-passing，the pipeline is very flexible 

and efficient (physical pipelines are synchronous). Status information are 

conveyed by broadcast messages while the vehicle for control commands may be 

express messages. 

V 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 105 

CHAPTER 7 

UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT 

7.1 Current Status 

Due to the extensive hardware construction exercise in the project, time has 

been tight. Since wire-wrapping was chosen as the implementation method, the 

amount of time needed was probably greater than using the printed-circuit board 

method. Subject to time and cost considerations, 3 slave PN and one MPC 

modules would be constructed. 

The circuit design and floor plan design stages have been completed. Since the 

MPC is simpler than a PN, we tried to construct a PN first. Another reason is 

that the workstation can be operated under the direct control of the host without 

the MPC. 

One complete PN has been constructed but not yet fully debugged. That in-
I 

dudes all the PAL design work and the wire-warp exercise. The PN has been 

attached to the VMEbus with the host machine. Local memory of the PN could 
• 

be accessed (read and write) from the host machine correctly. That implies the ； 

following parts are operational: Clock system, VMEbus Interface as a slave, “ 

Address decoder, /DTACK generation, /BERR generation, Memory System, 

Local Bus Controller and Arbiter, Reset circuity, and Register File. 

Furthermore, an off-line test showed that the Communication Logic on PAL 

chips were functionally correct. 

The remaining 2 PNs and 1 MPC modules have been equipped with the follow-

ing parts because they were verified to be correct: Clock system, Local Bus 

Gate, VMEbus Gate, Watch-dog Timer, and Memory System. Moreover, the 

memory of on all modules had been confirmed to be correctly accessible (read 

and write). As the sockets for all chips had been fixed onto the circuits boards, 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 106 

it would be easy to duplicate more parts onto these incomplete modules once 

the parts were fully debugged. 

Although the debugging phase has not yet been completed, some possible 

immediate improvements can be identified. The future development direction 

can also be figured out from the current trend, state-of-the-art and experience. 

7.2 Possible immediate enhancements 

Since the current version of SMS is a prototype system, many parameters are 

arbitrary and very conservative. Let us examine the major components one by 

one and see what improvements are possible. 

More peripherals should be added to the host machine whenever possible. A 

backup tape and a printer are in great demand for the current configuration. A 

floppy disk driver will make data exchange easier. A l l these equipment are 

already available and can be installed once the workstation becomes operational. 

7.2.1 Enhancement to the PNs 

Microprocessor MC68030 

Although at the time this thesis was written MC68040 had been announced, it 

was not available in large quantities and at a low cost. Before it becomes a 

popular CPU, documentation and support chips are difficult to access. 

Moreover, should the MC68040 becomes available, because the interface 

requirement of MC68040 is different from its predecessor, the PNs must be 

modified. A simpler upgrade is to replace the current 16 MHz MC68030s with 

25 Mt tz ones. However, faster SRAMs and clock rate are required. 

DMAC MC68442 

The current DMAC is a 10 MHz one, a faster one is highly desirable. Moreover, 

a 32-bit one may replace the operating 16-bit one. Since the current D M A C has 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p.107 

a slightly different bus definition comparing with that of the CPU (eg. some data 

and address lines are multiplexed), signal conversion is needed. This inefficiency 

should be eliminated as soon as possible. 

Static memory 

Expanding the memory size to nearly 1 Mbytes per PN is straight forward. For 

cost consideration, dynamic R A M will be more desirable for such a size. 

However, a memory size larger than 1 Mbytes will call for a redesign of the 

decoder logic. The use of dynamic R A M will complicate the 1-to-N D M A logic 

due to refresh requirement. I f refreshing on all PNs are synchronous (currently 

the clocks are independent so modification is necessary) then the work wil l be 

easier. 

Virtual memoiy 

This is a natural enhancement since the memory size of even 1 Mbytes for each 

PN may be inadequate for some applications. However, I /O requirement wil l 

be intensive so it must be carefully designed. The load balancing and task 

distribution strategy must be reviewed. 

7.2.2 Enhancement of the MPC 

The architecture of the MPC resembles that of the PNs so similar enhancements 

can be applied. The shift of the software communication protocol logic to 

hardware is a possible move. Finally, a fast PROM may house the MPC software 

so more space is available for buffer queues. Diagnostic and performance 

monitoring hardware are essential for the production model. 

From the software point of view, the MPC can support many functions in 

addition to its basic duties. Message filtering, security check, and load balancing 

are good features to incorporate. 

7.2.3 Communication kernel enhancement 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p.116 

More communication primitives are required in order to provide a convenient 

and powerful environment. The following primitives may be added: 

a. primitives for high level acknowledgement - the idea is shown in section 

4.2.2.3. It is desirable to provide a construct for this purpose. 

b. dynamic IMQs manipulation - in order to cope with the change of 

communication demand during the course of execution, a process may 

like to vary its maximum IMQ size dynamically. Moreover, it is desirable 

to allow a process to delete or create one or more of its 3 IMQs. 

7.3 Limitation of a shared bus 

The well known problem of a shared bus is contention. Depending on the 

application and the particular bus characteristics, the maximum number of nodes 

that can be attached to a shared bus varies from 4 to around 16 (eg. 

SUPRENUM system). The direct expansion by adding extra PNs onto the 

shared bus is not practical. A different way of expansion is necessary. 

Research works shown that a ring bus structure provides quite good 

cost/performance ratio [Halst87]. For SM3 we can employ about 6-8 PNs in a 

cluster with one MPC. Clusters are then inter-connected with a ring bus as 

shown in figure 7.1. 

In [RetTh86] several ways to relieve contention problems on shared-memory 

multiprocessor systems are introduced. Processor-memory interconnect 

contention, especially for the case of common bus, was studied and a number 

of interconnection networks are suggested. Besides, contention for a path 

through the interconnect, for a memory module, and for memory locations are 

also discussed. We can adapt some suggested solutions to SM3 if necessary. 

7.4 Number crunching capability 

V 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 109 

& 
^ ^ ^ C l u s t e r 0 

m m ^ ^ BUS y - J ^ r r 

C l u s t e r 3 
^ ^ M P C F ^ C i u s t e r 1 

Figure 7.1 A clustered approach to expand SMS. 

I f SMS is adapted to a numeric computation problem, the floating-point/ multi-

plication power of the MC68030 will be insufficient. A floating point coprocessor 

MC68881 (or the enhanced model M68882) [Motor88a] should be added. Since 

this chip can be directly interfaced to the MC68030 bus, the amendment to the 

PN circuit will be minor. It is not included in our current prototype due to cost 

problem. The address decoder and local bus arbiter must be modified to 

incorporate this new component. 

I f the computation workload consists of many vectors operations, a vector copro-

cessor is also desirable. In the SUPRENUM project, each processor node has 

a vector coprocessor. Although this enhancement is rather expensive, we should 

avoid adding the vector coprocessor to only some of the PNs since the 

uniformity of the system will be scarified. 

7.5 Parallel programming environment 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 110 

Providing a user-friendly parallel programming environment is a burning issues 

for all parallel computers. SM3 is not an exception. In general, there are 2 

directions for us to choose: 

7.5.1 Conform to serial language 

It is also the current choice of SM3. The advantage of this approach is that it 

does not required a multiprocessor operating system. The programmer uses 

conventional sequential programming language, such as Fortran and C, to write 

programs. When a sequential language with no extension is used, as for the case 

of SM3, the parallelization of application programs is done manually. As SMS 

explores coarse gain parallelism at the procedure level, the job of the pro-

grammer is not so tedious. But it is somewhat inconvenient and error prone. Let 

us see an example. In the SUPRENUM project mentioned in chapter 2，nearly 

1/3 of the effort was on software issues. While one major task is to parallelize 

conventional numeric algorithms by hand. 

Life of the programmer will be much easier if parallelization can be automated. 

That will be the parallelizing compiler's duty to exploit hidden parallelism in a 

programs written in a sequential high level programming language. However, 

procedure level parallelism is more difficult to detect and control comparing 

with fine gain (instruction level) parallelism because the behavior of a procedure 

(the scheduling unit) is extremely difficult, if not impossible, to predict while the 

behavior of an instruction is well known. 

For the case of SM3, a parallelizing compiler can be constructed in an over-

simplified way. Using the parallel quicksort described in chapter 6 as an ex-

ample, we can detect the major recursion (or iteration) in the serial version of 

quicksort automatically. If this part is written in the form of a function or pro-

cedure, the compiler can generate the root process code, initialization code, task 

distribution code, and message communication code in a mechanical way. Of 

course, the effectiveness a task assignment plan strongly depends on the data 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 111 

dependency, and hence the communication pattern, between interacting pro-

cesses. Since this problem is still an active research area, an immediate remedy 

is to allow the programmer to assist in the task distribution work interactively. 

7.5.2 Moving to parallel programming languages 

Using a parallel language can greatly increase the reliability of an application 

program and significantly simplifies the work of the programmer. Parallel 

languages can range from very primitive and propriety ones, such as P L / M from 

Intel, to quite abstract and popular ones, such as CSP (Communicating 

Sequential Process) languages. These parallel languages requires a parallelizing 

compiler and an execution environment. 

Now the duties of the compiler is to handle those parallel language constructs. 

For scientific and prototyping purpose. A multiprocessor operating system (OS) 

is not mandatory because the user may directly control the system. On the other 

hand, a standard multiprocessor OS must be available if we supports general 

purpose computing. Compatibility with existing commonly used uni-processor 

OSs is a critical issue for the popularity of multiprocessor systems. Since the 

advance of software technology is lagging behind that of hardware technology, 

this point is even more important then the hardware enhancements described 

in earlier sections in this chapter. 

Moreover, we can release the requirement that each PN in SMS executes a 

single process. Task distribution and load balancing will be automated. Then, the 

system will be more user friendly, and will be able to serve a wider range of 

users. 

We shall discuss this point in greater details. The evolution path from a uni-pro-

cessor OS to a multiprocessor OS is traced. 

7.5.2.1 Uni-processor Unix 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 112 

Unix is widely claimed as the most standardized, most portable, and full-function 

operating system. Although Unix started out as a "departmental-level" OS, it has 

expanded both upwards and downwards. In fact, Unix is the first full-function OS 

that runs on many types of computers belonging to a wide range of manufactures 

Jeffr84]. It has become an industrial standard for small workstation-class micro-

computers intended for multi-tasking or multi-user applications. The vast amount 

of software available such as word-processors, type-setters and engineering 

packages adds extra value to this small, elegant operating system. 

Unix consists of a kernel of about 15,000 lines of source codes, and 300,000-odd 

lines of utilities programs mostly written in C [Jeffr84]. The kernel is the heart 

of an operating system, as shown in figure 7.2 [JaAnV86]. It includes a number 

of mechanisms from which a set of OS primitives and policies can be flexibly, 

efficiently, and reliably constructed. 

S h e l l 

/ V ^ ~ “ 
/ • : X S y s t e m c a l l s X - \ 

/ 二 / / ^ r n T l X \ ； 

I I 
H a r d w a r e 

Figure 7.2 The Unix operating system. 

7.5.2.2 Porting Unix 

Porting Unix to a new machine is not an easy job despite Unix is the most 

portable OS. Figure 8.3 summarizes the major issues. About 20-30% of the 

kernel has to be changed which includes the device drivers, the memory 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 113 

management unit (MMU), the process management unit, and the resources 

allocation codes. The utilities have to be examined for accidentally introduced 

machine-dependent codes. Compatibility between different releases of Unix must 

also be catered for [Jeffr84]. 

P o r t i n g U n i x 

I 
Ut i I i t i e s & K e r n e l 
A p p l i c a t i o n s L ^ ^ ~ ~ 

^ " " " " ^ r - ^ 
Z D i f f e r e n t S a m e 

r Pii CPU 
D i f f e r e n t S a m e . ^ ^ I I 
CPU CPU “ 7 

\ T / D i f f e r e n t S a m e 
\ / / MMU . _ 

D i f f e r e n t / J / ‘ 
U n i x L — — \ ^ ^ 
V e r s i o n s M u c h r F 

W o r k N e w Sa me 
d r i v e r s d r i v e r s 

Figure 7.3 Considerations of porting Unix 

Although Unix looks good for general purpose and engineering computing, it is 

unable to cope with the need for multiprocessing as the workload grows. 

Originally, Unix was a uni-processor OS. 

7.5.2.3 Multiprocessor Unix 

To implement a multiprocessor OS, there are two approaches [JaAnV86]: 

a. Design a new operating system in a new or existing language. The special 

features supported by the system can be exploited. However, portability 

and design cost are fatal problems. 

b. Adapt an existing operating system for the new hardware. The system can 
V 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 114 

be brought up quickly at a reasonable cost. 

The latter approach is usually chosen under cost and compatibility considerat-

ions. The kernel of Unix, which is not requested like a system call, performs 

scheduling and it makes Unix a multi-tasking system. In [JaAnV86], a systematic 

approach to modify Unix is presented. We are going to discuss this briefly. 

The protection mechanisms for critical sections in the Unix kernel must be 

modified when Unix is adapted for a multiprocessor environment. We have to 

detect and protect the critical sections of the Unix kernel. It is necessary to scan 

the complete Unix kernel source codes and examine every line to see whether 

or not it belongs to a critical section. But for reasons of optimization, Unix does 

not always follow its algorithm exactly. Experience showed that it is easy to 

detect the beginning of a critical section but very difficult to detect precisely 

where the critical section ends. Other problems are: 

a. Unix kernel is not highly structured. 

b. Owning to optimization, similar codes are by no means amenable to 

standard structures. 

c. Because critical sections can be nested, deadlock can arise. 

d. Multiple paths frequently offer a way to remain at a certain place in the 

kernel code. 

There are three possible solutions to those problems : 

a. Really go through the complete kernel. Examine every line and its 

environment and add locks if necessary. A completed project shows that 

there are many difficulties. For details please see [BacBu84". 

b. Allowing only one processor at a time to execute kernel code. Parallel 

processing is applicable only to user processes. The Munix project 

AnrJaSS, MeyHa75] follows this approach. But statistics shows that the 

CPU of a single processor system uses half of its time to execute kernel 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 115 

processes so concurrency cannot be fully exploited [JaAnV86:. 

c. Rewrite Unix. It presents an opportunity to improve modularity, 

understandability, and reliability at the same time. But a considerable 

amount of effort is required. For example, the internal structure of Tunis, 

which is a Unix-compatible system, is completely different from that of 

Unix. It was written in a concurrent language named Concurrent Euclid 

[EwHoF86, Holt82]. 

7.5.3 Object-oriented approach 

Since message-passing is the only way of communication in a object-oriented 

system, SMS can be tailored to support an object-oriented software environment. 

The programming model will be even simpler and more elegant than the current 

model. We shall briefly discuss this approach. 

A t the very beginning, programmers wrote straight-line codes to command the 

computer to carry out a series of operations that mimics operations in the real 

world. Then procedures were widely used for task partitioning and program 

structuring. But actually, the world is more process-shaped rather than pro-

cedure-shaped. The majority of available software doesn't reflect that reality. 

The process is a better modularization vehicle than the procedure because we 

can scatter processes over a collection of computers [Pete88]. This favors para-

llel processing. Process-oriented parallel languages such as Occam [Inmos83] are 

becoming more and more popular. Interacting processes need special coordinat-

ion mechanisms to make sure that they are operating correctly [ShMiS78:. 

Based on the process-oriented approach mentioned, a higher-level method to 

conceptualize the world is introduced. In the object-oriented approach, a system 

is decomposed into objects. The decomposition may yield coinciding notions for 

both information hiding and protection, and concurrent execution. Objects in the 

system may communicate by exchanging messages. The internal details of an 

object is hidden from the outside world. Small-talk, and POOL-T [Ameri86] are 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p. 116 

typical object-oriented languages. 

To facilitate efficient execution of programs written in object-oriented languages, 

architectural support is desirable [WiLoE87]. Object-oriented architectures have 

the following characteristics [RoberSl]: 

a. Specification of data in programs is kept separated from how the data are 

referenced by program instructions or represented in memory. 

b. Hardware or software controls access to different types of data with 

passwords (descriptors). Programmers can use modular programming and 

structured design more efficiently. 

c. Hardware algorithms to check whether each type of object is associated 

with operators that make sense for it. 

The object-oriented style is very promising among parallel systems. This natural 

method for structuring and partitioning, combined with a message-passing 

mechanism for communication and synchronization, greatly relieve these aspects 

of the programming task [WiLoE87]. Released from these responsibilities, pro-

grammers can concentrate on the problems at hand. Since SM3 supports 

message passing in an efficient way, it is very desirable to adopt an object-

oriented environment on SM3. 

7.6 Summary 

We have enumerated some possible enhancements for short-term and long-term 

development of SM3. Both hardware and software aspects are covered. Although 

performance improvement is desirable, providing a good programming environ-

ment for the user should be given first attention. Without a standardized, easy 

to use multiprocessor OS, SM3-like systems are accessible for expert users only. 

Unix is a suitable choice for the application domain that SM3 aims to serve. 

To provide a better programming environment, SM3 can be further developed 



CH.7 UNSOLVED PROBLEMS AND FUTURE DEVELOPMENT p.117 

into a object-oriented architecture with ease because of the message-based 

background. A library of generic object manipulation functions, such as creation, 

destruction, and migration, must be developed. Data encapsulation and object 

distribution must be supported by the operating system. Thus, an object-oriented 

environment has to be integrated into the operating system. This is really a large 

piece of challenging work. 

V 



CH.8 CONCLUSION p. 118 

CHAPTER 8 

CONCLUSION 

8.1 Thesis summary 

At the beginning of this thesis, we started our discussion by justifying the quest 

for parallel processing. A quick tour of the current status of parallel processing 

was presented, using Micheal Flynn's classification scheme [FatKr83] as a road 

map. Then we converged to multiprocessor systems, which is recognized as the 

basic building block for larger systems. We appreciated the cost effectiveness 

and simplicity of shared-memory bus architectures. 

To solidify our discussion, several real machines are briefly introduced. That 

include the SUPRENUM, MEMSY, ELXSI, and SEQUENT. Al l of them are, 

more or less, bus-based shared-memory systems. Some of them employ the 

cluster approach for higher level expansion. Yackos is a software project aiming 

at providing faster message transfer on top of a shared-memory architecture. We 

noticed that the software MP approach was unsatisfactory. 

To eliminate the context switching problem of the MP approach and enforce 

performance stability, a dedicated processor is reserved for the MP process. We 

called this software and hardware combination the Message-Passing Coordinator, 

or MPC for short. The basic idea is analogous to a PABX telephone switch box. 

We are pleased to find that the MPC can deliver much better functionalities 

than the MP. Expectedly, some drawbacks were found but all of them are minor 

problems. 

After the MPC had been introduced, we presented the design of the multipro-

cessor workstation SMS. From a hardware point of view, SMS is a simple 

distributed shared-memory bus-based multi-microprocessor system. The MPC 

and the host machine are the traffic and control centers of SMS. In software 



CH.8 CONCLUSION p. 119 

aspects, SM3 offers a message-passing environment for inter-process 

communication. With the MPC as an agent, message traffic is regulated while 

delay is small. A hierarchically-typed message structure for SM3 was discussed. 

Most importantly, message communication protocols were tailor-made for 

different message types for better performance and ease of use. 

We explored the intrinsic broadcasting nature of the shared bus, a 1-to-N D M A 

concept was devised for handling broadcast message in an efficient way. This is 

a by-product of employing the MPC approach. Actually, it is a generalized D M A 

transfer that can be implemented with many conventional DMA devices. The 

savings will be significant when there are many receivers. A good property of the 

1-to-N DMA mechanism is that it allows the sender to select potential receivers. 

