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ABSTRACT

A fully automatic speaker recognition system, which is composed of a speaker

verification (SV) module, a speaker identification (SI) module and a speaker inde-

pendent isolated word recogniser (IWR), has been designed for mono-syllabic lan-

guage, specifically for Cantonese. Energy-time profiles (ETP), the segmental energies

extracted from the outputs of 5 consecutive bandpass filters with cutoff frequencies

150-500, 500-850, 850-1.2k, 1.2k-1.8k and 1.8k-3.2k Hz respectively, have been used

as feature parameters to carry the acoustic characteristics for both speaker identity

and speech contents. Due to the simple phonetic structures of Cantonese, instead of

using dynamic time warping (DTW), linear time warping (LTW) is applied for

aligning of the testing and reference tokens during template matching so that hard-

ware implementation for low-cost high speed real time processing is possible.

For speaker verification, a combination of M distinct Cantonese digits is used

as input utterance which at the same time contains information of the identity of the

user. The claimed identity is being extracted by a speech recognition algorithm such

that corresponding references can be retrieved for comparison. During verification,

instead of treating the complete sequence of digits in its entirety, the input utterance

is considered as different units of discrete word and comparisons are made on a

digit-by-digit sequential order. Final decision depends upon the overall recognition

results obtained from each digit. Using LTW for time alignment of each individual

digit, a verification accuracy of 99.39% is obtained with M=5. This is comparable

to that obtained by using DTW with M=3, but with a 10 fold increase in computation

speed. Higher accuracy can still be possible with a larger value of M.

For identification of a speaker, the user is requested to utter a randomly selected

combination of 5 digits and recognition is again carried out on a digit-by-digit

approach. After comparison with the appropriate reference templates for each reg-

istered candidates, the speaker will be identified as either one of the qualified



candidates or a non-registered user by using a set of decision criteria based on a

majority rule. Identification accuracy of 96.21% is obtained on using LTW. When

compared with the results obtained by using DTW, only an increase of 2.61% in

rejection rate of legal user is found but with the advantage of a large amount of time

saving in the identification process.

Finally, a probabilistic approach is employed in the IWR algorithm for

extracting a user's personal identity code from his input token in the SV system.

Instead of using traditional template matching technique, decision is based on a

statistical criterion. Template generation is by means of clustering the feature para-

meters, viz, the ETP, of a large training set on a temporal basis, and a probability

matrix is computed which gives a similarity measure between the vocabulary and

that of the cluster centre. Although the training process is relatively lengthy, it can

be done off-line and hence real time performance will not be affected. Average

recognition score up to 97.88% is attained for trained speakers which is fairly sat-

isfactory for the prescribed application in view of the system simplicity.



Contents

Chapter 1 Introduction 1

1.1 Classification of Speaker Recognition 2

1.2 Speaker Recognition Techniques 4

Chapter 2 Speaker Recognition Using Energy-Time Profiles 11

2.1 System Configuration 12

2.1.1 Endpoint Detection 14

2.1.2 Feature Extraction 17

2.2 Distance Measure 19

2.2.1 Dynamic Time Warping 20

2.2.2 Linear Time Warping 24

Chapter 3 Speaker Verification System 27

3.1 Template Matching 29

3.2 Decision Making 31

3.3 System Evaluation and Results 34

3.4 Observations 52

Chapter 4 Speaker Identification System 54

4.1 Decision Making 56

4.1.1 First Pass Decision 56

4.1.2 Second Pass Decision 59

4.2 System Evaluation and Results 60

4.3 Observations 64

Chapter 5 Speech Recognition of Discrete Cantonese Words on a Probabi;

istic Criterion 66

5.1 Feature Extraction 67

5.2 System Training 69

5.3 Decision Making 73

5.4 System Evaluation and Results 75

5.5 Observations 80

Chapter 6 Conclusion and Discussion 81

References 86



1

Chapter 1

Introduction

Computer, being originally designed to perform simple but repetitive arith-

metics, has emerged to be an essential tool for scientific development nowadays.

Many of the human tasks, especially those involve extensive and complicated

calculations, are performed by computers under human instructions in a fast and

ordered manner. In order to cope with the demands existed in the development of

different areas of science, the communication medium between human beings and

computers has evolved from a machine level (using digital code) to a more accessable

way (using human language in words). Can computer communicate with man in

a more efficient way? has been an unceasing question to scientists over the past

couple of decades. Speech, one the most natural and frequent medium that man

communicate among themselves has been considered as one of the possible and ideal

medium for man-computer communication. This is particularly true for many disabled

people because speech often remains one of the most important biometric attributes

they can easily access. Hence, teaching the computers to listen and understand as

well as to speak are the prime goals of many researchers.

During human conversations, not only can a listener extract the language

contents from the speech spoken by a speaker, it is also highly probable that he can

obtain extra information from the speech such as the identity of the speaker (who is

speaking), the emotion of the speaker (angry or calm, etc.) and even the sex of the

speaker (a man or a woman). For more than twenty years ago, scientists have started

to investigate whether computers can recognise a person by the way how he speaks

as well as to understand what is he speaking. Automatic speaker recognition has then

become a major research interest and enormous amount of work has already been

done in this area.
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In fact, to identify a person, many methods have been found useful and robust.

These include the finger print recognition, retina pattern recognition and many

methods along with physical attributes on a person's body. These are said to be static

which cannot be easily changed even intentionally. On the other hand, signature

recognition which is said to be dynamic as the performance depend upon the signer's

act, has been used broadly all over the world. However, none of the above recognition

methods can be performed easily under merely computer supervision, i.e. full

automation. To represent one's identity in a convenient way, some artifacts such as

magnetic card and pass code have been used which however, being extrinsic to the

user, may be forgotten, lost or more seriously, stolen by someone else which will

cause inconvenience and lost of property to the user. Human speech, the future

medium for man-machine communication, has been suggested to be a potential

attribute from which speaker's identity can be determined automatically by computer

after processing. There are many real world applications for automatic speaker

recognition such as the physical access control to some restricted area, direct access

or remote access control through telephone channel to some personal and confidential

information or data, forensic science for investigation of evidence to be used in the

court and many others.

1.1 Classification of Speaker Recognition

With different applications in mind, speaker recognition can basically be

classified into two main categories: Speaker Verification and Speaker Identification.

A speaker verification (SV) system, having an utterance and an identity claim as

input, discerns whether the input utterance belongs to the claimed speaker or not.

Rejecting or accepting the claim are the two possible decisions. On the other hand,

a speaker identification (SI) system, having only an utterance as the input item

without any other information about the speaker's identity, has to determine to whom

this input utterance belongs among the N legal and pre-registered users or to confirm
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the speaker is not a qualified user. Therefore there are altogether N+1 possible

outcomes for such a system. It has been found that the performance for speaker

verification, which being theoretically independent of the size of the registered

population, is always better than that of speaker identification which varies inversely

to the number of legal users. Fig.1-1 shows the schematic structure of these two

kinds of speaker recognition system.

Input InputClaimed
Identity UtteranceUtterance

FeatureFeature
References I References

Extraction Extraction

ReferencesReferences of

Claimed Speaker of N users

Similarity MeasureSimilarity Measure

DecisionDecision

Accept or Reject Reject or either of the N Users

(b) Speaker Identification(a) Speaker Verification

Figure 1-1 Speaker Verification and Speaker Identification

Despite of the differences between SV and SI, the extraction of feature

parameters and the exploitation of the speaker-dependent acoustic events from the

input utterances are the most crucial parts to both systems which directly affect the

recognition performance. A successful parameter extraction process is determined by

the annropriate choice of robust acoustic features from the spoken words which can
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reflect distinctively the speaker's characteristies. Basically, there are two approaches

in which extraction of acoustic features to characterize a specific speaker can be

based upon, namely, text-independent and text-dependent.

For text-independent speaker recognition system, distinctive speaker char-

acteristics are supposed to be contained frequently and naturally in ordinally human

speech irrespective to the embedded contents.Thus, no fixed text is necessary for

recognition as long as the input sentence is properly uttered. The advantage of

text-independent speaker recognition lies on the fact that speaker characteristics can

simply be extracted from ordinary conversation so that cooperation from and

pre-acknowledgement to the speaker are not necessary. Contrary to text-independent

speaker recognition system, a text-dependent speaker recognition system requires the

unknown speaker to cooperatively utter a fixed word, a full sentence or a combination

of words, out of a confined vocabulary. In this case, acoustic features are extracted

as a function of time and the speaker's characteristics are then reflected by how these

time-varying features change with time.

1.2 Speaker Recognition Techniques

To recognise automatically a speaker by computer, many techniques have been

developed and tested. These techniques involve various ways for (a) extracting useful

speaker dependent feature parameters, (b) increasing speaker information and finally,

(c) exploiting the parameter sets for recognition. Although under different emphasis,

they are usually designed in accordance to the utterance nature (fixed text or not)

and phonetic structures of the language employed (English, Japanese or Chinese),

and with considerations of the efficiency and effectiveness for the applications in

mind.
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To represent a speaker by the way he speaks, many acoustic features evaluated

through signal processing theories have been found to be very useful. Out of them,

the linear predictive coefficient (LPC), the pitch, the gain and the short time spectrum

have been used widely for both speech and speaker recognition. The LPCs, being

the coefficients of an adapted model to an all-poles filter which simulates the human

articulary system, has been found to be a very effective parameter set to represent

speaker's characteristics. It can used either directly [1], or after undergoing some

transformations [2]. Different methods for its evaluation has been proposed and useful

properties in deriving more information from the speech signals have been discovered

[3]. However, the computational effort in obtaining the LPC coefficients is very large

and, therefore, despite of the popularity of its use in speaker recognition, economic

real time application has been found very difficult, if not impossible. On the other

hand, pitch (the foundamental frequency variation of the speech signal) and the gain

(the intensity variation of the speech signal) are some of the features which can be

extracted easily through simple methods and hardware. However, representing a

speaker by the pitch or the gain of his utterance only is usually inadequate. In fact,

they are often the side-products of the extraction process of other features which

makes them, in many cases, only part of the parameter set in speaker recognition

[4,5]. Besides these features, the short-time spectrum, showing the 3-dimensional

power spectrum of the speech signal along time, is another very useful parameter to

distinguish a speaker. It has been refered to be the voice print in analogous to the

finger print in identifying a person and had been used semi-automatically in speaker

recognition in the initial development of automatic speaker recognition techniques.

Filter-bank approach to approximate the power spectrum of the speech signal is yet

another method to obtain acoustic features in a simple way. However, the number

of channels usually employed in the frequency bank is around 20 [6] which com-

plicates the system configuration and requires a relatively large amount of compu-
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tation or hardware. To put into low-cost real time applications, reduction in the

number of channels is neccessary but which, on the other hand, will affect the

recognition performance.

The extraction of useful feature from the speech signal is very crucial for

automatic speaker recognition. However, the way for exploitation of these useful

feature parameters is also very critical for a successful system and depends highly

on whether the system is text-dependent or text-independent. One of the common

ways in handling the parameters in text-independent speaker recognition system is

the long-term average statistical approach [7,8]. Acoustic events extracted in certain

time intervals are averaged throughout the whole input utterance to obtain some

statistics which is said to be speaker dependent. However, this method requirs quite

lengthy utterances to ensure stable and reliable statistics for satisfactory performance.

