
ENHANCE DBMS CAPABILITIES
USING

： S E M A N T I C DATA MODELLING
APPROACH

A thesis presented to
The Department of Computer Science

of
The Chinese University of Hong Kong

in partial fulfillment of the requirements
for the Degree of Master of Philosophy

By
Yip Wai Man

May 1990
r -

坏、“ ？V
316046 / / - “

� .

； % ,.、‘ ：： ‘ “― V "v
/ - -Z .‘• \ . � . •

> 4
‘ u oo 1 州 � J^r：

： • • * , ‘ , •

V,\ :�.:�//>'
. z ' V /

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS

PART I
1 OVERVIEW ON SEMANTIC DATA MODELLING APPROACH … 1
2:�-SCOPE OF RESEARCH 4
3 CONCEPTUAL STRUCTURE OF SAM* 7

3•1 Concepts and Associations 7
3.1.1 Membership Association 8
3.1.2 Aggregation Association 8
3.1.3 Generalization Association 9
3 • 1.4 Interaction Association 10
3•1.5 Composition Association 11
3.1.6 Cross-Product Association 12
3.1.7 Summary Association 13

3.2 An Example 14
3.3 Occurrences 15

PART II

4 SYSTEM OVERVIEW 17
4•1 System Objectives 17

4.1.1 Data Level • •. 17
4.1.2 Meta-Data Level 18

4.2 System Characteristics 19
4•3 Design Considerations 20

5 IMPLEMENTATION CONSIDERATIONS 23
5.1 Introduction 23
5.2 Data Definition Language for Schema 24
5.3 Construction of Directed Acyclic Graph 27
5.4 Query Manipulation Language 28

5.4.1 Semantic Manipulation Language 29
5.4.1.1 Locate Concepts 30
5.4.1*2 Retrieve Information

About Concepts 30
5.4.1.3 Find a Path Between Two Concepts 31

5.4.2 Occurrence Manipulation Language 32
5.5 Examples 35

6 RESULTS AND DISCUSSIONS 41
6.1 Allow Non-Homogeneity of Facts about

Entities 41
6.2 Field Name is Information 42
6.3 Description of Group of Information 43
6.4 Explicitly Description of Interaction •••• 43
6.5 Information about Entities 44
6.6 Automatically Joining Tables 45

6.7 Automatically Union Tables - 45
^6,8 Automatically Select Tables 46
6.9 Ambiguity 47
6.10 Normalization 47
6.11 Update 50

PART III
7 SCHEMA VERIFICATION 55

7.1 Introduction 55
7.2 Need of Schema Verification 57
7.3 Integrity Constraint Handling Vs

:" Schema Verification 58
8 AUTOMATIC THEOREM PROVING 60

8.1 Overview 60
8.2 A Discussion on Some Automatic Theorem

Proving Methods 61
8.2.1 Resolution 61
8.2.2 Natural Deduction 63
8.2.3 Tableau Proof Methods 65
8.2.4 Connection Method 67

8.3 Comparison of Automatic Theorem Proving
Methods 70

8.3.1 Proof Procedure 70
8.3.2 Overhead 70
8.3.3 Unification 71
8.3.4 Heuristics 72
8.3.5 Getting Lost 73

8.4 The Choice of Tool for
Schema Verification 73

9 IMPROVEMENT OP CONNECTION METHOD 77
9.1 Motivation of Improving

Connection Method 77
9•2 Redundancy Handled by

the Original Algorithm 78
9.3 Design Philosophy of

the Improved Version 82
9.4 Primary Connection Method Algorithm 83
9.5 AND/OR Connection Graph 89
9.6 Graph Traversal Procedure 91
9.7 Elimination Redundancy Using AND/OR

Connection Graph 94
9.8 Further Improvement on Graph Traversal ••• 96
9.9 Comparison with Original Connection

Method Algorithm 97
9.10 Application of Connection Method to -

Schema Verification 98
9.10.1 Express Constraint in Well Formed

Formula 98
9.10.2 Convert Formula into Negation Normal

Form 101
9.10.3 Verification 101

‘ PART IV
10 FURTHER DEVELOPMENT 103

10.1 Intelligent Front-End 103
10.2 On Connection Method 104
10.3 Many-Sorted Calculus 104

11 CONCLUSION 107

APPENDICES

A' "comparison OF SEMANTIC DATA MODELS 110
B CONSTRUCTION OP OCCURRENCES Ill
C SYNTAX OF DDL FOR THE SCHEMA 113

D SYNTAX OP SEMANTIC MANIPULATION LANGUAGE 116
E TESTING SCHEMA FOR FUND INVESTMENT DBMS 118

F TESTING SCHEMA FOR STOCK INVESTMENT DBMS 121

6 CONNECTION METHOD 124
H COMPARISON BETWEEN RESOLUTION AND

CONNECTION METHOD 128

REFERENCES 132

f

1

r'

V

Abstract
‘ �

While conventional database management system (DBMS) emphasizes
efficiency and reduction of redundancy, a new approach to data modelling,
nagiely semantic data model, is emerged that aims at providing increased
expressiveness to the modeler and incorporating a richer set of semantics into the
database. In this thesis, we discuss the design and implementation of a prototype
of a DBMS, using a semantic data model called SAM*. The work involves a
mapping from a data model into a logical organization of an underlying DBMS,
and the design and development of two query languages, Semantic Manipulation
Language and Occurrence Manipulation Language, to access the database. The
results show that, with our system, user can formulate a query in a simple way
and understand meta-knowledge of the database through inquire about the
schema. Also, we have tackled an issue called schema verification which has not
been touched by database communities. The verification determines whether
there is contradicting constraints being imposed on the schema. We take an
automatic theorem proving approach, and discuss three common provers. We

,suggest the use of a connection method, and develop an AND/OR connection
graph that help to eliminate redundancy without affecting the soundness and
completeness of the connection method. Further development using many-sorted
calculus is proposed, as our implementation has already constructed a data
structure that is ready to be used by the calculus.

V

Acknowledgements ‘ �

I would like to thank my supervisor, Dr. Askey C. Yau, for guiding me in
carrying out this research, and supporting me in exploring various research areas.
I would also like to thank Dr. Y. S. Moon for lending me readings that do
stimulate my interest in semantic data modelling and automatic theorem proving.

1

j
 .、•

•
 •

 •

 •

 .

 •

,

 .、

 -
•

 -
 >

 /

 •

-

y
.
 :

 V

 .
.

广

-

.
 -
.

-

,

 “
,
.
.
.

f

 .
.
.
.
-
-

：

：

•

•

•

i
 /

 .

 -

 /

 •

s

 ,

 .

 :
•
•

 •.

-
 k

 _

 •

 I

•
”
-
•

.

-

广

 .
、
.
-

•

：

•

 y.

 .

^

 •

 ̂

 -

 .

二
：
.

.

+

•

-

.

-

•
 •

•

 .

 :
.

 .

r

:
.
,
-
.
•
 .

 •
•

 V

 ；
!
：

..

二

.

 •
•
•
.

.

.
 •….1

.

 .::-•

：
.
.
.
.

,

 ？
.

厂
.
：
.

.

.

.

-

 .
.

〜
,

、
.
V
"

：
-
 「
V
-
.

 :

•
:

」
.

-

 .

 f

 ..

I

 .、•

%

輕

.

 T

 」
‘
？
—
，
•

 4-、

,

：

R

 V

 \
 ,r

 .
二
广

•
 A
^

广

考

，

，

>

-

 •
.
-

,

-

1

 .̂.s-.

 f

 .

 -,

 s.̂
.

 I
.
.
、-
-

 :

 .

 4

 •
-
-
.

p

 -
「
、
、
；
？

 .
、
；
：
-
:

.

 .

:
/
.
 -K
、，，」s.vsv

 ”.，、：、：，...

.

-
 -
.
V
.

 •

 -

 V

 .
 7

 .
.

 ..
-
-
I
.
r
f
:

 :

 r
.

 /
•
、
广
•

 •

 .

.
 -
-

/

.

;

•

•
'

•

 :.“：

(
-

^

-
 1.」.，.

-
i
-
t
 ,

.
.
.
 .
.
.
.
.
.
.

 .

 ,

 -.
r

 •
 .

 -
 t
r

一

p
.
 "r-̂
r

 .

 "

 J

 *

 :

 -

 <
」

/

•
.
.

、
^
 >

 ̂

 (•

 '

 ,

)
3
M
i

w

—
广

>

f

/

...
 •

 '
V

 M
l
^
^
^
v

；

.

^
 -

 I

 /
 ̂

 -
 V

.
N
 .

 /
 "r-

 /’

：

/
 i

^
J
 ,

 r
/
?
,
;

、

 “

\

 -
i

义

/

:

:

、
 r

^
 '
.

.
d
 .

 i

 ,

 二
-
，
广
.

？
.
.
 v
-
f

 •

 '

 V

 •

 I
 I

 J,
 f
l

 »
 A
J

 '

 J
(

 f

 i

 -
t

 «

 :

r
 ...,)，，>->.::.-..:..

 r

 -

 v
v

 <
广
-

 *

 ,

r
 f
j
.

 V

 ,

 t,

 A

 ,

 -
 •

 t
A
^

 ,

 '

 t

 ̂

 ̂

 ..

.

.
 .

 》

.
i
^
m
r

/

c
y

v

‘

f

l

t

丨

,
知

：

.

,

-
t

^

-

 •
二

•

；

,

 .

 .

 ,‘

 V
:
:

二

：

.

-

 ？
“

 ，
\

 T

、
 〜
一
 1

OVERVIEW ON SEMANTIC DATA MODELLING APPROACH

C H A P T E R 1

OVERVIEW
ON

SEMANTIC DATA MODELLING APPROACH

While conventional database management system (DBMS) emphasizes
efficiency and reduction of redundancy, a new approach to data modelling,
namely semantic data model, is emerged that aims at providing increased
expressiveness to modelers and incorporating a richer set of semantics into the
database [PeMa88]. Research in this field is along the direction of capturing the
way human perceives objects, events and abstract concepts in the world, hoping
to make the accessing process to the information system as "natural" as possible,
and requiring the amount of knowledge about internal structures of the
information system to be known by the user as little as possible. Since the
innovative paper published by Smith and Smith [SmSm77], abstraction mechanism
has become an important and necessary feature of semantic data model. Four
important abstractions are identified: generalization (is-a relation), aggregation
(relationship between low-level types is considered as a higher level type),
classification (is-instance-of) and association (is-member-of). Most reported
semantic data models have more or less include these abstractions.

1

OVERVIEW ON SEMANTIC DATA MODELLING APPROACH
V

.. Generally speaking, benefits of semantic data model include the following
four aspects [PeMa88]:

a) economy of expression: user usually can extract the full range of
information from a database with greater ease;

：…b) integrity maintenance: with mechanisms for defining integrity
constraints for inter- or intra records, user can freely manipulate data
on a level removed from the low-level record structures;

c) modelling flexibility: semantic data models, through the use of
abstractions, permit a user to model and view data on different levels;
and

d) modelling efficiency: the database designer, while constructing a
particular database schema, does not has to worry about any
implementation at low level.

Various semantic data models are reported [HuKi87, PeMa88] and each
of them owns different features. A brief description of some popular data models

. is given in the following paragraphs.
！ ‘‘

TAXIS [MyBeSO] is a language able to model a strongly hierarchical
structured data model, having generalization, classification and aggregation
abstractions. It can also handle multiple inheritance (an object inherit attributes
from two or more abstract objects). A compiler for the language has been
developed [NiCh87, NiCh89]. The language is characterized by being incorporated

2

OVERVIEW ON SEMANTIC DATA MODELLING APPROACH

with specification of semantic integrity constraints, and exception-handling
mechanisms.

SDM [HaMcSl] is a data model that put emphasis on the classification of
entities into classes. Each entity or class owns attributes, and classes are logically
related by interdass connections. Attributes can be derived from other values in
the database. A commercial product bases on the model is developed by Unisys
Corporation [JaGu88]. Its data manipulation language resembles SQL [Lans88],
but with enhanced capability of recognizing semantic concepts.

DAPLEX [BaLe88, LyVi87, ShipSl] is a data definition and manipulation
language for a database using functional data modelling approach. A function
maps attributes of entity into the values of the attributes. Relationships are
implicitly embedded in the functions.

Some researchers focus on the formal description of data model [Abit87],
and derive procedures for update propagation in hierarchical structured data
model.

3

SCOPE OF RESEARCH

' �

C H A P T E R 2

SCOPE OF RESEARCH
•:. k-

Although various semantic data models have been proposed, seldom of
them test the idea under a practical environment. This project aims at illustrating
the enhanced capabilities of a DBMS using semantic data model under a d
application environment. We choose investment analysis as the application
domain for our database because the complexity of this problem can help to test
the power of semantic data model. Requirements of a database for investment
analysis are:

a) ability to store a wide variety of data: the database should able to
model different types of information, like statistical data, without
lowering the ease of accessing the information;

b) ability to cope with change of environment: the amount of information
, ‘ needed in an investment environment is ever changing and expanding,

e.g. new projects announced by companies as well as political and
economic crisis expand the set of information demanded by analysts;
and

c) ability to abstract information: an investment analyst usually view
information from different perspective, e.g. the analyst may classify

4

SCOPE OF RESEARCH

一 stocks by the sectors to which they belong, or by their volume of
transactions, and then each group can be treated as a whole.

A particular semantic data model is chosen, namely Semantic Association
Model (SAM*) [Su83, Su86], because of its

a) richness of pre-defined semantic relationships;
b) ability to specify constraints to check for data addition and deletion

automatically;
c) support of the four basic abstractions;
d) allowance of structuring data in a network which is more general than

hierarchical structure; and
e) allowance of complex data structures, like time-series for statistical

information.

A comparison of other semantic data models with SAM* are given in
Appendix A.

In his paper, Su defines SAM* at a conceptual level, and derives a G-
relation that maps a SAM* data model into a relational data model. In this thesis,
we discuss the design and implementation of constructing a prototype of a DBMS
using SAM* as its data model.

The thesis is divided into four parts. In Part II，followed by a brief
5

SCOPE OF RESEARCH

- description on SAM* in Chapter three, we present the development of a data
definition language for a schema written in SAM*, the mapping of the schema
into logical organization of an underlying database system, and the development
of two query manipulation languages for accessing the database. In Part III，we

describe how to use an automatic theorem prover to solve a problem called
schema verification, and introduce an AND/OR connection graph to eliminate
redundancy in the construction of a proof. In Part IV, we suggest area of further
development, and make a conclusion of the thesis.

t ‘

6

CONCEPTUAL STRUCTURE OF SAM*

«

C H A P T E R 3

CONCEPTUAL STRUCTURE OF SAM* ---‘
：- V -

3.1 Concepts and Associations

SAM* [Su83] perceives the world as a collection of concepts. Concepts
represent physical or abstract items of information. A concept can be

a) a fundamental information unit that is well understood and thus need
not be defined; or

b) a more abstract one than that described in (a), and is defined in terms
of other concepts.

A concept can own an association that itself groups a set of concepts. For
example, teachers and students are concepts. Another concept called teach can

,has an association that groups a teacher and his students. Seven types of
,associations are pre-defined. In the following sections, we informally discuss each
of them in the context of investment analysis. In graphical representation, concept
is represented by a circle, with the name of the concept being attached aside.
Association is represented by a single capital letter (the first letter of the
association) within the circle corresponding to the concept it belongs to.

7

CONCEPTUAL STRUCTURE OF SAM*
V

3.1.1 Membership Association

hotel_stock f jj)

� X T …
New World Hotel Hong Kong Hotel

Figure 1 Example on Membership Association

Membership association groups similar concepts together. Optionally,
membership constraint is attached to specify the necessary condition(s) to be
satisfied by each member. In figure 1，the concept "hotel_stock" groups all stocks
having business related to hotel service, where the description can act as the
membership constraint. "New World Hotel" and "Hong Kong Hotel" are instances
of the concept.

3.1.2 Aggregation Association

s t o c k 一 d a t a

w © © • • • ,
s t o c k n a m e c u r r e n t h i g h c u r r e n t l o v • — ^ •

Figure 2 Example on Aggregation Association

8

CONCEPTUAL STRUCTURE OF SAM*
V

A set of concepts can be grouped to describe or characterize another
�

concept. In figure 2, the concept "stock一data" is characterized by a "stock—name",
its "current_high", and its "currentjow" in the market. One or more of the
characterizing concepts should act as identifier(s) that can uniquely identify an
instance of the characterized concept. Here, the concept "stock一name" can do the
job. Each particular stock name identifies a set of information about that stock.

3.1.3 Generalization Association

stock一analysis [G)

^ ^ ^ 3 X - S X

industrial一analysis(̂ A J (A) h O t e 1 一a n a 1 y S i S

C v © • • • o • • •
s tock_naine expoi t_r ate tot tourist

Figure 3 Example on Generalization Association

Concepts can be grouped by their generic nature to form a more general
concept. As shown in figure 3, we can analyze stocks according to the sectors they

r ^

belong to, like industrial and hotel sector. These two perspective on stocks
analysis are generalized into a generic concept "stock一analysis". Four types of
constraints can be specified to describe the relationship between any two sets of

9

CONCEPTUAL STRUCTURE OF SAM*

: - instances of component concepts: set equal (SE), set intersection (SI), set
exclusive (SX), and set subset (SS). Refer to the example again, the "SX-SX"
means "industrial一analysis" and "hotel一analysis" represent two entirely different
sets of stocks.

3.1.4 Interaction Association

c o a p a n y 一 o r g a n i z a t i o n (i)

©
p a r e n t _ c o i i p a n y s u b s i d i a i y _ c o i i p a n y

Figure 4 Example on Interaction Association

Interaction association describes facts or events among concepts. In figure
4，"company一organization" tells that a parent company can hold more than one
company. Like ER model, there are three types of constraints to describe the
mapping between component concepts under an interaction association: one-to-
one (1-1)，one-to-many (1-N), and many-to-many (N-M), With this association, we
can specify relationship (as described in the I node) between two concepts.

10

CONCEPTUAL STRUCTURE OF SAM*

3.1.5 Composition Association

h o t e l _ d a t a b a s e (C)

room-
\ A) (A) t o u r i s t d a t a occupation — data ~ …K…

ho t el_name r o o m_ month tot_touri3t
occupation*

Figure 5 Example on Composition Association

Composition association collects concepts that are physical parts or functional
components of another larger part or component. In figure 5, "hotel一database"
composes of all information about room occupation percentage, and all
information about number of tourists in Hong Kong. The components are not
interacting, like those in interaction association, nor they are characterizing or
characterized concepts, like those in aggregation association. Composition
association has the semantic meaning of "is a part of rather than "is a" as for
generalization association.

Having a composition association to group and identify a set of entities, we
can further describe this set using aggregation association. As shown in figure 6,
"information一source" describes the source of all information in "hotel一database".

11

CONCEPTUAL STRUCTURE OF SAM*
V

_
h o t e l _ d a t a _ . 、

d e s c r i p t i o n

h o t e l d a t a b a s e (C) (M) i n f o r m a t i o n s o u r c e

一 j w w -

Figure 6 Example on Group Description

3.1.6 Cross-Product Association

s t o c k _ t y p e s f x)

P / E r a t i o t i a n s a c t i o n _ v o l

Figure 7 Example on Cross-Product Association

Cross product association takes a cross product on a group of concepts to
form another concept. Unlike aggregation or interaction association, each cross
product defines a category of entities rather than a particular entity. The data
1 •

model in figure 7 can be used to define different sets of stocks depending on their
P /E ratio and transaction volume. For example, active prospective stocks are
those having high P /E ratio and high transaction volume; while inactive
prospective stocks are those having high P /E ratio and low transaction volume.
Through summary association (to be described next), a set of concepts can be
used to describe each category so defined.