After the general issues of building SM3 had been presented, we looked into the 

implementation details. Design decisions concerning both software and hardware 

were explained. We particularly included the start-up procedure of SMS for a 

better understanding of the system operations. 

Application examples served to illustrate how SM3 can be adapted to solve 

some common problems using a message-passing environment, with the 

hierarchical message system and the help of priority levels. In these examples, 

it is evident that automatic exploration of coarse gain parallelism is quite 

difficult. That is one of the unsolved problems. The availability of a standard 

multiprocessor OS in the near future is another question. Enhancement issues 

of the software and hardware of SMS was discussed too. Future developments 

may be based on the improvements that are achievable in a short period. 

In conclusion, we have designed a low cost, easy to program workstation that 

applies the idea of multiprocessing. The shared-memory offers a lot of 

advantages for communication. Such a system is suitable for prototyping, 

industrial engineering calculations, parallel program development, object-

oriented system support and parallel execution of logic programs. 

V 



CH.8 CONCLUSION p. 120 

8.2 Author's comment 

Undoubtedly, designing and implementing a multiprocessor system is laborious 

but extremely rewarding. Design trade-offs can only be made on the ground of 

personal experience, which is exactly what the author initially lacked but now 

had gained. As parallel computing is the current trend, the invaluable experience 

of designing and building a parallel computer outweighs the inevitable 

frustrations it brings. 

Let us return to SMS and the MPC approach. Although parallel computers have 

not walk out of the ivory tower completely, the practical experience that brought 

to us during the design and implementation of SM3 will certainly be helpful to 

the literacy of parallel computers. Definitely, the author enjoys the achievements 

of the very pragmatic design of SM3, the advancement of the MPC approach, 

and the delighting discovery of the 1-to-N DMA mechanism. The flexibility and 

expansibility of the SMS workstation offer a very promising development 

opportunity, in particular for the design of concurrent programs for distributed 

problem solving, and for the provision of an architecture suitable for supporting 

an object-oriented environment. 

The author would like to point out that the movement from the MP approach 

to the MPC approach exhibits the favor of software oriented architecture. 

Traditional computer architects satisfy on delivering machines that can execute 

any program, which may be � mix of machine instructions, correctly and 

smoothly. But the current trend is to put the programming model into con-

sideration early in the architectural design phase. In these system, acceptance by 

the programmer is much better, and very likely the performance is also impro-

ved due to the architectural support of a predefined, extensively used com-

putation model. In this sense, the MPC approach is certainly an advance, (fixing 

a process to a processor seems a stepping-back action because the process 

cannot migrate and share the processor with others. From the operating system 

point of view, we have retreated from multiprogramming to conventional single-



CH.8 CONCLUSION p. 121 

programming mode. This is a backwards move.) 

SM3-like multiprocessor workstations will not win the appreciation of the 

general user if good parallelizing compilers and a standard multiprocessor OS 

are not available. Moreover, a friendly and elegant programming environment 

is indispensable. Although some initial works had been done, such as the 

MUPPET programming environment for message-based multiprocessors de-

scribed in [MuLiS86], no widely accepted system has yet emerged. The author 

believes that object-oriented systems will gradually win the competitioiL 

8.3 Looking into the future 

Recall that SM3 explores coarse gain parallelism. It is foreseeable that future 

multiprocessors will explore all levels of parallelism, with a very high degree of 

automation. Although we emphasis software oriented architecture, it does not 

mean that we should build hardware in a fixed software-dependent way. On the 

contrary, performance fluctuation due to data variation will eventually pull out 

a lot of reconfigurable designs. As the size of computer systems grows 

monotonically, fault-tolerance will continue to be a desirable feature of multi-

processor systems that lies anywhere in the multiprocessing spectrum. 

In the short term, software advances is much more desirable because there are 

already many parallel computers that cannot be easily programmed. Actually, 

SMS is one of the vast amount of projects that attempts to surmount that bar-

rier. In the long term, the number of processors in a system and their perform-

ance will be climbing upwards in different rates, giving more variations of 

machines, and also more programmability problems for our energetic fellow 

researchers. 



APPENDIX A December 18, 1990 p. 122 

APPENDIX A 

BLOCK DIAGRAM 

The block diagram of a PN/MPC is shown on the next page. A MPC does not 

have the DMAC that a PN have. 



A
rc

h
i-

te
c

tu
re

 
o

f 
a 

P
N

/M
P

C
 

^ 
^ 

—
 

I 
> 

M
C6

84
42

 
#

=
t 

M
C6

80
30

 
J 

〜
一

 
^ 

ED
MA

 
MP

U
 

II
I, 

, 
5 

ĵr
-̂n

c?̂
—

�
nn

f" 
sr̂

pr-̂
rŷ

r̂r
' 

fe
jg

 
a 

S 
g 

g.M
 

“
�

�
 

U
 

�
�

 
�

�
 

d
g 

Ji
 h

 
>

 
clk

 
X

 
E 

dl
lg

B 
gg

gi
il � 

3
 w

、
',�

�
'w

v
 

y�
M,、

,、
,、

,、
,、

,” g
sp

sit
tsp

i 
�

�
 

^ 
Co

nn
, 

g � 
>

 

'
姻

 
fn
 川

川
 1

 
IIII

IU 
I If

 11
 y

 
C

on
tr

ol
 

Lo
gi

c 
I I

 I 
O

 
(Z

 
(

(
(

(
( 

^ 
o

 
o 

R
 ̂ 

<D
 

,N
li

ll
l#

l 
I 

ffT
\T

\ 
T 

3 
Bu

pV
era

 
P

n 
- 

i^
jii

g 
I 

ti
g

m
it

ti
r 

. 
力
、
必
 

^ 
\

 /
 \

 /
 y

 M
 M

 r
y
 f

\
 /

\
/\

 /
 \

/ 
^^

 

L
L
 

,J
 

J 
J 

^ 
<
£>

 

、
 

<D
 

•I 
J 

, 
St

an
da

rd
 c

on
tro

l 
。

 
i 

p 
1 

—
 

DO
-31

 
A0

-g3
 

—
 

t 
_ 

- 
i I

 
I 

t 
[ 

Ex
tra

 c
on

tro
l 

i 
u 

"�
�

、
、

“ 
�

�
�

^』
ij

 
i 

Bu
ffer

 I 
^~

^^
 

“
 

/WW
、

 
A 

个
个

+
•

•
个

个
个

 
r 
\ 

"iV
i 
\ 

1 

^
h

lm
lh

 
|U

y
L 

i 
l

l
'

‘ 
. 

. 
i

t 
r\ 

霞
 1

]丨
I

'f
川

• 
fr

r 
TT

fW
TT

O
 

W
 

\H
\iy

 
I、

」
」

」
—

I 
iJ

li
ir

ii 
II 

rgi
 g

 
, 

tii
 

- 
i 

4 
IH

 
‘ 

+ 
, 

RE
G,

 
^ 

SR
AM

 
^ 

p
i

^ 
g/
川

;L
t 

At
 ;
丨
 

VM
E 

in
te

rfa
ce

 
co

ntro
ller

 
( 

^ 
I ^

 
Co

ntro
ller

 
jTI

 i』
l �

�
 

I � 
I � 

I 
I
tv

A
A

A
A

A
A

A
A

/t
! 

• 
De

cod
er 

I r
ow

Ko
ui

 
m

ni
M

h 
〖
“
綱
 

w
|、

M
nM

、
/W

\^
�

�
、

/
 

I 

I 
1

 

Pr
oj

ec
t |

SM
3 

|ri
ie

 
|P

Ng
 

[T
itl

e 
|P

N/
M

PC
 b

lo
ck

 
di

 �
r

a
n 

I R
ev

. 1
1.0

0 
I D

ate
 1

8-
1-

90
 I 

De
sig

ne
r 

1「
. 

H.
 I

 n
n 

-o
 

I 
• 

1 
I 

1 
• 

I 
• 

1 
• N>

 
W

 



APPENDIX D p. 132 

APPENDIX B 

CIRCUIT DIAGRAMS 

The circuit diagrams of SMS, including the PNs and the MPC, is printed on the 

following 6 pages. Parts for the MPC specifically are highlighted. 



5
 

2
 ̂

 

M
 I

 §
"
!

 -
H

 
-

U

T

C

6

i

s

a

g

l

Q

6

—

了

0

0

-

1

1

u

d

N

 /
z
d

 Q
 j
o

 

s

-

 a
一
七
i

 
一

 s
d
l

 
山

 
1
U
|

 C
N
S

 ̂
K
o
^
n
^
 

t

 I

 j
 

•
 a
 •
f
l

M
 

l
u
»
s
 <

 n
.
i
f
c
 

>
 R
P
B
f
t
e
f
e
E
p
t
t
 

<
5
d
l
1
Y
H
 >

 n
Y
H
 >

 n
 >

 i
u
s
x
M
 

s
 >

 I
x
a
l
T
V
H
)

 <

 ？
二
 -
g
a
i
T
V
H

 ̂

 

>
 h
w
c
t
e

 v
r
p
n
M
 

>

 t
^
A
M
M
M
 

>
 B
b
f
t

 >

 •
o
a
〕
3
J
M

 s
l
t
^
.
A
n
M
M
 

^

 f

 f

 >
^
A
M
M
M
 

f
 6

 
二
 1
-

 .

 k
r
A
 

k
r
h
 2
 F
p

 s
^
o
^
^
s

 —
—

 s^
o
-

 ̂

 B
 s
t
e
l
F

 i
g
^
 

n
M
T
^
 u
c

 
^
 -
a

 
二

 
二
 
.

 s

 2

 s
c
 s

 t
e

 c
^

 c
 s

 E
k
r
 

n
M
T
^
 ̂

 I
s

 
？

 2
 ̂
S
M
M

 —
—
 T

 b
u

 s

 M ̂

 s
h
F
 M
M
^
^
 

n
u
x
T
 U
I

 5
 ̂

 5

 
书

 7

 u——,

 J

 ,

 ̂
f
E

 7

 
卜
 >

 E
 .

 k
t
 

n
u
J
T
 s

 2

 7

 s

 g

 T

 g

 m

 ̂
 ̂

 e

 i
r

 I
 n

 T

 s
 s

 ̂
 ̂

 c

 p
e

 l
i

 ̂

 

^
 

s
x
u
x
x
 s

 3

 a
z

 L

 i
i
.

 0
卜
〔

 ：
I
H
E
j

 ̂

 a

 1
;
1
_
】
 

n
M
u
l
d
^
^
^
 s
7
r

。
9

 

6
 二
i
g
,

 S
J
^
R

 s
 

-

 n
 
口

 
 ̂

L

 -
S
E
E

 

^
^
 

O
S

 3
t
 a
s
;

 .

 1

 g
s
d
j
n
v
H

 O
S

 3
c
 a
;

 h
 g
,

 -

 B
i
E

 :

 ；
t
J

 
山

 l
a
p
s

 E
n
 

u
 ？
」
：E

 S
L

 a
t
-

 §
1

 L
 M
B
 0
'

 s
c
 2

 s
 .

 g
l
l
v
H

 ̂

 s

 l
a
i
;

 E
n
 

G
 e
e
i
j
^

 S
I
U
T
Y
H

 6

 o
e

 L
^
 a

 c

 2

 £
0
"
)

 kl
.

 A

 E
r

 o
e

 L
P

 g
 8
 e
a
.

 i
t
t

 L

 *

 i
 t
e
n
 

]
J

 ii
—
,

 i
y
e
_
_
i
a
3
4
H

 ,

 p

 a

 s
,

 .

 0
~
4
M
。
s

 ̂
l
i
 
卜
i

 A
 e

 a
、
a

 f
e
n
 

n
u
 f
c
E
f
c
g
_
_
,

 I
g
i
l
Y
H

 
们

 0

 1
7
 a

 I
 n
 lo
H
,

 o
i
l
 r

 0
0
,

 A
a
i

 
？

 0

 -
 7
 >•

 5

 n

 9
1

 p

 a
 e
u
f
t

 f
e
n
 

目
 I
i

 (
！

 I
n
v
H

 ̂

 」

 l
l
s
v
旧
M

 i
l
l
n
^
 s
u
o
i

 二
_
_
h
 ̂
T
 

o
 ,
 

S
J
 ⑴
：
|
.
S
!
b
<
9
J

 u
n
-
x

 
i

f

f

 ̂
^
M
^

 u
 

0
8
 Q
®

 L

 )

 ̂

 ̂

 

s

 ̂
 s

 m
n
s
 

.
 j
-

 s
 

.

 I
g

 -
j
n
 

0
9

 ̂
p
s

 ̂
h
K
K
r

 i
g
g

 8

 M
M
^
S

 L
t
t
n
 

O
S

 •

 s
c
b
r

 .

 I
z

 L

 n,

 L
^
T
M
M
 

2

 s
^
 
？

 F
b
r

 
6

 s
_
R
^

 
h
 n
 

广

 o
c

 
化
刊
 a
c

 0

 s

 S
I

 r
b
l
.

 t
^
^
A
N

 i
 

I

 。
n

 2

 7
 0
-

 t
h
 r

 U
S
 ̂

 r
i
p

 L
t
t
^
A
H
 

y

i

l

 ̂

 二
，

 B
i

 w

 n

 o
a

 Ei
^
-
-

 p

 _

 E
r
g
 

S
 ®

 s
n

 —-

 I
I
 

W
J
 ̂

 0
 I
s
!
乃

 s
s

 
爾
 

躍
 ，_

 ̂

 &

 s
盛
i

 
嚇
 

L
d
^
.
 _

 f
e
u

 0
0

 ̂
B

 h
p
 

—r
 7

 g
i

 ̂

 

f
l
f
l
 ̂

 I
s

 3

 a
l
p

 ̂

 

B
 ̂
f
f
l

 

曙

塵

 n
M
i

m
 

^
 ̂L
^
—

 1
s

 L

 s

 ̂

 s
 r
^

 s

 
一

 E
i
.

 I
 

N
.
 m
m
m
v
^
t

 S
A
I

 4
 J,

 ,

 s
 s

 
0

1
 a

 I

 k
l
l
K
,
 

E
 Ib
E
,

 l
A
i

 7

 m

 u__F
 o
a

 z

 e

 n

 I
 

 ̂0
0

 9
1

 2

 o
a

 ,—
 

p
 

p
 

N
d
 ̂

 c
^
o
 

_
 



6
 

2
 

1
 

d
 I

 §
n

 -
H

 -
u
l

 編
6
!
s
3
a
 I

 

0

6

丨

了

l

l

|

I
 0

〇
-
I

 
I

I
 N
d

 

o

u

!

6

0

1

 u
o
!
q
_
x
:
o
l
u
n
u
u
o
u
l

 3一
；
.
口

 |

 u
u
o
u
l

 3
1
二
|

 C
N
S

 p
a
「
〇
J
d
 

J
 

s
 p
a
i
q
o
u
彻
)
u
約
g

 >
 o
s
a
>

 <

 S
a
2

 M
s
v
s
a
 

<
5
3
H
A
—

 s
 

P

d

一

< i.

 
<

 i
B
 u
o
f
c
R
^
 

<
q
N
v
g
>
 >

 t
e
H
i
r
 x
q

 i
o
 j
 s
v
么
 <

 B
K
t
o

 I
f
c
B
 

(
(

〈
o
z
一
s

 
<
 i
z
i
s
>

 
>
 i
a
丫

 
左
 P
d
3
2
d
)
l
z
l
s

 U
0
 

(
a
o
z
i
s

 <
 1
Z
I
S
>

 >

 K
Y
 p
>
l
q
o
s
》
o

 g
o
s
p
 

(
(
<
o
z
i
仍

 <
 I
Z
I
S
>

 >
 .
M
I
丫

 r
^
a
l
q
o
u
a
二
2
I
S

 >

 O
S

 ̂

 n
u
 

《
m
 <

 a
s
j
l
丫

 >
 <

 a
s
己

 —^
^
p
n
u
 

s
s
q
 <

 O
S
?

 O
S
-

 <

 0
 <

 E
§
u
 "
O
Z
I
S

 -

 —^
^
^
F
n
w
 

<
<
i
s
a
 <

 i
i
s
a

 
丫
 

^
s
f
s
 0

 n
M
^

 —
—
^
—
 

I

 ̂
b
B
^
U
K
 

I
S
K
P
^
h
M
 

I
 I
S
J
I
 

r
r
~
 —

 T
f
t
^
 

^
n
n
n
n
u
 r

 

§
 

h
—
—

 
=

 
麗
=
^
^

 6

 i
>

 1
 

「

1

—

J
 s

 8
0
 ̂—̂
^

 8
2

 
，
 g
顔
(
-
L
w

 I
 

f
『

 j

 2
-
B
i

 2

 L
 
呢

 层
二

 s

 L
P
 «

 m
m
m
w
-

 ̂
i
w
 

e
 E
o

 」
K
I

 2

 6
 V

 f
c
B
B

 ̂£
1
 6
>

 i

 ,

 _I

 a
t
-

 1

 _

 ̂
 O
H
J
a
a
J
l

 ̂
w
n
M
K
 

s
 8
1
 ̂
^

 ~

 5

 :

 
？

 g
l
 0
*
:

 1
-

 ̂
B
i
.

 L

 .

 i

 ̂
 ̂̂
^
^
^
A
M
 

f
e
-
 ̂
^
 i

 s

 a
n
 *

 I
.

 -

 i
s

 2

 M
H
^

 R
^

 p
^

 0

 I
K

 f
l

 
们
 

§
:
 ̂
^

 a

 ,
g
a

 R
p

 
；

 <

 z

 B
B
 S
I
S

 2

 3

 m
.

 h
j

 ̂
^
 

逸
 t
-

 
4
 s

 ̂

 •
B
O

 R
E

 -

 i
K
D
 。
Z
【
S
6
-
-

 ̂

 

.§
 7
 5

 B
s

 f
c
i
>

 E
U
K
>

 、
z

 ̂

 、

 ；—.
 

s
 =

 37
_
_
^

 T
k
h

 J
 m
m
m
m

 /
/
/
/

 
•

气

广

 
，

 •^
S
.
O
^
^
^
^
^
v
m
k
 

U
M
n
 a
^

 "
I

W

 W
T
T
S
k
y
T
W

 ；
;

 
^
 

一
…
 

—
I
T
T
 —
^
H
^

 A

 —̂
^̂
u

 ,
 

T
F
T
T

 

a

S

5
 i

 ̂

 __̂

 M
k
c

 i-
^
-

 
4

)

公

 m
m
 

-
t
f
t
t
s
m
 5

 ̂

 f
e

 3
k

 t

 r
l

 i

 ̂
e

 .
 ̂

 

J
 1
5

 ̂

 B
^
^

 i

 ‘

 n
'
i

 
s
:

站
c

 M
M
H
H
 

x
-
7
g

 

u
x
>
 
w

 

J
^
 
I
s
u
 a
R
^
 

‘
T
^
 
i
s
-
u
 
s
 

s
e
-

 J
?
 
0

 
K
 

、
 

(
—
 

r
^
^
 
a
u
^

 三
r
^
 5
^
3
」
a

 5
1

 >

 J
s

 n
M
M
M
N
V
M
 

—
,
I
c
—
S
 i

 M
M

 
5
 a
M
,

 a

 
 ̂
3

 
卜
1

 A

 r

 e
 ̂
g

 M
M
M
M
^
V
n
 

n
u
j
^
^
 J
^
u
^
_
S
T
T
i
T

 r
^

 3
7
 g

 m
 i
s
s

 p
(

 “

 f
c
f
e
 :
 d
a
T
 

M
N
 〕
3
F
7
r

 M
w

 M
M

 9
i
n

 =

 
广

 I
—

 -

 ss__

 M
M
H
^
 

I
 ̂—
^

 a
^
-

 3
 ‘

 a
 a

 ̂
 d
a

 e
i

 s

 «

 4
0

 u

 ̂

 I

 a
i
g
w
 

B
 w
w
e
^
^

 I
M
N

 3
M
W

 I

 ̂

 .

