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ABSTRACT

AN INTEGRATED VLSI DESIGN ENVIRONMENT

BASED ON BEHAVIORAL DESCRIPTION

By

Teresa W. M. Ng

in the early 70's, a rapod change in technology began in the

semiconductor industry. Integrated circuit designers believed

that there had to be a breakthrough in the design methodology

in order to be able to cope with the increased complexity. By

the late 70's, the concept of design automation led to silicon

compilation, a term first used by D. Johannsen. This term has

been used in a variety of different contexts. However, silicon

compilation may be described as a translation process which

accepts a high-level functional description as input and produces

a layout diagram as output. This process can be broken down

into several steps, and each step can be considered a compiler

for the lower level.

The aim of this project is focused on p ovlaing a suiLault

environment for the user to generate input specification for

silicon compilation - the front-end part of CUISIC (Chinese

University Intelligent Silcion Compiler). The user interface of

the front-end is designed to minimize human errors and the

amount of information the user needs to remember (an emphasis

on user friendliness). The idea, 'VHDL generator' transforms the

users input secification into a hardware description layout



which can be compiled using a VHDL compiler. The system adopts

the knowledge-based heuristic approach for automating the design

process.
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1 INTRODUCTION

The rapid evolution of semiconductor technology in the late

1970's made possible enormously complex electronic systems to be

fabricated on a single chip of silicon. This level of complexity

and the increasing demand on chip functions, represented a major

problem for the VLSI designers. At that time, it was widely

recognised that unless there was a major change in design

methodology, this level of VLSI technology would be grossly

under-utilized due to the problem of design, layout and

verification. This is much in common with the early day

programmers who faced increasing memory availability problem

along with increasing program complexity. The desire of design

automation thus emerged with a goal to replace manual design

and layout by a program which, ambitiously would take a

high-level functional description as input and automatically

produce as output the detailed chip mask geometry. This is the

basic idea of silicon compilation- a term first used by D.L.

Johannsen in 1979 [Johannsen, 1979], where he used it to

describe the concept of assembling parameterized pieces of

ayout. The term has gained popularity recently throughout the

IC CAD community, where it has been used in a variety of

different contexts.

A high-level functional description means a description in which

some levels of detail are obscured from the user and that is

not just a textual equivalent of the layout. This translation
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process can be broken down into several steps, and each step

can be considered a compiler for the lower level. In this way

we can define a logic compiler that translates -a description into

a set of logic gates and flip-flops or a micro architecture

compiler that translates an instruction set description into a

set of registers, buses, and ALUs.

In order to understand more about the silicon compilation

process, a survey is carried out to gain a brief knowledge about

its development history. This is an important step in the

research since an idea of the direction for the research effort

can be planned. The second step of the research is to develop

a system, which, hopefully, could focus on important aspects

which are not treated properly by most of the developed systems

discussed in the literature. The next and final step is to find a

suitable machine and then carry out the actual implementation.

It must be emphasized that the system developed in this

research (CUISIC) is a joint effort of two groups of people, one

is the author (with emphasis on the high-level synthesis

approach) and the other group is three under-graduate students

This thesis can be divided into two parts, the first part,

Chapters 2 to %R, is concerned with the result of the survey and

the proposed improvements for the new system. In the second

(concentrating on the placement and routing methods)
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part, Chapters 4 to 7, some issues of the development of the

CUISIC system are addressed. In the following paragraphs, an

overview of each chapter is presented.

In Chapter 2, a brief discussion of the development history of

silicon compilation is given. The basic principles and structural

concepts of silicon compilation are also described.

With an understanding of what a silicon compiler is, an attempt

is then made to analyse and comment on the logic synthesis

methods used in existing systems.

Chapter 3 gives a discussion on the improvements that can be

made to silicon compilation. An outline of several improvements

is described. The importance of the proposed issues are also

discussed.

In Chapter 4, the architecture of the CUISIC system is

discussed.

A detailed description of the implementation is carried out in

Chapter 5. The technique of using C as the interface language

and PROLOG as the knowledge-representation language is

explained. The organization of the rules and data are also

presented.

Chapter 6 contains two examples that illustrate the application

of the system.
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Conclusions are described in Chapter 7.
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2. DEVELOPMENT HISTORY

2.1 VLSI Design Process

During the 1950's, Texas Instruments, Fairchild Semiconductor, and

others developed the photolithographic process for the

fabrication of transistors on crystalline silicon. The steps

involved in the design of early IC's are still qualitatively the

methodology divides the design methodology divides the design

process into phases. As shown in Figure 2.1, the phases are

design specification, functional design, logic design, circuit

design, and physical design.

Each design phase is further divided into three steps consisting

of synthesis, analysis, and verification as shown in Figure 2.2.



6

requirements

Design

S cificatfon

functional
pacification simulation

Functional

Design

logicbehavioral
simulationrepresentation

Logic

Design

circuitstructural

representation analysis

Circuit

Design

extraction andphysical

verificationrepresentation

Physical

Design

fabrication

Figure 2.1 The Phases of VLSI system design 2or

a Top-Down Design Methodology

from upper level

-from
Synthesis

lower

level

Analysis

toI-
upperI Verification

level

.cctot

to lower level

Figure 2-2 Each of the De51on P ases of Figure 2-1



7

2.1.1 The Phases of VLSI Design

Referring to Figure 2.1, the first design phase, specification, is

a tine-consuming, normally manual step. important factors to he

considered are the application of the system, the performance

required to meet the application, etc..

Functional design follows specification. In this phase, a

functional behavior is synthesized to meet the specifications.

The result may be a purely behavioral representation (for

example, an instruction set description or a timing diagram), or

it may include structural aspects by partitioning functionality

into components. Behavioral simulation is the normal method of

analysis.

Logic design, the next phase, concerns the logic structure that

implements the functional design. The design representations

may be either a textual, register transfer level (RTL)

description or a graphic, schematic description. For analysis,

these representations are simulated at the transistor, gate, or

register level. The logic design is validated by comparing the

results from the logic level and behavioral level simulations.
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The circuit design phase concerns the electrical laws that

govern the detailed behaviour of the basic circuit elements such

as transistors, resistors, capacitors and inductors. In this

phase, transistors are sized to meet signal delay requirements.

In the physical design phase, the behavioral or structura

representations from the previous phases are transformed intc

the geometric shapes appears in the finished chip.

2.1.2 VLSI Design Automation Developments in the Past Twenty

Years

In the 1960's, these five steps were largely manual. The

engineer-user would supply a circuit or logic schematic sketched

on a piece of paper. The correctness of the circuit could be

verified by implementing the same circuit in discrete components

(breadboarding). An expert layout designer then drew the mask

patterns necessary to implement the circuit. The drawings were

transferred to a red plastic material called rubylith which were

cut away according to the drawing. This step was verified by a

careful, independent visual inspection. The rubylith pattern was

optically reduced to form photolithographic masks.

As time progressed, the number of devices per chip started to

double every year [Moore's law, 1977]. By the late 1960's the

layout method began to give way to numerically controlled

optical pattern generating machines. Furthermore, commercial
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turnkey graphics systems [Koford, 1966] began to appear in the

early 1970's. Circuit simulation programmes like CIRCAL, ECAP,

ASTAP, SPICE and others [Cleemput, 1976], routing algorithms,

automatic placement and layout systems, automated

verification of system specifications and automatic test

patterns generation algorithms were developed in the decade

from the mid-1960's to the mid-1970's. Also, there was evidence

that structured hardware design, analogous to structured

programming, was emerging in design philosophies that emphasized

wiring management and hierarchical design development with

regular structures [Gray, 1979]. However, there was still a

long distance to full automation. Functional elements that were

placed around the chip had to be pre-designed and

characterized. In order to develop design tools that would

take a completely textual description of a design and

translate it to layout data of silicon parts, software people

began to participate in the design process. At that time,

classical compilers took as input some high-level description of

the function to be executed (a high level language program) and

produced as output a list of low level (normally machine-level)

code to execute the desired function. This forced a chip

designer, usually an experienced circuit designer, to become an

expert in logic design, computer architecture, and application

software. This requirement for vertical expertise in one person

and increased demand for new designs created a shortage of chip

designers. Also, the design complexity prolonged the design
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cycle, which became almost as long as the lifetime of the

product. To solve this design crisis, an advancement in design

methodology for VLSI technology is needed. One of the

approaches is using sil-icon compilers.

2.2 The silicon compiler

The term silicon compiler was introduced by Johannsen in 1978

to describe his original work. A silicon compiler takes a

high-level functional description as input, but produces,

instead of machine code, a detailed chip mask geometry as

output. The advent of such tools for VLSI system design leads

to a revolution in design since they tend to displace human

designers instead of assisting them in the design cycle, thus,

introducing a methodology completely opposite to the CAD

approach. The combination of first time correctness, along with a

rapid design cycle and 'nigh-level user interface, makes the

silicon compiler a prime system development tool of the following

years.

The Bristle Block [Johansenn 1979, 19811 is a representative

example of early silicon compilers. It is essentially a system

that performs the majority implementation compilation while

placing a set of constraints on designer. The system was

initially based on the structured design methodology and used

procedural calls which differed from the existing design practice

at that time. The chip design emphasises the hierarchical style.
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This hierarchy imposes a locality on the various sections of the

chip that can be exploited when performing design rule

verification and electrical simulation of the chip. Optimal VLS111

designs are based on one of a number of highly concurrent

architectures, each with its own design style, correspondence

with mask geometries, and timing corrections. Each design style

is supported by one or more chip compilers. Each of these

compilers accepts formal functional specifications as input and

produces geometric information for masks suitable for any one of

a number of fabrication technologies.

