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Orthogonal Transforms in Digital Image Coding

ABSTRACT

In the past two decades, with the continuing growth of the modern communi-

cation and computer technologies, the need for transmission and storage of image

data is rapidly increasing. The amount of data required to represent a digitized

picture is very large. However, the bandwidth of a communication channel is

usually limited, the need for compression of the image data is therefore obvious.

Various methods have been proposed to compress image data to as low bit-rate as

possible, and transform coding is found to be one of the most efficient techniques.

By using transform coding, a picture can be compressed to as low as 0.5 bit per

pixel.

In practice, a transform is chosen subject to two opposing criteria, the

compression ability and the computation effectiveness. In this thesis, a method to

generate new orthogonal transforms based on the principle of dyadic symmetry is

presented. Several transforms which have simpler structure but whose compression

ability for image data is close to that of the Discrete Cosine Transform (DCT) have

been proposed. On the other hand, an enhacement to the DCT, called Odd

Weighted Cosine Transform (OWCT), is developed. However, the transformation

process is time consuming since it requires a lot of computation efforts. Therefore,

the development of fast computational algorithms and dedicated hardware struc-

tures or integrated circuits for those orthogonal transforms is necessary. In this

thesis, a new fast recursive algorithm is developed for computation of all types of

the radix-2 Discrete W Transform (DWT). A modified structure for implementation

of the Integer Cosine Transform (ICT) is also described and a new ICT processor is

developed by using the ASIC (Application Specific Integrated Circuit) technology.

Absuact
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Chapter 1 INTRODUCTION

1.1 Introduction

Over the past ten years, with the increasing growth of the modern communica-

tion technologies, the demand for transmission and storage of image data is

increasing rapidly. For a picture with a spatial resolution of 512 x 512 pels and at

8-bits/pel intensity resolution, it requires 2 Mbits to represent. For those large

memory and/or channel capacity requirements for digital image storage and

transmission, the compression technique for the image data is necessary.

Image data compression techniques can be classified into two basic categories

(a) predictive coding, and (b) transform coding. Techniques such as differential

pulse code modulation (DPCM) and other predictive methods [1] [2] fall in the first

category. Those methods exploit redundancy in the data and related to the casual

model representation of image signals [2]. The principle of the method is simply

stated as follows. Since image data source is highly correlated, on average the

picture elements lying in the neighbour will tend to have the same gray levels.

Therefore the value of one or more earlier pixels (previously coded) in the same

line can be used to predict the present element. With the nature of the image given

in a statistical context, on the average the prediction will be quite good with small

coding error. In the second category, compression is achieved by an energy

preserving (orthogonal) transformation of the given image data into another array

such that maximum energy information is packed into minimum number of

coefficients in the transform domain [1]-[4]. This technique employs the non-causal

model representations of signals [2]. It is found that the transform coding method

has a higher compression ability than predictive coding [2]. In this thesis, we will

concentrate on transform coding system with emphasis on the transformation

process. In the following pages, methods of generating new orthogonal transforms

and implementation techniques of the transforms will be discussed. In the next

section, some aspects of transform coding will be examined and a review on the

transformations will be given. The organisation of this thesis will be given in the

final section of this chapter.

1.2 Transform Coding Theory

Compression of data by transform coding method is achieved by three basic

processes. The first process is to transform highly correlated image data into

weakly correlated coefficients. The second process is to allocate bits to these
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transform coefficients such that more bits are allocated to those coefficients with

higher variance. The final process is to quantize the coefficients before the

transmission. In order to achieve significant reduction in bit-rate whilst keeping the

implementation simple, we must taking into consideration of all three processes.

Image

Transform Quantizer
Data

Transmitter
Channel

Inverse
Display Decoder

Transform

Receiver

Figure 1.1 Block Diagram of a Transform Coding System

Figure 1.1 shows the block diagram of a basic transform coding system. The

original picture image is divided into many sub-pictures of size n x n, where n is

usually 8 or 16. Each sub-picture is transformed by an orthogonal transform into a

set of weakly correlated coefficients which are then quantized and coded for

transmission. At the receiver, the received data are decoded to the quantized

transform coefficients, and an inverse transformation is applied to those coeffi-

cients to recover the original picture.

1.2.1 Transformation- A Review

The primary objective of the transformation is to convert statistically

dependent picture elements into an array of uncorrelated coefficients such that most

of the energy is packed into a minimum number of coefficients and the total energy

of the spatial image data is preserved in the transform domain.
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An orthogonal transform is said to be optimal when it completely decorrelate

the picture image data. The Karhunen-Loeve Transform (KLT) [2] [5] is found to

be the optimal one since it's basis vectors are in fact the eigenvectors of the

covariance matrix of the incoming image data. The KLT is picture dependent since

different pictures have different covariance matrices and so different KLTs.

Although the explicit form of the KLT defined based on the first-order Markov

model which is a widely accepted model for the image data has been found [6], the

fast computational algorithm is still not known. Because of the computational

difficulty of the KLT, it is not used for a practical transform coding system.

The problems of KLT mentioned before can be solved by the application of a

sub-optimal transform which has fast computational algorithms. The first sub-opti-

mal transform to be investigated for transform coding was the two-dimensional

Fourier transform [7]. This was followed by the discovery that the Walsh transform

could be utilized in place of the Fourier transform with a considerable decrease in

computational requirement [8]. In 1971, investigation began into the application of

Haar Transform (HT) [9]. The Haar transform has an extremely efficient computa-

tional algorithm, but results in a larger coding error. At about the same time,

Enomoto and Shibata designed a new order-8 transform to match typical image

vectors[ 10]. Pratt[ 11] generalized this transform which is now known as the Slant

transform, and later applied it to digital image coding with a fast computational

algorithm [12] resulting in a lower coding error for moderate block sizes in

comparison to other unitary transforms. In the mean time, several different

transforms have also been proposed for digital image coding.

The Discrete Cosine Transform (DCT), proposed by Ahmed et al. [13] in

1974, has drawn much interest for the researhers for it is asymmpotically

equivalent to the KLT for the first-order stationary Markov process and its efficient

fast computational algorithms exist [14] [15]. Comparisons between the DCT and

other sub-optimal transforms using the first-order Markov model have shown that

the DCT results in the least mean square error [16]. Clarke [17] has shown that

when the adjacent correlation coefficient of the Markov-I model close to one, the

KLT is in fact a discrete cosine transform. In 1976, Jain suggested that a sine

transform (DST-I) is a KLT of a Markov process under the condition that the

boundary of the process is known [18]. In other words, when the fast-order

stationary Markov process is decomposed into a boundary process and a residue

process, the KLT of the residue process is a sine transform. Similar decomposition

were proposed by Meiri and Yufelevich [19] and another sine transform was
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generated for their residue process in their pinned sine transform coder. In the

following years, several sinusoidal transforms were proposed and investigated for

digital image coding [20] [21]. Wang [22] generalized the family of sinusoidal

transforms and classified the even type cosine and sine transforms into four

different versions. In this thesis, a new sinusiodal transform called Odd Weighted

Cosine Transform (OWCT) is defined in chapter 3. It is shown that the OWCT has

a better performance than the DCT in transform coding of images.

Apart from the sinusoidal transforms, the C-Matrix Transform (CMT) defined

by Kwak et al. [23] has also found application in image coding for its simpler

structure than the DCT since only integers are contained in the transform matrix.

Cham and Clarke [24] generated two new transforms, the High Correlation

Transform (HCT) and the Low correlation Transform (LCT) which are derived

from the Walsh transform by the principle of Dyadic Symmetry. Computations of

these two transform require only additions, subtractions and binary shifts. The

performance of the two transforms in term of transform efficiency [24] both lie

between that of the Walsh transform and that of the DCT for order-8 and 16. The

HCT and LCT can be used to replace the Walsh transform. Cham further extended

his work and generated the Integer Cosine Transform (ICT) from the DCT [25]. It

has been shown that some order-8 ICTs have higher transform efficiency than the

order-8 DCT. Implementation of the ICT is simpler than the DCT. In this thesis, we

extend the work of Cham and generate a set of new orthogonal transforms which

will be discussed in chapter 2. The implementation of the ICT using ASIC

technology is given in chapter 5.

In 1984, a new transform called Discrete W Transform (DWT) is defined by

Wang [22]. There are four types of the DWT and the type I DWT is also called

Discrete Hartley Transform (DHT) by Bracewell [26]. In the past few years, the

DWT has found useful in digital image coding [27] and other applications [28].

This is because it can replace the Discrete Fourier Transform (DFT) in some cases

and it has a FFT like fast computational algorithm and only requires real

operations. In chapter 4, a new fast recursive algorithm is developed for the DWT.