 R
d

 i_
_
I
T

 
:

麗
^
 

n
n
u
L
^
 "a
r
r
r

 i
s
,
^

 
e
 

s
s
u
 
s

 ̂
 i
e
.
B
f
f
^

 ̂

 i

 6
n

 u_
_
I
T

 -
s
l
^
 

5
 n
u
j
^

 M
H
m

 a
M

 5

 d
'

 a
M

 a

 i
>
a

 
礼

 B

 k
u

 
^
^
 w
 p

 :

 K
K
T
 

D
 e
y
h
n
r
^

 _
S
J
n
?
^

 ,

 旨
卜
-
 h
f

 u
u
^

 ̂
s
 ̂
 I,

 :

 •

 i
T
M
 

1〕.！
 8
1

 F

 
；

 n
 I

 n
s
d
^
 B
l

 f
/
I
N

 W

 ̂
W
N
n
 

.

 1

 J

 .
U
3
1

 6
1
 
一 1
1

a

.

 
一
 t
l

 t
2
d

 t
t
3
 

E
 u

 E
 m
m
m
k

 y
—
」
i

 f
^

 1
 

p
 、

 —
 

p
 

A
 

z
n
^
 ̂

 J
O
J
-

 u
!
6
0
一
 u
o
!
q
_
D
U
!
u
n
u
u
o
u
 



M
e

m
o

ry
 

c
o

n
t
r
o

ll
e

r 

>
 

•D
 

13
 

m
 

h
 

� 
.
 

z
 

A£
 1
0|
 J
 
I£3
 A1
3
 
DO

 
；
 1
18
 DO
 

A2
 l
Ol
 J
 
l£3
 A1
3
 
D16
 2|

 
；
 1
18
 D1
6
 

O
 

-
a

t
-
5

 
AO

 
E

� 
A

l
l 

g
 

a
i4

 
r
i
n

-
3

 
� 
1

 
� 

B
1
 

a
s

 
� 

AO
 

r
 

m
i 

g
 

a
1
4
 

jT
r
T

r
ĵ'̂

i 
i
t
t
t
t
j 

—
 

•  
A4

 5
A
I 
7
 A

'g
 2
6 

A1
5'
 

TT
T̂
AS

 � 
6
 2

 ̂
^^

 
A4

 B
 

舰
 5
6 

A1
5

 
ft

ri
^
" 

^ 
82
 

X
 

Z
Z

v
A

S
- 

A
S
 
7

 
o

 
1

 
A

T
T

T
T 

抖
3
 

n
 

f
t
g
 

7
 ^

^ 
o

 
A

l
^

 
�

B
3

 

O
 

T
T

-
jr
g
-
 

T
T
T
-S

 “
 

^
 

B
6
 -
ig

-
t
r
r
 

A
S

 
4
 A

S
 
^
 

D
1
 1
3
 
b
if
l 

r
S

T
B

 
-
t
;
 

B
6
 t

j
t
t
^
 

� 
A
9

 
3
 “

 
r

o
 D

g
 1

5
 
D
3
 •

 
T

T
T

?
� 7
 
^

 
B
7
 T

^-
g
y
 

A
9
 
3

 
p

j 
0
8
 T

5
~

in
r 

T
T

^ 
^
^ 

B
7
 T

T
T

C
 

‘
 A1
6£5
 …
en
 D
3
 r

>
4
 -
 

Ae
 U
29
 BB
 

•�
it
iS
S 
⑶

 D
3
 
DSO
-
 

A8
 U3
1
 B
e
 

-A
in
T̂
a
 O
N
 

t
 D
IR
 

-TT
l-g
T
 A8
 g
 DA
 ir
-gg
r
 

^
 P
R 

� 
A

lg
 

Ii
p

fl
 
D

5
 1

6
 

1
6
 

- 
„ 

19
 

1
 

� 
A

|g
 

0
5
 

la
 

” 
|l9

 I
t 

G
 1
—
2
2
~
 

G
「

2
2
~ 

一
.

g
o 

,
 

�
 

^ 
ri4

 

* 
AE
 1
0|.
 ,
 I
po
 ,g
3
 A1
3
 
D82
|—;
 
r--
-il
8Ĵ
 f
t
g

 10|
 ‘

 
123
 A1
3
 
D24
 2i
 
；

 
116
 0
 24
 

� 
“

 A3
 � 
AO

 Z
 A
ll
 2
 A
U 

n̂
Al
 j
 B1

 y
tW

 
"T

T"
?
 AO

 Z
 A
ll
 g
 

TTT
TSS
' 

S
H

 
-
 

A
4
 

8
 M

 
�

^
 

A
 IS

 
T
T
O

T
A
S

 
B
e
 

A
4
 

6
 

7
 

A
ie
 拽

 A
1
5
 

H
t
I
H

 � 
2
 

^
 

B
2
 
T
C

T
^
 

ô
l 
- 

'-3̂
—7
 
o

 1
 

TTi
rs
 
r-
 B
3
 is
-p̂
 

AS
 ”

2
 ̂
 ai3

 r—
Ai
r
 b
ir
df
-

、
A7

 
S

 
� 

DO
 1
2

 D
9

 
To

yrA
s
 r
u
 BS

 -n
nn

J
 

A?
 S

 “
 

� 
TS

-DS
TI

 [i
illT

i'̂s
 ⑴

 B
S

 Y
JIĴ

-̂
s

l
^
 

''
A

T
-
?
 
A
5
 
^

 
D
1
 

T
^
-
r
o

r
 

T
r
n
r
e
 
“
 

B
6
 i
g
^
n
?
 

g
 
0
1
 
i

n
^
 

f
i
n

s
o
卜

-
f
^
；

 
i
^

o
r
 

S
i
l
T

^
 

“
 

r
o
 

1
5
 
n
il
 
•
 

T
T
T
Ŝ

A
?
 
^
 

B
?
 T

r
in

g
 

.
 A

�  
5
 站

 
m

 
is

 
p
g
r
 

h
r
I
H

A
?
 

a
i 

-A
T

T
g

T
 

(J
^ 

P
^

-
r
T

-
W
 

g
 

D
.R

 
-A

T
T

g
r 

^
 

0
4
 y

^
-

^ 
I
 

^
 

P
R

 
^ 

-
 

� 
S
i
 

M
3
2
 

16
 

D
M

-
 

|
l9

li
 

‘ 
A

lS
 2

1
 

D
5
 r

g
-
T

W
 

“
 

Ii
9
 |
l
 

^
^

^
^

™
� 

a
 

R
/y

 
V

^
M

p
U

g
n

,
^ 

�
 

U
 

G
 

le
a
 

U
 

R
w

-� 
J
 

�
—
 

)
 

j 
V
,
 

Y
 

R
…

1
 —

—
—

i
^

c
 

I
 

1
 

R
j

l
^
 

� 
A
1
 

z
 

-
0
 

D
a
e
 

^
 

3
 

2
>

 
p

r
y

 
in

gc
gg

 
~

s
iz

o
 

4
 

(—
 
T

T
n
 

I~
T

s
x
a

n
 

: 
S
12

1
 5
 

L
 

13
 n

f 
^
 

)
 

:
 

gf
fli
T
U
 

C
Tn

 
1
4
 Z

J 
}
 

“
R

/
V

 
‘ T

TS
A
C
fo*̂
*

 7
 

� 
13
 
D
S
A
C
m

 
/
 

^ 
TT

JT
OC

Ŝ
 

«
 
,.

2
?
, 

H
^

J 

—
>

 
ff

C
T

S
T

 
gPS

AC
KI
 9

 tJ
36

 
U

 g
O
rfiT

 

^ 
A6
 

I
 

""̂
 
)
 

—
,^

IZ
O
 

I
 

^ 
si
?)

—
 J
 

P
r

o
je

c
t 

S
M

3
 

[F
ile

 
|M

C
[]

N
3 

T
it

le
 |
Me

no
ry

 
co

nt
ro

U
er

 
| R

e
v

, 
| 1

.0
0 

| 
DA

TE
 |

l
l
-l

-9
0 

| 
D

es
ig

ne
r 

| 
c. 

H.
 

L
on

 
P

 N)
 



> 
D

e
co

d
e

r 
o

f 
a

 P
N

/M
P

C
 

| z g
 

p
=

=
=

;
j 

X
 

1 
A20
 
. 
I 

|
I
�

C
W 

、
 

� 
•
 

U
|—

^
 

0
3

 

—
A

a
 

.
.
.
 
•
 

7
5
v
M

-
.
i 
.
 “

-
~

 
A
3
 
2
 

la
 

g
c
c
n
r
 

〉
.
p
 

•
 

3
 

；
2
 T

) 
A

9
 
4
 

丨
 

1
6

 
O

T
A

T
il
 

n
o
t 

u
s
*
d
) 

^
^

^
 

i
—

—
^
 

^ 
=

厂
 

Jl
'B

ro
od

 
ID

 
di

p 
sw

l-
tc

h 
A

lt
 
6 

U
 

U
 P

W
C

B
sr

l/
M

P
C

T
C

T 
i

g
^ 

|
—

—
：

 
>

 
-
 

(
 

^
 

！
L
 

—
 

^
 

O
~
V

 
A
t7

 7
 

1
1
 (
J
N

 
o
~
H
A
L
T
R
m

I
 
<
P
N
i 

n
o
t
 u

s
fd

)'
 

.肌
 

i 

L
 

?
「

 
“

^
^

^
 

0
0

 
� 
D

H
^
 
<
h
4
>
c.
 
rv
o
t

 
�

 

R
�

^
 

,
L

.
 $

0
0

 
—

- 
W

t
^

/
V

^ 
-

g
 

“ 
^

 
PH

nr
T
H
/W

T
CO

CT
 

—
A

?
n
 

_
_

_
_

_
 

'
T

 
• 

ra
rn

rs
T

 
<PM

. 
«
t 
“…

〉
 

L
_

z
i

z
_ 

^
 

^
 

^
^

^ 
"

l
i

l
i

^ 
C

l
o

c
k
 

“ 
2

 ^
^ 

f—
—

^ 

5
 

ro
c
4
T
-<
C
A
a
o
-«
3
>

 
KD

H
 

J
ix
-3

re
»

 
•

 
*3
 
-
 
w

r
s
^
 

In
 

f
~

5
"
 I
J

 
4
：
：
^
 IC

LR
 
T

^
 
C
L
K
6
7
 J

 
C

L
K
6
7
/1

 

R
X

ff
iiT

. 
M

7 
V 

A
ia

 
V 

A
t9

 
V 

C
3

«
l 

W
C

TH
iiT

- 
V 

A3
 V

 
R

C
C

iiT
 

j
_

“ 
^
 

1
。

 
~

 

n
rc
î
t.
rs
c
S
T

 
v
 
-
w

r
o
 

�
�

�
•

 
•»。

- 
•
“
 � 

�
0

J
 

C
L
K

�
 

•
 

A3
 
-
 
-p

rc
i?
D

 
‘
~

V
A

^
 

^
 

e
n

�
 

1 
‘
 

4
7

0
 

PI 
- 

47
0 

^
 

6
 

^
 

lU
l

 
�

s
�

�
 

_
3
、

C
L
K
3
3
.
, 

�
�

 
3

0
M

H
2 

—
^ 

^
 ^

U
^ 

^
 

1
 

9
r

\ 
8

 
y

T
r

m
T

T
C

I�
 

^ 
txH

-i 
isiO

TT
i 

I—
1

 
V

 
C
O

 

CL.3
3
 

c^
 T

?
^

I
 

“
 
I

 
6 

I 
^
 CL
K13
3
 _
 

^
w

T
"

� 
K

H
 

B
u

s
 

a
r

b
i

t
e

r
/

c
o

n
t

r
o

l
l

e
r 

j 
、

 
"
lk

3
3

 
^

‘
‘ 

K
SC

T
 5

 
15

 g
 

f
c

 P
O

 

) 
e

 
tg

g
n
i „_,
 V
 

/ 
C
LK

33
 I

 
1
9
 

V
t^

 

T
iv

rr
 

� 
1

 

_ 
�

— 
,
 

f
r
 

^
 

_
 

tn
 

Z
IZ

I 
r
 

个
1

1
 

z
w

^
c
 

(T
P 

T
 

V
r

P
i
C

T
i
^ 

r
f

Y
^

P
^

.
� 

�
 

—
� 

3
 �

^
 

iL
^ 

Kw
rrs

 „ 
�

IT is
se
 

' 
^

 ff
 ‘ 

" 
c

w
 •

�
 

R
W

 
�

�
]

'
n

 
T

3
—

 
^

 
U

) 
''

 
-

v
r

a
M

^ 

i^
Z

Z
L 

jf
^E

L
 

1
1

5
J
 

r
^
 

.e
 

\
 
r
 

—
 

=C
E
Zr

 
^^

^ 
7
 g
；̂

 
tir

?
 

Id
 >

 J
r 

加
 

is
f^

f^
 

§
H

 
f

H
—

I
P

l 
•

p
i

^ 
漏

 
W
- 

‘
 
-

 
B
E
R
R
.
 
D
S
A
C
K
 

g
e
n
e
r
a
t
i
o
n 

，
^ 

i!
 

o
r
 

.
 

• 
T

t
n
 

_
t
,
 

fO
 

^ 
0

0
 

P
ro

je
ct

 I
 S

M
3
 I

n
ie

 
jD

e
c
o

d
e

r 
| 
T

it
le

 
|D

e
c

o
d

e
r/

C
lo

c
k
 

o
r 

a
 

P
N

/M
P

C
 

� R
e
v.

 |
 1

.0
0
 |D

a
te

 1
18

-1
-8

9
 |
D

e
si

g
n
e
r 

| C
‘ 

H
, 

L
a

n
 



9
 

2

 I-
M
 

日
 J
 H

 d
 L
山
&
!
s
a
a

 6
8
-
I

—
8
I

 山
二
a

 0
0
-
t

 x
n
u
山
t
o
、
J
a
:
^
J
a
>
u
o
u
、
J
山
i
^
n
c
j

 s
n
g
|

 山
)
：
}
.
!
J
_

 
一
 J
n
a
n
d
u
l

 
一
一
C
I
S

 
一

 p
u
山
「
O
J
J
 

爾

 
」
 

w
f
f

 n
 

u
n
n
H
n

 ̂

 ,

 I

 ̂

 

U
A
W
n
 

^
 
i
。
\

 .

 H
^
f
e
^
F
^
n
n
 

l
y
l
^
h
,

 t
d

 .
-
f

 
I
^
^
L
n
l
 

t
 a

 y
f
a

 I

 ̂a
-
v
u
n
 

队
。
-
。
；

 -
H

 -_

 ~~̂

 "
j
"

 —
 

—
^
 --

 0

 k.

 1
»

 I

 a
l
a

 3

 ®
 t
|

 >.

 -
n

 •

 0
 3
,
0
0
1

 ,

 on
、
~
»

 «

 ̂

 
：
 

A
N
n
 〔

 0

 :

 5
 :
 6

 
o
n
/

 -

 h
m
^
h
m
d

 .

 -
n
、
 

A
N
n
 -

 2

 .

 -
r
r
-

 4

 ̂
_
二
\
 ̂

 *
 -

 7
 '
 -
 a

 
1

0

/

 6

 y

 、
 

A
N
n

 .

 r
2
_
1
3
\
y
l

 k
b

 
二
 2

 I
 …

。
-
<
.

 ,
。
-
:
-
a
t

 3
 o
t

 g

 s
、
-
<

 m
m
m
m
u
m
^
 

x
u
^
 f
m
r

 二
T
l
v
”

 I
J
d

 U
E

 :
 s
 :
 “

 "；

 =
<

 --
0
-

 
；
 s

 
；
 a
 2
/

 =
>
.

 M
M
A
M
M
^
 

X
U
H
W
 U
H
H
^
"

 4
 V
M
M
H
n

 k
h
:

 L

 "
<
r
u
E
F

 .
⑴
：
r
L

 

0

"

，

…

n

p

M

N

f

f

i
 

X
U
H
 J
l
^

 L

 "

 M
M
M
H

 2
<

 e

 s
o

 3
s

 ~

 …
s
<

 P
E

 .

 ,
a
、
 

^
H
H
 M
M
M
H
^

 ̂

 ̂

 M
U
M
n

 U
E
:

 5
 
；
 [
E
F
 b
u
-

 g
 3

。
,

 2

 

2

、

M

P

N

W

f

f

l
 

X
M
H
 J
H
^

 ,
。
7

 :

 T
-
i
T
T
 .

 
二
 s

 4
 8

 6
。
、
^
：

 

.

卜

s

 7
 2
 g

 s
、
^
：

 >
?
<
 

u
a
h
h

 2_

 k
b

 "
 -

 2
 »
<

 ̂

 2
<
.

 .

 z
 3
 
O
S

 2
 s
o

 /

 8
1

 y
,

 =
«
/
 

X
H
M
 -

】
-
r

 
二
 s
 

:

。

s

、

a

> s
 o
t

 u

 “
。
、
…
.

 .
；
-
a
、
…
s
 

X
H
M

 4

 >

 

2

。

、

•

 4

 >

 
t

i

o

/

 
I

⑴

 y
,
 

u
n
n
M
M
 、
-
二-

 -•

 7
 l
<

 n

 ,
1
0
/
二

 V

 .

 M

 ~

 •

 a

 i

 y
 o

 I

 =
a
、
t
s
<
o
 

U
M
U
 

J
<
9
X
3
一
d
l
r
l
^
l
n
u
j
a
p
l
 s
n
c
j
 

-

s

 ,

 _
 

f
l
 a
g
g
 S
I

 6

 s
 g
3

 】

 k

 J
 •

 <
N

 V
 

x
q
s
g
n

 ̂

 ̂

 f

 ̂
S
J

 c

 s
 4
 c

 =

 s
g
u
)
 

B
 M
-

 5

 
-

 s
i

 
^

 
^
 
4
 
二

 s
g
u
 

n
u
m
u
 :
用
1
二
1

 a

 5
 

产
 s

 O
M

 v
?

 
二

 i
 
力
 

f
i
i
j
 R

 l
i
t

 
二

 a

 ̂
 
?

於

 K
 O
H
d
J

 ,
5
*
3
為

 &

 
…

F
 f

 ‘
，
|
二

 s
§
】
 

s
e
o
”
n
_
c
-

 M
 •

 s
e
i

〕
 a

 p
-

 4
 r

 
丄
8

 s
l
x
w
i

 <
O
Z
I
S
、
>

 K-
r
 (
I
z
i
s
-

 >

 8
 

s
 
？

 c
c
d
i
 -
S
I

 s

 7
 3
<
1
1
=
!

。
】

 <
n
H
a

 i
i
s
s
^
x
 >

 L

 9

 I
s
w
g
)

 H
H
i
s
^
^
 

J
 
二

 B
 9
1

 
三
 g
二
一

 二
t
l
:
3
2
〕
】
 访
g
g
a

 一
二
o
)
呂
、
<

 ̂—
^
m
^

 6

 ̂

 ̂
 —^
^
^
^
M
M
U
 

s

 5
 
2
 
沪

 c
z
q
g
j

 ̂
g
i

 s

 s
 _

 *

 v
z

 二
g
s
j
 (
I
"
l
a
s
v
£

 I
^
U
O
^
K
C
X

 "
I
Z
I
S

 
—
J

 ̂

 ̂
 

—

i
 

a
e
a

 …
1

 “
 1
4
-

〕
”

 8
;
g
a
g
〕

 "
1

 0

 s
 4
 "
f
i

 
二
 s
i
u

 |

 C
U
I
B

 -
!
u
o
〉
B
 <

 i
 
鱼
 

、

O

S

 ̂

 c
 o
m

 
、
o
z
】
s

 ̂
^
 

一
 
8

 c

 
t

 .…"_

 n

 4
 ~

 5
s

 2

 ̂
 ~
 m
s

 ~^
^
M
^
n
n
n
 

g
i
c
l
 
^

 
亡
 
^
 
必

 a
a
g
〕

 

【
g
 o
n

 y
g
〔
i
g
.