The FIRST compiler reported by Den Yer et-al in 1982 [Den Yer,

1982] was built around an underlying bit-serial signal

representation, and systems are implemented as a hard-wired

network of pipelined bit-serial operators. The hardware

implementation of the circuit consists of a network of

interconnected bit-serial operators. Each bit-serial operation is

implemented as a separate functional block, which is made up of

leaf cells from the library. A leaf cell may comprise, say, a

single bit-slice of a given function, and the complete operator

would then be several leaf cells glued together. Systems

implemented by the FIRST compiler require the relation of a

target floorplan architecture suitable for bit-serial systems.

In 19 8 3, Macpitts was developed at MIT Lircon Laboratory

[Southard, 1933]. It was designed to ce a synthesizable, algorithm

description language. Macpitts allows a designer to Specify an
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algorithm as though completely general and sufficient parallelism

are available in some general-purpose machine. In other words,

any control/data flow graph can be directly specified in

Macpitts. Then the Macpitts compiler extracts the

minimum-hardware micro-programmrned machine which executes that

parallel algorithm, with all the bus and circuit merging into and

sharing them as implied by the algorithm. However, MacPitts lacks

system partitioning facilities and only generates NMOS designs.

The test generation mechanisms of MacPitts still require human

interaction.

As stated in session 2.1.2, these first generation silicon

compilers could only handle designs that fall into a narrow range

of pre-ordained target implementations, i.e. individual compiler

is only good for a particular system. Also, these early silicon

compilers seem to exclude or strictly limit the automatic

generation of the control structure of the chip. Nevertheless,

research efforts toward the ideal silicon compiler appeared to

be accelerating in the mid 1980's.

2.2.1 Progress towards an ideal silicon compiler

Werner [Werner, 19831 considered the progress towards the ideal

silicon compiler really involved solutions to two complementary

design problems. The front end solution (also down as

behavioral silicon compiler) is the translation of a brief

behavioral or functional description into a more precise
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description that is still implementation independent, and the

back end solution (also known as a structural silicon compiler) LE

the automatic generation of the chip layout from that

intermediate description. Research work on logic synthesis play

an important role in tackling the front end problem, for example,

the use of knowledge-based expert system in logic

transformations [Peskin, 1983] the conversion of a high level

system specification into a net-list suitable for input to a

layout system. [Berdas, 1983] and a register-transfer level

synthesizer reported by Kowalski & Thomas [Kowalski, 1983]. A

workshop on logic synthesis and silicon compilation held in 1984

revealed that although totally automatic silicon compilers with

a wide application were not yet available, participants were

quite optimistic that the technical problem could be overcome

shortly.

On the other hand, efforts to automate the back end- artwork.

generation of silicon compilation continued (or somtimes called a

structural silicon compilers). In one sense, the problem of

converting a structured circuit spec fication to an IC layout had

been solved. Several semi-conductor suppliers, as well as

larger system companies, can automatically or semi-automatically

lay out a gate array or a standard-cell chip from such an input

specification. However, work continued on the developernnt of

more powerful and more general tools that will completely

automate the implementation- specific portion of the silicon
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compiler. In contrast to initial silicon compilation efforts in

the late 1970's, the emphasis then was a compilation at the

module level, rather than at the whole-chip level. Module

generators had been reported [VLSI design staff, 1984] to

generate silicon instructions or functional modules which were

then linked into a working chip design. These silicon-instruction

generators and module linkers enabled designers to experiment

with alternative floor plans and architectures, because various

cell layouts could be produced, quickly, repetitively, and

accurately.

More powerful silicon compilers with the ability to verify the

designed chip became commercially avaliable as a result of these

promising progress. The Genesil system [S. Johnson 1987] for

example, allows designers to first refine their ideas and compare

different approaches for the best price and performance quickly.

After the designer has explored the possibilities and settled on

a block diagram the system verifies the behavior of the chosen

architecture, establishes the floor plan, routes the connection

between circuit blocks and modules, and creates a tape from

which a particular foundry will make the actual silicon parts.

The integration of silicon compilation software into an

engineering workstation [B. Lee et-al 1984] was another step

forward for silicon compilers. The workstation based CMOS

silicon compiler, with its built-in utilities, can edit graphics and

layouts, verify timing, simulate logic, generate a netlist, and
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check design and electrical rules. Within the system the silicon

compiler transforms information generated by the graphics editor

into a format that resembles the physical layout of a

handerafted IC. The Metasyn silicon compiler, an improved version

of the MacPitts silicon compiler reported by R Southard

[Southard, 1983]works directily from a functional description of

the chip and requires no hardware experience from the designer.

The compiler also contains high level simulation that let the

designer observe the device's internal operation and its

interaction with a simulated environment. Other systems

developed along similar line included the YASC high level silicon

compiler [Krekelberg et_al, 1985], and a module compiler Concorde

[Collett, 1984]

Supporters of this approach in solving the design crisis believe

that knowledge is algorithmic, and that translators can be

written to generate or synthesize the solution or some part of

it automatically from a high-level description of the problem.

There is another school of thought which believes that human

knowledge can be captured and stored in the knowledge base of

an expert system. The knowledge in the knowledge base can be

divided basically into three categories: Concepts include basic

terms of the problem domain (VLGI design in this case) which

usually can be obtained from textbooks. Rules describe

particular situations and desirable actions to be performed.

This knowledge is based on experience, and is obtained from an
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expert. zDLrategles are precedures that aid in guiding the

search through the knowledge base and help resolve conflicts

when several equally plausibe rules apply. The other two

components of an expert system are a working memory that

stores the current design description, and an inference engine

that searches the knowledge base for applicable knowledge and

makes design refinements on the basis of the current design

description.

While expert systems try to solve problems with little regularity

and large complexity, compilers are written for problems with

predominantly regular structure. These problems are well

defined and adaptable to mathematical formulation. However,

these tools assume a certain type of solution or target

architecture which tends to limit their applicability.

2.2.2 The Age of Intelligent Compilation

In the previous section, the problem of flexibility and

optimization were addressed. These shortcomings of silicon

compilers can be very efficiently handled if the two different

approaches can be combined. Thus, intelligent compilation can be

viewed as the most logical step in the evolution of silicon

compilers. With silicon compilers, users obtain rapid performance

feedback during the design process, enabling them to evaluate

how well the design in progress is meeting their goals. In

intelligent- compilation, users actually submit des gr_ goals to the
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system, which automatically seeks an optimal solution. Rawson &

Triberger (R&T, 1987) describes the ability of second generation

compilers to optimise semicustom circuits.

The Intelligent Compiler described by Johannsen et_al. (Johannsen,

1987) features three main characteristics in this aspect.

Firstly, unlike ordinary circuit optimization systems which aim at

optimizing a single variable - speed, number of gate, or area -

at a time, Intelligent Compilers go one step further towards

simultaneous optimization of multiple variables. Secondly, unlike

existing back-end tools which could only optimize the design

based on an initially debugged circuit, AI techniques are used to

learn how to make improvements in a circuit design that affect

the entire design process, front end as well as back end.

Thirdly, with the Intelligent COmpiler's AI-based system, the user

enters his circuit schematic and the program examines the

function of each element of the design. It then looks through

its data base to see if it contains a circuit that provides a

better implementation. If the circuit that the user has entered

is superior to all of the circuits already in the data base, the

software "remembers" the circuit and uses it in future

evaluations.

To deliver the flexibility it promises, silicon compilation also

relies on the expert system technology. M.Schindler (Schindler,

1986)describes two such efforts in the U.S.A.. One is the Design

Automation Assistant (DAA) at Carnegie-Mellon University. Though
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still experimental, the system blends about 700 rules with

algorithmic modules written in C. DAA's designers hoped to

broaden the narrow confines of silicon compilers, thereby

eliminating many of the shortcomings. Another effort by ATT Bell

Laboratory (Cardre) concentrates on the lower level of IC design

(from register-transfer level or down) and could therefore

eventually use DAA output as its input. Unlike a single expert

system, Cardre will comprise a collection of small expert

agents, all co-ordinated by a manager agent, which implements

the system's meta-rules. Following a similar line, other expert

systems were developed to perform speciali zed subtasks along

the design process. Synapse [Subrahmariyan 1986], for example, is

an expert system which enables very high level specifications of

a problem (consisting of the desired functional and performance

specifications) to be mapped into custom VLSI circuits. It also

supports human interaction and machine learning.

2.2.3 Future Trends

Projecting the scenario of silicon compilation, future

developments would be expected to follow the following trends:-

The incoporation of AI techniques in silicon compilation will

continue and become. a mainstream development. Intelligent

compilation which adopts AI techniques so far only puts

emphasize on the optimization of design. Another area where

AI techniques could be utilized efficiently would be the
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interface between the user and the system. With

knowledge-based expert systems, guidance or expert advice

can be supplied by the system in acquiring design

specification and information which are crucial to an optimal

design. This is most helpful for system engineers who do

not have a sound knowledge in IC design.

ii. Many of the hardware description languages developed

generally operate in an environment that restricts the use

of the language to a particular design application, design

methodology or set of design tools. Besides, only a few of

them are compatible. These issues lead to problems in:

- communication of design data between companies carrying

out different parts of the design process,

- transmitting manufacturing and fabrication data for a

designed part, and

- encouraging the development of new and innovative CAD

tools

It seems that a standardized language is a must. An extremely

important feature required for a modern design and description

language is independence of the language's descriptive capability

from any tool set. It should allow the designer to create a

model of a design that fully describes the hardware aspects the

design is intended to include.