Another frequently used method is the detection of certain phonetic events which

occur frequently at different location in the utterances [9,10] and comparison will

be made upon on the feature characteristics within the specified region. The location

of phonetic cues, which is the determining factor for good recognition performance

for this method, is however not easy to do. In addition, as a matter of facts, long

duration of input utterance is required to ensure adequate existence of the events for

good performance. Owing to these reasons, text independent speaker recognition has

not yet reached to a prominent result that leads to practical usefulness. Although in

the past few years, much effort has been contributed in the text-free speaker rec-

ognition, the performance is still lagged behind those employing a fixed text pattern

as testing utterance and in fact, many practical applications are basically a

text-dependent speaker recognition system [11,12].

One of the approaches in the comparison of speaker identity for a text-de-

pendent speaker recognition system is the statistical methods [13,14]. The probability

densities of the dynamic features is estimated from the training data set of a fixed
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input token to represent the speaker and recognition is performed on statistical

decision theory. Although only a fair amount of computation is needed to acquire

the statistics, it requires quite a large number of utterances for training and this

requirement is usually very difficult to satisfy in real-time operation. The template

matching approach, which has been a traditional method employed in many of the

speech recognition systems, is another method popularly used for text-dependent

speaker recognition. In this approach, the speaker is represented by the time series

of the features extracted from the training utterances of the speaker. Averaging or

vector quantization [15] is usually employed to form the reference templates or

codebook. The comparison will then be done between the time series of acoustic

features of the reference templates and that of the input utterance with identical

context. The possibility that the input words and a certain set of reference template

belongs to a specific speaker will be evaluated according to the degree of resemblance

between them. However, in real situation, the duration of the utterances differ from

speaker to speaker and from time to time. In order to achieve a meaningful measure

on the utterances' similarity, the parameter sets must be matched properly on the

temporal basis. Unfortunately, the variation in the speaking rate has caused non-linear

fluctuations in the speech pattern along the time axis which makes linear time

warping (LTW) for time alignment becoming inadequate for satisfactory comparison.

This phenomenon is more prominent in utterances of long duration and complicate

phonetic structures. To cope with this problem, dynamic time warping (DTW) is

introduced. With this algorithm, distinctive time matching function to achieve

maximum resemblance for any two utterances is evaluated through dynamic pro-

gramming under some preset constraints. Every possible functions within the possible

region would be evaluated and finally the utimate solution is determined at the one

giving the best matching of the two. Though the achieved alignment is satisfactory,

the amount of computation involved is so large that real time application of the

algorithm in speaker recognition has been kept unreachable for low cost hardware.
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However, in many of the proposed speaker recognition systems, the non-linear

fluctuation is serious as the utterances is formed of languages rich in phonetic

variation such as English and Japanese, DTW needs to be used to achieve good

recognition results [12,16].

Hong Kong, a highly industrialized and commercialized area and also a financial

centre in the South East Asia, demands very much on an effective and efficient

communication of data and information. Automation through computer has been

therefore used enomously in nearly every areas to achieve a successful business.

Security in the access of data and information, or in the entry to a restricted area

then becomes a necessity. A code is popularly used to represent one's identity which

is usually in the form of a password accompanied with a magnetic card. However,

all these are extrinsic to the user and subjected to forgetting or being stolen by other

persons. The needs for an efficient automatic system in the recognition of the user's

identity are therefore existed. However, for a wide range of applications to be

possible, real time but low cost becomes a must.

A novel automatic speaker verification system, aiming at low cost real time

implementation, is proposed in this project. The system uses a testing utterance

composing a sequence of Cantonese words as Cantonese is the mother tongue of

most of the Hong Kong residents. The template matching approach with a minimum

distance measure is employed. To allow real time implementation with economic

hardware possible, DTW will not be suitable for the time alignment of utterances.

However, for a complete utterance consisting a sequence of Cantonese words, the

variation in the duration and the non-linear fluctuation of speech pattern will be very

serious from utterance to utterance. Since the intensity variation for Cantonese words

is simple so that the words in a sentence can be separated without difficulty as long

as the number of discrete words is known. Instead of comparing speaker's similarity

with the input utterance as an entirety, each of the individual words in the input
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sequence are separated and comparison is made on a discrete word basis. Since

Cantonese, a mono-syllabic language, has very simple phonetic structure for each

single word and therefore LTW is applied without serious degradation in the time

alignment between discrete words. The short-time spectrum from a 5-channels filter

bank, evaluated on each of the discrete words, is extracted to represent the speaker's

identity. The name Energy-Time Profile (ETP) is given for this set of parameter.

Verification decision will be based on the accumulated result of the similarity

comparison of the ETP on each of the single word in the input sequence.

Moreover, the sequence of words in the input utterance is used to represent the

speaker's claim of his identity simultaneously and is recognised by a built-in isolated

word speech recogniser. Again, ETP is used as the feature parameter in the rec-

ognition of the words, but with a small modifications. Instead of using template

matching with a minimum distance measure for the decision, a probabilistic criterion

is proposed for the recognition of the words.

in order to remedy in the proposed venrication system ror the case tnat the

speaker has forgot his identity code which is needed for verification, a speaker

identification system is included. An input sequence composing a random combi-

nation of discrete digits is requested by the system for identification. The identity

will be determined as either one of the legal users or an illegal user using an approach

similar to that used in the verification system. However, a different decision strategy

is employed to ensure identification accuracy. Fig.1-2 shows a block diagram of the

automatic speaker recognition system. The system is evaluated on a pool of speakers

with the 10 Cantonese digits as the vocabulary.

This report describes in details the above automatic speaker recognition system

and experimental results will be given. In Chapter2, the way for extraction of the

ETP will be descrided. The measure of speaker similarity will also be defined
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together with the description of the 2 alignment techniques, DTW and LTW, used

in the experiment. In Chapter 3 and 4, the details on how to verify and identify a

speaker will be explained respectively and their respective evaluation results will be

given. The description of the isolated word speech recognition algorithm, inluding

the modification of parameter set, the training methodology and the probabilistic

decision criterion, will be included in Chapter 5. Finally, a conclusion of the project

and the suggested future work will be given in Chapter 6.

Speech

Recognition

Claimed
Identity

FeatureInput Speaker

Extraction VerificationUtterance

Provedj
Identity

Speaker

Identification

Figure 1-2 Automatic Speaker Recognition System
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Chapter 2

Sneaker Recognition Using Energy-Time Profiles

One of the difficulties in text-dependent speaker recognition system using

temporal acoustic features is the availability of an efficient but accurate method for

aligning two utterances having different durations such that meaningful comparisons

can be made. Dynamic Time Warping (DTW) has been employed by many

researchers to handle the alignment. However, the computation involved is laborious

and it makes real time implementation very difficult, if not impossible. Linear Time

Warping (LTW), which requires a much less computation for time alignment, is on

the other hand, insufficient in many cases to cope with the nonlinear relationship

between time and the variations of acoustic features. This nonlinearity increases when

the duration and structural complexity of the utterance increase. LTW is therefore

seldom employed in those speaker recognition systems using discrete or a whole

sentence of poly-syllabic words as the testing utterances.

Cantonese, a very common cuaiect in ioutnern part or Cnina as weir as in many

communities overseas, is composed of words only in single syllable only, usually

known as monophone. Each of these mono-syllabic words has the following simple

phonetic structure

(2.1)syllable

initial final

where V is a vowel and (C) is an optional consonant. Table 2-1 gives a list of the

possible finals and initial consonants of Cantonese [17,18]. There are altogether 19

initials and 53 finals in Cantonese. Combined with the 9 tones of speaking, they

form the whole vocabulary of phonetically possible Cantonese words- though not

all of the combinations are meaningful and defined. Because of this simple structure,
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the above mentioned nonlinear phenomenon that occurs in Cantonese discrete words

is much smaller than those in poly-syllabic words. [19] also showed that for small

variations of speech periods, DTW's performance is not overwhelming when com-

pared with LTW. Hence, LTW is expected to perform reasonably comparable with

DTW for proper time alignment for Cantonese words. A speaker recognition system

is, therefore, proposed in which speaker characteristics are extracted from isolated

Cantonese words. Both dynamic and linear time warpings are employed and com-

parisons between them have been studied.

Finals (53)

Vowels a e i D u y

ai ei ei uiDi

Diphthongs au iueu ou

cey

Nasals only am em im m

ce

or after an en in unDn cen yn

enVowels an in unDn cenen n

Plosive ap ep ip

etafter at it utDt cet yt

ekVowel ak ikek Dk cek uk

Initials (19)

g
b d dz f h k kw I mgw j

n n s t ts wp

Table 2-1 The Cantonese Finals and Initials

2.1 System Configuration

Energy-time Profiles (ETP) of a word at different frequency bands are used as

parameters to characterize a specific speaker in the proposed speaker recognition

system. A similar approach has been used in speech recognition of Cantonese words
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[20], and experimental results have indicated a distinctive dependence of this para-

meter on different speakers. Fig.2-1 is a block diagram of the speaker recognition

system.

Input token

Endpoint

Detection

ETP

Extraction

Training Recognition

Reference Distance

Templates Measure

Decision

Making

Recognised Speaker

Figure 2-1 Speaker Recognition System Using ETP.

After determining the beginning and end of the utterance, the input token containing

a discrete word is then passed through a series of bandpass filters and segmental

energies are computed from the filters' output. In the training process, the evaluated

parameter sets are stored as references. A distance threshold is also calculated from

the references and will be used for decision making. In the recognition process, the
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input token is subjected to a similarity measure with the reference tokens. The result

will then be determined by a set of decision rules. Details of each of the functional

blocks shown in the figure will be described in the following sections.

2.1.1 Endpoint Detection

In order to include all important acoustic events and also to ensure meaningful

comparison of the similarity of utterances of a specific word from various speakers,

the beginning and end of an utterance should be positioned as accurate as possible.

In addition, elimination of useless information actually implies a saving of memory

and computation which is essential in real time application. Three common tech-

niques have been used for endpoint detection of isolated words. They are the explicit,

implicit and hybrid techniques [21]. In Fig.2-2, the typical values of the energy and

zero-crossing rate of a discrete Cantonese word is shown.

E(n)

Z(n)

E(n)
E MAX

Z(n) 30
i

20

ZCT

10EUT

EMT

ELT

ENDBEGIN

initial region

Figure 2-2 Contour of segmental energy and zero-crossing rate of
a Cantonese digit "1"
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The mono-syllabic characteristic of Cantonese is clearly shown by its simple

shape of variation of energy with time. The explicit technique which is based merely

on energy detection is therefore adequate for the positioning of endpoints of discrete

Cantonese words. However, to refine the endpoints of words for those with fricative

beginning and end, zero-crossing rate is used together with energy to determine the

endpoints [20]. This efficient method has been used for speech recognition of discrete

Cantonese words and will also be adopted in the proposed speaker recognition

system.

