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ABSa-TZAG'T

A VISUAL OBJECT-ORIENTED ENVIRONMENT FOR LISP

By LEONG Hong Va

A multiparadigm environment allows the programmer to

choose a notation, which is the most natural for the problem

at hand, among a number of alternatives. This thesis is

concerned with the design of the multiparadigm programming

environment VOCOL, in which an attempt to integrate the

visual, functional, concurrent and object-oriented

programming paradigms within a LISP framework is made. With

a layered approach, the VOCOL system is segmented into the

visual LISP layer, the object-oriented layer and the

application layer. VCLISP, a visual concurrent LISP

environment, is conceived both as an enhanced stand-alone

LISP environment and as the visual LISP layer of VOCOL, on

which the object-oriented layer is built. On the object-

oriented layer, the standard features of objects, classes,

inheritance and message passing are defined. In addition,

the notions of abstract data types, procedures and processes

are embraced by objects. Relational links, function

modularization objects and extra message passing mechanisms

are devised to extend the power and flexibility of the

system. Programming tools provided on the application layer

further alleviate the programmers' burden and increase their

productivity. Besides the design, a prototype of VOCOL has

been implemented on the VAX workstation, with a sliced

evaluation technique. A variety of sample programs have been

developed on both the visual LISP layer and the object-

oriented layer with the aim of shedding light on the

capability and illustrating the usefulness of VOCOL.
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CHAPTER ONE

INTRODUCTION

1.1 PROGRAMMING ENVIRONMENTS

A computer (hardware) is designed to work for human

beings. Computers are dumb and must be told explicitly what

to do (by means of software). The art of instructing a

computer to do the required work is known as programming.

Software can be grouped functionally into software systems.

A software development cycle is undergone before a piece of

software is produced. The collection of hardware and

software tools used to develop software systems is termed an

environment [Dart87].

A programming environment is an environment that supports

the coding phase of the software development cycle, providing

such facilities as editor, compiler, debugger and

well-defined user interface. It makes the

programming-in-the-small tasks relatively easy and aims at

increasing the productivity of the programmer. In a broader

sense, it is an environment under which programs are

developed. either from scratch or by means of automated tools

and library modules. It supports the various phases from

desian to develooment and from documentation to maintenance.

When pushed to the extremity, a programming environment
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evolves into a software development environment, which

supports all the activities in the software development

cycle. Tools for programming-in-the-large activities such as

configuration management, version control and project

management are integrated and are at the programmer's own

disposal.

Software systems are vital to the operation of computer

systems. They are produced under programming environments.

With a little thought, we can infer that programming

environments are vital to computer systems. With the

additional fact that software is costly and unreliable

[Shooman83], the software crisis continues to threaten the

computer society. A good programming environment that

relieves the burden of program development and increases

productivity is therefore crucial.

1.2 THE IDEAL PROGRAMMING ENVIRONMENT

The importance of programming environments leads us to

pursue the ideal. What is an ideal programming environment

then? What do we expect to gain from it? How can we develop

such an environment? Now, let us take a glance at a few

widely accepted criteria for an ideal programming environment

and our expectations. The last question is answered in the

next section. The ultimate goal of researches on programming

environments and other related fields is towards an

intelligent computer system which can generate programs for
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us. We iust need to describe what is to be accomplished.

The intelligent computer system is expected to totally take

up the role currently played by programmers and even system

analysts.

We want to put the computer to work with minimum effort

and minimum skill, without the need for esoteric training if

it is avoidable [Martin85]. Programmers should be able to

utilize= the computer with minimum time for application

development and human errors must be minimized. The

underlaying programming languages must be simple in both

concept and syntax. They should be very high level and

non-procedural. A structured editor is often appropriate.

Programs must be maintainable, portable, extensible, powerful

and reusable. Incremental program development and immediate

computation [Reps87] should be supported so that what you see

is what you get (WYSIWYG). Adequate support to error

detection (good compiler and debugger), error repair (good

structured editor) and error recovery should be provided, in

addition to an experimental system with checkpoints. High

quality user interface emphasizing user friendliness is of

the utmost importance.

Different people have different expectations on an ideal

programming environment. Expert programmers are usually

anxious for the efficiency of the program and on the

availability of debugging and documentation tools. They are

ready to sacrifice some "fancy" features for efficiency and

rAcznnnczP time. Novice programmers are more concerned with
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the friendliness of the user interface, adequacy of online

guidance and ease of casual programming. They are willing to

yield run time efficiency to a better user-computer

interaction. Intermediate programmers would probably expect

both but to a lesser degree. They are less concerned with

program efficiency and fancy features. --Nevertheless, the

classification is not a clear cut one and the programmers'

expectations may vary.

1.3 RESEARCHES TOWARDS THE IDEAL

Although it is relatively easy to point out what

characteristics an ideal programming environment should have,

such an environment is an unattainable goal. What we can do

is to get as close as possible and this is where researchers

are making progress. A variety of approaches are under

research, including exploration of new programming--styles,

new multiparadigm programming environment designs- and new

automatic programming techniques.

1.3.1 New Programming Style

Since the construction or Lne I1r5t. Uomuuter, von lvcuiuaiiii

programming style (lominates contemporary programming

languages. As a substitute, it is desirable to develop new

styles of programming in which a program is defined in some

other forms or by some other means. in the hope of overcoming

the weaknesses of existing styles. For example, logic
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programming was a new style in the sixties. Programming is

achieved by exhibiting axioms and constraints. It is claimed

to be non-procedural. The design of dataflow languages and

machines marked the beginning of yet another programming

style in relieving the inherent von Neumann bottlenecks' and

exploiting a maximal degree of parallelism. In visual

languages, icons are drawn and connected together to perform

some computations, with the idea of letting the picture he

the program. In the course of searching for new programming

styles, many new programming paradigms, such as the

object-oriented paradigm. were conceived.

1.3.2 Multiparadigm Programming Environment

A paradigm is a model on which programs are constructed

according to certain syntactic rules governed by that

paradigm. Each paradigm has its own characteristics, merits

and demerits. A multiparadigm language is one that

encompasses features of several programming paradigms. The

design of a multiparadigm language aims at blending together

the relative advantages of the component paradigms anc

alleviating their relative disadvantages whilst keeping their

interactions low. A multiparadigm programming environment is

built by integrating a multiparadigm language into an

environment that supports relatively easy program

development.

more data items1 A change of state In a von Neumann computer always involver the movement of one or

between the CPU and the memory (or register), the bottleneck [Backus78].
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A programming paradigm is analogous to a tool in a

toolbox. Each tool is specialized for its application. We

would not use a screwdriver to pry up nails. Similarly, we

would like to implement a concurrent program with a

concurrent language like Ada rather than the sequential

language Pascal and to do simulation with a simulation

language like GPSS rather than Fortran. Prolog is excellent

in implementing expert systems but weak in abstract data

types and user interfaces. Baroque idioms must be adopted to

get around the problem when the tool we are using does not

suit our need. Therefore paradigms (tools) must be

integrated within a powerful environment (toolbox) to provide

various program development tools so that incremental program

development is possible with little cost [Bobrow85]. In this

way, we are able to utilize the right tool at the right time

and this is one of the driving force behind multiparadigm

programming environments.

1.3.3 Automatic Programming

Automatic programming means naving Lne computer help

write its own programs [Heidorn77]. In a broad sense, an

automatic programming system is one that carries out part of

the programming activity currently performed by a human

programmer [Hammer79]. Under this definition, almost every

effort made in computer science is attributed to automatic
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programming2. As a contemporary yardstick, automatic

programming aims at the generation of the program from

something superior to programming languages, either in the

form of specification or by inference.

An automatic programming system has four characteristics:

a specification method, a target language, a problem domain,

and an approach to operation [Barr82]. Given a specification

of a program in the problem domain, certain operations are

performed to generate the required program written in the

target language. Specification languages, programming by

example (program induction) and program-building expert

systems are all automatic programming systems with different

characteristics.

1.4 PURPOSE OF THIS RESEARCH

An investigation on the ideal programming environment and

various research efforts on programming environment reveals

that all the above-stated research directions are equally

important. However, programmers are usually reluctant to

abandon their current programming style and the introduction

of new programming styles will certainly be met with great

resistance at first. As for automatic programming, formal

specification is precise and guarantees correct code

2 In the early days of programming in assembly languages, the Fortran compiler was claimed to be an

automatic programming tool because it relieved the programmer from going into the details of expression

evaluation, multi-dimensional array indexing, etc. Similarly, Prolog and other 4GLs were means to

automate programming in the seventies.
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generation but hard to learn. Natural language specification

is easy to write but hard to translate and to resolve the

inherent ambiguity. The code generated is highly probable to

be incorrect. Programming by example is generally related to

casual programming. Automatic programming is effective but

not suitable for programmers of diversified aptitudes.

The accommodation of programrrers of different talents and

capabilities is one of the objectives of this research.

Multiparadigm programming environment is probably a promise

which has the ability to satisfy all the three levels of

programmers: novice, intermediate and experienced.

Therefore, the main purpose of this research is to design a

multiparadigm programming environment. a survey of which is

presented in chapter 2, with well-mixed component paradigms

combined in suitable proportions and in a useful wav. Good

user-computer interfaces can assist both intermediate and

novice programmers, particularly the! latter. Structural and

pictorial inputs and responses are helpful. This can be

realized through the use of pointing devices and high

resolution graphics terminals. We are looking forward to

giving the novices the impression that programming is no more

a nightmare but a pleasure.
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CHAPTER Two

MULTIPARADIGM PROGRAMMING

ENVIRONMENTS

2.1 VARIOUS PROGRAMMING PARADIGMS

There are many programming paradigms in use. Some of

them have a very long history but some are still in their

very infancy. Before examining contemporary multiparadigm

programming environments, a few common programming paradigms

are presented.

2.1.1 Conventional

Conventional languages are often called procedural

languages. This programming paradigm originated from the

natural architecture of von Neumann computers. Perhaps it

got the name conventional from the fact that all the very

first programming languages were similar in nature and

derived from the von Neumann architecture. All of them

emnaize on the control flow of the program.

In a conventional programming language, the assignment

statements play the predominant role. All other language

constructs are built around assignment statements to make the

desired computation possible. Conventional languages use

variables to imitate the computer's storage cells and

assignment statements to imitate the fetching and storing of
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data. and arithmetic and loaicai operations on them. Program

execution is reflected by the change of states of the system.

Most of the languages used today, from assembly language to

Fortran. from COBOL to Alaol. and from Pascal to C. are

conventional. They form the mainstream of contemporary

programming languages.

Lonvenzlonal languages are DQLn LaL anu LiaDDY in a

global sense with the von Neumann bottleneck [Backus78]. The

world of assignments, mixed with many other statements, is

chaotic. The programmer must do much housekeeping work in a

computation and is deprived of the ability to concentrate on

the actual solution. To compute the product of two matrices,

he must use three nested loops and to manage the change of

indices. This can be alleviated. In the hardware aspect.

SIMD computers transfer and manipulate a vector of data

simultaneously and in the software aspect, languages like

APL1 operate on collections of data item and support

functional forms.

2.1.2 Functional

Functional nrogramming is based on mathematical tneorles

on functions. The strong relationship between functional

programming and mathematics facilitates program description

and proof. The programming language can often be described

in terms of itself, without the need of a meta language. A

functional program is composed of a set of function

1 APL is sometimes not considered as a conventional laguage
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definitions and a sequence of function applications. All

functions map objects into objects. New functions can be

built by a fixed set of combining forms called functional

forms such as composition and reduction. Functional

languages are normally history insensitive and computational

results are temporary. Values computed from functions are

passed about without being actually changed.

The first functional language in use was LISP

[McCarthy60], in which recursive functions are defined in

terms of propositional expressions, predicates and

conditional expressions. The programming system is built

upon the lambda calculus. In LISP, those objects manipulated

by functions are called atoms. Composite functions are

returned as functional arguments. Strictly speaking, pure

LISP is functional but not ordinary LISP because the latter

allows side effects which is not an element of functional

programming.

Besides LISP, Backus [1978] also defined functional

programming systems called FP and FFP. They are similar to

LISP but the lambda calculus was abandoned. Functional forms

are used extensively. Storage cells and a simple naming

convention are provided in FFP, the super set of FP, to

overcome the drawback of history insensitivity. Cells are

used to store newly defined functions and naming convention

helps to locate them.
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2.1.3 Logic

In logic programming, the programmer defines

relationships among values or objects. A program is a set of

axioms and rules. A computation is a deduction of the

consequences of the program [Davis85]. To solve a problem, a

description of the problem or the solution is given, together

with the constraints and conditions, in the form of logic

statements. The system will try to find out the solution by

unification- the deduction mechanism. Logic programs are

elegant with control and logic separated [MacLennan83].

Prolog [Clocksin8l] is recognized as the dominant logic

programming language. Most people even have the impression

that logic programming is synonymous with programming in

Prolog. Prolog shares the same merits with logic programming

languages but it has the implementation drawback of the

sequential execution of subgoals in a rule and the sequential

unification of the alternatives of each subgoal. An

intrinsic depth-first search is implied and the order of

subgoals in a rule does have influence on the execution of a

Prolog program. This property violates the idea of logic

programming. Also Prolog is logically incomplete.

Furthermore, the cut in Prolog is believed to behave like the

goto statement, which is considered harmful (Dijkstra68).
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2.1.4 Object-oriented

The object-oriented paradigm sprang up since the design

of Smalltalk [Goldberg83], the pioneer of object-oriented

programming languages. The concepts are simple and the

notations are natural. An object program can be considered a

simulation of the activities of entities in the universe of

interest. In an object-oriented programming environment, the

system is composed of a collection of objects with

attributes. Similar objects are grouped together into

classes, each of which encapsulates the common properties of

these objects. A class can be thought of as a stereotype.

Specialized properties are defined in the objects themselves,

known as instances. There can be classes of classes, called

metaclasses, and so on. The propagation mechanism of

properties from parent classes to child classes or instances

is termed inheritance. A class can inherit from one (single

inheritance) or more parents (multiple inheritance). An

alternative to inheritance is delegation, adopted by the

actor model [Lieberman86,87).

Objects can communicate with one another by means of

message passing. An object responds to a message by the

invocation of a method, causing a change to its internal

state and/or messages to be sent to other objects. The set

of messages recognizable is termed the protocol (external

interface). An important concept is polymorphism: different
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objects behave in their own ways upon the receipt of the same

message even if they belong to the same class because each

object is autonomous and has its own internal state.

The programmer defines the object classes, attributes,

protocols and inheritance properties in an object program.

Computation takes the form of message exchanges among objects

and state changes within objects. The state of a program is

the collection of the states of objects in the system.

Smalltalk is a pure object-oriented programming

environment, built on the Smalltalk virtual machine

[Goldberg83]. In the contour of Smalltalk, everything is

considered to be an object and treated in a unified manner.

Each object must be an instance of a class. Classes are

instances of metaclasses. Single inheritance is adopted.

Class variables are shared among instances of the same class

whereas instance variables are private to the instances. The

protocol of an object is defined by its methods. Instances

attributes and methods are inheritable but can be overridden

whereas class variables are global names and can never be

redefined. Message passing is the sole mechanism of program

execution.

2.1.5 Visual

The relatively new visual paradigm is causing greater and

greater impact on programming environments. As graphics

processors and dedicated hardware are designed and
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manufactured with low costs, visual programming is brought

from aspiration to reality. Many programming environments

are built with visual interfaces and interactions. A simple

implementation of the visual environment involves the use of

icons as an alternative to system objects like files, folders

and programs as in the Macintosh. User can select and apply

operations on them. These graphical user interfaces have

been widely accepted.

In more advanced implementations, pictures and icons are

used as program constructs. The programmer just draws the

program. The advantage is the direct visualization of the

program constructed. Programs can be animated to give the

programmer a feeling of how the program works, aiding him in

understanding and debuaaina the program.

2.1.6 Concurrent

Concurrent programming originates in the sixties as a

processors has been decreasing in the past ten years, more

and more multi-processor systems and distributed systems arf

being built. Concurrent programming begins to invade ever)

kind of application, including database management systems,

parallel algorithms and computations, and real time systems.

Concurrent programs are advantageous in that their

exploitation of parallelism during execution results in a

great reduction in execution time in a multi-processor

envircnment.

approach to the design of operating systems. As the cost of
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A concurrent program is composed of more than one

sequential programs executing in parallel, possibly as

parallel processes. The basic issues in a concurrent

programming system are parallelism, communication and

synchronization [Andrews83]. Parallelism is concerned with

how to express concurrent computations and what notation is

to be adopted. Communication is concerned with the means of

information exchange between parallel computations.

Synchronization is concerned with the coordination between

them.

Concurrent programming, as with the visual paradigm, can

be incorporated into any programming paradigms. Most

concurrent programming languages are extensions to existing

conventional languages or are themselves conventional, such-

as concurrent Pascal and Ada. Some popular. programming

languages belonging to other programming paradigms are also

enhanced with concurrent constructs, like PARLOG (concurrent

Prolog) [Clark84] and ConcurrentSmalltalk [Yasuhiko87].

2.2 DESIGNING A MULTIPARADIGM PROGRAMMING

ENVIRONMENT

Several factors must be considered when designing a

multiparadigm environment: the initial cost of learning, the

costs of debugging, maintenance and running [Bobrow85], and

design objectives and philosophies. To design a

multiparadigm language, there are at least five different
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methodologies [Hailpern86]. After designing the underlying

language, it remains to devise suitable tools like the

editor, compiler, debugger and file manager. These tools,

together with the new language, are integrated together into

a programming environment through carefully designed

user-computer interface.

2.2.1 Methodologies

Some multiparadigm systems are developed by combination

of existing languages. The idea is to develop a new system

that supports all the component languages individually, using

the same syntax and semantics. They can be loosely

integrated or fully integrated.