20

3. A PROPOSAL FOR AN INTEGRATED VLSI DESIGN ENVIRONMENT

So far, it can be seen that a lot of wore. have been done during

the 1980's with the intent of enhancing the integrated circuit

designer's capabilities by providing him with powerful

architecture, function, and logic design tools. Logic design aids,

such as logic simulators or design editors for circuit diagrams,

have already been imple vented. Hardware description languages,

which can describe the whole- hardware structure in terms of the

connective structural description at the gate or the circuit

level, have been implemented as well. Architecture and function

design tools, generally called logic synthesis methods, for the

design of VLSI circuits have received a significant amount of

attention. Early day silicon compilers were mainly capable of

transforming structural description. of systems to geometric

layout for device fabrication. Failure analysis and design

evaluation must still be done manually, and corrections to the

design specification must be iterated through the entire compiler

for evaluation. Although intelligent compilers can handle some

of the problems discussed above, there are still some of the

problems that have not been discussed in the open literature.

After carrying out a survey in the required field, a proposal is

presented which set up the guidlines for the system developed in

this research.
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3.1 A Structured Design Method

A structured design method is of major importance for

automating the design process. The design method should permit

the design to evolve rationally as a modular system. Describing

the design as a formal hierarchy leads to well-defined interface

between the components of the design system, and produces a

simplified design. From the perspective of physical design,

hierarchical design provides the framework that makes automation

possible and enables various design styles.

The knowledge-based heuristic approach has been widely used in

developing design automation systems [T.Uehara, 1982, T.J.

Kowalski, 1982]. Hierarchy involves decomposing a system into a

set of components. These components are recursively decomposed

into subcomponents until all components are small enough to be

manipulated [T.M. McWilliams, 1978, W. M. vanCleernput, 1977, K.A.

Duke, 1987]. Although some major contributions have been made

in this area [P. Six, 1986, S. Costanzo, 1987], there is still a

lack of fast and convenient methods for the synthesis of

hardware structures from high-level specifications. Furthermore,

to upgrade the system to the expert designer's level, artificial

intelligence (AI) methods should be incorporated into it. Systems

like the one proposed by N: Kawato [N. Kawato, 1982] developed in

the FUJITSU Laboratories Ltd., and the USC ADAM system designed
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by D.W. Knapp and Alice C. Parker in the University of Southern

California [D.W. Knapp, 1986], both use the AI approach and are

frames and demons based system.

In order for a structural. hierarical decomposition to be of

greatest value, the design process must fallow certain rules.

Two of the most important rules are modularity and locality.

Modularity:

Modularity implies a well-defined, unambiguous functional

interface, In the physical domain, modularity dictates clear

specifications of connection points. Modularity allows the

designer to understand his design and permits a design system

to verify the attributes of an electrical component in its

environment.

Locality:

Locality implies that the details outside a component are

not important while the interior of a component is being

considered. Thus, locality is a form of information hiding that

reduces complexity.

Therefore, thedesigned system would be a hierarchical-based

system which follows the above rules during the design process.
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3.2 The Proposed Logic Synthesis Approach

3.2.1 The Design Automation Tools

Several classification criteria for design automation tools for

integrated circuits are usually used in logic synthesis problems,

they are:

i the level of the circuit view, i.e. behavioural, structural or

geometric,

ii the level of details of the circuit description, e.g.

architecture, register-transfer, logic, electric, etc.

iii the performed design task, e.g. analysis or synthesis and

iv
the implemetation technique, e.g. full custom, standard cells,

gate arrays, etc.

Our approach to synthesis is based principally on classification

(i). On the whole, automating the process of micro-architecture

design from a behavioral language requires the addition of a

large amount of knowledge to the design specification. In the

past this was accomplished by restricting the design model to a

limited set of alternatives, the casting the behavior onto one

of them. In this way the specialized knowledge about design

trade-offs can be hard-wired into the synthesis process.

Specific examples are SYCO (Jerraya, 1986) and MacPitts (Southard,
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1983] which were targeted at microprocessor design, and

CATHEDRAL[DeMan, 19861 optimized for signal-processing design.

This limits the flexibility of the system, therefore another

process has to be introduced to solve the problem.

3.2.2 Two Types of Automation Process

A considerable amount of effort has been devoted to the

automation process, and many DA systems have been proposed and

constructed. They can be classified into the following two

categories.

(1) Successive decomposition type systems that accept some

high-level specifications and expand them hierarchically

(behavior, function block, gate, circuit, symbolic layout, mask

lavout)_

(2) Incremental refinement type systems that consist of a number

of parameterized layout generator for a given set of

entities.

As the refinement type systems by pass the conventional

circuit-design and layout-design stages for some finite set of

functions, or operators, they are efficient for (but limited to)

some specific purposes and device technology.

Decomposition-type systems are more flexible ana more

general-purpose systems. They do not limit device technology
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(NMOS, CMOS, ECL, TTL and so on). and device architecture (VLSI

system and non-VLSI system). However, no straightforward

algorithm for realizing these general purpose tasks is found

(Southard, 1983)

The system presented in this project is tackling the

decomposition-type system with a knowledge-based expert system

approach.The knowledge base consists of rules to determine the

appropriate styles, design tradeoffs and strategies. The design

itself is iteratively refined by specialized algorithms which

quickly search the design space to implement a new potential

design based on the component constraints (such as the number

of busses, or ALUs). Separation of the knowledge about how to

correctly implement the design from the knowledge about meeting

design constraints simplifies the design strategies and

consequently the implementation of the knowledge-base.

3.3 The Suggested User Interface Languages

In additional to the above drawback, it is found that almost all

the logic synthesis systems described in the open literature

require the designer to supply specifications written in a

hardware description language (Jerraya, 1986).Although

text-style languages are suitable for processing in a computer,

they are not suitable for describing hardware behaviour directly.

This is evidenced by the fact that schematies have been used as

the most dominant hardware design representation, and that
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text-style languages have been used by few hardware designers.

Essentially, there are great differences between the design

process by a human and the design process by a computer.

Human designers can optimize their designs by using global views

and such invisible rules as intuition, heuristics, and know-how.

On the other hand, computers have high abilities in repetitive,

massive, and numerical processing. Therefore, software

implementation and the selection of the user interface for the

system seem to be the most important point for developing the

silicon compiler.

Based on the above requirements, a system has been developed

that accepts several levels of specification of the chip. The

idea behind the project is that a user who is not familiar with

techniques of digital and VLSI design should be able to create a

special purpose chip that runs the user's program. The

interface between the user and the system should be as

user-friendly and convenient as possible. The implementation

language is C, with Prolog as the underlying

knowledge-representation language. Knowledge representation is

an important issue. A single multi-purpose framework of

kr' owledge representation would be simplest. However, as it is

noted that hardware logic design employs various kinds of

knowledge, and design data must be represented as well. In

addition, human designers usually switch from one representation

to another in the course of their work. For these reasons, no
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existing tool is adopted here for knowledge representation.

3.4 The Specification Language : VHDL

As mentioned in the above section, the developed system accepts

several levels of specification of the chip, and it is understood

that in many cases, designers describe the hardware behaviour in

a text-style Hardware Description Language. A hardware

description language, therefore, is still needed in describing the

designed circuits to provide the completeness of the system.

VHDL is chosen since it provides a standard textual means of

description for hardware components at abstraction levels

ranging from the logic gate level to the digital system level. It

also provides precise syntax and semantics for these hardware

components, enabling design transfer both within and among

organizations. The language is designed to be efficiently

simulated and natural for hardware designers. The key concepts

embodied in VHDL provide the designer with the ability to

create hierarchical design descriptions,

create funcitionally equivalent alternative models,

create design models that intermix design descriptions at

many levels of abstraction.

describe parallelism and concurrency among units under

designed.
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describe timing relationships among units under designed,

differentiate between combinational and sequential logi

separate control flow from dataflow,

describe models that can be automatically synthesized, and

analyze models for functional equivalence.
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4. THE CUISIC SYSTEM

The design of this system was undertaken as a joint effort of

two groups of people, a group of three undergraduate students

as their final year project, and the research project described

here. The Chinese University Intelligent Silicon Compiler

(CUISIC) project, is designed to oversee a suite of

knowledge-based and hard coded design activities. It is designed

to construct sequences of design activities which are not

explicitly coded into the system, but are constructed in

response to the needs of a particular set of specifications and

constraints. The research effort is concentrated on providing a

suitable environment for the user to design a particular chip.

The scope of the research covers the front end part of the

system, as shown in Figure 4.1.
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4.1 Domain Description

As mentioned in section 3.3, the system allows the designer to

enter into the system at different abstraction levels and

styles. In order to represent these different approaches to

the system, a well-known Y-chart (a tripartite representation) is

used for the design representation. The Y-chart is a succinct

description of the different phases of the process of designing

VLSI systems [COMPUTER. 1933. 1986. Proc. IEEE, 1983]. The axes

in the Y-chart represent three different domains of description

behavioral, structural, and physical. Along each axis is

different levels of the domain description. The farther from the

center the Y, the more abstract the level of description.

Function Representation Structural Representation

System

Algorithmic

Entry: VHDL

Boolean expression

Processing element

Entry: BLOCK

Register transfer

Gates

Mask geometries

Ceils

Layout planning

Geometrical Representation

Fig. 1 ? IV .sign Methodology in CUISIC

The idea behind the project is that a user who is not familiar

with the techniques of digital and VLSI design should se ab±e to
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create a special purpose chip that performs the user's required

functions. The interface between the user and the system should

be as user-friendly and convenient as possible.