1.2.2 Bit Allocation

The bit-allocation process in the transform coding theory is base on the

criterion that more bits are allocated to coefficients with larger variance. The

optimal bit allocation can be derived from the Rate Distortion Theory [29], which

states that the output of a source can be transmitted with average distortion D if the
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transmission rate is larger than R(D). If D is the mean square error and the source

has Gaussian probability distribution, then the minimum transmission rate R(D) is

found to be

(1.1)

where is variance of the source. Equation (1.1) can be used to determine the

number of bits required for each transform coefficient for minimum distortion [29].

The bit allocation scheme can be made adaptive. In an adaptive bit allocation

scheme [30], the sub-pictures of the image are divided into different classes, and

the variance of the coefficients for each class are computed. Equation (1.1) again is

used to find the number of bits assigned to the coefficients for each class.

1.2.3 Quantization

As shown in the block diagram of a transform coding system in Figure 1.1,

transform coefficients must be quantized before transmission. This process causes

an unavoidable error called the quantization error. this error is the most significant

factor causing the degradation in the reconstructed image when the communication

channel and storage are assumed error-free.

In order to reduce the overall quantization error, quantizer should be designed

according to the statistic of the incoming data being quantized. Max [31] showed

how to minimize the distortion of a quantizer having a fixed number of output

levels for a signal of known probability distribution. Such quantizer is called an

optimal quantizer.

1.3 Organisation of the Thesis

Generation of new orthogonal transforms based on the two opposing criteria,

the computation effectiveness and the compression ability, will be discussed in the

next two chapters. In chapter 2, generation of new orthogonal transforms by the

principle of dyadic symmetry will be discussed. Sereral definitions and theorems

are derived and different schemes of generation of new orthogonal transforms are

developed. An enhacement to the DCT called the Odd Weighted Cosine Transform

(OWCT) is then defined in chapter 3. However, the transformation process requires

a lot of computation efforts. In the following chapters, methods to speed up the
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transformation process including the development of a fast computational algo-

rithm and a dedicated integrated circuit for the transforms will be described. In

chapter 4, a new fast recursive algorithm for all types of the radix-2 Discrete W

Transform (DWT) is derived. In chapter 5, a LSI implementation of the Integer

Cosine Transform using ASIC technology will be discussed. Finally, the overall

conclusion and the summary of discoveries are given in chapter 6. Suggestions for

future works will also be given in this chapter.



1

Orthogonal Transforms in Digital Image Coding Chapter 2

Chapter 2 GENERATION OF NEW ORTHOGONAL TRANSFORMS

2.1 Introduction

Over the past twenty years, many orthogonal transforms have been proposed

and investigated for digital image coding. The Discrete Cosine Transform (DCT)

[13] is widely accepted as the industrial standard for the transform being used in

the practical transform coding system. Apart from the sinusoidal transforms,

several non-sinusoidal transforms such as the C-Matrix Transform (CMT) [23],

High Correlation Transform (HCT) and Low Correlation Transform (LCT) [24]

which have simpler structure have been proposed for image coding.

The HCT and LCT defined by Cham [24] are derived from the Walsh

transform by the principle of dyadic symmetry. Computations of these two

transform require only additions, subtractions and binary shifts. It has been shown

that the transform efficiencies [24] of these two transforms lie between those of the

Walsh transform and the DCT. In this chapter, we extend the work of Cham and

generate several new orthogonal transforms. In section 2.2, some basic theories of

the dyadic symmetry will first be introduced. Then some definitions and theorems

related to generation of new order-8 orthogonal transforms will be defined and

derived in section 2.3. Several schemes of generating new orthogonal transforms

are also developed in this section. The transform efficiencies of the new orthogonal

transforms will then be given in section 2.4. The generalization of these new

orthogonal transforms to larger block sizes will be discussed in section 2.5 and

finally the overall conclusion will be drawn in the last section.

2.2 Theory of Dyadic Symmetry

The concept of dyadic symmetry was first proposed by Cham [24] [32]. In this

section, the basic definitions and theorems of dyadic symmetry are stated without

proof and the detail discusssion will be found in the works of Cham [24] [32].

Let F be a number field. Unless specified otherwise, all vectors in F are

column vectors.

Definition 2.1: Vector A of 2m elements [a,, a,... a2-1] in F is said to have Sthdyadic

symmetry (DS) iff

aj=t•aj®s



Orthogonal Transforms in Digital Image Coding Chapter 2

where t-1 when the tvpe of dyadic symmetry is even and t=-l when the type is odd.

The dyadic symmetry describes the symmetry properties of the vector

components of a vector. For example, the order-8 vector A, having the even type S

dyadic symmetry, are given in Table 2.1.

Dyadic Symmetry Vector A

S
a, a, a, a, a4 a3 a6 a,

1

2

3

4

5

6

7

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

a

b

c

c

c

c

b

b

a

d

d

d

d

c

c

c

a

b

c

d

c

d

d

b

a

d

c

d

c

d

c

d

a

b

d

d

c

d

c

b

a

Table 2.1 The Seven Vectors A having S Even Dyadic Symmetry

Definition 22 : Two order 2m vectors U and V in F are said to have a common

dyadic symmetry (CDS) S, where S e [1, 2m - 1], if both U and V have even or odd

type S dyadic symmetry.

Theorem 2.1 : Two order 2m vectors U and V in F are orthogonal if U and V have a

CDS S and the type of the S dyadic symmetry of the two vectors are different.

Let B be a binary field with exclusive or as addition and logical and as

multiplication. Unless specified otherwise all vectors in B are row vectors. Dyadic

symmetries can be regarded as vectors in B.

Theorem 22 : If an order 2m vector U in F have dyadic symmetry Siy S2, ..., Sr, then

this vector also has dyadic symmetry Sk, where

Example : an order-8 vector A has dyadic symmetry (001) and (010) has also

dyadic symmetry (Oil).
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Definition 2.4 : The dyadic symmetry Slf S2, ..., Sm are said to be dependent if there

exist m element kp k,..., km in F, not all zero, such that

otherwise, the m dyadic symmetry are said to be linearly independent.

Theorem 2.3 : Consider order 2- vectors V0, VI, V2, ..., VN1 in F which have m

independent CDSs, says Sp S2, ..., Sm . Let vector E. = [ eiP ea, ..., ] in B

represents the type of the m independent CDSs of vector V., where ei; = 0 if the type

of is even and e;j = 1 if the type of S; is odd. If E. for i e [0, N-l] are all different,

then the N vectors are independent.

It is interesting to note that if e;j is the binary representation of the type of the

(2 - 1) dyadic symmetry ( '0' is even type and T is odd type) of the

sequency-ordered Walsh basis vector Wf, where i e [0, N-l] and j e [1, m], E. can

also be regarded as a binary value which indicated the number of zero crossing

(sequency) of the basis vector. This property is illustrated by an order-8 sequen¬

cy-ordered Walsh matrix as shown in Table 2.2.

Sequency

l

Independent CDS

001 011 111

Si S2 S3

Walsh Basis Vector

W,

0

1

2

3

4

5

6

7

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

1

1

-1

-1

-1

-1

1

1

1

1

-1

-1

1

1

-1

-1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

-1

1

1

-1

1

-1

1

-1

-1

1

-1

1

1

-1

1

-1

1

-1

1

-1

]

]

]

]

]

]

]

]

Table 2.2 An Order-8 Sequency-Ordered Walsh Matrix

Theorem 2.4 : Every basis vector of an order 2m Walsh matrix has all 2m -1

dyadic symmetry
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Corollary 2.1: All basis vector of an order 2m Walsh matrix have 2m -1 CDS or

rn independent CDSs.

Theorem 2-5: For any pair of basis vectors of an order 2m Walsh matrix, if m- 1

of the m independent CDSs are of the same type, then the one left will be of the

different type.

2.3 Generation of Order-8 Orthogonal Transforms

2.3.1 Basic Principle

Consider the order 2m sequency-ordered Walsh matrix. It has 2m basis vectors

and each of them has m independent CDS. We can pick up (m-r) DS, S19 S29..., Sir

which are also independent. There will be a set of 2' basis vectors whose dyadic

symmetries S1, S2,..., S Ir are of the same type.

Definition 2-5: If the 2r basis vectors are replaced by another set of 2r orthogonal

vectors which are without the remaining r independent CDS. The r independent

CDS of the set of 2, vectors are said to be destroyed.

Example: Consider the order-8 (m=3) Walsh matrix shown in Table 2.2, we pick

up one independent CDS, say S1. There are 22 basis vectors W0, W1, W2 and W3

whose S1 Dyadic symmetry are all type 0. S. and S3, the remaining independent

CDSs of WO, W19 W2 and W3, are said to be destroyed if W01 W11 W2 and W3 are

replaced by another 4 orthogonal vectors U0, U1, U2 and U3 which do not have

dyadic symmetry S2 and S3. There are many possible UO, U1, U2 and U3. The

following is a possible set.

a a b b c c d dUo

d d c c -b -b -a -a
U,

c c -d -d -a -a b bU2

b b -a -a d d -c -c
U3

where a, b, c and d are arbitrary constants.