Another method is to select one of the languages as the

basis and embed the other languages in it. This may be done

via special function calls. For example, Qiog and LogLisp

are Prolog systems in Lisp built in this way.

The third method, together with the second method, are

among the most popular. New language constructs are added to

a selected base language. Concurrent Pascal is built from

Pascal by defining concurrent constructs. Object-oriented

programming is partially supported in the implementation of

C++ by defining class and inheritance.

The fourth method is the redefinition of a language in

the context of new theoretical insights and goals.

Undesirable features of the language can be corrected.
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Meanwhile, a new paradigm may be added through redefinition.

This is equivalent to introducing new language constructs in

parallel with modifying existing ones.

The last method is to iearn from past, experience ancx to

design a new programming language out of nothing, trying to

incorporate useful features from other languages. There are

numerous of them. Nial [Jenkins86] supports conventional

paradigm and functional paradigm directly and many others

indirectly. Lucid [Faustini86], a real time dataflow

language, is also developed from scratch.

2.2.2 An Evaluation

The first method in the last section is good for

experienced programmers because they are already familiar

with those constituent languages. Programs already written

in one of these languages are portable. However. in a

primitive multiparadigm environment such as an operating

system containing LISP and Pascal, the interface between

different languages is difficult. In a completely integrated

system, definitions must be given to data structures and

language constructs of one language in the context of

another. The interactions. especially the unintended

interactions not covered by the definitions, among these

languages are great and complex.

The second method and the third one are very similar.

ThPv rPniire fewer system development efforts. The new system
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is a superset of the base language and all the facilities in

the original programming environment are available. Compared

with the first approach, these methods suffer from a degraded

efficiency and flexibility.

The fourth method shares similar advantages and

disadvantages with the above methods. Better embedded new

language constructs in a more consistent-- environment- is

resulted. However, the redefinition of the semantics of

certain language constructs may render the new language

incompatible with the base language. This is hazardous to

the portability and maintainability of software.-

Adopting the last method is a task of tremendous

complexity. The major advantage lies in the design of a

consistent and elegant language and environment. Relative

merits in different paradigms can be explored but the initial

cost of learning is extremely high. The environment must be

an excellent one before it can attract a reasonable community

of users.

2.3 EXISTING MULTIPARADIGM SYSTEMS

Researches on multiparadigm programming environments are

actively being carried out to exploit their merits towards

the ideal. By conducting a survey on some existing

multiparadigm systems, we can gain insight into the situation

and into the current trends of research.
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2.3.1 Enhancing Conventional with Object-oriented

Programming:

Some conventional languages are flourished with object-

oriented capabilities. A typical example is the C++

language. It is a superset of C and enforces strong typing,

including typing to function parameters. New data types

which are supposed to be as efficient as the built-in types

are readily defined, with appropriate manipulation functions.

These data types are similar to packages in Ada. To support

object-oriented programming, the class concept is introduced.

Classes are organized in a strictly hierarchical manner. C++

combines the advantages of the flexibility and efficiency of

C and the capability of hierarchical representation of data

types with inheritance in an object-oriented language. It is

found useful in a diversity of systems programming.

2.3.2 LISP-based Logic Programming: LogLisp and Qlog

Both functional and logic programming are clean, elegant

and powerful. It is possible to simulate logic programming

with functional programming and vice versa but such a

simulation is both inefficient and often burdens the

programmer with extra load. A combination of these two

programming paradigms is suggested and implemented in several

systems. The design of LogLisp [Robinson82] and Qlog

[Komorowski82] aims at the well-developed LISP programming
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environment as a basis for logic programming. They hope to

provide the programmer with two different paradigms at his

own disposal.

In LogLisp, Prolog clauses are written as S-expressions

and a query is a list with a leading keyword. Assertions and

queries are executed as if they were LISP special forms.

Expressions can be simplified according to LISP semantics,

leading to the utilization of almost the full power of LISP

in a logic programming environment. He can also devise a

query whose solution is returned as a LISP data structure,

used for LISP computation. The interface between logic

programming and the LISP programming environment is implicit.

The standard syntax of Prolog clauses is preserved in

Qlog. Prolog clauses defined are transformed into callable

functions. Backtracking and variable instantiation are

performed explicitly by manipulating stacks. The interface

between logic programming and LISP in Qlog is explicit. LISP

functions must be called from a Prolog program to initiate a

LISP computation and vice versa.

2.3.3 Integrating Functional and Object-oriented Programming:

LOOPS, CommonLoops and Flavors

The popular object-oriented paradigm is often combined

with the functional paradigm, mainly the language LISP, such

as LOOPS [Bobrow82], CommonLoops [Bobrow86] and Flavors

[Moon86], to name a few. LOOPS is a LISP based multiparadigm
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environment implemented in the interactive InterLisp-D

environment. It supports LISP style programming and provides

extensive visual effects, with object-oriented paradigm

incorporated. Active values (annotated values) lead to

access-oriented programming. Rule-oriented programming is

supported as extension modules. On the success of LOOPS,'one

of the most popular multiparadigm system, CommonLoops is

developed on CommonLisp, the most prevalent LISP dialect.

This new system is built based on the experience of LOOPS but

is a departure from it. It is compatible with the functional

programming style in LISP. Programs can become incrementally

object-oriented. Flavors is a CommonLisp package encouraging

object-oriented programming. All these systems benefits from

the specialization of functions and messages.

2.3.4 Object-oriented Logic Programming

SPOOL [Fukunaga86] is the result of a marriage between

object-oriented and logic programming. The data structures

are organized as objects with multiple inheritance. Methods

are Prolog clauses. On the receipt of a message, the body of

the method whose head is unifiable with the message is

invoked in a Prolog-like manner. Objects with reasoning

capabilities can be built. Anonymous and partially filled

message is allowed which is much more powerful than

conventional object-oriented languages like Smalltalk.

Orient84/K [Ishikawa86] is a knowledge representation

language built on top of Smalltalk-80. An object is called a
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knowledge object and comprises three parts: monitor,

behaviour and knowledge base. Monitor controls incoming

messages and exercises control over the other two. Behaviour

is similar to Smalltalk-80 in syntax and semantics and

knowledge base is organized as Prolog clauses. Multiple

inheritance is allowed, with concurrent programming

constructs added, like synchronization and mutual exclusion.

There are still many other systems such as Concurrent

Prolog [Zaniolo84 Kahn86] which supports message passing and

encourages object-oriented programming.

2.3.5 Visual Based systems

Active researches are being made on the visual paradigm

and combination of other paradigms with it. Visual* based

systems are particularly helpful to novices and offer

advantages to other programmers.

The Pict/D [Glinert84] system, an interactive graphical

programming environment, is the implementation of

conventional paradigm upon visual paradigm. A program in

Pict/D is constructed by drawing and editing the control flow

of the program with the aid of a joystick. Testing and

debugging are carried out by program animation.

Graphical FP [Pagan87) is a graphical based FP [Backus78]

system. Functions and functionals are represented as boxes

and names and parameters as text. Animation is achieved by

highlighting the boxes. PiP [Raeder84] is also a functional
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language, in which icons are used extensively, including the

definition of functions and composition of functionals.

Textual names only serve as secondary identifiers. pip is

designed to support programming by example, which can greatly

benefit the novices.

ThinkPad [Rubin85] is a constraint-based programming by

example system. Data structures are drawn with their

constraints specified. Functions are then defined as a

sequence of constrained transformations from input data

structure to output data structure. These data structures

and transformations are mapped into a series of Prolog

clauses for execution.
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DESIGNING THE VOCOL SYSTEM

3.1 MAKING A DECISION

A multiparadigm programming environment is to be designed

to achieve the objective of this research: to accommodate

programmers of all levels of competence. The first step in

the design of a multiparadigm programming environment is to

choose component paradigms with immense potential. The

selected paradigms are then integrated into an environment

with a suitable methodology, bearing in mind the objectives

of the system.

3.1.1 Choosing Component Paradigms

Recall that our system is to be attractive to the

novices. The most user-friendly paradigm is certainly the

visual paradigm. It is one of the most promising field of

research because it is still young and possesses affluent

potential. There are remarkable benefits in visual

programming. Pictures are superior than text [Raeder85) in

such ways as a faster transfer rate, higher dimension of

expressions and direct references. Visual representation can

narrow the gap between the programmer and the programming

system and it is nice to let the picture be the program. It

facilitates the implementation of the powerful WYSIWYG

principle and program animation which can serve as an
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educational tool. The morale of novice programmers, who

would like to deal with a system of icons rather than a

system full of text, can be boosted by the visual paradigm.

Object-oriented programming is based on object entities

and is quite natural to our daily life. It is proven to be

powerful and flexible and encourages data encapsulation,

classification and abstraction. Association of procedural

information with object class improves maintainability and

may reduce storage'. Complex data structures may be defined

as objects. An object program can manipulate these objects

via encapsulated operations, facilitating the modularization

of large and complex programs. Incremental addition of

objects are easy, without having to modify existing objects

because object methods are distributed and hidden.

LISP has- been a very good experimental programming

language and environment. It is a powerful language with a

unified syntax and dynamic behaviour and is well recognized

as an exploratory language. Interactive LISP programming

environments are widely available and there are numerous

works on LISP machines. Therefore it is very suitable to

choose LISP's functional paradigm as a component.

Furthermore, the functional style and the object-oriented

1 For example, a vector is usually stored as an array but a unit vector can be associated witb a

procedure that returns the constant 1 when given any legal index. No array is needed to store the vector

elements of such a vector.
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style are orthogonal2 and complement each other. This

combination is particularly powerful when enhanced with

visual programming capabilities.

The attempt of embodying the conventional programming

conventional languages has almost been exhausted. Their

advantage as a close connection with the architecture of von

Neumann machines is losing its significance as new

architectures and paradigms become mature.

3.1.2 Design Methodology

The methodology of defining new language constructs on a

base language is adopted (section 2.2.1). In this way, the

new system is able to furnish all the facilities provided in

the base language environment and is a super set of it.

Programmers (intermediate and expert) already famiLiar with

the base language can move onto the new system without much

difficulty. After they have become accustomed to it, they

can incrementally modify their programs and programming style

to take full advantages of new language constructs and

features. Even though efficiency may be degraded, especially

in a prototype system, better software and hardware support

will evolve, should the system be proved to be successful.

2 The procedural or functional programming style of LISP is orthogonal to the object-oriented style. In

procedural programming, class (data structure) information is associated with general purpose procedures.

In object-oriented programming, procedural information is associated with the properties of classes.

pardigm is relinguished because the potential of
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3.1.3 The System VOCOL

After a careful choice of the paradigms to be combined

and the design methodologies, a multiparadigm programming

environment is conceived. It is a LISP-based one with

object-oriented and visual programming augmented. To

increase the capability of the system. multiprogramming is

supported by introducing concurrent programming concepts with

the notion of LISP processes. This system is given the name

VOCOL, the acronym for Visual Object-oriented COncurrent

Lisp, encompassing the four designated paradigms.

3.2 SYSTEM ARCHITECTURE

VOCOL is a complex system with many features. To bridge

the gap between the system and the implementation machine,

the system is segmented into fragments of manageable size.

It is designed with a layered approach in the light of better

organization, understanding and modularity. The system is

composed of three layers of abstraction. The bottom laver is

a visual LISP laver. The intermediate laver is an

obiect-oriented laver built upon the bottom laver. with the

aid of the latter. The top layer is an application layer of

programming tools. The configuration is reflected in figure
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User Annllcation

Programming tools

OCOl object layer

Visual LISP layen

tnachlne

VCLISP

Figure 3.1 Architecture of VOCOL

The bottom layer serves as a bridge between the hardware

or the operating system and the higher layers of the system.

It is possible to port the system to other machines by

suitable modification of this layer. The layer can be viewed

as a LISP programming environment which most LISP programmers

are familiar with. In fact, the visual LISP layer is

intended to be an extension to a LISP programming

environment. To take advantage of the visual paradigm,

visual representations for LISP functions are supported.

They reveal the internal structure of the underlaying

functions. To enhance the functionality of the laver,

concurrent programming constructs are defined. This laver as

designed to be a stand-alone programming environment and

denominated VCLISP, an acronym for Visual Concurrent LISP.

The programming language for VCLISP is a LISP dialect, named

VCLisp.
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The intermediate layer, the heart of the VOCOL system, is

built upon VCLISP. On this layer, the programmer finds the

object-oriented- programming style. Objects are organized as

a network. They denote concurrent processes with protocols

through object methods defined in terms of VCLisp functions.

Inter-object communication is achieved by means of message

passing. This layer eventuates in a combination of the

Smalltalk style with concurrent programming in LISP.

The uppermost layer is an application layer, which serves

a dual purpose. Application tools are implemented in terms

of VOCOL features to experiment with the power and

expressiveness of the system. It also provides a better

programming environment by equipping the programmer with

program generation and application tools.

The programmer can develop programs on any of these three

levels. Programs can be developed in the LISP environment

through interaction with the user interface process.

Programming in an object-oriented style can be achieved by

interacting with the various editors and the user interface.

Program generation tools can also be used to generate

programs.

3.3 IMPLEMENTATION ISSUES

The layered approach has been adopted in the design of

the VOCOL system. The upper layers need few modifications,
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It any, when ported to a new machine. The programming

environment supports concurrent programming and therefore a

multiprogramming environment must be implemented on the

target machine. Direct implementation on existing operating

systems is possible but context switching between LISP

processes must be handled carefully. A multiprocessor

machine is more suitable to exploit the inherent parallelism

in concurrent object programs.

The ideal machine to implement VOCOL is a multiprocessor

LISP machine which can interpret concurrent LISP programs and

execute compiled ones and with extensive graphic

capabilities. Then only a graphic shell around the operating

system suffices to support operations of the visual LISP

layer. Visual programming features must be disabled when a

graphic terminal is not available, without affecting the

functionality of the system, though it results in textual

representations of object programs and inter-object and

intra-object interactions. The availability of this dual

mode can also increase the flexibility of the system. Expert

programmers may choose to program in text with only minor

graphic features because it is normally faster to program in

text if one is familiar with the system and sometimes they

prefer command line inputs rather than selection from menus.
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3.4 A PROTOTYPE IMPLEMENTATION

The design of VOCOL has been implemented in a prototype.

This prototype, also named VOCOL, is developed on VAX

workstation under the VMS operating system with CommonLisp

[Guy84]. VOCOL is a LISP based system and it is conveniently

implemented in LISP [Winston84]. This approach enables the

fully utilization of available LISP built-in functions and

leads to a drastic reduction of much of the memory management

workload. Rapid prototyping is therefore possible.

In the VOCOL prototype, the visual LISP layer is

implemented in VAX Lisp. VOCOL supports concurrent

programming but there is no context switching facilities in

VAX Lisp. Therefore the multiprogramming environment is

simulated and VCLISP processes are scheduled by the VCLISP

interpreter. Visual programming features are available as

VAX Lisp functions which are regarded as if they were VCLISP

system calls.

Most objects and procedures making up the object-oriented

layer are programmed in VCLisp. This can increase the

portability of the system and demonstrate the usefulness of

the VCLISP programming environment. This prototype

implementation will be presented in greater details in the

following chapters, along with the detailed design of the

system.
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VISUAL LISP LAYER

4.1 VCLISP SPECIFICATION

The visual LISP layer is the lowest conceptual layer of

VOCOL, supporting visual programming in LISP. As a system

requirement, a concurrent dialect of LISP is to be

implemented as the basis on which upper layers of VOCOL are

built. VOCOL unifies the notions of objects and processes

and supports concurrently executing objects. This

consideration gives rise to the design of VCLISP. VCLISP is

a stand-alone LISP environment and supports concurrency and

parallelism which are very important assets to the

implementation of the object-oriented layer. The latter

dictates a high decree of concurrency.

VCLisp is the programming language recognized and

processed by VCLISP. For the sake of compatibility and

familiarity, features (textual syntax and semantics) of

VCLisp follow closely those of CommonLisp but with icon

management, concurrent programming and process control

primitives enriched. All VCLISP processes are programmable

in the language VCLisp.

VCLISP is able to perform a few process scheduling tasks.

It executes concurrently a number of VCLISP processes in a

round-robin manner, copes with icons and visual function
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definitions, supports basic process control operations,

communication and synchronization primitives, and provides a

globally shared space accessible to all VCLISP processes.

Each process is able to spawn coprocesses to introduce a

multiple number of threads. The interpreter is extensible by

the inclusion of system routines written in other programming

languages. A high priority console process exists to enable

the programmer or operator to monitor the system and tune the

performance.

4.2 THE VCLISP ENVIRONMENT

Different classes of programmers may-have-different views

on the organization of VCLISP. The views of the

configuration of the VCLISP environment by visual LISP

programmers, who stick to single user LISP programming, and

by VCLisp programmers, who are concerned with concurrent

nrnrrrammi nrr_ are denicted in fiaures 4.1 and 4.2.

visual
unctIconand

system def.editor
routine sava

vizutiuser
loadunctio Icon

Interface
editor llb

metal form
1oadupdatinterpre

Happen
nterprete

Figure 4.1 VCLISP in the View of Visual LISP Programmers
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Programmers who are familiar with the LISP environment

would like to hav their programming environment enhanced

with visual programming capabilities. In this way, they can

develop applications in a more convenient way and such an

environment is reflected as a rudimentary view of the VCLISP

system as shown in figure 4.1. The programmer interacts with

the system through a special process called the user

interface process, which is a top level read-eval-print loop,

accepting and processing requests from the user. It

evaluates forms and S-expressions. In addition, it can

invoke the icon editor and visual function editor to modify

icons and VCLisp function definitions stored in files.

A user-defined visual function is stored as a meta-form

which is converted into the internal representation by the

mapper before being executed in the context of the user

interface process. The programmer regards the user interface

process as a visual LISP programming environment. Concurrent

programming features are totally ignored.