 —^

 p

 1

 ̂
 i
d
A
U
 

^
 ̂
 2

 c
s
i
;

 .
s
i

 >

 •
二

 r
 ,
 
；

 
二

 ̂

 ̂

 》
 

W
I
 B
^
K

 t
t
s
f
i

 J
a
t
a
A
U
S

 s
n
q

 Q
C
S
9
-
v
w
a
 

：
—-
E
B
?
a
 "
l
a
.
j
t
l

 
^
 d

 
^
 
^

 a

 I
"

 8

 5,

 
5

 
2
 
二

 s
f
v
n
,
 

:—--Eg
 .【
-
i
>
-

 ̂

 ̂

 
；

 
二

 i
.

 h
K

 ！
-

 F
 ,

 <_

 
二

 I
S
O
 

I
H
t
J
M
I
 l
i
l
E
-
B
-
f

 l
i
f
f
i
 

n
u
—
.
 二
-
“
B
l

 -
3

 
；

 
t
 t
a
g
〕

 a
5
"
s
 -.
s

 ‘«

 ~
3
5
"
>
f
j

 ̂

 r
^
 

B
 m
m
m
l
r
h

 i
•
卜
-
^

 ̂

 8

 B
E
g
u

 c

 s
 4
 c

 a

 ̂
-
E
l
i
 ̂

 “

 O
S

 4

 s
 .
i
d
n
 

X

 ,

 ̂

 _2

 ̂
 9

 i
J
,
 

,

 s

 2
 -
s

 "
国
g
)
 

卜

 s
 2

 -
s

 t
e
p
^
^
A
N
 

n
u
 c
i

 
二
 ̂

 ̂

 c

 "
I
"

 .
 t.

 F

 ,
:

 -
!
.

 s
a
g
,

 ̂

 J
-

 F
 •
:

 =

 E
^
^
^
n
 

D

 

n
u
n
j
 ̂

 M
 ̂

 >

 .

 K
i

 a

 e
-

 4
 B

 Kn
.
^
,

 2

 5
-

 4

 »
 —^
^
^
^
X
M
 

^
 

“

^

 ̂
-
^
M
U
M
m
n

 k
E

 s

 7
 i
g
,

 .
 ̂

 s

 7

 ̂

 .
 

 ̂

二
一
 1

 浅
，
二
-
~

 g
g

 9
一

 5

 
一
 ̂l
-
a

 
£

 3
;
3
二
>
_

 二
z
l
g
j
;
!

 
-

 ̂̂
n
 

I

I

1

 a
、
a
-

 g
-
-
g
_
B

 „
」
E
"
"
*
 2

 2
T
I
1

 w

 &
 0
Z
I
S
5
a
2
-

 5
J
—
-
1

 -
z
o
m
i

 .—a--i」(
 

y
 

I
 m
m
m

 ̂

 o
u
"

 l

 *
 I

 n
l
q
)

 I

 -_

 -
 _
-

 z
-
y
u

 I
」
—
 

p

 ,
^
」

 ̂

 

A
 L

①
J
J
n
c
^

 s
n
c
^

 I
d
u
o
n
/
n
d
u
 



C
P

U
 

o
f 

a
 

P
N

/M
P

C
 

S
 

�
i

 �
!

�
:

i
�

�
I

 
c_

-3
i 

r̂c
T

 
TC

P
 p
a
 i
 

11
X
21

 J
.T

I I
IJ

.' 
J.

 I 
Jl
 p
o|K

i3
 D
O.

 r
 

r 
^

�
 

Z
D

rr
>

 
F
C

l 
C

l 
G

ju
w

ru
fv

ru
fU

A
^
ru

ru
n

jr
w

n
^
s
 

lU
d
 

D
1
 

r
j 

—
)

r
C

l 
—

。
^
o

o
•v

|(
^
u

^
‘u

)^
v
) 

—
。

w
^

D
l 

^
jj

~
j}

^ 

B
i

f
^

l
^

i 
r
.M

 
D

M
A

 
c

o
n

t
r
o

ll
e

r 
f
o

r 
P

N
^
s
 

^ 

�
J 
：

 e
g

 g
g
^ 

rr
x
 

n
ttt

o
 

R
^
：

 
«
 

n
- 

D
S
A
C

kl
 

(
J

、
 

D
13

 j
a
 

p
i/

 
^

X
t 

""
R

T
" 

A
4
 

八
 

O
T

T
R

 
-

j
^ 

: 
3
 9

 "
� 

j 
i 

. 

nnO
T

 
n
n
 

D1
5
 

p.X
 

--r
r-
 A
6

 
$ 

AB/D
O

 ^
 

. 
I

�
 

^ 
D
16

 
A

?
 

� 
A

9
/D

I 
W

~
~

 
a
io

 

^ 
rpm

 
,、

 
AO

 ^
~

^ 
O
SH

HE
B

 
^ 

R
/y
 

Tĉ
 A

i
i
/

D
3

§
i
Q

 
7
 

.
_

C
O

 
A
1。

11 
: 
—

—
^i

n
T

O
T

 
？

0
0 

AiB
/D
4

 
4

f
—

—
蓉

圣
阵
 

V
-n

l ̂
 

� 
A2

 I
II
 

v̂
 

o
H

E
^ 

D̂U
S/A

O
 -

-t-
 A

13
/D

5ô
 
、

13
/”|
 

^ 
o

 
�

 
<

 
L

�
�

 
• 

A
3
 g

^ 
^ 

%
 

A
H

/
D

e
^

l
—

—
3 

^ 
�

 
� 

r—
—

- 
� 
；

,f 
A4

 
cz

^™
—

f 
~

�
^

�
 

ro
 

A
15

/D
7
II
~

 
J
 T

O
 [
A
Tr̂

 
^ 

A8
 g

 f
 
ll
' 

^
m

^
l 

}""̂
C

LK
 

- ̂
 A

19
/D1

1
 ~

 
^ 

_
 

�
 

Cia
 A

ll 
� 

A2
5
 

I 
A
21

/D
13̂

~
 

m
 m

 ^
^ 

：
~

h
g
 

-j
T

T
 r

rt
if

R
 

A
ll
 

m
~

T
^ 

、
~

~
^ 

A
2
6
 

„ 
A

E
^-

D
M

 
^ 

⑴
 

e
n
 

• 
w

 
S
TA

TU
S

 
A
13

 E
ll)

' 
A

i-
i' 

^ 
、

0
7

" 
A

2
8
 

>
 

RC
O
TJ

 s
iH

 
~

 
m

 •
 

A M
 I
n

 V
 5

' 
、
• 

• 
Bi6

 A
29

 
sm

 ^
~

 
(53

3
 

iJE
Î

 
CL
K6
7
 

f̂W
M

T
 

A
A

3
0
 

^ ̂
 . 

, 
PC
LO

 5
1—

 
^ 

^H
T

 
” 

�
r

 
P

i—
 

>
>

>
>

!
• 

P
 >

 J
>

 >
 i

J
 >

 >
 _

 _
 

c
j c

j r
v
 ro

 ru
 ro

ro
lrv

j o
j r

J
rJ

rv
^ 

^ 
•

。
a
 

\
 (
r>

 
u
 
�

n
^
二

o
o
 

p
J
 

4K
 

_
L

o
,o

iu
 

I 

P
ro

je
c
t 

I 
S

M
3
 

|r
il
e
 

In
E
V
C
P
U

 |
 

T
it

le
 

|C
P

U
 

o
f 

a
 

P
N

/M
P

C
 

R
e

v
, 

1
.0

0
 

D
at

e
 1

1
8

-1
-8

9
 

D
e

s
ig

n
e

r 
C

 
H

. 
L
a
m

 
: 

to
 

o
 

:I
 

� 
1
 



APPENDIX D p. 131 

APPENDIX C 

PCB LAYOUT 

The PCB layout diagrams of the PNs and the MPC are printed on the following 

pages. 



A P P E N D I X  C  P . 1 3 2  

m  

a  

L  
H  

f  
•  

n  
0  

9  
0  

D  
9  

6  
1  

•  
t  

o  
o  

o  

•
 1 -

I  I  V  

A  •  •  X  #  

M
 _  •  u  

e  i  p  M  ̂  I . I • 一  缪 缠 f n  F  

^ • r •  m • ^  *  r  

M N • •  

•  c : 4 4 t  ̂f m ^ ^ i ^  拟  i  

4  

7 4 t . U 4 t  T 4 1 . t t 4 _  

I  I  t  n  

如  a  

• K l l l l l .  I n n ; n l l l l l  ！  -  • - - — - I  n u l l  1 1  m m .  J m l l l u l l  •  I  l l l l m  _  T ^ ^ s s s r ^ T T ^ n T ^  J T S S ?  H i n t  ' m m  l l l l l l l  C L  

, 二  _ —  _  ̂  o  

I I ^ ^  I I  I  r t  
— —

 o  

J  二  ： . 二  ： L 1 …  r 4 : t :  I  

• 丨 丨 . { - - - - - - 十 - - - - - - i l l  I  +  十 { * *  •  4 - { .  ！  i n  I  I n u t i l e  l l l l l n l l l l i l }  I I  t i  m m  I  I I I  

；  一  T I  I  T I J  1  ^ u m j  K c l l f : !  I  f  

P S *  H  I  J !  j  

_  7 4 1 h >  I  S  _  : :
…
I  m m m m m m n ~  ̂N  

I  1  c r : : -  I  1  I  p  

P A L 」 ：  ̂ K m  ‘ 1 . 2 4 *  5 5 • 二

 ~ ^  

m i l l !  m l  » { } {  - l u f c h .  I m m l l  ' I h l l h ^ l ^ l l  i  J .  ！
I n  H I  1 1 !  I  ;  t l • ！ s s • 蚕  l ! _  i l l .  ' H t m
 I  ！ I I I  I I  t  I I  t  

I  •  7 4 , • 孤

 r  「  I  

- -  I I - .  -  • :  •  J  t  

麵  I .
參

 、 A . 1 » f 镄

 I J  I  

： …  ，  ：  n  

^̂ ^̂ ^̂ H J  S O S *  •  
M
 
M

 I  •  

对 R A M 舞 厂 善  7 4 笼 春 秦  I  

c  ̂n  •  .  .  ‘ 」  r  

o  

1  场 狐 广 7 4  • 静  1 4  參  泰  P A 广

 1  參 辑 厂 *  

n  一  二  一  ̂^ m n  ̂ m ^
l  o  

a  I  I  I I — I  I I  I I  1  I I  — i  I  

T 4 L M 4 <  7 4 . ^ t * *  l
A L • 秦

 l U  l A L t ^ f u  V A l l A l u  S  从  K  “  f  

• I  j  I  j !  "  E  “  ！  N  

一  
—

 p  

^ 奏 广 替 t  秦  4  7  

泰

. i A U

 舞  t .
攀

 舞 署  4  7  犇 广  f l ^ l  -

— ^  - _  I I — -  I I  - .  o  

r  一  - I  -  M  

o  n  

0  “  ：  —  

1  o  o  o  们  

f  X  … ：  X  s  

N  ̂  

p  h  

o  

f  



>
 

P
N

 
f

l
o

o
r 

p
l

a
n

1
(

T
o

p
 

v
i

e
w

) 
m

 
~

 
” 

~
~

~
“

—
 

~
 

~
“ 

~
 

I
T

" 
g
 

1
 

I 
I 

i 
^ 

！
 

r
R

E
Q

 
D

e
c

o
. 

I'
 

^ 
O

 

II
 

i 
i 

) 
U

S
 

) 
i 

U
5
 

) 
U

4
0
 

) 
i 

U
3

S
 

】
 

U
3

4
 

P
A
LI

 a
 L

a
 

7
 4

jLS
24

4
 

h
P

A
L
I 
6L

«
 

I 
y4

LS
24

S
 

M
CM

6
 0

2
 5
P

 
！

 
.

' 
! 

I 
i 

—
 

If
—

i 
If
 

n
 

J 
I 

) 
�

U
4

 
) 

P
^
^
C

R
 

U
3
 

) 
u

s
e
 

) 
|
 

U
3

3
 

I 
, 

P
A

L
I 

fl
 

L
g
 

7
4

1
8

2
4

8
 

L
L
a
j2

 

丨
 

：‘
 
I 

‘ 
i 

】
 

M
CM

6
 0

25̂
 

I 
) 

PN
S|R

 U
1

 
) 

BP
R

 U
2
 

Z
 

) 
O
SC

. 
) 

I 
1
 

i 
� 

7
4

�
7

3 
I 

(
.
5

3
7

3
 

"
•

�
I

 
j7

4
L

S
2

4
S

 
“ 

」
 

I 
-
 

-
 

I 
I 

I 

) 
U

2
7
 

V
M

E
 

) 
U

4
9
 

) 
| 

U
2

9
 

U
3

0
 

i 
-g

-A
Li

 B
LJ

 
B
ut

 
^ 

7A
JE

JL
4._

 —
 

4
 S

 
^ 

M
C
M

60
25

P
 

I 
i 

I  
^ 

�
]

^ 
^

^
^ 

i 
) 

U
28

 
) 

；
U1

7
 

) 
U
48

 
) 

i 
u

" 
Z
Z
Z
Z
Z
Z
Z
Z
Z
I 

P
A
L]

 8
L8

 
P

A
II
 A

LB
 

o
 

74
F7

3
 

, 
| 
P
A
LI

 6
 L
B

 
o
 

！
 

I 
_
 

^
 

！
 

U
2
8

 
o

 
[ 

！
 

**
 

n
 

M
C

K
i6

 
0

2
 

8
l)

 
i 

) 
”

2
5
 

) 
丨

U
2

4 
) 

U
5

0
 

) 
I 

U
4

4
 

«
�

 

j 
[ 

7
4
 

1
 

. 
l-

^
-J

g
-A

j 
1
 a

 I
 

a
 

� 
jP

A
M

 
B

R
 �

.
|

 
^^

 
—

』
 

| 

I 
) 

J
T
o

 
) 

I 
U

2
3
 

) 
U

1
4
 

) 
� 

U
4

3
 

>
 

U
3

e
 

I 
74

1̂
24

8
 

74
 (.
82

46
 

I 
F>

AL
1

 6
 n

4
 

, 
P
A
LI

 8
 R

4
 

P
A
LI

 6
 L

8
 

1
 

� 
I 

z
� 

, 
Z

� 
�

 
I 

I 
r 

I 
) 

U
1
 
®

 
) 

I
U

2
2
 

) 
U

1
 
5
 

) 
1
 

U
4

2
 

U
4

tt
 

) 
U

4
7
 

^ 
i 

7
4

1
^

2
4
 

5
 

7
4

1
S

2
*

S
 

^ 
A

 L
. 
1
 6

 H
^ 

^
J

L
L
 

1
 6

 R
4
 

P
A

L
 

1
 6

 R
4
 

7
4

1
 

S
1
 

?
a
 

a
 

^ 
！
 

“
 

—
~
~ 

"
！
 

i 
i 

� 
~
i 

p
 

；
 

i 
) 

U
l 

8
 

) 
1

U
2

1
 

) 
U

1
6
 

) 
j 

U
4

1
 

〕
 

U
4

5
 

^ 
o
 

^ 
3
 

74
 1̂

24
5

 
74

 ls
2
4
5

 
^ 

PA
L1

 II
 L
S

 
^ 

jPA
L
 1

 8
 R

4
 

j 
PA

L
 1

 6
 R

4
 

O
 J

 
—

 
h 

I 
B

—
 

B—
p 

l! 
o 

a 
1

 
� 

I 
C

o
_
 

; 
i 

i 
i 

i 
\ 

丨
. 

.
.

I 
I 

I 
. 
‘ 

. 
I 

. 
. 

. 
I 

Q
-
 

a
.
 

o
 

O
 

O
 

〇
 

，
�

 

；
 

—
 

0
. 

2
0

0
0 

—
 

^ 

� 
‘ 

p
 

P
ro

j t
c\

 
SM

8
 
I 
F
l 
I 
e
 |
P
N

1
 

T
I t

 I
 e

 P
N

 f
lo

o
r 

p
i 
an

 
1
 

R
ev

. 
1
.0

0
 

o
.t
. 

7
-1

-9
0
 

D
«s

i 
on

«r
 

C
. 

H
. 

La
m

 
o
 

Q
 



> 13
 

PN
 

fl
o

o
r 

p
la

n 
2 

(T
o

p 
v

ie
w

) 
z D
 X o 

t 
< 

• 
. 

X 
Lo

ca
l 

bu
t 

g 
g 

O
 i

 I
 

b
uf

 f
 

T 

) 
U

6 
2 

) 
U

67
 

) 
U

«7
 

p 
7

4
L

S
2

4
5 

^ 
P

A
L

1
9

L
8 

^ 
P

A
L

I 
6 

L8
 

r 
'' 

I 
, 

^ 
) 

U
61

 
) 

U
6S

 
) 

U
50

 
uQ

s 
° 

u
e

e 
7

4
L

S
2

4
5 

，
 7

4
L

S
2

4
4
 

^ 
7

4
L

S
2

4
4
 

o
 

M
C

6
8
 
4

4
2
 

^ 
「

 
~

~
 

^ 
M

C
"

0
3
 

0
 

) 
U

8
0
 

) 
U

6
4
 

) 
U

5
1
 

、
7

4
L

S
2

4
S

 
^ 

7
4

L
8

2
4

4
 

7
4
 
L

S
2

4
4
 

) 
U

5
9

 
) 

U
5

3 
) 

U
S

2 
I 

7
4

L
S

3 
7 

3 
7

4
L

S
2

4
S

 
^ 

7
4

L
S

2
4

4
 

) 
U

5
• 

) 
U

S
4
 

) 
U

5
5
 

) 
U

5
6
 

[
7

4
L

S
3
 

7
 3

 
^ 

7
4

L
&

2
4

B
 

7
4

L
S

2
4

B
 

^ 
7

4
 

L
S

2
4

8
 

^ 
I 丄

 
9
 

2
 0

00
 

1
 

^ 
P

 
P

ro
j 

e
c(

 
S

M
S

 
F

l 
I 

•
 

P
N

2 
T

l 
t 

I 
e

 
P

N
 

f
l

o
o

r 
p

i 
a

n
 

2
 

R
e

 v
. 

1
.

0
0

 
o

.t
. 