Theorem 2.6: The 2m basis vectors of an order 2m matrix generated by destroying r

independent CDSs from an order 2m sequency ordered Walsh matrix are orthogo-

nal.
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[Proof] By definition 2.5, the set of 2, new basis vectors have the same type (m-r)

independent CDS and have at least one different type in those (m-r) Dyadic

symmetry when comparing with any one of the remain 2(m basis vectors. Then by

theorem 2.1, the set of 2m new basis vectors is orthogonal to any one of the

remaining basis vectors.

By theorem 2.6, we can generate order 2m orthogonal transform matrices by

destroying independent CDSs from the basis vectors of the order 2m Walsh matrix.

There are many schemes to destroy the dyadic symmetry. The schemes will

become more complicated as the order of the matrix increases. In this thesis, we

shall show how to generate order-8 transform matrices from the Walsh matrix.

23.2 Generation Method

Cham and Clarke [24] generated the HCT and LCT by destroying at most one

independent CDS from the Walsh basis vectors by a definite scheme. The

performance of HCT and LCT in term of transform efficiency lies between that of

the DCT and Walsh transform. In the following pages, we extend the work of

Chain to generate a set of new order-8 orthogonal transforms by destroying at most

two independent CDSs from the Walsh basis vectors. The method is based on two

basic criteria. The first one is to make the low sequency basis vectors assemble like

a cosine wave and the second is to remain DC (zero sequency) vector constant in

the transform matrix. We propose three different schemes for generating new

order-8 orthogonal transform matrices.

2.3.2.1 Scheme A- Reserve the 1111, Dyadic Symmetry

The scheme is illustrated in Figure 2.1. CDSs S1 and S2 of Walsh basis vectors

W17 W31 W5 and W, are destroyed. CDS s S 1 of W2 and W6 are destroyed.
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Sequency
Independent CDS of W =

S1 S2 S3

001 011 111

0

1

2

3

4

5

6

7

Destroy

001 DS

Destroy

001 011

DS

Figure 2.1 Scheme A

By the remaining (111)111 Dyadic symmetry, the Walsh matrix can be

decomDosed into two order-4 Walsh matrices as follows:

(2.1)

where

•••
111

iv

v)

I is the identity matrb

I is the anti-diagonal identity matrb

[PJ is a permutation matrix which puts the even row vectors into upper

half and the odd row vectors into lower half.
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Similarly, by the (Oil)111 Dyadic symmetry, the order-4 Walsh matrix can

further be decomposed as follows

(2.2)

where

According to the scheme shown in Figure 2.1, the lower comer order-4 Walsh

matrix in equation (2.1) and the lower comer order-2 Walsh matrix in equation

(2.2) should be replaced by another order-4 and order-2 orthogonal matrices which

don't have any dyadic symmetry. After replacing the corresponding matrices, a

new order-8 orthogonal transform matrix [TX can be generated as follows

and

(2.3)

where [EJ and [EJ are sequency-ordered orthogonal matrices which don't have

any dyadic symmetry in their basis vectors. The order-2 orthogonal matrix [EJ can

simply be the following form

In the case of order-4 orthogonal matrix [EJ, the sign of the basis vector

components should have the following distribution to maintain the sequency of the

matrix.
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Semiencv Sign Distribution

0

1

2

A

There are many possible order-4 orthogonal matrices with sign distribution as

shown above. The following seven matrices have been studied.

Matrix 1 Matrix 2

a

d

c

h

b

c

-d

-a

c

-b

-a

d

d

__r

b

-c

a

c

b

d

b

d

-a

-c

c

-a

-d

u

d

-b

c

-a

Orthogonal for all a, b, c and d Orthogonal for all a, b, c and d

f n fn v a Matrix 4

a

b

c

b

-d

-a

-c

c

t

d

h

c

-i

t

r

t

c

c

b

d

a

-c

c

a

-

t

c

-

b

_

Orthogonal iff ab = cd + bd + ac Orthogonal iff cd = ac + bd + ab

A r fri y Matrix 6

1

b

d

-( (

c

c

a

c

d

b

b

c

f

-c

(

c

i

Orthogonal if] Orthogonal iff

h = n 4- H end c? = a2 + d2 + at d = a + b and c2 = a2 + b2 + al
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Matrix 7

Orthogonal iff

a = c + d and b2 = c2 + d2 + cd

where a, b, c, d, e and f are arbitrary constants.

Using the above matrices as matrices [EJ and [EJ, we can find seven new

orthogonal transforms bv scheme A.

Transform 1 (TX1)

The transform matrix of TX1 is

Orthogonal for all a, b, c, d, e and f

Transform 2 (TX2)

The transform matrix of TX2 is

Orthogonal for all a, b, c, d, e and f
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Transform 3 (TX3i

The transform matrix of TX7 is

Orthogonal iff ab = bd + cd +ac

Transform 4 (TX4)

The transform matrix of TX8 is

Orthogonal iff cd = ac + bd + ab

Transform 5 (TX5)

The transform matrix of TX9 is

Orthogonal iff b = a + d and c2 - a2 + d2 + ad
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Transform 6 (TX6)

The transform matrix of TX10 is

Orthogonal iff d = a + b and c2 = a2 + b2 + ab

Transform 7 (TX7)

The transform matrix of TX11 is

Orthogonal iff a = c + d and b2 = c2 + d2 + cd
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2.3.2.2 Scheme B - Reserve the 011th Dyadic Symmetry

The scheme is illustrated as follows

Independent CDS of W j

Sequencv S1 S2 S3

001 011 111

0

1

2

3

4

5

6

7

0 0 0

Destroy

001 DS

Destroy

- 001 111

DS

Figure 22 Scheme B

The method of generating new orthogonal matrices is similar to scheme A.

The new orthogonal transform matrix [TX ] generated in this scheme is as follows

and

(2.4)

where
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There are two new sequency ordered orthogonal transform matrices generated

in this scheme.

Transforms (TX8)

The transform matrix of TX3 is

Orthogonal for all a, b, c, d, e and f

Transform 9 (TX9)

The transform matrix of TX4 is

Orthogonal for all a, b, c, d, e and f
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2.3.2.3 Scheme C - Reserve the 001,h Dyadic Symmetry

The scheme is illustrated as follows

Independent CDS of W ,

S1 S2 S3

nm n-n 111

0

1

2

3

4

5

6

7

Destroy

011 DS

0

1

0

1

1

1

1

1

Destroy
_011 111

DS

Figure 2.3 Scheme C

The method of generating new orthogonal matrices is similar to scheme A.

The new orthogonal transform matrix [TX J generated in this scheme is as follows

nnr

(2.4:

when

There are four new order-8 sequency ordered orthogonal transform matrice:

generated.
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Transform 10 (TXKT

The transform matrix of TX5 is

Orthogonal for all a, b, c, d, e and f

Transform 11 (TXW)

The transform matrix of TX6 is

Orthogonal for all a, b, c, d, e and f
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Transform 12 (TXP)

The transform matrix of TX12 is

Orthogonal iff ab = bd + cd + ac

Transform 13 (TX13)

The transform matrix of TX13 is

Orthogonal iff cd = ac + bd + ab

23.3 Efficiency of the New Orthogonal Transform

Using the proposed three schemes, we generate thirteen new orthogonal

transform matrices. The transform matrices of all new transforms have arbitrary

constant a, b, c, d, e and f whose values needed to be determined. The optimal

values of these constants are searched in the integer field using on the criterion of

transform efficiency [24] which measures the decorrelation ability of an orthogonal

transform on a first-order Markov process of adjacent element correlation coeffi¬

cient p. Detailed descriptions of transform efficiency will be given in the next

chapter. The range of searching is limited to 10, and the time required for searching

a optimal point is about 5 minutes under the IBM PC-AT environment. From the

searching results, we found that most of the new transforms have the largest
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efficiency when a=10, b=9, c=6, d=2, e=3 and f=l. Table 2.3 shows the

corresponding transform efficiency of each new transforms with different adjacent

element correlation coefficients p.

Chapter 2

P 0 80 0.90

DCT

TX1

TX2

TX3

TX4

TX5

TX6

TX7

TX8

TX9

TX10

TX11

TX12

TX13

84.9664

81.8920

84.3783

85.7462

66.7639

77.0503

72.2185

82.5350

61.2947

60.3603

68.1778

68.7879

67.5725

67.5724

89.8357

88.4449

89.6576

90.0289

75.0167

82.1533

78.4059

87.2167

69.5347

68.5029

77.1991

77.7797

76.9479

76.9479

Table 2.3 Transform Efficiency of New Orthogonal Transforms with a=10,

K—Q r—f, H=? p=T nnH f=1

It is noted that transforms TX1, TX2 and TX3, which generated by scheme A,

have the efficiency close to the DCT since their low sequency basis vectors are

resembled more likely to a cosine wave than the other transforms.