Figure 4.2 VCLISP in the View of VCLisp Programmers



36

VISUAL LISP LAYER

There are still some programmers who are accustomed to

program in a multiprogramming environment. The incorporation

of concurrent programming features in VCLISP suggests the

possibility of devising processes which execute concurrently.

The configuration of VCLISP in their point of view is shown

in figure 4.2. The system console process provides a means

for the programmer or operator to control and monitor system

activities. It also enables the programmer to preempt all

the processes in case of a deadlock, and to take appropriate

corrective measures. Meanwhile, the programmer interacts

with the user interface process which can create new

processes, define their code segments and activate them.

Processes are created dynamically, and their interactions are

governed by VCLISP concurrency semantics.

In the subsections that follow, various facets of the

VCLISP environment are described and examined.

4.2.1 Visual Aspects

VCLISP is a visual environment for LISP in which VCLisp

programs are built and executed. Icons and VCLisp functions

can be defined and modified with various editors, to be

expounded subsequently.

Icons

The basic element of a visual program is the icon. An

icon in VCLISP and VOCOL is made up of an optional bitmap

image, an optional drawing procedure, a logical operation, an
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optional icon name and an ID (system index). The ID is used

to store the icon in file (e.g. ICONIB.BIT and ICON18.CTL)

and to identify the icon. The appearance of an icon is the

result of applying the logical operation on the pattern

represented by the bitmap (a precise representation) and the

image generated by the drawing procedure (a concise

representation). The programmer has the freedom to choose

between the two, with time/space trade-off. Icons in the

VOCOL system are managed by the icon manager and modified by

the icon editor.

Icon Editor

The icon editor (IE) is used to design new icons and

modify old icons. Within the icon editor, the icon is edited

with a pointing device. The bitmap is easily changed by the

mouse. The drawing procedure is a sequence of calls to

graphic primitives, such as polyline and circle. This

sequence of graphic operations will cause an image to be

drawn. The final appearance is determined by the logical

operation, the bitmap and the drawing procedure. Several

display modes are supported to disclose component appearances

(bitmap, drawing procedure) or the complete icon appearance

for ready visualization. A missing bitmap or a missing

drawing procedure is considered to generate a blank image on

which the logical operation is performed. A typical IE in

operation is shown in figure 4.3.
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IFIcon Editor

Drawing Procedure

circle 16 4

Mode: Large - bitmap

Small - complete

Logical Operation: Or

Figure 4.3 Icon Editor in Action

Visual LISP Functions (VCLisp functions)

A VCLisp function can be identified through an icon.

Iconic forms have been designed for some common system

primitives. They are organized in a hierarchical manner, and

can then be identified and invoked from their appearances.

The structure (lambda body) of a function is represented as

nested blocks similar to that of a Nassi-Shneiderman diagram

[Raeder85], particularly control constructs like

repeat-until, while-do, loop and if-then-else, some of which

are syntactic sugars for constructing more complex programs.

1 A syntactic sugar is a syntactic construct whose existence does not aad any new power to a language.

It solely simplifies the syntax of some language constructs or serves as a convenient vehicle to express

some computations. Syntactic sugars are exemplified by the multi-dimensional array in Pascal and the let

statement in LISP [MacLennan83].
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Some of them are shown in figure 4.4. The programmer is also

able to customize his programming environment by designing

new iconic representations for functions. Organizing a

function in a block-like manner allows a direct visualization

of its logical structure and how statement blocks are nested.

Owing to resolution constraint, deep levels are revealed only

on zooming.

function operand iconic representation

loop-body

length list-1 list-(abcd)

condition

car list- I list- I repeat-unti
(abcd)

IF

condition MSE
Hst-1cdr list-1 (bcd)

list- Ireverse list-1
(abcd)

if-then-else

Figure 4.4 Iconic Functions and Constructs

A visual function is made up of four sections:

identification section, parameter section, local variable

section and function body.

a. Identification section. This section contains the icon

that identifies the function. This is the atom whose lambda

definition part is defined with the function body.
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b. Parameter section. This section lists in iconic

representation the parameters to be passed to the function.

Prompts to be displayed when the function is applied can be

defined. Prompted arguments combine keyword arguments and

optional arguments in LISP. At every function application in

the course of defining a function, the prompt is displayed

along with the default value. The programmer should fill in

the -actual parameter before proceeding. This ensures a

better consistency in the function defined.

c. Local variable section. This section lists in detail all

the local variables to be used within that particular

function. A local bindings of those variables will be

created after evaluating the actual parameters. This is

implemented with a let closure.

d. Function- body. This part of the function definition

contains--the lambda body of the VCLisp function. It is a

sequence of S-expressions represented in the form of nested

blocks.

A function application is represented by a block with

double boundary. The evaluation of forms and S-expressions,

as well as application of functions follow the convention of

LISP. The value returned from a function is the value of the

last evaluated form, unless interfered by special forms or

macros like prog1. The natural infix notation for
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expressions and assignment statements are maintained. Infix

expressions are differentiated from ordinary prefix LISP

S-expressions by enclosing in ovals._

To retain access to the familiar LISP programming

environment, textual LISP programs are_ acceptable and the

system is able to interpret these programs in addition to

visual LISP programs. Quite often, visual LISP functions are

used interchangably with textual LISP functions: -A mechanism

must be adopted to translate between the two.* The mapper

serves this purpose. Visual representations are difficult to

process. They are converted into meta-forms before storage

and into internal forms before execution.

Visual Function Editor

Another basic editor provided by VCLISP is the visual

function editor (VFE). VFE is a template-based graphic

editor. The programmer interacts with the VFE to define the

four sections of a VCLisp function via template filling with

prompts by system through the use of pointing devices and

menus. User-defined icons can be picked from the icon

library as an alternative to names. The course of

interaction is a major improvement over that of the graphical

FP system [Pagan87].
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Identification-Sectlo Parameter-Section Local-Variable-Section

Inumbet source

dest. spare

Body

IF

ELSE

Figure 4.5 Tower of Hanoi

Consider the definition of the recursive function tower

of Hanoi, shown in figure 4.5. In this figure, the logical

structure of the function is clearly depicted. Icons almost

completely substitute the role of names, except section

titles and notations to certain control constructs. The

solution is broken up into two distinct cases. The first

case is that there is only one disc, which corresponds to the

recursion basis. The operation is to output the movement of

the disc from the source pole to the destination pole to

terminal. The second case is the opposite. When there are

more discs to be moved, we will first move all discs except

the bottom one from the source pole to the spare pole, then
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move the bottom one to the destination, followed by moving

the rest from the spare to the destination. These operations

are shown structurally in the right part of the if-block.

The output from the VFE is a function definition in the

meta-form which can be stored directly on files. In a

meta-form, all the icons in a visual function are replaced by

their unique indices in VCLISP. It is a textual

representation but the structure is almost identical to its

visual counterpart. For example, the meta-form for Tower of

Hanoi is

(visual-funct (id (name tower-of-hanoi 15))

(para (((name number 18) (name number 18) nil)

((name source 20) (name source 20) nil)

((name dest 21) (name dest 21) nil)

((name spare 25) (name spare 25) nil)))

(local nil)

(body ((if (infix ((name? 18)= 1))

(then-part ((name? 2) (name? 20)

(quote (name? 5))

(name? 21)))

(else-part

where 15, lb, z, eLc. are Lne 5y5L1,11I1 liiult:e 1Vr Lile 1C:V115 Ui

tower-of-hanoi, counter, print, and so on. VCLISP uses these

indices to locate the iconic appearances for them. The
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second tuple (name number 18) in the second line is the

prompt to be displayed. The third value nil is the default

value. In this example, it is not specified by the

programmer, hence the value nil. The special form infix is

used to denote an infix expression. Note here whenever the

special form name is encountered, it is filtered by the

mapper and handled immediately. A sample BNF of meta-forms

is shown in appendix A.

Mapper

The iconic representation of a VCLisp program is

.-onverted into an internal form before being processed by the

interpreter. This task is carried out by the mapper, which

naintains a table for each VCLisp process (section 4.2.3),

Showing the unique identity (UID) for each icon, each name or

z.ach pair. UID is unique within the whole VCLISP

environment. The same icon will have different UID in two

lifferent processes because they refer to different storage

locations. Similarly, the UID of the global name space

(section 4.2.4) is also distinct from those of other

processes. The mapper replaces all the names and icon

identities in the meta-form by internal symbols determined by

their UIDs. The mapper is also responsible to convert the

internal symbols back into icons and names during I/O

Dperations. Syntactic sugars in the meta-forms are

preprocessed into ordinary LISP S-expressions.
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4.2.2 Non-visual Aspects

After having been processed by the mapper, all VCLisp

statements and function definitions are reduced to linear

textual S-expressions. Each S-expression can be an atom, a

system call, a special form or a function application. An

atom leads to the evaluation of its value. A system call is

a call to the VCLISP system routines, such as a call to the

graphics package, a process control operation or a

communication primitive. A special form is implemented by

the VCLisp interpreter in a special way. It may involve the

establishment of bindings (let and let*), the evaluation of a

block of code (block), or the generation of a closure of the

environment (function). A function application involves the

evaluation of arguments and application of the function body.

The function is either a system function or a user-defined

one. System functions are intercepted and executed directly,

as if they were system calls. Others are executed by the

VCLisp interpreter, according to the function body.

In addition to visual functions defined by the VFE, an

experienced programmer may write his program in the form of

conventional LISP S-expressions, which are also mapped into

internal representations before executed for the reason of

compatibility. For example, the textual equivalent of the

function tower of Hanoi is
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(detun tower (number source destination spare)

(coed((= number 1)

(print '(move source to ,destination)))

(t (tower(- number 1) source spare destination)

(print '(move source to ,destination))

(tower(- number 1) spare destination source))))

This function is executed in the same way as the one shown in

figure 4.5 and the meta-form presented shortly after the

figure.

4.2.3 Concurrent Aspects

The basic notion in concurrent programming is the

process. Parallelism, communication and synchronization are

the key factors to a concurrent program [Andrews83]. In

VCLISP, two levels of parallelism are defined: external

concurrency and internal concurrency. External (inter-

process) concurrency is the parallelism exploited within the

system by parallel processes. This is the most natural way

of expressing parallelism in a multiprogramming environment.

The scheduler dispatches the processes to be executed by the

CPU, creating the illusion. that they are executed

concurrently. Internal (intraprocess) concurrency is the

parallelism exploited within a single process. This is

expressed with the notion of coprocesses. A coprocess is a

child process spawned or forked by a process or another

coprocess (the parent) and granted full access to the

parent's name space. The coprocess created differs in the
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process body from the parent, contrasting with the case of a

fork statement. More explicitly, the lexical environments2

of a process and of all its coprocesses coincide. All of

them share the same pool of lexical data but they have

separated dynamic environments. All the coprocesses execute

in parallel with the parent process. Therefore, coprocesses

can be viewed as multiple threads within a single process,

hence the term internal concurrency.

Primitive process control operations such as create,

activate, suspend, resume, delay and kill are defined. They

are provided to support external concurrency. The function

create accepts a sequence of S-expressions and creates a new

process whose body is made up of those S-expressions in

return. The new process must be assigned a name and will not

start its execution unless it is activated. The semantics of

the suspension and resumption of a process are equivalent to

those defined in other operating systems. The delay

operation is used to suspend a process for a certain time

interval. When the time expires, the process is resumed (put

back to the ready queue only). A process can be terminated

prematurely by killing it, perhaps due to its malfunctioning

or gets deadlocked.

Besides the above-mentioned primitive process control

operations, primitives to control internal concurrency are

defined. The primitives include spawn*, enter-cs and

2 The lexical environment is the set of bindings of syeDols in a LISP process. uynamic environment is

the set of local bindings created during a function execution. See section 4.2.4.
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exit-cs. Spawn* is the primitive to create a coprocess. It

accepts a sequence of VCLisp S-expressions and creates a

coprocess in much the same way as the creation of a new

process. Enter-cs and exit-cs are associated with critical

sections and data integrity. A critical section [Deitel84]

is a segment of code not interruptible by external messages

or user interrupts. It ensures the integrity of a piece of

shared data within a process and among processes. When a

critical section is entered, all user interrupts are disabled

and all coprocesses are suspended. Only the coprocess

executing in the critical section is eligible to be

dispatched. Restoration is made after the critical section

is exited. The critical section defined in this way is a

critical region within the process. However, the process is

still subject to timer interrupt and scheduling.

Along with means to specify parallel computations, VCLISP

must provide measures for interprocess communication and

synchronization. The primitive mechanisms for message

passing enable processes to communicate and synchronize with

one another. These primitives include send and receive.

Send is a nonblocking operation but receive is a blocking

one. The communication channel is point to point. A process

can send a message to another process either by direct naming

or indirect naming. Direct naming involves the explicit

specification of the receiver process. Indirect naming

involves a third entity called the mailbox, which can be

created and destroyed dynamically. To ensure integrity, only

empty mailboxes can be destroyed. The message sent is put
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into the mailbox for the receiver to collect. When a message

is sent, the sender continues to execute statements after the

send operation (nonblocking) regardless what status the

receiver process is in. However, when a process attempts to

read a message by the receive operation and no message is

available, the process blocks itself and waits for the

message (blocking). This strategy corresponds to the

unbounded buffer approach to message passing.

Message passing is an effective means of interprocess

communication and synchronization and furnishes a direct

support for high level message passing mechanisms (remote

procedure call, plug and socket matching) defined in the

object-oriented layer of VOCOL. Since VCLISP has a global

name space (section 4.2.4) accessible to all VCLisp

processes, it is better to define another type of

synchronization primitives based on shared resources. The

best candidate is the semaphores because they are simple and

efficient to implement and are elegant in many simple

applications. In VCLISP, the traditional operations P and V

are defined on integer semaphores (semaphores with values n_O

). Mutual exclusion is much simplified with semaphores,

compared with solutions using message passing, despite the

fact that message passing is able to simulate semaphores and

semaphore, is not able to.solve all synchronization problems

IPeterson831.
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4.2.4 Name Space

The set of accessible names and their designated storage

locations is termed a name space. The name space accessible

to a VCLisp process is composed of two parts: local name

space (LNS) and global name space (GNS). The LNS is local to

the dedicated process and the GNS is shared by all the

processes in the system.

VCLISP is a LISP programming environment, whose name

space is made up of cons cells denoting atoms with properties

and bindings. Similarly, the LNS of a VCLISP process is the

set of names locally accessible to that particular process.

It is made up of the lexical environment and the dynamic

environment. The lexical environment is the set of global

bindings of atoms and names found in an ordinary LISP

process. The dynamic environment is the set of local

bindings such as lambda bindings and closures created by

special forms like let and macros like do during the

execution of the process. Stated in another way, the LNS is

equivalent to the entire name space known to an isolated LISP

environment which is executed as a process in an operating

(Zvct-'am

The GNS is a lexical environment whose bindings are

accessible to all VCLISP Processes. This space is a pool of

globally shared symbols, which features shared resources in a

multiprogramming environment or the shared memory in a

tightly coupled multiprocessor architecture. This name space
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is used for interprocess communication and synchronization,

and resources sharing. The names of mailboxes, semaphores

and their associated information can be catalogued in the GNS

to be referenced. Furthermore, shared data structures can be

-stored and global functions and macros can also be defined in

the GNS.

The evaluation of- the binding of an atom normally takes

place in the LNS unless specified otherwise. An undefined

value will be returned if the atom is unbound. The special

form global can redirect the evaluation into the context of

the GNS. Values can be retrieved from and stored to global

names by means of the global qualification. Another way to

achieve the same effect is through the use of special

functions like gsymbol-value, gsetf, etc. This act is to

protect the GNS from being accidentally changed by

misspelling within a process. However, a special measure is

adopted towards functions and macros. Global functions and

macros can always be invoked directly within the process

itself, unless they are shadowed by local functions and

macros. This means that the lambda definition of a function

is searched in the LNS, followed by the GNS, before

signalling an error. Global function and macro definitions

are reentrant codes for the purpose of sharing. The

evaluation of global functions takes place in the LNS of the

caller, unless global is used. Global functions and macros

are defined with special functions gdefun and gdefmacro.
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4.3 AN IMPLEMENTATION ON COMMONLISP

A prototype of VCLISP is programmed in CommonLisp shelled

around the VAX/VMS operating system. The system console and

other system components such as the visual function editor

are written in VCLIsp, in CommonLisp and in other languages

supported by VMS. Routines written in other programming

languages are interfaced to VCLISP as system and library

routines.

The implementation of VCLISP is concerned with process

scheduling in the interpretation cycle, visual features and

the interfaces and interactions with system routines.

However, before portraying the implementation, let us take a

glance at how LISP works. Then the technique of continuation

[Allen78] is introduced as a means to perform explicit LISP

process scheduling. Finally, the system interfaces and user

interactions are presented.

4.3.1 An Anatomy of LISP

L1SY data structures ana programs are b-expressions

represented by linked lists of cons cells [Allen78). The

basic element is the symbolic atom which has properties

(p-lists) and values. As a functional language based on

lambda calculus, lambda expressions and function applications

play a central role. LISP functions are applied in an

environment which can be modified by pseudo-functions

(functions with side effects) [Siklossy76].
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Many LISP interpreters and compilers are implemented in

terms of LISP as LISP itself is both the meta language and

the object language. LISP interpreters are often implemented

as a read-eval-print loop. The definition of the evaluator

eval can be found in books as [Winston84 Waite73

MacLennan83]. A typical execution cycle of a LISP function

application is composed of four phases: fetching the lambda

definition, evaluating the arguments, establishing the lambda

bindings and executing the function body in the newly

established environment.

4.3.2 Sliced Evaluation of A Form

Ine vLLlsp Interpreter IS able to scneauie ana execute a

number of VCLisp processes concurrently. With the aid of

timer interrupts, the interpreter is able to switch its

context of execution and the proper context switching between

processes is of the utmost importance. The lack of

environment context switching information in most LISP

interpreters, including VAX CommonLisp, decrees the explicit

representation and manipulation of this information. This is

achieved by implementing the interpreter in LISP and

splitting the evaluation cycle into slices consuming a finite

(preferably short) time, hence the term sliced evaluation.