12

CONCEPTUAL STRUCTURE OF SAM*

3.1.7 Summary Association

hotel_sumnaiy (S j

hotel^databage [C) [k j • • •
^^^ average occupation!

room 一 f K] • • •
0 c c u p a t i 0 n _ d a t a V J

O O hotel—name room_ occupation*
Figure 8 Example on Summary Association

Summary association collects a group of concepts to summarize or
characterize a set of entities defined by a cross product or composition
association. In figure 8，the concept "average一occupation%" calculates the average
of "room_occupation%" of all instances of "hotel一name". Procedure can be
attached to "average_occupation%", indicating how the summarizing data is
I '•‘ derived.

13

CONCEPTUAL STRUCTURE OF SAM*

3.2 An Example

hotel_databa8« ^̂ Ĉ

. (l ^ visitor suBnary (®) “ (®) stock一 - y j occupation, \ J
.toe. ^̂^ …_ 4 ？。…-

^ ^ ^ total. —
O 0 :：:：-« ：：：：：-© … stock- other.

" … ' - ' " " 0 0 0 O 0 O
year f r visitor爹 year districtclass_

country o £_ho t e1

Figure 9 An Example on Using SAM*

Figure 9 illustrates a data model for analyzing stocks belonging to hotel
sector. It models information of each hotel sector stock, as well as summarizing

•‘ data about visitors in Hong Kong and room occupation of hotels. Each hotel
t ‘•

sector stock is identified by its stock name, and may involve in other businesses.
There is data about the number of visitors coming to Hong Kong in each year.
The total of these numbers is stored under the concept "total—visitor考Also, by
cross product association, "class_of一hotel" defines several categories of hotels by
the districts they locate and their classes, with each of the categories being
characterized by a summarizing data "average__room__occupation%".

14

CONCEPTUAL STRUCTURE OF SAM*
V

3.3 Occurrences

investiaent t o o l s (G)

b o n d i l j f u n d \ l j s t o c k { i j

b o u n d f a c e i n t e r e s t d a t e d u r a t i o n
• • 一 嫌

n a m e v a l u e r a t e o f _ p u r c h a s e

Figure 10 Example of a SAM* data model

Each concept owns occurrences, instances (as termed before) of the
concept. Consider an example as shown in figure 10，"bond" is a kind of
"investment tools" that is characterized by its "bond name", "face value",
"interest_rate", "date_ofj)urchase" and "duration". An occurrence of "bond" can
be any particular bond like Fixed Interest Rate Substitute Transaction offered by
MTR with face value of HK$ 500,00, interest rate at 8%, date of purchase in May
1992，and duration of 5 years.

Concepts of different association types have occurrences of different
structures. For example, when the concept "investment-tools" generalizes "bond",
"stock" and "fund", the three particular investment tools are all the same to the
concept "investment—tools". Thus, the set of occurrences of "investment—tools" is

15

CONCEPTUAL STRUCTURE OF SAM*

..•• taken as a union of all these particular types of investment tools,
occurrences of investment tools =

{occurrences of bonds U occurrences of stocks U
occurrences of fund}

where U stands for the set operation union. Suppose "fund" generalizes
"fixed rate fund" and "variable rate fund", then the above set can be further
expanded by replacing occurrences of fund with occurrences of "fixed_rate__fund"
and "variable一rate一fund". Generally, occurrences of a concept are constructed by
applying union and/or cross-product operations on the occurrences of the less
abstract concepts. Appendix B presents the construction of occurrences in a
recursive manner.

For convenient purpose, the more abstract concept (e.g. investment tools,
relative to bond) is called parent concept and the more specific concept (e.g.
bond, relative to investment tools) is called child concept. In SAM*, a parent
concept may has more than one child concept and vice versa, allowing a network
of concepts to be constructed. A concept is said to be a root if it does not has any
parent concept. The data model allows the existence of multiple roots.

16

〜
 ‘
-

/

.

 ,?
.「
，.
.r
::
,v
丄.
“•
..
:

.

 ：.
.

：

.

 i

 ,.
;—
：

 ：.

,
‘
•
/
」
,
%

-

：
：

：

,

,

‘

^

：

二

；
？
飞
、
 -
V

 -

 ,

X
.

•
.

.

「
…
‘

>

^
.

二

？

•

 r
r

 .

.

.
y
 •-
--
:-
>•

 :•
。•
：>
;,

“

 V
-
.

 ..
.

 ..

 -二
：；
’.
,

.

.
 y

 ..
.:
‘：

 .
-

 -
/
:
:
•
.
•
)

 ，..
.：.
.：.

 .

...

 •
•

 :;
••
•

 .

 .

：
 .t
‘.
--
..
.

^

、

，

>

 ..
.

.

：

 .
.
.
.
.
.

 .
,
"
•
:

」
.
>

,

.

.

.

、

-

.

?

.

-

「

.

M

I

:

-

.

,

;

:

 7
位

.

•

 --
」.
.

.

.

.

.

.

,
 \

 ̂

 /

 ‘

 .
.
.
.
:
-
广
•
：
：
.
：
.
.

 .
.
.
•
.
：
.
-
-
:
”

 ：.
..

 --
-.

 、

 M

 【
 1

 J

 r

 .

.
^
 t

^

 .

 ̂

 U
 ‘

 ‘

 i
：

 ...

 ：：
；，
，

.

…
i

~

.

•

.
-

：

： -

.

^

}

,

广

，

.

「

”

.

‘

 ‘
/

 -
：

扑
产

 "：
、：
..
,

 ：：二
：_

^

•
,

-

 、
：
.
-
.

二
广
 1

 、

 k
i

 r
V
;
.

 -

 ,

.
 .
.
•
:
〕

 ..
I.
..
.

 .‘
.、
..
，

、

“

.

.

•

>

•

:

.

.
 ..
..
二

..

..

..

 、
〜
、
t
,
v
,
:
:
巧
.
.
.

 ,

：

 .

 .

 ‘V
."

」.
..
•二

 ：.
.义
..

 \

 .

 .
、

 ..

-

：

 .
.
.
.
.
.
、

碎
’
-
 -
.
.

 -

 -

 I

.

.

-

.

.

.

二

 ：
-
-

 ...
.

-
,
.
-
.
•
"
•
.
.
〜
"
？
〈
：
〜
 IV
.-

 .

 -

 r

 s

.

.

.

”

•
 .•
.

 :.
、：
、：
，,
：；
，•
 c
嫌

•

 :
」
.

.

 「
“

.

,

-
 ,

 f
r

 r

V
 _
:
麵
.
/

,

、

•

 .

麗
纏

 V

 —

广"
"：
：.
：

 .〕
"：
：：

 i

 \

 •

 -

 .

 a

 :
/
.

-
.
i

「

 .•

 •
•

 ̂

 -
 A

,
 ；:
H.
‘.
；

.

 .

 ...
-、.
._

 :
:

 -

 •

 :

 .
 ,

 J

—
.
r

 ？
二
“

 •
条

 i-
.-
:

 .

 ̂

 :
-
;

 二
二
-
l
.

、

.

：

•

J

-

 T
J

 :

 V
.
.

,
:

•

^

 ”
.
.
(
巧
、
？
.
：
v

心

、

v

f

。

：

.
 .

 ,
-
-

 ,
-
f

 .、
-:

 ‘
 7
.
4
、

 >

 '

 -

 ,

:
r
 .
J
:
:
:

 :、
：.
：.

：
 .

 ：：
;：
’、
n:
-
 -

 .

 ,

 .

 .
.

 il
t
;.
.-
、.
；

 ,

.

 /

 .

 ..

 /
.
.
.
:
’
-
.
,
•
.
:
•
:

 •

 •

 •
•
、-
v
、L
‘
：
r

 :
-
.
:
.
>
‘
广

 .
-
.

 f
c
.
广

..

..
‘、
•

-

•

：

 I

 .
-
’

...

 .:
r.
v.
,r
-.

〔

 「
i
:
:
.
.
.
;
:
「
,
.
.
二
;
.
一
>

.

.

 .
.
.
、
.
产
.
、

.
•
-
:
、
-

 【？
、

.

,

•

 y

.

”

 .
：
.
.
-

•
 •

 •

 I

 -
I

 J

 L
I

 I

 •

 •
•

 •.

广
、
/

.
 .

 i

 .

 :
 :

、

.

-
•

 ‘

 •

 •

 ‘

 ••

.

\

.

•
.
」
-
•
 ,

•

、

-

:

.

:

、

—

•
.
1
 ‘

 .

 .’

 1

.
,

 ,

 •

 ‘
 ‘
 M

 ̂

 •
 V

 .

>
 •

 ..

 .

 .

 •

 ’

 .

 •

 L

r

.

 -
；

一

 ，：

.
.

/

•

%

V

 .

\

 -

,

 「
t

 .
1

-

,

.

.

：
-

.

—
—
•
-

.

.

.

.
 •

•

 •

-

•
 •

 *

•

 .

 .

I

,

.
 .：

.

.

‘

‘

•

‘

：

.

-

.

.
 ..
、

 .
•

.

.

.

-

,

 •.
.

•

 ,
 ̂

 .
.
.
.
‘
.
.

_
_
m
l
'
^
 •
 •

：

 -
 --

 •

 •

 -

 .

 1

 --
-

：
 .

 ..
..
_/

；

 I

 .

:
•
I

 •

 —..
：

 I

 ..
.

 ‘

 -’
：—
..

 ：，

 t

 .
1
.

 =

—
—
u
i

—
.
.
.
.

 r
 广
：
：
.
：
l
i

—
•
.
.
.
.
-
 .

 -.
’-
.

 .

 .

 -r
..
.

 :
.
.
:

 J
i
•
{
.
.
I
v

 :

 _

 I

 •

SYSTEM OVERVIEW
V

，，

C H A P T E R 4

SYSTEM OVERVIEW

4.1 System Objectives

We have built a prototype of a DBMS using SAM* as the conceptual data
modelling tool. The overall objective is to facilitate and enhance the access of
information from the database system.

4.1.1 Data Level

At the data level, it is aimed at relieving user of memorizing details of
logical organization of data within the database system, and at the same time
offering user a flexible method to formulate his requirement.

In conventional DBMS, there are usually two approaches for user to access
a database. One approach requires user to learn a query language as well as
understand the logical structure of the database system, then user can use a query
manipulation language, like SQL, to formulate query. This method is flexible
enough to retrieve a wide variety of information, but burden the user with

17

^ SYSTEM OVERVIEW

� . - explicitly addressing the logical structure of the underlying database. For example,
to use SQL, user must know the names of tables and their corresponding field
names. An expert user of the database system may prefer this approach. The
other approach allows user to rely on application programs to access the database
system. This relieves the user of understanding the logical structure at the expense
of a low degree of flexibility in formulating a query. Whenever new request arises,
the application program must be modified, usually through an intermediator,
which may take a lot of time. This approach may be suitable for novice user or
a routine application of database system.

In our system, we develop a new query manipulation language that only
requires the user to has a picture on a conceptual data model (which is expected
to be familiar with the user) and understand the abstraction mechanisms
employed by the data model. Query from user is pre-processed by the system,
when necessary, and is translated into data manipulation language for the
underlying database system. The user needs not care about the logical structure
of the database system, regardless it is relational, hierarchical or network model
based.

4.1.2 Meta-data Level

By meta-data level, we mean data that describe data in the database, i.e.
a schema. At this level, it is aimed at allowing user to perceive a complete picture

18

SYSTEM OVERVIEW
V

�.••“ of the information being stored in the database system. This is done by providing
facilities to user to inquire about the schema. For example, suppose a user finds
that there is no information about interest rate of a fund. Then, by traversing the
data model, say through the child concept of "fund", the user can reveal other
relevant information offered by the system.

User can manipulate the system easier because user and system share a
common perception on the application domain. This common vehicle is built by
explicitly expressing semantic in the data model. Thus, the power of the system
lies on the comprehensiveness of the model being built. Similar to the case in
rule-based expert system where its power lies on the completeness of the set of
rules.

4,2 System Characteristics

Allowance of raising query at meta-level is, to the author's best knowledge,
• a special characteristics of our system when compare with other implementations

[BaLe88, JaGu88, LyVi87, Tsur84]. Though SAM* has been discussed in several
literatures [HuKi87, PeMa88, Su83, Su86], no implementation of this model is
reported. Thus, our work is useful in illustrating the practical aspect of this data
model. The prerequisite for a user to work with our system is that the user should
know the semantic meaning of the seven built-in associations of SAM* and the
use of two query manipulation languages, each for the data level and meta-data

19

香 港 中 文 大 學 E] 當 你 敌 古

^ SYSTEM OVERVIEW

- level data manipulation. As entities and their relationships as described in the
schema are expected to be easily grasped by the user, it should take not long time
for user to get used to the system.

The system is designed in such a way that user can access the database
system either interactively or through a host language with embedded query
languages. To facilitate the query formulation in interactively mode, the following
measures are employed to make the syntactic structure of query as simple as
possible:

1. the system has list processing ability, thus reduce the number of
dummy variables being used. Variable owns a list of pointers pointing
to concepts. Thus, an operation acts upon such variable is equivalent
to executing an iterative statement with each iteration one of the
concepts is processed by the operation.

2. pre-process (to be specific is automatically join and/or union tables,
and qualify field names) query from user, hence, lessen user to
concern with details of query formulation,

t •

4,3 Design Considerations

As a database system, the system will be frequently inquired of information
about occurrences of concepts, which could be a voluminous amount of data.
Thus, occurrences of concepts are prefer to be stored in a DBMS which can well-

20

SYSTEM OVERVIEW
V

�.“ organize the data, and hence allow easy retrieval of them as needed. The data
model make no assumption on which type of DBMS should be used. In this
system, a relational DBMS is chosen because of its popularity and ease of use.

' T h e underlying relational database should be constructed in such a way
that the manipulation of query can be facilitated. Since query usually focus on
concepts, we use a relational base table� [Date86] to store occurrences of a
concept. However, not every concept should own a base table for three reasons.

Firstly, information of occurrences of a concept (usually the membership
association) may not be able to exist independently. For example, current high
price characterizes a stock through aggregation association. It is meaningful to
talk about occurrences of the concept having that aggregation association, e.g.
HongKong Bank has current high price of HK$ 12.5. However, it is meaningless
to talk about occurrences of current high price without referring to a stock. In
fact, a base table should be created for concept that represents entities rather

•‘ than an attributes,
t

Secondly, on observed that occurrence of a more abstract concept can be
expressed in terms of that of less abstract concepts, only the occurrences of
"primitive" concept is physically stored in a base table. Occurrence of non-

1
A base table is an autonomous, named table. It is "really exist", in the sense that, for each

row of a base table, there really is something physically sto「ed.

21

^ SYSTEM OVERVIEW

••“ primitive concept is constructed from the primitive one, using the algorithm
stated in Appendix B. This can reduce not only the number of base tables to be
maintained but also the amount of duplicated data. Database administrator takes
the responsibility of deciding which concept is to be a primitive one. Usually,
primitive concept is the one with association type of aggregation, interaction, or
summary.

Thirdly, some association types, typically the composition and cross-product
associations, are used to define a group of entities, and that group is to be
manipulated as a whole. Under this situation, there is no need to assign a base
table for concepts of these association types.

22

IMPLEMENTATION CONSIDERATIONS
V

• »'

C H A P T E R 5

IMPLEMENTATION CONSIDERATIONS
w-"‘

\ - V r

5.1 Introduction

To illustrate the ability of a DBMS using semantic data modelling
approach, a prototype of a database system has already been built with
effectiveness as the primary concern. The implementation involves four parts:

a) development of a data definition language for schema using SAM*;
b) construction of a schema compiler that build necessary data structure

at run-time of the system;
c) design of query manipulation languages, and development of language

interpreter for user to access the database; and
d) map the schema into a logical organization of an underlying database

‘‘ system, preparing the DBMS for data manipulation.

The underlying relational database system is built using ORACLE^ that
runs on an IBM-ATl As ORACLE runs on a wide range of computer systems,

2 ORACLE is a trademark of Oracle Corporation.

IBM is a trademark of International Business Machines Corporation.

23

. IMPLEMENTATION CONSIDERATIONS

our system can be port to mini or mainframe as required. We use Microsoft C*
to develop the schema compiler and the query manipulation language interpreter.
Also, it acts as the host language with which to access the database. We have
investigated the possibility of using VAX Rdb as the underlying database system,
and access it through VAX Pascal or C. Nevertheless, VAX Rdb does not provide
join operation on relations, thus, this alternative is discarded.

5.2 Data Definition Language for Schema

Schema defines characteristics of and relationships among concepts using
a data definition language (DDL). The syntax of the DDL for SAM* is presented
in Appendix C. A schema consists a set of statements. Each of them describes an
association and has the following information: concept name corresponds to the
association, its child concepts, and integrity constraints imposed on the
association. For example, the schema corresponds to the data model as shown
figure 11 is presented in table 1. The name within square bracket is the field

‘names that are used in the underlying DBMS. Figure 12 shows the base tables for
I -the sample schema.

To simplify the implementation, we have put restrictions on ,the use of
associations. Yet, these restrictions will not affect the expressiveness of the data

4 Microsoft is a trademark of Microsoft Corporation.

24

IMPLEMENTATION CONSIDERATIONS
V

“ » «

I n d u s t r i a l s e c t o r [G] “

h e a v y J n d u s t r y (A) (A) i g h t J n d u s t r y 0 ©

s t o c k一 n a m e i m p o r t一 r a t e d x p o r t _r at e

Figure 11 A Sample Data Model

generalization :: industrial一sector, root,
heavy一industry, 1ight_industry;
with sx-sx; —
under constraintl;

aggregation :: heavy 一 i n d u s t r y , base,
[stock一name key�import一rate, export一rate]
stock一name key, importjrate, export~rate；
under—cons七raint2； 一 一

aggregation ：： light一industry, base,
[stock一name key 厂 import一rate, export一rate]
stock—name key, importjlrate, export~rate;
under—constraints； 一 一

Table 1 A Sample Schema

h , . v y _ l B d u . t r y 1 i gh t_ i n d u . 11 y

» t o c k _ n a a « l a p o r t _ r a t e . x p o i t _ r « t e ， t o c k _ n … i « p o i t _ r « t e e x p o i t _ r t t c

• • • . . .
• • ‘ . 參 .

• ‘ ‘ . . .

kesy ！ » t o e k _ n a m e k e y i »tock_ziaae

r-

Figure 12 Base Table for the Sample Data Model

25

. IMPLEMENTATION CONSIDERATIONS

• model.

We require concepts being generalized should have a common unique key
to identify their occurrences. This is reasonable as generalization association pick
our generic nature of its components, and we just require this generic nature of
each component concept should, syntactically, take a common form.

Each interaction association should not describe two or more independent
interactions. In case a concept do involve two or more independent interactions,
we may assign a new interaction associated concept to each of the interactions,
and group them by a generalization association.

Through a concept having cross-product association, user can only retrieve
classification of categories, not occurrences of the child concepts of that concept.
The same apply to concept having composition association which group dissimilar
concepts and itself is treated as a single class. To retrieve information, user should

• use other associations to describe the child concepts.
I •

Values in the summarizing concepts are stored, rather than being derived
from other values in the database. Thus, whenever the data to be summarized is
changed, the summarizing concept should be updated.