The input speech, after bandpass filtered at 100-3.3kHz and sampled at 8 kHz

with 12 bit resolution, is divided into segments of 10ms duration. The `segmental

energy' E(n) is evaluated by the 80 samples inside the nth segment in the following

way:

(2.2)

where Sn(i) is the ith sample amplitude in the nth segment. The maximum `segmental

energy' is extracted among all segments and is denoted by Ems. The `segmental

energy' of 10 segments within the speechless portion (the initial region of the speech)

are averaged to give the energy ESQ, during the silence period. Three energy

thresholds are then defined as a function of EmAx and ESQ, by the following equations:

(2.3)

(2.4)

(2.5)

The zero-crossing rate Z(n) in the nth segment is computed at the same time with

the energy as follow,



16

(2.6)

where Sgn[Sn(i)]

Sn(i-m), with m<1, refers to the nearest non-zero sample that is m samples before

the ith sample. A zero-crossing threshold, ZCT is chosen as the minimum between

a fixed value of 25 and a threshold which is given by the sum of the mean (i)

plus twice the standard deviation ((zc) of the zero-crossing rate during the 10 silence

segments stated previously.

To locate the beginning of the utterance, the immediate segment having energy

just below the threshold EMT is first found by searching backward from the maximum

energy segment. The beginning is then assumed as the j segment in front when one

or more of the four conditions is satisfied:

VOWB is the first block whose 'segmental energy' is just above EUT during the

backward searching process. By searching forward from the maximum energy seg-

ment, the end of the utterance is simply fixed at the last segment having `segmental

energy' just above ELT. By using this simple and efficient algorithm, the endpoints

of utterances containing a discrete Cantonese word can be correctly positioned.

Followed will be the extraction of speaker's characteristics from these confined

words.
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2.1.2 Feature Extraction

Many of the parameters have been found to possess various characteristics

which are speaker dependent. The pitch contour, linear prediction coefficients,

spectral information and intensity can all be employed to distinguish a speaker's

identity. Among them, linear prediction cofficients and their derived parameters seem

to be the most commonly used. Specifically, they have been used in many speaker

recognition systems and have shown to give satisfactory performance [27]. However,

the evaluation of the parameter sets are too complicated which is almost impossible

for real time application without expensive hardware. Pitch contour and intensity,

which can be extracted in simple and efficient ways [22] are ideal to achieve high

speed recognition. However, these parameter sets are usually used in conjunction

with other uncorrelated parameters such as the LPC [23] and formant frequencies

[24] to give satisfactory results and, therefore, system simplicity can hardly be

maintained. Having considered the above tradeoff, a spectral energy approach which

makes use of the short time energy of a filter bank outputs as feature parameter is

defined and investigated.

The input speech sample is first sent to a bank of five bandpass filters with

passband at (i) 150-500 Hz, (ii) 500-850 Hz, (iii) 850-1.2k Hz, (iv) 1.2k-1.8k Hz

and (v) 1.8k-3.2k Hz. Elliptical filters having specification shown in Table 2-2 are

used. The ranges of filter are fixed with the purpose to extract sufficient information

of speakers from different spectral regions. The choice has been made on a com-

promise between speaker characteristics and computation time for recognition.

Increasing the number of filters by narrowing each filter's range will increase

speaker's information on one hand-and computation of recognition on the other.
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Channel Lower Stopband Lower Passband Upper Passband Upper Stopband Stopband
no. Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz) Ripple (db)

-331 100 150 500 550

-352 450 500 850 900

-363 800 850 1250 1250

-324 1150 1200 1800 1850

-3217505 1800 3200 3250

Table 2-2 Design specification of the bandpass filters.

Short-time energy under a 20ms rectangular window are then computed every 10ms

on the five output signals from these filters together with the wide-band signal. Let

Eq(k) be the energy of the kth segment from the qth band filter and can be computed

from

(2.7)

where S (k,i) is the ith sample in the kth segment and W(k,i) is a 20ms rectangular

window given by

if 1:5 i 160 in the kth segment
W(k,i)

otherwise
(2.8)

It has been stated that Hamming window is more appropriate for the extraction of

short time information than rectangular window [25]. However, for the purpose of

simple impementation and efficient evaluation, rectangular window is used in all our

tests. The total number of segments varies from 1 to N where N depends on the

length of the utterance. Let EOM be the maximum short-time energy evaluated from

the wide-band signal (i.e., q=0), the self-normalized short-time energy Eq(k) is as

follow,
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(2.9)

The speaker's identity can then be represented by a matrix composed of N time

vectors. Each of the time vectors contains five normalized short-time energies in the

5 different frequency bands. Each time vector is actually an approximation of the

short-time spectral energy of the utterance while its change indicates the temporal

variation. The speaker similarity will then be defined equivalently as the degree of

resemblance of their corresponding ETP matrices in terms of a distance measure in

the proposed system.

2.2 Distance Measure

Similar to most of text-dependent speaker recognition systems, template

matching approach is adopted in our system. It is therefore necessary to define a

distance measure between an input token and reference tokens which are now

represented in the form of time vectors of spectral energy. The distance between the

input token and any reference pattern is the total vector distance between their time

vectors. Smaller the distance, the greater the possibility that they are of the same

speaker. In our case, using energy-time profiles as parameter, the distance d(X,Y)

between utterance X and Y is defined as the sum of a distance measure dm of the

short-time normalized energy in utterance X to that in utterance Y. Hence,

(2.10)

where T is a mapping between the time index of utterance X and Y for proper time

alignment. Many formulae have been proposed for the distance measure dm according

to different applications. Euclidean distance, defined by the formula

(2.11)
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is one of the most common distance measure. However, in our case, the temporal

changes of the energy-time profiles are so great that a few order of difference exists

in the ratio between the high energy portion (around the middle of the word) and

low energy portion (around the ends of the word). With the same percentage of

difference, Euclidean distance, giving the sum of the squared differences, will be

completely dominated by that in the high energy portion. One possible solution is

to introduce normalization in the formula which can be expressed as

(2.12)

The modified formula allows a more even contribution to the overall distance from

different regions of an utterance. A further simplification on the distance measure

can be obtained by replacing the squared distance with an absolute distance, i.e.,

(2.13)

Equation (2.13) is adopted and is fairly effective in speaker recognition in which

similarity is measured between contextually identical utterances among a group of

speakers. With this fixed distance formula, we have to determine which of the

time vector of utterance Y should be compared to that of utterance X. In simple

words, the function T in equation (2.13) is to be determined to ensure a sensible

comparison. Two mapping approaches are used in our system- the dynamic and

linear time warnin a.

2.2.1 Dynamic Time Warping

Any two utterances having identical context, either from the same speaker or

different speakers, are seldom to have the same duration. Unfortunately, the acoustic

features for the utterances have been found to be non-linearly changing with time.
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Therefore, a linear compression or expansion of temporal acoustic parameters will

cause an improper time alignment between the two utterances when they are being

compared. Moreover, this non-linearity varies in an undeterministic way between

utterances. Dynamic programming is therefore adopted to determine an optimal

matching between the acoustic features of any two utterances in the time domain.

The utterances to be aligned are first assumed to be similar. The alignment

that gives greatest similarity between the utterances is to be found under a set of

constraints. Different sets of constraint have been proposed [26]. The one we have

used in our experiment is a foundamental one which has been used in many appli-

cations. Considering input utterance X and reference utterance Y with time indices

n and m respectively, where n=1,2,...N, and m=1,2,...,M, a mapping T between the

time indices n and m is to be determined so that a matching with greatest possible

coincidence between them can be obtained. The following conditions guide this

mapping:

(1)

(2)

(3)

Conditions (1) and (2) are in fact the boundary conditions with the assumption that

the beginnings and ends of the two utterances are determined accurately and should

be aligned first. The remaining continuity constraint limits the function T to be

monotonically increasing with a maximum slope of 2 and a minimum slope of either

0 (if the slope of the preceding frame is non-zero) or 1 (if the slope of the preceding

frame is zero). Fig-2-3 indicates the possible region for the mapping T, bounded by

the four lines which are evaluated according to the constraints. A typical function is

also shown in Fig.2-3.
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m

M

region of possible path

1

1 N n

Figure 2-3 Possible region and typical mapping in DTW

Using the previous symbols, we define a distance measure d' (n,m) between the time

vector of utterance X at time index n and that of utterance Y at time index m, i.e.,

(d'(n,m) = (2.14)

An accumulated distance dacc(n,m), measured as the minimum possible distance

started from the coordinate (1,1) to the coordinate (n,m), is defined using the

recursive formula

d
acc

(n,m)= d'(n,m)+ min. value between (2.15)

d acc(n-1,m),

d acc(n-1,m-1),

d acc(n-1,m-2)

m=2n-1

m=0.5(n-N+1)+M

m=0.5n m=2n+M-2N
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A value of infinity is set to dacc(n- l,m) if the slope in the frame of time index n-1

is zero. All dacc(n,m) is not defined in the formula if the coordinate (n,m) is out of

the bounded region. In fact, all the possible path for T will be evaluated and a final

one giving the minimum distance denoted by dacc.(N,M), is selected.

Owing to the continuity constraint, the ratio between utterances' length is

limited to 2. However, because of its simple syllabric structure, the duration of

Cantonese word is usually short. It is therefore common for utterances having dur-

ation ratio greater than 2. In order to allow the application of previous dynamic

programming for the time alignment on Cantonese discrete words, linear compression

or elongation of the time axis is performed ahead of the application of the algorithm

whenever this situation occurs. This is done by transforming the short-time spectral

energy Ei(n) of time index n, to E'i(n') of time index n' using the following formula:

for compression

with n=2n'-1
Ei(n) (2.16)

for elongation

with n=(n'-1)/2 (2.17)Ei(n)

and n' odd

and

with n' even (2.18)

where i=1,2,...,5, n=1,2,...,N and' m=1,2,...,M. The transformed set of short-time

energy E'(n') having time index n' is then used in the dynamic programming to

obtain maximum coincidence with the other set of the matching utterances.
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2.2.2 Linear Time Warping

It is not difficult to understand from the recursive procedure according to

equation (2.15) that the amount of computation for DTW is enormous. There is no

definite function to evaluate the amount of computation. However, the time for

computation will definitely increase with M, N and their ratio as it approaches 1.

DTW is therefore not suitable to be used in real time application for speaker rec-

ognition. As stated previously, the simple structure and the short duration of discrete

Cantonese word provide a chance for LTW without serious degradation of the

speaker's information contained in the utterance.

LTW is implemented in the following way. For each pair of utterances, despite

of their length, their time axes are warped on to the same time axis with a fixed

number of time vectors, say P. As to the previous utterances X and Y which have

N and M time vectors respectively, they are now transformed to have P time vectors

containing short-time spectral energies Ei(p)X and E1(p)y which are given by

(2.19)

with n= integral value of (2.20)

a real constantand (2.21)

and

(2.22)

with m= integral value of (2.23)
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and k a real constant
(2.24)

The time mappings defined by equation (2.20) and (2.23) are shown in Fig.2-4.

p

P

mapping for mapping for

utterance Y utterance X
m=p(p-1)(M-1)(P-1)+1

n=(p-1)(N-1)/(P-1)+1

p

nm
m+k n+KM N

p=1
m=1

n=1

Figure 2-4 Linear mappings of two different length utterences to a

fixed duration.

Consequently, the distance d(X,Y) between utterances X and Y is calculated

according to the equation

(2.25)

which involves a definite amount of computation for each distance measure.