The term slice refers to the smallest indivisible phase in

the course of an S-expression evaluation. Context switching

is only allowed between slices. During the evaluation cycle,

the split slices are threaded together by the technique of

continuation [Allen78].
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In the read-eval-print cycle of a LISP interpreter, a

form is read, evaluated by the evaluator eval and then

printed to the output stream. The steps involved in the

evaluation of the form can be simple or complex. In the

simplest case, the form is just a constant or an atom, and

the constant or the value of the atom is simply returned. In

case that the form is special, it will be handled by the

system in a special way. The arguments may or may not be

evaluated and evaluation may occur before or in the course of

the computation. The form may also be a system call or a

built-in function application. Then the arguments are

evaluated and passed to the corresponding routine. It is

possible for the system call to be sliced. For example, in a

P operation (semaphore operation), the calling process may be

suspended and later resumed. The mapcar function must also

be sliced because of its long execution time.

Quite often, the form is a user-defined function

application. The four phases in a typical function

application are to be carried out and are split into slices.

There is a continuation field associated with each slice,

indicating what the next action is. At the end of each

slice, the continuation field is updated. A phase may be

simple, such as fetching the lambda definition of a function.

It is indivisible and constitutes a slice. A phase may also

be complex, such as evaluating the arguments presented to a

function application. The evaluation of arguments can be
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split into a sequence of evaluations. Each of them involves

the evaluation of a form and is itself an evaluation cycle.

A further split is then necessary.

A stack is maintained to hold the intermediate

configurations during evaluation. After executing a slice,

the current context has been saved on the stack and the

interpreter can continue to execute the process by taking the

action indicated by the continuation field. If the time

slice for the process is used up, the interpreter just turns

its attention to and services another nrocesq_

The evaluator is defined as a function vc-eva1-l oop. It

dispatches the current task to the appropriate executor

function according to' the continuation field. The nature of

the task dictates a direct execution or a split into a

sequence of smaller tasks. Control is then yielded back to

vc-eval-loop and the cycle is repeated indefinitely. The

complete evaluation of an example is shown in appendix B.

4.3.3 Process Scheduling

A VCLisp process is represented by a structure containing

such slots as process descriptor, process body, lexical and

dynamic environment, argument list, partial result and

continuation field. The context of execution is reflected by

the dynamic environment, argument list, partial result and

continuation field.
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The process scheduler maintains a process list and a

dispatch list. The process list contains all the processes

in the system whereas the dispatch list contains the list of

processes ready to be dispatched. Each process has its own

process descriptor recording its status, resources consumed,

remaining time slice and the like. When the evaluator is

free, the first process in the dispatch list is dispatched.

The evaluator function is then called with the process as

argument. This process is executed until its time slice is

used up or an exception occurs. It is then returned into a

suitable position in the list, and the next process is

dispatched.

When a process control function such as create is

executed, the status of the appropriate process, and possibly

the dispatch list, are modified. The process being

interpreted may be suspended as a result, like the execution

of a suspend operation. Communication and synchronization

primitives can also affect the process status and scheduling.

For example, •a P operation on a semaphore may cause the

calling process to be suspended and queued at the semaphore.

All these process related operations are handled by the

interpreter and the scheduler.

4.3.4 Icons and Interfaces

In the prototype, icons are created by the IE.

Constrained by terminal resolution and implementation

complexity, icons are assumed to be composed of a matrix of
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32 by 32 dots. The actual appearance is the same as the one

shown in figure 4.3. The bitmap for the icon is stored in

one file and the control information like the name, and

logical operation are stored together with the drawing

procedure in another file. The- system of icon i s handled by

an icon manager with which the programmer can perform

operations (figure 4.6). However, the deletion of an icon is

dangerous because the dangling--pointer problem poses a severe

threat. Consistency checking can be performed but this is

slow and tedious, as all functions and object classes must be

examined in detail. as well as the contents of symbols in the

environment, which is even more disastrous.

useddelete

Inactive

save

activate deactivate

not used L

edit/replace

activedelete

Figure 4.6 Operations on Icons

A symbol can be identified by name or by icon. Thererore

the mapper must hold both attributes. The wildcard notation

? is used to match the unknown part. Entries in the mapper

tables are updated when the remaining part of the pair is

known. As a special arrangement, local variables and
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parameters are treated differently. Since these symbols are

local symbols, their effects to the mapper tables should not

be permanent and their associated entries are deleted after

translation.

The interaction between VCLisp and the programmer is made

via the user interface process and the system console.

Keyboard inputs are interrupt driven. Processes are selected

by means of window and mouse selection. Mouse inputs and

menus are supported in certain system applications such as

the icon editor.

4.3.5 Concluding the Prototype

After implementing the prototype, a few applications are

developed. Some of them are presented in chapter 7. As a

simple benchmark, it is found that the prototype runs at an

order of magnitude slower than an ordinary LISP environment

because of the need of multi-threading and the simulation of

LISP data structures and operations in terms of the language

LISP itself. The management of icons and mouse interrupts

also burden the VMS system with extra workload, further

reducing the run time efficiency. Nevertheless, with

dedicated multi-processor machines and well-developed VCLisp

interpreters and compilers, it is highly possible that the

prototype runs at an order of magnitude faster than on an

ordinary LISP machine!
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5.1 AN OVERVIEW

The object-oriented layer is built upon VCLISP. Central

to this layer are classes and autonomous instance objects

connected together as a network. Object methods are defined

in the form of LISP functions, with the same flexibility of

LISP functions. Attributes and methods are selectively

inherited from parent classes. A network topology is allowed

so that a class can have more than one parent classes,

resulting in multiple inheritance. User-defined relational

links connecting different classes govern the rule of

attribute and method inheritance. Interobject communication

is carried out by means of message passing. Two message

passing mechanisms, explicit and implicit, are provided.

Furthermore, the notion of concurrent processes is unified

with the notion of objects. A special type of object,

denominated function modularization object, serves as the

interface to the VCLISP environment.

The network of objects is shown in figure 5.1.
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Object1

Is-a Is-a
Is-a

User-SystemLISP-
Function Object Object

Is-a Is-a Is-a Is-aIs-als-a

User- User-RelationIconWindow VehicieRFMO stack

Is-a
Instance Instances-tmo-1

FMO-1
val-stack op-stack

Figure 5.1 The System of Objects

The inheritance graph is made up of three subgraphs, each of

which is responsible to its own system functionality. The

subgraph rooted at LISP-function contains all the intrinsic

(system defined) functions of LISP. The child user root

function modularization object contains all user-defined

global LISP functions accessible to all objects.

System-object is the parent class of all system objects

provided by the object-oriented layer, such as windows,

relations, and icons. These objects are vital to the proper

functioning of the object-oriented layer. The network of

objects rooted at user-object is created entirely by the

programmer. This collection of objects constitutes the

object program specified by the programmer.
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5.2 ELEMENTS OF THE OBJECT-ORIENTED LAYER

In this section, we will take a closer look at the

various features of the object-oriented layer.

5.2.1 Obect

The definition of an object instance is contained in its

class, which serves as a mould for creating instances. A

class is composed of three sections: identification section,

attribute section and function definition section. As an

example, the definition of a class called node is shown in

figure 5.2. It is also part of the application on binary

tree manipulation to be discussed in chapter 7, where a full

narration on the definition of node is presented.

A ttribute-SectionIdentification-Section

Class-attributes Instance-attributes

Function-Definition-Section

BodyPrivate-methods

laltlalluf

Figure 5.2 The Class Node

Instance-methods Socket-methods
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The identification section of a class contains the icon

which identifies that particular class. There are two kinds

of attributes, class attributes and instance attributes, to

be defined in the attribute section. An attribute is a slot

in which a value, an object name or an object pointer can be

stored. An object pointer is the means of identifying and

accessing another object, though an object may be referred to

by its name. The function definition section is composed of

four subsections: private methods, instance methods, socket

methods and body.

A class attribute is an attribute shared among all

instances belonging to that class. It is accessible to all

of them and serves the purpose of a global variable of

limited scope (not accessible to instances of non descending

classes). An instance attribute is private to an instance.

Every insta4ree belonging to a class has its own copy of the

attribute, which is only accessible to outsiders via the

protocol of the object. An instance attribute can be either

manual or automatic. Accessor functions) for an automatic

attribute are defined automatically by VOCOL, analogous to

the automatic definition of access procedures for a LISP

structure. In this way, the programmer is relieved of the

burden of having to define many accessor functions as the

protocol. For manual attributes, accessor functions must be

1 Accessor functions come from the concept of access procedures (Winston891 in data abstraction.

Constructors create new data objects selectors retrieve stored information in these objects mutators

modify their stored information. The three of them comprise the set of access procedures. In YOCOL,

accessor functions are composed of selectors and mutators. No constructor is needed for object

attributes which are defined explicitly in the definition of the object class.
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defined explicitly. Thus the programmer is able to control

the amount of privileges granted to other objects. A manual

attribute without any accessor function becomes a private

attribute. An instance attribute can also be either

inheritable or noninheritable, stating whether the instance

is inheritable to child classes.

The various methods in an object are VCLisp functions

capable of performing some computations. The arguments to a

method can be LISP objects or object pointers and the method

body is the same as the function body of a VCLisp function.

According to the method access mode, methods can be divided

into private methods, instance methods and socket methods,

all of which are under the function definition section. The

private methods of an object are those used internally only.

They are never accessible to other objects. The instance

methods and socket methods constitute part of the external

protocol of the object, the remaining portion being automatic

accessor functions. Instance methods are invoked by explicit

messages and socket methods by implicit messages. They will

be discussed in section 5.2.3.

Finally, the last subsection of the function definition

section is the body which is a sequence of VCLisp

S-expressions. The body of an object is the code section of

a process encapsulated by the object. Viewed in another way,

an object with a non-empty body is a process integrated with

protocols for communication with other objects. Objects in

VOCOL are active.
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A class is defined by means of the class editor (CE),

which is a structured editor similar in structures and

functions to the VFE. The programmer can fill in the

templates with appropriate attributes. Methods can be

defined with the VFE but in the context of the CE. Extra

message passing primitives and object concepts are then

available.

5.2.2 Relation and Inheritance

In an object-oriented environment, there exist relations

among various objects. In VOCOL, all relations are binary.

They describe the relationship between two objects only. An

instance object must belong to one and only one class,

through the instance relation. This classification is

natural and trivial. The relationship between two classes is

often of a hierarchical sense, such as the subclass relation

in Smalltalk. In VOCOL, the equivalent relation is-a is

defined as a built-in relation. In addition, the programmer

can define new relations for connecting classes together,

drawn as directed edges. Thus the representation of classes

and their relations becomes a network topology or a digraph

and this representation is called the system graph (figure

5.1).

The relationship between classes has an impact on the

inheritance mechanism- what properties the child class can

assume from its parent. In VOCOL, a class can have more than

one parent class. In the terms of object-oriented
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programming and in the context of inheritance, this is

referred to as the multiple inheritance phenomenon. The

child class is eligible to assume the existence of attributes

from its parent classes according to certain rules, to be

governed by the relations between the classes. These rules

are used to resolve conflicts among inheritable attributes

from different parent classes.

In the system graph, each user-defined relational link

between two classes is itself an instance of a descendant

class of the class relation. Therefore, a relational link

inherits all the attributes of relation. As an instance, it

can have an iconic appearance or a name. The attributes in a

relational link are used to control the behaviour of

inheritance. The attribute priority determines the order of

method searching. A sequence of nodes which depicts the

order will be generated according to the breadth first

algorithms.

The Breadth First Al Qori thins

Simple breadth first search is adopted based on the

value of the priority. The sub-branch with higher priority

is explored before the others. No total ordering on all

nodes at the same level is attempted. For example, in

figure 5.3, the search order will be:

<level 0> A

<level 1> B
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<level 2> F,G,E,I,H (the parents of B are searched in

preference to parents of D and C)

<level 3> J.

The rationale is that the nearer ancestors should be giver

greater weights as they are related more closely with the

object concerned. The first applicable method encountered

is considered the candidate to be applied. Priority values

range from 0 to 255 and the built-in relation is-a has a

priority of 128, a median value. This rule is called the

breadth first only (BFO) algorithm.

Message

Figure 5.3 A Network of Object Classes with Priorities

The BFO algorithm is a counterpart of the breadth first

join (BFJ) algorithm, which assumes an acyclic digraph
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The different branches to be searched reunite gradually and

they must be synchronized with one another at those joints,

such as the nodes G and H in figure 5.3. In the figure,

the search order will be:

A,B,D,C,F,E,I,G,J,H, assuming that J has only sons of

low priorities.

Here, the joint H is synchronized and visited after its

children J and D.

In fact, both algorithms BFO and BFJ can be merged into

the algorithm breadth first search (BFS):

1. put the node where the search is originated in a list,

2. pick up the first unmarked node in the list,

3. mark the node,

4. arrange all the children of the nodes according to

priority in descending order,

5. append the list of children to the tail of the list,

6. repeat steps (2) through (5) until all nodes in the list

are marked.

After applying the algorithm BFS, a list of nodes is

obtained at step (6). The sequence for the BFO algorithm

is the list with all duplicate nodes removed, keeping only

their first occurrence. The sequence for the BFJ algorithm

is obtained in much the same way, except that only the last

occurrence of duplicated items is retained. The list of

nodes generated by BFS on figure 5.3 is
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(A,B,D,C,F,G,E,I,H,H,G,J,H,ancestors of J). Notice how

this list reduces to the BFO and BFJ sequences stated

above.

The BFJ algorithm works better and in a more consistent

way when the system network is an acyclic digraph, because

synchronization occurs at joints and the inheritance pattern

is more natural and structured. On the other hand, in graphs

where there are cycles, it is more natural to utilize the BFO

algorithm. In VOCOL, the BFJ algorithm is adopted by

default, unless specified otherwise.

In consistent with method searching, the set of

attributes inheritable to a class is determined by the

add-list and remove-list attributes, ordered by priority in a

breadth first manner (with the BFJ or BFO algorithm). The

set of attributes inherited to a class is the set of

inheritable attributes in the parent plus attributes dictated

by the add-list less attributes designated by the

remove-list. The order of the operations is determined by

the attribute order. By default, a child class can inherit

all attributes marked inheritable from its parent classes

when their relationship is is-a. An example of the

definition of some relations and their usages are shown in

figures 5.4 and 5.5.
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to betkdoorattributeRalaties

A

Is-aIs-a Is-a

Instippy: Is-a

BRovision Is-a-m
as backdoorattribata

by(Attributes)
romsts Clistpriority: 160

Instanceadd-list: all is-ainstance
romate-list: (backdoor)
order: add-first

ED
wantto iaborit backdoorravision-

Figure 5.4 Definition of Figure 5.5 A Usage of

Relations Relations

Two child classes of Class A (say, small-car)

Relation have been defined does not have a backdoor

revision and is-a-m. An attribute but B (say,

instance of revision can be Civics-80) does. Class D

used to relate two classes (say, those Civics-80's sold

in Hong Kong) and otherin which one is the revision

of the other. For instance, child classes of B wish to

Civics-82 (an imaginary

Class C (say, Civics-82) isbrand of car) is a revision

a revision of B and has noof Civics-80. We then use

backdoor attribute. A valuethe relation revision-c, an

Df zero is not desirable.instance of revision, to

Furthermore, we want torelate them, with Civics-80

guarantee that the attributeas the parent. The relation

is not inheritedhas priority 160, empty

inherit this attribute.

tevision-c
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add-1ist and remove-list automatically. Thus B

with attribute backdoor. removes the attribute from

Inheritable attributes to the inheritable set to C

child class are those of the through the use of remove-

parent class with backdoor list in revision-c.

removed and Civics-82 will

have no backdoor attribute

even if Civics-80 has.

The system graph is maintained by means of the system

graph editor (SGE), with which the programmer can change the

connections between various classes. He can also change the

relation and the associated attributes between two classes.

A change in the system graph often causes a change in the

inheritance lattice. The recomputation of inheritable

attributes is therefore necessitated.

5.2.3 Message Passing

The execution of an object program is reflected by

interobject communication, which is achieved by means of

message passing, as in interprocess communication. There is

a variety of message passing mechanisms, formed by the

combination of various message passing behaviours:

synchronization (wait/no wait), threading, reply, and naming.

A message can be synchronous or asynchronous [Andrews83).

The sender of a message waits for the completion of a

synchronous message before proceeding. The sender of an

asynchronous message can proceed after sending a message,
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regardless of the status of the receiver. A multiple loci of

execution may or may not be created through the sending of a

message. The receiver may or may not be terminated at the

completion of the message. A message can optionally return a

value (reply). The sender and receiver can be named directly

or indirectly. For example, the remote procedure call

mechanism in Smalltalk is synchronous, single thread all the

way, replying, direct naming the rendezvous in Ada is

synchronous, no division of threads, nonreplying, indirect

naming the future in ABCL/1 [Yonezawa87] is asynchronous,

single then multiple and then single thread, replying, direct

naming.

In VOCOL, two message passing mechanisms are defined:

explicit and implicit. Explicit message passing is an

one-way consent, two-way communication whereas implicit

message passing is a two-way consent, one-way communication.

In explicit message passing, the sender can send a message to

a receiver. A result is generally returned. In implicit

message passing, both the sender and the receiver must agree

(mutual agreement) on a type which identifies the

communication channel through which a message is sent. No

result is required to be returned.

Explicit Message Passing

Explicit message passing mechanism bears much similarity

to the message passing mechanism in Smalltalk. An object is

actually making at remote procedure call when it sends an
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explicit message to another object. To send an explicit

message, an object makes the function call

(send-message receiver-object method argument-list).