2.4 Generalized to Large Block Size

The generalization of the transforms generated by scheme to any block size N

is shown below.

(2.5.a

and

(2.5.b
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where

10 0

0 0 10

0

0

0

1

0

0

0 1 0

0 1 0

0 0 1

where the R(X) is an operation on a N x N matrix X, for Y=R{X) then the (ij)

element of Y is given by

sign {Y(ij)} = sign (X(i,j)}

mag {Y(i,j)} =mag (X(i,N-l-j))

for i, j = 0, 1,2,..., N-l

where sign{x) is the sign of x and mag (x) represents the magnitude of x

By the equations (2.5.a) and (2.5.b), the order N new transform matrix [TX

can be recursively generated by the order-2 and order-4 matrices shown in the

above section. It is noted that the equation (2.5.b) is only valid for the [E J matrix

have the structure of matrix 1 shown in section 2.3.2.1.

2.5 Conclusion

In this chapter, the method of generation of new orthogonal transforms by

destroying dyadic symmetry is extended. Several definition and theorems are

defined and derived. Three different schemes are proposed for generation of new

transforms and thirteen new transforms are generated. It it found that the transforms

generated from scheme A have better transform efficiency than the other schemes.

It may be due to the reason that the lower sequency basis vectors of those

transforms resembled more likely to a cosine shape. The transform efficiency of the

transforms TX1, TX2 and TX3 are virtually the same as the DCT. Since the basis

vector components of those transforms are integers instead of real numbers as those

in the DCT, the implementation of such transforms is simpler than the DCT.
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However, it is noted that the performance of the transforms can be affected by the

magnitude of the basis vector components. It is believed that if we modify the basis

vector components of the DCT, a better transform will be found. In the next

chapter, an enhacement to the DCT called Odd weighted Cosine Transform

(OWCT) is developed by modifying the magnitude of the odd basis vector
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Chapter 3 ODD WEIGHTED COSINE TRANSFORM

3.1 Introduction

Transform coding is an efficient technique in achieving high compression rate

for image data. The Karhunen-Loeve Transform (KLT) is statistically optimal in

energy compaction since it diagonalizes the covariance matrix of the input random

sequence [5]. However, the implementation of the KLT is very complicated as it

requires a large number of multiplications to generate the transform matrix for

each incoming signal vector and there is no fast computational algorithm. The

Discrete Cosine Transform (DCT), proposed by Ahmed et al. [13] (which is also

known as DCT-II by Wang [22]), has been widely accepted as the best substitute

for the KLT in the transform coding system for its asymptotically equivalent to

the KLT [16] and its fast algorithms [14] [15] [22] [37] exist.

During past ten years, many researchers proposed many different types of

sinusoidal transforms to approximate the KLT [ 18]-[21] and tested via various

criteria. Wang [33] developed a modified version for the DCT, called the Phase

Shift Cosine Transform (PSCT), by putting a little phase change to the even part of

the transform matrix of the DCT. The PSCT in comparison with the DCT has better

performance for adjacent element coefficient close to unity, however, the non-con¬

stant zero order (sequency) basis vector of the PSCT causes an undesirable

distribution of the AC energy within what should be purely DC coefficient.

These effect may degrade the performance of the transform in some applications

such as filtering, data compression etc. [34]. In this chapter, we propose a new

transform, called the Odd Weighted Cosine Transform (OWCT), which modifies

only the odd part of the transform matrix of the DCT and keeps the zero-order basis

vector constant. In Section 3.2, the OWCT will be defined and the fast computa¬

tional algorithm will be discussed in Section 3.3. In Section 3.4, we compare the

OWCT with the DCT via various criteria based on both the one and two

dimensional covariance function of the Markov-I model.
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3.2 Development of the Odd Weighted Cosine Transform (OWCT)

There are many different types of cosine transform and only the even type is

found applications in digital image coding. According to the classification of Wang

[22], there are four types for the even DCT.

i,j = 0, 1,2,..., N

i,j = 0,1,2,..., N-l

where c£ represents the order-N version A discrete cosine transform and

The version II discrete cosine transform (DCT-II) is the most commonly

used version [13]. An order N DCT-II can be decomposed into two order N2

transforms, the odd part is the DCT-IV, and the even part is the DCT-II [22] as

shown in equation (3.1).

(3.1)

where

(i)
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(ii) I is the identity matrix,

(iii) I is the anti-diagonal identity matrix,

(iv) P is a permutation matrix which puts the even row vectors into upper half

and the odd row vectors into lower half [221.

Theorem 3.1 : If matrix U is orthonormal then matrix T = IUI is orthonormal.

Theorem 3.2 : If matrices U and V are orthonormal then matrix T is orthonormal

where

Theorem 3.1 and 3.2 imply that the matrix c in equation (3.1) can be replaced

by another orthonormal matrix and the matrix product remains orthonormal.

Therefore, we can modify the odd part of the order N DCT-II matrix by

substituting an order N2 orthonormal matrix U with the DCT-IV matrix. A new

orthogonal transform, called Odd Weighted Cosine Transform (OWCT), is defined

in the following matrix form

where

for i, j = 0, 1, 2,..., M-l and M=N2

m means the residue of m mod n andn

e.e. for M=4
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where

e.g. for M=8

where
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Determination of p

Chapter 3

In the transform matrix of the OWCT, there is a parameter (3 dependent on the

order N and the adjacent correlation coefficient p. It is based on the assumption that

the input data are sampled from an one-dimensional, zero-mean, unit-variance

lirst-order Markov process which will be discussed in section 3.4. (3 is in the range

°f °Pn- Computer searching technique is used to find the optimal value of (3 for

each value of N and p under the criteria of Maximum Reducible Bits [33]. The

results are listed in Table 3.1 and the basis vectors for the OWCT and DCT-II with

N=8 are shown in Figure 3.1. However, the optimal values [3 under other criteria,

such as Residue Correlation [ 16] and Transform Efficiency [24] etc., are very close

to those values shown in Table 3.1. It is also noted that p is not the critical

parameter to determine the performance of the OWCT for various criteria.

P 0.95 0.90 0.85 0.80

N=8 0.0231 0.0453 0.0663 0.0860

N=16 0.0184 0.0329 0.0435 0.0502

Table 3.1 Best Value of P for the OWCT

DCT-ll

OWCT

Figure 3.1 Basis Vectors for the OWCT and DCT-II with N-8
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3.3 Fast Computational Algorithm for the OYVCT

The last computational algorithm for the OWCT is a little modification of the

recursive computational algorithm for the DCT-II defined by Hou [36]. The matrix

U can be decomposed as the following

where M=N2 and

The cjf in equation (2) can be expressed in terms of c° as follows
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where m=0, 1, 2„ M-l

[LJ

10 0 0

-12 0 0

1-220

-1 2-22

0

0

0

0

.-1 2-22 2_

and

where R; represents the ith row vector of [RJ

Therefore the order-N OWCT can be decomposed into two order N2 DCT-II

which can be computed using a fast computational algorithm. The signal flow

graph for the fast computational algorithm of the OWCT with N=8 is shown in

Figure 2. For order N OWCT, it needs N2 multiplications and N additions more

than the DCT-II by using this algorithm. Table 2 and 3 compare the actual number

of multiplications and additions being used in the fast computation of the DCT-II

and OWCT.
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Shifter (multiplied by 2) Adder

Figure 32 Signal Flow Graph of the Fast OWCT for N=8

N 8 16 32 64

DCT-n 12 32 80 192

OWCT 16 40 96 224

Table 32 Number of Multiplications

N 8 16 32 64

DCT-n 29 81 209 513

OWCT 37 97 241 577

Table 3.3 Number of Additions
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3.4 Performance Evaluation

The performance ot the OWCT is evaluated under the assumption that the

statistics of the input sequence is a zero-mean, unit-variance first order Markov-I

process. The OWCT is tested via various criteria for both one and two dimensional

covariance functions.

3.4.1 One Dimensional Covariance Function

Consider an input vector X sampled from an one-dimensional, zero-mean,

unit-variance first-order Markov-I process with covariance matrix [CJ. The (i,j)

element of the covariance matrix [CJ, says ctj, is equal to pl,_;l, where p is the

adjacent element correlation. The vector X is transformed into Y by an unitary

transform T, Y = [T] X. The covariance matrix of the vector Y in the transform

domain [CJ is given as

[Cy] = E[Y Yl]

where the superscript t means transpose of the matrix.

