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ABSTRACT 

In this thesis, structural equation model with polytomous variables in 

several groups is analyzed in the presence of stochastic constraints. Prior 

distributions of the structural parameters are considered based on a 

Bayesian point of view. An iterative procedure is implemented to produce 

the various Bayes estimates. It is shown via a simulation study that the 

Bayesian approach are more flexible as well as more accurate than the 

ordinary maximum likelihood approach. 

Key vords: Structural equation model, prior distributions, conjugate 

family, Bayesian approach. 
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Chapter 1 

Introduction 

The analysis of structural equation models, also known as covariance 

structure analysis, is an applied multivariate technique in analyzing 

causations and correlations among latent and observed random variables. Due 

to its distinctive features, this method of analysis allows researchers to 

effectively study ample problems that could not be easily solved using 

alternative approaches, see Newcomb and Bentler (1988). 

Vith the development of highly sophisticated package programs such as 

LISREL VII (Joreskog k Sorbom, 1988) and EQS (Bentler 1989)， the method has 

been widely employed in many branches of study especially in behavioral and 

social sciences researches. Nevertheless, the applicability —of these 

packages relied heavily on the assumption that the observed random 

variables are continuous. In real life experience, however, ve frequently 

encounter variables of dichotomous or polytomous form. For instance, 

suppose in an opinion survey, an respondent is asked to answer question 

concerning their attitudes towards a particular issue on scale like 

s^ongly favor neutral 皿 favor strongly 
抓 OF imfavor . 

In such circumstance, the usefulness of these packages may be greatly 

reduced. 

To overcome such deficiencies, one direction of recent development is 

to extend the basic theory to handle data of dichotomous or polytomous 

form. In the literature, Bock and Lieberman (1970), Christoffersson (1975)， 

and Muthen (1978) had respectively considered dichotomous factor analysis 

using either the maximum likelihood approach or the generalized least 

- 1 -



squares approach. More recently, Lee, Poon and Bentler (1989a) have 

developed theory for analyzing general covariance structure models with 

polytomous variables using the maximimi likelihood approach. 

In the meantime, another exciting development in structural equation 

modeling is the incorporation -of auxiliary prior information. The provision 

of prior information in the form of exact equality constraints provide 

researchers more flexibility in defining appropriate structures to model 

many realistic problems. The widely publicized package programs LISREL and 

EqS have provided the option to allow users to impose simple exact equality 

constraints as well. Lee and Bentler (1980) have developed theory in 

analyzing general structural equation models in the presence of exact prior 

information. In addition, Lee (1988a,b) extended the previous work to 

consider prior information of stochastic nature. Clearly, such advancement 

provides more freedom in studying the functional relationship among 

parameters in the model. 

Finally, there is an increasing trend to consider the general model in 

several populations. Multiple populations models frequently arise when we 

consider data coming from different sex groups, ethnic groups, treatment 

groups or the like. Major interests rest on the comparison of covariance 

structures across populations. In the literature, Joreskog (1971) 

considered simultaneous factor analysis in several populations. Sorbom 

(1974) proposed a general method for studying differences in factor means 

and factor structure between groups. Lee and Tsui (1982) generalized the 

basic results in Joreskog (1971) to general covariance structure models 

vitli functional constraints. However, it is worth to note that all the 

cited work were restricted to continuous variables only. Although Muthen 

and Christoffersson (1981) has worked out the simultaneous factor analysis 
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model with categorical variables in several groups, the results were still 

restricted to the simpliest dichotomous case only. Later on, Poon, Lee, 

Bentler and Afifi (1989) developed a computationally efficient multi-stage 

estimation procedure to analyze general covariance structure model with 

polytomous variables in several groups. 

The primary objective of this paper is to extend Lee (1988b)，s work to 

consider the Bayesian analysis of stochastic prior information in 

structural equation model with data of polytomous form and coming from 

several populations or groups. At the same time, we are also interested to 

study the performance of the approach as compared to the classical maximum 

likelihood method. The order of presentation is as follows : In Chapter 2， 

the general structural equation model proposed in Poon, Lee, Bentler and 

Afifi (1989) is presented and the full maximum likelihood estimation 

procedure based on Lee, Poon and Bentler (1989a) is introduced. An 

artificial example is given to illustrate the implementation of the 

procedure. In Chapter 3， stochastic prior information in the form of 

stochastic constraints has been incorporated into the general model and the 

estimation technique based on the Bayesian approach is studied. As before, 

an artificial example would be given to illustrate the method. A series of 

simulation studies have been conducted to examine the effectiveness of the 

stochastic prior information by comparing the accuracy of the various Bayes 

estimates to the ordinary maximum likelihood estimates. The results are 

reported in Chapter 4. A brief discussion of the findings and the final 

conclusions are presented in Chapter 5. 
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Chapter 2 

Full Maxinnun Likelihood Estimation of the General Model 

§ 2.1 Introduction 

In this chapter, we will present the general structural equation model 

proposed in Poon, Lee, Bentler and Afifi(1989). Instead of analyzing the 

model by the multi-stage estimation procedure, the classical maximum 

likelihood approach based on Lee, Poon and Bentler (1989a) is employed. 

Finally, as the general solutions of the ML estimates cajinot be solved in 

closed form, the iterative scoring algorithm has been used to obtain the 

estimates. 

§ 2.2 Model 

Consider a set of G independent populations or groups arising from 

different culture groups, sex groups, etc. Assume p is the common number of 

variables in each, group. For the g^^ group, let 

7(g) - 7(g)、 J 

- 一 I力1 ，. ••，Zp r denote a vector of p observed polytomous 

variables, g = 1，...,G. Suppose the corresponding latent continuous random 

vector Y 二 (Y^ ，.. • ,Yp ) is multivariately normally distributed with, 

mean 0 and covariance matrix ？…(•产） ) =厂 ( "） ) ]， w h e r e are 
— J • z 1J 

functions of the unknown structural parameter vector 呂）.Z(g) and Y(g) 

are related by 

Z ， ) = k ⑴ if 々 ⑴ g ) < 々 ( i ) ” . ⑴ 

for i=l，".，p and k(i)=l,...,ni(i). Here, m(i) denotes the number of 

categories corresponding to the i^h variable. To simplify matter further, 
/ 
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ve do not consider the dichotomous case and assume m(i) > 3 as well as 

invariant over the groups. These categories are defined by a set of 

thresholds， 

(g) f (g) (g) • , 
？i 二 iai,l，".，〜，m(i)+l} (2) 

. (g) (g) 
with fli i = -OD and a- m(i)+i =① for all g. 