The schema is mapped into a logical organization of an underlying DBMS

26

, IMPLEMENTATION CONSIDERATIONS

…“ in two phrases. Firstly, the characteristics of and relationships among concepts are
mapped into a directed acyclic graph. Secondly, an underlying DBMS is prepared
to store occurrences of concepts. A framework of the mapping is shown in figure
13.

C S e m a n t i c \
D a t a)

<z>
o

D a t a b a s e
A d m i n i s t r a t o r

^ 、 Schena

： (；”。“》 ^ D i r e c t e d
D B M S \ S y s t e m / A c y c l i c

Figure 13 Mapping Schema Into Logical Organization

5.3 Construction of Directed Acyclic Graph

, A directed acyclic graph is represented by a set of vertices and edges.
Acyclic means that there is no cycle in the graph. From now on, in Part II，graph
refers to a directed acyclic one. A vertex is assigned to each concept in the

r '

schema. Edge is connected from vertex of a parent concept to vertex of its child
concepts, as described in the schema. Each vertex owns a record having the
following information:

27

. IMPLEMENTATION CONSIDERATIONS

� . a) name: name of the concept as shown in the schema;
b) asso: association type of the concept;
c) parent: a pointer pointing to a list of vertices corresponding to parent

concepts of the concept, or is a null pointer if the concept has no
: p a r e n t ;

d) child: a pointer pointing to a list of vertices corresponding to child
concepts of the concept, or is a null pointer if the concept has no
child;

e) root: indicates if the concept is a root;
f) constraints: for generalization association, user should specify set

relationships between component concepts: set subset, set exclusive,
set equal, and set intersection. For interaction association, user should
specify the mapping relationships: one-to-one, one-to-many, and many-
to-many. User can impose other constraints as needed;

g) base: indicates if the concept has assigned a base table;
h) key: if the concept owns a base table, key is a pointer pointing to a list

of child concepts that form the primary key of the base table, as
t

required by relational data model; otherwise, key is a null pointer.

5.4 Query Manipulation Language
Two query manipulation languages are developed: Semantic Manipulation

Language (SML) to access the graph and Occurrence Manipulation Language
28

, IMPLEMENTATION CONSIDERATIONS

.. (OML) to retrieve occurrences of concepts. User can toggle between the use of
these two languages. In either mode, the corresponding language interpreter is
invoked. A framework of the query manipulation process is shown in figure 14.

‘

、：V f S e m a n t i c ^
V D a t a J
^ - ^ o d e l ^

0>

U s e r
S M L ii
nlr I n f o r i a t i o n f C H ^ V fC~^

D a t a ‘ ^ D a t a 又 ^
c " f � � D i r e c t e d D B M S ^ — — S y s t e m ——•Acyclic

J DML iDteinall^pb 夕 C o m a n d
Figure 14 Query Manipulation Process

5.4.1 Semantic Manipulation Language

SML is for revealing information about the graph. Basic operations upon
the graph fall into three categories: locate concepts, retrieve information of
concepts, and find paths between two concepts. Syntax of the SML is given in
Appendix D.

29

. IMPLEMENTATION CONSIDERATIONS

5.4.1.1 Locate Concepts

format: variable = find_node(restriction template)
The function returns a pointer pointing to a list of one or more vertices

satisfying the requirement as specified in the restriction template. The returned
pointer is assigned into the variable on the left of the equal sign. There are five
types of restriction templates referring information about a concept: name, parent
concept, child concept, association type, key identifier(s) of the concept. For
example, refer back to the data model as shown in figure 11，

V = find一node(child = "stock一name")
returns a pointer to v, pointing to a list of vertices having "stockjiame" as their
child. The system returns a pointer pointing to {"heavy一industry"，"light—industry”}.

5.4.1.2 Retrieve Information About Concepts

format: ？ projection template(V)
Given a pointer pointing to a list of vertices V or a name of a concept, the

1 "
function returns information, as specified in projection template, about the
vertices or the concept respectively. For example,

？ asso(v) ,
where vis a variable having a pointer pointing to a list of vertices, will return the
association types of the vertices one by one. Suppose v is the variable as returned
in the above findjiode command, then the system returns the following

30

, IMPLEMENTATION CONSIDERATIONS

•• information:
�

The association types are:
1. aggregation
2. aggregation

Internally, the function is executed by an iterative statement as follows:
for each element Vj in v do

print association type of Vj

5.4.1.3 Find a Path Between Two Concepts

format: findj>ath(vi, v?)
Vi and V2 are pointers. Each of them points to one vertex, or is name of

concept. The function returns all paths between them. For example,
find_path("industrial一sector", "stock一name")

returns intermediate concept names along a path from the concept
• "industrial—sector" to the concept "stock一name". Thus, the system responds as:
“ Path(s) through them include(s):

1. "industrial_sector", "heavy一industry", "stock_name";
2. "industrial一sector", ”light一industry", "stock一name"; ^

Semantically, this function finds out the way a concept is related to
another.

31

, IMPLEMENTATION CONSIDERATIONS

5.4.2 Occurrence Manipulation Language

User can request information about occurrences of concepts using query
in the following format,
: s e l e c t child concepts

from parent concepts
where restriction template

The child concept in the select clause needs not be an immediate child of the
parent concept in the from clause, but it should be a less abstract concept than
the parent concept. The system displays occurrences of the child concepts that
satisfy the restriction template as specified in the where clause.

For the simplest case, the parent concept owns a base table and the
concepts addressed in both select and where clauses have corresponding field
names in the base table. Then, the query can be directly executed by ORACLE.
For example, refers to the data model as shown in figure 11，and consider this

.query, "Displays the stock names and export rates of those light industry stocks
1 -whose export rate is greater than 10%.",

display stock^name, export_rate
from lightjndustry ^
where export一rate > 10%

As light industry owns a base table, this query can be directly executed.

32

, IMPLEMENTATION CONSIDERATIONS

...“ For other cases, the system will automatically collect relevant base tables,
perform join and/or union operations, and qualify field name with its base table.
The central idea of the algorithm of query pre-processing runs in four steps.
Firstly, collect those base tables whose field names are addressed in either the
serect or where clause, with their corresponding concepts are child of the concept
mentioned in the from clause. Secondly, for any two base tables, say B^ and
from the pool of base tables collected, pick out a set of base tables, say B], B3,
...，B n _ i， s u c h that B^ and B � h a s a common attribute, so does B � a n d B3, . . . ， a s well
as Bn_i and Also, B ,̂ B�，•••，B„ should lay on a path from B^ to B„. Thirdly,
perform join operation to join all the base tables collected. Finally, attributes are
qualified, and a query in ORACLE format is formulated and is executed by
ORACLE. In case the concept addressed in the from clause has generalization
association, union operation is performed to group the base tables collected,
instead of joining them.

Consider another example, "Display the stock names and their export rate
for all stocks belonging to industrial sector and has export rate greater than
10%.", ‘

display stock_name, export_rate
from industrial sector
where export一rate > 10%

Here, as industrial sector does not has a base table, and "industrial—sector" has a
generalization association, the system translates it into

33

, IMPLEMENTATION CONSIDERATIONS

� • select stock一name，export一rate

from heavy一 industry
where export一rate > 10%
union

: " select stock一name, export一rate

from light—industry
where export_rate > 10%

With these extension, user can focus on what he want without caring about
the details of how to formulate a query.

34

IMPLEMENTATION CONSIDERATIONS
V

“ 5.5 Examples

fund d i t i b . " (°)

V ^) 亀 《 i » I J i n t l l J

O O G O
一 date r e t ux 0 por t_ p o r t _

c o d a c o n p o - p e r c e n t a g e

aen t

Figure 15 A Partial Data Model for Fund Investment

Example 1

Example 1 and 2 refer to the data model as shown in figure 15. It
describes a model for fund investment. The full model is shown in Appendix E
which is based on a year book about fund information [Hon89a, Hon89b]. The
database for funds classifies funds into three categories: equities based, currency

35

, IMPLEMENTATION CONSIDERATIONS

• “ based, and warrant based. Each of them is further divided into finer classes. Thus,
forming a hierarchy of generalization associations. A fund is then characterized
by a set of attributes, like those describing Japanese funds.

• Consider this query, "Display the fund names and their assets for those
Japanese equities fund with return on May greater than 20%.",

select fund_name fund_assets
from japan
where (date =，May，) and (return > 20)

which is translated by the system into
select japan.fund_assets, japan.fund_name
from fund ̂ performance，japan
where ((fundj)erformance.date =，May，）AND

(fund_performance.return > 20)) AND
fund_j)erformance.fund_code = japan.fund一 code

Occurrences of "fundjiame" is in the table japan, while that of "return" is in the
‘ t ab l e fund_performance. Thus, these two tables are joined by the system to obtain

1 '' the answer.

r '

36

IMPLEMENTATION CONSIDERATIONS
V

Example 2

Consider this query, "Display the fund names and their annual charges of
those asia funds that have initial charges smaller than 5%.",
: s e l e c t fund一name annual一charge

from asia
where initial一charge < 5%

which will be translated into
select fund一name，annual一charge
from japan
where initial一charge < 5%
union
select fund一name, annual_charge
from hk
where initial一charge < 5%
union
select fund一name, annual一charge
from korea
where initial一charge < 5%
union

r '

37

. IMPLEMENTATION CONSIDERATIONS

... select fund一name, annual一charge
from se 一 asia
where initial_charge < 5%

As Asia funds consists Japan, HongKong, Korea, and South East Asia funds, the
answer is obtained by taking a union on all funds from all these countries.

Example 3

stock d&tabtse (* j

0 �*) dividetdd(̂ .iralngT^ •“
Jtock- sicietjry u g l s t i i u iiin / [\ \MUV 6 0 0 0-0 0…

- stock T*«i dlTidind Fir nat eirnins
• — — —

code shire profit

‘' f bar e

t .. Figure 16 A Partial Data Model for Stock Investment

Example 3 refers to a data model as shown in figure 16. It models a stock
investment analysis database. Each stock is identified by its code, and is
characterized by a set of attributes in membership or aggregation associations. It
illustrates the power of the use of hierarchy of aggregation associations. A full

38

, IMPLEMENTATION CONSIDERATIONS

...- data model is shown in Appendix F.
’ *

Consider this query, "Display the names, business activities and earning per
share in 1989 for those stocks that have earning per share greater than 1.",
• select stock一name activities

earning_per一 share
net_profit

from stock一 database
where earning_per一share > 1 and

dividends.year = 1989 and
earnings.year = 1989

will be translated into
select stock database.stock name,

— - _ ，

business_activities.activities,
dividends.earning_per_share,
earnings.net_profit

‘ from stock__database, business—activities,
t .

dividends, earnings
where (earnings.earning_per__share > 1 AND

dividends.year = 1989 AND ,
earnings.year = 1989) AND
earnings.stock_code = stock database.stock code AND

mmm dividends.stock__code = stock_database.stock__code AND
39

, IMPLEMENTATION CONSIDERATIONS

^ • business_activities.stock_code =
stock database.stock code —

In this example, information of a stock is scattered in several tables.
However, the user only need to specify the concept he concerns (e.g. "activities",
••earning_per一share", and "net_profit") without knowing exactly the relations (i.e.
"business一activities", "dividends", and "earnings") that the concept belongs to. An
exceptional case is when addressing concepts having multiple parents. In this case,
the concept must be unambiguously qualified. This can be avoided with
sophisticated programming technique that can produce required qualification
inferred from relevant concepts.

The above dialogue can not happen in conventional database system if the
user do not know the logical organization of the underlying database system.

r '

40

V RESULTS AND DISCUSSIONS

•

�

C H A P T E R 6

RESULTS AND DISCUSSIONS
‘：‘

In this chapter, we discuss benefits gain from using SAM* as the data
model over relational data model. Limitations of record-based data model has
been criticized by Kent [79]. Although we map SAM* on a relational database,
we has overcome several drawbacks of relational data model with the help of the
semantic knowledge embed within the SAM* schema.

6.1 Allow Non-Homogeneity of Facts about Entities

In relational database, every record of a table must be structurally the
same, i.e. the types and number of attributes of every record of a table must be

, t h e same. Semantically, each record represents an entity, and similar entities
should be put in the same table for ease of reference. However, similar entities
may has different set of characterizing attributes to describe them. In this case,
a single table cannot be used to represent all of them. For example, manager and
messenger are both employee. Suppose only manager can own a company car,
then it is meaningless to assign an attribute about company car to messenger.
Thus，we cannot use one table to store all of the information about employee.

41

V RESULTS AND DISCUSSIONS

There are usually two approaches in solving this problem. One is to include all
relevant attributes under the same roof, and the other is to use separate table for
each set of characterizing attributes. The former introduces null fields in records,
while the later scatters information about similar entities over several tables which
puts burden on user to re-organize them at retrieval time.

Using SAM*，this situation can be modelled by generalization association.
Entities belonging to a generic type are grouped under a generalization
association. Each subtype has its own concept, and can be further characterized
by its own set of attributes. Thus, all entities can be accessed at the generalized
concept, and at the same time information about particular entities can be
retrieved from the constituting concepts.

6.2 Field Name is Information

Field name is a place holder in conventional relational database. User
cannot raise query about field names itself (e.g. "Which table has this field
name?")，nor the system returns field name as answer (e.g. "What are the common
field names of two tables?"). In our system, through the directed acyclic graph
corresponding to the schema, user can not only inquire about child concepts of
a concept but also query any relevant information about the interested concept,
thus enriching one's knowledge about available information stored in the
database.

42

V RESULTS AND DISCUSSIONS

6.3 Description of Group of Information

In a tuple, nonkey attributes describe the key one. The key attribute
usually represent a single entity. There is no direct method in describing a group
of^entities. Encoding may be used so that a value in the key field do represent a
pre-defined set of entities, but this should introduce additional mechanism to
guarantee the correspondence. In SAM*, summary association serves this suppose.
Under this association, we can attach two types of concepts: one is a composition
or cross-product association which defines a set of entities, and the other is an
aggregation association or simply a set of membership association, describing the
set of entities. This is useful not only for statistical but also qualitative description.
For example, one can use summary association to describe the source of
information for a set of entities.

6.4 Explicitly Description of Interaction

‘ In relational database, a table has two semantic functions: it groups
attributes that are interacting one and the others, and groups attributes to
describe another attributes. The system cannot differentiate between these two
functions. In case, there is only one semantic function in a tuple, we qan use the
table name to represent this relationship, indicating the semantic of the table.
However, when more than one semantic function appears within a table, we
cannot explicitly expressing every semantic function of the table.

43

RESULTS AND DISCUSSIONS
V

一 In SAM*, we explicitly use interaction and aggregation associations to
reveal such relationships, allowing user to understand what information is stored
in the database. Also, we can use a generalization association over interaction or
aggregation association to solve the problem that a key attribute has more than
one depending attribute.

6.5 Information about Entities

Due to normalization, a table will be decomposed into smaller tables,
having information about an entities being stored in separate tables. However, for
relational database, schema does not provide any details on the relationship
between decomposed table of an entities. Problem may arise when an entity is
processed (insert, deleted, or modified) which may leave the database in an
inconsistent state. Integrity constraints may help but they are usually hidden in the
underlying integrity constraint handling mechanism, so that most users will not
know these valuable information.

In our system, relevant information about an entity can be easily retrieved
from the graph, thus, user can completely inquiry about an entity, and can has
more confident in manipulating entities. ^

44

, RESULTS AND DISCUSSIONS

6.6 Automatically Joining Tables
�

Our system can automatically join two or more tables when this operation
is implied by the query. For example, refer to figure 15，user can ask this queiy,
"Display the date formed of those Japanese funds whose annual return is greater
than 20%"

select date 一 formed
from japan
where return > = 20

Here, the occurrences of concepts "date一formed" and "return" are in two separate
tables (the former is under the concept "japan", and the latter under
"fund_performance"). Thus, the two tables must be joined in order to produce the
answer. Our system does this for the user, and produces this query,

select japan,date 一 f o r m e d

from japan, fund_performance
where (fundj)erformance.return > = 20) and

(japan.find_code = fund_performance.fimd_code)
the second condition in the "where" clause is necessary for joining two relations
where "fund_code" is the common primary key for both tables.

6.7 Automatically Union Tables

Our system can automatically take a union operation on tables when

45

V RESULTS AND DISCUSSIONS

...“ necessary. Suppose, currency fund generalizes both US funds and Japan funds. We
�

can use a single query to retrieve all currency fund information from the generic
concept "fund_currency" as in

select - fund 一 name
from fund_currency

This is automatically translated into
select fund 一 name
from fund一us

union
select fund__name
from fundjapanese

6,8 Automatically Select Tables

Our system is able to select necessary tables to form a valid queiy，and
qualify attribute. For example, refer to figure 16 and consider this query,

‘ select net_profit
i -from stock—database

where stock一code 二 15
Here, the user does not require to know which table does the occurrences of
"netjprofit" reside. Instead, it is sufficient to specify a more abstract concept it
belongs to, i.e. "stock—database". The system produces the following query,

46

RESULTS AND DISCUSSIONS
V

� select net_profit
from earnings
where stock一 code = 15

This capability is of particular help in case a lot of concepts are in many different
tables.

6.9 Ambiguity

When addressing a concept that has more than one parent concept, user
is required to specify which concept he refers to. For example, consider figure 16
and the following query, "Display the net profit for the stock with code equal to
15 in 1989". Here, the concept "year" will be addressed. As year has more than
one parent ("dividends", "earnings", and etc.), the user must qualify "year" with the
parent concept that he refers to. Hence, the query should be raised as,

select net_j)rofit
from stock_database

‘ where stock一code = 15 and earnings.year = 1989
：

6.10 Normalization

Normalization is a process in logical design of a relational database system
that aims at avoiding various update anomalies. Usually, normalization is fulfilled
by decomposing the original table into smaller tables. The use of SAM* as a data

47

, RESULTS AND DISCUSSIONS

� - model does not affect the process of normalization, since SAM* does not impose
any constraint on the composition of the child concepts of a concept, hence the
grouping of field names of a table.

‘

二 “ Consider the Boyce/Codd Normal Form (BCNF) which require that every
determinant^ is a candidate k e / [Date 86]. A table, called SSP (supplier
number-supplier name-part number relation), is shown in figure 17.

S f S N A M E P f

SI S m i t h P I
SI S m i t h P 2
SI S m i t h P 3
SI S m i t h P 4 • • •

Figure 17 A Table not in BCNF

SSP is not in BCNF because both S# and SNAME are determinants (P# depends
on S# and SNAME) but are not candidate keys (there are duplication for S# and
SNAME in SSP) for the relation. To model this information and have the
resulting tables satisfying BCNF, one can decompose SSP into two tables: one has
supplier number and supplier name as attributes, and the other has supplier
number (or supplier name) and part number as attributes. This situation can be
modelled in SAM* as in figure 18. The concepts "supplierjpart" and "supplier"

5 A determinant is any attribute on which some other attribute is fully functionally dependent.

The set of attributes K = (A„ Aj, A^) of R is said to be a candidate key of R if and only if it
satisfiej the following two time-independent properties: 1) uniqueness. At any given time, no two distinct
tuples of R have the same value for A丨,the same value for A,, and the same value for A^. 2) minimality.
None of A,, Aj, •••, A^ can be discarded from K without destroying the uniqueness property.