With the ETP representing the phonetic characteristics of a speakers, a template

matching approach on a minimum distance measure according to equation (2.13) is

adopted in the recognition of speakers. In the time alignment of input tokens and

the reference templates, LTW obviously requires much less computation time and

(p-1)(M-1)
+1-m,

(P-1)

d(X,Y) =
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is, therefore, employed for the function T in the distance measure defined in equation

(2.13), with P being selected to be 16, in order to allow real time processing.

However, the experimental results using DTW will be presented together so that the

comparison on their corresponding performance can be studied. In chapter 3, we will

studied how the ETP and distance measure are used in the verifying a speaker.

Identification of speaker will be studied in the chapter following it.
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CHAPTER 3

Speaker Verification System

To verify a speaker, two inputs are required, namely, the identity claimed by

the speaker and the utterance that carries his characteristics for verification. However,

in many systems, identity claim is sometimes extracted by some other means such

as magnetic card and keypad while the input speech consists merely a specific

sentence or a combination of words, not necessarily meaningful. To facilitate a

thorough speech automation, a novel speaker verification (SV) system is therefore

proposed in which the speaker's identity is extracted simultaneously from the input

token. The contents of the input token can be a sequence of discrete Cantonese words

which represents the speaker's identity in the form of either his name or his code

number. Unlike many systems that carry out template matching on the whole speech

sentence, the proposed system performs matching on a discrete word basis and each

individual word contained in an input utterance, in this case, a monophone, is

considered as one entity. Each input token is either partitioned into units of discrete

word by an end-point detection algorithm that makes use of the simple energy

variation of Cantonese, or simply by uttering the sentence in a word-by-word

sequential manner. Energy-time profiles are extracted from each of these discrete

entities and are used as speech parameters to represent individual speaker's char-

acteristics.

To derive the speaker identity from the contents of the input token, speaker

independent isolated word recognition (IWR) is required. There are many IWR

methods which use different parameter sets for recognition, however, to maintain

system simplicity, ETPs are again employed to represent the speech features. Instead

of using Euclidean distance for template matching, a probabilistic approach [28] is

investigated which has been found effective for discrete utterance recognition with
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a small vocabulary. The details of the algorithm will be given in chapter 5. In this

chapter, we shall concentrate on discussing the method for verifying the identity

claim (which is supposed to be correctly recognised here) based on the user's input

utterance of mono-syllabic words. A block diagram of the system configuration is

depicted in Figure 3-1. In the following sections, the topology of defining distance

measure for matching and the rules of decision will be given. Finally, statistic

calculation, tests for system evaluation as well as experimental results will be

described.

Input sequence of words

Endpoint

Detection

ETPSpeech

ExtractionRecognition

VerificationClaimed Training

Identity

DistanceLCIaimed speaker's references-Reference

Templates Measure

Decision

Making

Accept or Reject

Figure 3-1 System Configuration of the proposed speaker verificatior

system.
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3.1 Template Matching

To verify a user (anyone who comes forward to request for a verification) from

his utterance, the proposed system employs a simple template matching approach.

The input words composing the utterance will be compared with the references of

the claimed speaker and the determination to accept or reject will be made on the

overall results obtained for each of these input entities. Each of the candidates, i.e.

the registered users, are requested to utter each word in the vocabulary for a few

times as training references and the energy-time profiles will be extracted to form

the ETP matrices. No clustering or averaging is performed on these ETP matrices

to from the reference templates and instead, all of them will be used directly as

references during verification. Consider a system consisting of S candidates with

each of them utter N times for each word in a vocabulary size W, the total number

of reference templates in the form of ETP matrices in the system memory will be

NxSxW. Of course, the memory requirement might be excessingly large if there are

a lot of users and also if the vocabulary size is big, so one must be careful to consider

the tradeoff between a complicated training process or a relatively larger memory.

During verification, each of the words composing the input utterance will be

matched to the corresponding reference patterns of the claimed speaker in a

word-by-word basis. Suppose one of the words in the input utterance is designated

by m, it will be subjected to a distance measure with the N templates of the claimed

speaker of the same word m according to equation (2.15) or (2.25). Among these

N distances, the minimum is selected and is defined as the smallest distance D(m)

of this testing word m to the claimed speaker's references. That is,

(3.1)D(m)= min[d(m), i=1,2,...,N]
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Where min[] is a minimum selection operation amongst the arguments within the

bracket. Suppose an input sequence is consisting of M words designated by "1", "2",

..., "M", the above procedure will then be applied to all of these M words. M smallest

distances will, therefore, be obtained correspondingly and at last, a final average

distance, DFA, which gives the closest assemblance of the input utterance to the

claimed speaker's references, is computed by averaging the M smallest distances,

i.e.,

(3.2)

The evaluation of the M smallest distances D(m) and the final average distance DFA

is shown in Figure 3-2. Finally, in the decision making process, DFA will be compared

with a preset threshold to determine whether to accept or reject the claim made by

the user.

d (1)
N referenceInput word "1" d2(1) D(1)
templates Minimum

for the claimed Extraction
peakerof word"1" dN(1)

d (2)
N referenceInput word "2" d2(2) D(2)
templates Minimum

for the claimed Extraction
Averagingpeakerof word"2" d(2)N

D
FA

d (M)
N reference d (M)Input word "M" D(M)

Minimumtemplates

Extractionfor the claimed
peaker of word"M" d(M)N

Figure 3-2 The evaluation of the smallest distances and the final

average distance.
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3.2 Decision Making

Although utterances of the same word made by the same speaker are quite

similar, the measured distance, or the so called intra-speaker distance, between any

two of them are expected to follow a Gaussian distribution. On the other hand, the

distances, or the inter-speaker distances, between utterances of the same word made

by different speakers are also expected to have the same type of distribution, but

with a greater mean and deviation. Figure 3-3 shows an example of typical intra-

speaker and inter-speaker distance distribution.

True Reject ErrorIntra-speaker

False Accept Error

Inter-speaker

DTH Distance

Figure 3-3 Typical intra-speaker and inter-speaker distance distribu-

tion.

A distance threshold Dm is selected such that the claims will be rejectect it the

measured distance between testing and reference tokens is greater than this threshold,

otherwise the claim will be accepted. The expected errors in rejecting a true claim

together with that in accepting a false claim are indicated by the shaded regions as

shown respectively. This D, is usually fixed at a compromise between the false

Distribution
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accepting error and the true rejecting error. The larger the DTH, the greater will be

the false accepting error but the smaller the true rejecting error. It is therefore not

difficult to understand that the error rate for a SV system is directly related to the

area of the overlapping region and which is in turn depends on the effectiveness of

the parameter set in distinguishing each speaker's identity as well as how the distance

measure is defined. The smaller the overlapping region, the higher the verification

accuracy that can be possible.

For the proposed SV system, ETP matrices are used to represent speaker's

characteristics while the distance measure is made the final average distance DFA. A

similar intra-speaker and inter-speaker distance distribution under this condition is

expected. However, before the investigatine the intra- and inter-speaker final average

distance distribution, the distributions on the smallest distance D(m), which compose

DFA, on each of the single word have first been studied. This will gives us some

insight on various aspects of system design to achieve satisfactory performance.

With no exception, the intra- and inter-speaker smallest distance using ETP on

each of the single words had also followed the same Gaussian distribution. Figure

3-4(a) to 3-4(j) and Figure 3-5(a) to 3-5(j) in page 40-43 show the distributions of

the intra- and inter-speaker smallest distance on the ten Cantonese digits using DTW

and LTW respectively. These curves will be described in detail in the next section

and the results will be used to estimate analytically the distribution of DFA with

different number of words in the input sequence.

To simplify the derivation by making use of the distributions shown in Figure

3-4 to 3-5, we first assume, without loss of generality, that the distribution of

intra-speaker and inter-speaker smallest distance D(m) be the same on each of the

single words. Let the mean and standard deviation of the intra-speaker distance

distribution be 1(1) intra and (1) intra while that of the inter-speaker distance distribution
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be µ(1)inter and O(1)inter respectively. The superscript (1) indicates that the distance is

measured on a single word. Consider the intra-speaker distance distribution with

distances being measured as DFA over M words, the mean µ(M)intra and the standard

deviation O(M)ntra are then given by

(3.3)

and

(3.4)

Similarly, for inter-speaker distance distribution,

(3.5)

and

(3.6)

Obviously, the above formulae indicate that both the distribution of intra-speaker and

inter-speaker distance on DFA of M words will stay at the same mean but with a

smaller deviation, i.e., a narrower shape, as M increases. This implies that the area

of the overlapping region will decrease with M and, therefore, higher verification

accuracy can be achieved. Or simply, in defining the distance by DFA over M words,

more information is obtained in distinguishing between speakers than measured

merely on a single word. Although the derivation is purely theoretical, the

investigations done which will be described in a later section did confirm the above

hvoothesis on DFA over M words, where M runs from 1 to 5.
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However, increasing the number of words in the input sequence will not only

allow a higher verification accuracy, but the computational time for verification will

also be increased. The selection of M is therefore based on the application and the

accuracy required. System evaluation using different M has been done on a data base

and will be described in the following section.

3.3 System Evaluation and Results

The above SV system is evaluated on a data base consistion of 6 male speakers

and 5 female speakers having the vocabulary composed of the ten Cantonese digits

from 1 to 10. Twelve times of each of the digits were uttered separately by each

speaker in a quiet chamber and were recorded through a microphone. The tokens

were band-passed at 100-3.3kHz to simulate the telephone speech quality and

digitized to 12 bit resolution at 8kHz sampling rate. After endpoints detection,

energy-time profiles were extracted from each token containing a single digit only.

5 utterances were selected as training references from each speaker for each digit,

i.e., N=5, while the remaining 7 utterances are used as testing data.

Statistics on the intra-speaker and inter-speaker distance distribution were

carried out for each of the ten digits on the eleven speakers. Four different sets of

training and testing utterances were used for the statistics. Labelling the 12 utterances

from each speaker for each word by U 1, U2,..., U 11 and U 12, the four sets were

selected arbitrary and were recorded in Table 3-1. The purpose of chosing 4 different

sets of training and testing data is to obtain a more thorough and unbiased distribution

after averaging the results from each set.
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Trial no. Reference set utterances

1 U1, U2, U10, Ull, U12

2 U4, U5, U6, U7, U8

3 U19 U4, U5, U6, U9

4 U2, U3, U6, U9 ,U12

Table 3-1 Reference sets for distance statis-

tics.

Each of the utterances from the testing set was used as an input token and was

compared with the references of the same digit for all the speakers. The smallest

distances for a certain input digit to each of the 11 speakers were extracted. The one

measured from the same speaker was used as an entry to the intra-speaker distance

distribution while the remaining 10 were used as entries to the inter-speaker distance

distribution. After the 4 trials, there were altogether 308 (4xllx7) intra-speaker

distance entries and 3080 (4x1 l x7x 10) inter-speaker distance entries for each of the

10 digits. Each of these distance entries were classified into groups with distance

range 0.2 and the number of entries for each groups were counted. Both DTW and

LTW have been used for time alignment during the statistic calculation. The results

of the distributions were plotted and shown in Fig.3-4(a) to 3-4(j) for DTW,

Fig.3-5(a) to 3-5(j) for LTW, on the 10 digits respectively.

Besides the distributions on each single digit, the intra-speaker and inter-speaker

distance distributions for DFA averaged over M words have also been performed.