(g) 
The vector Y is unobservable and we only have a random sample of 

(g) 
2 with size Ng. Therefore, altogether we have the frequencies of G 

independent p-way contingency tables which are obtained based on the value 
(g) 

of Z . The observed frequency of the k 二（k(l)，.. •，k(p)”h cell in the 

gth group is denoted by f ^ ) . The probability that an observation in g^^ 

group falls into the k^^ cell is given by 

二 Pr{ Z;⑴=k⑴，…，Z;g)=k(p) } 

1 1 R .,.、 

= (-l)P I … I (-l)j，'"J)x 

i ( l H i(p) 二 0 ⑶ 

Tp 〜v( 1)，…，〜，v(p)，5 If j 

where v(j) = k(j) + i(j) ； and 

rfli rflp -f 
冷 p(fli，. ••，〜；？）= ••• (2t) |S| exp(-y'S y/2) d y ^ . . , d y . (4) 

J-qdJ-OD " " " " 

§ 2.3 Identification of the model 

Suppose D is any diagonal matrix with diagonal elements d^i > 0 . For 
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any set of (ap...，flp)， 

(t)p(fli，...，flp; S) : (j)p(a*,...,a*; S*) (5) 

where 

and a* = • (6) 

Therefore, for any group g, the parameters and are not identified 

unless suitable constraints concerning the parajneters are imposed. 

Unfortunately, it is difficult to give the general sufficient conditions 

for identification. Nevertheless, by Lee, Poon, and Bentler (1989a), it has 

been shown that we may identify all the parameters in any single group if 

ve fix either the variances or the thresholds of the variables in that 

group to some specified values. The former identification condition, 

according to Lee and Poon (1985), will impose additional nonlinear 

(g) 

restrictions on $ and hence may demand a great deal of computational 

effort in obtaining the various estimates. As a matter of convenience, we 

therefore adopt the following identification conditions : 
(i) Consider an arbitrary group, say group r, fix the thresholds a)';， 

(r) (r ) (r) (r) , 
位 1 m(})，位2 2 ，辽3 2 ，• • • J 2 to some constants. 

(ii) For any other group g 丰 r，fix ^ 呂 ） 二 冱 丄 “ " , i = i ， " . , p where a^'s 

are some fixed constants (in most cases, 3.^=1). 

From condition (i)， for the reference group r， the only transformation 

？ in (6) that preserve restriction (5) is the identity matrix, I. Thus, the 

reference group is identified. Consider the possible transformations with 

arbitrary D for other distinct groups. From condition (ii)， for any group 
. (g) (r) . 

g，Since fli 二 aih ，i=l,...,p are identified, this implies D = I and 

hence that group is also identified. Following the similar argument, it is 

easy to show that the whole model is identified. 
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It is worth to note that the difference between the fixed parameters 

(r ) (r ) 

疗 1 m( 1 )肌 d flj 2 specified in condition (i) provides a standard for the 

measure of dispersion for other variables in the reference group. Thus, the 

condition is not restrictive at all. Moreover, if the reference model is 

scale invariant, the choice of the fixed thresholds only changes the scale 

of the covariance matrix but not its structure, see Lee, Poon and Bentler 

(1989a). As a result, the essential interpretation of the covariance 

structure will not be affected. On the contrary, condition (ii) restricts 

the thresholds of the other groups to satisfy a linear relationship with 

those in the reference group. Clearly, it is quite restrictive but still be 

acceptable especially when similar instrmnents have been administered to 

all groups. For instance,, respondents from different groups are asked to 

answer questions on the same scale in a questionnaire. As the "relations 

over groups are unchanged, the statistical inferences are unaffected by the 

choice of reference group. For simplicity, we let the first group as the 

reference group, i.e. r二1. 

Before closing this section, it is important to mention that the 

method suggested here is not the only way to solve the identification 

problems. Clearly, different methods may lead to different special cases of 

the general model and hence to different interpretations of the parameters. 

Throughout this thesis, we will apply conditions (i) and (ii) to identify 

the general model. 

§ 2.4 Maximtun Likelihood Estimation 

Basically, there are two kinds of parameters in the model, namely, the 

thresholds and the structural parameters. Let a = ( a ⑴ ’ ， … ， ( 2 ( G ) y i t h 

/>“）- J"⑴ "⑴ ⑴ ⑴ ’ (i) (i) 1, 

？ - pi,3，•••，〜，in(l)-l，《2，3，•••，，•••，，3，•••，议p，m(p)‘ 

- 7 -



be the vector of all rniknowii thresholds, and let 9 =(沒（丄），，• • •，沒（G),) be 
— — — , 

the vector of all imknown structural parameters. Then the overall parameter 

vector is defined by 

2 = i')' • (7) 

Suppose f 二 { fj®) ； g 二 1，...，G ; k(i) = l，."，m(i) ； i 二 1，…，p } 

denotes the overall vector of the observed frequency counts for the G 

independent p-way contingency tables. The negative of the log-likelihood 

function for f is given by 

G m(l) m(p) 

(̂2)=-I X …X 〜 r • (8) 
g=l k(l)=l k(p)=l 

By ⑶ ， i s a function of 广） a n d ^(g) and hence 1(7) is a 

A 

function of 7 only. The ML estimate of 7 is the vector 7 that minimizes 

Under mild regularity conditions, it can be shown that 7 possesses 

the following desirable statistical properties : (i) It is consistent; and 

(ii) its asymptotic distribution is multivariate normal with, mean vector 7 

and covariance matrix equal to the inverse of the information matrix. The 

gradient vector and the information matrix of L， 1 ( 7 ) and 1(7) are 

respectively defined as follow : 

M t ) 二 (9) 

1(7) = {E(孔/巧）（况/巧广} • (10) 

Adopting the results in Lee, Poon k Bentler (1989b), we have 
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G m(l) m(p) fj, 

X …I； 一 （n) 
g=i k ( i H k ( p H C 

and 

G m(l) m(p) 1 时;;g) “ 广 

卯 = …：！ (12) 
g=i k ( i H k(p)=i “s d u 

where 

丄 = ( - i ) p X … X (-1”乡'1 ⑴ X 
i(l)=0 i(p)=0 (13) 

丄 “ ( g ) Js) v̂ (g) ,/3(S)、l 
Yp v d ) J--'5"p v(p) 5 ^ ) • 

約c ， ‘ 

Hence, the derivatives of the normal distribution function with respect to 

its parameters are required in computing the gradient vector and the 

information matrix. 