48

RESULTS AND DISCUSSIONS
V

…” own base tables. The base table of the former can has supplier number (or
supplier name) and part number as attributes; while that of the latter has supplier
number and supplier name as attributes.

s u p p l i e r _ p a r t (A)

s u p p l i e r i j i ^ p a r t i

© ©
s u p p l i e r J s u p p l i e r _ n a m e

Figure 18 An Example on Handling Normalization

Alternatively, the schema can be modelled as in figure 19，where the
concepts "supplier" and "supplier_part" own base tables, with the former having
supplier number and supplier name as attributes, and the latter having supplier
name and part number as attributes. The resulting tables are also in BCNF.

49

V RESULTS AND DISCUSSIONS

• » -

s u p p l i e r _ i n f 0 (C)

s u p p l i e r (O (O s u p p l i e r _ p a r t

GJ O ®
s u p p l i e r ! s u p p l i e r ^ n a m e p a i t f

Figure 19 Another Example on Handling Normalization

6.11 Update

Update in a database using semantic data model should be carried out
with special care, or else it will lead the database into an inconsistent state. By
update, we mean insert, modify, and delete of entities and/or some of their
attributes values. In this section, we discuss update handling mechanisms offered
by various implementations of semantic data models.

DAPLEX leaves the responsibility of maintaining the consistency to user.
User can specify the operation to be done (specified in a so-called perform clause)
when a particular update is made (specified in using clause). As commented in
[ShipSl], 产

It is important to point out that this facility merely allows users to provide the illusion of derived data updating.
The system does not, for example, validate the PERFORM …USING statement to ensure that it results in the intended
derived data update.

50

, RESULTS AND DISCUSSIONS

一 • Even in recent implementation of DAPLEX [BaLe88, LyVi87], there is no
mechanism reported for handling update.

IFO [Abit87] takes a theoretical approach to analyze update propagation.
An'Vpdate Propagation Graph is constructed, and any update at the leave node
is then propagated upward to the root of the graph. The discussion is under a
restricted environment: 1) only is-a (specialization and generalization) relations
are considered; 2) there is no cycle in the update propagation graph; and 3) there
is no functional relation in the graph. The third restriction makes the discussion
of little value

in practical ease, where an update to an object will usually affect
other object that is functionally depends on the former one. For example, consider
a schema describing the situation of a course enrolls students. Here, enroll is a
functional relation mapping a course to a set of students. When a course is
deleted, so does the students who have taken that course. But, IFO cannot handle
this common phenomenon.

’ The implementation of SDM by [JaGu88] takes a similar approach to that
of IFO, where it only considers update propagation along subclass or superclass
path starting from the entity to be updated. When an entity is inserted, all of its
ancestors will be inserted with information indicating the existence of the new
entity. When an entity is deleted, all its subclass instances are deleted while its
superclass instances are not affected. For modification, immediate and inherited
attributes of a class can be changed, but the effect is not automatically

51

RESULTS AND DISCUSSIONS
V

propagated.

An implementation of GEM semantic data model is reported in [Tsur84".
The system allows user to formulate query to append, modify, and delete entities.
However, it will reject any attempt to delete a entity that still has been referenced
by other entity. Thus, it is also the user's responsibility to perform all the chaining
operations induced from an update.

In SAM*, update propagation can be done with the help of the graph. The
direction of propagation (upward or downward in the graph) depends on the
operation and the association of the concepts being involved. For aggregation
association, the existence of an occurrence of a child concept depends on that of
its parent concept. Thus, an addition of an occurrence of a child concept should
not be performed before the addition of the corresponding occurrence of its
parent concept; while a deletion of an occurrence of a parent concept must has
its corresponding occurrences of child concepts being deleted too. For interaction
association, if an interaction exist, then there should has corresponding
occurrences of its child concepts. Thus, an addition of an occurrence of an
interaction must be done after the addition of the corresponding occurrences of
its child concepts. An deletion of an occurrence of a child concept should has the
deletion of the corresponding occurrence of its parent concept. To illustrate the
situation, refer to the data model in figure 16，a delete of a stock, say with stock
code equal to 15，can be specified as,

52

V RESULTS AND DISCUSSIONS

: delete entity
from stock_database
where stock一 code = 15

Since ”stock一database" owns an aggregation association, the deletion of an
ocdurrence of this concept (as the query request to delete an entity of
stock一database) must be done after the deletion of corresponding occurrences of
its child concept. The system is expected to translate it into several queries with
each of them the stock with stock code of 15 should be deleted from the
occurrences of a child concept of stock一database. Two of these queries, which are
in SQL form, are:

I V

delete »

from dividends 丨:
1' »

where stock code = 15 — V
•丨

and ；

delete
from earnings

‘ where stock—code = 15
Only after these operations are done should the occurrence, the stock with code
15, of "stock_database" be deleted,

delete
from stock_database
where stock一 code = 15

53

RESULTS AND DISCUSSIONS ‘V

Besides manipulation of entity as a whole, the user should be allowed to
• r

perform update at a concept without propagation. Suppose the user just want to
delete information about earning of a stock, then this query

delete
: " from earnings

where stock一 code = 15
should not induce any other operation.

From the above discussion, we can get the idea that there is no simple
solution for performing a consistent update. The problem is that a single update
may induce other operations. If the update is done automatically by the system,
then the induction of other operations can only solely based the data model. Thus,
not only the model itself must completely represent the application domain, but
also the system must make no error in interpreting the data model. For flexibility
reasons, the system should offer user the ability to control update propagation.

r-'

54

(. . J • 1 • ;> . “ • I •

\ , I . . 丨 ’ ， 、 . . / " . . . • •

. . - ' ' 4 , . ‘ ..
‘ • “V f >

. . … . ‘ . �
• , ‘“ >1 ； ,

：4 . i.?" i V̂ .

‘ , 厂〜卜t J令 • .. 二、K丨
.、：erf 广

..,…、：」、
.;、,"’？-, , -.::.::/::,。站•零、.:〈;:〒：̂̂^̂ 、‘.... ‘

. . • 、：V.'•'''：： .•••-'•：‘：'^,^：：.'^^^ • ：‘ ： ： ‘； •；•：.'.••

. ••• •. • •....•、.： ：.、:、.：： . . •• ； ••‘ ： •••；.：.』
• • . ' : � ! � > ‘ '•. I •‘ . , - . ’ .• , . V ‘ . . . • • , I . • . .

.••.，.• ,> ；, • • , • . |‘'.'..， ..‘，.，：... . •

“ ‘ ‘ ‘ ‘ I ‘ • 1 ： • . . • . '*....!「'•‘.'• •..、-.•.、'.,,,.：.、.‘ ‘； • • ‘ ！.v'.'：' ‘ • .. • .. . ‘ ...

.:::•’:：.：:,… 、. ，\.一:,：..> ； • ； ‘ ^ • • ？ •

.• • V •• ‘ • ^̂ ̂v：； '̂a：̂/̂
…•.-..'、-〜.：.:..：， , . . I :;-.•,-.,:、：:-;::.,...• (••、:*"々 :、'••-。.-,:—.:”•>.”：：....-•::-":,、...：

..::「." ：:.::.| :•:、)：::.•' • ... '：̂' - . ： ：•>•；.• -：：•：::::,:〜、:.

： ,.,. • . - _1 • • •“ .、• "T/.f . , ••'•： ；；- •• ‘ •：' • ̂ ； . .. _..‘：
. - r . "‘厂、•： . - . •二 ： . •…'：••' . 1 -r：-:..；., . ‘ •,,.：'；：；•'、：』':."（；• . • • • . 、 . , . .

. ‘ • V ^ ,> • ：• ； ： ' • • • • ‘： •

•":::、.::..:::•, ： ：
P A R T I I I

r � - - - ' ’ • . , , V • I , - • ： ： ' ^ ^ ' ； - - ： . ' ^ / ' - ； ‘ . . . ' ： . / . ； ； .

I、 ’ . - ： , • . . • . . . ：‘'-、:- .�. ；'. • ...;.::、•「？‘.,，:..:.:J:.

,..). ' 々 . , 1 • v.- , . ’、 .，，

、 •？ 、， 入
‘ ‘ . • • ；‘" P' ‘： . .

； ： • . •. . • • ‘r. - • 二 . . .

‘ ， V|.. . . ••

‘ ： ： . ’ . V : •• ‘ • .. - '".：-：
- ： • : � , ： • . I , .. ti；评 ： ：

: . • • 、 : ： " • _ _ . : . , : : . : : 補 ： 麵 • .:t:'�
. ‘, ，.•… • V ’ 雜 ‘ : : 丄 。 , . . : • .. •

：：：.、.：./I...:.‘ 漏 : : r . . , � . “ : : ‘ • .
...-‘.....…」 離

• 乂 ：： / … . 厂 : ； . ， ： / . 广 V : 伊 . : . . -

. . 1 . 1 “ � . " / • ‘ • , I";'.-:.., . ,’ .，•••_'‘.. . -

“ • • •;；'= .’，： . . , .• / . -•： ；- ：--

‘,. . . ’ ‘ ‘ ’ . • > • " . • . V . • : : : .

：’•• .r ,] . , ‘ • iV.-.iKfv - ..'： •： . ： • • . , … ‘ ； . . � - � y ； / r - . . .

. . . • . V' ' - i v r ^ - - �

• ‘ 丨 . . ’ ， . ， . . . ’ ‘ ： . � - . I丨 , ‘ . . / " 、 . . , , ‘ .._ . 、,•..,‘•:•:•,::'•}.:、.，,:"，‘：.'..,.、：.）

,• ： •、 ‘ :y):’巧::: 、
. • .,、..‘. 、 - ’ : : ’ , 辦 . ； , ：：‘二
• ,. - . . . •‘ • • ^•；...1：" r [丨‘ . . ： • 丨 ‘ . ’ 丨 , 二、―:*•_.,(.、十，.，.,.

I » . > ‘ . . . • ' , • • . . : ‘ . I.... ..

' • • • ； • • ： ... I . '.• ；•• •••：.''-/,,_Vi‘ '•‘ .

••‘义..'..• - - • .>'. ••'•v'T -'••""•r-̂ r- ‘； ；t- ‘ I

‘:，.�...-,..：？ ： C . • …’
..” ‘ ‘ ：

• j:: . I:. ‘.:�:.:::/".
：../丨 , . : :::. ‘ r ： , , ‘ •

‘ ,、 、 • “

\ '"J" i i. • . •• • • ‘ ,： . „•：• . .‘

‘ . I .�•:..... -:::气:::::丨：丨:�\�:1,‘�:,、;:： __.‘• I...�.，：“�..
： 二 : : ， : ' : 、 : : : 〜 ： 二 乂 二 ‘ ‘ ： ‘ ,, •... I.:：……、. .. .,:，t%#)对;《？V�:.:丄、？̂ …...

；,‘.:':r. , ： . . •
： . . . ： I . •••：., • • .. V , ； - .

•- • • ； . • • • . • . . • « . . Ig' ” fl •••- , ̂ • ‘ • •, , ,
� , •• .： • ！

‘• • • . ' . - • ‘ • . . ， . : ‘ . • 、 ,

： , •：...,..- . . ；
: • / . . . > : : . : . ： . � ‘丨 . - . ‘ ’. ,:'，、_•、 ； .1. ’’i'.....:… , . ‘. .丨

, • , , f

. H , ’：.••:. _ 、 . •‘.，.（•： -

. . - ‘ � ••

. . . I • . ’. . - 「..： . ：： • - . , . : ‘ " . - . ‘ ’ . • 1 ‘ . I .. . r---, r；, . V . . 二 .， i - ； .'•,..；•. ‘ •:. ‘； {!• .:•’ .、 ‘ •• “ 承•• . “ J., I • .::.. . ^ � . , ..:.:. ' 1 1 . 1 . . . � . � � . . . ： . 厂 ； . • •• ； ..) 、.： .,.11、..，.、，：.'. ‘•-:. - ； . , 、 • • ‘ i .:‘.；..、；..,.，“• - • . :. I • ： 、 丨

. SCHEMA VERIFICATION

•

"r

C H A P T E R 7

SCHEMA VERIFICATION
‘：：V

7.1 Introduction

Schema is a description of an application environment. It structurally
defines characteristics of and relationships between entities that are relevant to
the application. Usually, schema is equipped with constraints to restrict possible
instances of entities. Constraints are the means through which user or database
administrator can specify semantic restrictions onto the database. ‘

i I

\ I

In conventional database system, schema is of rather static nature. Seldom ‘
literatures address the problem of re-design of schema. The situation can be
acceptable in a very stable application environment. However, there do have

^ circumstances under which schema is subjected to modification. For example,
a) incompleteness of the schema itself;
b) incompatibility between user specified constraints and those imposed

implicitly by the underlying data model;
c) changing of the application environment, e.g. a schema for stock

investment analyzing database should be updated if a new investment

55

, SCHEMA VERIFICATION

:二 tool is introduced to the market; and/or
d) incompatibility between requirement specified by users under a multi-

user environment, where each user has his own interest in a particular
aspect of the database.

The situation as described in point (b) becomes obvious when working with a
database using semantic data modelling approach. With enriched set of semantic
constructs to describe data as well as operators to operate on them, the data
model usually impose constraints to guarantee consistent usage of these additional
facilities.

Once the schema is to be revised, we will concern the following questions:
"Is the resulting schema still a valid description of the real-world data?" or
"Will user imposes extra requirements that are inconsistent to the existing
ones?".

The author would like to term this problem as schema verification which
is defined as a process that determines the existence of contradicting constraints

�‘within a schema, assuming every requirement imposed by users is expressed as
‘constraints. Serious modification must rely on the database administrator to re-

design the whole schema from the beginning. However, in case the change is of
small size, the change happens from time to time, and/or the schema is of large
scale, the process becomes increasing tedious and difficult. The solution through
re-design the whole database from the beginning seems to be time-consuming and
expensive. In this part, we proposal a mechanical method to help the database

56

. SCHEMA VERIFICATION

一 “ administrator to perform schema verification. It should be emphasized that the
discussion does not restrict to database using SAM*. In fact, the result can be
applied to any database system that face the problem of having to change the
schema.

7.2 Need of Schema Verification

As the schema grows more and more d, there may has problem of
inconsistency. Consider the schema as shown in figure 20. At one time, the user
perceives "industrial一sector" and "hotel一sector" are two mutually exclusive
concepts, as indicated by the "SX-SX" constraint. However, at the other time, the
user thinks that "hotel" is a kind of "light一industry", as well as "hotel一sector". This
contradicts to the set exclusion constraint. The result is that it is forbidden to add
any data under the concept ”hotel". If the user does not aware of such a fault in
the schema and try to retrieve occurrence of the concept "hotel", which is empty,
then the user may wrongly conclude that there is no hotel business in Hong Kong!

I

‘ Such mistake occurs when schema designer has inconsistent view on the
concepts. The situation is not uncommon if the schema is developed by more than
one designer or the schema is modified by a third party, say user. This
shortcoming can be amended, if contradicting constraints within the schema can
be checked out before the database is used, which is the job of schema
verification.

57

V SCHEMA VERIFICATION

•

sector f GJ) •‘

industrials^ ^ hotel

广 X 一
heavy- ^ H g h t . / S / \

、、- industry W industryV^ /ST-SS \

o © ©
tourism hotel lst_class_hotel

Figure 20 Example of an Inconsistent Data Model

7.3 Integrity Constraint Handling VS Schema Verification

Another field of research in database communities that relates to schema
verification is under the title of integrity constraint handling. Integrity constraint
characterizes valid database states, and impose restrictions on the possible state
transitions of a database [GaMi84]. The veiy first issue of both problems is to
represent constraints. Research has been done for expressing integrity constraints

‘in relational database [Nico82] as well as deductive database [Ling87]. The result
can be directly applied to schema verification.

The two issues are different in their very goals. Integrity constraints
checking intend to derive mechanism to efficiently enforce constraints on the
database during data manipulation. While in the schema verification, we try to
check if the constraints themselves are contradicting to one another. Thus, the

58

. SCHEMA VERIFICATION

.“ former is carried out during the access of the database, while the latter is done
* , ‘.

at the compile time of the schema. In this sense, schema verification works at a
meta-level.

. ‘

：…In fact, the two issues maintain consistency of a database system from
different perspective, and should be treated as a pair of complementary issues.

I

• r

59

^ AUTOMATIC THEOREM PROVING

•

C H A P T E R 8

AUTOMATIC T H E O R E M PROVING
. z

":-i"

8.1 Overview

Automatic theorem proving is a promising approach to schema verification.
The main goal of research in automated theorem proving is to build programs
that are effective in finding or helping to find proofs of theorems from
mathematics and other fields of applications [BlHe85]. Stated in terms of
automatic theorem proving, schema verification is try to find a proof for the
conjectural theorem that new constraints (or conclusion) logically follow existing
constraints (or premises).

A desirable prover is both effective and efficient. Soundness and
,completeness are one of the measures of effectiveness. A prover is sound if
whenever it finds a proof for a theorem, the proof is valid for the theorem. It is
complete if whenever a theorem is valid, a proof can be found by the prover to
prove the theorem. In general, provers are sound but incomplete. A prover can
be sound if only valid inference rules and premises are used. Incompleteness of
provers follows from the Church's Thesis [Jeff89]. However, there is proof

60

V AUTOMATIC THEOREM PROVING

� . p r o c e d u r e that is refutation complete, i.e. the prover guarantees to find a proof
for an invalid theorem [GeNi87].

8.2 A Discussion on Some Automatic Theorem Proving Methods

In this section, four provers are discussed so that we can choose a suitable
one to solve the problem of schema verification.

8.2.1 Resolution

Resolution [Robi66, Robi79, Love78] is the most well studied automated
deduction procedure. It is sound and refutation complete. The resolution
procedure is shown in table 2 [GeNi87]. Before the procedure is invoked, input
formulas have to be converted into conjunctive normal forms, then, the conclusion
is negated and added to the premises. The procedure is based on a single rule of
reference known as modus ponens, i.e. (p -> q) and p logically imply q.

1

Procedure Resolution (Delta)
Repeat if Termina七ion(Delta) then

Return(success);
Phi := Choose(Delta);
Psi := Choose(Delta);
Chi := Resolvent(Phi, Psi);
Delta := Concatenate(Delta, Chi);

end;

Table 2 Resolution Procedure

61

V AUTOMATIC THEOREM PROVING

�

Consider the following problem: given two premises, every manager is an
employee and every employee has a mail box, we want to know if every manager
has a mail box logically follows from the two premises. The problem is formulated
as "Shown in table 3.

predicate:
manager(x) : x is a manager
employee(X) : x is a employee
mail一box : x owns a mail box

premises:
forall X (manager(X) -> employee(x))
forall X (employee (x) -> inail_box(x))

conclusion:
forall X (manager(X) -> mail一box(x))

Table 3 Axioms for 'mail-box» Problem

Once the conclusion is negated and all the clauses are converted into ！
J

conjunctive normal forms, we perform the resolution procedure as depicted in
figure 21.

f

The success of the procedure depends on the 'clever' choose of parent
clauses to be resolved. Various strategies for improving performance of resolution
are proposed [GeNi87, Rich83]. Some of them aim at eliminating useless clauses,
e.g. pure-literal, tautology and subsumption elimination. Others restrict the
candidate set of clauses for resolution, e.g. set of support, unit, input and linear
resolution.