Using the four trial sets stated before, all the possible combinations of M distinct

digits from the vocabulary have been tried. For M=1, 2 and 3, all the possible

combinations out of the 7 testing utterances of each word for a fixed digit pattern

were tried while for M=4 and 5, only 500 random combinations of utterances in
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each trial has been used for the sake of simplicity. Table 3-2 lists the combination

and the total sample size for each distribution statistic calculation. Similarly, the

measured distance DFA, both intra-speaker and inter-speaker, were classified and

counted. The distribution for M=1,2,...,5 were plotted and shown in Fig.3-6(a) to

3-6(e) for DTW and Fig 3-7(a) to 3-7(e) for LTW.

No. of digit No. of digit No. of actual/ maxiu- Total intra-/ inter-

combinations mum utterance combinaused (M) speaker distance sample

tions

1 7/7 3080/ 3080010 (loci)

2 49/ 49 97020 /97020045 (1002)

3 343/ 343 1811040/ 18110400120 (1003)

4 500/ 2401 462x 104/ 462x 105210 (10C4)

500/ 16807 5544x 103/ 5544x 1045 252 (1005)

Table 3-2 Intra-speaker and Inter-speaker distance statistics sample size for

different no. of digit used.
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Intra-speaker
Infra-speaker

Inter-speaker
Inter-speaker
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Distance Distance
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Intra-speaker

Inter-speaker

Figure 3-4 Intra-speaker and Inter-

speaker distance (DTW) distribution for

the 10 Cantonese digits.
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Figure 3-4 Intra-speaker and Inter-

speaker distance (DTW) distribution for
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Finally, an evaluation for the proposed speaker verification system has been

done on the data base described previously in a VAX 8200 computer. Another four

different sets of reference utterances were selected and were recorded in Table 3-3.

The procedures were identical to those used in statistics calculation. But this time

each verification of input sequence of words of a certain speaker to the same speaker

was considered as a true claim verification while that to a different speaker was

considered as a mimic. The sample size for true claim and false claim verification

were therefore equal to that for intra-speaker and inter-speaker respectively in the

statistics calculation. Verification results for M=1,2,3,4 and 5 under different distance

threshold were tabulated in Table 3-4 and Table 3-5 respectively for DTW and LTW.

The results against D.H for different values of M were plotted in Fig.3-8 for DTW

and 3-9 for LTW. Finally, the results at two distance threshold, 1.25 and 1.3 for

DTW, 1.6 and 1.7 for LTW, against the number of digits used in the input sequence

were plotted in Fig.3-10 and 3-11 correspondingly. The observation on the results

will be given in the following section.

Reference set utterancesTri al no.

U l.) U2, U3, U4, U51

U8, U9, U10, U11, U122

U3, U5, U7, U9, U l l3

U4, U6, U8, U10 ,U12

Table 3-3 Reference sets for verification.

4
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True Reject Error%

False Accept Error% Distance Threshold
Total Error%

1.351.20 1.25 1.30No. of digit used (M) 1.40

7.7922 4.9351 3.1169 2.2727 1.5260
1 1.1883 2.1299 3.5162 5.1981 7.5000

8.9805 7.0650 6.6331 7.4708 9.0260

3.7559 1.8594 0.8565 0.3556 0.1453
2 0.1340 0.3470 0.7930 1.6349 2.9792

3.8899 2.2064 1.6495 1.9905 3.1245

1.9386 0.7178 0.2290 0.0685 0.0187
3 0.0214 0.0910 0.2892 0.7486 1.6565

1.9600 0.8088 0.5182 0.8171 1.6752

1.0293 0.2865 0.0655 0.0129 0.0027
4 0.0027 0.0232 0.1141 0.3873 1.0373

1.0320 0.3097 0.1796 0.4002 1.0400

0.6150 0.1232 0.0192 0.0028 0.0002

5 0.0003 0.0050 0.0431 0.2060 0.6841

0.6153 0.1282 0.0623 0.2088 0.6843

Table 3-4 Verification results under DTW.

True Reject Error%

Distance ThresholdFalse Accept Error%

Total Error%

1.70 1.801.60 1.901.50No. of digit used (M)

4.9026 2.3701 1.20138.668814.7078

11.5519 17.84746.75321.3506 3.40911
11.6558 13.9220 19.048716.0584 12.0779

1.2441 0.4710 0.21443.54579.0622
2.6378 11.58666.08090.86240.20132

11.80104.4081 3.8819 6.55199.2675

0.04801.7226 0.5042 0.16075.9026
4.15301.3945 9.90670.30410.03993
4.31371.8987 9.14472.02675.9425

0.0098U.L313 0.05090.95644.0402
7.83973.16840.82510.11640.00794
7.84951.0564 3.21931.07284.0481

0.00370.016.10.10040.57202.9505
7.06132.543(0.49620.04180.00125
7.06502.5594x_9517 0.59660.6138

Table 3-5 Verification results under LTW.
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Figure 3-8(a) Verification error vs distance threshold, using 1 digit with

DTW.
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Figure 3-8(b) Verification error vs distance threshold, using 2 digits

with DTW.
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Figure 3-8(c) Verification error vs distance threshold, using 3 digits

with DTW.
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Figure 3-8(e) Verification error vs distance threshold, using 5 digits

with DTW.
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Figure 3-9(a) Verification error vs distance threshold, using 1 digit with

LTW.

Error

%

Error

%



48

12

11 False Accept

True Reject10

Sumof the two9

8

7

6

5

4

3

2

1

0

1.5 1.6 1.7 1.8 1.9

Distance Threshold

Figure 3-9(b) Verification error vs distance threshold, using 2 digits

with LTW.
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Figure 3-9(d) Verification error vs distance threshold, using 4 digits

with LTW.
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Figure 3-10(a) Verification error vs No. of digits used at distance thre-

shold=1.3 (minimum total error point), under DTW.
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Figure 3-10(b) Verification error vs No. of digits used at distance tnre

shold=1.25 (practical choice), under DTW.
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Figure 3-11(a) Verification error vs No. of digits used at distance thre-

shold=1.7 (minimum total error point), under LTW.
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3.4 Observation

In the derivation of equations (3.3) to (3.6), the assumption that the distributions

for the intra-speaker and inter-speaker distance, i.e., the closest distance D(m), on

each of the single words are identical and follow a Gaussian distribution has been

made. From these varies curves shown in Fig.3-4 (DTW) and Fig.3-5 (LTW), it can

been seen that although the distributions are not exactly identical between digits due

to the small size of the experimental database, they all follow a similar trend which

provide a solid ground for the above assumption, at least, among the ten Cantonese

digits in the experiment. Furthermore, the distribution curves for the intra-speaker

and inter-speaker distances, i.e., DFA averaged over M 'smallest distance on M distinct

digits shown in Fig.3-6 (DTW) and Fig.3-7 (LTW) also have a similar shape as

Fig.3-3 which give us a definite means to determine Dm for the purpose of speaker

verification. The derivation, though not rigorous, points out that more information

can be extracted from a sequence of discrete words so as to distinguish a talker from

his voice. The system can therefore be operated under different values of M according

to the required verification accuracy and speed.

From the verification results, despite of the two different time alignment method

used, the verification errors change with two parameters, namely, the distance

threshold, DTH, and the number, M, of digits in the input sequence. The verification

results at different values of M shown in Table 3-4 and 3-5 were plotted against DTH

on Fig.3-8 and 3-9 for DTW and LTW respectively. As a measuring index, the total

of the two errors was calculated and plotted together in Fig 3-8 and 3-9 accordingly.

From these figures with different values of M, we find that all the false accepting

errors increase with DTHwhile the true rejecting errors decrease and the total errors

have a bowl shape with the minimum error point occur at a DTI=1.3 for DTW and

1.7 for LTW. This minimum value of the total error point is close to the intersecting

point of the false accept error and true reject error curves, i.e. the equal error point.
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Though for a practical SV system, the operating point should not be necessarily set

at the minimum total error point but a lower false accept error point (for the cost of

rejecting a true claim is much lower than accepting a false claim), the position of

the minimum error point locates the nearby region of possible setting of DTH. In my

selection, a value 1.25 and 1.6 is chosen for the operating D. for DTW and LTW

respectively in the proposed system. The verification results at the minimum total

error point and the operating point are then plotted against the number M of digits

used in the input sequence of test utterance on Fig.3-10 and 3-11.

We can see from Fig.3-10 and 3-11 that all the three errors decrease with the

number, M, of digits in the input sequence. This phenomenon agrees with the

hypothesis described previously. One important point is that even though the results

for DTW are better than those for LTW under the same value of M, however, the

performance for LTW is able to catch up with that for DTW if a greater value of

M, say 2 in my case, is used. Selecting M to be 5 in the operating D.H, i.e. 1.6, an

verification accuracy of 99.3862% is obtained in using LTW. This result is com-

parable to, and even better than, the verification accuracy 99.1912% obtained in using

DTW with M=3 at the operating point. However, by the records obtained during the

verification experiment, the ratio of the average computational time involved by using

LTW to that using DTW for one verification test with M=1 is only 1:40 approxi-

mately. This indicates clearly that employing LTW in speaker verification on a

word-by-word basis not only can allow a higher verification score by increasing the

number of words used in the input test utterance, the time for verification can, at

the same time, be reduced greatly so that real time application will be practically

possible.
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Chapter 4

Speaker Identification System

In the speaker verification (SV) system described in chapter 3, the speakers'

characteristics are carried intrinsically by the acoustic events of their utterances while

the identity claim are extracted from the contents of the sentence and have to be

remembered by the users. However, if the identity code were forgotten, verification

becomes impossible. To enhance system applicability and full speech automation, a

speaker identification (SI) process has been devised and implemented which can be

called upon in case the system user cannot remember his identity or personal code.

In fact, a SI system can be made stand-alone for any specific application, in particular

for the purpose of reconnaisance. The suggested SI system in this project is mainly

used to identify the user as one of the eligible candidates so that personal code could

be recalled, and hence it might be considered as an extension of the previous SV

system.

The energy-time profile (ETP) is used again as speech parameter in the SI

system to represent phonetic characteristics of individual user and therefore all the

preprocessing and parameter extraction procedures are identical to those in the SV

system. The block diagram of the SI system is shown in Fig.4-1. The system is

supposed to be operating in an open set environment, i.e. anyone, even not one

of the candidates (those called the registered users and are known to the system) can

approach and request the system for an identification. For a system with S candidates

or registered users, including the decision that the user is not one of the S members,

there are totally S+1 possible decision outcomes. Each user approaching the system

is requested to utter a sequence of words by a monitoring unit which informs the

system about this sequence simultaneously so that a proper matching of the input
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words to the references can be achieved. This requested sequence is designed to be

composed of 5 distinct Cantonese words which are randomly chosen and ordered

from the system word library, i.e., the 10 Cantonese digits in this case.