4.2 System Overview

The design system (part of CUISIC) is implemented on a SUN

workstation, taking the advantages of high performance and the

availability of the window-based environment equipped with million

ht_AS of maim mPmnrv

The system developed in this project supports hierarchical logic

design. It is a system with its own set of planning rules. The

compiler uses knowledge-based heuristics in order to give advice

to the user. The compiler also uses knowledge about the design

process declaratively represented by a network of frames these

frames contain knowledge about the design of hardware including

taxonomy and methodology. Frames were originally developed for

AI by M. Minsky [P.H. Winston, 1977]. The static structure of the

hardware is embedded in the frames of the system. The dynamic

behavior of the hardware and the designer's intention are

attached to the frames as demons, which are data-driven actions

stored in frames. Figure 4.3 shows typical frames for storing

the structural information. A complete circuit can be

represented by a network of such frames. It is believed that

this frame representation for a logic circuit gives the system

flexibility and power [T. Saito, 1981].
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The start up screen is written in C and is a window handling

program. It creates windows for the user to select the design

item. After the user has selected an item, the system starts

processing the data given by the user. If everything goes well,

a diagram for the designed system would be displayed, together

with their associated VHDL descriptions. If errors occur during

the process, the system will ask for help from the user

interactively. However, if the errors are so serious that the

system cannot recover from them, it will prompt the user with

the appropriate error(s) and stop the process.
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4.3 System Description

Figure 4.4 shows an overview of the complete system which

form-library, the strategy rule-base, the information data-base

the VHDL generator, the enquiry rule-base, the verifier and the

timing verifier. The system provides a choice for the user tc

specify the function or the item name for the circuit under

design.

The design tasks are carried out in the following manner: firstly

the selected design function/item is read by the system. If it

is a function name, the system searches the rule-base to

retrieve the task frame which contains that specified function

as its name, it proceeds to the field 'rule' inside that frame.

This field may point to a rule frame which contains a set of

planning rules governing the design function, these rules

determine the component list for the specified task. With each

of the components, the system searches the form-library for the

particular entry form. If the circuit under design is specified

by its name, the system will search directly from the form

library to get that particular entry form. Each entry form may

contain some guidance for the user to enter the information

related to the design. After the form is filled, the system

searches the rule-base to find the task frame with the specified

name, and then proceeds to the field 'rule' inside that frame.

The rules contain the necessary information that will be needed

consists of eight subsystems, namely, the user interface, the
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for the hardware implementation at the later stage. If no more

rules are found in the respective rule frame, CUISIC proceeds to

the 'component' field in the task frame. The system supports

hierarchical logic design, therefore each item may be partitioned

into several components. For each component the above

procedures repeat. If no more component is found, the input

procedure is considered complete and the data is passed to the

verifier for investigation. If no unrecoverable error occurs, the

data will be passed to the VHDL generator to generate the VHDL

description. This generator finds the hardware frame for that

name and inserts the dynamic behavior into the slot. The VHDL

associated with it will be placed into the data base. A

description of the sub-systems follows.
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Figure 4.4 An Overview of the CUISIC Sytem



4.3.1 User Interface

It is important for a human machine interface to support a tool

which realizes quick turn-around time with few possibilities of

user errors. Designers should be able to work with little

disturbance in the thinking process. To realise such a design

environment, a system is developed which accepts several levels

• rr»pf v»i -PvAm 4- V |-erov-A- -A—A. U O O. X V 1U UiiU UUUX •

a. Algorithmic organisation

The menu and question-answer tools would be the best choice in

this case. The control structure of the tool is hidden from the

user. The form has automatic defaults and are self-pro rap ting

and self-checking. These forms are stored in a form-library.

Once the form is completed, the design is considered complete.

A block diagram for the design will be displayed.

b. Functional organization

For this kind of description, a graphical editor would be a

better choice. In this case, the system allows the designer to

provide the architecture of the design using predefined modules

or blocks selected from the function set database provided. It

can be treated as a means for the designer to update the

knowledge base of the system. Tne Knowledge — cased design

environment applied here is called DIoCDA (Digital System



Con uroLer Design Assistant). DISCDA is an interactive system

with a user-friendly interface that provides multiple windows and

popped-up menus modelled after the Smalltalk-30 environment (K.W.

Ng, 1933). Using the graphic editor, the designer can create,

modify, and delete the design data in frames.

c. VHDL description

Most of the silicon compilers developed to date use hardware

description languages as a means to specify the behavior of a

design. Since CUISIC is designed to be an interactive system

with user-friendly interface, it also allows the designer to

enter into the system using an industry standard algorithmic

hardware design language VHDL. The VHDL description will be

stored in the hardware frame in the knowledge base discussed

above.

d. PROLOG - knowledge representation language

This is another way of describing the behavior of the VLSI chip.

PROLOG is a logic programming language. A designer describes

the system by specifying its operations or functions without

necessarily giving implementation details such as the hardware

components needed to implement the system. There is a VHDL

generator converting the PROLOG description into the VHDL form.
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4.3.2 Form-Library

The library contains all the forms for design items included in

the system. There are a set, of rules associated with each of

the forms so that errors will be mir.Lmize-d when the form is

fill ed. Since the system uses a herarchical design approach,

the rules also contain the component list of the specified item.

4.3.3 Strategy Rule-Base

This is the heart of the system. It contains a set of planning

rules which govern the design of the required item. The

compiler uses knowledge-based heuristics in order to guide its

choice of tasks where more than one option is possible. The

compiler also uses knowledge about the design process

declaratively represented by a network of frames these frames

contain 'knowledge about the design of hardware including

taxonomy and methodology. It is believed that this frame

representation for a logic circuit gives the system flexibility

and power.

The strategy rule-base is a collection of frames, which

collectively describe design activities, styles of hardware, and

functional classes of hardware. It is organized into three

classes:
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I. task frame (Figure 4.5)

It describes the procedure of a design, which can be specified

by the item name or the function to be designed. Several

designs are considered:

a. items

i. microprocessor

ii. controller

iii. co-processor

iv. CUISIC primitive (random logic)

V. micro-computer

b. functions:

L. addition

Li. multiplication

Lii. division

Lv. boolean algebra
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type: task

name: ALU

rule:

component

Figure 4.5 Task Frame

II. hardware frame (VHDL)

It describes ways to implement particular functions and classes

of funotions inhardware (Figure 4.6).

type: hardwar

name: ALU

VHDL:

component:

Flu re 4 .6 Hardware Frame

III. style frame

It describes variations on basic hardware structures (Figure

4.7)

type: style

name: CLA

variety:

Figure 4-7 Style Frame



4.3.4 Information Data-Base

AH the information, whether they are provided by the user or

are deduced by the system using rules, are stored in this area.

The information can be retrieved at any time if necessary.

Information can also be stored directly from the editor to the

data base if they do not require the rule check.

4.3.5 VHDL Generator

This generator takes in the information stored in the

information data-base, searches the hardware frame from the

hardware-frame library, gets the correct description of the

design and then creates a new hardware frame which stored all

the necessary information for the required design.

4.3.6 Enquiry Rule-Base

The system provides interaction with the user through the

enquiry rule—base. This rule base provides suggestion for the

user if there is any query about the questions asked by the

system.
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4.3.7 Verifier

Although rules have been applied during the form entry process

in the input stage, some important alternatives may not have

been investigated, inappropriate techniques may have been

applied, or relevant information may not have been examined.

Thus we need a final verifier to verify if there is any

constraint that the system has overlooked.

4.3.8 Timing Verifier

The successful design of large scale integrated systems require

careful management not only of the two-dimensional silicon area

but also of the operation of the system in the time dimension.

The digital design may be functionally correct but may be

unreliable or too slow. This is particularly important for the

hierarchical design since each component that works well

individually may not guarantee to perform correctly for the

combined system. Therefore it is necessary to have a timing

verifier to analyse the timing problem for the system, to make

sure that no violation exists for different subsystems and to

set out the timing constraints for the system, if any.
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5 THE IMPLEMENTATION OF CUISIC

This research effort implements the ideas of the design

environment and the structure of an ideal silicon compiler

described in chapter 4. This implementation is part of the

CUISIC system and it consists of a coherent set of programs

that perform the synthesis of a digital system from its

behavioral description to the final hardware circuit specified in

the hardware description language- VHDL.

The system is implemented on a SUN3 workstation with SUNTOOLS

as the interface medium. The implementation langauge is C, with

NU-Prolog as the underlying knowledge-representation language.

It runs under Berkeley 4.3 Unix. The program consists of four

parts: information retrieval (user's input specification), design

generation (strategy rule-base), verification (verifier) and VHDL

file generation (part of the micro-architecture compiler). The

control of the program flow is governed by a controller, its

function is to determine which of the function blocks in the

system should have control.

The following is a detailed description of the implernentatior

carried out for each part of the program described above.

5.1 Information Retrieval (Users Input Specification)

The system starts with a start up screen as shown in Figure

5.1. It is a window handling program written in C. The modules
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included in the system are displayed for selection. Once an item

(specified by its name or its function) is selected, a symbol with

the specified name will be shown on the screen (this serves to

remind the user that this particular item has been selected),

together with its entry form for the user to fill in. For complex

items, the whole internal connections will be displayed. By

selecting each internal block on the screen, its respective

property lists (in terms of form entry) will be displayed. A

behavioral description of the selected item is given by the user

through the completion of the form. One of the reasons for

choosing form entry is that high-level functions typically

require many parameters. Also, for easy comprehension,

schematics for the objects must both be rich in graphics and

contain textual information. Therefore, the system generates

diagrams for engineering documentation. The entry form contains

the default value for each of the questions in the form. Figure

5.2 is an example of an ALU specification form which exemplifies

the number of parameters required for specifying an ALU block.