When an object is sent an explicit message, it checks its

protocol for the existence of the method designated by the

message. If the method is found, it is invoked. Otherwise,

such a method is sought among the parent class chains ordered

by priority with the breadth first algorithms until one is

found. An error will be signalled if none of the inheritable

methods of that particular object is applicable. The

invocation of the designated method is catered for by a new

thread whose life span is the same as the computation covered

by the method. The sender then suspends itself waiting for

the reply of a synchronous message. In the asynchronous

case, no reply is expected. The value returned by a method

is either an object pointer or a VCLisp entity, which can be

used in the assignments of attributes and variables.

The receiver of a message can be a pseudo-object. A

pseudo-object is the name of a special variable which denotes

a context-dependent object. For example, the pseudo-object

self when referenced by object A denotes object A but it

denotes object B when referenced by object B. In VOCOL, the

pseudo-objects self, super and sender are recognized. The

pseudo-objects self and super are very similar to the

corresponding pseudo-variables self and super in Smalltalk.

Self refers to the object itself whereas super refers to the

parent class (superclass) of the class where the applicable
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method is found. The mechanism for super is to cross the

boundary of the applicable method to a more general one.

Sender can be referenced by the receiver of a message in case

that the receiver acts as an agent on behalf of the sender of

the message. With sender, the receiver is able to identify

who the message sender is and take the appropriate actions

for it.

A message is normally sent to an object instance but a

class can also be a receiver. A class can recognize the

special message make-instance by creating a new instance of

it and sending the instance the message initialize. The list

of arguments from make-instance will be handed over to the

message initialize. When a class is sent a message of other

type, the net result is equivalent to a sequence of actions:

creating a new temporary instance invoking the method

designated by the message killing the instance and passing

back the returned value. This arrangement is to limit the

effect caused by the message. All changes are local within

the temporary instance, except for a change in the class

attributes, if any. Furthermore, it is in consistent with

the responses of FMOs (section 5.2.5).

So far we have only discussed sole message receivers:

instance and class. In fact, a message can be broadcast to a

collection of objects. A broadcast of message is effected by

(broadcast rec-objects-or-cl asses method argument-list).
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The first parameter of broadcast can be a list of objects who

will be sent the same message concurrently. When a class

receives a broadcast message, the message is redirected to

all instances of the class. A wildcard receiver allows all

instances in the system to be sent the same message. It must

be pointed out that broadcast is asynchronous and there is

not any reply.

Implicit Message Passing

Implicit message passing involves the concept of plug and

socket. Let us take a glimpse at electrical outlets

(sockets) and plugs in our daily life. There are many types

of plugs and sockets. Some are big and some are small. Some

have three pins and some have two pins. Some have

rectangular pins and some have circular ones. They differ in

shapes and only those with the same shape can be used

together. The same concept has been adopted and formulated

in VOCOL, in which object instances are capable of creating

and destroying plugs and sockets dynamically.

A plug is composed of a type and zero or more slots.

Each slot corresponds to an attribute. The plug is

identified by the type, either in the form of a name

(symbolic name) or a shape (an iconic appearance of the

plug). In addition to the slots, it has also a list of

arguments known as the message packet. A socket is also made

up of a type and zero or more slots.
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When we say that a plug matches a socket, we mean the

shape and the contents of all slots in the plug are matchable

with those of the socket. The use of a wildcard value is

allowed for the matching purpose. In case of multiple

possible matches, one of them is selected with the best match

criteria to be discussed later. When a plug matches a

socket, a communication channel is established. The

corresponding socket method is invoked with the content of

the message packet as method parameters. The term implicit

message passing refers to the course of message packet

transfer and method invocation. After the matching

procedure, both the matched plug and the matched socket are

removed to disable further implicit message concerned with

them. No reply is expected and the mechanism is

asynchronous. A new thread is created for the execution of

the socket method.

In parallel to the broadcast mechanism in explicit

message passing, a multiple number of plugs and sockets can

be created at one time, causing a multiple number of implicit

messages to be sent. When a multiple-plug is created, the

owners of all matchable sockets will be sent the same

implicit message with the message packet. Similarly, when a

multiple-socket is created, each matchable plug will cause an

implicit message to be sent to the destined object, resulting

in a very high degree of parallelism.

Plugs and sockets are created and destroyed dynamically.

A socket method will never be invoked if the instance does
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not create a socket for it even though it has the associated

socket method defined. Conversely, a socket is invalid for

an instance if no associated socket method exists. In either

case, an exception is raised.

The Best Match Criteria

The matching between a plug and a socket is determined by

the best match criteria. A plug and a socket with different

names are never matchable. Similarly, a plug and a socket

with different number of slots are never matchable. In

addition, a plug and a socket are not matchable if any pair

of their attributes does not match. All the other plug and

socket pairs are candidates for matching. The best matched

pair (BMP) is trivial when there exists a candidate with an

exact match of slot values without wildcard attributes

between the plug and socket. The one with more attributes is

preferred in case of conflicts. If such a candidate does not

exist, the best match algorithm is applied to determine the

best one.

Before presenting the best matcn algorithm, let us cterine

a few terms. A single wildcard matching (SWM) between a plug

and a socket is a matching of the content of a slot of the

plug and the corresponding slot of the socket when one of

them is a wildcard and the other is a known attribute. A

double wildcard matching (DWM) is a matching between the two

slots, both of which contain wildcards. The degree of

mismatch is measured by three quantities: total number of
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DWMs, total number of SWMs and total number of attributes.

The pairs with the most number of DWMs are the worst. Pairs

with the same number of DWMs can be further differentiated by

checking the number of SWMs. Those with more SWMs are worse.

When both DWMs and SWMs are the same, the pairs with the

least number of attributes are worse. In the criteria, DWNI

has priority over SWM because a DWM implies a possible match

in the second order2 but a SWM implies a match in the first

order only. A better matched pair should be a more

constrained one.

Concluding the criteria, we have the best match algorithm

formulated. First of all, we transform the three quantities

into a 3-tuple of the form (-DWM, -SWM, attributes). Define

the relations greater and equal on the tuples.

The highest rank tuple on a set of

2 The second order match is similar to the unification or two uninstant]ated variables in Nrolog, In

which the value is still indeterminate, whereas the first order match is the unification of an

uninstantiated variable with an atom or structure, in which exact substitution is found.
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A list of n
is ordered iff

lne ordered sequence for the tuples reveals the candidates

for the BMP. The tuples with the highest ranks are the best.

In case of multiple BMPs with the same highest rank, one of

them is selected arbitrarily. The trivial case is also

embedded by this formula. With zero DWM and zero SWM, those

candidates must rank first because the first two elements can

never be positive.

Furthermore, no explicit sorting is needed because only

the highest ranking tuples are required. A list may be used

to store the partial result for the best ones at hand. As a

result, this algorithm is of 0(n) and is quite efficient

(most unification algorithms, such as [Rich83 Wise86] are

0(n2)). In this way, a simple pattern matching capability is

supported. Although this feature is not as powerful as the

unification algorithm in Prolog, it is easily implemented

without much sacrifice in complexity and efficiency.

5.2.4 Concurrent Process

In VOCOL, each object instance can behave in the way of a

process. This is accomplished by defining an object with a

non-empty body. When an instance of a class is created and

activated, the sequence of code embraced in the body is

executed as a concurrent process. System calls to process

management operations in VCLISP are available with similar
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semantics.The process aenotecL by the body is suspended when

sleep is encountered. Sleep is a combination of suspend and

resume. When a process goes to sleep, it suspends itself.

It is awaken by a message. In that case, the message is

serviced and the process is placed back in the ready queue.

When the body code of an object instance finishes execution,

the instance is not removed from the system but sleeps

indefinitely instead. Conceptually, it remains dormant until

a message comes in. It then services the message and sleeps

again. An object instance is only removed by explicitly

killina the instance.

We may view an object instance to be composed of data

part, protocol part, and process part. The process part

obeys semantics of VCLISP processes. At the end of the

process body, we can regard the process denoted by the

process part as having terminated. However, since objects

are non-volatile entities, the data part and the protocol

part still remain, giving the illusion that the object

sleeps indefinitely.

With the concept of concurrent process and process body,

objects unify data structures, procedures and processes. At

one extreme, all objects in the environment have empty bodies

and a purely object-oriented environment is resulted. At the

other extreme, object bodies contain extensive amount of

codes, ending with the operation kill. In this manner, the

system becomes a typical multi-programming environment.
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Quite often, the system contains an intermix of both of them,

in various states of execution, corresponding to a typical

VOCOL environment.

5.2.5 Function Modularization Object

Function modularization objects (FMOs) are descendant

classes of the system class LISP-function. A FMO is a class

without any instance, instance method, socket method or body.

It is a module containing a number of encapsulated functions.

We can imagine a FMO to be a package and the bundle of VCLisp

functions as instance methods though it is meaningless to use

the term when instances do not exist. A child class of

LISP-function is the user root function modularization object

(user-RFMO) which is the ancestor class of all other FMOs.

All these FMOs and LISP-function constitute the interface to

the visual LISP layer. VCLisp functions contained in a FMO

can be invoked by sending it a message and the programmer

just regards the FMO as a class receiver. At the completion

of the function specified by the message, the temporary

instance is destroyed. VCLisp functions in FMOs can be

defined to be internal or external. Only external functions

are visible to outsiders. Internal functions can never be

imported by other FMOs.

All VCLisp intrinsic. functions (system functions) are

defined and bundled in LISP-function. This FMO resembles the

structure of the package lisp whereas the package user is

contained in user-RFMO. By default, VCLisp functions defined
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in the object-oriented layer by the programmer are added

directly to the user-RFMO. All user-defined VCLisp functions

in the VCLISP layer are necapsulated in user-RFMO as well.

In addition to message passing, a direct invocation of VCLisp

functions is allowed, and the syntax is the same as any other

LISP function application. The function call can be prefixed

by a class name of a FMO, of a similar syntax to the

nomenclature of a packaged symbol. In the absence of a FMO

prefix, these function calls are directed to the user-RFMO.

The search for the applicable method follows the rules of

inheritance described in section 5.2.2. Since LISP-function

is a parent class of user-RFMO with a median priority 128,

the programmer may let user-RFMO inherit from LIST-function

such that if the function is not user-defined, try whether it

is a system function. This search can be continued if there

exist other FMOs until the whole subgraph rooted at

LISP-function has been attempted.In this way, FMOs provide

a means of access to the VCLISP environment with a functional

hierarchy.

There are slight differences between the two mechanisms

of accessing and using LISP functions. The direct

application of LISP function will be performed in the context

of the caller. This means that the function definition is

executed in the caller's environment, with full access to its

name space. However, sending a message to a FMO will cause a

"temporary instance" to be created and the method is executed
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in the context of the instance on behalf of the message

sender. The effects of the method execution are localized to

the receiver FMO.

Packages in LISP can be used to organize large LISP

programs into modules of manageable sizes with fewer

interactions. However, name conflicts and indiscriminate

uses of import and export tend to render a LISP program

complex. Organizing VCLisp functions into FMOs serves to

limit such effects. When an FMO is related by an is-a

relation to another, the effect is similar to the using of

the parent class package, functions in the child class have

priority over parent classes. The unrestricted uses of

import and export can be relieved.

5.3 OBJECT-ORIENTATION ON VCLISP

VCLISP is a stand-alone programming environment

supporting the visual, functional and concurrent paradigms.

The object-oriented paradigm delineated in VOCOL is developed

on VCLISP. The architecture of the object-oriented layer

built upon VCLISP can be shown in figure 5.6.
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Figure 5.6 The Object-oriented Layer

This layer has a direct relationship with the VCLISF

layer and there are interactions between them. The class

editor (CE) must communicate and exchange information with

the visual function editor (VFE), the mapper, and so on for

the proper functioning. The object-oriented layer user

interface process accepts and processes user requests. It

invokes the CE to manipulate a class definition and the

system graph editor (SGE) to maintain the system graph

topology which governs the inheritance among object classes.

As a new class definition is created, a process for the class

will be created automatically to cater for the creation and

management of its instances. When the system graph is

modified by the SGE, the system configuration manager (SCM)

keeps track of the new topology and makes appropriate changes

to system information, possibly resulting in a recomputation
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of the inheritance lattice. These components keep in close

contact with the icon editor (IE), VFE and mapper to assure

proper system functionality.

In VOCOL, the access of instance attributes and class

attributes occurs in context. This means that the programmer

can just use the attribute name in an assignment statement

and it is the duty of the CE to replace the access with the

appropriate attribute access functions like set-inst-attr and

get-class-attr. This serves to provide the programmer with a

simpler view with names and as a result, the name spaces for

objects and LISP symbols are not distinct.

The special process named message centre (MC) monitors

and controls the traffics of object level message passing.

Every message sent in the object-oriented layer is redirected

to the MC. Message related activities such as make-plug and

make-socket are also directed to the MC. The MC takes the

appropriate actions according to the message type. With the

aid of the SCM, the proper receiver of the message is

searched and the message is then sent to the receiver

object(s). Reply destination is also included if the message

dictates a reply. Operations concerned with plugs and

sockets are examined by checking whether there is any

matchable pair. The owner-of the socket of the best match

pair is then sent the implicit message, after sending

messages to the MAs of the owners to remove their plug and

socket.
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Each instance is established as a process augmented with

a message agent (MA) coprocess. The MA accepts incoming

messages, queues them up and creates coprocesses to execute

the designated methods. A reply is also handled by the MA

during the creation of the coprocess, by appending a send

operation at the end. Serialization is enforced by mutual

exclusion. This ensures that a method excited by an incoming

message can be serviced only after the completion of the

previous one.

The class process also has a message agent to deal with

the creation of new object instances, new processes with the

associated code segment and MA coprocess. The MA for the

class process is able to determine the effect of receiving

the message sent to a class receiver and the appropriate

action taken. as described in section 5.2.3 above.

The system console provides the familiar functionalities

of system monitoring and performance tuning. The operator is

able to take the appropriate measures when the execution of

the system gets into stuck, such as a deadlock in the

processes denoted by the object instances.
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APPLICATION LAYER

6.1 PROGRAMMING TOOLS

To complete the design of VOCOL and to enhance itS

capabilities, tools which can assist programmers to develop

programs are provided in an extra layer built upon the

object-oriented environment. They are to be equipped with a

variety of such tools. In addition, this layer serves the

purpose of demonstrating the flexibility and usefulness of

the environment.

In this chapter, two possible applications are considerd

and discussed. The first one is a Prolog interpreter and t second one is an expert system shell.

6.2 PROLOG INTERPRETER

Prolog is an elegant logic programming language. It

would be an advantage to the programmer if he is able to

write logic programs. The implementation of a Prolog

interpreter is quite straightforward, with a unifier and the

appropriate unification algorithm. It would be more

advantageous if the inherent parallelism in a Prolog program

can be exploited. Since the VCLISP and the VOCOL

environments allow a high degree of parallelism, we would

second one is an expert system sgell.
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like to explore the ways of mapping parts of the inherent

parallelism in a Prolog program into the notions of objects

and processes in VOCOL. This is the purpose of this section.

The semantics of ordinary (sequential) Prolog rely

heavily on the sequential execution of clauses and subgoals.

The execution order of the alternatives of a goal in a Prolog

program is a determinant to the correct behaviour of the

program. The control primitive cut also assumes a sequential

execution. Slight modifications must be made to the syntax

and semantics of Prolog to allow for the possible parallel

execution of a Prolog program. Notations to express parallel

computation must be defined and mechanisms to enforce the

necessary sequential computation and to replace the cut

primitive must be provided [Wise86 Gregory87]. As a result,

different parallel Prolog languages are defined and systems

for their execution are implemented.

There are many types of parallelism in a Prolog program.

Some of them are static and some are dynamic. Static

parallelism is easier to exploit by analyzing the static

structure of the program. Dynamic parallelism depends on the

run time instantiations and the detection algorithm creates a

substantial overhead. The simplest form of parallelism is

the OR-parallelism among clauses with the same predicate head

and arity. All the alternatives of such a head can be

explored in parallel. The set of solution is the union of

solutions yielded by these alternatives. Independent and

all-solution AND-parallelism (Gregory87] can also be
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exploited within the subgoals of a clause. Subgoals

exhibiting these AND-parallelism can be unified

simultaneously. The sets of bindings obtained from the

subgoals can then be joined together to produce the set of

bindings for the underlaying clause, or obtained through

pipelined producer and consumer processes (the generate and

test strategy). Examples of the forms of parallelism are

shown in figure 6.1.

p (X):- q (X). p (X):- q (X), r (X). p(X):- q(X), r(Y),

P (X):- r (X). s (X, Y).

p(X):- s(X).

independent

all--solution AND--parallelism

OR-parallelism AND-Darallel ism (q and r)

Figure 6.1 Some Forms of Parallelism in a Prolog Program

The most natural scheme to represent the parallel

execution of a Prolog program is the AND/OR process tree, an

example of which is shown in figure 6.2 with query p(X). In

a AND/OR process tree, only the leaf processes can be active.

The internal nodes are suspended processes waiting for the

reply from their children. They can be marked AND or OR.

The exploration of the OR-parallelism results in the creation

of an OR-process with each alternative made into a child

process. The subgoals within a clause leads to the creation

of an AND-process with the head as the parent and the subgoal

processes as children. The granularity in this scheme is,

however, very fine.
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OR
p(X):- q(X), r(X).

q(X):- s(X).

q(X):- t(X).

r(a). AND

s(a).

s(b).

t(a).
OROR

r(x)

ANDAND
AND

q(X)

OR OR OR

AND ANDANDAND
s(a) s(b)

Figure 6.2 AND/OR Process Tree

A possible scheme to implement a parallel Prolog

interpreter on VOCOL is to define a class for each clauses

with the same predicate head, corresponding to the static

structure of the Prolog program. For each dynamic invocation

of a goal or subgoal, an instance of its class is created.