Input sequence of 5 words

Requested Input sequence

of 5 words

Endpoint

Detection

Monitoring

Unit

ETP

ExtractionExpected

Sequence
IdentificationTraining

Reference A11 candidates' references Distance

Templates Measure

1st

Pass

Decision

Qualified

Candidate
Reject

2nd

Pass

Decision

Reject

Accept

Identified Speaker

or

Rejected

Figure 4-1 A speaker identification system using ETP



56

4.1 Decision Making

Similar to the SV system, each of the discrete words will be subjected to a

distance measure with the reference templates and the smallest distances will be

computed as shown in Fig.3-2 in page 33. Now, if there are again N references for

each word uttered by each registered user, then the smallest distance, Dq(m), obtained

when being compared with user q for the word m is given by

(4.1)

Since in the identification process, no identity is known beforehand and therefore a

total of S smallest distances are obtained, one for each possible candidate, for the

word designated by m. This process will be repeated for all the 5 words in the

input utterance and the distance measures obtained in each word for all the S

candidates will be passed to a first decision process in order to determine the

existence of a qualified candidate under a set of criteria. During the second pass, the

conclusion of whether to accept or reject this qualified candidate, if exists, as the

identified speaker will be drawn from the results of the comparison between the

obtained smallest distances for this qualified candidate and a predetermined distance

threshold DTH

4.1.1 First Pass Decision

In this decision stage, either a unique qualitiect cancticiate wno tuiriiis a set or

decision criteria is selected among the S candidates, or a reject decision will be made

which indicates an insufficient resemblance of the user's utterance to any of those

from the S candidates. If none of the registered users is selected as the qualified

candidate, the identification process will cease with a reject outcome.
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For each of the 5 words in the input utterance, S smallest distances are obtained

for the S candidates. These S smallest distances are then arranged in ascending order

and the candidates in the position with 1st, 2nd and 3rd minimum of the smallest

distance are given the credit A, B and C respectively. This procedure is repeated in

all of the 5 words and so 5 A's, 5 B's and 5 C's are given to the corresponding

candidates. A table of credit, with entries of the code of those candidates who have

received credit(s) during the process, is then formed. Some typical records are shown

in Table 4-1. The symbol 'Spk s' in a certain entry indicates the speaker designated

by s has obtained the corresponding credit for the respective word. The qualified

candidate is then selected from one of the credited candidates in the table if he

satisfies any one of the following 3 conditions:

(1) possessing altogether 5 credit A's

(2) possessing altogether 4 credit A's and 1 credit B or credit C

(3) possessing altogether 3 credit A's and 2 credit B's

Obviously, the above empirical criteria of selection are based on a majority rule so

that the outcome is unique. In the 4 cases shown in Table 4-1(a) to 4-1(d), speaker

"3" satisfies the conditions and is therefore selected as the qualified candidate and

a second test will be therefore adminstered to him for the acceptance of he to

be the identified speaker. However, in cases shown in Table 4-1(e) and 4-1(f), none

of the candidates has obtained sufficient credits to be the qualified candidates and a

reject decision will finally be made.
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1st word 2nd word 3rd word 4th word 5th word

Spk "3" Spk "3" Spk "3" Spk "3" Spk "3"Credit A

Spk "2" Spk "1" Spk "2" Spk "5" Spk "2"Credit B

Spk "1" Spk "4" Spk "1" Spk "1" Spk "1"Credit C

Table 4-1(a) Credit table, case 1

1st word 2nd word 3rd word 4th word 5th word

Spk "3" Spk "3" Spk "3" Spk "2" Spk "3"
Credit A

Spk "2" Spk "1" Spk "2" Spk "3" Spk "2"
Credit B

Spk "4" Spk "2" Spk "5" Spk "4" Spk "1"
Credit C

Table 4-1(b) Credit table, case 2

4th word 5th word3rd word2nd word1st word

Spk "3"Spk "3"Spk "3"Spk "4"Spk "3"
Credit A

Spk "4"Spk "4"Spk "1"Spk "2"Spk "4"
Credit B

Spk "5"Spk "1"Spk "4"Spk "3"Spk "2"
Credit C

Table 4-1(c) Credit table, case 3

5th word4th word3rd word2nd word1st word

Spk "2"Spk "3"Spk "3"Spk "3"Spk "2"
Credit A

Spk "3"Spk "2"Spk "2"Spk "2"Spk "3"
Credit B

Spk 1Spk 1Spk 4Spk 1Spk 4
Credit C

Table 4-1(d) Credit table, case 4
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1st word 2nd word 3rd word 4th word 5th word

Spk "1" Spk "3" Spk "3" Spk "3" Spk "3"Credit A

Spk "2" Spk "5" Spk "4" Spk "1" Spk "1"Credit B

Spk "4" Spk "2" Spk "1" Spk "2" Spk "5"Credit C

Table 4-1(e) Credit table, case 5

1st word 2nd word 3rd word 4th word 5th word

Spk "3" Spk "5" Spk "3" Spk "2" Spk "3"
Credit A

Spk "5" Spk "3" Spk "2" Spk "5" Spk "2"
Credit B

Spk "2" Spk "2" Spk "5" Spk "3" Spk "5"
Credit C

Table 4-1 (f) Credit table, case 6

4.1.2 Second Pass Decision

After selecting the qualified candidate in the previous stage, decision is to be

made in this stage of whether to accept or reject this most probable candidate as the

identified speaker. With the observation in the intra-speaker and inter-speaker dis-

tance distributions in the previous chapter, the 5 smallest distances, obtained for the

qualified speaker (the speaker 3 in the example shown) are compared to a preset

distance threshold DTH. To accept the qualified candidate as the final identified

speaker, the average of the 5 smallest distances must be smaller than Dm. In addition,

at least 3 or more of the 5 smallest distances for the qualified candidate must also

be smaller than DTH. The qualified candidate will not be accepted as the identified

speaker should one of these two criteria not being satisfied. This will obviously

eliminate the selection of a non-registered user even though his acoustic features

resemble that of a specific speaker but not exact enough.
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4.2 System Evaluation and Results

The same database, which had been used for evaluation of the SV system, was

used again to study the performance of the above identificaition system. There are

three types of error that might arise in a SI system, namely, the legal user rejection

error, the illegal accepting error and the incorrect matching error. The first two are

mistakes made by either rejecting a legal user or accepting an illegal user whilst the

third is due to misidentifying a registered speaker to a wrong one. The evaluation

was performed over the 4 training and testing utterance sets (recorded in Table 3-3

in page 46) as in the case for the SV system. However, throughout the tests, one

out of the eleven speakers was considered as an illegal user, or outsider, while the

remaining speakers acted as candidates who had registered to use the system and

their utterance had been stored as reference templates. The purpose for such

arrangement was to investigate the performance of the system under the request of

an illegal user for an identification. This situation, being essential and inevitable,

exists in every practical speaker identification system and must be considered. Each

of the eleven speakers took turns to be the outsider while the other ten were treated

as a system qualifier. For each outsider, 50 random combinations, chosen from the

12 utterances for each word, were tested for each of the 252 different patterns (10C5)

consisting 5 distinct Cantonese digits. On the other hand, for each system user, 50

other random combinations, chosen from the 7 utterances for each word, were again

tested for each of the 5-digit patterns. Consequently, the total sample space for the

identification of sytem users and illegal users were 4x252x50x11x10=5544000 and

4x252x50x11=554400 respectively. These sample sizes, for a 10 user system with

one outsider, are large enough to give us unbiased testing results. The results were

tabulated in Table 4-2. The sytem user rejection error, the illegal user accepting error,

together with the total of these two errors were plotted against DTand were shown

in Fig.4-2 and 4-3 for DTW and LTW respectively. The incorrect matching error,
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due to its comparatively small values, were not plotted together. Finally, tables

showing to whom the outsider was incorrectly identified at a distance threshold=1.3

for DTW and 1.6 for LTW were shown in Table 4-3.

Distance Threshold

Error% of 1.20 1.25 1.30 1.35 1.40

Wrong match of system user 0.0000 0.0000 0.0001 0.0001 0.0001

Reject of system users 1.9240 1.1832 1.0450 1.0341 1.0216

Accept of illegal users 0.0014 0.0186 0.1448 0.5372 1.5438

Table 4-2(a) Identification results using DTW

Distance Threshold

1.7 1.8 1.91.61.5Error% of

Wrong match of system users 0.0000 0.0001 0.0003 0.0004 0.0005

2.8124Reject of system users 6.7080 3.6526 2.9677 2.8324

4.4547 7.6414Accept of illegal users 0.0049 0.1378 1.2314

Table 4-2(b) Identification results using LTW
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Beingincorrectly identified as speaker

"Outsider" (Male) (Female)

being speaker 1 2 3 4 5 6 7 8 109 11

1 0 0 0 0 0 0 0 0 0 0

2 0 0 93 0 8 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 12 0 10 81 0 0 0 0 0

5 0 0 0 40 0 0 00 0 0

6 2 84 0 0 0222 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 117 0

0 0 0 0 0 0 50 0 09

00 0 0 0 129 00 0 010

0 0 0 00 00 00 011

Table 4-3(a) Incorrect identity matching of outsiders (DTW)

Beingincorrectly identified as speaker

"Outsider" (Female)(Male)

11107 84 6 95321being speaker

0000 01100001

000 00142016002

0 0000000003

00000112150304

00 00011200005

00 000035062116

00000000007

0168000000008

62000000009

0250000000010

080 000000011

Table 4-3(b) Incorrect identity matcning or outsiuers (LTW)
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4.3 Observation

From the results shown in Table 4-2, it can be seen that the wrong matching

error of system users is relatively low. Actually, this phenomenon should not be

surprising as all of us speaks somewhat differently. In fact, it acts as an indication

on the effectiveness of the ETP in distinguishing speakers from their voice. The

errors in rejecting system users and accepting illegal users on the other hand, is much

much higher than this mis-matching error in all the tests. These two significant errors,

together with their sum, will therefore become an objective measure of system

performance. Their corresponding values against D.H were shown in Fig.4-2 and 4-3.

It can be seen from Fig.4-2 and 4-3 that the rejecting error of system users

tends to decrease with DTH initially but converge approximately to a constant at a

greater value of DTH. Since the change of Dm only affects the decision in the 2nd

pass, the constant error in this steady state region would thus be the total reject

percentage of system user during the 1st pass decision. On the other hand, the

accepting error of illegal user inceases with DTH and consequently, the total of the

two errors comes to a minimum at a certain value of D.H. For a practical SI system,

the accepting error should be kept much lower than the rejecting error as the cost

of accepting illegal user is much higher. Therefore, the minimum total error point,

at which reasonable values for the accepting and rejecting error(for DTW, 0.1448

and 1.0450 respectively for LTW, 0.1378 and 3.6526 respectively) were found,

becomes a very good guide for the determination of the system distance threshold.

In this experiment, a distance threshold of 1.3 for DTW and 1.6 for LTW were

chosen. At these operating points, the obtained identification accuracies are 98.8102%

and 96.2096% by using DTW and LTW. Obviously, the identification error using

DTW is lower than that using LTW, but will be entirely contributed by the incorrect

rejection of legal users which might be bearable in most cases.
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From Table 4-3, one can notice that identification errors occur entirely among

speakers of the same sex. This is in fact a very common phenomenon in most of

the identification systems even using different kinds of parameters to represent

speakers' phonetic characteristics. Moreover, identification error seems to be hap-

pened in a fairly symmetric way, i.e., if a certain speaker is identified to be another

specific speaker then the reverse is usually true as well.
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Chapter 5

Speech Recognition of Discrete Cantonese Words on a Probabilistic Criterion

In order to extract the identity code from the user's input utterance, a speech

recognition algorithm of Cantonese characters become an essential part in the SV

system described in Chapter 3. Moreover, the speech recogniser, if installed, can also

be applied for the translation of users' requests in the form of system commands to

facilitate the automatic man-machine communication by voice.