Figure 5.1 Start Up Screen of the System

Figure Ft.2 An F-xamule—of an ALU form f?ntrrv

The specifications of the input and output pins for an ALU (for

example) can be specified through the selection of the 10 pin
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button, which is used to change the default values of the I/O

pin specifications. When this button is selected, an I/O form for

the item will be displayed. For example, the user may change

the input pins of the ALU to:

inl,0,2 inl,2,3 in2,0,3 cin,0,0

note: inl,0,2 means the input 'inl' has lines from 0 to 2

The number of lines corresponds to each of the pins cannot

exceed the size of the data bus that has been specified in the

form, otherwise, the system will automatically truncate the

number to be the same as the size of the data bus.

After the user has specified the function of the chip, the

system searches the rule-base library to retreive the required

frame which contains a set of planning rules. These rules

govern the design of a circuit for a particular function. Take

the specified function 'addition' as an example. The system

searches the rule-base library to retreive the frame with name

addition, then it goes to the 'rule' field which specifies the

design rules. The first rule determines the components for the

function, therefore the system passes them to the component

field. In this case, the list only contains an adder. The

system starts to search the component field, it finds an 'adder',

the it searches the form-library to get the corresponding form



entry. The data retreived from the form is passed back to the

rule field to determine the internal structure of the design,

cor example, it trie required number of operands is 3, the rules

determine the number of adder connected together is 2. Then a

connection form is displayed showing the connection for the

design. The internal structure for each of the adder is

required to be specified by the user.

Mnt. of tme ty dssirri is not juisir ons pjrirsi fed. v0

block, it may be a connection of several blocks defined in the

module library. Therefore a connection form is created to serve

the purpose. Each time the respective entry form is filled, this

connection form will be displayed. The form contains the names

of the input and output pins for the item (the pins are specified

by the user when heshe fills in the entry form), Figure 5.3 is

an example of a simple connection form.



IT-? -pi n -v»«=k c, A Q-i rrt-rl f!nnnpr,t.i nn Fnrm

fvnm (rrin nnmhpr) to loin number)

adder (14)

adder (19)

mux (7)

alu (3)

adder (10)

mux (5)

mux (6)

alu (1)

adder (8)

adder (17)

The graphical representation would be as follows (Figure 5.4).



Figure 5.4 The Graphical Representation of the

SDecified Connenti nr

The user simply specifies the module that a particular pin is

connected to, together with the pin number (since the input and

output pins for the module have not been specified in this

stage, the user can leave it till the later stage). When this

form has been filled, the system searches the pins of the item

to determine if there is any module connected to them. This

searching is breadth-first style, that is, the first connection

form will be processed until no more modules are connected to

the first item before the second connection form (the form for

the next connected module) is started. The block diagram of the

specified connection is shown immediately on the screen once the

user has made the specifications. This gives a clear idea of

the connection that heshe has already made.

The process continues until no more connection is required for

either one of the modules. At this stage, the user can re specify



the pin number, if required. Figure 5.5 shows the block diagram

of the circuit under design when the user has finished the

connection specifications. Once all the forms are filled, the

system starts storing the data from the connection forms to a

data file 'data!'. These data are stored up in a breadth-first

manner too. However, in the verification program, it is required

that the data passes in a depth-first style. So a process is

required to rearrange the data as well as the corresponding

data files for the design. Figure 5.6 shows the format for the

two different mariners.

FiP-nrq 5 R TVift Rlonk TViagr-m of t.htt Circuit, nndr Design
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Figure 5.6 The Format, of the Two Ditterent Marme.rp

Another point needs to be emphasized is that the connection

specified by the user has to be a one-to-one mapping style.

Figure 5.7 illustrates the accepted and unaccepted connections

for the circuits under design in the system. (Parametric blocks

allow virtually an unlimited number and variety of functions to

be created. However, for simplicity, only three levels are shown).
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Figure (c) is not allowed since the output pin (3) from node 1 is

connected to both node (2) and (3). This restriction is due to

the design of the connection form. Each entry in the form

allows the user to specify one item only. To solve this

problem, i.e., if the user wants the design to be a one-to-many

mapping for a particular pin, two methods can be used. Either

the user has to explicitly connect that output pin to an

amplifier (Figure 5.8), or the user has to repeat that particular

pin name (as if it is another separate pin for the item) when

specifying the IO pins for the item. The first solution creates

a redundant module in the circuit design, therefore this

redundancy will be handled later at the verification stage and

will be discussed in section 5.2.2.

Fimire fi 8 The Connections Using an Amplifier



coir bi directional ports, they are class if o e 1 as the output oort

in the 10 pin specification form. The system will distinguish

between thera during the verifi .c a tie n process.

The next section is a description of the verifier.

5.2 Design Generation (Strategy Rule-Base Sub-System)

As described in chapter 4, ail the required rule frames are

stored in the rule-base library. The block diagram showing the

relationship between the verifier and the libraries is shown in

Figure 5.9. The verifier consists of several functional blocks,

namely, the individual verifier, the connection verifier and the

feedback-path verifier. The functions of each of the blocks will

be discussed below.



user data

individual
vprif i pr

connection

verifier

feedback

verifier

rule-base library

task

frame

feedback rule library

verifier

feedback

frame

connection rule library

connection

frameVHDL

Generator

Figure 5.9 the Relationship Between

the Verifier and the libraries

5.2.1 Individual Verifier

The rule selection process is data driven. First of all, the

item that is going to be designed is passed to the individual

verifier. This verifier searches through the rule-base library

for a frame which has the frame name matching the design

element. Then the consequences of the rule (in the field rule

inside the frame) are applied, and the process is repeated until
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no more rules are avail able or until a rule explicitly stops the

process (this may be due to the occurence of some unrecoverable

errors or some guffies raked by the verifier). the same example

described in section 5.1 is used as an illustration. Since the

design type found is an ALU, the verifier searches the

rule-base library for the frame with the task name ALU. It

immediately passes the data (all the information retreived from

the form entry described above, which is stored in a data file

named as T) to the respective rule frame for investigation.

This rule frame contains rules that govern the design of a

particular item. These rules check the validation of the

specifications describing the internal structure of the item.

With the example given, to specify an ALU, the system has to

check the number of bit slice required for a particular

specifications. For the control signals, the system has to check

whether there is any duplication in specifying these data. If

there is, the verifier stops the process and passes the control

back to the editor to display the form entry again for

re- specification. Any queries raised by the verifier will stop

the verification process until the queries have been answered,

then the verifier resumes control and the process continues. If

no more rules for that particular item are found, the verifier

proceeds to the 'component' field. This component field links up

all the components required for that particular name, if any.

For each component, the above procedure repeats. If no more



components are found, the verification process terminates and

the controller passes the control to the connection verifier for

connection checking.

5.2.2 Connection Verifier

As the name indicates, the rules in this verifier govern the

connection contraints for the circuit under design. Therefore,

the data from the connection forms are passed in for

examination. Using the example described in section 5.1 again,

the connection diagram in Figure 5.4 is displayed once more

(Figure 5.10) for easy references.

Figure 5 10 An Example of the Connection

The verifier checks the connections from the root of this tree

structure first. The order of the checking is in accordance



with the pin numbers, in ascending order. This verifier checks

whether the two objects can be connected together. There are

several rules that govern the general connections. They are :

1. The type of the pair of connection pins must be checked so

that none of the following connections would happen :

(a) I - I connection

(b) I - 0 connection

(c) 0 - 0 connection

2. The number of data lines from the output pin should not

exceed the number of data lines from the receiver pin. If

this is the case, it is assumed that the lines with the

lower significant bit number are connected, leaving the lines

with the higher significant bit number, for example, if the

output pin is specified to be outl,0,3 and the input pin is

inl,0,2, then the output line outl,3,3 would be left

untouched. A warning message will be displayed. The

following (Figure 5.11) is an extraction from the rule-base :

% Sour(Dest) = Source (Destination),

% Cs(Cd) = count number for Source item,

% S1(S2) = starting line number for Source (Destination),

% '0' ('0') in the case,

% D1(D2) = ending line number for Source (Destination),



'3' ('2') in this case,

checkline(Sour,Cs,Sl,32,Dest,Cd,Dl,D2)

S2-S1 D2-D1,

writeln('warning : some of the output lines

are floating'), ...

plus(Sl,D2-Dl,S3),

write(S,'connect_to('), write(S,Sour),

printf(S,',%d,%s ,%d,%d,%d,%d,%d',

rro ow ci gq m noi
-w - uj vu|ji|Uv; J;i

checkline(Sour,Cs,Sl,S2,D,Cd,Dl,D2) :-!.

Figure 5.11 The Sample Rules for connection Checking

3. The number of data lines from the receiver pin should not

exceed the number of data lines from the output pin. If

this is the case, the error flag will be set since no input

of any of the items should be left floating.

The verifier checks each of the items according to the above

rules. It starts from the root of this tree structure, in this

example, an ALU. Then for each of the pins, it checks if the

pin is connected to any item. Witn this example, it fines an

mux. The connection verifier stops the process and passes the

control to the individual verifier to examine the data for that

adder. If nothing goes wrong, the connection verifier resumes



control and validates the connection according to the rules.

Each of the connections are inserted in the data-base for later

use. Any warning or error message found will be displayed on

the screen immediately. However, the process will not be

terminated until all the items have been examined. The next item

to be examined is the adder. In this case, no connection is

found; therefore, the verifier goes one level back and examines

the pin number 6 for the MUX. The searching algorithm is a

depth-first search. To check the redundancy of the amplifier

introduced in section 5.1, the system makes use of the

connection list stored in the database, this is Illustrated in

the following program segment (Figure 5.12).

handle_amp : -

cormect_to(Source, Sc, amp,

C, SI, S2, Dl, D2, Frompin, Topin_arap),

cormect_to(amp, C, Dest,

Sd, S3, S4, D3, D4, Frompin_amp, Topin),

assert(connect_to(Source, Sc, Dest, Sd,

SI, S2, D3, D4, Frompin, Topin)),

fail.

handle_arap :- !