Then messages are sent to self to initiate a method

(coprocess) for each alternative of the goal. This

corresponds to the OR-parallelism among alternatives. For

each subgoal, if the resources are still available, a message

is sent to the class of the subgoal to make a new instance of

it. After receiving the reply of binding, the binding is

passed to the next subgoal. The coprocess in charge must

report a failure or the current set of bindings to its parent

at the end of the clause. When all alternatives have been

p(X)

p(X)

q(X)

q(X)
r(X)

t(X) t(X) t(X)

t(a) r(a)
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tried, the coprocess is terminated and the result is reported

back to the parent through the lexical environment. In this

way, an OR-process corresponds to an instance of the class of

the goal predicate. The AND-processes are replaced by

coprocesses within the process represented by the object

instance. An alternative scheme is to let each alternative

be an instance and hence associated with a process, in much

the same way as a dframe in EPILOG [Wise86]. Back-

unification then takes place to hand back the list of

bindings. A third scheme is to use coprocesses throughout,

to effect the AND/OR process approach. Coprocesses have the

advantage of a shared lexical environment so that it is not

necessary to pass the result back and forth.

It must be pointed out that the granularity greatly

affects the amount of parallelism available and run time

efficiency. Too fine a granule will burden the system with

excessive communication and process management overheads.

Too coarse a granule will wipe out the inherent parallelism.

An optimal grain size has yet to be determined. Algorithms

to detect independent AND-parallelism and other forms of

parallelism can be defined in the root class Prolog for code

reusing, utilizing the inheritance capability of an

object-oriented system. Extra control mechanisms are needed

to enable the joining -of partial bindings from the

independent subgoals and to effect the pipelining of partial

bindings. To prevent the system from being cluttered with

object processes, explicit control strategies such as thread

management should be adopted.
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6.3 EXPERT SYSTEM SHELL

Expert systems find their applications in a wide variety

of fields, such as medical diagnosis, risk analysis, and

circuit design. Among these applications, one is automatic

programming. Expert systems to build programs have been

designed and implemented. With an expert system shell as a

tool, it is ready to explore such a possibility.

There are many ways to design an expert system. An

alternative to the classical model exemplified by MYCIN is

the blackboard model [Engelmore88]. A blackboard framework

(shell) is a specification of the components of a blackboard

model or its implementation. In a blackboard model, there is

a global storage called the blackboard and some autonomous

knowledge sources. Each knowledge source (KS) is itself a

knowledge base with the associated inference engine.

Knowledge sources cooperate together to work towards the

solution by putting their findings on the blackboard, which

is accessible to all the knowledge sources. Partial

solutions are produced in the form of islands, which tend to

merge together into larger islands, in a similar manner to

the solution of jigsaw puzzles. Blackboard systems are

particularly suitable to problems with continuous input data

stream and to evolutionary systems.

Expert systems can be built on expert system shells and

blackboard systems are built on blackboard frameworks. A



92

APPLICATION LAYER

blackboard framework is made up of three components: the

knowledge sources, the blackboard data, and the control. A

typical framework is depicted in figure 6.3.

blackboard

control
controldata

control flow

data flow

Figure 6.3 A Blackboard Framework

A KS reads the blackboard and updates it

opportunistically if the knowledge is applicable and the KS

has obtained the permission from the control module. The

blackboard can be partitioned into panels or into layers to

hold hierarchical or structured knowledge pieces. At any

given time instant, several. KSs may be possible to-contribute

to the solution. The control module then arbitrates among

the KSs involved. Control focus can be KS-centred,
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blackboard-centred, or mixed and strategies can vary,

according to control data, which is part of the blackboard

generally not readable to KSs.

In a blackboard model, the inference engine is

distributed among the KSs, leading to greater flexibility. A

great deal of parallelism is inherent in the autonomous KSs.

The control module, which governs the behaviours of the

resulting system, is programmable with complex strategies.

This dynamic control adds to another dimension of

flexibility. A hybrid knowledge base may be used and a mixed

strategy may be adopted.

The blackboard model can be used to generalize simple

inference mechanisms. The forward chaining OPS5 can be

viewed as a rudimentary blackboard system. Each KS is an

OPS5 rule. The control module is the conflict resolution

module and the blackboard corresponds to the working memory.

The control focus is blackboard-centred. The firing of a

production rule involves the matching of the preconditions.

This procedure can be carried out by the autonomous KSs

monitoring the blackboard. The step of placing all matched

rules in the conflict set is equivalent to the notification

to the control module raised by the involved KS. The control

module runs the algorithms of conflict resolution (LEX or

MEA) and activates a KS, corresponding to the firing of a

rule.
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in a similar manner, the backward chaining Prolog as also

representable as a blackboard system. The control module

carefully selects the next KS (rule) to react. Subgoals are

placed on the blackboard. They can be ordered, as in

sequential Prolog. They may also be unordered. If the

control module allows more than one KS to react, subgoals may

be solved simultaneously, leading to a parallel execution of

a Prolog program. In addition to simple forward chaining and

backward chaining, the blackboard model is able to operate in

a mixed mode, for example, to perform two forward steps,

followed by three backward steps and then four forward steps.

It is the control module that control this flexible

behaviour. Furthermore, in this way, a blackboard framework

can be used to build an expert system, by suitably devising

the control strategies.

The blackboard model corresponds quite closely to an

object-oriented environment, especially an environment in

which objects are active, as in VOCOL. The exploitation of

parallelism in VOCOL on a multiprocessor machine, say, also

benefits the performance of the framework but it is then

important to have a control mechanism which can maximize the

degree of parallelism, for example, to reduce the memory

contention problem of the blackboard. A typical blackboard

framework on VOCOL is shown in figure 6.4.
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Figure 6.4 Blackboard Framework on VOCOL

Each KS is encapsulated by the notion of a VOCOL object.

It is made up of a continuously executing process body, a few

protocols and attributes. The body keeps track on changes in

the blackboard, watching for the possible matching of KS

preconditions. The KS then reveals itself to the control

module, an instance of control. The control module then

sends the appropriate selection message to the KS which is

granted the operation privilege, after analyzing the

blackboard and control data.

For rule-based knowledge, the message metnoa to a rorwara

chaining mode would be to produce new information based on

the blackboard contents and then update it whereas that to a

backward chaining mode would be to spawn subgoals onto the
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board. For procedural knowledge, the message would probably

initiate a computation, updating the board as a result. The

inference engine is built-in in the knowledge object, as

instance methods. This allows the sharing of codes through

inheritance. Furthermore, the rule and procedure classes can

be used as flavors to create a new class rule-and-proc which

is a hybrid representation scheme for the rule-based and

procedural knowledge. More hybrid classes can be built in

this way. By suitably designing and constructing the

internal inference engine, an instance of a class can

represent a mini-expert system.

Blackboard data can be stored in a class attribute of

blackboard framework (BBF), or in the global name space (GNS)

provided by VCLISP. Control data can be stored in the class

control (accessed by KS instances via protocol, or by

defining a lateral link from KS to control), in the BBF, or

in the GNS. Finally, the knowledge acquisition module serves

to manipulate the knowledge. This module can be very complex

and may have learning capabilities.

As an alternative to being implemented as an object wit]

an active process body (an active KS), a KS can be mad4

passive by defining the body code in a method. The contro

module can now exercise a greater degree of control over thf

KSs. It may broadcast a message to the KSs, when beinc

triggered by the completion of the previous KS operation.
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CHAPTER SEVEN

PROGRAMMING IN VOCOL

7.1 OVERVIEW

VOCOL is a layered programming environment supporting a

variety of programming styles. In this chapter, sample

application programs emphasizing on different aspects of

VOCOL will be presented and discussed. As pointed out in

chapter 4, the first layer of VOCOL is the VCLISP

environment, on which programmers in different programming

domains hold different viewpoints. Sections 7.2 and 7.3 are

dedicated to VCLISP programming with visual LISP features and

concurrent features respectively. Section 7.4 is reserved to

programmers adopting an object-oriented style delineated in

chapter 5.

7.2 PROGRAMMING WITH VISUAL LISP FEATURES

The simplest view of the VOCOL system is to focus on the

sequential nature of the VCLISP environment. This simple

view is equivalent to an ordinary LISP programming

environment, enriched with a graphical user interface and the

visual representation of LISP programs. It is not surprising

that the sample applications are simple. The example to be

exhibited is the Tower of Hanoi. This application had been

detailed in section 4.2.1 and figure 4.5 and it is not
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repeated here. There is not much peculiarity in sequential

VCLisp programs compared with ordinary LISP programs, except

for the visual effects.

7.3 CONCURRENT PROGRAMMING WITH VCLISP

The additional feature of concurrent processes in the

VCLISP environment arms the programmer with the capabilities

of developing concurrent programs. The first example to be

discussed is the dining philosopher, which will be given a

further treatment in section 7.4.4, where it is programmed in

an object-oriented style. The second example is the producer

and consumer synchronization problem. Several alternatives

to the solution are possible. For the sake of convenience,

only the solution to dining philosopher is shown in the

visual form, and the rest are presented in their meta-forms

(appendix A). Meta-forms bear the advantage of being more

compact, without the need of zooming in the smaller parts as

in visual programs, albeit the highly nested parentheses.

7.3.1 Dining Philosopher

Dining philosopher is a classical concurrent programming

and synchronization problem. It is widely used to test the

flexibility and expressive power of concurrent programming

languages and constructs. VCLISP provides synchronization

primitives like message passing and semaphore. The solution

exhibited in this section is the semaphore solution. The
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program is shown in figures 7.1, 7.2 and 7.3.

Identification-Section Parameter-Section Local-Variable-Section

name left

Davi

ri ht

pew,

make-philo

Body

Body-of-
con stI new) LDavicj

process

Figure 7.1 Visual Function Make-philo

The function make-philo has three parameters, the name of

the philosopher, the left stick and the right stick. The

name is an atom, a string or an icon. The sticks are binary

semaphores, created by the operations on the user interface

process, defined in figure 7.3. The purpose of make-philo is

simply to create a new process with the code body revealed in

figure 7.2 with process name defined by the input parameter

name. The body of the process is a loop reflecting the life

cycle of the philosophers: think enter the room pick up the

left stick pick up the right stick eat put down the left
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stick put down the right stick; and leave the room. Here

the sticks and the room are all semaphores. The system

visual functions used in this example and in the binary tree

in section 7.4.1 are shown in appendix C. Visual syntax

conforms to that described in chapter 4. For example, a

double boundary refers to a function application. The

special form coast is a nickname for the special form quote.

Figure 7.2 Zoomed Body of Make-philo



101

PROGRAMMING IN VOCOL

pew

4

pew

stick1
1

pew

stick5

5

work stick2stick1

1

philalpew

stick1stick3work

pbila3pew

Figure 7.3 Operations At User Interface

Having defined the function make-philo, the program must

then be initiated by creating and activating the processes.

This is carried out by the sequence of operations in figure

7.3. First of all, the six semaphores (a room and five

sticks) for mutual exclusion must be defined. Then the five

philosopher processes are created and activated using the
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function make-philo with the appropriate arguments (the name

and the stick semaphores). The names of the philosophers are

iconic.

This particular solution of dining philosopher is

deadlock-free. Deadlock is prevented by allowing at most

four philosophers to eat simultaneously. However, starvation

is possible and to avoid it, a more sophisticated algorithm

must be adopted.

7.3.2 Producer and Consumer

There are several solutions to the producer and consumer

problem. They are presented in the figures below. The first

one is the traditional approach, in which a bounded buffer (a

shared data structure) and semaphores are used. Here the

global name space (GNS) is used. The second one is by means

of primitive message passing. The VCLISP system call send is

an unblocking one and automatic (unbounded) buffering is

achieved. It is unnatural to bound the buffer size here and

this is the most direct solution. The third approach is to

utilize the concept of coprocess and critical section

(critical region). Within 'a process, the segments of

coprocess code in the critical section are strictly

serialized. Under different programming situations, each

approach has its own advantage and simplicity. It is up to

the programmer to choose the one that is best for his

application at hand.
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Perform at the user interface the following:

(setf (global *tmaxt*) 10)

(sett (qlobal wptr) 0)

(setf (global rptr) 0)

(setf (global buf) (make-array (global *tmaxt*)))

(vcsys-create-semaphore "mutex") default= 1

(vcsys-create-semaphon-"empty" *MAX*)

(vcsys-create-semaphore "fll" 0)

(vcsys-activate

((ioop (setf item (produce)) ; item is LNS of Prducer

(vcsys-p "mpty")

(vcsys-p "mutex")

(sett (aref (qlobal but) (global wptr)) item)

(setf (global wptr) (mod(+ 1 (global wptr)) (global *max*)))

(vcsys-v "mute")

(vcss-v "full")

(vcsys-activate

(vcsys-create "consumer"

'((loop (vcsys-p "full")

(vcsys-p "mutex")
(setf item (aref (global but) (global rptr)))

(setf (global rptr) (mod(+ 1 (global rptr)) (global tma (vcsys-v mutex)

(vcsys-v "empty")

(consume item)

Figure 7.4 Producer Consumer 1

In the first algorithm, the first few steps are to define

the bounded buffer as an array in the GNS, reset the

read/write pointers and create the three operatinc

semaphores. The next step is to define the producer procesE

and to activate it. The final step is to define and activate

the consumer process. The producer enters a loop: produce ar

item; tore the item in a local variable seize an empty slot

in the buffer obtain a mutual exclusive right to write:

place the item in the buffer release the mutual exclusion:

(vcsys-create "producer"

) ) )

(vcsys-v "mutex")

) ) ) )

= >

= >

= >

= >

= >
= >

= >

=>
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and generate a full slot. Similarly the consumer enters a

loop: seize a full slot obtain the mutual exclusion read

item from the buffer; store in a local variable release the

mutual exclusion generate an empty slot and consume the

item.

Perform at the user interface the following:

=> (vcsys-make-mailbox "p-c-mail")

=> (vcsys-activate

(vcsys-create "producer"

((loop (vcsys-send "-c-mail" (produce)))

(vcsys-activate

(vcsys-create "onsumer"

'((loop (consume (vcsys-receive "-c-mail")))

Figure 7.5a Producer Consumer 2a

In algorithm 2a, a mailbox is used for direct

communication between the producer and the consumer. After

creating a mailbox, the producer and consumer processes are

created and activated. The former enters a loop of producing

an item and sending it to the mailbox. The latter enters a

loop of receiving an item from the mailbox and consuming it.

The synchronization is completely handled by the message

passing and the mailbox mechanisms.

Perform at the user interface the following:

(vcsys-activate

(vcsys-create "roducer"
'((loop (vcsys-send (vcsys-process-id"consumer" (produce))

(vcsys-activate

(vcsys-create "onsumer"

'((loop (consume (vcsys-receive (vcsys-process-id "roducer"))

) ) )

= >

) ) )

= )

= )

) ) ) )

) ) ) )
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Figure 7.5b Producer Consumer 2b

In algorithm 2b, the communication between the producer

and the consumer is even more direct: no mailbox is required.

The producer process enters a loop of producing an item and

sending it to the consumer, whilst the latter enters a loop

of receiving an item from the producer and consuming it.

Perform at the user interface the following:

=> (setf (global *max*) 10) assume that 'maxi is used system wide

=> (vcsys-activate

(vcsys-create "proc"

'((setf but (make-array (global 'max'))) variables are in LNS

(setf wptr 1)

(setf rptr 0)

(vcsys-activate

(spawn' producer

'((loop (setf pitem (produce))

(do() can use semaphore if busy waiting not desired

((/= wptr rptr)))

(critical-section

(setf (aref but wptr) pitem)

(setf wptr (mod(+ 1 wptr) (global *max*))))

(vcsys-activate

(spawns consumer

'((loop (do()

((/= wptr (mod(+ 1 rptr) (global tmaxt)))))

(critical-section

(sett rptr (mod(+ 1 rptr) (global *max*)))

(setf citem (aref but rptr)))

(consume citem)

(loop))

Figure 7.6 Producer Consumer 3

In algorltnm 3. coprocesses and criticalsections are

used. A main process is created and activated. It then
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executes its body: make a bounded buffer; reset the

read/write pointers; and create and activate the producer and

consumer coprocesses. The producer enters a loop: produce an

item loop until buffer is not full; and enter the critical

section to put the item in the buffer. Similarly, the

consumer enters a loop: loop until buffer is not empty enter

the critical section to get an item and consume the item.

Note that the mutual exclusion semaphore is not required

because the critical section enforces the mutual exclusion on

the buffer. To increase efficiency, busy waiting for non

buffer full and non buffer empty can be replaced by other

synchronization means, such as semaphores. Defining *max* in

the GNS only permits the value to be used throughout the

whole system. It makes no difference by defining it in the

LNS of the process.

7.4 OBJECT-ORIENTED PROGRAMMING IN VOCOL

Besides concurrent programming in VCLisp, a major feature

of VOCOL is object-orientation. In this section, a few

programs are designed with the object-oriented approach. The

first one is the binary tree, which is the simplest example,

followed by more difficult ones. For compactness, only the

first one is delineated in the visual representation.
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7.4.1 Binary Tree

A binary tree is to be defined for storing and sorting a

set of numbers. Functions are defined for insertion, inorder

traversal and initialization. Each node of the tree will be

an instance of the class node, each has two sons and a value.

Figure 7.7 contains the definition of node, a replicate of

figure 5.2 for the sake of convenience. The definition of

these functions as object methods are depicted in figures

7.8, 7.9 and 7.10.

Identification-Section Attribute-Section

Class-attributes Instance-attributes

Typesaetemoth

inft-was Typstaetemoth

voles

Testinterltable
Typo:aetemoth

inst-Dot Testinterltable

Tayetoterltable

Function-Definition-Section

BodyInstance-methods Socket-methodsPrivate-methods

Initlalize

Figure 7.7 Class Node
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The class node has three instance attributes: left-son,

right-son and value. These attributes correspond to the

fields of a node in a tree implemented in a conventional

language. Each of them has an iconic representation. All

attributes are automatic and inheritable. The first two have

an initial value nil and the third zero. Automatic

attributes are defined because the fields often need to be

retrieved or modified. They are inheritable for the benefits

of child classes of node so that they needed not to be

duplicated. A private method initialize is defined to give

the key an initial value. Two instance methods insert and

inorder are defined for insertion and traversal.