For the reference group, suppose D is a diagonal matrix with, diagonal 

1 
1 ( 1 )T 

elements j • Define 

Tj n-lv ⑴ J * (1) -T (1) 

R = ? 5 p and flj = 〜 (14) 

Note R is a correlation matrix and we have 

, 「 ⑴ ⑴ ”⑴1 , * * 
中p|_仅、vU) ”"，flp，v(p) ； ？ = R) • (15) 

. , . • 本 、 

Since (t)p(fli，• • •，flp; R) can be expressed as 

本 

r仪 r 1 

P H^j) <t>p-i hXj)/(l - ,，•"； R 1 dx.-

J-OD L J -.J」 J 

- 9 -



where j ,h. = 1,... ,p and h 丰 j ；卢（•） is the univariate standardized normal 

density function; is the (j element of R; and R . is the partial 

J ~ • , j 

correlation matrix with the jth variable partialled out. Following the 

fundamental theorem of calculus, we have 

= • • • ， ( 《 。 - Pjh)，•••;？， • （ 1 6 ) 
L • J _ 

Also from Johnson and Kotz (1972)， 

= ^Maj*，fl:，/?jh)^p-2(...，C rm，...;？.jh) (17) 

where m 关 j ,li and j ^ h, (•) is the standardized bivariate normal density 

function with, correlation p-^, R is the partial correlation matrix with. 

J ~ • j h 

the jth and h^^ variables partialled out, and 

1 
2 -y f ^ , 

、 = ( 1 - {(/^j m- P] h P h m ) + {Phm- PjhPj m) • (18) 

Now, by Lee, Poon k Bentler (1989a,b), we have 

(1) VA ⑴、 1 o丄 / * * 
v(l)，--.，〜v(p) ) 「（i)i-"^ 帥p(、，...，〜；R) 

— ^ : h j J m 

如j，v(j) da] 

从 , ⑴ (1) 1). p i J i ) r̂i / ⑴ (1) (1) 

种 p(Ql，vU)，…，〜’ ) = t t 绅 p(Qi,v(l)，."，、(p);g ) 

召沒 a 卯 a 召 r^l) (20) 

with 
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o 1 / ( 1 ) ( 1 ) ( 1 ) ( 1 ) * * 
，…，〜,v(p) ；? ) flj v(j)绅 p(fli，…，V R) 

* ： (21) 

〜 2 ĵj I 如j 

and 

0 1 , ( 1 ) ( 1 ) _ ( 1 ) ^ 本 * 

绅 p(仅i，v(l)”••，〜，v(p);g ) 二 .1 绅 p(〜，•••，〜；R) 

o (1) 一 「 ⑴ ( D U • (22) 
彻ij ^ii ĵj I 知ij 

- � 

Similarly, for other group g 二 2,...,G, the expressions for the various 

derivatives are as follows : 

绅p(aifl;:t(i)，.••，(呂）) 「绅p(fl:，.••，fl^ R) 

.u 二 ^ (23) 
々。，V ( j ) d a 、 

O, , (1) (1) (g) “ 

绅p(aifli，v(i)，.••，ap〜，？ g 

p i ；3 / ⑴ (1 ) „(g)、 
_ V V ”绅P(¥i ,v( i)，…，VP v ( p ) ; 内 
" Z u Zj (24) 

with 

绅pK乂：二u，…，V二(p);g(g)) ^'t(j)绅，•••，。;； R) 

o (g) - - 「（g)U * (25) 

〜 2〜f 7 〜 

绅p(ai议；：二u)，-..，ap4:二(p);g(g)) 1 帥p(a;，...，汉;；R) 

o (g) —「（g)(g)ii ‘ (26) 

〜 M / . 他 j 

1 
where D is a diagonal matrix with diagonal elements 
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1 
^ , * (g)-T (1) , 、 
？ 二 ？ ？ ？ and flj = aj 〜 flj，v(j) (27) 

From (11)，（12) and (13), expressions for the gradient vector and the 

information matrix can be obtained via (14) to (27)• 

§ 2.5 Computational Procedure 

Clearly, the minimum of the function L cannot be solved algebraically 

in closed form, hence one of the iterative methods for function 

optimization is required, In this paper, the following scoring algorithm 

(see Lee and Jeimrich (1979)) will be employed : 

7”1 s 1(7」.广 i ⑷ — (28) 

where is a step-halving parameter which may be chosen as the first value 

in the sequence {1，务，务，•••} that reduces L. 1(7^) and ) are the 

informatioiL matrix and the gradient vector of L respectively evaluated at 

2』，the jth step estimate of 7. The algorithm has many nice features that 

need to be mentioned here : (i) From (11) and (12)， we see that only the 

first derivatives of the cell probabilities are required to implement the 

algorithm, (ii) Since 1(7) is positive definite, the algorithm is robust to 

the choice of starting values as it always produce an acceptable step. 
A ^ 

(iii) The asymptotic covariance matrix of 7 is estimated by 1(7」)_ which 

is automatically produced as a by-product at the last iteration of the 

algorithm. 
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§ 2.6 Tests of Hypothesis 

The goodness of fit of the proposed model can be assessed by the 

likelihood ratio criterion (see, e.g. Bock, 1975). The test statistics is 

given by 

2 八 A 
Xĵ  = 2(L - Lq) (29) 

八 八 A 

where L = 1(7), and Lq is the final function value obtained by minimizing 

L(20 without any covariance structure imposed on 2(呂)，but subject to the 

same identification constraints (see Poon k Lee, 1987). Under the null 

hypothesis, the asymptotic distribution of Xĵ  is central chi- square with 

degrees of freedom equal to the difference between the number of imknown 

parameters in the multivariate polychoric model and in the proposed model. 

The proposed model is rejected if Xĵ  is larger than the corresponding 

chi-square tabled value. 

Once the proposed model is not rejected, various null hypothesis 

concerning the covariance structures across groups can be tested in terms 

of appropriate equality constraints. For instance, consider the 

simultaneous confirmatory factor analysis model proposed in Joreskog 

(1971)，we would like to test : (a) the invariance of factor loadings 

across groups; (b) the covariance matrices of the factors across groups are 

equal; (c) the covariance matrices of the error measurements across groups 

are equal； and/or combinations of (a)，(b) and (c)，etc. This is done by 

estimating the model subject to the interesting constraints and compares 

its function value with the basic function value without the constraints. 
A A 

More explicitly, let L^ and L] be the function values obtained with 

and without the constraints. Then the likelihood ratio test statistic for 

the null hypothesis is given by 
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；Tb = - i,) (30) 

Similar to the previous argument, under the null hypothesis, the asymptotic 
2 

distribution of x^ is central chi-square with degrees of freedom equal to 

the number of independent restrictions on the imknovn parameters specified 

by the constraints. 