62

^ AUTOMATIC THEOREM PROVING

•

V

not nanagei:�x> v employee (x) not eaployee (y) v aail box (y)
\ \
) \ manager(z) (y/zl) \ not aail box (zl)

employee (x) not enployee (y}
/

Figure 21 An Example of Resolution

8.2.2 Natural Deduction

I 丁atural deduction [BlHe85] describes a collective prover that attempts to
produce a /natural，proof understandable to human, usually without prior
converting formulas into any normal form. Gentzen's NK, as mentioned in
[Bibe86],

is one of the earliest development of natural deduction which simulates
mathematician's reasoning. Natural deduction usually involves a wide variety of
inference rules, and able to retain useful pragmatically information encode in the

？ connectives, hence ease the use of heuristics to direct the prove procedure. In
.'厂

addition, as user can grasp each step in a proof, he can head the proof procedure
to fruitful direction, resulting in a so-called，interactive，prover [MiFe86'.
Inference rules of a natural deduction system can be classified as introduction and
exploitation rules [Fros86]. Some of them are shown as follows:

63

r ^港中文大學回青 ^ - i r x -

AUTOMATIC THEOREM PROVING V

� - Introduction Rules:
from A and B infer A & B
from A infer A v B
from A |- {} infer -A

� • � - from A |- B infer A -> B

Exploitation Rules:
from A & B infer A

>

from A v B , A l-C, B l - C infer C
from A and -A infer {}
from A, A -> B infer B

where {} stands for a logically false formula. Starting from a supposition (or
assumption), a proof is constructed by using these rules and the given premises.

A proof for the，mail box，problem using natural deduction is shown as
follows:

}

！

f<

64

_ AUTOMATIC THEOREM PROVING

“ (a) manager(x) supposition
*r

(b) manager(x) _> employee(x) given
(c) employee(x) by - > -exploitation of (a) and (b)
(d) employee(x) -> mail_box(x) given

: (e) mail_box(x) by - > -exploitation of (c) and (d)
(f) manager(x)卜 mail_box(x) from (a) to (e)
(g) manager(x) -> mail一box(x) by ->-introduction with (f)

It can be seen that the proof is easily understood, but the successful
construction of a proof depends on the clever choice of supposition and inference
rules.

8.2.3 Tableau Proof Methods

Tableau proof method is similar to natural deduction in the sense that it
makes use of a wide variety of inference rules and the proof is expect to be easily

‘followed by user. The difference is that a tableau proof is constructed from the
negation of the theorem to be proved. As an illustration, consider a tableau-based
theorem prover as described in [OpSu88]. It has four types of inference rules:

r'
I

65

, AUTOMATIC THEOREM PROVING

Alpha type:
- - M M & N -(M V N) -(M = > N)

M M -M M
, z N -N -N

: � - B e t a type:
M v N M => N - (M & N) (M < = > N) ^ < = >N)
M I N -M I N _M I -N M | -N M 丨-N

N I -M -N I M
Universal Instantiation (UI):
forall X P(x) - exist x P(x)

P(a) - P(a)

Existential Instantiation (EI):
exist X P(x) - forall x P(x)

P(a) - P(a)

where M, N are formulas
P is predicate symbol

On the way to find a proof, it selects a premise upon which a rule of
inference is applied. The premise is split into conjuncts by alpha type rules, and
into disjuncts by beta type rules. EI and UI eliminate the universal and existential
variables respectively by substituting a constant term into the variables. The proof
can be visualized as a tree-like structure where each branch is a disjunct. A

66

, AUTOMATIC THEOREM PROVING

…- branch is fail if it resolves to empty clause with one of its ancestors (M is an
ancestor of N if N is produced by a series of decompositions form M). The
procedure terminates when there is at least one truth-value assignment to all the
atomic formulas of the premises. This proof procedure is shown to be refutation
complete. The system can be incorporated with a set of heuristics to improve the
proof. A proof of the，mail box，problem for this prover is shown in figure 22.

1) V X (m a n a g e r (x) - > e n p l o y e e (x)) p r e t i i s e
2) V X (e m p l o y e e (x) - > n a i l ^ b o x (x)) p r e m i s e

” • V X (n a n a g e r (x) - > m a i l 一 b o x (x) � n e g a t i o n o f

c o n c l u s i o n
4) - (n a n a g e r (a) - > B 4 i l _ b o x (a)) f r o m (3)

5) m a n a g e r (a)

“ - n a i l 一 b o x (a)

7) M a n a g e r { a) - > e n p l o y e e (a) u i f i o n (1) ,
8) - n a n a g e r (a) e n p l o y e e (a) 9) * e m p l o y e e (a) • > n a i l _ b o x (a) U I f r o » (2)

1 0) e n p l o y e e { a) n a i l 一 b o x (a)

* *

Figure 22 An Example of Tableau Proof Method

8.2.4 Connection Method

Connection method [BibeSl, Bib82a, Bib82b, Bibe83, HoBi82, AndrSl]
implicitly converts the input formula into disjunctive normal form (or conjunctive
normal form), and concludes the original formula is invalid (valid) by showing
that every disjunct (conjunct) is false (true). In this section, we focus the

67

V AUTOMATIC THEOREM PROVING

一 • discussion on the view of implicit conversion to disjunctive normal form. The case
for conjunctive normal form is similar. Each disjunct through the input formula
is called a path. A path is defined as follows [Stic86]:

a) a path through a formula that is a single atomic formula consists of
that single atomic formula;

b) any path through one of the disjuncts is a path through the disjunction;
and

c) any concatenation of paths through all of the conjuncts is a path
through the conjunction.

To facilitate the distinction of disjunction and conjunction, all negations should
be drawn inward to atomic formulas. A theorem logically follows from a set of
premises if every path passing through the set of premises and the negation of the
theorem contains at least one complementary pair of atomic formulas.

Consider the，mail box，problem again. The input formulas are the
following conjuncts,

•‘ -manager(x), employee(x);
-employee(x), mail一box(x);
manager(X); a n d

-mail一box(x).
There are four paths through these formulas:

68

V AUTOMATIC THEOREM PROVING

� - , a) -managerrxV -employee(x), manageifx). -mail一box(x);
b) -(manageiYx�. mail一box�• managerfx；). -(mail一box^x��:
c) employee(x)，-employeerxl manager(x)，-mail一box(x); and
d) employee(x), mail一boxfa�. manager(x), -mail—boxrx).

A :̂ each path contains a complementary pair of atomic formulas (indicated in the
underlined formulas), the conclusion logically follows from the premises.

In the course of proving, there may have paths having common pair of
complementary atomic formulas (or connection), like those pairs in clauses (b)
and (d) as well as in clauses (a) and (b) in above. The method has an improved
version that avoid repetition of connections. This can be depicted in figure 23.
The formula is placed in a form of matrix, where formulas being placed in a
column is disjuncts, and those in a row is conjuncts. Here, construction of three
connections is sufficient.

^ ~

m a n a g e r (x) a a n a g e r (x) . - e m p l o y e e (x) . - m a i l _ b o x (x)

” 山 丨 • _
.r Figure 23 An Example of Connection Method

r'

69

, AUTOMATIC THEOREM PROVING

� 8 . 3 Comparison of Automated Theorem Proving Methods
�

The four methods are effectively the same, namely, they are sound and
refutation complete. Thus, the comparison focuses at their efficiency.

8.3.1 Proof Procedure

With regard to the structure of proof procedure, both resolution, natural
deduction and tableau proof method are simpler and more elegant than
connection method. Their proving strategies can be changed by simply imposing
heuristics as rules without modifying the proof procedure itself. For connection
method, the path searching strategies are incorporated into the proof procedure,
making the modification of the procedure more difficult.

8.3.2 Overhead

Overhead of a proof procedure refers to the amount of effort spent in the
preparation steps. Resolution has the highest overhead as it should convert the
input formula into conjunctive normal form. For example, a formula like (a & b
& c & d) v (e & f & g & h) should be converted into 16 conjuncts, (a v e) & (a
V f) & … & (d V h). As connection method needs to identify the conjuncts and
disjuncts in order to find a path, the input formula should be in negation normal
form, a less restrictive form than CNF, where argument of negation is atomic

70

AUTOMATIC THEOREM PROVING
V

formula only. Thus, every negation should be drawn inward to atomic formulas.
Tableau proof method only require negating the theorem to be proved, and does
not required any transformation of the formulas, so it takes nearly no overhead
at all. Natural deduction make no requirement on the form taken by the input
formulas, nor any negation of formula. Thus, it has least overhead.

8.3.3 Unification

During unification, special attention should be paid to the case where
existential variables appear within the scope of universal variables. For example,
the statement "Everyone has a mother" is expressed as the following formula,

forall X exist y (mother(y, x))
y appears within the scope of x. While the instant that x takes can be arbitrary,
the choice of y depends on x. The provers have different treatments to this case.

In resolution, such existential variables are replaced by a skolem function,
optionally with argument of the universal variable upon which it depends. The
above formula can be expressed as, "

forall X (mother(M(x), x))
where M is a skolem function that returns the mother of its argument, x. The
construction of skolem function requires extra storage.

In tableau proof method, the problem is handled by instantiating the

71

AUTOMATIC THEOREM PROVING
V

一 - existential variable with a new instant that does not appear before the step. Thus,
forall X exist y (mother(y, x))
=> exist y (mother(y, b))
=> mother(a, b)

ifidicating that a particular instance a is mother of b.

For connection method, the problem is handled by avoiding substitution
of dominated variable into dominating one. In the above example, y is dominated
by X，thus, it is forbidden to substitute y into x.

8.3.4 Heuristics

Heuristics direct the proof procedure to its goal. Resolution leaves the
choose of a promising parent clauses to be resolved totally to heuristics, i.e. the
success of the procedure heavily depends on the heuristics. In natural deduction
or tableau proof method, the heuristics is more in the sense that it not only has

•‘ to determines the parent premise but also the rule of inference to be applied at
“each step. Although there is no proposal of using heuristics in connection method,

heuristics can be helpful in choosing a clause from the input matrix and a sub-
clause from a clause.

<

72

V AUTOMATIC THEOREM PROVING

8.3.5 Getting Lost

，Getting lost，is a term given by Wos [88] to describe the situation where
a reasoning program does not adequately direct a proof, pursuing unprofitable
patti one and another. Resolution, natural deduction and tableau proof method
generate intermediate clauses and make the pool of parent clauses expanding. On
the other hand, connection method is quite systematic in the sense that it
exhaustively searches, in a depth-first manner, all paths at any time, does not
expand the set of input clauses, and, in certain extend, does not repeat steps that
has been taken.

For example, consider this formula {LI v L4}, {-LI v L2}, {-L2 v L3}, {-
L4 V L5}, {-LI}, {-L5}. Using resolution, in the best case, three steps are needed;
while in the worst case, 18 steps are taken. In fact, there are 12 different
resolvents can be generated by using 18 resolution steps. Heuristics is heavily
depended in order to arrive at shorter proof. Using connection method, the
procedure can be terminated by locating 3 connections in best case, and locating
5 connection at the worst case.

8.4 The Choice of Tool for Schema Verification
<<

Contrast to resolution, connection method has the following advantages:
1) require a moderate conversion of input formulas; 2) allow easy manipulation

73

V AUTOMATIC THEOREM PROVING

of existential variable within universal variables; and 3) seems to be more
systematic or directive in construction of a proof. Bibel has proved that
connection method can simulate the model elimination [Love78], a highly
restricted form of linear resolution^, at the same number of steps and lesser
stdfage space [Bib82a]. For example, consider this formula {-LI vL3 v L4}, {LI
V L2 V L4}, {-L2 v LI}, {-L4}, {-L3}. Figure 24 shows the six resolvents obtained
by resolving among input clauses (by the requirement of linear resolution, the first
resolvent must be obtained by resolving two input clauses). The pair of number
below each resolvent represents the maximum and minimum number of resolution
steps required to obtain an empty clause using that resolvent.

t . L l V t J T H) U l » t l V L t) (L I » - I J) . n . L J

二 ^̂̂̂̂^̂ •〜••::::::::::::::::,.
<tl V t J V 1.4) (I.： T I.J V M l (. 1 . 1 » r,4) (1 1 » t n 11.] • t.4) (I . I V I3i

【》. ” 【S. >] It, II [(. 1] [4, ” .】

Figure 24 Example on Linear Resolution

1 .

A proof using eight steps is shown in figure 25. It can be seen that step (e)
and (h) repeat step (c), and step (g) repeats step (b). While using connection
method, four or six steps are sufficient to report the complementarity of these

7 Linear resolution requires at least one of the parent clauses to each resolution operation must
be either an input clause or ancestor clause of the other parent

74

V AUTOMATIC THEOREM PROVING

；-" clauses, as shown in figure 26a and 26b respectively. If redundancy elimination
mechanism is used, five connections are needed in the case of figure 26b. This is
because the avoidance of repetition has been taken account at the second chance
of step 5 of connection method algorithm (see Appendix G).

(氣 ） -Ll V L3 V L4 LI v •L2
(b) -L2 V LJ • L4 . L3
(c) -1.2 V Li - L4

-1-2 Ll V L2 V H
i I {«) Ll V H .L4

(丈 > 乙1 -Ll V L3 V L4
i

(9> L3 V Li -L3
� 1.4 -n

；

()

Figure 25 A Proof Using Linear Resolution

/ - L l L l • L2 • L4 - L 3 / L l • L l -12 • L3 - L4

� (b) ^

Figure 2 6 A Proof Using Connection Method

75

^ AUTOMATIC THEOREM PROVING

•

Contrast to natural deduction method or tableau proof method, connection
method does not heavily depend on heuristics, and a totally mechanical procedure
can be developed for it. It seems that connection method is efficient in handling
a•碰e range of problems. On the other hand, natural deduction, though seems
to be less efficient than connection method, will be useful for hard problem where
user's involvement is needed to construct the proof.

1 . ̂

f

76

V IMPROVEMENT OF CONNECTION METHOD

•

C H A P T E R 9

IMPROVEMENT OF CONNECTION METHOD
. z ‘

9.1 Motivation of Improving to Connection Method

On top of the connection method algorithm, Bibel attempts to build a
redundancy elimination mechanism to avoid repetition of previously considered
paths. However, the combined version is very d. His approach confuses the
control flow of and data structures used by the two purposes. For example, a
stack, named "WAIT* in the combined version, has five different functions.
Besides being primarily used to store up any path has not yet been examined, the
stack is also used to store information for handling redundancy elimination. Stack
elements for the former purpose is labeled as "sg", while that for the latter one

, a s "sc"，”lm"，"dm", and "PRSG". This makes the algorithm hard to read and
,maintain. More seriously, the resulting algorithm is not guaranteed to be correct,
as Bibel comments in [HoBi82] that,

"It is rather obvious, that the preliminary version of COMPLEMENTARY has the correct I/O-behaviour (able
to return 'complementary' if all paths through an input matrix are complementary, and 'non-complementary'
otherwise). This is no longer dear, when we add the mechanisms (for redundancy elimination)…”.

Another problem is due to the ad hoc approach to handle the redundancy

77

V IMPROVEMENT OF CONNECTION METHOD

elimination. Once a kind of redundancies is identified, a definition for its
• r

occurrence is formulated, and then the algorithm is modified to cater for this
particular type. The process repeats whenever a new type of redundancies is
discovered. This ^progressive approach inevitably lengthens the time of
development as well as gives no insight on solving the problem completely. Also,
potentially fault may arise due to incompatibility between redundancy definitions.
An example is to be discussed later. Bibel also gives the following remarks
[HoBi82]:

"…the addition of another mechanism interferes with them (the previously added mechanisms) thus yielding an
inconsistency".

The main problem of this approach is that it lacks a global view on the
situation, thus does not able to produce a complete solution. Motivated by these
drawbacks of the existing system, we take a general systematic and correct
approach to solve the problem. In this chapter, we discuss the result.

9.2 Redundancy Handled by the Original Algorithm
1

LI L2 IK .
L3

Figure 27 Example on the First type of Redundancies

78

V IMPROVEMENT OF CONNECTION METHOD

…• In [HoBi82], three types of redundancies are identified. The first one is
� defined as follows:

"...the subgoal must be to the right of the left end of any connection with
right end to the right of the subgoal."
The* situation can be depicted from an example as shown in figure 27. Showing
the complementarity of paths starting with LI and 13 is the same as that starting
with LI and L2. Thus, the subgoal L3 can be eliminated. This satisfies the above
definition because L3, is to the right of the left end (LI of the first clause) of any
connection (the one between LI and -L4) with right end (-L4 of the third clause)
to the right of L3. Bibel [Bib82a, Bib82b, HoBi82] uses a set SC to explicitly
record the right coordinates of all elements of ACT which are the left ends of
such connections, and reject any subgoal whose coordinate is greater than every
element in SC.

f �
L2 ‘‘

Figure 28 Example on the Second Type of Redundancies

79

V IMPROVEMENT OF CONNECTION METHOD

•»«

The second kind of redundancies is described as follows:
"…exactly those subgoals are redundant which are to the right of the

rightmost left end. among all connections with a right end below or to the right
of the origin of the dotted arrow."
For example, consider the formula as shown in figure 28. Dotted arrow represents
a connection between a suspicious redundant subgoal and its complement. L2 in
the second clause is redundant while that in the first one is not. This is because
there is only one connection (LI to -LI in the third clause) with a right end (-L1)
below the origin (-L2 in the third clause) of the dotted arrow (from -L2 to L2 in
the first or second clause), and only L2 in the second clause is to the right of the
left end (LI) of this mentioned connection. 12 in the first clause is not redundant
since it is not to the right, rather below, of that connection. In the original
algorithm, PRSG is used to tackle this particular type of redundancies by storing
the complement of any potentially redundant subgoal (like -L2 in the above
example).

I

L I L2 ^ u y - i i) .

L4
Figure 29 Example on the Third Type of Redundancies

80

‘ IMPROVEMENT OF CONNECTION METHOD

�

A third kind of redundancies is termed as factorization. The idea can be
depicted by figure 29. Just after identifying the connection between 12 and -12，

we can ignore exploring the subgoal L4 in the third clause because there is
arimher lA in the second clause which has been push into the stack, and thus is
expected to be considered later.

-Ll a 2 乂 3 -Ll

U U ^ L3 L4 J L5

Figure 30 Example on Problem with Factorization

However factorization together with the first type of redundancies
elimination mechanism will spoil the correctness of the algorithm. For example,
consider figure 30. By factorization, L5 in the fifth clause will be ignored.
Nevertheless, the L5 in the second clause is also eliminated due to the first type
of redundancies (L5 is to the right of a connection passes through it). Thus, the
original algorithm returns complementary for this formula, which in fact is not.
Bibel admits no final solution is found for this problem except sophisticated
bookkeeping, which further complicates the algorithm. It is interesting to notice
that fail in handling factorization makes connection method cannot definitely
simulate resolution. The argument is presented in Appendix H. In the coining

81

V IMPROVEMENT OF CONNECTION METHOD

“ s e c t i o n , we will discuss how our proposed approach overcome a part of this
problem.

9.3 Design Philosophy of the Improved Version

It is the clumsy definition and ad hoc treatment of redundancy that
motivate the author to derive a general, reliable and non-interference approach.
By general, we mean we can handle as many redundancies as possible. By
reliable, we mean the mechanism do not draw wrong decision on eliminating a
redundancy. By non-interference, we mean the mechanism do not affect the
normal operation of the connection method algorithm.

To fulfil the first design principle, we start with defining redundancy in a
general sense. We interpret redundancy as repeating useful effort that have been
done before. In our problem, useful effort refers to steps showing a path is
complementarity, i.e. having at least one connection. Thus, our approach is to
develop a structure to store up any connection found. Then, by referring to this
structure, we can determine whether an attempt is redundant or not. Reliable is
guaranteed if we record all and only useful information and properly referring to
the structure. Non-interference is fulfilled if the mechanism acts like a^consultant
device and is invoked on request such that it does not alter the control flow of the
connection method algorithm. Also, the mechanism should not share any data
structure with the original algorithm.