3.4.1.1 Residue Correlation

The residue correlation (RC) [16] measures the proportional correlation left in

by a sub-optimal transform T and it is given as the ratio of two Hilbert-Schmidt

norms
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As shown in Figure 3.3, the residue correlations of the OWCT arc smaller

than those ot the DCT-II for N=8 and 16 and for various adjacent correlation
rrvpf firiF»ntc

0s

C
O•mm—mm

Q)
s

o

O

0)
=3

US

co
CD

DC

4

3.5

- 3

2.5

2

1.5

1

0.5

n

DCT-II (N=16)

OWCT (N=16)

DCT-II (N=8)

OWCT (N=8)

J ~t r
0.8 0.8 0.9 0.95

Adjacent Correlation Coefficien

Figure 33 Residue Correlation for the OWCT and DCT-II with N=8 and N=16

3.4.1.2 Maximum Reducible Bit

The maximum reducible bits (MRB) [33] of an unitary transform T is deflnec

3Q

MR]

This criterion measures the maximum bits which can be reduced from each

transform component. The greater the MRB is, the higher compression ability the

transform has. Table 3.4 shows the MRB of the DCT-II and OWCT for N=8 and

N=16. It can be seen that values of MRB of the OWCT are greater than those of the

nrrn
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0

N=8

OWCT

nrr_n

M=1 6

OWCT

DCT-TT

0.80

0.63738

0.63638

0.68428

0.68348

0.85

0.80242

0.80170

0.86073

0.85996

0.90

1.04284

1.04244

1.11781

1.11723

0.95

1.46607

1.46595

1.57076

1.57052

Table 3 A Maximum Reducible Bits for the OWCT and DCT-II with N=8 and

M=1 6

3.4.1.3 Transform Efficiency

The transform efficiency [24] measures the ability of an unitary transform T tc

decorrelate the input vector X and it is given as

Transform Efficiency

The transform efficiency versus different correlation coefficients p for th

DCT-II and OWCT with N=8 and N=16 is shown in Figure 3.4. It can be seen tha

the transform efficiency of the OWCT is higher than the DCT-II and implies tha

the OWCT has higher decorrelation ability.
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78

OWCT (N = 8)

DCT-II (N=8)

OWCT (N=16)

DCT-II (N-16)

0.8 0.85 0.9 0.95

Adjacent Correlation Coefficient

Figure 3.4 Transform Efficiency for the OWCT and DCT-II with N=8 and N=16

3.4.1.4 Mean Square Error (Wiener Filtering)

This criterion measures the performance of an unitary transform T to filter an

additive noise (zero mean) from the signal in the transform domain [35]. The mean

square error of a scaler Wiener filter is defined as

Mean Square Error

where JU represent the i diagonal element of the transform domain covariance

matrix of the noise. Table 3.4 lists the mean square error for the OWCT and

DCT-II with N=8 and N=16 based on the signal to noise ratio (SNR), ko=l. It is

shown that the OWCT marginally performs better than the DCT-II in the scaler

Wiener filtering application.
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0 0.80 0.85 0.90 0.95

N=S

OWCT

nCT-TT

0.327244

0.327492

0.294826

0.294967

0.254529

0.254583

0.200416

0.200424

N=16

OWCT

DCT-il

0.314591

0.314960

0.280082

0.280411

0.237148

0.237358

0.178555

0.178612

Table 3.5 Mean Square Error for the OWCT and DCT-H with N=8 and N=16

based on SNR, K =11 o

3.4.2 Two Dimensional Covariance Function

Let the n by n matrix [X] be a sample of a two-dimensional zero mean, unit

variance, stationary, non-seperable and isotropic Markov random process with

covariance function

where p is the adjacent element correlation coefficient in vertical and horizontal

directions. The matrix [X] is transformed into [C] by a transform T. Variance cr of

can be derived from fIJw and T.

3.4.2.1 Basis Restriction Error

Let Q be the set containing K index pairs (u,v) corresponding to the largest K

a... The basis restriction error is defined as

The basis restriction errors for the DCT-II and OWCT for N=8 are very close

and the results are listed in Table 3.6.
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K

OWCT

nCT-TT

1

0.18705

0.18705

7

0.13813

0.13810

3

0.08920

0.08915

4

0.07643

0.07641

5

0.06681

0.06679

6

0.05719

0.05717

7

0.05218

0.05218

8

0.04717

0.04718

9

0.04402

0.04405

10

0.04088

0.04092

11

0.03805

0.03809

12

0.03588

0 03591

n

0.03371

0.03373

14

0.03214

0.03216

15

0.03057

0.03058

16

0.02908

0.02909

17

0.02759

0.02759

Table 3.6 Basis Restriction Error versus k, no. of Coefficients Retained, for the

OWCT and DCT-II with N=8 and p=0.95

In the above paragraph, numerical results obtained from computer simulation

have shown that the OWCT performs better than the DCT-II for N=8 and N=16

under different criteria. In the transform matrix of the OWCT, there is a parameter

(3 dependent on the order N and the adjacent correlation coefficient p. In general

cases, the adjacent correlation of a typical picture is close to unity. In practical

applications, we may fix (3 at a suitable value obtained from larger correlation

coefficients and will get a satisfactory result for a wide range of p. For example,

if we fix (3 = 0.0453, the OWCT will have higher transform efficiency than those of

the DCT-II over the range of 0.7 p 0.95 as shown in Figure 3.5.

3.5 Conclusion

A new transform, the Odd Weighted Cosine Transform (OWCT), is pro¬

posed. The OWCT is obtained by weighting some kernel components in the odd

pan of the transform matrix of the DCT-II. It is shown that the performance of the

OWCT is slightly better than the DCT-II under different well known criteria. A

fast computational algorithm for the OWCT has been derived and it was found that

hardware implementation of the transform is similar to that of the DCT-II with

more multipliers and adders required. To speed up the transformation process, fast

computational algorithms are necessary for the orthogonal transforms. The DCT

which involves only real numbers can be regarded as a particular case of the

Discrete Fourier Transform (DFT). The Discrete W Transform (DWT) which also

involves only real numbers can be used to compute DFT with computational

advantages. In the next chapter, a new fast recursive algorithm is derived for all

types of the radix-2 DWT.
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3.6 Note on Publication

A paper based on all the results described in this chapter and entitled 'Odd

Weighted Cosine Transform' is accepted for presentation at the International

Conference on Image Processing, Singapore, Oct. 1989. This paper is jointly

authored with Dr. W.K. Cham.
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Figure 35 Transform Efficiency for the DCT-II and OWCT with (3 fixed at

0.0453 and N=8
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CHAPTER 4 A FAST RECURSIVE ALGORITHM FOR THE DISCRETE

VV TRANSFORM

4.1 Introduction

The Discrete W Transform (DWT) defined by Wang [22] is a real approach

for the spectral analysis. There are four types of the DWT and the type I DWT is

also called the Discrete Hartley Transform (DHT) by Bracewell [26]. In the past

few years, the DWT has found applications in digital image and signal processing,

data compression and digital filtering [27] [28]. This is because it can replace the

Discrete Fourier Transform (DFT) in some cases and it has a FFT like fast

computational algorithm and only requires real operations.

There are several algorithms developed for the computation of the type I

DWT and they can be grouped into two categories : (a) decomposition into the

Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) [22] [40],

and (b) in relation with the Discrete Fourier Transform (DFT) [38] [39]. Fast

algorithms of these categories were derived from the fast algorithms of the DCT,

DST and DFT. Recently, Wang [42] proposed an algorithm to calculate the DWT

based on its own internal properties. This algorithm requires the least numbers of

multiplications and additions but, unfortunately, it requires secant multipliers and

so is numerically unstable when the order is large. In this chapter, fast and

numerically stable recursive algorithms are developed for all four types of the

radix-2 DWT based on their intrinsic characteristics. In section 4.2 of this chapter,

the symmetry properties of the DWT are analysed using the principle of Dyadic

Symmetry [24] and the fast algorithms are developed in section 4.3. The

computational requirements of the fast type I DWT algorithm are compared with

other existing algorithms in section 4.4 and the final conclusion will be drawn in

last section.
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4.2 Symmetry Properties of the Discrete VV Transform

The tour types of the DWT matrices are defined as follows

for i,j = 0, 1, 2,N-l

where the superscript represents the type and the subscript indicates the order. The

type I (DWT-I) is also called the Discrete Hartley Transform (DHT).

Theorem 4.1 : The order N DWT-I has the (N2)th dyadic symmetry. The even part

of the basis vectors has the even type and the odd pan has the odd type.

represents the j element of the i basis vector of the DWT-I

matrix.

When i is even
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When i is odd

Theorem 4.2 : The order N DWT-II has the (N2)111 dyadic symmetry. The even part

of the basis vectors has the even type and the odd part has the odd type.

[Proof] similar to that of theorem 4.1.

4.3 The Fast Recursive Algorithm for the DWT

Let ( x(j) : j=0, 1, N-l ) be the input sequence and { y(i) : i=0, 1, N-l )

be the DWT-I transform coefficient sequence. We have

Divide y(i) into even and odd parts, then

(4.1.a)

(4. l.b)

By theorems 1 and 2, equations (4.1.a) and (4.l.b) can also be written in

following form :

(4.2.a)
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(4.2.b)

where

Equation (4.2.a) is in fact the order N2 DWT-I of sequence r(j) and equation

(4.2.b) is the order N2 DWT-III of the sequence r(j). Equation (4.2) can be written

in matrix form as in equation (4.3.a).