§ 2.7 Example 

To illustrate the theory developed so far, a computer program written 

in FORTRAN IV with, double precision has been implemented to obtain the ML 
A 

estimate, 7. The subroutine developed by Schervish. (1984) was employed to 

compute the distribution function of the multivariate normal distribution. 

The following simultaneous confirmatory factor analysis model proposed in 

Joreskog (1971) is used : 

广 二 广 竺 ( g ) 广 “ ( 3 1 ) 

vhere F^®^ is the factor loading matrix, M(g) and E(g) are the covariance 

matrices of the factors and error measurements respectively. The parameter 

vector 广）consists of all independent imknowii parameters in F(g)，M(g) 
辉 寿 

and g g • Expressions for d"̂ 、色、/d(” are available in Joreskog (1971) and 

will not be reported here. 

Artificial random samples from two populations with multivariate 

normal distribution N[0, and N[0, S^^^] are generated. Here the 

population values of the covariance structures S(g) are given by 
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F⑴ 一 「 0 . 7 0.7 0 0 1 ' • ^ ⑴ 「 1 0.3 1 P ⑴ . 厂 T 
- “ . 0 0 0.7 0.7 ， S 二 0.3 1 ，？ = 

(32) 

_「0.6 0.6 0 0 1 ' „(2) 「 1 0.5 1 . 厂 
‘ 一 _ 0 0 0.6 0.6 ‘ ^ = 0.5 1 ， 5 二 0-4? 

J L • 

where parameters with values 0 and 1 are considered as fixed parameters in 

the analysis. The multivariate samples | Yj⑴ j and | Y”)} with size N^=700 

and N2二500 were generated and then transformed to j Z】⑴，and | zj” . using 

thresholds : 

( 1 ) � 

fli = (-CD, -0.5, 1.0, GO) 

(2) i = 1,2,3,4 (33) 

fli = (-00，-0.5, 1.0, od) 

{ ( g ) 1 

Zj L two independent 4-way contingency tables 

are constructed for analysis. Recall that for identification purposes, we 
, . 工 . （ 1 ) ( 1 ) ( 1 ) ( 1 ) , ( 1 ) 

need to 士ix 〗 ， 以 1 3 ， 这 2 2 ， 仪 3 2 ^nd 2• These fixed values are taken 
， ？ 5 J ) 

to be the partition maximum likelihood (PML) estimates of the first sample 

I ？r)}，see Poon k Lee (1987). In addition, the thresholds of the two 

groups are assumed to be equal during the analysis, i.e. The starting 

values of the various unknown parameters are arbitrary. For convenience, 

they are taken to be their respective population values. The full 

simultaneous ML estimates and their standard error estimates are presented 
零 A , 

in Table 1. The minimum function value L is equal to 4433.46 with 21 free 

parameters (3 thresholds and 18 free structural parameters). The minimum 

function value for the basic multivariate polychoric model, Lq is obtained, 
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using a program similar to that in Poon k Lee (1987), to be 4433.03 with 23 

free parameters (3 thresholds and 20 polychoric variances and covariances). 

According to (29)， the goodness-of-fit test statistic, x], is obtained to 
JL 

be 0.86 with 2 degrees of freedom. Hence, as expected, the null hypothesis 

that the sample data fit the proposed model is not rejected. Subsequently, 

we would like to test the conformity of the following exact equality 

constraints : (a) r(/) 二 F(2) ，(b) M“）= M⑴ , ( c ) E“）= E(2) and (d) 

p d ) (2) (1) (2) J ”（1) ^(2) „ 

i = f , M 二 M ， a n d E = E . T o accomplish tliis task, we 

first consider the estimation of the general model incorporated with the 

corresponding constraints. The constrained estimates and their standard 

error estimates are reported in Table 2 to Table 5. The mininmm fimction 

values obtained are respectively 4439.62, 4435.83, 4441.711 and 4453.26. 

Accordingly, the values of the test statistic x^ ， are obtained via (30) to 

be 12.31, 4.74, 16.50 and 39.60 with degrees of freedom 4, 1, 4 and 9 

respectively. Using 17. significance level, constraints (a) and (b) are not 

rejected while constraints (c) and (d) are rejected. These conclusions seem 

quite consistent to the pre-assigned population values. 
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Chapter 3 

Bavesian Analysis of Stochastic Prior Information 

§ 3.1 Introduction 

The provision of auxiliary prior information plays an important role 

in the analysis of structural equation model. In this chapter, we will 

incorporate this kind of information in the analysis of the general model 

proposed in Chapter 2. 

Stochastic prior information usually presents in the form of 

stochastic constraints defined by 

A = M t ) + ！ (34) 

vhere ^ is an n by 1 observed vector, ^(7) is an n by 1 vector of 

differentiable functions of the parameter vector 7, and e is ah n by 1 

random vector of error components with distribution N[0，r]• Clearly, when r 

equals to a zero matrix, e degenerates to 0 and the stochastic constraints 

become exact constraints. In this context, the stochastic constraints give 

more flexibility in studying functional relationsMps among the unknown 

parameters in 7. Lee (1988b) have developed an estimation procedure for the 

general covariance structure model in the presence of stochastic 

constraints by Bayesian approach. However, all the variates in the model 

are assumed to be continuous. Here, we will extend his work to handle 

polytomous variables as well. It is worth to note that we will still impose 

the same identification conditions specified in § 2.3 throughout the 

analysis. 
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§ 3.2 Bayesian Analysis of the Model 

Now, we have the overall vector of the observed frequency counts, f 

and stochastic prior information specified by (34). The manifestation of /i 

is either from previous study or from introspection, r is considered to be 

an unknown nuisance parameter matrix. To simplify matters furtlier, we 

assume f to be independent of e, 

To represent prior ignorance of 7, we assume the density function of 

7J P(7) to be a constant, see e.g. Jeffrey (1961) and Zellner (1971). Given 

observations on f and fi, the joint posterior density of 7 and F is 

p(7，r 丨 f，/O a p(f 丨 7)p0^ I 7，r)p(r) (35) 

G m(l) m(p) .(g) 
- — • - M M - - M M . - * ( ) 一 k “ 

where p(f | 7) a … “呂 ~ ， 
g:l kfl>l k|p>l " 

1 

p U I 7, r) fl |r| expj- - - h)} ， and 

p(r) is the density of F. 