Parameter-Section Local-Variable-SectionIdentification-Section

Body

ELSE

IFIF

ELSE ELSE

Figure 7.8 Function Insert

IF
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Insert takes an argument key. If key as less than value,

it tries to insert key into the left subtree. If left-son is

null, it creates a new instance with value set to key and

connect it to left-son. If not, it inserts to the left

subtree by sending it the message insert. If key is not less

than value, the right subtree is treated in a symmetric way.

Identification-Section Parameter-Section Local-Variable-Section

Body

ELSE

ELSE

Figure 7.9 Function Inorder

Inorder takes no argument. If left-son is not null,

perform inorder traversal on left subtree by sending it the

message inorder. After visiting the left subtree, value is

printed (this can be replaced by sending a message to an

output method to increase flexibility). Lastly, the right

subtree is traversed by sending it the message inorder.
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Parameter-Section Local- Variable-Section
Identification-Section

initialize

Body

Figure 7.10 Function Initialize

The purpose of initialize is to assign an initial value

to the node when a new instance of node is created.

This program is almost iaentical to now it wou.la be

written in Smalltalk since both make use of the notion of an

object instance for each node. Also, when examined closely,

the whole program exhibits strong similarity to one written

in Pascal, the difference being the concepts on data

structure. Here we are asking the object instances to

perform such missions as insertion and traversal instead of

directly operating on the data structures as in Pascal.
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7.4.2 Distributed Sorting

There are many methods to sort a sequence of numbers.

The binary tree in the previous section is one of them. Now,

let us have a look on the procedure of distributed sorting.

the problem of distributed sorting is concerned with n

processes. Each of them stores a record. The n records are

to be sorted according to their keys in ascending order. It

is natural to model these process records as objects. Each

record is encapsulated by an object. In the sample program,

each record broadcasts its contents to all the other records.

A record just counts the number of records with a key less

than itself. At the end of message broadcast, each of them

is able to know its ranking. It then monitors the

blackboard. At a call for records with the same rank as its

own, it shrieks and reports itself. At the end, the report

will contain the sorted list of records. The program is

listed below.

(class (id (name controller?))

(attr (class-attr())

(inst-attr (((name num-rec?) nil manual noninheritable)))

(funct-def

(priv-method)

(inst-method)

(sock-method)
(body (sett-inst-attr (name num-rec?)

(send-message (name data-node?) 'instance-count))

(broadcast (name data-node?) (name initiate?) (name num-rec?))

Figure 7.11 Class Controller
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(class (id (name data-node ?))

(attr (class-attr (((name index?) 1)))

(inst-attr (((name key ?) nil manual noninheritable)

((name value ?) nil manual noninheritable)

attributes key and value comprise the record

((name ctr ?) 0 manual noninheritable)

((name pos ?) 1 manual noninheritable)

(funct-def

(priv-method)

(inst-method

(visual-funct (id (name initiate ?))

(para (((name num-rec?) (name num-rec ?) 0)))

(local())

(body (setf-inst-attr (name ctr ?) (name num-rec ?))

(visual-funct (id (name count?))

(para (((name arg?) (name arg?) 0)))

(local())

(body (if(( (name arg?) (name key?))

(incf (name pos?)))

(decf (name ctr?))

(sock-method)

(body wait until being initialized with message count

this may be replaced by the operation sleep

(loop (exitif (infix ((name ctr?) <> 0))))

(broadcast (name data-node?) (name count?) (name key ?))

wait until ctr= 0 (all messages received)

and index= pos (my turn to report)

(loop (exitif (infix (((name count?)= 0) and

((name index?)_ (name pos ?))))))

(report key value)

(incf (name index ?))

Figure 7.12 Class Data-node

Instances of the class data-node are processes containing

the records (key and value). The attribute ctr is used to

keep track of the number of messages to be received, which

equals the number of instances of the class. The attribute

pos is used to count the number of records in front of it (to
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determine its rank). The method initiate is used to set the

counter for the number of messages to be received. The

method count monitors the rank of the object itself. If a

message is received, it checks whether the incoming key is

less than the object's key. If so, it increments the rank by

1. When all messages have been received, the object instance

waits until its turn to report. The class attribute index is

used as the blackboard. When the index becomes the rank of

an instance, the instance reports itself and increments the

index. The purpose of controller is to find out the total

number of instances of the class data-node and the value is

used to initialize the message-count of the instances. A

subtle point is that the operations incf and decf must be

atomic for the program to function correctly. Another way is

to guard the operations on index with semaphores rather than

busy waiting. Efficiency can be increased if busy waiting on

the condition can be avoided with the use of primitives like

await.

An alternative way to handle reporting is to wait until

the counter becomes zero. The record then makes a plug with

pos as the attribute and with the record content as the

message packet. The controller makes multiple-socket with

argument index (defined in the controller, not in the class

data-node) until index is greater than the number of records

- the terminating condition. The socket method is to print

out the received record (message packet) and increment the

index by one. Finally remove all the redundant sockets made.

In this method, the matching of position with index is
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implicit. For some indices, there can be more than one

matched plugs and for some indices, there may be no matched

plug. This occurs when some of the keys are duplicated.

Although the idea of sorting is very simple, the amount

of message passing is still a bottleneck. Totally, 0(n2)

messages are sent and the solution is not often practical

unless the traffic problem, a research effort in distributed

computing systems, is solved. Nevertheless, this serves as

an example to write simple object programs, despite its

possible inefficiency.

7.4.3 Project Assignment

In the university, every senior student is required to

carry out a project on a topic. Totally, there are n

students and m projects (m= n). Each student arranges the

projects in a preference list. He is assigned his first

priority project if no one chooses the same project. In case

of conflicts, the first-come-first-served policy is adopted.

Furthermore, if a student makes his decision late, he may not

get his first priority project even if the project has been

assigned to another student with a lower preference. At

last, if he runs out of his preference list, it is assumed

that he gives up to carry out a project. A solution to the

project assignment problem is shown in figures 7.13 and 7.14.
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(class (id student)

(attr (class-attr())

(inst-attr ((preference nil manual noninheritable)

(delta-time 100 manual noninheritable)

(success nil manual noninheritable)))

(funct-def

(priv-method

(visual-funct (id initialize)

(para ((arg arg nil)))

(local())

(body (setf preference arg)

)))

(inst-method)

(sock-method)

(body (loop (setf success (send-message (car preference) 'try))

(exitif (or success (null preference)))

(setf preference (cdr preference))

(delay delta-time)) delay to allow other processes to go ahead

(if success (print (car preference))

(print "Not taking project"))

Figure 7.13 Project Assignment: Class Student

(class (id project)

(attr (class-attr())

(inst-attr ((selected nil manual noninheritable)))

(funct-def

(priv-method)

(inst-method

(visual-funct (id try)

(para())

(local())

(body (if selected

(return nil)

(setf selected t))

(return t)

)))

(sock-method)

(body)

Fiqure 7.14 Project Assignment: Class Project
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The students and the projects are considered objects. A

student sends messages to his preferred projects, one by one.

If the project is not assigned, the student gets the project

which then updates its status. The delay in each student is

used to allow slower processes to catch up because some

students may get a project as his third preference before a

student with the same project as his first priority sends the

message. This solution to the problem is in fact a

simulation of the actual situation.

The only protocol in a project is the message to try from

a student. If the project is not selected, it marks itself

as selected and reply OK. Otherwise, it rejects the

student's request. A student has the private method

initialize which is used to initialize his preference list

when he is created. The body of a student is to enter a loop

for his preference list until he gets a project or runs out

of the list. He sends a message to the first project in the

list and removes this first project when being rejected.

Finally. he announces the project he gets.

A better solution to this assignment problem is to have

an arbiter to count the number of messages and announce the

commence of the second round selection, third round

selection, and so on. Each student must sleep after sending

a message. He is awakened when the next round comes again.

A student who succeeds or surrenders must report to the

arbiter who can then update the counter for messages. With

an arbiter, each project is able to know the number of
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students competing for it in each round. In case of

conflict, the project can decide who is better and abandon

the FCFS policy. This decision may also be made by the

supervisor (another object class) who is notified by his

project about the conflict.

7.4.4 Dining Philosopher Revisited

Besides being implemented as concurrent processes, it is

possible to implement the solution to the dining philosopher

problem as an object program. The program that defines the

philosophers as objects in VOCOL is shown in figures 7.15 and

7.16.

(class (id philosopher)

(attr (class-attr())

(inst-attr ((philo-id nil manual noninheritable)))

(funct-def

(priv-method

(visual-funct (id initialize)

(para ((id id nil)))

(local())

(body (setf philo-id id)

(inst-method

(visual-funct (id dummy-to-wake)

(pars())

(local())

(body

)))

(sock-method)

(body (loop

(think)

(case philo-id
(l (make-plug ('config 'free 'free'?'?'?) (1)))

(2 (make-plug ('config'? 'free 'free'?'?) (2)))

(3 (make-plug ('config'?'? 'free 'free'?) (3))

(4 (make-plug ('config'?'?'? 'free 'free) (4)))

(5 (make-plug ('config 'free'?'?'? 'free) (5))))

(sleep)

) ) )
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(eat)

(send-message 'table-0 'return-stick philo-id)

Figure 7.15 Class Philosopher

(class (id table)

(attr (class-attr())

(inst-attr ((config-var nil manual noninheritable)

(cl free manual noninheritable)

(c2 free manual noninheritable)

(c3 free manual noninheritable)

(c4 free manual noninheritable)

(c5 free manual noninheritable)))

funct-def

(priv-method

(visual-funct (id initialize)

(para())

(local())

(body (setf config-var (make-socket ('config ci c2 c3 c4 c5)))

(inst-method

(visual-funct (id return-stick)

(pars ((philo-id philo-id nil)))

(local 0)

(body (remove-socket config-var)

(case philo-id

(1 (sett ci 'free)

(setf c2 'free))

(2 (setf c2 'free)

(setf c3 'free))

(3 (setf c3 'free)

(setf c4 'free))

(4 (setf c4 'free)

(sett c5 'free))

(5 (setf c5 'free)

(setf cl 'free)))

(setf config-var (make-socket ('config c1 c2 c3 c4 c5)))

(sock-method
(visual-funct (id config)

(para ((philo-)'d philo-id nil)))

(local())

(body (case philo-id

(1 (setf cl 'used)

(setf c2 'used))

(2 (setf c2 'used)
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(setf c3 'used))

(3 (setf c3 'used)

(setf c4 'used))

(4 (setf c4 'used)

(setf c5 'used))

(5 (setf c5 'used)

(setf c1 'used)))

(send-message sender 'duyny-to-wake)

(setf config-var (make-socket ('confiq c1 c2 c3 c4 c5)))

(body

Fiqure 7.16 Class Table

Here each philosopher is an instance of the class

Philosopher. He enters the think-and-eat cycle indefinitely.

Five instances of Philosopher are created at the very

beginning. The class Table has five attributes containing

the status (free or in use) of the five chopsticks which are

initialized to free. A single instance table is created. On

initialization, it makes a socket config containing the

sticks also. When a philosopher, say Philo-1, wants to eat,

he makes a plug, expressing his desire to acquire the sticks

and sleeps to wait for their availability. If the two sticks

required by Philo-1 are free, the plug created by Philo-1 can

be matched with the socket config. Thus an implicit message

is sent and the socket method is invoked to update the

configuration and awaken the sleeping philosopher to eat by

sending him a dummy explicit message. When Philo-1 finishes

eating, he sends the table a message to return his sticks.

The table then updates the configuration, removes the

outdated socket and creates a new one.
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It is worth to point out that table should be serialized

to avoid errors caused by data inconsistency, the typical

problem in a multiprogramming environment. The solution

would be to guard the socket method confiq and the instance

method return-stick within critical sections.

This is a deadlock-free solution to the problem because

both the stic-ks are matched and acquired simultaneously.

However, it suffers from the problem of starvation. To solve

this, we can define new instance attributes priority and

event-count for each philosopher. Let the table keeps a

count on the total number of turns of eating (the event

count). Each philosopher keeps the event count of his last

eating turn. When a philosopher wants to eat and the

difference between his event count and the table's event

count exceeds a certain limit, say, 10, he sets his priority

to high. The default value is the wildcard. All the plugs

and sockets for config will have the new slot priority. The

table always makes a socket with a priority filled with the

high value. In this way, those hungry philosophers with high

priority can eat within 5 turns because their plug and socket

pairs are better matched (one SWM less). After his dinner, a

philosopher resets his priority to the wildcard.

Implicit messages play an important role in the

formulation of dining philosopher. By suitably incorporating

the power of simple pattern matching, the implementation

becomes more elegant and easier to ,runderstand. as compared

with a Smalltalk implementation in which only explicit
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messages are adopted. The procedures of asking for free

sticks, decision making and sticks acquisition are made in

the single step of plug creation. The philosopher does not

need to ask the table for the current configuration. Hence,

many message passing overheads are eliminated. Although the

semaphore solution in the last section seems more elegant, it

is more difficult to have a thorough control over the object

behaviours.
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EVALUATION AND RELATED WORKS

8.1 RELATED WORKS

There are numerous researches on multiparadigm

programming environments. Still quite a considerable amount

of the research efforts are devoted to object-oriented

programming. The VOCOL system is related to object-oriented

programming in LISP and to concurrent programming. Two

closely related systems. the Xerox LOOPS and

Concurrentsmalltalk, are therefore studied

8.1.1 LOOPS

LOOPS [Bobrow82] is an object-oriented programming

environment developed on the Interlisp-D environment. It is

a commercial product of the Xerox Corporation and the ENVOS

Corporation.

LOOPS integrates the object-oriented paradigm smoothly

within LISP. In addition, it supports access-oriented

programming and rule-oriented programming. Implemented in an

interactive LISP programming environment and running on

workstations, LOOPS provides certain graphical user

ntPrf ces.
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Objects in LOOPS are classified into classes, which are

instances of metaclasses. Attributes can contain values as

well as property lists. An attribute slot is a generalized

LISP variable. The only relationship between two classes is

parent-son (is-a). Multiple inheritance is adopted but cycle

in the graph topology is forbidden. This means that the

classes are organized as an acyclic digraph. The root is the

class tofu (top of the universe). Abstract classes are

defined but they are never instantiated. Remote procedure

call is adopted as the message passing mechanism. A result

is generally returned and the sender of message must wait.

Parallelism is achieved by sending special messages to start

new processes to execute methods.

The name space of LOOPS is distinct from that of LISP.

The special qualifier $ is used to convert a LISP atom into a

LOOPS object. Operations on object attributes must be

explicitly specified, otherwise they will be performed on

LISP atoms.

The procedure-oriented paradigm of LOOPS is concerned

with the separation of data and instructions, as in

conventional programming languages. This is encompassed by

the functional style of LISP. The access-oriented paradigm

is supported by active values. An active value is an

instance of the class ActiveValue. It can be installed

within an attribute or a property. Reading from or writing

to the attribute or property will cause the appropriate

message sent to the associated active value object, invoking
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the designated method. In this way, actions of active values

are triggered through the access of the variables and hence

the term access-oriented. Active values are especially

useful to system monitoring and debugging. The active value

can be the housekeeper to a resource. The variable under

watch by the debugger can be installed with active value

methods to dump out its content or to take appropriate

action. The rule-oriented paradigm is supported in LOOPS as

an extension, contained in the users' modules.

LOOPS provides extensive functions and methods for

built-in classes. Perhaps the system attempts to equip the

programmer with every function he might wish to use. In

addition, various browsers reflect the various views of the

system and the structure of objects, classes and their

hierarchy. Dynamic system behaviour is easily depicted

pictorially with the aid of windows and gauges provided by

the system.

8.1.2 ConcurrentSmalltalk

ConcurrentSmalltalk [Yokote87] is a programming

environment incorporating concurrent programming facilities

in Smalltalk-80, which only supports limited concurrency. In

Smalltalk-80, a process is created by sending the message

fork to a block. Both the.sender and the forked process then

share the same set of variables (same context). This is

similar to the coprocesses in VCLISP. Although a multiple

number of processes can exist, the system assumes no time
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slicing. The programmer has to implement a high priority

background process to explicitly schedule the processes.

ConcurrentSmalltalk goes a step ahead in providing notions to

express parallel computations and concurrent programs in a

more natural way. It unifies objects and processes into the

single notion of concurrent objects.

Loncurrentbmalltalx is both source-level and snapshot

level compatible with Smalltalk-80, to which concurrent

constructs are added and semantics are defined. Two message

passing mechanisms are supported. One is the familiar remote

procedure call (synchronous method call), the other being

asynchronous method call. The asynchronous method call acts

like a future1, if the returned value is needed later,

through the use of the system-defined object CBox. A CBox

object is created for each asynchronous method call. The

message is then retransmitted by the CBox object to the

destined receiver and it waits on behalf of the sender. The

sender receives the CBox object after sending the message.

This is a way to implement asynchronous message passing in

terms of synchronous message passing. The retrieval of

values from CBox objects gives rise to the necessity of

defining new synchronization primitives on the CBox objects,

such as receiveAnd and receiveOrAll. A new context is

created when a new message comes in before the completion of

an executing method, in a LIFO manner. Finally, the notion

1A future is a piece of computation initiated by a process. The result is not required immediately and

hence the initiator needs not to wait for the completion of the computation. Later the process can use

the result stored in a dedicated iocation and will it if the computetion has not yet fonisbed. This is

a means of exploiting an extra amount of parallelism.
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o f  a n  a t o m i c  o b j e c t  is i n t r o d u c e d  f o r  m u t u a l  e x c l u s i o n  a n d  

s e r i a l i z a t i o n .  M e s s a g e s  a r r i v i n g  a t  a n  a t o m i c  o b j e c t  a r e  

e x e c u t e d  s t r i c t l y  s e r i a l l y .