(4.3.a)

where

IN is the order N identity matrix.

By the same approach, we have the following expression for the DWT-II and

DWT-III

(4.3.b)

and



Orthogonal Transforms in Digital Image Coding Chapter 4

(4.3.c)

Equations (4.3.a), (4.3.b) and (4.3.c) imply that fast computational algorithms

of [wy, [wg] and [w®] can be derived from the fast computational algorithm of [WJT

The i DWT-IV transform coefficient of input sequence { x(j) } is

(4.4)

for i,j = 0, 1,2,..., N - 1

where

By the following identity

equation (4.4) can be written as

(4.5)

equation (4.5) can also be expressed in the following matrix form

(4.6)

where
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Equation (4.6) shows the relationship between the DWT-IV and DWT-II. It is

noted that elements in [LJ are only 0, ±1, ±2, so it can be implemented by using

adders and shifters only. By utilizing equations (4.3) and (4.6), all four types order

2mDWTs can be generated from the order 2 DWTs, which are :

The following figures show the signal flow diagrams of the recursive

algorithms for the order N DWT matrices. It should be noted that each y(i) of all

signal flow diagrams should be multiplied by a normalizing constant iVn.

x(0)

x(D

y(o)

yd)

y(2)

y(3)

Order

N2

DWT-I

x(N2-2)

x(N2-1)

x(N2)

x(N2+1)
Order

N2

DWT-III

x(N-2)

x(N-1)

y(N-4)

y(N-3)

y(N-2)

y(N-1)

(a) Order N DWT-1
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x(0)

x(1)

x(N2-2)

x(N2-1)

x(N2)

x(N2+1)

y(o)

yd)

y(2)

y(3)

Order

N2

DWT-II

Order

N2

DWT IV

y(N-4)

y(N-3)

y(N-2)

y(N-i)

x(N-2)

x(N-1)

(b) Order N DWT-II

x(0)

x(1)

x(2)

x(3)

Order

N2

DWT-III

y(0)

yd)

y(N2-2)

y(N2-1)

y(N2)

y(N2+1)

x(N-4)

x(N-3)

x(N-2)

x(N-1)

Order

N2

DWT-IV

y(N-2)

y(N-i)

(c) Order N DWT-III
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x(0)

x (1)

x(2)

cos A

cos 3A

cos 5A
Order

N

2

O

y(0)

y(i)

y(2)

x(N-3)

x(N-2)

x(N-1)

CO!(2N-5VA

co«(2N-3VK

cos(2N-1)A

DWT-II

2

2

2

y(N-3)

y(N-2)

y(N-i)

(d) Order N DWT-IV

Figure 4.1 The Flow Diagram for All Four Type Radix-2 DWT Matrices

4.4 Computational Requirement

Computational requirements of all four types of the DWT using the above

recursive algorithms are shown in Table 4.1. Table 4.2 compares the number of

multiplications and additions used in the fast DWT-I algorithm to the other known

fast DWT-I algorithms.

The numbers of multiplications and additions required in this algorithm is the

same as the Wang's algorithm and less than the other existing algorithms. Wang's

algorithm, however, consists of secant multipliers. The round off error of the finite

length representation of the secant multipliers increases with the transform order

since the range of a secant multiplier is from one to infinity. Therefore, longer bit

length should be provided for larger transform order, otherwise very large error

may occur. Wang's algorithm is suitable for small transform orders only. When

compared with the Wang's method, the present algorithm requires a few more

binary shifts but it avoids numerically unstable since it consists of only the cosine

multipliers. As the present algorithm has simple structure, it is conceived that the

algorithm is also suitable for VLSI implementation.
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Multiplications Additions

DWT-I N

— (M-3) + 2 y(3M-5) + 6 for N444

DWT-TT

f(M-l)
-N(M-l) for N 4
2

DWT-III N

T (Ml)
rN(M-l) for N 4
2

DWT-IV N

— (M+l) — (3M+1) for N 4
jL

Table 4.1 Computational Requirements for the Recursive Algorithm for the DWT (

where M = log2N )

Ordei

N

4

8

1(

3:

(y

12

This

A A o t K rA

N.

0

2

10

34

98

258

N.

8

22

62

166

422

102f

Wang

[42]

N,

0

2

10

34

98

258

NA

8

22

62

166

422

103C

Kwong

[41]

Nm

0

4

20

68

I9t

5 It

NA

8

26

74

194

482

1154

Suehiro

[40]

NM

0

2

10

34

98

258

NA

8

26

72

194

482

1154

Sorensern

[39]

NM

0

2

12

42

124

33C

Na

8

22

64

16(

41(

99

Table 4.2 Computation Comparison of Different Algorithm for Calculating DWT-I

(DHT) (where NM is the no. of multiplications and NA is the no. of

additions)

4.5 Cnnclusioi

The symmetry properties of the DWT matrices are analysed using the dyadic

symmetry. A new recursive algorithm for calculation all four types radix-2 DWTs

is developed based on these internal properties. The new algorithm with a few more

shift registers needed requires less multiplications and additions than other existing

algorithms. This algorithm avoids the problem of numerical unstable from Wang's

method with finite length arithmetic and is suitable for computation of DWT of
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large orders. Apart from fast computational algorithms, a dedicated hardware or

integrated circuit is also an efficient method to implement the transformation

process. In the next chapter, a LSI implementation of the Integer Cosine Transform

(ICT) by using the ASIC technology will be described.

Chapter 4

4.6 Note on Publication

A paper based on all the results reported in this chapter and entitled 'A New

Fast Recursive Algorithm for the Discrete W Transform' was submitted to the

Proceeding of International Symposium on Computer Architecture and Digital

Signal Processing, Hong Kong, Oct. 1989. This paper is jointly authored with Dr.

W.K. Cham.
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CHAPTERS LSI IMPLEMENTATION OF THE INTEGER COSINE

TRANSFORM

5.1 Introduction

The adaptive transform coding system proposed by Chen Smith [30] was

found to be one of the most effective system in the image data compression. The

Discrete Cosine Transform (DCT) [13] has been most widely used in those systems

for it is asymptotically equivalent to the Karhunen-Loeve Transform (KLT) which

is statistically optimal in data compression ability.

Recently, due to the fast development of the VLSI technologies and the

continuous reduction of hardware cost, many research works are extended to the

implementation of the DCT in areas of hardware realization and processing

architecture [43]. Since the basis vector components of the DCT are mainly real

numbers, it is found that the implementation of the DCT in finite length arithmetic

is more complicated than those transforms whose basis vector components are

integers only, i.e. the Walsh transform, Slant transform, CMT and HCT. Unfortu¬

nately, none of them have the same data compression ability as the DCT. Cham [2]

generated a transform called Integer Cosine Transform (ICT) by replacing the DCT

kernel with integers based on the principle of dyadic symmetry. The ICT is found

to have virtually the same compression ability as the DCT and has a simpler

implementation than the DCT in finite length arithmetic. Choy Cham [44]

implemented the ICT in a LSI chip by using ASIC technology. However, the speed

of this ICT chip is slow and the coding error is large. In this chapter, we introduce a

modified structure for implementation of the ICT. The major difference is the

selection of the transform matrix in the ICT chip and the input and output pins

consideration. Due to the limited facilities, the new ICT processor is developed by

using a low cost 3 fim gate array with 2800 gates from Micro Circuit Engineering.

The Integer Cosine Transform will first be introduced in section 5.2. The

design considerations and the detailed description of the architecture of the ICT

will be given in section 5.3 and 5.4. Section 5.5 will describe some typical

applications of the ICT chip and the overall conclusion will be drawn in the last

section.
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5.2 The Integer Cosine Transform (ICT)

For order N DCT, the (i,j) element of the transform matrix, TN(i,j), is given by

for i=0

The kernel of the order-8 Integer Cosine Transform (ICT) is generated by

replacing the basis vector components of the order-8 DCT with variables as follows

m

[ K][ J; (5.1)

where [K]= diag( kp k,) is a scaling matrix, J. is the column vector of

matrix [J] and k. J;= 1 for i e [0, 7].