Thus, the joint posterior density p(7, r | f, /i) is proportional to 

G m(l) m(p) .(g) 1 
— — 「 - y r -j _ 4 ^ 

… ^^ |r| exp - ^{f, - h)'r (a - h) p(r) • (36) 

g=i kti>i M P > I - - J -

Next 5 we consider analysis for three types of structure for r : 

Case I ： r = iT̂  I . It is the simpliest case where the error components of 

the stochastic constraints, e, are independent and with the same variance 
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• Here, we have only one nuisance parameter TO specify the prior 

distribution of , we will use the appropriate conjugate family (Raiffa k 

Schlaifer (1961))， namely, the inverse x^ family. This conjugate family 

involves two parameters and is sufficiently flexible for most applications 

(Lindley k Smith (1972), and Lee (1981)). Therefore, for given prior 

constants v and we assume that "卢/V is distributed as x]̂  and so 

(y + 2 ) /2 

丨 ；̂) a expf . (37) 

Form (36) and (37), we find that p(7, r 丨 f，/z) is proportional to 

G m(l) m(p) .(g) 

"T T T T T 「，（g)1 Is , (y+n + 2)/2 「 1 f S , 2 
••• ^k ) exp ——-S {n- - hi) + z//? 

g=l kti>i ^ t v U " " “ = 1 _ J」• 
(38) 

It can be shown that 
「00,。、-(v+ii + 2)/2 厂 I f s , 、2 11 。 

) exp - 丄 S (/Zi - hi) + z//? da^ 
Jo L U = 1 J. 

(39) 

a S ("i - hi) + "外 
U = 1 J • 

Thus， the nuisance parameter can be eliminated by integration and so the 

posterior density of 7 is given by 

「 G m(l) m(p) 

p(21 ！，A) - n n … n [ 們 ‘ ( ‘ m 〗 + 一 力 
Lg=i kfij.i 船 」 • (4。） 

According to the usual procedure specified by Lindley k Smith. (1972) and 
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Smith (1973)， we define our Bayes estimate 7 of 7 as the modal estimate of 

this posterior density, i.e. the value of 7 that maximizes (40). Since log 

is an increasing function, 7 is obtained by minimizing the function 

M ? ) = L(2) + Bi(2) (41) 

where 1(7) is the negative of the usual log- likelihood function defined by 

(8)，and 

BI(2) = ^ - + . (42) 

It should be pointed out that 7 is scarcely affected by the choice of v and 

P，see Lindley k Smith (1972) and Lee (1981). 

C 咖 II : [ is a diagonal matrix with diagonal elements . This means 

that the error components e in (34) are independent but with different 

variances or^^. In this case, we have n nuisance parameters, namely, , 

^n^ • Again we use the conjugate family to specify the prior 

distribution of Thus, for given prior constants z/̂  and , we assume 

that z^ifi/Vi〗 is independently distributed as xl, ‘ The density function 

I "i，Pi) is similar to that in (37) except that the quantities , v 

and 0 are now replaced by and respectively. Thus, the joint 

posterior density of 7 and r is given by 

‘G m(l) m(p) f(g)l 

p(2，ri2，._.，1 f, a • j j T T ... n ui^^] ^ . X 

Lg 二 1 kfit 二 1 ktp|=l J 

n _ 
"T . 2、-(I/;+3)/2 「 - 1 2 M 

(^i ) exp (Ai - h j + 
r=l JJ • 
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Similarly, the nuisance parameters (T-^, i 二 l，."，n，can be eliminated by 

integration and finally the posterior density of 7 is given by 

「 G m(l) m(p) 

p ( 2 1 A ) a n n … n [ 們 ‘ . . 登 ^ ^ - “ 丄 卢 丄 广 力 

Lg:i]cM=i k i p i = i 」 “ • (44) 

As before, the Bayes estimate 7 is obtained by minimizing the function 

【2(20 二 L(2) + 62(7) (45) 

where 

n 

^2(2) = X ^ H ^ log{(/Zi - l ^ i )、 M i } • (46) 
i=l 

Case III ： r is a general positive definite matrix. In this case, r'^ is 

assumed to have an independent Vishart distribution with, known positive 

definite R and known degrees of freedom p (see, e.g. Zellner (1971), 

Lindley k Smith. (1972) and Lee (1981)). Thus 

,n、 „ -(p +n + i)/2 r 1 -n 

P(r) a |r| expj- ^tr R T (47) 

and hence p(7, T | f, /x) is proportional to 
~ 舞 sm mm 

「 G ffi(l) m(p) .(g). 
T T T T fj「/s)l is p -(p+ii+2)/2 f 1 、-n 
-〜• … “ • exp - |tr(A + R)r > (48) 

k(i)=l k(p7=l J J 

where A = - h) - ̂ ' . It can be shown that 
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. „ -(p+n + 2)/2 f -I , , - n - (D +1 ) /'2 

|r| expj-和r(A + R ) r jdr a |A + R| ^ • (49) 

Therefore, the nuisance parameter r can also be eliminated by integration 

and 

「 G m(l) m(p) f(g)〕 

p(21 A) a m T T … n ^ . + ⑴ 

Lg=i k|i>i ktp>i J ‘ 

Similarly, the Bayes estimate 7 is obtained by minimizing the function 

[3(2) = L(2) + B3(2) (51) 

where 

h i j ) = log|A + R| , (52) 

Similar to Case I，the prior constants R and p scarcely affect the 

analysis. 

§ 3.3 Computational Procedure 

As before, the modal estimates of Lj^(7), b=l，2，3; cannot be obtained 

in closed form. Therefore, we still employ the scoring algorithm in 

computing the solutions, i.e. 

2」、1 = 6 h i l j ) k = 1,2,3 (53) 

where 

^ k ( 2 ) = H j ) + ？k ( 2 ) ， ? k ( 7 ) = 1 ( 7 ) + BIC(2) ( 5 4 ) 

are the gradient vector and the information matrix of ^ ( 7 ) with. £(7) and 

1(7) defined in (9) an (10); and 
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？k(2) = ， = (55) 

are the first and second derivatives of 65^(7). 

For completeness, expressions for 81^(7) and （力 are presented below (see 

Lee, 1988b)： 

• f n 2 1 1 r n •， 

？ = + (/̂ i - h j + Z/^J" j.S^ (Ai - h j ^ } (56) 

(57) 
^f n , , 2 1 -2 r n ĥ； w n 

• H dh. 
？2 (7)^ 二 + - - lii)' + — (58) 

i = i J 〜 

？“:?)cd : + 春 - + • 

i:i 〜d 

+ {("i - h f + - h ) ~ ~ - 1 (59) 

• * 

？3(2)^ 二 _ ( ” 1) t (60) 
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「 3 h * 
B3(7) = - ( ” 1) ~ — A (/. - h) 4-
… c d L 一 - -

处 f * * * * 1 

A ® (/̂  - (/i - h) + (/z - h)'A ® A (/i - h) - A — (61) 

一 一 … 一 “ 7 c J 
where A* = (A + R) ^. 