7
- 

1 
- 

9
0

 
D

«
(i

 
o

n
«

r 
C

. 
H

. 
L

a
m

 
C

J 
1
 

^ 



� 
> T3 T3

 
m

 
z
 

P
 N

 
f

l
o

o
r 

p
l
a

n
 

1
 

(
B

o
t

t
o

m
 

v
i
e

w
) 

2
 

o
 

D
«

c
o

. 
R

E
Q

 

U
34

 
( 

U
35

 
( 

U
40

 
( 

U5
 

( 
Ue

 
( 

M
C

M
e

0
 2

 5
a

 
7

4
L

S
2

4
S

 
J
 

P
A

L
U

L
S

H
 

7
4

L
S

2
4

4
 

j 
P

A
L

I 
6

1
8
 

U
3

3
 

( 
U

3
0
 

( 
P

N
C

R
 

U
3
 

( 
U

4
 

( 

U
3

2
 

7
4

L
S

2
4

6
 

] 
P

A
L
 
1

 6
 L

8
 
^ 

7
4
 
L

S
S

7
3
 

、
 

P
A

L
 

1
6
 
L

8
 

, 

‘ 
M

C
M

6
0

2
5

6
 

[
Z

l 
( 

O
SC

. 
<

 2
 

C
 

PN
8R

 U
1

 (
 

_
 

7
4

L
S

2
4

S
 

J
 

I 
7

4
L

»
3

7
3
 

j 
7

4
L

S
$

7
3 

, 

U
30

 
( 

U
28

 
( 

U
4e

 
( 

V
M

E 
U

27
 

( 
M

C
M

8 
0 

2 
56

 
7

4
L

S
2

4
5 

7
4

F
0

4 
J 

B
uf

 
P

A
L

I 
6

1
8 

J 

J 
U

6 
8 

( 
U

48
 

( 
U

1 
7 

( 
U

2«
 

( 
= 

PA
LI 

en
 

, 
74

F7
4 

, 
PA

LI 
6LS

 「
 

PA
L
 1

 6
La

 
「

 
O

 
'' 

M
 

�
 

o
 

U
2
 S

 
( 

«
 

M
C

M
«
 0

2
 
8

fl
 

U
4

4
 

( 
U

S
 0

 
( 

U
2

4
 

( 
U

2
 5

 
( 

n
 

P
A

L
1

6
R

4
 

] 
7

4
F

0
4
 

J
 

7
4

L
S

2
 
4

S
 

j 
P

A
L

I
6

L
«
 

J
 

U
3

6
 

( 
U

4
3
 

( 
U

1
4
 

( 
U

2
3
 

( 
U

2
0
 

( 

P
A

L
I
<

L
8
 

J
 

P
A

L
1

e
R

4
 

^ 
P

A
L

1
6

R
4
 

J
 

7
4

L
S

2
4

S
 

「
 

7
4

L
S

2
4

S
 

「
 

7
4

�
�

�
 

U
 “ 

� 
( 

U
15

 
( 

U
22

 
( 

U
19

 
( 

J
 

P
A

L
I
0

H
4
 

J
 

P
A

L
I
»

R
4
 

J
 

P
A

L
I
a

H
4
 

J
 

7
4

L
S

2
4

6
 

^ 
7

4
L

S
2

4
6
 

, 

^ 
2
 

=
 

U
4

5
 

( 
U

4
1
 

( 
U

1
6
 

( 
U

2
1
 

( 
U

1
S

 
( 

q
 

S
 

«
 

P
A

L
I
e

R
4
 

J
 

P
A

L
I
g

R
4

 
] 

P
A

L
I
g

L
f
t 

J
 

7
4

L
S

2
4

S
 

J
 

7
4

L
S

2
 

4
 5

 
J
 

Co
 m

m
 

1
 

"
P

 

P
f

o
j.

c
t 

I 
S

M
S

 
I 

F
l 

I 
< 

|
B

A
C

K
1 

T
I 

t 
I 

e
| 

P
N

 
f

l
o

o
r 

p
l

a
n

 
1 

(
B

o
t

t
o

m
, 

R
"

. 
1 

•
 0

0
 

p
.t

, 
7

-
1

-
9

0
 

D
"

i
�

"
r

 
C

. 
H

. 
L

a
m

 
^ 



> -D
 

m
 

P
N

 
f

lo
o

r 
p

la
n 

2 
(

B
o

t
t

o
m

 
v

ie
w

) 
g o 

L
o

o
�

I
 

b
u

t 

b
u

ff
e

r 
a

 
(o

 
Q

 
3

 

U
«

7
 

( 
U

5
7
 

( 
U

6
2
 

( 

P
A

L
1

e
L

8
 

� 
P

A
L

I
J
 

7
4
 

L
S

2
4

5
 

U
5

0
 

( 
U

6
3
 

( 
U

O
1
 

( 

7
4

L
S

2
4

4
 

J
 

7
4

L
S

2
4
 

4
 

� 
7
 4

L
S

2
4
 

5
 

J
 

U
6

1
 

( 
U

e
4
 

( 
U

6
0
 

( 

7
4

L
S

2
4

4
 

� 
7

4
L

S
2

4
4

 
� 

7
4

L
S

2
4

S
 

U
6

2
 

( 
U

&
3
 

( 
U

S
9
 

( 

7
4

L
S

2
4

4
 

^ 
7

4
L

S
2

4
S

 
� 

7
 4

L
8

3
 

7
3
 

u
s
e

 
( 

U
5&

 
( 

U
S

4
 

( 
u

s
e

 
( 

7
4

L
S

2
4

B
 

4
 

7
4

L
S

2
4

5
 

J
 

7
4

L
S

2
4

S
 

� 
7
 

4
L

S
3

7
3
 

^ 
P

 
P
ro

je
ct

 
SM

S
 |

F
I 

I 
a

 |
b
a
ck

2
 

T
l t

 I
 »

|P
N

 f
lo

o
r 

p
la

n
 

2
 (

 B
O
M

 o
m
>

 
|R

O
V
. 

|l 
. O

o|
 o

.t
. 

17
 .
 1

. 
9
 0

 |
 

i o
 n

 •
 r

 
.~

L
a
m

 
5
 

⑦
 



APPENDIX D p. 137 

APPENDIX D 

VMEBUS ADDRESS MAP 

Given that 24 out of the 32 VME bus address lines are used, the active 

addressing space is 16 MBytes at most. We represent the VME address by 8 

hexadecimal digits. The address map is shown in figure D.l . 

VME addr. Space allocation 

00000000 Host machine“ 
007FFFFF 

00800000 MPC 
008FFFFF 

00900000 PN2 
009FFFFF 

OOAOOOOO PN3 
OOAFFFFF 

OOBOOOOO PN4 • • 
• • 

OOFFFFFF PN8 

OlFOOOOO Reserved 

FFFFFFFF || 

Figure D.1 VME address map 

The map implies that each processor node may equip up to 1 Mbytes private 

memory. The maximum number of add-on boards is 8 regardless of whether it 

is a slave PN or a MPC, except the host machine. 



APPENDIX D p. 138 

APPENDIX E 

PROCESSOR NODE ADDRESS MAP 

Local addr. PN definition MPC definition 

_ 0 0 0 0 Private RAM Private RAM 
xxOOFFFF 

xxOlFFFF VME address VME address 
xxTFFFFF 

xxnOOOOO Private RAM Private RAM 
xxnlFFFF 

xxn20000 RAM expansion RAM expansion 
xxnFFEEF 

xxnFFEFO reserved HALTR 

xxnFFEF3 

xxnFFEF4 PNCR MPCCR 

xxnFFEF? 

xxnFFEFS PNSR MPCSR 

xxnFFEFB 

xxnFFEFC BPR MPCBFR 

xxnFFEFF 

xxnFFFOO DDMA registers reserved 
xxnFFFFF 

Figure E.I Local address map of a PN/MPC. 

The local address map for a PN/MPC is presented in figure E.l. Notice that the 

register assignment for this two kind of boards are slightly different. According 

to the address map shown in appendix D,，n，is 8 for MPC, 9 for PN2 and so 

forth. Another irregularity is that the first 64 Kbytes starting at 00000000 are 

mapped to the PRIVATE memory of a PN/MPC instead of the host. It is due 

to the reset vector requirement described in chapter 5. 



APPENDIX D p. 139 

APPENDIX F 

REGISTER LAYOUT 

F.l Registers on a PN 

The Buffer Pointer Register (BPR) of a PN is simply an index to the message 

Bit Bit 

_ 0 _ /MPCRDY :���0|| | | /BCEND 

_ 1 _ GPCL 1 undefined 

_ 2 _ /BROADCAST _ /VMESEL2 

J _ /SYNCDMA 3 undefined 

J � _ /BCST _ 4 _ undefined 

J _ /VGRANT 5 undefined 

6 /BFn 6 undefined 

7 0 7 undefined 

PNSR PNCR 

Figure F.2 Definition of PNCR and PNSR 

queue. The picture is shown in figure F.l. The definition of the Status Register 

and Control Register is shown in figure F.2. 

0 1 2 3 4 5 6 7 bit 

Head pointer Tail pointer 

Figure F.2 Definition of the BPR. 

F.2 Registers on the MPC 



APPENDIX D p. 140 

The definition of the Status Register and Control Register is shown in figure 

F.3. The definition of HALTR can be found in figure F.4. 

Bit Bit 

_ 0 _ /BCEND 0 /BROADCAST 

J _ 0 1 /MPCRDY 

2 0 2 undefined 

3 0 3 undefined 

4 0 4 undefined 

5 0 5 undefined 

6 0 6 undefined 

7 0 7 undefined 

MPCSR MPCCR 
Figure F.2 Definition of the MPCCR and MPCSR. 

Bit Bit 

_ 0 _ /HALTPNl (MPC) 0 / B F l (MPC) 

J _ /HALTPN2 J _ /BF2 

2 /HALTPN3 2 /BF3 

__3_ /HALTPN4 3 /BF4 

4 /HALTPN5 (future use) 4 /BF5 

J _ /HALTPN6 (future use) 5 /BF6 

_ 6 _ /HALTPN7 (future use) 6 /BF7 

7 /HALTPN8 (future use) 7 /BF8 

HALTR MPCBFR 
Figure F.3 Definition of the HALTR and MPCBFR. 



APPENDIX G p141 

APPENDIX G 

PAL DESIGN 

；************************************************************** 

；* P A L s - D O C U M E N T A T I O N F I L E * 

PAL16L8 ； R e g i s t e r s i g n a l s decoder (U4) 
/PNSRS /DSKO /DS /PNCRS RW /BPRS /VMESl /VMES2 /ENl GND 
/EN2 /VMESEL /REGBUFG /BPROP BPRG PNCRG /PNSROP /RDSKl /RDSKO VCC 
/PNSROP = /PNSRS*RW*/EN2 
/PNCRG = DS + PNCRS + EN2 
/BPRG = BPRS + RW + EN2 
/BPROP = RW*/BPRS*/EN2 
/REGBUFG = / PNSRS *RW*/EN2 + RW*/BPRS*/EN2 
/RDSKO = EN2*/EN2 ； 0 
/RDSKl = EN2 + /EN2 ； 1 
/VMESEL = /VMES1*/EN1 + /VMES2*/EN1 ； * * no t a 3 - s t a t e s i g n a l ！ * * 
• ^̂  ^ ^ ̂  ̂ ^ ^ ̂  ̂ ^ 
/ “ 

PAL16R4 ； B u f f e r f u l l gene ra t i on (U6) 
CLK AO A1 A2 A3 BO B l B2 B3 GND 
/EN /BPROP /FBO NC NC /BFULL NC /FBI /FB2 VCC 
/FBO = AO*BO + /AO*/BO 
/ F B I = A1*B1 + /A1* /B1 
/FB2 = A2*B2 + /A2*/B2 
/BFULL ••= /BPROP*/FBO*/FB1*/FB2*A3*B3 + /BPROP*/FBO*/FB1*/FB2*/A3*/B3 
• ̂ ^ ̂  ̂ ^ ̂  ̂ ^ ̂ ^ ̂ ^ ̂  ̂ ^ ̂ ^ ̂  ̂  ̂  ̂ ^ 

/ 一 — — 一 一 — — — — 一 — — — — — — 一 一 — — — — — — — — — — — — — — — — — — — — — — 

PAL16L8; MPC r e g i s t e r s decoder (U7) 
/DS /MPCCR RW /RESET /HALTRS /MPCSRS /MPCBFRS /DSACKO /EN l GND 
/EN2 /RDSACKl /RDSACKO NC HALTRG /MPCRBG /MPCBFROP /MPCSROP MPCCRG VCC 
/RDSACKl = /EN + EN ; 0 

RDSACKl.TRST = /DSACKO 
/RDSACKO = /EN* EN ； 1 

RDSACKO.TRST = /DSACKO _ 
/HALTRG = DS*RESET + HALTRS *RESET 
/MPCBFROP = /MPCBFRS*RW 
/MPCSROP = /MPCSRS*RW 
/MPCRBG = /MPCBFRS*RW 4- /MPCSRS*RW 

/MPCCRG = MPCCR + DS + RW 



APPENDIX D p. 142 

• f 

PAL16L8 ； MPC HALT-REG DECODER (UIO) 
DO D1 D2 D3 /HALTPNO /HALTPNl /HALTPN2 /HALTPN3 /RESET GND 
/EN NC NC NC NC HD3 HD2 HDl HDO VCC 
/HDO = /DO + /RESET 

HDO.TRST = /EN 
/HD l = /D1 + /RESET 

HDl.TRST = /EN 
/HD2 = /D2 + /RESET 

HD2.TRST = /EN 
/HD3 � /D3 + /RESET 

HD3.TRST = /EN 
• 

/ — — — — — — — — — — 

PAL16R4 ； PN Sender l o g i c (U14) 
CLK /BROADCAST /HALTI /ACK SYNCDMA /DSACKO /DSACKl /DTC /DONE GND 
/EN /RESET NC /S3 /S2 / S I /SO PCL /HB VCC 
/SO � = RESET*S2*S1*SO*HALTI*/BROADCAST + RESET*S2*S1*/S0 

+ RESET*S2*/S1*/S0*/SYNCDMA + RESET*S2*/S1*/S0*DSACK0*DSACK1 
+ RESET*/S2*/S1*S0 + RESET*S2*/S1*SO*/DTC*DONE 
+ RESET*/S2*/S1*/S0*/SYNCDMA 

/ S I � = RESET*S2*S1*/S0*/ACK*SYNCDMA + RESET*S2*/S1*/S0 
+ RESET*/S2*/S1*S0 + RESET*/S2*/S1*/S0 + RESET*S2*/S1*SO*DONE 

/S2 �� RESET*S2*/S1*/S0*SYNCDMA*/DSACK0 + RESET*/S2*/S1*S0*SYNCDMA 
+ RESET*S2*/S1*/S0*SYNCDMA*/DSACK1 + RESET*/S2*/S1*S0*/SYNCDMA 
+ RESET*/S2*/S1*/S0*/SYNCDMA 

/HB = /HALTI "BROADCAST 
PCL.TRST = S2*/S1*/S0 

/PCL = /HALTI*HALTI ； GPCL=1 3-STATE 

• ^^ ^^ ^ ^ ^^ ^ 

/ 

PAL16R4 ； PN Sender l o g i c (U14) 
CLK /BROADCAST /HALTI /TEM SYNCDMA /DSACKO /DSACKl /DTC /DONE GND 
/EN /ACKIN /ACKOUT /S3 /S2 / S I /SO PCL /HB VCC 
/SO � = S2*S1*S0*HALTI*/BROADCAST + S2*S1*/S0 

+ S2*/S1*/S0*/SYNCDMA + S2*/S1*/S0*DSACK0*DSACK1 
+ /S2* /S1*S0 + S2*/S1*SO*/DTC*DONE 
+ /S2*/S1*/S0*/SYNCDMA 

/ S I � = S2*S1*/S0*/TEM + S2*/S1*/S0 + /S2* /S1*S0 + S2*/Sl*SO*DONE 
+ /S2* /S1* /S0 

/S2 � = S2*/S1*/S0*SYNCDMA*/DSACK0 + S2 */Sl*/SO*SYNCDMA*/DSACKl 
+ /S2*/S1*S0*/SYNCDMA + /S2*/S1*S0*SYNCDMA 

+ /S2*/S1*/S0*/SYNCDMA 
/HB = /HALTI "BROADCAST 
/PCL = /HALTI*HALTI ； GPCL=1 3-STATE 

PCL.TRST = S2*/S1*/S0 
/ACKOUT = /ACKIN*SYNCDMA ； E x t e r n a l feedback , 



APPENDIX I p. 143 

• ^^ ^ ^^ ^^ 
t 

PAL16R4 ； PN Rece i ve r l o g i c (U15) 
CLK3 3 /BCST /ACK GPCL /AS /DSVME /DTC /DONE /HB GND 
/EN /RESET /REQ /TM /S2 / S I /SO SYNCDMA PCL VCC 
/SO � = RESET*S2*S1*S0*/HB + RESET*S2*S1*/S0 + RESET*S2*/Sl*/SO*ACK 

+ RESET*/S2*/S1*S0*/AS + RESET*/S2*S1*/S0*DSVME 
/ S I � = RESET*S2*S1*/S0*/BCST + RESET*S2*/S1*/S0 + RESET*S2*/Sl*SO 

+ RESET*/S2*/S1*S0*AS + RESET*/S2*S1*S0*/DTC*DONE 
/S2 � = RESET*S2*/S1*S0*GPCL + RESET*/S2*/S1*S0 + RESET*/S2*S1*/S0 

+ RESET*/S2*S1*SO*DTC*DONE 
/TM � = RESET*S2*S1*S0*/HB + RESET*S2*S1*/S0 + RESET*S2*/S1*/S0*ACK 

+ RESET*S2*/S1*S0*GPCL + RESET*/S2*/Sl*SO*AS 
+ RESET*/S2*S1*/S0*/DSVME + RESET*/S2*S1*SO*DTC*DONE 

/REQ = /BCST + BCST ； /REQ = 0 i f S2* /S1* /S0 o t h e r w i s e X 
REQ.TRST = S2* /S1* /S0 

/SYNCDMA = /BCST + BCST ； O:no t r e a d y , 1 : p u l l e d up , X:OK 
SYNCDMA.TRST = /TM 

/PCL = /BCST*BCST ； /PCL = 1 i f /S2* /S1*S0 o t h e r w i s e X 
PCL.TRST = /S2* /S1*S0 

• 

f 

PAL16R4 ； PN Rece i ve r l o g i c (U15) [ [ [ OLD VERSION ] ] ] 
CLK3 3 /BCST /ACK GPCL /AS /DSVME /DTC /DONE /HB GND 
/EN TEMP /REQ /S3 /S2 / S I /SO SYNCDMA PCL VCC 
/SO � = S2*S1*S0*/HB + S2*S1*/S0 + S2*/Sl* /SO*ACK + /S2* /S1*S0* /AS 

+ /S2*S1*/S0*DSVME 

/ S I � = S2*S1*/S0*/BCST + S2* /S1* /S0 + S2*/S1*S0 + /S2* /S l *SO*AS 
+ /S2*S1*SO*/DTC*DONE 

/S2 � = S2*/S1*S0*GPCL + /S2* /S1*S0 + /S2*S1* /S0 + /S2*S1*SO*DTC*DONE 
/REQ = /BCST + BCST ； /REQ = 0 i f S2* /S1* /S0 o t h e r w i s e X 

REQ.TRST = S2* /S1* /S0 
/TEMP = S2* /S1* /S0 + /S2*S0 + S2*S1*/S0 

/SYNCDMA = /BCST + BCST ； 0 : n o t r e a d y , 1 : p u l l e d up , X:OK 
SYNCDMA.TRST = /TEMP 

/PCL = /BCST*BCST ； /PCL = 1 i f /S2* /S1*S0 o t h e r w i s e X 
PCL.TRST = /S2* /S1*S0 

V 



APPENDIX G P.144 

f — 一 — 一 — — 

PAL16L8 ； PN Sender FSM decoder (U16) 
SO S I S2 S3 /VMEEN NC NC NC NC GND 
NC GPCL /REQ /DSACKO /DSACKl /VMEDEN /VDS /TEMP /BCST VCC 
/TEMP = /S2* /S1* /S0 + /S2*/S1*S0 + S2* /S1* /S0 + S2*/S1*S0 + S2*S1*/S0 
/BCST = /VMEEN + VMEEN ； 0 