There are infinite set of ICTs since there are infinite sets of integers

(a,b,c,d,e,f) satisfy the following condition for the ICT:

i) ab= ac+ bd+ cd

ii) a b c d and e f

The following table shows the performance of several order 8 ICTs based on

the criterion of transform efficiency [24] which measures the decorrelation ability

of the transform.
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Transform or ICT(a,b,c,d,e,f) Transform Efficiency (%)

ICT (230,201,134,46,3,1)

ICT (120,105,70, 24,3,1)

ICT (55,48,32, 11,3,1)

ICT (10, 9, 6, 2, 3, 1 )

ICT (5, 3.2. 1.3. 1)

DCT

PMT

Slant Transform

HPT

Walsh Transform

90.221

90.219

90.213

90.176

81.051

89.836

86.785

85.842

84.097

77.140

Table 5.1 Transform Efficiency for various transforms with the adjacent correla¬

tion coefficient p equal to 0.9

5.3 Design Considerations

5.3.1 Specification

With an input vector X, the one-dimensional transform coefficient vector C ol

the ICT is given by

(5.2.a)

and the inverse

(5.2.b

With an input matrix [X], the two dimensional ICT transform coefficient

matrix [C] is then given by

(5.3.a'
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and the inverse

(5.3.b)

The objective of the ICT chip is to perform the following one-dimensional

forward and inverse ICT transform : C, = [J] X and X = [J] CK. Multiplication of

the normalization matrix [K] which has not been implemented in the ICT chip is

expected to be earned out by an external processor. In a transform coding system,

the normalization process can be absorbed into the quantization process. Due to the

limitation of the IO pins and gate size of one chip, we only implement one of the

row multiplication (or column in inverse) of the whole transform matrix in one

single chip. Therefore, the functions of one ICT chip are as follows :

forward transform

(5.4.a)

inverse transform

(5.4.b)

where i e [0,7]

5.3.2 Selection of the Transform Matrix

For the transform matrix of the ICT shown in equation (5.1), we select a=10,

b=9, c=6, d=2, e=3, f=l as the transform matrix to be implemented in our ICT chip

for two reasons. The first one is that the ICT(10,9,6,2,3,1) has a better transform

efficiency than the DCT as shown in Table 5.1. The other reason is that the integer

values of the basis vector components (multipliers) are quite small and can be

easily implemented by a few number of binary shifts (at most 4) and additions.

There still have some modifications for the transform matrix before realization

due to the finite length considerations. For the 1-D forward transform, there is no

error occurred when finite length representation of the input data since all of them

are integers. But for the inverse transformation, truncation error will occur because

the elements of the input vector CKi are real numbers instead of integers. This
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truncation error will also propagate to the output and affect the accuracy of the

output data and it is atfected by the value of the normalization matrix [K] and the

component values ol the basis vectors. For the ICT (10,9,6,2,3,1), the normaliza¬

tion matrix [K] is

Some integer constants should be included in the matrix [J] so that all I jJ are

of similar magnitudes.

and

where R and M are integers.

The finite length representation of a number is as shown as follows :
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I bits

MSB LSB

Binary Point

c bits b bits

The truncation error eT is in the range (-j.2+;.2b). The maximum possible

values of of the two transform matrix are as shown in the following table with

the assumption that the image data is in the range of 0 X, 255.

i

[J]

[J]

0

255

255R

1

15.58

15.58

2

51

51M

3

15.58

15.58

4

127.5

127.5R

5

15.58

15.58

6

51

51M

7

15.58

15.58

Table 5.2 Maximum Possible Value of for Different Transform Matrices (

MAX [CJ )

The number of bits required to represent the magnitude before the binary point

is

c = Int [ log , ( MAX [ CL])] forie [0,7]

where Int[X] represents the smallest integer greater than X.

For the modified transform matrix, if R=8, M=4 then c=4, and if R=8, M=3

then c=5. Compared with c=8 for the original one, the modified transform has

smaller truncation error since b=l-c and tj is in the range (-i.2b,+.2).

Finally we select the modified transform matrix with R=8 and M=3 to be

implemented in the ICT chip. We choose M=3 because the multiplier is simpler

than that of M=4 although the truncation error is slightly larger. Then the transform

matrix implemented in the ICT processor is shown below
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5.3.3 IO Pins Considerations

Although the ICT chip is designed to perform the 1-D transform, it is also

desired to perform the 2-D transform by using the same chip. Therefore the bit

length of the input and output data should be equal since the output of one chip will

be connected to the input of another chip when performing 2-D transform

according to equations (5.3.a) and (5.3.b). On the other hand, there should have 6

more bits for the output data than the input due to the internal multiplication and

addition operations. Therefore, a truncation process is carried out before latching

out the output data as shown in Figure 5.1. In our design, the data format of the

input and output are also 14 bits length including one sign bit and thirteen

magnitude bits. The 6 least significant bits of the resulted data after the row (or

inverse) multiplication are truncated, so that the output keep in 14 bits length. With

this arrangement, there would not have any error when performing the 1-D forward

transform since the input image data is 8 bits length (assume in the range of [-128,

127]). The truncation error for the 2-D forward and inverse transform are evaluated

based on several MSE criteria by computer simulation method for several pictures

with size of 256 x 256 pixels as shown in Figure 5.7.

RowColumn

Multiplications

19

Result

Truncation
6
5

o

Input Format

(14 bits)

Output Format

(14 Bits)

ICT Chip

Figure 5.1 Truncation Process of the ICT Chip



Orthogonal Transforms in Digital Image Coding Chapter 5

5.3.3.1 2-D Forward ICT

The 2-D forward ICT given in Equation (5.3.a) can be implemented by the

ICT chips and the block diagram is shown in Figure 5.2.

[X]

1-D

Forward

© ICT ©

Transpose

Memory
©

1-D

Forward

ICT

ICJ

©

Scaling

by

Computer

[C]

®

Figure 52 2-D Forward ICT

In the above diagram, the elements of matrix [X] and [Cj are both in 14-bit

format. The scaling process is done by computer software so that the elements of

matrix in [C] are real numbers. If the image data are in the range of [-128, 127],

then the input image data in stage 1 of Figure 5.2 should be represented in the

following 14-bit format:

MSB LSB

Sign 0 0 0 0 0 0

Weighting 26 2s 24 23 22 21 2° 21 22 23 2A 2s 2

Figure 5.3 Format of Elements in Stage 1

When the input data pass through a 1-D forward ICT, the weight of the MSB

of the output data (in stage 2 of Figure 5.2) will be increased by 6. Finally, the data

format of the non-scaling 2-D transform coefficients in stage 3 will have the

weighting of 218 at MSB and 26 at LSB as shown in Figure 5.4. The truncation error

introduced in this 2-D forward process in the ICT chip will be evaluated by the

quantity of Error 1.

MSB LSB

Sign

Weighting 2is 217 216 213 214 213 212 211 210 29 28 27 26

Figure 5.4 Format of Elements in Stage 3
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I'ITOr 1 : MSE of the 2-D forward transform coefficients

Error 1

Cw which are the elements of matrix [C] represent the 2-D transform

coefficients without truncation errors and which are the elements of matrix [C]

represent the 2-D transform coefficients which contain truncation errors introduced

in the two 1-D forward transforms. M is the numbers of the sub-block in a whole

picture. For a picture with size 256 x 256 pixels and the size of sub-block N is 8, M

is equal to 32 x 32.

Simulation Results

Picture Error 1

WOMAN

STONE

HOUSE

5.39134756535776E-003

6.20556041738619E-003

6.22151545193286E-003

5.3.3.2 2-D Inverse ICT

The 2-D Inverse ICT given in Equation (5.3.b) can be implemented by the

ICT chips and the block diagram is shown in Figure 5.5.

Figure 55 2-D Inverse ICT

Before entering the ICT chip, the transform coefficient matrix [C] in stage

5 of Figure 5.5 which are in floating point format should be scaled by computer

software to form [CJ in state 6. Elements of [CJ should then be represented in

a 14-bit format instead of real number representation. The finite-length format

of the elements of matrix [CJ is determined by the magnitude of the largest
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coefficients which are the DC coefficients. If the image data are in the range of

[-1-8, 1-7], then the maximum magnitude of the DC coefficients of matrix [C I

will be equal to 2. Elements ot [CJ can be represented by the following 14-bit

format :

MSB
LSB

Sign

Weighting 2° 2-1 I2 2-3 2A 2-3 26 2-7 28 29 2-10 211 2-13

Figure 5.6 Format of Elements in Stage 6

When the input data pass through a 1-D Inverse ICT, the weight of the MSB

of the output data (in stage 7 of Figure 5.5) will be increased by 6. Finally, the data

format of the recovered picture elements in stage 8 will have the weighting of 212 at

MSB and 2° at LSB. The truncation error introduced in this 2-D inverse process in

the ICT chip will be evaluated by the quantity of Error 2 and Error 3.

Error 2 : MSE of the pixels formed by 2-D inverse transformation of [C] whose

elements contain no truncation errors

Error 2

Elements of matrix [CJ are the normalized transform coefficients which are

obtained by multiplying elements of [C] using real number multiplication. In this

case, the matrix [CJ contains only the truncation error introduced by the process of

finite length representation. Xw represent the original picture elements and

represent the recovered picture elements.