§ 3.4 Test the Compatibility of the Prior Information 

In this section, we will develop theory to test the compatibility of 

the prior information to the sample information. Tlie null hypothesis is 

given by 

H 。 ： 《 二 h ( 2 ) + e ( 6 2 ) 

where e - N「0，r"| for some F. 

Suppose 7 is identified in the general hypothesis parameter space and 

7 is the corresponding unconstrained maximum likelihood estimate. Under 

mild regularity conditions, we have 

(7 - 2 ) 上 0, I(7)''l (63) 
• _ 

where N is the overall sample size, i.e. N = N^ + ... + N^ ； denotes 

convergent in distribution and 1(7) is the usual information matrix defined 

in (10). Then, by Delta's theorem, ve have 

Hi) - h(2)l 上 N[ 0, n ] (64) 
- J 

where H 二 { d y d j ) 1(7)(冲/巧广.Hence, h{y) - fi will 
converge in 

- • 

distribution to N[ 0, r + H ], and the Vald's type test statistics 

- 2 4 -



^C ： - 0 1、 [ + - A 1 (65) 
匕 J L 

will converge in distribution to a chi-square distribution with n degrees 

of freedom, see Lee (1988a). To apply this test in practice, a is replaced 
八 /N 

by 二 0(20 and also we have to know Naturally, r can be specified by 

the null hypothesis. This means that the null hypothesis not only specifies 

the stochastic functional relationships among the various parameters but 

also their precision by giving known values for r . Otherwise， a consistent 

estimate of r is required. It is worth to note that if we specify 卜 g， 

then the stochastic constraints in (34) will become exact equality 
2 

constraints and the ； r e d u c e s back to the test statistic given by Lee 

(1985). 

§ 3.5 Example 

Consider again the simultaneous confirmatory factor analysis model in 

§ 2.7 with population values given by (32). Using the same contingency 

tables simulated in § 2.7, we analyze the model separately with the 

following sets of stochastic constraints : 

/ 、 ^ ( 2 ) ”（ 1 ) 

(a) F = F + 6 ； 

(b) M(2) = M ⑴ + e ； 
~ ~ 身 

(c) E = E + e ; and 

⑷ 广 ： ？ ⑴ ， 广 二 ？ ⑴ ” 2 a n ” ⑴ ” ⑴ ” 3 with 

！ ： (£厂，竺2' ， y ； 

In all cases, e is assumed to be multivariately normally distributed with 
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mean 0 and covariance matrix F. 
雄 身 

A modified computer program has been written to find the Bayes 

estimates 7. To implement the procedure, r is assumed to be a'̂ 1 (Case I) 

and the prior constants 1/ and are taken to be 1.0 and 0.1 respectively. 

As before, for identification purposes, we fix fl!^，aJJ^ 5 心）a^d 
(1) 

^42 to their partition maximum likelihood (PML) estimates and assume the 

thresholds of both groups to be equal. The program converges nicely in a 

few iterations with the starting values of the parameters taken to be their 

corresponding population values. The Bayes estimates and their various 

standard error estimates are presented in Table 6 to Table 9. From the 

tables, we observe that the various Bayes estimates do not differ too much, 

from the unconstrained maximum likelihood estimates. On the other hand, 

they are quite different from the corresponding constrained- maximum 

likelihood estimates presented in Table 2 to Table 5. Lastly, we would like 

to test the compatibility of the stochastic prior information to the sample 

data using the Vald's type test statistic, x^^ given in (65). The results 

of the tests with 57. significance level are reported in Table 10. From the 

table, we observe that only constraint (a) are compatible to the sample 

data regardless to the values of chosen. Meanwhile, the conclusions of 

the tests concerning other constraints depend solely on the values of a^ 

chosen. As a rule of thumb, the smaller the value of , the more likely 

that the tests will be rejected. 
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Chapter 4 

Sinnilation Study 

§ 4.1 Introduction 

In this chapter, a number of simulations have been implemented to 

illustrate tlie behavior of Bayes estimates derived in Chapter 3 and compare 

them with the full maximum likelihood estimates discussed in Chapter 2. 

Since in practice it is more realistic to assume the error components of 

the stochastic constraints are independent, we only consider Case I and 11 

in our study. 

§ 4.2 Sinnilation 1 

The first part of the study is to investigate the usefulness of 

stochastic prior information in covariance structure analysis with 

polytomous variables in several groups. The simulation is based on the 

simultaneous confirmatory factor analysis model defined in (31) with the 

following population values for F(g) ， M(g) ， and E(g)： 

F ⑴ _ r 1.0 0 0.5 1 ' M ⑴ 「 U 0.3 1 . -丁 

- - 0 1.0 0.5 ，！ = 0.3 1.0 ，？ = 
J u J 

一 「 1 . 0 0 0.5 „(2) 「 1 . 0 0.4 ] ^(2) A 打 （66) 

- 一 0 1.0 0.5 ‘ ？ = 0.4 1.0 ，？ = 
-J U J 

where parameters with, values 0 or 1 are considered as fixed parameters 

throughout the analysis. The population covariance matrices S(g) were 

computed from ， 竺 ， a n d according to (31). Multivariate random 

samples 仏(呂）of size 〜 w e r e generated and then transformed to {z.(g) 
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using the following thresholds : 

( n 、 
fli = (-00，-0.5, 1.0, CD) 

i 二 1, 2， 3 
( 2 ) • 

fli = (-00，-0.5，1.0, 00) • 

Following the similar procedure described in § 2.7, two independent 

3-way contingency tables are constructed for latter analysis. To simplify 

matter further, we deliberately fix the thresholds to their population 

values during estimation. Afterwards, we analyze the data by the following 

methods : 

(i) MLl : Full maximum likelihood approach; 

(ii) ML2 : Full maximum likelihood approach with additional exact-equality 

constraints， 

F31 = and F32 = F32 (67) 

(iii) BAYl : Bayesian approach, with stochastic constraints 

『31 : F31 + and F32 二 F32 + £2 (68) 

where e = (e" 63)' is distributed as N[0，r] with r taken to be a^I and 

prior constants i/ = 5.0,卢=0.1; 

(iv) BAY2 : same as (iii), but with " = 1.0 ; 

(V) BAYS : same as (iii)，but the covariance matrix of e is taken to be 

diagonal and 1/1=1/2=5.0, /?i=々 2=0.1; and 

(vi) BAY4 : same as (v)，but with. ！/丄二z/2=1.0. 