BCST.TRST = /TEMP 
/GPCL = /VMEEN*VMEEN ； 1 

GPCL.TRST = S2* /S1* /S0 
/REQ = /VMEEN + VMEEN ； 0 
REQ.TRST = S2*S1*/S0 

/DSACKO = VMEEN*/VMEEN ； 1 
DSACKO.TRST = S2*/S1*S0 

/DSACKl = VMEEN + /VMEEN ； 0 
DSACKl.TRST = S2*/S1*S0 

/VDS = /BCST*/S2* /S1 + /S2*/S1*S0 ； ==> /S2* /S1 
/VMEDEN = /VMEEN 4- /BCST* /S2* /S l + /S2* /S1*S0 

• mm mmm vm ^m ^m MB W ^ ^ ^^ ^^ ^^ ^^ ^ ^^ ^^ 

/ 

PAL16L8 ； VME address decoder (U17) 
DIPO D I P l DIP2 DIPS /VAS A20 A21 A22 A23 GND 
/ E N l NC B l B2 B3 B4 NC NC /BSEL VCC 
/ B l = A20* /DIP0 + /A20*DIP0 ； i n t e r n a l feedback 
/B2 = A21* /D IP1 + /A21*DIP1 ； i n t e r n a l feedback 
/B3 = A22*/DIP2 + /A22*DIP2 ； i n t e r n a l feedback 
/B4 = A23*/DIP3 + /A23*DIP3 ； i n t e r n a l feedback 
/BSEL = B1*B2*B3*B4*/VAS*/EN1 

• ^m mmm mmm ^m ^m mm ^ mm ^ ^ ^ ^ mtm mmm ^ mm ^ ^ ^ ^ ^ ^ 

/ — 

PAL16L8 ； VME t o PN decoder 1 (U25) 
/BERRI /WRITEI /ASI /BERRVMEI RWI >ASVMEI /VAS /VMEEN /VGRANT GND 
NC NC DDIR /ASVMEO /ASO /WRITEO /BERRO RWO /BERRVMEO VCC 
/BERRVMEO = /BERRI 

BERRVMEO.TRST = /VMEEN*VGRANT ； as a s l a v e , o u t p u t BERR 
/RWO = /WRITEI 
RWO. TRST = /VMEEN*VGRANT 

/BERRO = /BERRVMEI 
BERRO. TRST = /VMEEN*/VGRANT ； as a master 

/WRITEO = /RWI - -
WRITEO .TRST = /VMEEN*/VGRANT 

/ASO = /ASVMEI 
ASO. TRST = /VMEEN*VGRANT 

/ASVMEO = /ASI*/VAS ； /VAS 
ASVMEO. TRST = /VMEEN*/VGRANT 

/DDIR = VGRANT*WRITEI + /VGRANT*/RWI 



APPENDIX D p. 145 

• ^ ^ ^ ^ ^ ^^ ^ ^^ ^ 

/ — 一 一 一 一 一 — — — — — 

PAL16L8 ； VME to PN decoder 1 (U25) 

/BERRI /WRITEI /ASI /BERRVMEI RWI /ASVMEI /VAS /VMEEN /VGRANT GND 
NC NC NC /ASVMEO /ASO /WRITEO /BERRO RWO /BERRVMEO VCC 

/BERRVMEO = /BERRI 

BERRVMEO. TRST = /VMEEN*VGRANT ； as a slave, output BERR 

/RWO = /WRITEI 

RWO. TRST = /VMEEN*VGRANT 

/BERRO = /BERRVMEI 

BERRO. TRST = /VMEEN*/VGRANT ； as a master 

/WRITEO � /RWI 

WRITEO .TRST = /VMEEN*/VGRANT 

/ASO = /ASVMEI 

ASO . TRST = /VMEEN*VGRANT 

/ASVMEO = /ASI*/VAS 

ASVMEO. TRST = /VMEEN*/VGRANT 

； D S l I 0 0 0 0 1 1 1 1 

；DSO I 0 0 1 1 0 0 1 1 

；LWD I 0 1 0 1 0 1 0 1 ； + 

； S I l I 0 0 1 1 1 1 1 1 
； S I O I 0 1 0 0 0 0 1 1 
；AO I 0 0 0 0 1 1 1 1 “ 

； D K l I 0 0 x 1 x 1 1 1 

；DKO I 0 1 0 0 0 0 1 1 

PAL16L8 ； VME to PN decoder 2 (U26) 

/DSO /DSl /LWORD /DTACK /VMEEN /VGRANT NC NC NC GND 

NC /NEWSIZl NEWAO AO /DSACKl /DSACKO /DS SIZl SIZO VCC 

/SIZO = /DSO*/LWORD + /DS1*DS0 + DS1*/DS0 

SIZO .TRST = /VMEEN*VGRANT ； as a slave 

/SIZl = /DSO*/LWORD + /DS1*/DS0 + /DS1*LW0RD 

SIZl .TRST = /VMEEN*VGRANT 

/DS = /DSO + /DSl 

DS.TRST = /VMEEN*VGRANT 

/DSACKO = /DTACK*/DSO*/LWORD + / DTACK*/DS1*DS0 + /DTACK*DS1*/DS0 

DSACKO. TRST = /VMEEN*/VGRANT 

/DSACKl = /DTACK*/DS 0 */LWORD + /DTACK*/DS1*/DS0 + 

/DTACK*/DSl*LWORD 

DSACKl. TRST = /VMEEN*/VGRANT 

/AO = /DSO / void, should be deleted ilii 

AO.TRST = /VMEEN*VGRANT 

/NEWAO = /DSl 

NEWAO . TRST = /VMEEN*VGRANT 

/NEWSIZl = /DS1*/DS0 

NEWSIZl.TRST = /VMEEN*VGRANT 

； S l j O O O O l l l l 

； S O j O O l l O O l l 

； A 0 | 0 1 0 1 0 1 0 1 ； + 

； D l | 0 0 0 0 1 0 1 1 

； D O j O O O O O l l l 



APPENDIX D p. 146 

PAL16L8 ； PN to VME decoder (U27) 

/DSACKO /DSACKl /DS SIZO SIZl /VMEEN /VGRANT /VDS AO GND 

NC NC NC NC NC /DTACK /LWORD /DSl /DSO VCC 

/LWORD = /SIZ0*/SIZ1 

LWORD . TRST = /DS*/VMEEN*/ VGRANT 

/DTACK = /DSACKO + /DSACKl 

DTACK. TRST = /VMEEN*/VGRANT 

/DSl = /SIZl + /SIZO*AO + /VDS 

DSl. TRST = /DS*/VMEEN* / VGRANT 

/DSO = /SIZl + /SIZO*/AO + /VDS 
DSO. TRST = /DS*/VMEEN*/VGRANT 
• ̂^ ̂^ ̂  ̂̂  ̂̂  ̂̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂̂  

A ^ ——— — — — 
PAL16L8 ； SRAM controller 1 (U36) 
RW A1 AO SIZO SIZl /RAMS /DSKOUT /RDSKO /RDSKl GND 

/REGS DSKl DSKO /E3 /E2 /El /EO /W /G VCC 

/G = RW*/RAMS ‘ 

/W = /RW*/RAMS 

/EO = /A1*/A0*/RAMS 

/El = /A1*A0*/RAMS + /A1*SIZ0*/RAMS + /A1*/SIZ1*/RAMS 

/E2 = A1*/A0*/RAMS + /A1*/A0*/SIZ0*/SIZ1*/RAMS 

/E3 = A1*A0*/RAMS + A1*SIZ0*/RAMS + /A0*/SIZ1*/SIZ0*/RAMS 

/DSKO = /RDSKO*/REGS + /RAMS*SIZO 

DSKO.TRST = /DSKOUT 

/DSKl = /RDSK1*/REGS + /RAMS*SIZ1 
DSKl.TRST = /DSKOUT 
• -

/ 

PAL16L8 ； Local address decoder (U39) 

A2 0 A21 A22 A23 /AS DIPO DIPl DIP2 DIP3 GND 

/ENl /VMESELl LI L2 L3 L4 /VMESEL2 /VMESEL /LOCAL VCC 

/LI = A20*/DIP0 + /A20*DIP0 ； internal feedback 

/L2 二 A21*/DIP1 + /A21*DIP1 ； internal feedback 

/L3 = A22*/DIP2 + /A22*DIP2 ； internal feedback 

/L4 = A23*/DIP3 + /A23*DIP3 ； internal feedback 

/LOCAL = L1*L2*L3*L4*/AS*/EN1 + /A20*/A21*/A22*/A23*/AS*/EN1 

/VMESEL = /AS*/L1*/EN1 + /AS*/L2*/EN1 + /AS*/L3*/EN1 + /AS*L4*/EN1 

/VMESELl = /AS*/L1*/EN1 + /AS*/L2*/EN1 + /AS*/L3*/EN1 + /AS*/L4*/EN1 

/VMESEL2 = /AS*/L1*L0CAL*/EN1 + /AS*/L2 *L0CAL*/EN1 

+ /AS*/L3*L0CAL*/EN1 + /AS*/L4*L0CAL*/EN1 
• ^ OT mm w ^m mmm ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
/ — — — — — — — — — — — _ — — — _ 一 — — 

PAL16L8 ； local address decoder 2 (U40) 

A2 A3 A8 A9 AlO All A17 A18 A19 GND 

/LOCAL NC /HALTRS /PNCRS /PNSRS /DMAS /BPRS /REGS /RAMS VCC 

/HALTRS = /A2*/A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/PNCRS = A2*/A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/PNSRS = /A2*A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/DMAS = A8*A9*A10*A11*A17*A18*A19*/LOCAL 

/BPRS = A2*A3*A11*A10*A9*/A8*A17*A18*A19*/LOCAL 

/REGS = A17*A18*A19*/L0CAL 

/RAMS = /A17*/LOCAL + /A18*/L0CAL + /A19*/LOCAL 



APPENDIX G p. 147 

• ^ _ ^ ^ ^ ^ ^ ^^ ^ ^ ^^ ^ ^ ^ ^ ^^ ^^ 

t — 

PAL16R4 ； Local bus arbiter (U41) 

CK /BRO /BRl /BGACKO /BGACKl /BG /RESET NC NC GND 

/EN /BGl /BGO NC /S2 /SI /SO /BGACK /BR VCC 

/SO � = RESET*S2*S1*S0*/BR0 + RESET*S2*S1*/S0 + RESET*/S2*S1*/S0*BGACK0 
/SI � = RESET*S2*S1*S0*BR0*/BR1 + RESET*S2*/S1*S0 + 

RESET*/S2*/S1*S0*BGACK1 
/S2 � = RESET*S2*S1*/S0*/BG + RESET*/S2 *S1 */SO + 
RESET*/S2*S1*S0*/BGACK0 

+ RESET*/S2*S1*S0*/BGACKl + RESET*S2*/S1*S0*/BG + 
RESET*/S2*/S1*S0 
/BR = S2*S1*/S0 + S2*/S1*S0 

/BGACK = /S2*S1*S0 
/BGO = /S2*S1*/S0 

/BGl = /S2*/S1*S0 
• 

I 

PAL16R4 ； Local bus controller (U42) 

CLK3 3 /BG /VMESEL /BSEL /VGRANT /LOCAL /BERR /DSACKO /DSACKl GND 

/EN /VMEEN /RESET /CDEN S2 SI SO /BGACK /VSEL VCC 

/SO � = RESET*S2*S1*S0*/VMESEL*BSEL + RESET*S2*S1*/S0 

+ RESET*S2*/S1*/S0*/VGRANT + RESET*/S2 *S1*/S0 + RESET*/S2*/S1*/S0 

+ RESET*/S2*/S1*/S0*/BSEL 

/SI � = RESET*S2*S1*S0*/BSEL + RESET*S2*/Sl*SO 

+ RESET*/S2*/S1*S0*BERR*DSACK0*DSACK1 + RESET*/S2*S1*/S0*/BG 

+ RESET*/S2*/S1*/S0*BERR*DSACK0*DSACK1 

+ RESET*S2*S1*/S0*/VGRANT + RESET*S2 */Sl*/SO*/VGRANT 

+ RESET*/S2*/S1*/BSEL 

/S2 � = RESET*S2*/S1*S0*/BG + RESET*S2 *S1*SO*/LOCAL*BSEL 

+ RESET*S2*S1*/S0*/BSEL + RESET* / S2*/S1* / SO *BERR*DSACKO *DSACK1 

+ RESET*/S2*/S1*S0*BERR*DSACK0*DSACK1 

+ RESET*/S2*S1*S0*BERR*DSACK0*DSACK1 + RESET*/S2*S1*/S0 

+ RESET*/S2*/S1*/BSEL 

/CDEN � = RESET*S2*S1*SO*/LOCAL*BSEL + 

RESET* / S2 * S 1*S0*BERR*DSACK0*DSACK1 

+ RESET*S2*S1*/S0*/VGRANT + RESET*S2 */Sl*/SO*VGRANT 

/VMEEN = /BG + BG ； /VMEEN=0 if /S2*/S1, otherwise X 

VMEEN.TRST = S2*/S1 ； ！!! wrong i！1 should be /S2*/S1 
/BGACK = /BG + BG ； /BGACK=0 if /S2*/S1, otherwise X 

/VSEL = /BG + BG ； 0 

VSEL.TRST = S2*/S0 

•V 



APPENDIX D p. 148 

• ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^ ^^ ^ ^^ 

, 一 — — — 一 — — — 一 一 一 — 一 一 — 
PAL16R4 ； VME master logic (U43) 

CLK3 3 /VSEL /BG3IN /DTACK /VBERR /BROADCAST /BCST /OSO /RESET GND 

/EN /VAS /VMEEN /U43TEMP S2 SI SO /BBSY /VBR VCC 

/SO � = RESET*S2*/S1*S0 + RESET*S2*/S1*/S0 + RESET*S2*S1*/S0 

+ RESET*/S2*S1*/SO*BROADCAST + RESET* / S2*/S1* / SO *DTACK* VBERR 

/SI � = RESET*S2*S1*S0*/VSEL + RESET*S2*/S1*S0 + RESET*S2*/S1*/S0*BG3IN 
+ RESET*/S2*S1*/SO*BROADCAST + RESET*/S2*/S1*/S0 

+ RESET*/S2*S1*S0*BCST 

/S2 � = RESET*S2*S1*/S0*BG3IN + RESET*/S2*S1*/S0 + RESET*/S2*S1*S0 

+ RESET*/S2*/S1*/S0 

/U43TEMP � = S2*/S1*/S0*/BG3IN + /S2*S1*/S0 + S2*S1*/S0 

+ /S2*/S1*/S0*DTACK*VBERR + /S2*S1*S0*/BCST 

/VAS = RESET*/S2*/S1*/S0 

/VMEEN = /VSEL + VSEL 

VMEEN.TRST = /OSO 

/BBSY = /VSEL + VSEL 

BBSY.TRST = /U43TEMP 

/VBR = /VSEL + VSEL 

VBR.TRST = /VSEL*S2 
• 一 

f — — — — — 一 — — — — — — — — 一 — — — 一 — — — — 一 — — _ 面 — _ _ — 一 — 

PAL16R4 ； VME slave logic (U44) 

CLK3 3 /BSEL /BG /AS /BG3IN ISO ISl IS2 /U43TEMP GND 

/EN /VGRANT /RESET /BG30UT /OSO SI SO /CBR /BGACK VCC 

/SO := RESET*S1*S0*/BSEL + RESET*S1*/S0 + RESET*/S1*/S0*/AS 

/SI � = RESET*S1*/S0*/BG + RESET*/S1*/S0*/AS + RESET*S1*S0*/BG3IN 

+ RESET*/S1*S0*/BG3IN 

/OSO � = RESET*IS2*IS1*/IS0*BG3IN 

/BG30UT ：= RESET*S1*S0*/BG3IN + RESET*/S1*S0 ； 1-st board diff. 
/CBR = /BG + BG ； 0 

CBR.TRST = S1*/S0 

/BGACK = /BG + BG ； 0 

BGACK.TRST = /S1*/S0 

/VGRANT = /BG + BG ； 0 

VGRANT.TRST = /U43TEMP 



APPENDIX D p. 149 

• ^^ ^^ ^^ ^^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ 鶴 ^^ ^^ ^ ^^ 一 ^ ^^ ^ ^ 

f 

PAL16R4 ； BERR generation (U45) 

CLK3 3 Q /VGRANT /DSACKO /DSACK1 /AS ISO ISl IS2 GND 

/EN /A /CLR /S3 /S2 /SI /SO /BRl /BERR VCC 

/SO ：= S3*S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 1101*/C1 

+ S3*S2*/S0*/AS*DSACK0*DSACK1*VGRANT ； 11?0*/C1 

+ S3*/S2*S1*/AS*DSACK0*DSACK1*VGRANT ； 101?*/C1 

+ /S3*/S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 000?*/Cl 

+ /S3*S2*S1*S0 ； 0111 

/SI ：= S3*S2*S1*S0 + /S3*S2*S1*/S0 ； 1111 + 0110 

+ S3*S2*S1*/S0*/AS*DSACK0*DSACK1*VGRANT ； 1110*/C1 

+ /S1*/S0*/AS*DSACK0*DSACK1*VGRANT ； ？?00*/Cl 
+ S3*/S2*/S1*S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 1001*C3 

+ /S3*/S2*S1*S0*/Q*/AS*DSACK0*DSACK1*VGRANT ； 0011*C2 

+ /S3*/S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 0001*/C1 

+ /S3*S2*/S1*S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 0101*C3 

/S2 ：= S3*S2*/S1*/S0*/Q*/AS*DSACK0*DSACK1*VGRANT ； 1100*C2 

+ S3*/S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 100?*/C1 

+ /S2*S1*/AS*DSACK0*DSACK1*VGRANT ； ？01?*/C1 

+ /S3*/S2*/S1*S0*/AS*DSACK0*DSACK1*VGRANT ； 0001*/C1 

+ /S3*/S2*/S1*/S0*Q*/AS*DSACK0*DSACK1*VGRANT ； 0000*C3 

/S3 � = S3*/S2*S1*/S0*/Q*/AS*DSACK0*DSACK1*VGRANT / 1010*C2 

+ /S3*/S2*/AS*DSACKO *DSACK1*VGRANT ； 0 0 ? ? * / C l 
+ /S3*S2*/S1*/AS*DSACK0*DSACK1*VGRANT ； 010?*/C1 

+ /S3*S2*S1*S0 ； 0111 
/ B R l = I S 2 * / I S 1 * I S 0 + / I S 2 * I S 1 * / I S 0 
/BERR = Q + /Q 
BERR.TRST = /S3*S2*S1 

/A = S3*S2*S1*/S0 + S3*/S2*/S1*/S0 + S3*/S2*S1*S0 ； 1110 + 1000 + 1011 

+ /S3*/S2*S1*/S0 + /S3*/S2*/S1*S0 ； 0010 + 0001 + 0100 

+ /S3*S2*/S1*/S0 

/CLR = S3*S2*S1*S0 

� mm ^ ^m ^m ^m ^ ^ mm mm mm ^ ^ ^ ^^ ^ • ^^ ^ ^ ^ ^ ^ ^ mm ^ ^ ^ ^ ^ ^ib ^ ^ ^^ ^ ^ ^ ^ mm mmm ^ mm ^ w ^m ^m ^m m mm 

PAL16R4 ； DSACK generation + SRAM (U46) 

CK /AS /DMASEL /VMESEL ISl IS2 /BSEL NC DEL GND 

/EN /ASO /DSKO NC SI SO /DSACKOUT /BGACKO /VMEEN VCC 

/DSACKOUT ：= DSACKOUT*/AS*DMASEL*VMESEL + /DSACKOUT*/AS ； cfcsolete 

/BGACKO = /AS + AS _ 

BGACKO . TRST = /IS2*/IS1 

/VMEEN = /AS + AS 

VMEEN.TRST = /IS2*/IS1 

/ASO = /BSEL*/VMEEN*DSACKOUT + /DSACKOUT 

+ /DSACKOUT*/VMEEN 

/DSKO = S1*/S0 

DSKO. TRST = DMASEL*VMESEL 

/SO := /S1*S0*DEL + /S1*/S0 + S1*/S0*/AS*/VMEEN + /S1*S0*/DEL 

+ S1*S0*/AS*/VMEEN*/DEL 

/SI � = S1*S0*/AS*/VMEEN*DEL + /S1*S0*DEL 

• ^ ^ ^^ ^ ^^ ^^ ^^ ^^ ^ ^ ^ MM aw ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^m ^m ^m ^ ^ MM ^ ^ ws m ^ • ^ ^ ^ «« ^^ ^ ^ as ^ ^ ^^ 

t 



APPENDIX D p. 150 

PAL16L8 ； CPU bus converter (U57) 