Although the goal of machine recognition of continuous speech remains elusive,

a greater degree of success has been achieved in recognition of discrete word from

a fixed vocabulary. Indeed, many isolated word recognition (IWR) system have been

built and used in a wide variety of applications. However, a large amout of

computation is needed in most template-based recognizers to achieve time alignment

using DTW [29]. Speech recogniser based on hidden Markov models, on the other

hand, have less computation but more complicated parameter estimation procedures

for model generation [30]. Large storage, intensive computation, together with

complex system configuration have made hardware implementation of a high speed,

low cost speech recognition system very difficult, if not impossible.

In this project, besides the SV and SI systems described previously, an etticient

talker independent IWR algorithm is studied for mono-syllabic languages, specially

for Cantonese. ETPs are used once more to carry speech features for the recognition

of discrete word. Again, instead of using DTW, another form of LTW is employed

which is simpler and comparable to DTW for small variation of speech periods [19].

A probabilistic approach is applied to measure the degree of similarity between an

input utterance and the reference templates [28]. On matching an unknown token

with the references, the one with largest probability of resemblance was taken as the
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recognised word. The block diagram of the IWR system is shown in Fig.5- 1.

Input token

EndpointDetection

and

Classification

5 Channels
Bandpass

Filters

ETP
Computation

Training Recognition

Reference Matching
Templates

Probability
Decision

Matrix

Recognised
Word

Figure 5-1 Speech Recognition system using ETP on a Probabilistic Criterion

5.1 Feature Extraction

In accompany to the 5 filter band signals from which the b 1 rs are computect,

the segmental energies of the wide-band signal is added to the ETP matrix in order

to represent the speech contents -in a better way. Once again LTW technique is

employed to achieve the goal for fast recognition using economic hardware. In the

previous chapters, LTW is simply implemented by linear interpolating the feature

parameters (i.e. the ETPs, extracted from a time segment of constant length) to a
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fixed number, say 16 in the previous case, as described in equations (2.19)-(2.25).

An alternative way for the implementation of LTW is by dividing each utterance,

which contains completely a discrete word after endpoint detection and preprocessing,

into 16 equal duration segments with 50% overlapping. The way of locating the

segments is shown in Fig.5-2.

segment 1 segment 3 segment 15

time

segment 2 segment 16

ENDBEGIN

Figure 5-2 Utterance segmentation with equal durations.

The segmental energies, calculated as the sum of the squared values of all the sampled

data within each segment, are then evaluated. However, for different utterances, their

length will be different and hence the durations for each utterance's segment will be

unequal and finally the absolute energy so calculated will be no longer useful for

comparison. The segmental energies are, therefore, normalized by the maximum

segmental energy, EoM, of the wide band signal of the utterance to achieve meaningful

comparison between utterances.

As discussed previously that, due to the energy level variation between the high

and low energy portion of a discrete word, a distance measure given by equation

(2.13) is adopted to alleviate this problem. An alternative solution is by transforming

the normalized energies logarithmically and measuring the distance by traditional

Eucludean distance formula. This method has been found effective for speech rec-

ognition. Consequently, the utterance containing a discrete word will be represented
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by an ETP matrix having 16 energy time vectors with contains 6 logarithmic

normalized energy elements. An ETP matrix is shown below and its transformed

normalized energy elements are given by equation (5.1).

E0(2) E0(3) Eo(16)1
(E0(1)

EI(1) E1(2) E1(3) E1(16)

E5(1) E5(2) E5(3) E5(16)

where

(5.1)

The ETP matrix so created for the input token can be used to compare with the

reference patterns to find the correct word by a minimum distance measure. The

distance d(X,Y) between the ETP matrix of an input utterance X to that of the

reference utterance Y is then given by

(5.2)

Therefore, upon recognition of an input token containing a discrete word, the word

whose reference having the minimum distance measured to the input token during

template matching will be selected as the recognised word if they resemble close

enough.

5.2 System Training

Instead of using template matching based on a minimum distance measure, a

probability measure is introduced so that the recognition decision is made upon a



70

statistical probability criterion. The reference prototypes are generated by clustering

the feature parameters extracted from a large training set on a temporal basis. The

training set contains utterances uttered by a number of speakers on each word of the

vocabulary. Each time frame will then be represented by a number of energy vectors

from each of these training utterances. The number of utterances for each word that

closely matched to a specific cluster centre is recorded and this is related statistically

as the probability of finding the corresponding word in that particular template. On

receipt of an input token, template matching is first performed using a minimum

distance measure according to equation (5.2) and recognition is then accomplished

by identifying the word which has the largest probability of resemblance.

For each ETP matrix, the temporal energy vector will be treated as an input

pattern in its entirety and no time warping of frame based features is required. For

the ith segment, reference prototypes are created from the corresponding transformed

normalized ETP vectors of the training utterance using the modified K-Means

(MKM) clustering algorithm [31] and the condition under which clusters are split

will depend on the largest intracluster distance. This has the advantage of permitting

the isolation of outliers while still maintaining the property that within each cluster

the word patterns are highly similar. The flowchart for the MKM clustering algorithm

is shown in Fig.5-3.

However, if the vocabulary size is T and if S tokens for each word are used

for training, then a distance matrix of dimension (SxT) by (SxT) will be required in

the clustering. A substantial amount of computation will then be needed if the order

of SxT is large, say, 1000 or above, and this would probably exceed the capability

of most microcomputers. Another way of performing clustering for template gen-

eration is, therefore, adopted.
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BEGIN

computedistance
matrix

computej cluster
centres, j=2

Iteration time
k=1

groupingto
clustersNO

split clusterhavingmax.
YES intra-clusterdistanceK>K MAX?MAX

computej cluster
centres

YES anyclusterk=k+1
change?

NO

j= j+ 1

NOJ>jMAX?

YES

END

Figure 5-3 Modified K-Mean Clustering Algorithm.

Instead of using altogether S tokens for each word in the clustering process, a

group of, say, R temporary prototypes are first produced by the use of the MKM

clustering algorithm for each word from the respective S training tokens, where R S.

That is, a total number of RxT references are now formed for the T words in the
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vocabulary. These prototypes are then clustered again in a second stage to form, say,

Q final class representatives-- the templates. The modified way of clustering is

illustrated schematically in Fig.5-4.

Word 1 Word 2 Word T

S different S different S different

tokens tokens tokens

Intra-word Intra-word Intra-word

clustering clustering clustering

R temporary R temporary R temporary

prototypes prototypes prototypes

Inter-word

clustering

Q final centroids

Figure 5-4 2-stage system training.

Let the number of training tokens for word j whose ETP vectors at the ith frame

are best matched to that of a particular cluster centre k be N(j,k). The probability

of occurrence for this word j to appear in the kth cluster at segment i is then defined

as

(5.3)

This procedure is then repeated for all the 16 time frames and finally a 3-dimensional

probability table is, therefore, created with its element given by P(j,k),
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1<j<T and 1<k<Q, and this will be used in the final matching

decision of the recognition process. A part of the probability table, containing the

probabilities of occurance for each word at each cluster in the ith frame is shown

in Table 5-1

Word

Cluster 1 2 T

1 Pi(1,1) Pi(2,1) Pi(T,1)

2 Pi(1,2) Pi(2,2) Pi(T,2)

P,(T,ki)P1(2,ki)Pi(1,ki)ki

Pi(T,Q)Pi(2,Q)Pi(1,Q)Q

Table 5-1 Probability table in time frame i.

53 Decision Making

In recognition, an unknown utterance is first subjected to preprocessing

including endpoint detection, classification, bandpass filtering and segmentation. The

ETP vectors are then extracted for all the 16 time frames. These feature vectors will

be matched to its corresponding reference templates on a temporal basis. At segment

i, let ki be the selected reference vector with the minimum distance D(ki)and the

probability Pi(j,ki), for which the vector is closely resembled to that of word j at

frame i, can then be retrieved from the probability table (Table 5-1). However, if

the rPfPrPnre vector ki' having a second minimum distance D(ki') close enough to
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the minimum, the probability will be taken as the average of the two probabilites

Pi(j,ki) and Pi(j,Ki') retrieved for these two reference vectors respectively. These

procedures are repeated until the last segment and the total probability that the

unknown token resembles the word j will then be given by

(5.4)

(5.5)

and

In addition, in order to reduce word confusion, a fricative/voice classification

[32] has been used in which the vocabulury is divided into two groups depending

on the phonetic labelling of their initial regions. If the input token is classified into

a particular group, the possibility for those words in the other group will be neglected

and only the probability of those words in the particular group will be computed.

The one with the highest probability of resemblance is taken as the recognised word

unless there is little differentiation ion probability between the most probable and the

next probale. A difference measure, R(m, n), for the probability of resemblance is,

thus, introduced to determine the degree of closeness between the highest probability

P(m) and the next highest P(n) obtained for word m and n respectively. This is

defined as

R(m,n)

P(m)-P(n)

P(n)
(5.6)
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Now if, R(m,n)>, where S is a predetermined threshold, the utterance is taken as

the word m. Otherwise, a 2nd level decision will be performed. In this case, the

variance m2 and n2, of the probability distribution of the sixteen segments for word

m and n respectively are calculated according to the formula

where u=m,n. (5.7)

The recognition decision rule in this stage is as follow:

recognised word is m(1)

rejectedotherwise(2)

The value of the thresholds , and are all determined experimentally and will in

general affect the overall recognition accuracy of the system.

5.4 System Evaluation and Results

The system has preliminary been evaluated using the ten Cantonese digits. Two

sets of input utterances have been used in various recognition tests. They are:

Data Set A: A total of 1000 tokens for the ten Cantonese digits were produced

by 20 different speakers including male and female. Each speaker

was requested to utter each digit 5 times and hence there was one

hundred tokens for each word.

Data Set B: A total of 1500 tokens for the ten Cantonese digits were produced

by another 15 speakers who did not participate in preparing Data

Set A. In this case, each speaker was requested to utter each digit

10 times.
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All the utterances were recorded through a microphone to a cassette recorder.

The signal was then bandpass filtered to telephone bandwidth (100 Hz to 3.3 kHz)

and digitized at 8 kHz with 12-bit resolution. ETP vectors of these utterances were

extracted according to the procedures described previously. The two sets of data were

exploited in the following experiments for both trained and untrained speaker

recognition.

Experiment 1: Recognition for trained speakers

part (i) Half of the utterances from both Data Set A and B were used

for training while the rest were used as input for recognition.

That is T=10 and S=125.

part (ii) The utterances for training and testing as in part (i) were

interchanged.

Experiment 2: Recognition for untrained speakers

part (i) Data Set A was used for training while Data Set B was used

as input tokens for recognition. That is T=10 and S=100.

part (ii) Again, the tokens for training and testing as in part 2(i) were

interchanged. But in this case, S=150.

Many different values for R and Q have been tried and finally, R=8 and Q=30

was chosen in our tests to give a compromise in recognition results and computation

complexity. When the probabilities were multiplied together, it was noted that these

probabilities could become very small and to avoid data underflow, a proper scaling

had to be incorporated. In our case, each probability was in fact scaled up 100 time.