Apart from the different estimation methods, we are also interested to 

examine the effect of the sample sizes on the performance of the various 

estimates. Therefore, two sets of sample sizes are chosen, they are 
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respectively N^=100, N〗二150 and N^=200, N〗二300. Throughout the process of 

study, for every chosen sample sizes and estimation methods, we encountered 

some generated data that gave rise to improper solutions for the unique 

variance estimates. In literature, these solutions are called Heyvood 

cases. For comparison sake, these improper cases were deleted and the 

simulation continued until we have completed 50 cases. The root mean 

squares errors between the various estimates and their corresponding 

population values are given by 

r 5 0 2 
• i 二 { - 7i) /50| i = (69) 

A 

where q is the total number of free parameters in the model ； and 7。is the 

estimate of for the case. In addition to the root mean squares 

errors, the sample means and the sample standard deviations of the 

estimates are also very useful measures of the performance of the various 

estimation methods. They are defined by 

50 -
7i = .S 7ij/50 (70) 

j = 1 

{ 5 0 2 1T 

- 7i) /49} . (71) 

The results of the simulation are respectively reported in Table 11 to 

16. After examining the tables carefully, ve have the following 

observations : 
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1. For both sample sizes, the various Bayes estimates are comparably better 

than the MLl estimates, especially for estimates of F“），F“），F;” and 
(2 ) 

F32 and when the sample sizes are small. 

2. As expected, for both sample sizes，the ML2 estimates of f J|)，F;“ 
(2 ) ( 2 ) 

^3 1 and F32 are the best among the other estimation methods. However, it 

is interesting to note that the majority of other ML2 estimates are 

slightly worse than that of the various Bayes estimates, though the 

differences are quite minor. 

3. For Ni=200 and N。二300， the performance of the various Bayes estimates 

are quite similar to each other. On the other hand, for smaller sample 

sizes N^^lOO and N2=150, the Bayes estimates for Case I (BAYl and BAY2) are 

superior than that for Case II (BAYS and BAY4). 

4. For both sample sizes, it is worth to note that the choice of prior 

constants " and for Case I or i/̂  and for Case II scarcely affect the 

overall performance of the Bayes estimates. In fact, I have checked some 

individual estimates and found that they are very close to each other. 

§ 4.3 Sinmlation 2 

Tlie second part of the study is also based on the confirmatory factor 

analysis model with population values given by (66)， except now and 

_ ( 2 ) 

F32 are taken to be 0.3 and 0.6 respectively. Therefore, in ML2, the exact 

equality constraints in (67) are incorrectly specified. Furthermore, for 

the various Bayes estimates, the stochastic constraints in (68) are not 

exactly in accordance with the population values. During the simulation, we 

still encountered Heyvood cases in obtaining the various estimates for both 

sets of sample sizes. Similarly, they were deleted and the simulation 

continued until 50 cases have been completed. The results obtained are 
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summarized in Table 17 to Table 22. From these tables, we have the 

following observations : 

1. As expected, with both sample sizes, the MLl estimates are comparably 

better than the ML2 estimates which fixed some parameters at incorrect 

values. On the contrary, it is surprising to find tliat the various Bayes 

estimates are better than the MLl estimates. 

2. Similar to simulation 1, the BAYl and BAY2 estimates are constantly 

superior to the BAYS and BAY4 estimates, especially for the estimates of 

( 1 ) ( 1 ) ( 2 ) ( 2 ) 

上 3 1， ^ 3 2， 1 sua F32 and when small sample sizes are used. 

3. As before, the choice of prior constants v and P or z/- and has 

negligible effect on the various Bayes estimates. 

§ 4.4 Summary and Discussion 

Since botk estimation procedures demand heavy computational efforts, 

ve only consider the popular simultaneous confirmatory factor analysis 

model in our simulation study. For the same reason, we let the dimension of 

the polytoraous vector to be 3. Looking at the population values of the 

chosen model, it seems quite restrictive and artificial. Models of higher 

dimensions are more interesting as well as more useful in practice. 

Nevertheless, the basic conclusions are unaffected and deserve discussion 

here. 

First of all, the various Bayes estimates seem superior to the 

unconstrained maximum likelihood estimates (MLl). Tlie superiority of the 

former to the latter holds even when the stochastic constraints are not in 

accordance with the population values. Besides, as compared to the 

constrained maximum likelihood estimates, the ML2 performs better only when 

the exact constraints are correctly specified. On the contrary, when the 

- 3 1 -



exact constraints are incorrectly specified, the Bayesian approach produces 

estimates that are far better than that produced by ML2. Therefore, unless 

you have strong confidence on the plausibility of the exact equality 

constraints, it is wise to impose the less restrictive stochastic 

counterparts. 

Finally, it is interesting to note that in obtaining the MLl and ML2 

estimates, we frequently encountered improper Heywood cases, especially 

when the sample sizes are small. On the other hand, the phenomenon is quite 

rare in deriving the various Bayes estimates. Thus, special attention 

should be paid in applying the maximum likelihood method. 

- 3 2 -



Chapter 5 

Concluding Remarks 

In this thesis, stochastic prior information in the form of 

stochastic constraints on the parameters of the model has been 

introduced in the analysis of structural equation model with polytomous 

data in several groups. A method based on the Bayesian approach (see 

Lee， 1988b) has been developed to obtain the various Bayes estimates. 

Based on the results of the simulation study, it has been shown that the 

provision of stochastic prior information not only provides us more 

freedom in studying the functional relationship among the parameters in 

the model but also gives more accurate and reliable estimates generally. 

Nevertheless, the method suffer a major drawback of computational 

inefficiency, especially when the dimension of the observed polytomous 

vector, p is large. It is because the procedure requires the evaluation 

of multiple integrals with complexity increases dramatically with p. As 

a result, the technique is practically infeasible for higher dimension 

of polytomous vector, say p二6 or more. 

To remedy this deficiency, one obvious direction of future 

development is to apply the concept to a more efficient estimation 

procedure in the analysis of structural equation model for polytomous 

variables. As a typical example, the computationally efficient 

multi-stage estimation procedure described in Poon, Lee, Bentler and 

Afifi (1989) is clearly a possible candidate to entertain. 