/DSIN SIZIIN SIZOIN /UDSIN /LDSIN /DMASEL /OWN /CPUAS CPURW GND 

NC NC /BUFDIR /LDSOUT /UDSOUT SIZOOUT SIZIOUT /DSOUT /BUSAS VCC 

/DSOUT = /UDSIN + /LDSIN 

DSOUT.TRST = /OWN 

/SIZIOUT = LDSIN 

SIZIOUT.TRST = /OWN 

/SIZOOUT = /UDSIN + LDSIN 

SIZOOUT.TRST = /OWN 

/UDSOUT = /DSIN*SIZ1IN 

UDSOUT.TRST = /DMASEL 

/LDSOUT = /DSIN*SIZ1IN + /DSIN*SIZOIN 

LDSOUT.TRST = /DMASEL 

/BUSAS = /DMASEL + DMASEL 

BUSAS.TRST = /CPUAS 

/BUFDIR = CPURW 
• ^m ^m ^ ^ ^ mmm mmm ^m mm ^ ^ ^^ ^^ ^ ^^ ^ ^ ^^ ^ ^ ^ ^^ ^^ ^^ ^ ^^ 

/ 

PAL16L8 ； Miscellaneous functions (U67) 

/RES /INHIBIT RW /HALT /BERR NC NC NC NC GND 

NC /BECl /BECO /RETRY NC NC NC NOTRW /RESET VCC 

/RESET = /RES + /INHIBIT 

/NOTRW = RW 

/BECl = /RETRY + /BERR + /RES + /INHIBIT 

/BECO = /RETRY + /HALT + /RES + /INHIBIT 

/RETRY = /BERR*/HALT + /BERR*/RETRY + /HALT*/RETRY " 

• - -... - • -

, 一 一 — 一 — 一 — — 
PAL16L8 ； VME signals demux/mux (U68) 

/HALTO /HALTl /HALT2 /HALT3 /HALT4 DIPO DIPl DIP2 DIP3 GND 

/BF NC NC /HALTI /BFO /BFl /BF2 /BF3 /BF4 VCC 

/HALTI = /HALT0*/DIP0*/DIP1*/DIP2*/DIP3 

+ /HALT1*DIP0*/DIP1*/DIP2*/DIP3 + /HALT2*/DIP0*DIP1*/DIP2*/DIP3 

+ >HALT3*DIP0*DIP1*/DIP2*>^DIP3 + /HALT4*/DIP0*/DIP1*DIP2 *)DIP3 

/BFO = /BF 

BFO.TRST = /DIP0*/DIP1*/DIP2*/DIP3 

/BFl = /BF 

BFl.TRST = DIP0*/DIP1*/DIP2*/DIP3 

/BF2 = /BF 

BF2.TRST = /DIP0*DIP1*/DIP2*/DIP3 

/BF3 = /BF 

BF3.TRST = DIP0*DIP1*/DIP2*/DIP3 

/BF4 = /BF 
BF4.TRST = /DIP0*/DIP1*DIP2*/DIP3 
• ̂  ̂  ̂̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^̂  ̂  ̂̂  ̂  ̂  ^^ ^̂  ̂̂  ̂̂  ̂  ̂  ̂  ̂  ̂  ^ ̂̂  ̂  ̂  ̂  ̂̂  ̂̂  ̂̂  ̂̂^ ̂  ̂  ̂̂  ̂  ̂  

PAL16L8 ； VME buffer control (U69) 

/VMEDEN SIZO SIZl AO A1 NC NC NC NC GND 

NC NC NC NC /E5 /E4 /E23 /El /EO VCC 

/EO = A0*/A1*/SIZ0*/VMEDEN + /A0*/A1*/SIZ1*/VMEDEN 

/El = /A0*/A1*/SIZ0*/VMEDEN 4- /A0*/A1*/SIZ1*/VMEDEN 

/E23 = /SIZ0*/SIZ1*/A0*/A1*/VMEDEN 

/E4 = A0*A1*/SIZ0*/VMEDEN + /A0*A1*/SIZ1*/VMEDEN 

/E5 = /A0*A1*/SIZ0*/VMEDEN + /A0*A1*/SIZ1*/VMEDEN 



APPENDIX D p. 151 

APPENDIX H 

COMMUNICATION SUB-BUS 

H.l Signal definition 

Signal Meaning 

/BROADCAST BROADCASTing using 1-to-N D M A in progress. 
SYNCDMA SYNChronization signal for 1-to-N D M A 
GPCL Global PCL (means ready) derived from the DMAC. 
/MPCRDY MPC is ReaDY for servicing new requests. 
/BCST Broadcasting using 1-to-N D M A STarted. 
/BCEND Broadcasting using 1-to-N D M A ENDed. 
/HALTPNn HALTs the PN with number n. 

H.2 Pin assignment 

Signal P2 pin Signal P2 pin 

/BROADCAST C I /HALTPN3 C12 

SYNCDMA C2 /HALTPN4 C13 

GPCL C3 / B F l C17 

/MPCRDY C4 /BF2 C18 

/BCST C5 /BF3 C19 

/BCEND C6 /BF4 C20 

/HALTPNO C9 

/ H A L T P N l CIO 

/HALTPN2 C l l 



APPENDIX I p. 152 

APPENDIX I 

FEASIBILITY OF TASK DISTRIBUTION PLAN 

A major principle of task distribution on a multiprocessor system is to make sure 

that the communication overhead is small relative to the computation workload. 

We must pin-point the cases in which the computation should be done locally 

instead of distributing it because of the excessive communication overhead. 

Assume the PNs are prioritized from the view point of the bus arbiter. Let 

PN(1) has the highest priority while PN(n) has the lowest. This configuration is 

easily achievable because the VMEbus supports fixed priority interrupt and a 

daisy-chained acknowledgement propagation mechanism is available. 

I f the task is evenly distributed to the PNs at the beginning, it is obvious that 

they will finish the first stage of their jobs almost simultaneously. Then the PNs 

wil l compete for the use of the global bus for getting messages. PN(1) wil l win 

and the bus requests will be serialized. However, if the computation workload 

is not large compared with the communication overhead, PN(1) will need more 

information before all the bus requests have been serviced. Since PN(1) has the 

highest priority, he will get the bus, obtain more information and then start the 

third stage of the computation. At this moment, PN(n) just has not started his 
- •- — - . 

second stage of computation. Eventually, PN(1) will finish its job far ahead of 

PN(n). 

Now, the symptom of excessive communication overhead can be identified: low 

priority PNs need substantially longer time to finish their jobs than the high 

priority PNs. We can check this condition easily: Each PNs should send a 

message to the host machine when it has completed its share of the task. Hence, 

the start and finish time of the PNs are available. We can check the above 

condition to estimate the feasibility of the task distribution plan. 

V 



APPENDIX D p. 153 

APPENDIX J 

COMMUNICATION PRIMITIVES 

Four proposed communication primitives are discussed below. They are 

implemented in the form of device drivers in the communication kernel. 

SendMessage( SenderPID: integer, { input } 

ReceiverPID: integer, { input } 

MessagePtr: pointer, { input } 

MessageLength: integer, { input } 

Messageiype: integer, { input } 

BlockingOption: integer) { input } 

This primitive sends out a message when it is called. SenderPID and 

ReceiverPID are the logical PID number of the sending and receiving PN 

respectively. I f ReceiverPID is BROADCASTING, which is a pre-defined 

constant equal to zero, then the message wil l be broadcasted. Otherwise, it is a 

point-to-point message. MessagePtr and MessageLength describes the location 

and length of the message body. MessageType can be EXPRESS or NORMAL, 

both are pre-defined constants. BlockingOption can be BLOCKING or 

NON BLOCKING. 

ReceiveMessage( SenderPID: integer, { input/output } 

MessagePtr: pointer, { output } 
MessageLength: integer, { output } 
MessageType: integer, { input/output } 
BlockingOption: integer) { input } 

This primitive tries to accept a message when it is called. SenderPID may be 

A N Y or a valid logical PID. The caller declares from whom the next message 

is accepted. When the call returns, the logical PID of the actual sender is 

available if the ANY option is given when the primitive is called. MessagePtr 

and MessageLength describes the message body received. Note that MessagePtr 

points to a local memory location. The MPC initiates a DMA to transfer a 

message to the receiving PN before the ReceiveMessage primitive completes. 



APPENDIX D p. 154 

I f the BlockingOption is NON一BLOCKING, the returned MessageLength is 0 

and MessagePtr is NULL if there is no message available. 

GetStatus( MyPID: integer, { input } 
NIMQLength: integer, { output } 

EIMQLength: integer, { output } 
BIMQLength: integer) { output } 

GetStatus returns the status of the message queues for a PN. MyPID is the 

logical PID of the caller. The queue lengths of the three message queues are 

returned. 

FlushQueue( MyPID: integer, { input } 
FlushNIMQ: integer, { input } 
FlushEIMQ: integer, { input } 
FlushBIMQ: integer) { input } 

A PN may clear/initialize its message queues by calling this primitive. I f the 

NIMQ is to be flushed, then the user should set the FlushNIMQ argument to 

ON, otherwise, it is set to OFF. Other queues are treated similarly. 



APPENDIX D p. 155 

APPENDIX K 

PHOTOGRAPHS OF SM3 

Figure K.I SM3 host machine (in the VME-rack) and a PN board. 



APPENDIX D p. 156 

III" II I l i y ^ ^ � � i i i n i f f i : ff^BDilBM 
h i — • • 1 Uk. 
Figure K.2 The wire-wrap side of the PN shown in figure J.I (leftmost), the 

MPC (middle-left), and two PNs (rightmost). 

J 
Figure K.3 Current configuration of SM3: hard disk (back), terminal (right), 

and the VME rack (left). 



APPENDIX D p. 157 

APPENDIX L 

PROTOCOL STATE DIAGRAMS 

L.l Predefined partial state diagrams 

There are three predefined partial state diagrams shown in figure L . l . The 

upper-left one shows how a sender writes the message header to the mailbox at 

the MPC. Before the actual writing, the sender must check that the mailbox is 

free, ie. the previous one has been processed by the MPC. A simple status bit 

in the mailbox serves this purpose. Whenever the MPC has processed a message, 

the signal /MPCRDY is asserted to awake all waiting processes at all pro-

cessors. They should accordingly check the status bit of their mailbox. Now 

senders only need to poll the local status register (PNSR) once they find that the 

MPC has not processed their previous messages. This simple technique can 

prevent processes from using the system bus extensively for busy-waiting. 

The upper right one in figure L . l illustrates a similar situation when a receiver 

wants to read from its mailbox. Note that only when the non-blocking option was 

used for the previous Receive (Send) would the Receiver (Sender) possibly find 

the mailbox was not ready. 

The lower one in the figure depicts how a the sender polls the local status 

register (PNSR) in order to capture the acknowledgement from the MPC. Since 

there is only one /MPCRDY signal but there may be many processes waiting, 

the sender must check the status bit again and find out whether that assertion 

of the /MPCRDY really benefits it. This argument also applies to the previous 

two cases. 



8
 ̂

 ̂

 

^
 -
x

 

0
 I

 S
-
-
.
S

 
0
0
.

 
二

 .
>
2

 .
u
l
L
I
M
P
-
q
n
-

 i

 
二

 .
p
r
d
T
I
:
卜
 I

 
i
l
J
L
O
J
d
 

d
 •

 _
 

•
A
a
c
o
d
s
 

^
 :
U
B
:

 
乂
 、•

 n

 :

 ：
乂
 

-
o
d
N
 J
O

 I

 x
o
q
 I

 l
i

 M
 

-
 m
m
.
^

 
J
l
o
o
q
o

 
^
 _
 

^
r
 L
s

 •

 w
-

 «
«

 
O
U

 ̂
r

 J
-
o
«

 g

 t

 l
«
A
I

 
J

9

1

>

U

9

W

 
邮
 

\
 ̂
^

 I
 

、
x
o
q
 _

 、
-

 -

 i
。
-
乂

 ̂

 

L
 

^
 K

 o

 -

 -
 «
E

 
E

O

J

i

 ̂

 «

 ̂

 «

 «
 f

 
J

0

A

I

B

U

0

C

 
X

0

<

1

_

l

8

t

u

 
0

1
 J

 0

 8
 O

 £

 
一

 J
M

 ~J
 9

 p

 U

 
一
 

5

 M
L
 

g
 
(

s

e

d

A

l

 •

 T
O
 W
E
 
J

o

d

)

 
S

E

B

J

I

S

B

I

I

}

 

|

B

|

l

J

B

d

 
I

D

®

u

l

l

®

p

}

e

」

d
 

p
 

p
 ,
 



APPENDIX L p.159 

L«2 Point-to-point messages 

Figure L.2 includes the state diagrams for the three parties involved in a point-

to-point communication. The sending PN is initially running the user process. 

The SendMessage primitive writes the header to the mailbox when a message 

is to be sent. The user process is resumed if it is a non-blocking Send. 

Otherwise, the sender must capture the acknowledgement from the MPC. 

The MPC is normally at the busy-waiting state. After routing a newly arrived 

non-blocking message to a suitable IMQ, the job of the MPC is over. For a 

blocking message, the MPC must acknowledge the sender once the receiver has 

accepted the header (not including the body for a long message). Of course, the 

MPC has to service other requests while it is waiting for the response from the 

receiver. 

The receiver distinguishes between long and short messages (cf. blocking and 

non-blocking messages for a sender). For a long message, a D M A brings the 

message body from the sender. 

L.3 Broadcast messages 

State diagram for the sender of a broadcast message is shown in figure L.3. The 

sender (and also the MPC) must distinguish between long and short, blocking 

and non-blocking messages. For short messages, the sender behaves exactly like 

the case for point-to-point messages. For a long message, the sender uses 1-to-N 

D M A to broadcast the message via the VMEbus. The assertion of /BCST and 

/BCEND marks the beginning and ending of a transfer. After the 1-to-N DMA, 

the SendMessage primitive determines whether it should return to the user pro-

cess or wait for an acknowledgement. 

The procedure of the MPC is identical to the case of point-to-point messages if 

the broadcast message is short. Otherwise, the MPC halts checks the availability 



<
5
 

^
 E
:

 X

 0

 I

 :
u
。
-
:
a
l
。
：
•
>
•
。
-
。
。
•
：

 -
i
l

 】
：
。
j
.
。
：
u
-

。
d
l
:
:
l

 
二

 
S

S

I

 >
i

。
』
」
 

p
 I
 

「：…………金
 

f
f
l
^
 

.
 

1

 J
:
:
!
!

 j
 L
.
 0

 «
E

 o
c
o

 -
 w

 ̂

 a

 «
E

 ̂

 

\
 D

 M
 

\
 
S
 

^
 \

 
J

e

A

l

e

o

e

c

 m
 

i

 -
 -
 c^
^
x
x
r
 •§
 

^
T
n
T
T
^
V
 、
^
^

 -
o
c

 )

 』
：
"
J

 ̂

 

_
 
i
l

 o
:
-
T
J

 x
-
0

 /
f
v

 p
 

\
a
:
,

。
。
y
 

丄
 I
 

I
 -
•
A
a
c
o
d
w
J

 
o

j

 l
u
a
/
I
S
^

 ̂
 ̂

 e
 

X
J
A
I
V
 

y
A
n
^
 I
 

一……、
 I

 O
c
m
|

 【
…
。
。
J
d
】

 J
e
i
s
l

 F
 

L
 ̂
^

 ̂

 ̂

 ®

 «
 3

 ̂

 ̂

 

w
 /
f
v
\
 

^
 
(

S

9

d

>

l

 
一

 
l

«

)

s

®

1

5

«

w

s

©

L

u

l

u

!

o

d

-

o

l

-

】

u

!

o

d
 

p
 —I

 1
 

A

 ———————————.i—
 



1
 I
 

^
 H

 0

 T
.
u
。
-
:

。
-

 o
:
:
二

 .
-
a
l
o
:
-
 -
>
e
丄

 

-

9

d

7

=

d

l

 
S

S

I

 >
s
l
o
』
d
l
l
 

p
 
—
 

^
^

 /l
^
-
.
c
o
o
o
c
-
w
l

 r

 
似
 

(
0
-
u
l
。
！
\
 
\

 /
…

 S
 

p
•
二
 (
o
”
u
l

 
二

 
o

q

s

)

 

^
^
^
 

J
 

^
 

「：：•<•。“；̂
^

 I
 

^̂
_

 K
^
/
r
f

 L
^
^
r

 L
^
 

—
 (
0
-
l
u

 /•••、

 ̂

 -
o

 T

 一
…
i
q

 r

 #
 -
o

 』
/
•
>
!

。
-

 p
u
_
\

 a
 

»
u
 
i

M

o

o

 
i
q

 .
u
o
u

 I

 O
S
 -

 :
"

 
一

 J
 ’

 _
 ;

 J
。
_
U
J

 .
A
a
a
o
d
z

 I

 ̂

 

r
 

/
/
r
 

y
/
»
 

>
:

 
J
 •
 

/
 

j
2
 

、•一』•__•
 y
/
^

 l
o
o

 

/
 m
 

f
 

/
/
/
^
 •

 c
o
c

 

」
 r
a
 

f

 .H
v
*

—
r
7
”
-
-
.
•
二
•
.
丄

 
咖
 

/
(
v

 

y
/
u
^
 
/
L
y
l

 I
 

I
 0
1

 _
 ̂

 

L
 -

 R
 

⑶
 
(

w

e

d

A

l

e

B

r

t

w

w

w

e

u

J

I

 

一

r

t

)

T

O

U

 
一

 
l

w

«

o

p

l

8

0

J

m
 

E
 

p
 

p
 I
 

A
 -



APPENDIX D p. 162 

of receive buffers and halts potential receiving PNs. Then it initiates the 1-to-N 

D M A by asserting /BCST. It knows the transfer is over when /BCEND is 

asserted by the sender. After that, the MPC can treat the message like a short 

one. 

The state diagram for the receiver can be found in figure L.4. The left side one 

highlights that for a long message, the receiver must read the message body 

form the circular buffer and update the pointer accordingly. Note that if the 

receiver is running ahead of the sender, then it will be blocked (for a blocking 

Receive) at the state Read-Header-From-Buffer. The right side one shows how 

the 1-to-N DMA affects the receiver. The details can be found in the core of 

this thesis so it is not explained here. 



APPENDIX D p. 163 

•a 
» E 

O 
C ® X 

ca * 协 
eo w 

> Q « o 

f? (OPl® s 
® — � � y % - ' d o « y 

！ 1 J 
i ? \ 1 

,望 ^ I K j 
一访 o < 山 ® \ 一 

m i O - \ > 
o> O) ^ ^ ^ ^ CO : ^ ^ • 

� � I � o U 1 � � f 1 
- V ^ Y [ 7 ] 

CO O 0) Z 

‘ 『iPv M :: 
CO 1- m - - 1 _ 

« � I I 2 
^ •� V " " y s 
« o 乂 � 
O 9 — 

- o 
CQ “ • 

o 

� a. 

Figure L4 Receiver state diagram for broadcasting. 