82

V IMPROVEMENT OF CONNECTION METHOD

� - - Our work is done as follows: firstly we remove the redundancy elimination
mechanism developed by Bibel from the connection method algorithm. The
resulting algorithm, which simply detects complementarity of formulas, is called
Primary Connection Method. Then, our redundancy elimination mechanism, which
is: developed independently, is attached to this simplified version. Basically our
mechanism is to construct an AND/OR connection graph to store up the useful
effort as mentioned, and develop a procedure to traverse the graph to identify
redundant attempt. The mechanism can be farther polished to cater for some
particular redundancies, without spoiling the design philosophy mentioned.

9.4 Primary Connection Method Algorithm

From the full version of the connection method algorithm, as shown in
Appendix G, we extract the necessary portion for checking complementarity of an
arbitrary matrix. We called this the primary connection method algorithm, as
shown below. Statements in bold face is used to handle redundancies as to be

‘explained later.
1 ^

r-

83

V IMPROVEMENT OF CONNECTION METHOD

: 1: ACT: = NIL;
2: choose a clause C from M;

M := M \ C;
forall literals K s.t. (-K in C) and (K in ACT) do {

C : = C \ - K ;
[call CONNECT(K, -K);] }

'：…if C = NIL then goto 8;
3: choose a matrix M，from C;

C := C \ M，；
if C <> NIL thm

call push_wait(C, ACT, M));
if M，is not a literal then {

M : = M，UM;
goto 2; }

L : = M，；
ACT := ACT U {L};
[if Chk_Compl(ACT) is complementary then

if (T o NIL then goto 3 d ^ goto 8;]
4: if M = NIL then return ("non-complementary");
5: if there is no clause C in M s.t. -L in C then

if there is no clause C in M s.t. -K in C for some K in ACT {
while WAIT < > NIL do pop(WAIT); goto 1; }

else
choose C from M s.t. -K in C for some K in ACT;

‘ else
choose C from M s.t. -L in C;

‘ M := M \ C; …
6: if -L in C then

choose a matrix M，in C s.t. -L in M，
else

choose a matrix M，in C s.t. -K in M，for some K in ACT: C:=C\M，；
forall literals K s.t. (-K in C) and (K in ACT) do {

C : = C \ - K ; —
[call CONNECT(K, -K);] }

84

V IMPROVEMENT OF CONNECTION METHOD

: 7 : if M，is a literal then {
[call CONNECT(M，，-M，);]
i f C <> NIL then goto 3 eM goto 8;

if C <> NIL then
call push一wait(C，ACT, M);

if -L in M，then
choose a clause C from M，s.t. -L in C;

else
：… choose a clause C from M，s.t. -K in C for some K in ACT;

M := (M，\ C) U M;
goto 6;

8: if WAIT = NIL then return ("complementary");
9: (C, ACT, M) : = value of top of WAIT;

pop(WAIT);
goto 3;

Remarks: Care should be taken in choosing a M，in step 3. If C at that time have
more than one clause, M，should be taken to include all the clauses.

Table 4 Primary Connection Method Algorithm

The primary version contracts to nearly half its original size, in terms of
‘number of statements, which indeed help a lot in grasping the main control flow.

For ease of comparison with original algorithm, we remain to use goto in the
algorithm. Through out this discussion, we restrict the discussion on checking
complementarity of formula of prepositional logic. For first order logic, the
procedure is similar except unification is required to act upon pairs of
complementary atomic formulas as well as those clauses they belong to whenever
a connection is found.

85

V IMPROVEMENT OF CONNECTION METHOD

„ Before explaining the algorithm, three terms are defined. A literal has truth
value of either true or false under an interpretation. A clause is any combination
of literals, negation, connectives (and, or, imply), and parentheses. A matrix is a
conjunction of clauses. In this part, a literal is represented as a single capital
lê ttfer (usually K and L) optionally followed by a number, the or connective as "v",
the and connective as "&"，and negation as

The primary connection method algorithm mainly consists three parts. The
first part, step 2 and 3, aims at choosing a literal (L) from a clause (C) in the
matrix (M), whose clauses has not been considered yet. The second part, from
step 5 to 7，locates a complementary literal to L. The third part, step 9，restores
the system to a state that is described in a subgoal in the stack, and continues to
proceed from that state.

•L
, I ^ d K ACT

’ LJ M 一

C
Figure 31 Data Structure in Connection Method Algorithm

86

V IMPROVEMENT OF CONNECTION METHOD

� . - Relationship between main data structures used in the algorithm can be
�

depicted as in figure 31. ACT is a list of literals, whose complementarity has
been found or is currently under consideration. L is the latest literal chosen in the
first part. C is a clause chosen in the second part because it has a literal
complementary to L. M is the remaining matrix whose clauses have not yet been
visited. At this snapshot, we are going to show that any path having ACT as its
leading portion and passing through the clause C is complementarity. Therefore,
if there is any literal, -K, in C, such that K occur in ACT, we can discard -K from
C for considering complementarity of paths having ACT and through C. This is
catered in the forall loop in step 2 as well as that in step 6. In case -L does not
appear in clause C, the algorithm takes a second chance that chooses a clause
that has a literal complementary to an element in ACT. This is done in the
second if statement of step 5. If the second chance fail, it means that the set of
literals in ACT is non-complementary. The process starts from beginning, and
treats M as if it is the original matrix. A stack WAIT is used to maintained
information of other paths to be considered later.

^ _ _ _ J.

To illustrate how the algorithm works, consider the following input
formula, (Ll v L3) & (-L1 v L3) & -L3，it is represented graphically as,

Ll -Ll -L3
L3 L3

The paths to be considered is as follows:

87

V IMPROVEMENT OF CONNECTION METHOD

..• (a) LI, -LI, -L3;
(b) LI, U , -L3; ’’
(c) 13, -LI, -L3; and
(d) L3, L3, -L3.

Siiplpose LI of {LI, L3} is chosen after step 3. This means that we are going to
show complementarity of any path starting with LI, i.e. path (a) and (b).
Information about the remaining paths (i.e. path (c) and (d)) should, then, be
stored up in somewhere, here the stack WAIT, as a sub-goal to be considered
later. In step 5，the clause {-LI, L3} is chosen. At this time, Act is {LI}, C is the
chosen clause, M is {-13}, After establishment of connection between LI and -LI,
the algorithm goes back to step 3，chooses L3 of the second clause as the next
literal, and finds a connection with the third clause {-13}. Now, all paths
beginning with LI have proved to be complementary. Next, we pop out the sub-
goal in WAIT, and consider paths having the L3 of the first clause as the first
literal, i.e. path (c) and (d). The whole process ends with the discovery of the last
connection between L3 of the first clause and -L3.

1

The soundness and completeness of this primary algorithm immediately
follow from that of the original algorithm. This is because this primary form is
equivalent to the original one without redundancy elimination capability. The
proof of soundness and completeness of the original algorithm is found in
[Bib82b].

88

IMPROVEMENT OF CONNECTION METHOD V

9.5 AND/OR Connection Graph

The job of redundancy elimination is done with the help of an "AND/OR
Connection Graph". Nodes in the graph are called AND-nodes. Each disjunct in
the "input matrix owns an AND-node. An AND-node represents a literal or a
disjunction of literals and/or clauses. A path passes through a disjunction should
pass through each of the disjuncts, hence the name "AND" for the node. A slot
in the AND-node is allocated for each literal or sub-clause within the disjunct
corresponds to the AND-node. In case a slot is assigned a conjunction of literals
or clauses, a new AND-node is created for each of the conjuncts, and a clause-
edge is created to link between the slot and each of the AND-node of the
conjuncts, forming a hierarchical of AND-nodes. A path passes through a
conjunction could pass through some of the conjuncts (a path is complementary
simply if it has a pair of complementary literals), hence the name "OR". A
connection edge is maintained, linking the slots corresponding to the pair of
complementary literals, for each connection found, hence the name "connection".

•‘ The procedure connect in table 4 performs this task.
1 .-

By proper traversal of the AND/OR connection graph, one can identify
any subpath that has already been proved to be complementary, thus able to
reject any redundant attempt. An example of the graph is shown in figure 32. The
matrix corresponds to the formula LI & (((-LI v L2) & -L2) v L3) & -L3. In

89

V IMPROVEMENT OF CONNECTION METHOD

-f； -L2 / „ ,

LI - � /, > ^ � � � � \
T ^ ‘ r r ^ ~ \

z ^^ _ l U _ _ L ^ -T�2 /
• ： - fc- T , Z • L i

Figure 32 Illustration of AND\OR Connection Graph

graphical representation, we use a rectangle to represent an AND-node, solid line
for sub-clause edge, and dotted line for connection edge. The graph is built before
the connection method algorithm is invoked. The graph construction algorithm is
shown in table 5.

AND 一 OR一 Graph();
for each clause C in input matrix do

create a pointer, Ptr, pointing to an empty AND-node;
call Build一Graph(C，Ptr);

Build_Graph(C, Ptr);
if C is a literal or a disjunction of literals then

allocate slot(s) in the AND-node pointed by Ptr;
assign literal(s) to the slot(s);

else
•‘ if C is a conjunction of clauses then

， allocate a slot, S，in the AND-node pointed by Ptr;
(for each clause CI of C do

create a pointer, Ptrl, pointing to an empty AND-node;
make a clause-edge from S to Ptrl;
Build_Graph(Cl, Ptrl);

else
for each disjunct, M, of C do "

Build_Graph(M, Ptr);
Table 5 Algorithm to Build AND/OR Connection Graph

90

V IMPROVEMENT OF CONNECTION METHOD

„ 9.6 Graph Traversal Procedure
�

With the AND/OR connection graph, we can determine whether a path
beginning with a given list of literals have been proved to be complementary or
nbtrThe procedure is called "Chk_Compl"，and is shown in table 6. It is invoked
at the end of step 3，after having chosen a literal L whose complementary literal
is to be located. The procedure returns whether the path being extending from
ACT U {L} is complementarity, base on solely previously located connections. If
it is so, there is no need to consider this literal, and we can go on with other
subgoal. Otherwise, we continue as usual.

；f

r'

91

V IMPROVEMENT OF CONNECTION METHOD

..- Function Chk一Compl(LL，C);
for each slot in the AND-node of C do ..

if the slot corresponds to a literal, L then {
if L L U {L} is complementary then

exit this iteration with "complementary";
if L only has a connection with a literal L，s.t. L，and some literal,

L，，in LL share the same clause with L' not an immediate parent
^ or child of L，，in the AND/OR connection graph then

: " exit this iteration with "non-complementary";
if L has connection with some clauses then {

for each clause C of these clause do
if C，is fully connected then

if Chk_Compl(LL U {L},C) return complementary
then exit this iteration with "complementary";

if no complementary is reported from the immediate for loop
then
exit this iteration with "non-complementary";

for each sub-clause C pointed by the slot do
if C is fully connected then

if Chk一Compl(LL，C) is complementary then
exit this iteration with "complementary";

if no complementary is reported from the immediate for loop then
exit this iteration with "non-complementary";

} /* end of outer for loop */
if each of iteration in the main loop reports complementary then

return "complementary";
else

return "non-complementary";

Table 6 Procedure for Checking Complementarity

Z ~ 、

LI -LI L 1 L 2 \ -LI -L3
L.2 L3 \ - L 2 ,

Figure 33 Example on Re-Visit Clause in Graph Traversal

92

‘ IMPROVEMENT OF CONNECTION METHOD

• » -

In traversing the graph, care should be taken in making connection to a
clause which has already been visited. For example, in figure 33, the formula (Ll
V L2) & (-L1 V -L2) is not complementary. After making the connection between
L l a n d -Ll, we should not allow connecting L2 and -L2, otherwise, we will get
into an infinite loop. However, it is not the case that we can never visit a clause
of the input matrix twice. Consider another example for the formula ((Ll & L2)
V L3) & (-L1 V -L2) & _L3 which is complementarity. After connecting Ll and -
Ll，we visit the first clause again by connecting -L2 and L2. The confusion arise
because we have apparently treated two clauses as one. In fact, in the second
example, we should consider ((Ll & L2) v L3) as two clauses, namely (Ll v L3)
and (L2 v L3). Thus, if we refer a clause as a disjunction of literals, then the rule
of avoiding repeat visiting a clause hold. In terms of the AND/OR connection
graph, a clause can be re-visited if it consists those literals that are collected by
traversing AND-nodes of a clause in input matrix through clause edges in depth-
first manner without backtracking, equivalent to that described in the third if
statement of the outer for loop in table 6.

To speed up the procedure of checking complementarity, we define a term
called "fully connected" and restrict the check to involve only fully ̂ connected
clauses. A clause is fully connected if every path passing through the disjuncts of
the clause has at least one connection. The restriction is justified as only these
clauses are fruitful to the checking procedure. This can be easily implemented by

93

V IMPROVEMENT OF CONNECTION METHOD

一 maintaining a flag for each clause in the original matrix, and set the flag once the
clause is fully connected.

9.7 Eliminating Redundancy using AND/OR Connection Graph
’：• V-

……�LI ..--I LI L2 [., r m
/ _ . - • ' / / \ � \
i - L l L 2 L 3 •； I T T T r 3 I ~ m —— — i � ... “ “ .. - L l L 2 lTI \ �� \ - » I

\ . - � , '• • ;
\ 、 ‘ •--.、 ，.: : - L 1 L 4 1 , , I i I ‘ I ！

；— … / / | - L 2 L 4 . / /

EH： E ^ l-L 广[乂

� （b) (c)

Figure 34 Examples on Eliminate Redundancies Using
AND/OR Connection Graph

Using AND/OR connection graph, we can not only eliminate redundancies
that can be handled by the original method, namely the first two types of
redundancies as mentioned, though less efficient, but also tackle case that the
original one cannot, namely factorization. The AND/OR connection graph
corresponds to the formulas in figure 27，28，and 29 are shown in figure 34a, 34b,
and 34c respectively. The technique of using AND/OR connection graph to
eliminate redundancies for these three cases is the same: avoid repeating those
steps that have been taken before. In figure 34a, after the subgoal of checking
paths extending from {Ll, L3} is pop and the third clause is chosen, Chk_Compl

94

V IMPROVEMENT OF CONNECTION METHOD

…" can determine that the paths is complementary and thus stop further executing
the connection searching algorithm. In figure 34b, after connecting 13 and -L3,
we conclude complementarity is reached since LI and -LI has already been
connected. Similar operation for the case as shown in figure 34c.

IlTI
/'' -LI I L2 I LS~

i I-L2 I U \
\ � -13 I L4

""•~L1 I L5
Figure 35 Example of AND/OR Connect Graph for

Factorization

Referring back to the counterexample for factorization in figure 30，the

corresponding AND/OR graph is shown in figure 35. Using our approach, we can
successfully return non-complementarity, since no attempt is made to delete any
subgoal before knowing that it leads to complementarity. If encountering the L5

‘in the fifth clause first, we simply return non-complementarity as there is no -L5
in the formula and all clauses has considered. If encountering the L5 in the
second clause first, we will not eliminate it since there is no complementary clause
found for the remaining formula.

95

V IMPROVEMENT OF CONNECTION METHOD

9.8 Further Improvement on Graph Traversal

L 1 - L I • L 2 - L3 • L4 L I

-L4 L2 -LI -Li

Figure 36 Example on Improvement Using Graph Traversal

One of the drawbacks of the original redundancy elimination mechanism
is that it cannot completely made use of result obtained in previous search. It only
reduces subgoal that is sure to be complementary, but ignores any other
possibility that can reduce redundancy. For example, consider the case as shown
in figure 36. When subgoal with -L4 of the first clause is pop, the original
connection method algorithm will choose the fourth, third, and second clause in
turn, not noticing that, in fact, this sub-paths have already been considered
previously. Though the sequence of the proof is different, they are essentially the
same. In our approach, we handle this situation by reference to the graph and

‘make use of those sub-path proved to be complementary. When we encounter _
14，we know that it has complement literal in the fourth clause, we then focus on
the remain literal, -L3. This leads to the consideration of the third clause and

(，

then the -L2. The process repeat until we cannot further avoid repeating steps.
Then, we will arrive at the -LI of the second clause. Then, this literal is push into
WAIT and

continue as usual, but already have saved three looping through the 96

‘ IMPROVEMENT OF CONNECTION METHOD

� . m a i n algorithm.

This strategy will not repeatedly lead to useless deadend. At the first place,
repeating steps in different round of run of the algorithm need not be useless.
Syntactically speaking, no single path is more promising than the other in looking
for complementarity. In fact, the original algorithm does not put any restriction
on the order of clauses to be examined. Also, steps that are useless for showing
one sub-path is complementary does not imply the same result to the others.
Thus, there is occasion where repeating previous step is necessary. Secondly,
repeating steps will not lead to deadend. Since we repeat steps for different sub-
paths under consideration (i.e. different content in ACT), we will not get into an
infinite loop. In sum, we just skip some proved paths, and indeed does not affect
the effectiveness of the original algorithm.

9.9 Comparison with Original Connection Method Algorithm

Using the AND/OR connection graph, we can handle different kinds of
redundancies using the same algorithm without affecting the effectiveness of the
complementarity checking algorithm. While, in the old approach, a correctness
proof should be derived in case a new mechanism is introduced to the system,
which is time-consuming, and may has problem of incompatibility between the
new and old mechanisms. More important, our method can handle some
redundancies that the old one cannot. Yet, there is still room for further

97

‘ IMPROVEMENT OF CONNECTION METHOD

；-• improvement of the graph traversal procedure. For example, reduce the search
space through useful book-keeping.

On the other hand, the old method is quite efficient in the sense that it can
rddQce redundancies with lesser effort. But the cost is to take an ad hoc, or hard-
wired, approach which seems has less hope in reducing any more redundancy
without affecting the effectiveness of the connection method algorithm. In a
general proof, there is no reason of occurrence of only a particular types of
redundancies, thus efficient in handling only certain type of redundancies is not
sufficient in all applications. We think that a general approach, like ours, is more
promising to reach a complete solution to the problem.

9.10 Application of Connection Method to Schema Verification

‘ Schema verification aims at determining if there are two or more
constraints making contradicting restriction on the occurrences of concepts such
that at least occurrence of one concept is always empty. The process of schema
verification can be divided into three steps.

9.10.1 Express Constraint in Well Formed Formula ^

Constraint is expressed in well formed formula (wff) which is built from
atomic formula using connectives (and, or, not, imply), quantifiers (for all, there

98

V IMPROVEMENT OF CONNECTION METHOD

；' e x i s t) and parentheses. Atomic formula is a constant, variable, predicate or
function. A n-place predicate

R(argi, arg2, arg„)
has a specific interpretation. The predicate symbol, ”R"，refers to a base table in
the-underlying relational DBMS, and "arg； is an attribute of that table. This
predicate represents occurrences of the concept corresponds to "R". This
representation is justified as constraint is imposed on occurrences of concepts
which can be expressed in terms of base tables. User defined constraints should
be input in wffs.

Structures of constraints are of various forms. Constraint relates to an
association type has a particular structure. For example, generalization association
requires constraints between the concepts being generalized fall into one of the
four types: set subset, set equal, set exclusive and set intersection. At the same
time，user can impose constraints according to the application domain. Therefore,
we need a common notation through which to express constraints and then

’examine the interaction among them. First order logic is chosen as the tool
‘because of its elegance and ability in expressing all practical constraints. The way
of formulating a constraints has been widely discussed. In SAM*, constraints can
be specified for the following associations: generalization (set related cpnstraints),
interaction (the mapping constraints), aggregation (inter-occurrences constraints),
and membership. The following is some example on expressing constraints in first
order logic.