Figure F.12 Profram Segment, for Handling

t.he Redundancy of the Amplifier



amplifier will not, be considered as the component of the

new module. Once the process is finished, the controller regains

control and tests the feedback flag. If it is set, the control

will be passed to the feedback verifier, otherwise, the data

files and the analytical results will be passed to the VHDL

generator next to the verifier in Figure 4.4.

5.2.3 Feedback-Path Verifier

In checking for the feedback connection, the three rules

described in section 5.2.2. are also applicable. Moreover, one

more important criterion has to be examined, this is the timing

problem. A sequential circuit could easily be unstable if the

timing constraints have not been considered. To check the

feedback path, the followings are some of the rules :

1. if the output of an item is connected to itself, the verifier

will insert a register in between the two ports, as shown in

Figure 5.13.

Figure 5.13 A Register is inserted between the Feedback Path



The coding is illustrated below (Figure 5.14)

feedback_handler(no_Stream2) !.

feedback_handler(yes, Stream2)

see(feedback),

read(Item), feedbackpath(Itera, Streara2), close(Stream2),

!, seen.

feedback_path(end,S) :-!.

feedback_path(Iteml,S)

read(Frorapin), findcounto(Iteral, CI, Frompin),

read(Data), read(Topin),

findcounti(Data,C2 ,Topin),

node(Iteml, CI, VI), node(Data, C2, V2),

timing(Cl, C2, VI, V2),

asserta(connect_to(Iteml, CI, Data, C2, Frompin, Topin)),

open('fback.dat', append, S2),

fdalli(Data, C2, S2), close(S2), !,

read(Item2),

feedback_path(Item2, S).

Fignye 5.14 Program Segment for Handling'—the—Feedback—Path

2. if the feedback path is not allowed, it would be deleted from

the connection list.



ifiis verifier will not set any error flag because it will try to

modify the feedback connections so that the circuit under design

can s till be a valid one. When the verifier finishes the

process. the whole verification process is considered finished

and the controller passes the control to the VHDL generator to

generate the layout description.

5.3 VHDL Generation

Since most of the silicon compilers to date accept the user

input through the use of a hardware description langauge, this

method of describing the behaviour of the system is also

included here. To translate a graphical inputs of a circuit

design into a hardware description language, the following method

is adopted.

It is understood that each design specified by the user is a

combination of the primitive logic circuits contained in the

module library in the system. Since the internal connections of

a primitive circuit (for example, a full adder, an cla) is fixed,

these parts can be shared among the circuits under design.

Each of them are stored in a frame specified as hardware' type

in the hardware-module library. These frames (described in

chapter 4) contain the behavioral or structural description of

the corresponding circuits with the respective frame name. Each

primitive has a VHDL frame,therefore each design would nave a

set of variables for eacn dinterent primitives. ihe HDL



generator analyses the connection list passed in. For each item

from the list, it searches the respective frame, creates a new

VHDL description with the arguments associated with the items.

Take an adder as an example. To generate the VHDL description

of a specified adder, the generator carries out the following

steps :

Generate the body of an adder (i.e., the fixed part from the

hardware frame), then from the argument list, determine :

if (tristate)

call tristate_gen_buf(bits);

insert into the new_vhdl;

if (zero_detect)

call zero_detect__gen_buf(bits);

if (output result latch) call latch(bits);

paste into the output of the new_vhdl;

paste into the output of the new_vhdl;

if (input operand latch)

call latch(bits);

paste into the input of the new_vhdl;

A similar procedure will apply to other modules. With the VHDL

descriptions, the layout circuit can be easily generated by

passing the descriptions through the VHDL compiler and tne



simulation can also be carried out using this coding. The

implementation of the VHDL generator has not been finished yet,

however, the structure of this function block is well designed so

that it would not be too difficult in building the generators.

5.4 Final Output

Charts and diagrams make data easy to be recognized and

understood. Therefore when the data has been verified, a block

diagram of the designed logic circuit is displayed. The VKDL

description of each of the blocks can be examined by selecting

that component in the display. The type of blocks is

distinguished by the color used. This new module will be

inserted into the module-library. This involves inserting its

corresponding task frame and rule frame into the strategy

rule-base (Figure 5.15) :

savenewrules(Name) :-

rulename(Rule_name),

open(Rule_narae, write, S), setOutput(S),

close(S).

newtaskfrarae(Framename, Newtasknarae) •-

open(Framename, append, 3), setOutput(S),

close(S).

5.15 Program Segment



and also its component list is also inserted into the 'component'

field of the task frame. Once the system is reset, the menu of

the CUISIC primitives will be updated.

5.5 DISCDA : Graphical Editor

It is understood that graphics are fast becoming indispensible to

logic design. Therefore a graphical editor is included for the

sake of completeness. The role of the editor is to capture the

designer's view of the digital circuit at the functional level.

The design specifies the circuit elements (the primitive elements

in the primitive circuits library) and the interconnections

between them. The outputs of the graphics editor are two

descriptions of the circuit, one for the simulator, and the other

for the layout designer, each in the appropriate format. The

implementation work is carried out by the under-graduate

students group, details of the work can be found in [internal

paper, 1988].



6. DESIGN METHOD EXAMPLES

6.1 ALU

To illustrate the working of the system, two examples are given

below. They are presented with program segments to clarify

various points. The first one is an example which the design

item is specified by its function. When the user has selected

'multiplication' as the design function from the start up window,

the system searches the task frame with name 'multiplication', it

finds that the first rule contains a pointer pointing to a style

frame, which contains two choices : shift with add and Carry

Save Adder. Therefore the system prompts the user for a

selection. If, in this case, the user chooses shift with add,

the second rule in the task frame will be searched, it finds the

component list which contains an 'ALU', therefore a form for the

ALU will be displayed. This contains the property list of the

selected item. Figure 6.1 shows that the user has specified a

4-bit ALU with zero detect, negative detect, overflow detect,

carry out detect, output latch, and the tristate output options.

The implementation of the logic circuitry is based on a carry

lookahead adder. If the user has any queries in filling the

form, heshe may invoke the enquiry rule—base by selecting one

of the items under the label Queries . For example, if the user

cannot determine which implementation heshe is going to use,

heshe may select the button Queries. The system then

searches in the enquiry rule-base for the style-frame containing
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cannot determine which implementation heshe is going to use,

heshe may select the button Queries. The system then

searches in the enquiry rule-base for the style-frame containing



the name adder_imple, as shown in Figure 6.2. The specified

type is diagram, therefore the diagram for the implementation

is shown on the screen, as in Figure 6.3.

Fipnra P 1 Fnrm Knt.r-v for an ALU

name :
adder-

imple.

type : diagram

CLA

FULL ADDER

TT-ic-nr-e 6 2 FramA nit.h Namft=adder imple



Figure 6.3 the Two Different Implementations for an ALU

Once the form is filled, the system searches for its component

list to see if the design is hierarchical. In this case, an

adder is found. Once again, the system searches the form entry

library to get the required form.

When the form is filled. A connection form for the ALU is

displayed with the input and output pin names specified in the

form entry (Figure 6.4).



Figure 6.4 the Connection Form for the ALU

Only one ALU is necessary for the rnulitplication process.

Therefore the system waits to see if the user wants to connect

any modules to the ALU. Figure 6.5 shows an example of the

connection.



Figure 6.5 The Connection Form and

the Entry Form for the Adder

When the form is filled, the connection form for the adder will

be displayed. Since now none of the modules is connected to the

adder, the design is considered complete. The data then passes

to the verifier for verification.

These data include



i. the number of bits in the ALU,

ii. optional leftright shift function,

iii. optional registers at the ALU output,

iv. the desired ALU functions,

v. the corresponding control signals and

vi. the data for the internal adder as well as

vii. the external connected adder.

All the processed data will be stored in a file called 'datalu4'

as well as in the information data-base inside the system.

The structure of the design is based on a 4-bit-slice

architecture, and therefore with the specified bit number, the

system has to determine how many bit-slice structure that is

going to be used, the following is the program segment for

illustration (Figure 6.7) :

data(data_bus, Nbits),

Lbits is 4,

divides (Nbits, Lbits, Mblits, Dummy),

aiu(Mbits, Dummy, Calu),

writefyou need'),

write(Calu),

writelnC 4-bit slice aiu ),

Figure 6 7 Program the Design of ar. ALU



?o the optional functions and registers, the system Mne

data as facts for later references at the VHDL generation cart

s hit t_ sign al(alu,l, right, left, 0,1).

These data are checked for any duplication before the following

processes can be carried out. If there is a repeat assignment

for the ALU control signals, the form entry will be displayed

once again for clarification. For the ALU signals, the system has

to determine which of them has not been selected (the predicates

no_alufun(P) indicates this), then gather them together and

delete them from the default signal list (Figure 6.8).

s olu tion s ([ P 2, Sig 2 ], alu_signal( arith, P 2, Sig 2), S 2),

solutions([P3 ,Sig3],alu_signal(logic,P3 ,Sig3),S3),

append(S2 ,S3 ,S4),

solutions(P,no_alufun(P),Sl),

deletel(Sl,[0,l,2,3,4,5,6,7,8,9,10],Tmpl),

convert([],Tmpl,L),

Figure 6.8 The Program CnHirig for Handling ALU Signals

To find out the number of bits for the micro-instruction word,

the maximum code for the control signal has to be found.
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where Oount - I in this case.