8 . 2  C O M P A R I S O N

A f t e r  a t h o r o u g h  d i s c u s s i o n  of t h e  v a r i o u s  f a c e t s  of t h e  

V O C O L  s y s t e m ,  it is n o w  t i m e  t o  c o m p a r e  t h e  s y s t e m  in t h e  

l i g h t  o f  i t s  p a r e n t s  -  L I S P  a n d  S m a l l t a l k  a n d  i t s  r e l a t i v e s  - 

L O O P S  a n d  C o n c u r r e n t S m a 1 1 t a l k  a n d  t o  c o n d u c t  a n  e v a l u a t i o n .

8 . 2 . 1  E v o l u t i o n  f r o m  L I S P  a n d  S m a l l t a l k

I n  t h i s  s e c t i o n ,  t h e  d i f f e r e n c e  b e t w e e n  V O C O L  a n d  t h e  

p a r e n t s  L I S P  a n d  S m a l l t a l k  a n d  t h e  e v o l u t i o n  o f  V O C O L  

f e a t u r e s  f r o m  t h e  t w o  a r e  h i g h l i g h t e d .  T h e s e  f e a t u r e s  a r e  

g r o u p e d  u n d e r  t a b l e s  8 . 1 ,  8 . 2  a n d  8.3.

6 e n e r a l  F e a t u r e s  | L I S P V O C O L S m a l l t a l k

p a r a d i g m  j f u n c t i o n a l v i s u a l ; 
c o n c u r r e n t ;  
f u n c t i o n a l ;  o b j e c t -  
o r i e n t e d

o b j e c t - o r i e n t e d

s u p p o r t  f o r  o b j e c t -  I  e x t e n s i o n  b y  
o r i e n t a t i o n  | Flavors sy s t e m

o b j e c t - o r i e n t e d  l a y e r p r i m i t i v e  p a r a d i g m

m e c h a n i s m  o f   
p r o g r a m  e x e c u t i o n

f u n c t i o n  call m e s s a g e  p a s s i n g  a n d  
f u n c t i o n  call

m e s s a g e  p a s s i n g

v i s u a l  e f f e c t s no e x t e n s i v e y e s  but not e x t e n s i v e

c o n c u r r e n c y   no ye s l i m i t e d

T a b l e  8 . 1  C o m p a r i s o n  o n  t h e  G e n e r a l  F e a t u r e s  o f  L I S P ,  V O C O L
a n d  S m a l l t a l k
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Abstract Data Type LISP defstruct Object in Object inLISP property

OCOL2list/atom Smalitalk

direct access to attribute no owner only owner onlyyes

lautomatic accessor function no noyes yes

fuser-defined accessor function no no yes yes

private attributes no no Yesyes

medium high medium mediumflexibility

Table 8.2 Comparison on Abstract Data Type

VOCOLReusability SmalltalkLISP (ComonLisp

multiple inheritance single inheritancepackagemechanism

selected subset by mutual filtered set inherited copietei inheritedamount shared

consent

via protocol, if allowedvia protocol, if allowedindiscriminate accessaccess to internal

symbol/ attributes

unstructured mixture of well-defined semantic well-defined treemodularity

use-package, Import and network structure

export

medium high mediumhighflexibility

Table 8.3 Comparison on Resource Sharing and Code Reusing

8.2.2 Comparison to LOOPS and ConcurrentSmalltalk

In this section, features of the two systems LOOPS and

ConcurrentSmalltalk are compared with those of VOCOL. Most

2 Since VOCOL supports the full LISP environment in the visual LISP layer by the VCLISP environment,

structures and property lists are supported in VOCOL and at the programmers' own discretion. The

comparisons made here only serve for the notion of objects in VOCOL.
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features in the tables in the previous section are shared by

LOOPS and ConcurrentSmalltalk, as they are advancement to

LISP and Smailtalk. They are shown in table 8.4.

Features LOOPS VOCOL ConcurrentSialltalk

functional visual object-orientedparadigm

object-oriented functional concurrent

access-oriented concurrent

obiect-orientedrule-oriented

mechanism of lmessage passingiessage passingmessage passing

function callfunction callcomputation

remote procedure call-emote procedure callremote procedure callmessage passinq

asynchronous message withasynchronous messageLechanises

implicit message future

I multiple: acyclic digrap, Dultiple: semantic networl single: hierarchica:
linberitance

Ialong the superclass chaindepth first search with breadth first onlysearch for

breadth first joinapplicable method join

fuser-defined relations meta classesmeta classesnetaprograuinc

default to multithreadinc by means of asynchronousexplicitly create a
I parallelisin

message and CBox objectsof methodsprocess for a method

mixed internal and

external parallelism

distinct global names andnave in contextseparate for LISP andname space

shared variable namesnot distinct betweenLOOPS

VCLISP and VOCOL

compatible witbinterface to VCLISP viainterface to LISP viiinterface to

Sma11ta1k-80FMOsLISP functions andsupporting
no interface needed

syibolsenvironment

Comparison on Features of VOCOL, LOOPS and
Table 8.4

ConcurrentSmalltalk
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8.3 EVALUATION

Concluding from the programs developed in the last

chapter, VOCOL shows its usefulness in various aspects. As a

LISP environment, it arms the programmer with a graphical

user interface and enables better representations of LISP

programs. As a concurrent LISP environment, the familiar

notions of processes are at the programmer's own discretion,

though they are programmed in the LISP language. It makes

virtually no significant difference between conventional

concurrent programming and concurrent programming in VCLisp,

as exemplified by the sample programs developed in the last

chapter.

The effectiveness of the VOCOL environment is even more

strongly supported by the variety of sample applications, as

well as the ability of defining higher level programming

tools. Implicit message passing finds its applicability in

the pattern matching of dining philosopher. Message

broadcasting is useful in distributed sorting. A combination

of object programming and message broadcasting solves the

problem of project allocation in a human like manner.

Object-orientation is closely related to real world

simulation. Some of these problems require the computation

power of the LISP environment. This power is granted through

the FMO interface. Although there must exist some problems

that have only awkward solutions in VOCOL, this is inevitable

because VOCOL is not able to provide the programmer with all
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kinds of tools that he can ever think of. Yet the system

proves to be powerful and often produces elegant solutions to

a wide class of problems.

8.4 FUTURE DEVELOPMENT

The prototype of VOCOL demonstrates its capabilities

through the sample programs and applications. Nevertheless,

there are still capabilities which need to be improved and to

be explored.

Concerned with the visual aspect, icons are of the utmost

importance. A better visual programming interface can be

provided by conducting a thorough survey on the psychology of

widely accepted icons and icons which easily identify

themselves to outsiders, as well as new syntactic sugars

which are more readily understandable.

In VOCOL, it remains to generalize the notions or classes

and metaclasses in various aspects such as how to specify

concisely and precisely the exact operations on the set of

inheritable methods and attributes before passing them to the

child classes and to have a more thorough control on the

behaviours of the classes. In VOCOL, only binary relations

are defined. Is it possible to .define a set of consistent

semantics for tertiary and, in general, n-ary relations in

the context of inheritance?
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As for message passing, should we extend the capabilities

of plugs and sockets so that their contents can be varied

after their creation (dynamic plugs and sockets); or should

we introduce the concept of logical variables so as to attain

the power of unification? The terms dynamic plug and socket

mean that with the attribute of a plug or a socket connected

with a variable or an attribute, the former is able to change

whenever there is a change in the latter, resulting in an

aliasing of the storage. The attributes of plugs and sockets

in VOCOL are static- obtained from the copy rule.

The prototype implementation of VCLISP interpreter runs

at one or two orders of magnitude slower than its counterpart

of an ordinary LISP interpreter. The prototype for VOCOL is

even slower, especially in the search of appropriate methods

and location of class and instance attributes. When the

determination of inheritable instances and methods is

performed statically, recomputations are then necessary if

there is a slight change to the system graph topology.

Algorithms which can minimize the recomputation required are

to be developed. On the other hand, if their determination

is dynamic, algorithms must be devised for their efficient

searching. Dynamic plugs and sockets and those with logical

variables even pose a more severe threat to efficiency.

Efficient execution and control strategies must therefore be

designed before the system can become a practical one. For

example, LOOPS attempts to improve its efficiency in garbage

collection and method and instance lookup by careful

management of reference counts, object copying and caching.
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Another way to improve the efficiency would be to explore

parallelism in the hardware frontier. The VCLISP system is

best implemented on a multiprocessor machine for the maximum

degree of parallelism. Algorithms and control strategies

must be developed to deal with the allocation of resources,

such as memory contention for the global name space,

efficient message passing mechanisms and management, and

allocation of processes on the processor nodes.
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CONCLUSION

The ideal programming environment is yearned for by

almost all programmers, who are often burdened by the need to

instruct very concisely, precisely, and prudently the

computer exactly what to do, and even more annoyingly, how.

Research efforts are constantly being made to approach this

unattainable goal. The design of an experimental

multiparadigm programming environment, named VOCOL,

attempting to draw fascination from the pool of programmers

of different faculties is one of the numerous efforts.

In this thesis, not only the design of the VOCOL system

is described, a prototype implementation and its performance,

are also discussed and illustrated. The system VOCOL

successfully blends together the visual, object-oriented, and

concurrent programming paradigms with the basic ingredient:

functional programming in a LISP environment. With a layered

architecture, VOCOL is broken up into modules of manageable

sizes.

As part of the whole design, a stand-alone LISP

programming environment- the VCLISP environment is conceived

and realized. VCLISP defines the semantics and operations on

concurrent LISP processes, having visual representations and

being compiled in the language VCLisp. To examine the

validity and usefulness of the environment, a prototype is



134

CONCLUSION

developed and the VCLisp interpreter written. Sample

programs are written to benchmark and evaluate VCLISP. A few

of them are presented in the thesis. Experiments show that

VCLISP is easy to program, as ordinary LISP is, and that it

is more powerful and user-friendly.

On top of VCLISP, the object-oriented paradigm is built.

Entities in the object-oriented layer, either active or

passive, are expressed in terms of VCLisp statements and

system calls. A high degree of parallelism is exploited with

the unification of objects and processes. By suitably

modifying VCLISP. VOCOL is portable to a- new machine. In

much the same way, sample applications are developed as

object programs, running on the object-oriented layer. Some

of these object programs illustrate their elegance and some

their flexibility over conventional programs.

Finally, the application layer on the object-oriented

layer furnishes the programmer with various programming tools

with which his productivity can further be raised and his

programming burden assuaged, in addition to the toolbox

analogy of a multiparadigm environment designated by VOCOL.

The integration of visual programming, concurrent

programming, and object-oriented programming into LISP, as in

VOCOL, has proved to be a powerful combination in a

multiparadigm programming environment. The author wishes

that the design of VOCOL could lead to some contributions to



135

CONCLUSION

researches in programming languages and environments and is

looking forward to the advent of such a day: Programming is

no more a nightmare but a pleasure!
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A. The BNF of Some Meta--forms

1. Visual Function

Note that the BNF can generate meta-forms for all valid visual

functions but it can also generate some invalid ones. For example, it is

not allowed both the textual name and icon-id of a name t he wir3ramc

visua l-funct
visual-funct id parameter local-vars body)

<id> (id <name>)

<parameter> ( Para(< arg>*))

<arg> <name> <name> <val>)

semantics: the first name is the name of parameter the

second is the prompt the last value is the default value

<local-vars> ( local( <loc-var>*))

<1oc-var> <name> <val>)

<body> ( body( <s-exp>*))

<name> (name <text-name> <icon-id>) <text-name>

<text-name> <symbol> <wildcard>

<number> <wildcard><icon-name>

<constant><val>

<wildcard>

2. Class Definition

<class-def> (class <id> <attributes> <funct-def>)

<attr> <class-attr> <inst-attr><attributes>

(class-attr( <c-att>*))<class-attr>

( inst-attr( <i-att>*))<inst-attr>

<name> <val><c-att>

<name> <val> <type> <tag><i-att>

automatic manual<type>

inheritable noninheritable<tag>

(funct-def <priv- method> <inst-method> <sock-method><funct-def>

<body>)

priv-method <visual--funct>*)
<priv-method>

( inst-method <visua l--funct)*)<inst-method>

(sock-method <soc-meth-def>*)<sock-method>

<socket> <visual-funct>)<soc-meth-def>

(<name> <socket-attr>*)<socket>

<name> <val> <wildcard>
<socket--attr>
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3. Others

Depending on the context of the visual function, the scope of s-exp

varies. If it is under the context of a class definition, high level

message passing mechanisms are allowed. The following rules are a few of
them.

<s-exp <function-apps ication>

<infix-exp>

<send-msg>

<make-p1ug> <make-socket>

<infix-exp> ( infix( <infix-ele>))

<infix-ele> <expr> <1-value> <- <expr>

<term> (<add-op> <term>)*<expr>

<term> <factor> (<mul-op factor>)*

<factor> [ <expr> ] <s-exp>

<send-insg> ( send-message <receiver> <method> <argument>*)

( send-async <receiver> <method> <argument>*)

( broadcast <rec-class> <method> <argument>*)

<class> <instance><receiver>

<class>+) <class><rec-class>

<make-plug> <make-plug> <plug> <msg-packet>)

make-multiple-plug <plug> <msg-packet>)

make-socket <socket>)<make-socket>

( make-multiple-socket <socket>)

<name><method>

<name> <val><argument>

( <shape> <attr>*)<plug>

( <shape> <attr>*)<socket>

<name><shape>

<name< <val> <wildcard><attr>

( <argument>*)<msg-packet>
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B. An Example of the Evaluation Cycle

Suppose the symbol A is bound the value 6 and DOUBLE the lambda

definition (LAMINA (X)(* X 2)). Let us trace the evaluation of (PRINC

(DOUBLE A)). This sliced interpretation takes quite a long cycle (32

steps) to evaluate such a simple S-expression. Note that the execution

can be suspended between any step and then resumed later.

1. Push (PRINC (DOUBLE A)) in FORM stack and push EVAL in STATE stack

(the continuation field) and start evaluation.

2. Form (PRINC (DOUBLE A)) is a function call. Set STATE to function

evaluation EVAL-FUNC.

3. Get lambda definition for PRINC. It is a system function and set

STATE to evaluate argument EVAL-ARG.

4. Argument list ((DOUBLE A)) is not null. Therefore evaluate the first

argument. Push the argument (DOUBLE A) in FORM stack and EVAL in

STATE stack.

5. Evaluation of (DOUBLE A). Form is a function call. Set STATE to

EVAL-FUNC.

6. Get lambda definition for DOUBLE. It is a user--defined function and

set STATE to EVAL-ARG.

7. Argument list (A) is not null. Push the first argument A in FORM and

EVAL i n STATE.

8, Form is an atom A. Its value is 6. Put it in RESULT and set STATE to

FINISH so that backpatch can be performed.

9. Backpatch occurs and 6 is appended to the RESULT list of EVAL-ARG.

Set STATE to EVAL-ARG.

10. Argument list is null. Finish argument evaluation. RESULT contains

the evaluated argument list (6). Set STATE to bind arguments

BIND--ARG.

11. Pair up the parameters with arguments to form the lambda binding.

Thus X is bound to 6. Set STATE to apply function body APPLY-BODY.

12. Function body may be a sequence of statements. Push the first

statement in FDRM stack and push EVAL in STATE stack. Retain the rest

of the body.

13. Form is(* X 2). Set STATE to EVAL-FUNC.

14. It is system function. Set STATE to EVAL-ARG.

15. Argument list (X 2) not null. Push X in FORM and EVAL in STATE.

16. Form is an atom X. Its value is 6. Set STATE to FINISH.

17. Backpatch and append 6 to RESULT list. Set STATE to EVAL ARG.

18. Argument list (2) is not null. Push 2 in FORM and EVAL in STATE.

19. Form is a constant 2. Value is 2. Set STATE to FINISH.

20. Backpatch and append 2 to RESULT list. Set STATE to EVAL-ARG.

21. Argument list is null. Finish argument evaluation. Arguments are (6

2). Set STATE to BIND-ARG.
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22.* is a system function. Pairing is not necessary. Set STATE to
APPLY-SYSTEM.

23. Apply * on the arcp ment list (6 2) to yield 12 (result of step 13).

Set STATE to FINISH.

24. Backpatch 12 in RESULT stack. Previous action is EVAL (step 12). Set

STATE to FINISH.

25. Backpatch again. Propagate 12 back. Previous action is APPLY-BODY

(step 11). Set STATE to APPLY-BODY.

26. runction body is exhausted (DOUBLE has only one statement in body)

Set STATE to FINISH.

27. Backpatch 12 in RESULT stack. Previous action is EVAL (step 4). Set

STATE to FINISH.

28. Backpatch again and propagate 12. Append 12 in RESULT list. Previous

action is EVAL-ARG (step 3). Set STATE to EVAL-ARG.

29. Argument list is null. Finish argument evaluation. Argument is (12).

Set STATE to BIND--ARG.

30. PRINC is a system function. Set STATE to APPLY-SYSTEM.

31. Argument 12 is printed on the screen. Set STATE to FINISH.

32. Backpatch 12. Previous action is EVAL (step 1). Set STATE to FINISH

33. Everything is empty and the whole evaluation cycle is completed.
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C. Some Iconic System Functions

A few commonly used system functions and their iconic

representations are shown in this table. Some of them have

been used in the definition of the tower of Hanoi in chapter

4 and in the sample applications in chapter 7.

send-message

make-instance

vcsys-p

vcsys-create

delay

true

print

vcsys-create-

semaphore

vcsys-v

vcsys-activate

sleep

nil

Figure C.1 Some Iconic System Functions
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