99

V IMPROVEMENT OF CONNECTION METHOD

.. A is-a B :
A(x) _> B(x)

A = B union C :
(A(x) -> B(x) V C(x)) &

：… （B(x)-> A W) &
(C(x) -> A(x))

A = B intersect C :
(B(x) & C(x) -> A(x)) &
(A(x) -> B(x) & C(x))

the first argument is a primary key of A ：
A(x，z)&A(y，zl)->x = y

Table 7 Examples on Expressing Constraints

Tlius，instead of expressing every constraint in well form formula, user can
use symbols (like is-a, union, intersect, and etc.) to represent the underlying
restrictions.

Refer back to the example in figure 20，assume the concept "tourism",
"hotel", "heavy一industry” and "1st一class一hotel" own base tables. Then the
constraint "occurrence of hotel sector is set exclusive to that of the industrial
sector" can be expressed as,

forall S# (hotel一sector(S#) -> not (industrial一sector))

100

‘ IMPROVEMENT OF CONNECTION METHOD

：-- However，as hotel sector and industrial sector do not 麵 a base table, it is
converted into the following form,

forall S# (hotel(S#) or lst_class_hotel(S#)->

not (heavy一industry(S#) or tourism(S#) or hotel(S#)))
：

9.10.2 Convert Formula into Negation Normal Form

All the wffs are converted into negation normal forms, i.e. negation is at
atomic formula. Thus, the above constraint is expressed as,

forall S# ((-hotel(S#) and -1st一class一hotel(S#)) or (-tourism(S#) and
_lst一class一hotel(S#) and -heavy一industry(S#))

or in matrix form,
-hotel(S#) -1st一 classJiotel(S#)
-tourism(S#) -lst_class_hotel(S#) -heavy_industiy(S#)

with only two rows of atomic formulas.

9.10.3 Verification

Lastly, the connection method algorithm is invoked. Inconsistent is
reported under one of two situations:

a) every path has a complementaiy pair of atomic formulas;

b) when the set of input formulas is not complementaiy, and there is an
atomic formula such that eveiy path without a complementaiy pair of

101

‘ IMPROVEMENT OF CONNECTION M E T H O D

：-” literals has a negation of that atomic formula.
The first situation implies there is a constraint does not logically follow from the
other constraints. The second situation implies that there is no occurrence for the
concept corresponds to the atomic formula. The algorithm needs modification to
catgr for the second situation. Whenever non-complementarity is reported in step
4，we store up the ACT and pass control to step 9 which then goes on as usual.
At the end of the process, if the set of formulas is found to be non-
complementary, we compare each copy of ACT collected to see if there is a
negation atomic formula occurs in every copy. If so, we should report it as an
error of the schema. There is no need to introduce skolem function as mentioned
in section 8.3.3. When inconsistency exist, we can trace the proof to see which
constraints constitute the contradiction, or the single negation atomic formula that
implies a concept has no occurrence, thus help to correct the schema.

f

102

PART IV

.'

“ FURTHER DEVELOPMENT

• > -

C H A P T E R 10

FURTHER DEVELOPMENT

In this chapter, we discuss the directions along which this system can be
improved.

10.1 Intelligent Front-End

The data model can be treated as a form of knowledge representation,
similar to the role taken by semantic network. Our system allows room for
incorporating with an intelligent front-end that can take an active role in
answering question. The front-end can not only display information explicitly
asked by the user, but also able to guide the user to explore other information
interested to him by using the acyclic directed graph. For example, suppose a user
asks about the interest rate of a fund, but the database does'not has this piece of
information yet. Instead of simply saying no to the user, the system can tiy to
suggest source of relevant information by displaying the sibling of the concept
"interest rate", say through the generalization association grouping these concepts.

103

^ FURTHER DEVELOPMENT

10.2 On Connection Method

The algorithm for the current graph traversal on the AND/OR connection
graph is still needed to be improved for efficient purpose. The AND\OR
coffiiection graph can be constructed implicitly by adding pointers to the structure
storing the input formulas. Additional book-keeping may help in identifying paths
that are complementary. Another related topics that has not been discussed is
equality reasoning. It deals with inference using equality assertion, e.g. f(a) and
a=b should imply f(b). This implication can not be drawn solely by the mentioned
proof procedure, rather additional axiom is needed, like the approach of
paramodulation [Stic86].

10.3 Many-Sorted Calculus

The proving procedure can produce a shorter proof by incorporating with
a many-sorted calculus. The idea runs as follows. A sort is a class of objects. The
universe of discourse (the set of interested objects) consists a set of sort symbols
which are partially ordered by subsort order relation, forming a sort hierarchy.
For example, animal, man and bird are sorts. Man is a subsort of animal, and so
does bird. Variables and function symbols are also associated with sorts.
Arguments of functions and predicates have domainsorts defining the sorts to
which the arguments can belong. A formula is well-sorted if each variable and
function has a sort, and argument of functions and predicates belongs to or is a

104

^ FURTHER DEVELOPMENT

、：• subsort of the corresponding domainsort. For example, the function area(polygon)
returns area of triangle, square, and etc. But it does not accept line as argument.
In the proving procedure, each step must only involve well-sorted formulas, using
a restricted inference rules. With this extension, the search space for a proof will
be narrowed, since it rejects meaningless attempt, say, substitute two terms with
unrelated sorts.

There is reported studies on many-sorted calculus with resolution [Walt87].
The idea can well be applied to connection method. For example, given the
following axioms

"»Panies us Governaent

japanese koiean
coBpanies coipanies

Figure 37 An Example on Sort Hierarchy

a) Japanese companies and korean companies are companies;
b) there are some of each of them;
c) there are some companies deal with US Government;
d) all companies like to deal with companies that deaL with US

Government;

e) Japanese companies does not like to deal with korean companies;
f) there is a company does not deal with US Government.

105

- FURTHER DEVELOPMENT

；'- We can express these sentences into well-sort formulas.
a) { D(companyl, company2), D(company2, us) }
b) { -D(japanese, korean) }
c) { -D(company3，us) }

where D(A, B) is interpreted as party A likes to deal with party B. We can
connect D(companyl, company2) and -D(japanese，korean) by substituting
japanese into companyl and korean into company2, but not companyl into
japanese and company2 into korean. Also, we cannot connect D(company2, us)
and -DGapanese, korean), since there is no sort relation between companies and
US Government. Without many-sort calculus, four connections must be
considered. However, with the calculus, only two connection is sufficient to report
complementarity of these formulas.

It happens that the acyclic directed graph constructed in the
implementation of a DBMS using SAM* provides the necessary structure, the sort
hierarchy，for using many-sort calculus. Thus, it is a promising direction to
develop a many-sorted connection method for verifying schema using SAM* as
the data model. "

106

V CONCLUSION

C H A P T E R 11

CONCLUSION

In this thesis, we have presented the concept of semantic data model, in
particular the SAM*. A prototype of a DBMS using SAM* as a data model has
been developed. Implementation issues include: design of a DDL for the schema,
map the schema into a logical organization for an underlying DBMS, and develop
two query manipulation languages to access the DBMS. The results of
implementation reveal the power of a DBMS using semantic data model in two
aspects:

a) user need not to know about the details of the logical organization of
the database system in formulating a query to the database; and

b) user can inquire the schema such that he can know what information
is stored in the database.

The benefits as pointed out in (a) can be obtained provided that the
following assumptions are valid:

1. the user and the system can share a common perception on the real
world objects and concepts;

2. the data model is completely developed;

107

V CONCLUSION

- 3. the user does not simply perform simple retrieval operation;
4. effectiveness is the primary concern.

Besides the advantages of increased expressiveness, there is also gain from the
data independent characteristic of this approach. User is expected to be able to
access the database easily even though the logical structure is modified or another
database for another application domain (not only stock investment) is plugged
in, so long as the above assumptions are still valid.

The use of semantic data model gives rise to a problem called schema
verification. Schema verification is a process that checks the existence of any
contradicting constraint being specified. Constraint is expressed in first order
logic. Proving consistency (or satisfiability) of a set of first order logic assertions
has long be the task of automated theorem proving methods. Thus, these methods
are chosen as the candidate for the solution. Four provers are investigated. Their
pros and cons are discussed. Connection method is suggested to take on the job
of schema verification because of its,

a) more systematic in finding a proof than other methods, it dose not
‘ easy to get lost;

b) seems to be not worse than resolution;
c) less overhead than resolution;
d) less storage usage required; and
e) available of a totally mechanical proof procedure.

108

V CONCLUSION

‘ However, the ad hoc approach taken by the connection method in handling
�

redundancies elimination makes the method has less hope in further speeding up
its efficiency. Thus, we develop another general and reliable approach which
works with an AND/OR connection graph. The results show that our approach
cairhandle cases that the original can, though less efficient, as well as cases that
the original method cannot.

At last, the author would like to point out some advantages of using
:�”二dd theorem proving [Wos 88],

' �) t h e proof of an inconsistent "theorem" can tell which hypotheses is
wrong, thus, in schema verification, we can know which constraint
cause the inconsistent;

b) user added strategies allow user involves in the proof; and
c) the result can be trusted, as the provers are sound, they will not draw

wrong conclusion.

Though no automatic theorem prover is complete, it is not totally useless,
‘'as remarked by Wos [82]，

^ The point which is becoming increasingly clear is that automated theorem-proving programs
can be treated as colleagues. With such a program, one can, for example, make conjectures, test
conjectures, and find holes in proposed methods of proof. Each of these activities is reminiscent of
that which a colleague performs.

Thus, it is Still promising to explore the use of rutomated theorem prover to
handle the schema verification.

109

APPENDIX D V

•

APPENDIX A Comparison of Semantic Data Models

Unstructured Standard Network Relationship
Object Repre- Abstract- versus
sentation ion Hierarchy

E-R Limited Aggr. Strong User Select
Network

TAXIS Limited Gene. Strong Pre-defined
Aggr. Hierarchy
Clas.

SDM Limited Gene. General User-defined
Aggr. Hierarchy
Clas. present
Asso.

DAPLEX Limited Asso. No direct User-defined
Aggr. support
Clas. for neither

SAM* Enhanced Gene. Network Pre-defined
(special- Aggr.
purpose set Clas.
built in) Asso.

Remarks: "Aggr." stands for aggregation, "Gene." for generalization,
"clas." for classification, and "Asso." for association.

r-

110

APPENDIX B

•

APPENDIX B Construction of Occurrences

We define occurrence of a concept v, denoted as occu(v), in a recursive
manner as follows:
. : - V

Function occu(v)
If V is at sufficient specific level then

occu = {u I u belongs to dom(v)}
Else

let Vi, V2, . . .， V n be the child vertices of v in the schema
let a = asso(v)
occu = stm(a, v ,̂ v]， v j

Endif

Depending on the association concern, the function stru takes different
forms as follows:

Function stm(a, v ,̂ v�，•••，vj
Case a of

M: stru = {t I t = name(Vi) for 1 < = i < = n}
A: stru = {occu(Vi) x occû v�）x ... x occu(Vn)}
G: stru = {uiiique-occu(vi) U umque-occu(v2) U …Uunique-occu(Vn)}
I： s t r u = { t i X t2 X ... X tn I

For i:= 1 to n
, Case asso(Vi) oi

“ A: tj = umque-occu(vj)
I： tj = OCCu(Vi)
G: let Uj, U2, •••，Un be the child vertices of 乂 “ and asso(uj) = A

or I for 1 < = i < = n ’
ti = {umque-occu(ui) U unique-0ccu(u2) U ... U

uiiique-occu(un)}
End Case

C: stru = {{ti，t2, t j I tj belongs to power set of occu(vj)}
X: s t r u = {OCCU(Vi) X 0CCU(V2) X ... X OCCU(Vn)}
S： stru = {occu(vi) X (0CCU(V2) X ... X OCCU(Vn))}

End Case

111

V APPENDIX H

;二 where ”x": a cross-product operation;
"U": a set union operation; ’•
"unique-occu(v)": the occurrences of the set of a number of (up to the
whole set) child vertices of v such that this set of child vertices can
uniquely identify an occurrence of v;
"asso(v)": the association type attached to the vertex v;
"dom(v)": domain for the vertex which may be integer, characters and etc.

»

！ ^

112

V APPENDIX H

APPENDIX C Syntax of DDL for the System.

Schema ::= { Statement }*
Statement ::= {AggregationStatement

GeneralizationStatement
: " I InteractionStatement

CompositionStatement
CrossproductStatement
SummarizationStatement }

AggregationStatement ::=
aggregation ParentName [root] [base
{ FieldName [key] } +
{ ChildName [key] } +
under ConstraintStatement

GeneralizationStatement ::=
generalization ParentName [root
ChildName { ChildName } +
with { si-si I se-se | sx-sx | st-ss | ss-ts }#
under ConstraintStatement

InteractionStatement ::=
interactive ParentName [root] [base]
FieldName { ChildName } +
ChildName { ChildName } +
with {1-1 I 1-N I N-1 I N-M }#
under ConstraintStatement

‘CompositionStatement :••=
composition ParentName [root

‘Chi ldName { ChildName }+)
under ConstraintStatement

CrossproductStatement ::=
crossproduct ParentName [root
ChildName { ChildName }+ "
under ConstraintStatement

113

APPENDIX C
V

SummarizationStatement ::=
summarization ParentName [root
IdentifyName { ChildName } +
under ConstraintStatement

ParentName ::= NameType
FieWName ::= NameType
ChildName ::= NameType
IdentifyName ::= NameType
NameType ::= letter { letter | digit | 一 }•

Notation:

1. word in bold face is terminal symbol; name beginning with a capital letter is
non-terminal symbol.

2. root following a parent name indicates that the parent itself has no parent
concept;

.3 . base following a parent name indicates that the occurrence of parent form a
relational base table in implementation; -

4. key following a child name indicates that the child is treated as a
component of primary key in every member of occurrence of the parent;

5. multiple following a child name indicates that the child can be attached with
more than one value in a member of occurrence of parent;

114

APPENDIX C
V

…“ 6. ParentName and ChildName are names of parent concept and child concept
respectively; IdentifyName is a name of the concept whose information is
summarized; FieldName is the attribute name of table being used in the
underlying DBMS.

7.: J…]:item in the bracket is optional;

8. {•••}: choose one of the items, separated by “丨’丨，in the bracket;

9. {…} +: repeat the items, separated by “ | "，in the bracket one or more than one
time;

10. {...}': repeat the item in the bracket for any number of times (include zero)

11. {•••}#: choose items, separated by “ | "，from the bracket for ^ times where
n is the number of child concepts; they represent the relationship between
the following pair of child concepts: lst&2nd，lst&3rci，•••，Ist&last，

2nd&3rd, 2nd&4th,…，2nd&last, ..., last-but-one&last.

115

APPENDIX D V

•

APPENDIX D Syntax of Semantic Manipulation Language

The notations used in this appendix is the same as those mentioned in
Appendix C.

；k-

query ::= { PointerListType
find 一 node 一 query
node 一 info 一 query
find_path_query }

find一node一query ::=
VariabieName := Find一Node(restriction

{ Logical一(Operator restriction }*)
Find Node ::= find一node | fn
Logical一Operator ::= and | or
restriction ::= { name = NameType

asso = AssociationType
parent = ParentList
child = ChildList
key = KeyList }

node一info一query ::= ？ Projection (PointerListType)
Projection ::= { name | asso | parent | child }
find_path_query ::= find—path(PointerType PointerType)
VariabieName :••= { letter | digit | 一 } +

, NameType :••= letter { letter | digit | _ }•
r

AssociationType ::= { membership 丨 aggregation 丨 generalization interaction | composition | cross-product | summary }
ParentList ::= PointerListType

116

APPENDIX D V

.厂 ChildList ::= PointerListType
� KeyList :: = PointerListType

PointerListType is a variable which is a pointer pointing to a list of vertices
(caft be one) in the graph. PointerType is a variable name which is a pointer
pointing to one vertex in the graph.

117

V APPENDIX H

APPENDIX E Testing Schema for Fund Investment DBMS

begin
generalization :: fund一database，�

fund_equities，fund_currency，fund_warrant ；
with sx-sx，sx-sx，sx-sx ； 一
uflder constraint ；

generalization :: fund一equities，，
asia，non_asia，equities一intl，equities一others ；
with sx-sx，sx-sx，sx-sx，sx-sx，sx-sx，sx-sx ；
under constraint ；

generalization :: asia，，
japan，hk，korea，se一asia ；
with sx-sx，sx-sx，sx-sx，sx-sx，sx-sx , sx-sx ；
under constraint ；

generalization :: non一asia，，
us，uk，europe，australia ；
with sx-sx，sx-sx，sx-sx，sx-sx，sx-sx，sx-sx ；
under constraint ；

generalization :: equities_intl，，
intl一equities，intl_managed ；
with sx-sx ；
under constraint ；

generalization :: fund一currency，，
us，japan，uk，europe ；
with sx-sx，sx-sx，sx-sx，sx-sx，sx-sx，sx-sx ；
under constraint ;

I 7 ‘

generalization :: fund一warrant，,
japan，hk，far一east，warrant一intl，others_warrant ；
with sx-sx , sx-sx，sx-sx , sx-sx , sx-sx , sx-sx—，

sx-sx，，sx-sx , sx-sx，sx-sx ；
under constraint ；

aggregation :: japan，，base，
[fund一code key，fund一name，date一formed，fund一assets，

trustees，securities__no，initial—charge， 一
annual一charge，unit一accounts，reports，dealing，

118

V APPENDIX H

� . • minimum investment ，
••M J ‘

fund，，： fund一name，，： date一formed，，： .，
fund一assets，, ： trustees , , ： securities一no，,：
initial一charge，，： annual一charge，，： 一
unit一accounts，，： reports一，，： dealing，，：
minimum—investment，，： fundj)ort__dist，，：

fund_performance ,，； 一
under constraint ； aggregation ：： hk，，base，
/* same as japan */

aggregation ：： us , , base，
/* same as japan */

aggregation :: uk , , base，
/* same as japan */

aggregation :: australia，，base，
/* same as japan */

aggregation :: korea，，base，
/* same as japan */

aggregation :: se一asia，，base，
/* same as japan */

aggregation :: europe，，base，
/* same as japan */

aggregation :: intl_equities，，base，
/* same as japan */

I

aggregation :: intl一managed，，base，
‘ / * same as japan */
aggregation :•• far一east，，base，

/* same as japan */
aggregation :: warrant一intl，，base，

/* same as japan */一

aggregation :: others一warrant，，base，
/* same as japan */

119

V APPENDIX H

-�.“ aggregation ：： fund一basic一info，，base，
/* same as japan */

aggregation :: fund_port_dist，，base，
[fund一code key，port一component，portj)ercentage]，
fund一code，key，: pofi一component,，:
port_percentage，，；
under constraint ；
：-V-

aggregation :: fundjperformance，，base，
[fund一code key，date，return]，
fund一code , key , : date，，： return，，；
under constraint ；

end .