Now she component list is examined by the following codes

complist(X) :-

components, L),

partition! L).

partition! []).

•nav+i -H -pfTY1 VII • —j—' est«,.».«. w_»_ w jy

count(X,C),

selection([X,C]),!,

-»-t i d- iKdi. w_j_ iiV

The data is examined as follows '

1. Since the number of bits is determined by the ALU, there

is no need to verify this again.
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'?. asserts the choice of the adder into the data file

datalu. (Since this adder is part of the internal structure

i alul, the data is part of the alul as well).

choice(adder,cla).

3. the input and output pins are stored as:

iport(adder,[1,[inl,0,3]],[2,[in2,0,3]],[3,[cin,0,1]

oport(adder,[ 4,[surn,0,3]],[5,[cout,0,1]]].

Notice that the pin number remains from 1 onward since this

is the internal structure of the ALU, not an external adder

connected to the ALU.

Next the system examines the component list for the adder.

component(adder,[]).

Since the component list is empty, the individual verification has

finished. The controller then passes the control to the

connection verifier:-

open(datconnect, append, Stream2),

see(iodataf),

any_connection(no, S, H, Stream2, 0),

seen,....

iodataf is a file that stores. the data from the connectic

forms.
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For the connection list, the verifier considers the connection

for the input pins first before going to the output pins. The

rules extracted from the connection verifier are given below.

any_connection(_,outside, H,S,_):-

any_connection(Itenn,H,S,Tab):-

append(T,[Item],Newcomp),

count(Item,Cl),

count(vertice,V),

plus(V,1,V1),

iport(Item,C1,I),

input_connect(Item,I, S, Tab),

oport(Item,C1,O),

output_connect(Item,0, S, Tab),

The verifier examines the connection so that no violation to the

rules (described in session 5.2.3) occurred:-



verify(Sour.Cs.Dest.Cd.fPinl,3tartl,End!],[Piri2,3tar2,End2])

checkline(Sour,Cs,Startl,Endl,Desr,Cd.3tart2,End2),

checkline(S,Cs,Sl,S2,D,Cd,Dl,D2)

S2-S1 D2-D1,

writelnCwarning:

checkline(S,Cs,Sl,S2,D,Cd,Dl,D2)

S2-S1 D2-D1,

writelnC warning:

checkline(S,Cs,Sl,S2,D,Cd,Dl,D2) :- i.

The node number has been assigned to each of the items so that

connection can be easily referenced. With the example given,

there is only one connection for the output pin number 4 of the

ALU, and a feedback path connected from pin number 8 to pin

number 3, therefore the output__cormect predicates are invoked.

The connection is stored in the data file 'datconnect'. The

connection process continues for the 'adder', since none of the

pins are connected to any other items, the process terminates.

When the system examines the connection, it automatically

identifies the feedback path and groups them together. When the



connection verifier has finished the process, these data are

passed to the feedback verifier for validation check. The

segment of the coding is as follows :

feedback_handler(no, Stream2)

feedback_path(Item, S),

, seen.

feedback_path(end,S)

feedback_path(Iteml,S)

read(Frompin),

findc o un t o (I t e ml, CI, F r o rapin),

read(Data), read(Topin),

findc o un ti( D a t a, C 2, T o pin),

node(Iteml,Cl,Vl), node(Data,C2,V2),

timing(Cl,C2,Vl,V2),

read(Itera2),

feedback_path(Item2,S).

First of all, the verifier has to identify the node numbers as

well as the count numbers in which the pair of connected pins

belong to. This is not difficult since the input ports and the

output ports of 11 the items are in the data base. Each port

list has the count number assiocated with it. With the count

number known in advance, it is quite easy to find out the noue



(a)

(b)

F-ipn-r ft, ft The Final Display—on the—Screen



6.2 MICRO-PROCESSOR

To Illustrate how the program works in a hierarchical sense, a

design method for a complicated example is shown in this section

to clarify the design method. Consider the schematic diagram in

Figure 6.9.

Data Bus

Data

UP

RW

Address

1

0

DATA

RAM

DATA

RAM

DATA

ROM

Address Bus

Figure 6.9 A Simple Microcomputer

If the user wants to design a micro-computer, he may select the

name under the Item name' and ask for help from the system by

selecting the 'Query' button in the panel. The implementation of

a simple microcomputer involves several components, including a

microprocessor, a decoder, two RAM chips, a ROM, and an
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number Besides calling the checklineno predicates to verify the

connection of the pair of pins. the verifier also has to

determine whether the feedback path is directly connected back

to itself. If so, a register will be inserted in between the two

nodes. This verification is done in the following predicate:

timing(I1,I2,V1,V2)

I1 ==I2

assert(register(V1,V2))

If no error flag has been set during the verification process

described above, the VHDL generator will generate the

descriptions for the ALU and the adder, the final version of the

block diagram for the design will be shown on the screen (Figure

6.8(a) and (b)).These descriptions can easily be refered to by

the user if he/she simply selects the block on the diagram that

he/she is interested in All the data files concerning the

design would be stored under the directory with name specified

early in the 'ALU' form entry (in this case, it is called 'ALU-4'),

the design will be treated as a new module in the module-library

later when the system is invoked again.



inverter. There are five different kinds of components involved.

It is quite obvious to choose the microprocessor' as the start

off item. Therefore the system will reply:

system message : select microprocessor please

Figure 6.10 The Fntrv Form for a Micro-Processor

Figure 6.10 is the entry form of a micro-processor. The block

diagram of a (Figure 6.11) simplified micro-processor is displayed

on the screen for reference.
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Figure 6.11 A Simplified Micro-Processor

It basically consists of three units : the ALU unit, the control

unit and the timing unit. Once the form is completed, the system

searches for its component lists, and the diagrams for each of

the units will be displayed (Figure 6.12).



Figure 6.12 The Components of the

Micro-Processor are Displayed

The forms for the units will only be invoked if the user selects

that units. This is different from the alu in which the entry

form is invoked by the system. This has an advantage that the

user can have a clear idea of which form heshe is filling. This

effect will only be significant if the design is complex (with the

alu, there is no need to display the block diagram of its

internal structure).



6.2.1 ALU Unit

The ALU chip consists of the register file, and the ALU. The

number of registers in the register file is determined by the

user. Therefore the size of the register address bus can be

calculated by the system. The size of the register file chosen

by the user will be stored in the data base as:

ri V»V»ott • —
j. dM. jl. uy •

register(Num),

loop(Num,l,Count,1), ...,

assert(register(Num)),

as sert(reg_size(register, Count)),

The ALU has been illustrated in the previous section, so it will

not be repeated.

6.2.2 C ontrol Chip

The control chip controls the control path of a micro-processor.

The system allows the user to specify the size of the

microinstruction register, its coding, and to specify the

micro-routines for the instruction set, which is again specified

by the user.



6.2.2.1 Micro-Instruction

The micro-instruction set is based on the PDP-11, the user can

select the required signals from the set (Figure 6.13).

Figure 6.13 the Form for the Micro-Instruction Set

6.2.3 Clock Chip

This component will not be discussed since it involves the

transmission of data which would be part of the joe of the

timing verifier. This timing verifier has not been considered

yet.



6.2.4 The Connection Details

If each part of the micro-process or has been specified, a

connection form will be displayed. It requires the user to

specify the connection for the micro-processor. Again if the

user does not know how to continue, heshe may select the

'Query' button again for advice. This time the system message

will be:

system message : you need some memory unit : RAM and ROM

attached to the address bus

FTffiirft bu Thr. Connection for the Micro-Processor
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The above process continue until no more connection is required.

Then the system starts searching for each of the connected pins

and displays the corresponding form entry. Figure 6.14 shows

the complete connection forms. Note that the user has specified

output pin 'outl,1,8' thrice in order to connect them to three

different components. Since no feedback path is required for

the design, the data will be passed to the verifiers. When the

verifier examines the 'micro-processor', it finds that its

component 'control unit' needs further information from the user.

This is the assignment of the signals, together with the group

numbers, since the structure of the micro-instruction is a

vertical one. The system will display a form for the user to

fill in. These data will be verified at once to ensure no

duplication of the signal occurs. Since the specified style of

the 'control unit' is 'microprogrammed', a table of bit-patterns is

displayed (Figure 6.15).



Figure 6.15 Table of Bit-Patterns for

the Control Signals Assignment

Since no further information is required by the system, the VHDL

descriptions for the whole system as well as each component in

the circuit under design will be generated. The final screen is

shown in Figure 6.16. The information for each of the five

components can be viewed in the subwindow by clicking on the

specified item. The internal structure of each of the

components can be seen on the upper left sub—window. This new

design will be stored up in the module library with name 'sample2'

and can be invoked later when the system is reset. Figure 6.17

shows the VHDL descriptions of this circuit.