In addition, if any of the probability of resemblance for a particular word at a time

frame was zero, then this word would never be recognized no matter how high the

probabilities were in the other segments. To alleviate this problem, we have set a

zero probability to a fairly small number, typically, 5x 10-6 and so far, no difficulties

in matching due to the bias against a word that has only a small probability in any



77

one of the 16 probabilities were encountered. For the system. thresholds E, b and 1i,

they were generally set to 1.2, 100 and 0 respectively to give good recognition scores.

The results for the mentioned experiments were tabulated in Table 5-2 while the

confusion matrices for the corresponding experiments were tabulated in Table 5-3

(a) to (d).

Experiment Score% Error% Reject%

1(i) 1.5298.16 0.32

1(ii) 2.0897.60 0.30

2(i) 4.6095.00 0.40

2(11) 94.60 5.10 0.30

Table 5-2 Speech Recognition Results
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Test Recognised as digit

digit 1 2 3 4 5 6 7 8 9 10 Reject

1 145 0 0 0 0 0 U 5 0 0 0

2 0 146 0 40 0 0 0 0 0 0

3 0 0 140 0 0 10 0 0 8 1

4 0 0 1500 0 0 0 0 0 0 0

5 0 3 0 1440 3 0 0 0 0 0

46 0 0 1400 0 0 6 0 0 0

7 20 0 0 1300 140 0 40

8 0 0 0 2 1480 0 0 0 0 0

9 0 4 1460 0 0 0 0 0 0 0

n10 13 1360 0 0 0 10 0

Table 5-3(a) Confusion matrix for Experiment 1(i).

Recognised as digitTest

Reject108 974 6521 3digit

2 0 0 01 00U001 97

00 00000001002 0

1 001 000098003

000000100 0004 0

00000089001105

0050095000006

2180 0750005007

00100 000000008

0100 0000000009

19200600010010

Table 5-3(b) Confusion matrix for Experiment 1(ii).
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Test Recognised as digit

1 2 3 4 5 6 7 8 9 10 Rejectdigit

1 125 0 0 0 0 0 0 0 0 0 0

2 0 125 0 0 0 0 0 0 0 0 0

3 0 0 120 0 0 0 2 0 0 2 1

4 0 0 0 125 0 0 0 0 0 0 0

5 0 3 0 0 122 0 0 0 0 0 0

6 0 0 0 0 1230 0 1 0 0 1

7 20 0 0 0 1150 0 0 8 0

8 0 0 0 0 0 0 1250 0 0 0

9 0 0 0 0 0 0 1250 0 0 0

n 010 20 0 0 0 1156 0 2

Table 5-3(c) Confusion matrix for Experiment 2(i).

Recognised as digitTest

10 Reject8 974 652 31digit

00 0000000125 01

000 00000125 02 0

0000200123 0003

0 000000125004 0

00000012500005

12 010121000006

230118 00002007

00012500000008

00124001000009

111600700010010

Table 5-3(d) Confusion matrix for Experiment 2 (ii).
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5.5 Observation

The average recognition rate for trained and untrained speakers were found to

be 97.88% and 94.8% respectively. The accuracy of this speech recognizer was

roughly 3.8% better than the one that simply uses Euclidean distance for matching.

When using a statistical probability criterion for final matching decision, it is

effectively comparing the similarities and dissimilarities between an unknown token

with each of the reference words. Furthermore, the dynamic properties of the feature

parameters are preserved by clustering the ETP vectors on a segmental basis. There

is only marginal improvement in accuracy by increasing the number of templates for

each word at each time frame, but the extra computation demanded for training and

testing is certainly not justified. The introduction of a 2-pass decision based on the

distribution of the probability of resemblance has reduced the number of errors in

our tests. Because of its simplicity, the recognition algorithm can be implemented

on a microcomputer. Although the evaluation uses a limited vocabulary of ten digits

only, the results are promising. The only disadvantage of the system is probably the

relatively lengthy training process.
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Chapter 6

Conclusion and Discussion

Energy-time profile (ETP), extracted from the outputs of 5 consecutive bandpass

filters, has been used simultaneously to carry speaker characteristics and speech

contents from the tokens uttered by Cantonese speakers. In the speaker verification

and. identification experiments, ETP, when used and defined in a proper way, has

been proved to be an effective parameter to distinguish speakers from their voice.

In recognizing a speaker, instead of using the entire utterance for comparison, a

word-by-word matching approach has been adopted which allows the LTW to be

applied while high accuracy can be achieved at the same time.

In the speaker verification system, the verification results indicate that the

methodology used is sound, whatever the two different time warping techniques are

employed. As expected, the results obtained by using DTW is, obviously, better than

that by using LTW when the number of digits used in the test utterances are the

same. However, as the verification accuracies in both cases increase rapidly with the

number of digits used in the test utterance and consequently, it is possible for the

performance using LTW to catch up with that using DTW by employing more digits

in the input utterances. In my case, an extra of 2 digits in the utterance is sufficient

for the LTW to perform better than for the DTW with the distance threshold chosen

either at the minimum total error point or at a practical value. Under a practical

consideration, because of the word-by-word sequential matching approach used in

the proposed speaker verification system, increasing the number of digits in the input

test utterance only increase the recognition time in an additive way so that the

ultimate verification time required for LTW will be still much less than that for

DTW. In my case, more than 10 times faster in the recognition speed can be achieved

by employing LTW instead of DTW but with a comparable performance. Even
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though in parallel processing, which can be made use of to achieve high speed

recognition under the word-by-word approach, the increase in the number of uttering

digits will only require a comparatively greater number of discrete word processing

units in using the LTW. This cost, however, is worth paying to change for the a

high speed and accurate verification system. Consequently, dividing the whole

utterance into units of discrete word while decision is made upon the accumulated

results of these units, elimination of DTW for speaker verification becomes possible

for mono-syllabic language speakers while high accuracy can be maintained.

Moreover, as the verification accuracy can be increased by simply including

more words in the testing utterances, it can be, therefore, applied in a wide range

of applications in which different accuracy standards are required. This allowed

flexibility should be made use of carefully with the considerations on the system

specification, implementation cost and other limitations in the system design.

Nevertheless, an average verification score up to 99.39% has obtained in my

experiment with 5 distinct digits in the input utterance using only LTW. This per-

formance is already sufficient in various kinds of real time application.

Similarly, the above advantages will also be expected in the speaker identifi-

cation system, though these have not been studied in the project. In the proposed

speaker identification system, a 5-digit sentencs is suggested as the testing utterance

together with a set of decision rules. Both the results obtained by using DTW and

LTW have been tabulated in Table 4-2. Obviously and as expected, the result on

using DTW is better than that using LTW. At the point of minimum total error

(distance threshold= 1.3 and 1.6 respectively for DTW and LTW), an identification

accuracy of 96.21% was obtained on using LTW which is less than 98.81% obtained

on using DTW. But the increase in error for LTW over that for DTW falls entirely

on the rejection of system users. Although such error will cause inconvenience during

i nrificarin and usually a second attempt will be necessary, it is nevertheless worth
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accepting to exchange for the large amount of computational time saved which is

crucial in low cost real time recognition. It is therefore feasible to make use of LTW

in identifying speakers without introduction of high cost error in the identification

process.

The setting of decision rules in the identification process are based on a majority

rule and are finally fixed on an ad hoc basis. Observe Fig. 4-2 and 4-3 which show

the identification error against the distance threshold for DTW and LTW respectively,

the true reject error converge to a constant value at a greater preset distance threshold.

This implies that there exists a minimum percentage in the rejecting of legal users

due to the introduction of 1st pass criterion for the selection of the qualified

candidate. On the other hand, this also allows a certain amount of illegal users to

enter into the 2nd pass decision which is in fact indicated by the drastic increase of

false accept error with the distance threshold. The proposed criterion for the 1st pass

decision has been set in a reasonable compromise on the above two conditions.

Finally, the rules for the 2nd pass decision which is actually a verification of the

selected identity but under a relatively tight standard, is introduced to keep the false

acceptance error as small as possible while maintaining the true reject error in a

reasonable small value. Though the proposed decision rules can be adjusted and

modified for different applications or when the number of words used in the test

utterance is changed, it provides a very good guideline for the decision and in fact

the experimental results are satisfactory.

Though the word-by-word matching approach which has allowed the imple-

mentation of LTW on Cantonese to achieve high score in speaker recognition, it

demands the successful separation of the input utterance into units of discrete word.

Uttering the input token digit by digit is one of the method to fulfill this requirement

but is somewhat unnatural in real application. As stated before, separating the

antonese words from a sentence is not difficult due to its simple energy variation,
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it is still possible that the speaking behaviour of the speaker on a single digit will

alter between different digit sequences. However, to study this correlation of the

speaking behaviour on the digit order, a huge amount of trials will be required and

is left for the study in the real time system. To allow reasonable recognition

experiments, only isolated digits uttered by speakers has been recorded and from

these recorded tokens, combinations of various digit patterns has been selected as

the input test utterance. However, serious degradation in the system performance due

to the existence of this possible correlation is not expected.

Finally, ETP is used for the speech recognition of isolated Cantonese words.

This has already been used in [32] with a simple template matching approach and

proved to be effective. However, a further improvement is obtained by using the

proposed probabilistic criterion. Even though the proposed algorithm is not emerged

from any well structured derivation, statistical phenomenon of spoken words which

distribute in a clustering manner has provided a solid ground for this method and is

experimentally found to be practically effective. From the results shown in Table

5-2, the introduction of the 2-stage clustering technique has been proved to be useful

for system training. Although the clustering process is somewhat laborious, it can

be performed off line in a microcomputer without much difficulty. In fact, the system

evaluation, especially the system training process, has been made possible by the

use of this 2-stage clustering technique to operate in a micro-computer in which the

system memory is usually small. Though the average score for the open-test (tester's

utterance has not been used in the training process) is only 94.8%, an average score

of 97.88% is obtained for the semi-open test (the tester's utterances has been used

as the training data) which is very useful for the proposed speaker verification system

to extract the speaker's claimed identity because the user is expected to be one of

the legal candidates who have participated in the system training.
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Instead of its effectiveness in the extraction of speaker's characteristics and

speech features, ETP has little tolerance to the intensity distortion caused by the

transmission or backgound noise. In order to reduce experimental complexity,

simulation has been performed only on comparatively clean speech of discrete

Cantonese digits while speech from a noisy environment or transmitted through

telephone channels have not been tried in the experiment. However, even though the

effect on the system performance due to the introduction of noise has not been studied

together in this project, the experimental results has promised good system per-

formance for speaker recognition using ETP under a reasonable quiet condition and

at a certain level of loudness of testing speech.

To summarize, an automatic speaker verification system using ETP, in which

speaker identity is derived from the contents of the input token, is described for the

recognition of Cantonese speakers. The system, in fact, can be further applied with

any mono-syllabic language such as Mandarine and many other Chinese dialects

having similar phonetic sturcture with Cantonese. Moreover, by employing the simple

algorithm on a word-by-word approach, LTW can be applied on a discrete word

basis to achieve fast speaker recognition with high accuracy so that real time

implementation is possible using only low cost hardware.
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