r-

120

V APPENDIX H

• >«

APPENDIX F Testing Schema for Stock Investment DBMS

begin
composition :: stock一info，root，

stock_basicJnfo-, contact，directors，auditors，
bankers，business—activities，subsidiaries，
bfdinary一shares，preference一shares，share j)rice，
turnover，dividends，capital—commitments，
contingent一liabilities，earnings，
ordinary一sEareholders，preference一shareholders ；
under constraint ； 一

aggregation ：： stock_basic_info，，base，
[stock一code key，stock一name，secretary，registrars，
main一business一area]，
stock一code，key , : stock一name，, : secretary , ,：
registrars，，： main一business一area，，；
under constraint ；

aggregation ：： contact，，base，
：stock—code key，registered—office，tel，telex，
cable] , 一
stock一code , key , ： registered一office，，： tel，，：
telex，，： cable ,，；
under constraint ；

interaction ：： directors，，base，
‘stock一code key，director，post]，
stock一code，director，post ；
with T-N，1-N，N-M ；
under constraint ；

interaction ：： bankers，，base，
：stock一code key，banker]，
stock一code，banker ；
with T-N ；
under constraint ；

interaction :: auditors，，base ,
[stock一code key，auditor]，
stock一code，auditor ；
with T-N ；
under constraint ；

121

APPENDIX C
V

�‘“ interaction ：： subsidiaries，，base，
[stock一code key，subsidiary，percentage]， .
stock__code，subsidiary，percentage ；
with T-N，1-N，N-M ；
under constraint ；

aggregation :: business—activities，，base，
[stock-Code key，activities]，
stock一code，key，: activities，，；
under constraint ；

aggregation :: ordinary_shares，，base，
[stock一code key，authorized，issued，outstanding，
par_value]，
stock一code，key，: authori，，: issued，，：
outstanding，，: par__value，，；
under constraint ；

aggregation :: preference_shares，，base，
[stock一code key，authori，issued，outstanding，
par_vaiue]，
stock一code，key，: authori，，: issued，，：
outstanding，，： par—value，，；
under constraint ；

aggregation ：： share_price，，base，
[stock一code key，year，high，low]，
stock一code , key , ： year，，： high，，： low，，；
under constraint ；

aggregation ：： turnover，，base，
[stock一code key，year，shares，value]，
stock一code , key , ： year，，： shares，，： value，，；
under constraint ；

aggregation ：： dividends，，base，
‘stock一code key，year，dividend，％par一value，
per一share，paid_int_fin，eariiings_per_share]，
stock一code，key，： year，，： dividend，，：
%par一value，，： per一share，，： paid一int一fin，，： “
earnings_per一share，，； 一 一
under constraint ；

aggregation ：： capital—commitments，，base，
‘stock一code key，year，capital一commitment]，

122

V APPENDIX H

�-” Stock一code，key，： year，，： capital一commitment，，；

under constraint ； 一 ’.
aggregation ：： contingent一liabilities，，base，

‘stock一code key，year 了 contingent一liability]，
stock一code，key，： year，，： contingent一liability，，；
under constraint ； 一

aggregation ：： earnings，，base，
[stock一code key，year，capital一employed，
pretax-bef一depr，pretax_aft_depr，net_profit，
eariiings_per_share，dividends_per_share]，
stock一 code , key，： year，，： capitafemployed，，：
pretax一bef一depr，，： pretax一aft一dep7，，：
netjprofit，，： earnings_per_share，，：
dividends_per一share，，；“
under constraint ；

aggregation ：： ordinary一shareholders，，base，
[stock一code key，orSnary—shareholder，share#，
tot__percentage]， 一
stock一code , key , ： ordinary一shareholder，，：
share#，，： tot_percentage，，；
under constraint ；

aggregation ：： preference一shareholders，，base，
‘stock_code key，preference一shareholder，share#，
tot_percentage]， 一
stock一code，key，： preference一shareholder，，：
share#，，： totj)ercentage，，；一
under constraint ；

end .

123

V APPENDIX H

APPENDIX G CONNECTION METHOD

We adopt the convention that all variables get value NIL in the beginning,
except M which gets as value the matrix, the complementarity of which is to be
checked. An element of WAIT has the form B = (LI V)，where Lis the label of
B, I the index of B, and V the value of B.

0: push(WAIT, ("Im"，0，undef);

1： ACT : = NIL;
I := 0;
SC : = NIL;
PRSG : = NIL;
M，，: = NIL;

2: choose a clause C from M;
M := M \ C;
forall literals K s.t. -K in C and (K,j) in ACT for some i do (

C : = C \ - K ;
choose j s.t. (K, j) in ACT;
push(WAIT, C'scM+l, {J-}));
}

if C = NIL then goto 8;
3: choose a matrix M，from C;

C:=C\M，；
if there exists (1，M0) in PRSG s.t. 1 < = I and M，U M � i s complementaiy ‘ then ‘

if C <> NIL t h ^ goto 3 ^ goto 8;
if C <> NILthm push(WAIT, (”sc"，I，（C，ACT, NCPATH, M)));
ifSC <> NIL then {

SC:= S C \ { j : j > I};
push(WAIT, ("sc"，1+1，SC)); 一

SC ••= NIL; }
if PRSG < > NIL t h ^ {

PRSG := PRSG \ {(1，Mo) : 1 > I};
push(WAIT, ("prsg", 1+1，PRSG));

124

V APPENDIX H

PRSG := NIL; } ..
if M，is not a literal then {

push(WAIT, (”lm”，I，undef));
M := M，U M;
goto 2; }

I := I + 1;
… L : = M，；

ACT := ACT U {L};
NCPATH := NCPATH U {(L, I)};

4: if M = NIL t h ^ return ("non-complementary");
5: if there is no clause C in M s.t. -L in C then

if there is no clause C in M s.t. -K in C for some (K,j) in ACT t h ^ {
while the label of top of WAIT is not "Im" do

pop(WAIT); —
goto 1; }

else {
choose C from M s.t. -K in C for some (Kj) in ACT
push(WAIT, ("dm", I，undef)); }

else
choose C from M s.t. -L in C;

M := M \ C;
6: if -L in C then

choose a matrix M，in C s.t. -L in M，
else

choose a matrix M，in C s.t. -K in M，for some (K,i) in ACT C : = C\M，； ,
forall literals K s.t. (-K in C or -K = M，) and (K,j) in ACT do (

C : = C \ - K ;
choose j s.t. (K, j) in ACT;
push(WAIT, (”sc”，I，{j})); }

7: if M，is a literal then { “
if M" <> NIL t h ^ {

push(WAIT, ("prsg"，I，{(0，M，，)}));
M，，:= N I L ; }

if C <> NIL t h ^ goto 3 继 goto 8;

125

V APPENDIX H

� . }
if C <> NIL then { push(WAIT, (”sg”，I，(C, ACT, NCPATH, M)));

push(WAIT, ("Im"，I，undef));
if -L in M，then

choose a clause C from M，s.t. -L in C; else ，
“ M，，c二，e a clause C from M，s.t. -K in C for some (K,j) in ACT;

M : = M，，U M ;
goto 6;

8: if WAIT = NIL t h ^ return ("complementary");
9: if the label of top of WAIT is "sg" t h ^

if I = index of top of WAIT t h ^
(C, ACT, NCPATH, M) ^ a l u e of top of WAIT. pop(WAIT); ’
if SC <> NIL then {

S C : = S C \ { j : j > I}；
push(WAIT, ("sc"，I，SC));
SC := NIL; }

if PRSG <> NIL then {
PRSG := PRSG \ {(1，M): 1>I}；
push(WAIT, ("prsg"，I，PRSG));
PRSG := NIL; }

goto 3; }
else {

(C，ACT, NCPATH, M) : = value of top of WAIT;
I : = index of top of WAIT; ，
goto 3; ‘
}

10: if the label of top of WAIT is ”sc” then {
SC := SC U value of top of WAIT;
I : = index of top of WAIT; "
pop(WAIT);
goto 8; }

11: if the label of top of WAIT is "dm" t h ^ {

126

V APPENDIX H

- SC := SC \ {]•： j>index of top of WAIT};
while index of top of WAIT < > ”lm" do

pop(WAIT); — goto 8; }

12: if the label of top of WAIT is "Im" t h ^ {
I : = index of top of WAIT;

: p o p (W A I T) ;
goto 8; }

13: if the label of top of WAIT is "prsg" t h ^ {
SC := SC \ {j: j>index of top o F ^ T } ;
m := max(SC U {0});
for each (1，Mo) in value of top of WAIT do

if m>l then —
substitute m for 1 in (1，Mq);

PRSG : = PRSG U value of top of WAIT;
I : = index of top of WAIT; ，
pop(WAIT);
goto 8; }

127

V APPENDIX H

APPENDIX H COMPARISON BETWEEN RESOLUTION AND CONNECTION
METHOD

‘ In this appendix, a comparison is made between resolution and connection
method so as to illustrate the correspondence between the two methods. For
simplicity reason, we assume the input formulas are converted in conjunctive
normal form before the proof procedure is carried out, though connection method
does not require this conversion. With this assumption, the connection method
does not loop between step 2 and 3 as well as step 6 and 7. In the comparison,
a step in resolution is an application a rule of inference (i.e. modus ponens), and
a step in connection method is successfully connecting a pair of complementary
literals. We claim that resolution with any refinement strategies can be simulated
by connection method using no less steps for prepositional logic without
occurrence of common literals.

The proof of this argument consists two parts. Firstly, we prove that the
number of connections for a set of input formulas that is satisfiable is equal to
number of steps taken in resolution. Secondly, we show that connection method
can terminate with that number of connections.

The first part is proved by mathematical induction. Suppose we have
obtained the shortest proof for the input formulas using resolution. Without loss

128

V APPENDIX H

" of generality, we assume the proof takes n steps, for some positive integer n. The
basis of the induction is that there is one connection within the two parent clauses
chosen for the nth step (the last step) of the resolution. As parents in the last
resolution step must be a pair of complementary literals, it is obvious that there
is only one connection. Let the formula that is acted upon at the (n-k)th step of
the resolution is M，where k > 1. Assume there are (n-k) connections in M.
Consider the proof at the (n-k+l)th steps. This step must resolve a pair of
complementary literals. Since no common literal occur, these pair must be new
to M. Thus, the number of connections at the formula which is acted upon at the
(n-k+ l)th step is (n-k+1). By mathematical induction we conclude that there are
exactly n connections in an optimal proof using resolution having n steps, in
particular.

Next, we should show that the connection method using these n steps can
show the input formulas is complementaiy. This is immediately follows from the
soundness and completeness of connection method. As the input formula is

‘complementary, we can determine it using the n connections. Thus, we have
shown that connection method takes no more steps than resolution in case no
duplicate literal occur.

In case duplication exist, connection method may require more than steps
than that of resolution. Only for simple case can factorization be used to
eliminate the redundancy due to common literals. For example, consider the

129

V APPENDIX H

：-“ formula: {-L2}, {-LI, L2}，{LI, L2}，here 12 appears in the second and third
� clause. Resolution needs two steps, while connection method must consider the

three connections in them (due to the duplicated connection [-12, L2]). This is
because during a resolution, the resolvent can combine duplicated literals, while
in Connection method, there is no corresponding action. Without factorization,
connection method cannot terminate after considering the connection: [-L2, L2]
and [-L1, LI].

Next, we will show that connection method is no worse than linear
resolution at the worst case for prepositional logic in case no duplication of
literals exist. Linear resolution requires at least one of the parent clauses to each
resolution operation must be either an input clause or ancestor clause of the
other parent [Stic86]. This refinement is complete.

The argument is as follows: in the set of input formulas, suppose there are
totally n pairs of complementary literals. Then, using connection method, at most
n connections are needed. We claim that the number of the potential pairs of
parent clauses used for resolution is greater than or equal to n. As linear
resolution allows one of the parents from the input clauses, all pairs of clauses
having complementary literals in the input clauses belong to the jnentioned
potential pairs, and the number is exactly n. In addition, the ancestor clause of the
other parent is allowed as the parent clause, thus the number of potential pairs
will greater than or equal to n. At the worst case in resolution, the procedure

130

V APPENDIX H

:“ have to exhaustively tiy all the pairs before arriving the empty clause; while the
connection method can terminate at most n steps. Thus, the claim follows.

1

131

V REFERENCES

REFERENCES
�

[Abit87] Abiteboul S., and Hull R. (1987). IFO: A Formal Semantic Database
Model. ACM Transactions on Database Systems 12，4，525-565.

[Andr81] ^ d r e w s RB. (1981). Theorem proving via general matings. Journal
__ of the ACM, Vol. 28, No. 2，(April), pp. 193-214.

[BaLe88] Batoiy D S” Leung T. Y.，and Wise T. E. (1988). Implementation
^ncep t s for an Extensible Data Model and Data Language ACM
Transactions on Database Systems, 13，3，231-262.

[Bibe81] Bibel W. (1981). On Matrices with Connections. Journal of ACM Vol. 28，No. 4，pp. 633-645. ，

[Bib 8 2a] Bibel W. A (1982). Comparative Study of Several Proof Procedures Artificial Intelligence, 18，pp. 269-293. •

[Bib82b] Bibel W. (1982). Automated Theorem Proving. Vieweg.
[Bibe83] Bibel W. (1983). Matings in Matrices. Comm. of ACM Vol 26 No

11，pp. 844-852. ， • u, iNu.

[Bibe86] Bibel W. (1986). Methods of Automated Reasoning In.
Fundamentals of Artificial Intelligence, Lecture Notes in Computer Science, Springer-Verlag，pp. 171-217.

[BlHe85] Bledsoe W.W. and Henschen L.J. (1985). What Is Automated
p，orem Proving? In: An Overview of Automated Reasoning and
Related Fields. Journal of Automated Reasoning, Vol. 1，pp. 23-28.

[Date86] Date C J. (1986). An Introduction to Database Systems. Addison-Wesley, fourth edition.
[Fros86] Frost R. (1986). Introduction to Knowledge Base System. McGraw Hill.
[GaMi84] Gallaire, H.，Minker J., and Nicolas J.M. (1984) Logic and

database: A Deductive Approach. ̂ C M Computing Surveys, Vol 16 No. 2，June, pp. 153-185. • ，

[GeNi87] Genesereth R.M. and Nilsson N.J. (1987). Logical Foundations of
Artificial Intelligence, Morgan Kaufmann Publishers.

132

V REFERENCES

： [HaMc81] H a ™ r M., and McLeod D. (1981). Database Description with ^DM: A Semantic Database Model ACM. Transactions on Database Systems 6，3 (1981)，351-386.

[Hon89a] ；^e Hong Kong Unit Trust Association. (1989). The Hong Kom Unit Trust Yearbook 1989. Longman. ^
z ‘

[？?n89b] The Hong Kong Unit Trust Association. (1989). Investment reryormance Measurement.
[HoBi82) Hornig K M. & Bibel W. (1982). Improvements of a Tautology-

Testî營 ^gorithm. In: The 6th Conference on Automated Deductim, pp. 3Z6-341.
[HuKi87] Hull R. and King R. (1987). Semantic Database Modelling: Survey

lOl^T'''''^ and Research Issues. ACM Computing Surveys 19, i

[JaGu88] ^ ^ a t j ^ n ?.，Guck R. L” Fritchman B. L” Thompson J. P., and
^olbert D. M. (1988). SIM: A Database System Based on the
，mantic Data Model. In Proceedings of the ACM SIGMOD
Conference (Chicago, 1988). ACM, New York, pp. 46-55.

[Jeff89] Jeffrey R. (1989). Formal Logic: Its Scope and Limits. McGraw Hill Second Edition. ，

[Kent79] Kent W. (1979). Limitations of Record-Based Information Models
frS^ J贿咖蘭 D_base Systems, Vol. 4，No. 1，March, pp. 丄 U/-131.

[Lans88] Lans R. F. Introduction to SQL. Addison-Wesley.

‘[Ling87] Ling T.W. (1987). Integrity Constraint Checking in Deductive
’ Databases using the Prolog not-Predicate. Internal Report The

National University of Singapore. ，

一 Theorem Proving:A Logical Basis.

[LyVi87� P and Vianu V. (1887). Mapping a Semantic Database
= o d d to the Relational Model. In Proceedings of the ACM SIGMOD
Conference (San Francisco, 1987). ACM, New York, pp. 132-142.

[M i F e 8 6] Miller D. and Felty A. (1986). An Integration of Resolution and
Natural Deduction Theorem Proving. In: The Fifth National

133

V REFERENCES

-“ Conference on Artificial Intelligence, pp. 198-202.
[MyBeSO] Mylopoulos J., Bernstein P. A” and Wong H. K. T. (1980) A

language Facility for Designing Database-Intensive Applications.
ZCM Transactions on Database System 5，2 (1980)，185-207.

[Nico82] Nicolas J.M. (1982). Logic for Improving Integrity Checking in
… Relational Data Bases. Acta Informatica, Vol. 18，No. 7，pp. 227-253.

[NiCh87] Nixon B Chung L., Lauzon D” Borgida A” Mylopoulos J., and
^anley M. (1987). Implementation of a Compiler for a Semantic
3，a Model: Experiences with Taxis. In Proceedings of the ACM
SIGMOD Conference (San Francisco, 1987). ACM, New York, pp.

[NiCh89] Nixon B A Chung K. L” 脚n D” Borgida A” Mylopoulos J., and
Staijey M. (1989). Design of a Compiler for a Semantic Data Model.
In: Foundations of Knowledge Base Management. Springer-Verlag.

[OpSu88] Oppacher F. and Suen E. (1988). HARP: A Tableau-Based Theorem
Proven Journal of Automated Reasoning, 4，pp. 69-100.

[PeMa88] Peckham J., and Maryanski F. (1988). Semantic Data Models ACM
Computing Surveys, Vol. 20, No. 3，pp. 153-189.

[Ridi83] Rich E. (1983). Artificial Intelligence, McGraw-Hill.
[Robi66] Robinson, J.A. (1966). A Machine-Oriented Logic Based on the

Resolution Principle. Journal of ACM, Vol. 12，No. 1，January, pp.

[Robi79] Robinson, J.A. (1979). Logic: Form and Function. Edinburgh University Press.
\ [Ship81] Shipman D. W. (1981). The Functional Data Model and the Data

pnguage DAPLEX. ACM Transaction on Database System, Vol 6 No. 1，pp. 140-173. •，

[SmSm 7 7] Smith J. M” and Smith D. C P. (1977). Database Abstractions-
Aggregation and Generalization. ACM Transactions on Database
Systems, Vol. 2，No. 3，pp. 105-133.

[Stic86] Stickel, M.E. (1986). An Introduction to Automated Deduction In.
Fundamentals of Artificial Intelligence, Lecture Notes in Computer Science，Springer-Verlag, pp. 75-132.

134

V REFERENCES

…• [Su83] Su S. Y. W. (1983). SAM*: A Semantic Association Model for
Corporate and Scientific-Statistical Databases. Information Sciences
29，151-199.

[Su86] Su S. Y. W. (1986). Modelling Integrated Manufacturing Data with
SAM*. IEEE Computer Jan. pp. 34-49.

[Tsur84] Tsurt S. (1984). An Implementation of GEM - supporting a semantic
: � - data model on a relational back-end. In Proceedings of the ACM

SIGMOD Conference (Boston，1984). ACM, New York, pp. 286-295.
[Walt87] Walther C. (1987). ^ Many-Sorted Calculus Based on Resolution and

Paramodulation. Morgan Kaufmann Publishers.
[Wos82] Wos L. (1982). Solving Open Questions with an Automated

Theorem-Proving Program. In: 6th Conference of Automated
Deduction, Lecture Notes in Computer Science, Springer-Verlag, pp.
1-21.

[Wos88] Wos L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall.

135

^hOTTEOOD
___1_丨

sa.LjBjqL-i >jHn3