Pifrnrp fi.lfi The Final Disnlav of the Block Diagram of the Design

component MICROPROCESSOR

port (al : out BIT;

a2 : out BIT;

a3 : out BIT;

r_w: out BIT;

dl : inout BIT);

component RAM

port (csl, cs2 • in BIT;

r_w in BIT;

al : in BIT_VECTOR;



dl : inout tristate);

component ROM

port (cs : in BIT;

al : in BIT_VECTOR;

dl : out tristate);

component DECODER

port (al : in BIT;

dl : out BIT_VECTOR);

component INVERTER

port (al : in BIT;

dl : out BIT);

signal address_bus : BIT_VECTOR (10 downto 1);

signal rw : BIT;

signsil ram_cs : BIT_VECTOR(0 to 1);

signal rom_cs : BIT;

signal data_bus : tristate;

begir

CPU : MICROPROCESSOR port (address_bus, rw, data_bus):

SEL : DECODER port (address_bus(9), ram_cs);

MO : RAM port (rara_cs(0), address_bus(10), rw,

address(8 downto 1), data_bus);



Ml : RAM port (ram_cs(l), address_bus(10), rw,

address_bus(8 downto 1), data_bus);

INV : INVERTER port (address_bus(10), rom_cs);

M2 : ROM port (rora_cs, address_bus(9 downto 1), data__bus);

end block;

Figure 6.17 The VHDL Description of the Design



7. CONCLUSIONS

This project has concentrated on the development of a VLSI

design environment that assists the designer in the task of

designing digital VLSI circuits. It is part of the CUISIC system

which has been designed to satisfy its primary goal : creation

of an ideal silicon compiler. Although the implementation of the

whole system has not been finished, the structure of the system

has been well developed. The idea behind the project is that a

user who is not familiar with the techniques of digital and VLSI

design should be able to create a special purpose chip. The

implementation language is C, with Prolog as the underlying

knowledge-representation language. Prolog is a language

especially well-suited for AI development. No existing tool is

adopted here for knowledge representation since it is too

difficult to switch the data from one representation to another.

The key part of the implemented system can be enhanced with

ease, thus offering the possiblity of future extensions to the

system.

The system structure is sufficiently general to allow a wide

range of digital systems to be designed with relative ease. It

allows the designer to enter into the system at different

abstraction levels and styles. At the highest abstraction

iytli© behaviour of the LoX criip can be described ushi

the form entry format.



The system nas the ability to translate the high-level

uescnpon given oy the user (specifying the property lists of

the design item by filling in its respective entry form) to the

V H b l. description. ihese procedural hardware descriptions are

portable, thus giving the flexibility of the system.

i he system adopts the knowledge-based heuristic approach for

automating the design process. From the perspective of physical

design, hierarchical design provides the framework that makes

automation possible ana enables design styles. Furthermore,

this mimic expert designer's approach can enforce design

discipline.

Until now, the major attention of the research has been

concentrated on the design environment and the simple logic

synthesis methods that translate a high-level description to a

simple VHDL description. There are several limitations inherent

in the system. The connection form cannot be checked

interactively so that errors in filling in the pin number (an

output pin instead of an input pin) can be caught at once. The

system does not have the ability to do the optimization process

for the circuit under designed. However, since alu tne

necessary information has been stored in tne data base, if time

allows, it is not too difficult to overcome the problem by

enhancing the knowlege-base of the system. The present system

illustrates the new approaches to design entry and VHDL

generation. The user interface is designed to minimize human



error, the amount of information the user needs to remember,

and it automatically invokes data conversion software when

moving from one part of the design process to another. The

idea of the VHDL generator is designed to automatically

generate the VHDL description which, by far, has not been

discussed in the literature. One point to be emphasised is that

rules have been embedded so that errors in entering the

specification has been kept to a minimum.

Besides the limitations described above, there are still sever!

directiions that further research is needed :

a. As ASICS become very complex and are being designed by

system designers it becomes imperative that all logical

design be done automatically. These rely on the efficient

logic synthesis algorithms that translate the behavioral

description of the circuit under design into the one using

functional description. This functional description is quite

useful since it can be used to identify the existing circuit

in the library that performs the same task as the new

circuit under design. Then comparison can be carried out to

determine which of them is the most efficient.

b If errors can be eliminated before going to the physical

design process, a lot of design time can oe saved.

Therefore the evaluation tasK is very important m

determining the design quality, and in indicating whether the



given constraints have been met. The verifiers discussed in

Chapter 5 serve part of this purpose. It is understood

that without the timing verifier the evaluation task would

not be completed. Circuit performance is related to the

worst-case propagation delay of signals between two

register boundaries, because the system clock must be

adjusted to allow the arrival of each signal at the

destination registers within the clock cycle. This timing

verification process should be done interatively in the

following two steps :

(i) evaluate the critical path delay and then

(ii) modify the circuit if necessary

c. Future work should also be concentrated on the development

of the VHDL generator. This generator transforms the

behavioral description of the circuit under design into a

program-like description langauge which can be simulated and

analysed through the VHDL Support Environment.

d. In order to complete the CUISIC system, it is required to

build a translator which translates the VHDL description to

a suitable form for the input to the back end part of the

system developed by the group of the undergraduate

students.
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APPENDIX SUMMARY OF SUB-SYSTEMS

The following is a summary of each of the sub-systems. Since

there is no interfaces between NU-Prolog and C, data obtained

from C are stored in files. Rules that govern the user

specifications are written in C.

1. Strategy Rule-Base

There are about 16 set of rules which govern the design of the

items. The number of rules for each set depends on the design

item, each of them is around 50 lines. The global data

retrieved from the user specification is stored in a file

'dats tart'. These data include

name of the design item

name of the file to be used for storing the new I/O pins for the

circuit under designed,

name of the data file for storing information concerning the new

design

name of the new task frame that the rules for the new design

are stored

and whether the design contains any feedback path

These names have to be determined before passing to Prolog

since Prolog cannot handle string manipulation.



i he name or tne data file for each of the modules is the same

as its node number which appears in a tree structure (denoted

m a depth-first, manner). When the prolog program is invoked,

tne xiue datstart' is read by the predicate 'get_select(Noarg)'.

This contains rules that :

determines which set of rules that is going to be invoked,

invokes the connection verifier and

finally saves the parameters.

For example, the design item is an 'adder' with cell name = add_4,

and no module is connected to it. Then there will be two files

passed to prolog : 'datstart' and '1'. The contents of both of

the files are shown below :

design(item, cuisic_p).

subdesign(item, adder).

portfile(oiadd_4).

collect_dat(datadd_4).

rulename(..nuprogrule add_4.nl).

feedback(no).

Hycrnve A-l Data for datstart



iPort(adder)[[l,inl)0,l],[2,in2)0,l],[3cin,0,0]]).

oport(adder,[[4,sum)03],[5,cout0,0]]).

data(data__bus, Nbits).

choice(adder, cla).

cell_name(add_4).

Figure h-?t Data for 'V

Then a set of rules governing the design of an adder will be

invoked :

selection([cuisic_p,Count],C,Tab)

s ubd e s ign(it e m, S),

selection([S,0],C,Tab).

selection([adder,Count],C,Tab)

plus(Count,l,Count2),

retract(count(adder,_)),

assert(count(adder,Count2)),

asserta(cell_no(adder,Count2)),

consult('uacgdsng047thesisnuprogruleadd.nl').

adder(C,Tab),

corDplist(adder,C,Tab).

For each of the design item, there is a counter counting the

occurence of the item in the circuit under design. Data

concerning a particular item can be referenced easily. Each set

of rules is stored in a file with name starting with 'rule'. When



the data concerning an 'adder' is examined, its component list

W1-- sear-hed. For each of the component, if any, the above

procedure is repeated.

the rules for the adder determine :

the choice for the adder, whether it is CLA or full adder design

the validation of the input and output connections, if any

the new input port and output port lists for the new item

the component list for the adder

the parameters for the VHDL description

These data will be stored in the file 'datadd_4'.

2. Enquiry Rule-Base

This rule-base gives advice to the user if required. As stated

above, it has not been finished yet. The rule-base only

contains about 15 rules for illustrative purpose. The items

under design that have been considered are :

micro-computer

adder

alu
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micro-processor

addition

multiplication

These rules are written in C and they are embedded in the

starting program.

3. Information Data-Base

All the data are stored as facts in the working area. Each fact

includes a basic parameter counter so that it can be easily

referred to. The size of the working area for NU-PROLOG

determines the size of the data base.

d VA -ifi Prs

T3h verifiers check the validation of:

the data specified by the user,

+hA e-nnnPrtinn. for the item under designed and

the teedbacK pa-cn if any
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They contain about 45 rules and the size is around 200 lines.

The connection of the circruit is stored in a fact 'connect-to'

as illustrated below:

connect_to(Source,Cs,Dest,Cd,Ps,Pd,Startl,Endl,Start2,End2).

where Source (Destination)= source (destination) item,

Cs (Cd)= counter for the source (destination)

Ps (Pd)= port number for the items,

Startl (Start2)= starting line number for sourcE

(destination),

Endi (End2)= ending line number for source (destination),

These data will be used later to draw the block diagram for the

circuit under design.

5. VHDL generator

The hardware frame is specified with name starting with V. In

this case, the VHDL frame that is going to be used is 'vadd'.

The content is shown below

architecture REGULAR-STRUCTURE of FOUR-BIT-ADDER is

REGULAR_STRUCTURE_BLK

block

anal C' BIT VECTOR
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component FULL-ADDER

port (ADDEND, AUGEND, CARRY: in BIT

CARRYOUT, SUM: out BIT)

begin

LO: FULL_ADDER port(A(O), B(O), CIN, C(0), SUM(0))

Li: FULL_ADDER port(A(1), B(i), C(0), C(1), SUM(1))

L2: FULL_ADDER port(A(2), B(2), C(1), C(2), SUM(2))

L3: FULL_ADDER port(A(3), B(3), C(2), C(3), SUM(3))

end block

end REGULAR-STRUCTURE

This is the fixed part stored in the frame. The entity of this

adder is determined by the parameters passing in from the

data-base. An example below shows a typical entity using the

parameters in the input and port lists:

entity FOUR-BIT-ADDER

(inl, in2: in BIT_VECTOR

Cin: out BIT_VECTOR

sum: out BIT_VECTOR

cout: out BIT) is

end FOUR_BIT_ADDER

This new frame will be stored under the name 'vadd_4'.