Simulation Results

Picture

WOMAN

STONE

HOUSE

Error 2

5.66970825195313E-001

5.52658081054688E-001

6.82154931640625E-001
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Error 3 : MSE of the pixels formed by 2-D inverse transformation of [C] whose

elements contain truncation errors due to the 2-D forward transform

Error 3

Elements of matrix [£,J are the normalized transform coefficients which are

obtained by multiplying elements of [£,J using real number multiphcation The

elements of matrix [£K] contain truncation errors introduced by the process of

finite length representation introduced in stage 6 and also the error generated by

the two forward 1-D transforms of the ICT chips. Xm represent the original

picture elements and Xw represent the recovered picture elements.

Simulation Results

Picture

WOMAN

STONE

HOUSE

Error 3

5.79666137695313E-001

5.66879272460938E-001

6.85839843750000E-001
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(a) WOMAN

(b) STONE

(c) HOUSE

Figure 5.7 Test Pictures

Chapter 5
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5.4 Architecture

The block diagram of the ICT chip is shown in Figure 5.8. It has five major

parts which are the input stage, the control block, the multiplier, the accumulator

and the output stage.

Vdd

.ALU ITri-Star.
10/P CO-C12XO- X12

I BUNK CSIGNXSIGN I/P LatchMultipliers

RSLatch

SNCLK` XSIGN ACLK

FLAT

Decoder 2

Si ICOL
R/CS2

S3 Decoder l
Select

MODEtl

SequenceCY1
CYT CounterCY2 Control

I Feedback
LatchCY3 CLK

MODE2 { vss
OEN
ROW

Figure 5.8 The Block Diagram of the ICT Chip

5.4.1 Input Stage

. This stage acts as a buffer for the input data so that the input data are stable

during a cycle of operation.

5.4.2 Control Block

This block generates the internal timing signals and control signals for the

operations of the ICT chip. This block also controls the ALU to perform forward

transform when MODE1=0 and inverse transform when MODE1=1. The R/C

(Row/Column) select block decodes the three signals S1, S2 and S3 so that the

correct Row/Column is selected in the multiplication.
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The counter is increased every time a data is latched in. It is reset after one

cycle. The counting sequence can be stopped prematurely by the sequence control

and this is useful in inverse transformation to speed up the processing time.

The two decoders together select the desired matrix element as the multiplier

for the calculation. Conceptually, the decoder interprets the three select inputs S I,

S2 and S3 to select a specific row or column depending on the mode of operation.

At the same time, it decodes the counter outputs to select the right element in the

corresponding row or column. Since there are six different values in the transform

matrix, the decoder represents each integer by asserting one of its seven outputs.

The extra integer output is the sign bit. The integer outputs are further compressed

into three bits by the decoder 2 to minimize the number of interconnects in the

multiplier.

The accumulator feedback control determine at which period of time the

feedback path of the accumulator is to be updated.

5.4.3 Multiplier

In the multiplier, a decoding algorithm rather than the normal shift-add

algorithm is used. This is achieved by examining how each product is generated

with each corresponding multiplier. As shown in table 5.3, one can see that each bit

in the product is the result of one of the six possible operations indicated on each

row. For example, p2 can be generated from x1, x1+x2+c1, xo+x1, 0, xz or x1 depending

on the multiplier which is in turn determined by the outputs from the decoder 2.

The sign bit of the multiplier is implemented by a simple EXOR gate.
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Mil If inlirnnH
Operations Product

Table 5.3 Multiplier Design Table ( + means OR )

d i A rrumiilntnr

The accumulator is a 20-bit carry ripple adder and performs 2's complement

addition. Its outputs are feedback as one of the operand through a set of latches. In

operation, these latches update the feedback operand every time a multiplication is

completed. Thus no intermediate product has to be stored in this implementation.

5.4.5 Output Stage

The output stage consists of a set of latches and a set of tri-state buffers. Ir

addition, it will convert the 2's complement results from the accumulator to the

sign-magnitude format if required before the data is latched out at the end of a

transformation. An external signal is used to control the output data of the ICT

chin.
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5.4.6 Synchronization

As the numbers of cycle of the operation is controlled by the CY1, CY2 and

CY3 signals, the synchronization of the ICT chip is achieved by the ROW signal.

As Shown in Figure 5.9, a MRSET signal is used to reset the chip before

operations. At each rising edge of the ROW signal, the input data is latched in to

the ICT chip and internal counter is increased by 1. When the counter value is

equal to eight( or the binary value of[ CY3 CY2 CYl I plus one for inverse

transformation), the computation cycle is completed and a LAT signal is activated

after the falling edge of the ROW signal in order to latch out the resulted data from

the accumulator to the output latch. One more ROW signal is required for the ICT

chip to generate an internal COL signal. The COL signal is used to clear the

accumulator value after one cycle of calculation and make it ready for the next

cycle.

0
1 2 8 9 1 2 8 9

ROWI

COL

LAT

URSET

Data Vp

xi

Data o/p
CI Valid NewCl Valid

Cl.

OEN

Figure 5.9 The Timing Diagram for the ICT Chip
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5.5 Applications

5.5.1 One-dimensional Transform

As each ICT chip can perform one of the row (or column) multiplication of

the ICT transform matrix, the 1-D transform can be achieved by connecting the

eight ICT chips together as shown in Figure 5.10.

ICT0Xi YO

Y1ICT 1

ROW

Y2ICT 2

Y3I CT 3

Y4
I CT 4

Y5
ICT 5

Y6ICT6

Y7
icr 7

Figure 5.10 Circuit for 1-D ICT Transform

5.5.2 Two-dimensional Transform

The modular approach adopted allows the ICT chips to be connected in a

pipeline to perform the 2-D transform. The proposed circuit is shown in Figure

5.11. The data sequence controller is used to schedule the results obtained from the

Chapter 5
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first matrix multiplication in the 2-D transform and to make them available to the

subsequent matrix multiplication in the right format and sequence (transpose

operation).

Xi
1-D

ICT

LU

o

z:
LU

a
LU
CO

h-

a

CC
LLJ

d
cc
I—
z:

o

o

1-D

ICT

,Yi

Figure 5.11 Circuit for 2-D ICT Transform

5.6 Conclusion

A modified structure for implementation of the Integer Cosine Transform was

described. A new ICT chip has been developed in a lost cost gate array with 2800

gates. The transform matrix and the input and output considerations of the new ICT

chips are improved. Compared with the existing ICT chip, this new ICT chip has

advantages of higher transform efficiency, smaller truncation error and faster

speed. With the aid of data sequence controller, several new ICT chips can perform

the two-dimensional transformation in about 0.5 seconds for a picture with a size of

512 x 512 pixels.
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Chapter 6 CONCLUSION

6.1 Summary of the Discoveries

The method ot generating new orthogonal transforms by destroying dyadic

symmetry, which was first proposed by Cham, was extended in chapter 2. Several

definitions and theorems related to the generation of new transforms were defined

and derived. Thirteen new orthogonal transforms have been generated by this

method. It was found that some of them have transform efficiency very close to the

DCT. It is believed that these transforms are most useful in a practical image

coding system for its ease of implementation.

However, if performance is of paramount importance, one should use the best

transform in an image coding system. A new orthogonal transform called Odd

Weighted Cosine Transform (OWCT) was proposed in chapter 3. Tests using

various criteria have shown that the OWCT has better performance than the

industrial standard DCT. A fast computational algorithm for the OWCT has also

been derived. It was found that computation of the OWCT requires only a few

more additions and multiplications than the DCT.

In chapter 4 of this thesis, the symmetry properties of all the four types DWT

matrices were analysed by using the principle of dyadic symmetry. A new recursive

algorithm based on those symmetry properties was developed for all four types

radix-2 DWT matrices. The new algorithm has been shown to have less computa¬

tional requirements than other existing algorithms and it is also numerically stable

in finite length arithmetic and suitable for calculation DWT of large orders.

Finally, a modified structure for implementation of the Integer Cosine

Transform (ICT) was proposed in chapter 5. A new ICT processor has been

developed by using a low cost 3 |im gate array with 2800 gates. Compared with the

existing ICT chip, this new ICT chip has the advantages of higher transform

efficiency, smaller truncation error and faster speed of operation. It is believed the

transform coding system implemented by those ICT chips can be used in slow-scan

TV systems and other image processing applications.
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6.2 Suggestions for Further Research

For the new order-8 orthogonal transforms generated from chapter 2, there are

arbitrary constants a, b, c, d, e and f in their transform matrices. It is believed that

there should have some set of constants existed for each transform such that the

transform has maximum transform efficiency. If we find an efficient method to

optimize those arbitrary constants, a transform with better performance than the

DCT may be found.

The OWCT only modifies the odd part of the transform matrix of the DCT. It

is believed that if we find a weighted version of whole transform matrix of the

DCT, a better transform may be found. One suggestion is to combine the OWCT

with the Phase Shift Cosine Transform (PSCT) proposed by Wang to form such a

new transform.

By using the designed ICT chip, we can construct a low cost image processing

system for operations such as image compression, image transmission, low-pass

filtering as well as image zooming and subsampling.
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