APPENDIX D p. 164 

APPENDIX M 

BOOT-UP PROCEDURE OF SM3 

Figure M . l illustrates the proposed boot-up procedure for the current 

implementation of SM3. When the system is powered up, the host machine 

executes its original boot-up procedure independently. The hardware logic on 

the PNs and the MPC will hold the /RESET line for at least 512 cycles as 

specified in the data sheet. Before this period expires, hardware logic on the 

MPC initiates the HALTR (refer to APPENDIX F) to assert the /HALTPNn 

line. A l l PNs and the MPC are halted in this way so they cannot proceed even 

after the reset period has expired. 

Once the host machine is up, it initializes the reset and interrupt vector tables 

of the PNs and the MPC. Programs are then load onto all processor boards. At 

last, the host can clear the HALTR directly and release the PNs and the MPC. 

Now, they can start their cold reset routines, which are the user programs. 

Termination of execution can be achieved by writing to the HALTR directly. 



APPENDIX D p. 165 

E 

Boot - up P r o c e d u r e of S M3 “ 

Host PN' s MPC I 
o 

P o w e r u p i 

m 
m 
O 

• ‘ * o 

• H»r dwtr k:•�p� Hurdŵ ri k_«pt 
Boot.up proe#«« /neSCT-O for /RESET-0 (or � 

L^^waraH^^^^MJ llii^^^iLm^^^iLi^^ S 

m I O 
Har dvar t f i t �t h• 
HAtTB to i nit�, t h«� ® 

\ PHt �|̂ (1 t ti» MPC. 

fO 

iH. rdw.r.�•• •"•• • I HTd…•�•• • " " ! � 
/RESET-1 I RE8ET-1 ^ 

« 
w 
3 

"O 

Hot t I nlt. Vtetor o 
I abl •« of t h» o 
PH% �nd th_ UPC. w 

a. 

a 
3 Lo��� pr OQ. to PNs � 

k tĥ  ypc by vrIt• ® 
I ng t 0 t h � • � � _ � ^ 

Cl (tr • t ht HALTR 
at t h* MPC. 

。 • j 
… * PN, It art cold * 

|r"«t routi i<». f rout I n». : 
« 

W 

• T o 
• 

o 
w 

^ a. 

Figure M.I Boot-up procedure of SMS. 



PUBLICATIONS p j e € 

PUBLICATIONS 

1. "Message-passing Controller for a Shared-memorv Multi-processor “ 

Computer Architecture News, Vol 17, No. 6, Dec. 1989，pp.142-149. 

2. "The Design of a Hardware Supported Message-based Multi-microprocessor 

Workstation. “ Proceedings of the 13-rd Australian Computer Science 

Conference, 1990. 



References p. 167 

REFERENCES 

Akl89] Selim G. AM, "The Design and analysis of parallel algorithms: 
Prentice-Hall international, Inc., 1989. 

•Cleme88a] Alan Clements, ''Multiprocessor systems (1 of 4);、Electronics and 

Wireless World, June 1988，VOL94，no. 1628，pp.534-536. 

'Cleme88b] Alan Clements, ''Multiprocessor systems (2 of 4)" Electronics and 

Wireless World, July 1988，Vol.94, no. 1629，pp.703-706. 

'Cleme88c] Alan Clements, "Multiprocessor systems (3 of 4)" Electronics and 

Wireless World, Sept. 1988, Vol.94, no. 1631，pp.875-881. 

；Allis88] Andrew Allison, "Where there's RISC, there's opportunity" Mini-

micro systems, January 1988，pp.49-62. 

Ander75] L. H. Anderson, "The Microcomputer as Distributed Intelligence; 

Proceedings of the International Symposium on Circuits and 

Systems, Boston, Mass., Apri l 1975，pp.337-340. 

'AimJa85] Aimot, J. K ” and Janssens, M. D.，''Multiprocessor Unix" Master's 

thesis, Department of Electrical Engineering, Delft University of 

Technology, The Netherlands, 1985. 

AthSiSS] William C. Athas and Charles L. Seitz, "Multicomputers: 
Message-passing Concurrent Computers;、IEEE Computer, August 

1988，pp.9-24, 

BacBu84] Bach, M. J. and Buroff, S. J., "Multiprocessor Unix operating 
systems,'' Bell Systems Technology Journal 63，8 (Oct. 1984)， 

pp.1733-1749. 

Baude77] Gerard M. Baudet, 'Iterative Methods for Asynchronous Multipro-
cessors" High Speed Computer Architecture and Algorithm 

Organization, 1977，pp.309-310. 

BauSe75] A. Baum and D. Senzig, "Hardware Considerations in a Micro-
computer Multiprocessing System" Digest of Papers Compcon 

Spring 75，San Francisco, Calif, Feb. 1975，pp.27-30. 

Beims84] Bob Beims, ”Multiprocessing capabilities of the MC68020 32-bit 
Microprocessor;、User document AR220, reprinted from 

WESCON, 1984，pp.1-16. 



p.168 

BodLi89] B. L. Bodnar and A. C. Liu, ”Modelling and Performance Analysis 
of Single-bus Tightfy-coupled Multiprocessors;、IEEE Transactions 

on Computers, vol. 38，no. 3，March 1989，pp.464-467. 

BraGr89] J. H. Brand and L. de Graaf, "Message protocols unloads VMEbus 
processors" EDN magazine, November 9，1989, pp.255-258. 

BruMi84] Bruce Hamilton and Mike Fischer, "A high performance 
workstation using a closely coupled architecture,” Digest of papers 

Compcon 84，spring 1984，pp.207-209. 

[BuCoD89] F. J. Burkowski, G. V. Cormack and G. D. P. Dueck， 
"Architectural Support for Synchronous Task Communication" Pro-

ceedings of the Third International Conference on Architectural 

Support for Programming Languages and Operating Systems 1989， 
ACM, pp.40-53. 

Bybee89] Robert Bybee, "Customized Buses Build on Industry Standards to 
Enhance Performance" Computer Design, February 1，1989， 
pp.109-112. 

CheKa88] D. J. Chen and K. M. Kavi, Qualitative Assessment of 
Object-oriented ArchUectures: SWARD, INTEL 432cmdIBM S/38" 
Proceedings of International Computer Symposium 1988, 

December 15-17, pp.175-181. 

[Cheva73] R. J. Chevance, ''A COBOL Machine：' Proceedings of the A C M 

SIGPLAN-SIGMicro Interface Meeting, N.Y. : ACM, 1973， 

pp. 139-144. 

[DanPeSS] Daniel D. Gajski and Jih-Kwon Peir, "Essential issues in multipro' 
cessorsystems" IEEE computer, June 1985，pp.9-27. 

[DelRe89] Sergio A. Delgado-Rannauro and T. J. Reynolds, "A Message 
Driven OR-paraUel Machine" Proceedings of the Third 

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems 1989，ACM, 

pp.217-226. 

EwHoF86] P. A. Ewens, R. C. Holt, M. J. Funkenhauser, and D. R. Blythe, 

"The Tunis report: design of a Unix-compatible operating system" 
technical report CSRI-176, January 1986, Computer systems 

research institute, University of Toronto. 

FatKr83] Eli T. Fathi and Moshe Krieger, "Multiple microprocessor systems: 
what, why, and when" IEEE computer, March 1983，pp.23-32. 



p. 169 

"FengSl] Tse-yun Feng, "A survey of interconnection networks," IEEE tutorial 

on supercomputers: design and application, 1981. pp. 109-124. 

FiJoS83] M. Firlmeier, G. Joubert, and U. Schendel, "A new type of parallel 
computer using microprocessors;、Parallel computing 1983’ 

North-Holland, pp.527-532. 

[FinHe88] Raphael Finkel and Debra Hensgen, "YACKOS on a 
Shared-memory Multiprocessor,“ Computer Architecture News, 

September 1988，pp.31-36. 

[Fisch84] Wayne Fischer, 'The VMEbus Project；' Compcon, spring 1984， 
pp.376-378. 

[FrHeH89] G. Fritsch, W. Henning, H. Hessenauer, R. Klar, C. U. Linster, C. 

W. Oehlrich, P. Schlenk and J. Volkert, "Distributed Shared 
Memoiy Multiprocessor Architecture MEMSYfor High Performance 
Parallel Computation" Computer architecture news, Dec. 1989， 
pp.22-35. 

GajPeSS] Daniel D. Gajski, Jih-Kwon Peir, "EssentialIssues in Multiprocessor 

Systems;、IEEE Computer, June 1985，pp.115433.‘ 

；GeJoS82] Gehringer, E. F.，Jones, A, K.，and Segal, Z. Z., "The Cm* 
testbed" Computer, October 1982，pp.40-53. 

GentlSl] W. Morven Gentleman, "Message Passing Between Sequential Pro-
cesses: the Reply Primitive and the Administrator Concept" Software 

-Practice and Experience, Vol.11, 1981, pp.435-466. 

GeRiM68] George H. Barnes, Richard M. Brown, Maso Kalo, D. Kuck, D. 

Slotnick, and R. Stokes, "The lUiac IV computer；' IEEE 

Transaction on Computers, C-17, vol.8, pp.746-757, Aug. 1968. 

[Giloi87] Wolfgang K. Giloi, "SUPRENUM - A Trendsetter in Modem 
Supercomputer Development" Proc. of the 2nd Symposium on 

Vector and Parallel Processors for Scientific Computation, Sept. 

21-23, 1987, Rome, pp.29-45. 

Halst87] Robert H. Halstead, Jr., ”Overview of Concert MultUisp: a Multipro-
cessor SymboUc Computing System, “ Computer Architecture News, 

1987, vol. 15，no. 1，pp.5-11. 

[Harma89] Thomas L. Harman, ‘‘The Motorola MC68020 and MC68030Micro-
processors: Assembly Language, Interfacing, and Design" Prentice-

Hall International Editions, 1989. 



p. 170 

Heard84] Heard, G. H.，"GaGs - A material that promises high speed for 
supercomputers,“ SUPERNET - Technology Development of 

California (TDC), Santa Clara, California, 1984. 

[HeMaN88] R. D. Hersch, F. Maddaleno, C. Nicks et al, "The video-RAM 
multiprocessor architecture" Microprocessing and micropro-

gramming 24(1988), pp.503-510. 

Holt82] R. C. Holt, "An overview of Tunis : a Unix look-alike written in 
Concurrent Euclid；' technical report CSRG-140, April 1982， 

Computer systems research institute, University of Toronto. 

HwaFa85] Kai Hwang and Faye A. Briggs, ” Computer architecture and parallel 
processing,'、McGraw-Hill Inc., 1985. 

[IEEE83] IEEE, "Local Area Network - Token Ring Access Method" IEEE 

802.5, 1983. 

[InmosSS] INMOS, "OCCAMprogramming manual, “ INMOS Umited, 1983. 

JaAnV86] M. D. Janssens, J. K. Aiinot, and A. J. Van De Goor, "Adapting 
UNIX for a multiprocessor environment,” Communications of the 

ACM, September 1986，VoL29, no.9, pp.895-901. 

JaBaPSS] P. Jaulent, L. Baticle and P. PiUot, "68020，68030 Microprocessors 
and their Coprocessors;�Macmillan Education press, 1988. 

Jeffr84] Jeffrey Schriebman, "Unix portability" Digest of papers Compcon 

84，spring 1984，pp.499-501. 

JonSc79] Jones, A. K.，and Gehringer, E. F. (Editor), "Cm* Multiprocessor 
Project: A Research Review；' Tech. Rept. CMU-CS-80-131, 

Carnegie-Mellon Univ., July 1980.-

Kirrm89] Hubert Kirrmann, "Multiprocessors and Supercomputer research in 
Europe;，IEEE micro, February 1989, pp.7-8. 

；KuSiP82] James T. Kuehn, Howard J. Siegel, and Peter D. H.，"Design and 
Simulation of an MC68000-hased Multi-microprocessor System;、 
Proceedings of IEEE International Conference on Parallel Pro-

cessing 1982，pp.353-362. 

Labib88] G. A. M. Labib,、，Multiprocessor systems,” Electronics and Wireless 

World, January 1988，Vol.94, no.l623, pp.43-44. 

Landa61] Landauer, R.，"Irreversibility and heat generation in the computing 
process^' IBM Journal of Research and Development, Vol.5, 



p.171 

pp.183-191, July 1961. 

:Lee77] Ruby Bei-Loh Lee, "Performance Bounds in Parallel Processor 
Organizations" High Speed Computer Architecture and Algorithm 

Organization, 1977，pp.453-455. 

[March??] P. Marcham, ''Data Transmission via PABXs；' The NCC 

publications, 1977. 

Marko65] Marko, H., 'ThysikaUsche und biologische Grenzen der 
Informationsuebermittlung" Kybernetik, Vol.2, pp.274-284, Oct. 

1965. 

[MetRo76] Metcalf, R，M.，Roggs, D. R” "Ethernet: Distributed Packet 
Switching for Local Computer Networks;、Commun. ACM, 1976, 

pp.394-404. 

MeyHaTS] de Brito Meyer, W. and Hawley, J. A., III., ''Munbc, a multipro-
cessor version of Unix" Master's thesis, Naval Postgraduate School, 

Monterey, Calif., 1975. 

Milut85] V. M. Milutinovic, Editor, "Advanced Microprocessors and 
High-Level Language Computer Architecture" Washington, D.C., 

IEEE press Tutorial, 1985. 

>luLiS86] H. Muehlenbein, F. Limburger, S. Streitz, and S. Warhaut, 

"MUPPET - A Programming Environment for Message-based Multi-
processors" Proceedings of the ACM/ IEEE joint conference, 1986， 

pp.336-343. 

[Motor84] Motorola Inc., "VMEbus Spec^ation Summary；' 16/32-bit Micro-

computer System Components, Motorola Inc., 1984. 

[Motor88a] Motorola Inc., ''MC68000 Family Reference； 1988. 

:Motor88b] Motorola Inc., "MEME147BUG: 147Bug Debugging Package User's 
Manual； User document MVME147BUG/D1, 1988. 

[Motor89] Motorola Inc., "MVME147S: MPU VMEmodule User's Manual,” 
User document MVME147S/D1, 1989. 

Nader88a] M. Naderi, "Modelling and Performance Evaluation of Multi-pro-
cessors organization with shared memories;，Computer Architecture 

News, September 1988，pp.51-74. 

Nader88b] M. Nader, "Modelling and Performance Evaluation of Midti-pro-
cessor Organization with Multi-Memory Units" Computer 



p. 172 

Architecture News, December 1988，pp.35-51. 

Ng86] K. W. Ng，''Message-passing Primitives for Multi-microprocessor 
Systems" Microprocessors and Microsystems, vol. 10，no. 3，April 

1986，pp.156-160. 

'01son85] Robert Olson, "Parallel Processing in a Message-Based Operating 
System’” IEEE software, July 1985, pp.39-49. 

Paker83] Y. Paker, "Multi-microprocessor Systems" Academic Press, 1983. 

PapPi88] M. P. Papazoglou and P. E. Pintelas, "A versatile kernel proposal 
for a multi-microprocessor system environment" Microprocessing 

and microprogramming, VoL22, No.l, January 1988，pp. 11-20. 

[Pete88] Pete Wilson, ”The CPU wars," Byte, May 1988，pp.213-234. 

'Pount88] Dick Fountain, "Equus: A Parallel Operating System" Byte, 

September 1989，pp.3-8. 

QuinnST] Michael J. Quinn，"Designing Efficient Algorithms, for Parallel 
Computers" McGraw-Hill, 1987，Chapter 4. 

；RetTh86] Randall Rettberg and Robert Thomas, "Contention is No Obstacle 
to Shared-Memory Midtiprocessing" Communications of the ACM, 

Vol.29, No.l2, Dec. 1986，pp.1202-1212. 

RoberSl] Robert Bemhard, "More hardware means less software" IEEE 

spectrum, December 1981，pp.30-37. 

RudPe87] Rudy Lauwereins and J.A. Peperstraete, "An integrated 
software-hardware multiprocessor project; Proceeding of the 1987 

-international conference on parallel processing, pp.618-620. 

Russo77] Paul M. Russo, "Interprocessor Communication for Multi-Micro-
computer Systems" IEEE Computer, April 1977, pp.67-76. 

Sangu86] John Sanguinetti, "Performance of a Messc^e-Based Multiprocessor,'' 
IEEE computer, Sept. 1986，pp.47-55. 

[SchSo90] Bernd Schwister and Karl Solchenbach, "SUPRENUM - A 
European Made Supercomputer" Future Generation Computer 

Systems 5 (1989/1990) pp.381-385. 

ScoWa84] P. R. D. Scott, J. B. Waites et al，"Introducing Computerized 
Telephone Switch Boards (PABXs)： The NCC Publications, 1984. 



P.173 

[ShMiS78] Shan S. Kuo, Michael H. Linck and S. Saadat, "A guide to 
communicating sequential processes;、 Technical monograph 

PRG-14, August 1978，Oxford University computing laboratory, 

Programming research group. 

SiMiM86] A. Silbey, V. Milutinovic and V. Mendoza-Grado, "A Survey of 
Advanced Microprocessors and High-Level Language Computer 
Architecture,” in "Tutorials on Advanced Microprocessors and 

High-Level Language Computer Architectures," IEEE press, 1986， 
pp.118-141. 

Tabak90] Daniel Tabak, "Multiprocessors," Prentice-Hall series in computer 

engineering, Prentice-Hall International, Inc., 1990. 

[TasP189] L. Tassakos and K. W. Plessmann, "pdvPOOL: A Real-Time 
Object-Oriented Multiprocessor Systems;、Microprocessing and 

Microprogramming 25 (1989), pp.221-228. 

[ThGiF88] Shreekant Thakkar, Paul Gifford, and Gary Fielland, ”The Balance 
Multiprocessor System;、IEEE micro, Feb. 1988，pp.57-69. 

Tom88] Tom Williams, "Software machine model blazes trail for parallel 
processing', Computer design, October 1，1988，pp.20-26. 

:VaMaB88] F. A. Vaughan, C. D. Marlin and C. J. Barter, ''A Distributed 
Operating System Kernel for a Closely-Coupled Multiprocessor" The 

Australian Computer Journal, Vol.20, No.2, July 1988. 

Ware72] W. H. Ware, "The ultimate computer: IEEE spectrum, March 

1972, pp.84-91. 

;Weidn86] P. Weidner, ”MIMD Algorithms and Their Implementation," Pro-

ceedings of Workshop of Parallel Processing: Logic, Organization, 

and Technology, July 1986，pp.75-86. 

[WiLoE87] Wim J. H. J Bronnenberg, Loek Nijman, Eddy A M. Odijk, and 

Rob A. H. van Twist, "DOOM : a decentraUzed object-oriented 
machine：' IEEE micro, October 1987，pp.52-69. 

;Winog65] Winograd S., "On the time required to perform addition; J. 

Association of Computing Machineries, Vol.12, pp.277-285, Apr i l 

1965. 

Winog67] Winograd S.，"On the time required to perform multiplication,'' 
Journal of Association of Computing Machineries, Vol. 14, pp.793-

802，Oct. 1967. 



p. 174 

:YanWe89] Zheng Yanheng and Zhong Wen, ”High Performance Algorithms 
for Solving Equation Systems on Loosely Coupled Multiple Micro-
computer Systems,'' Proceedings of International Symposium on 

Computer Architecture and Digital Signal Processing 1989， 

pp.316-319. 

ZehUn89] E. Zehendner and Th. Unqerer, "A Simulation Method for Parallel 
Computer Architectures" Microprocessing and Microprogramming 

25 (1989)，pp.209-212. 

'Zhang88] Xiaodong Zhang, "Experiments and Analysis of the Various Effects 
on Shar^-memory Multiprocessor Performance" internal report, 

Computer Science Department, University of Colorado at 

Boulder, Colorado 80309，USA, 1988. 





CUHK L i b r a r i e s 

ODoaibn? 