At last, it is worth to note that all the results developed here 

are based on the normality assumption of the latent random vector. 

Hence, if the underlying distribution is luiknown or other than normal, 
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the applicability of the procedures is suspected. Therefore, the problem 

of robustness of the various Bayes estimates may be an interesting 

research topic in the future. 
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Table 1 ： Full Simultaneous Maximum Likelihood Estimates 

Parameters Group 1 Group 2 

«i2 -0.512* 

0.983* 

«2 2 -0.464* 

“23 0.839(0.070) 

«32 -0.491* 

^3 3 1.080(0.103) 

«42 -0.519* 

«43 1.102(0.106) . 

Fii 0.882(0.125) 0.755(0.072) 

F21 0.552(0.083) 0.453(0.049) 

F32 0.761(0.102) 0.668(0.066) 

F42 0.814(0.106) 0.658(0.069) 

M21 0.302(0.064) 0.540(0.073) 

Eli 0.225(0.234) 0.207(0.128) 

E22 0.572(0.152) 0.348(0.089) 

E33 0.693(0.255) 0.346(0.154) 

E44 0.528(0.254) 0.624(0.194) 

Notes : 1. In all tables, asterisks denote parameter values fixed at those 

values. 

2. Standard error estimates are in parentheses. 
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Table 2 ： Full Simultaneous Maximum Likelihood Estimates 

with constraint (a) F⑴ 二 F(” 

Parameters Group•1 Group 2 

^12 -0.512* 

0.983* 

H i -0.464* 

0.838(0.070) 

«32 - 0.491* 

^33 1.076(0.102) 

^42 -0.519* 

1.097(0.105) ‘ 

Fii 0.810(0.056) 

『21 0.500(0.038) 

F32 0.713(0.050) 

F42 0.730(0.053) 

M21 0.321(0.067) 0.540(0.061) 

Eli 0.317(0.119) 0.159(0.116) 

E22 0.602(0.126) 0.324(0.090) 

E33 0.724(0.211) 0.311(0.151) 

0.618(0.199) 0.559(0.196) 
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Table 3 ： Full Simultaneous Maximum Likeliiiood Estimates 

witli constraint (b) 1[⑴ 二 M⑴ 

Parameters Group•1 Group 2 

Qi2 -0.512 

本 
0.983 

^22 -0.464* 

02 3 0.843(0.071) 

^32 -0.491* 

^33 1.071(0.102) 
* 

^42 -0.519 

^43 1.092(0.105) “ 

Fit 0.829(0.088) 0.836(0.102) 

F21 0.587(0.067) 0.408(0.058) 

F32 0‘762(0.083) 0.700(0.083) 

F42 0.802(0.085) 0.623(0.081) 

M21 0.391(0.049) 

Ell 0.322(0.165) 0.064(0.182) 

E22 0.541(0.146) 0.388(0.091) 

E33 0.682(0.237) 0.282(0.168) 

E44 0.540(0.230) 0.648(0.196) 
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Table 4 ： Full Simultaneous Maximuni Likelihood Estimates 

with constraint (c) E⑴ 二 E(” 

Parameters Group. 1 Group 2 

^12 -0.512* 

^13 0.983* 

H i _ 0.464* 

«23 0.823(0.068) 

^32 - 0.491* 

3 1.025(0.094) 

^42 -0.519* 

«43 1.081(0.103) “ 

Fii 0.809(0.070) 0.762(0.067) 

F21 0.549(0.051) 0.467(0.049) 

F32 0.837(0.068) 0.637(0.060) 

F42 0.675(0.062) 0.673(0.064) 

M21 0.282(0.059) 0.577(0.073) 

Ell 0.273(0.109) 

E22 0.428(0.096) 

E33 0.390(0.146) 

E44 0.649(0.179) 
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Table 5 ： Full Simultaneous Maximum Likelihood Estimates with 

constraints (d) F 二 F ，M 二 M and E 二 E 

Parameters Group 1 Group 2 

* 
-0.512 

«13 0.983* 

022 -0.464* 

2̂ 3 0.849(0.072) 

^32 -0.491* 

^33 1.035(0.099) 

^42 -0.519* 

^43 1.080(0.104) “ 
• I. 

Fii 0.820(0.071) 

1 0.512(0.048) 

^32 0.702(0.059) 

F42 0.730(0.061) 

M21 0.385(0.048) 

Ell 0.226(0.127) 

^2 2 0.470(0.106) 

E33 0.492(0.167) 

E44 0.569(0.186) 
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Table 6 ： Bayes Estimates corresponding to stochastic 

constraint (a) F = F + e 

Parameters Group•1 Group 2 

^12 -0.512* 

^13 0.983* 

2̂ 2 -0.464* 

2̂ 3 0.839(0.056) 

^3 2 - 0.49 广 

3 1.079(0.067) 

^42 -0.519* 

^43 1.101(0.067) 

Fii 0.862(0.071) 0.767(0.058) 

^2 1 0.557(0.053) 0.456(0.043) 

F32 0.764(0.070) 0.673(0.056) 

F42 0.794(0.071) 0.672(0.060) 

M21 0.307(0.057) 0.540(0.063) 

Ell 0.257(0.122) 0.193(0.098) 

E22 0.565(0.102) 0.348(0.072) 

E33 0.683(0.130) 0.342(0.101) 

E44 0.554(0.128) 0.610(0.116) 
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Table 7 ： Bayes Estimates corresponding to stodiastic 

constraint (b) M 二 M + e 
一 ~ 供 

Parameters Group 1 Group 2 

-0.512* 

0.983* 

2̂ 2 -0.464* 

“23 0.839(0.063) 

«32 -0.491* 

«33 1 . 0 8 0 ( 0 . 0 8 0 ) 

«42 -0.519* “ 

«43 1.103(0.080) 

Fii 0.871(0.087) 0.762(0.067) 

F2i 0.559(0.062) 0.450(0.047) 

F32 0.763(0.078) 0.671(0.061) 

F42 0.813(0.081) 0.656(0.064) 

M21 0.315(0.061) 0.524(0.070) 

0.246(0.157) 0.195(0.115) 

E22 0.565(0.122) 0.351(0.081) 

E33 0.691(0.173) 0.340(0.124) 

E44 0.533(0.170) 0.627(0.146) 
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Table 8 ： Bayes Estimates corresponding to stocliastic 

constraint (c) £(” = E⑴ + e 

Parameters Group 1 Group 2 

^12 -0.512* 

^13 0.983* 

^2 2 -0.464* 

^2 3 0.827(0.064) 

^32 -0.491* 

^3 3 1.047(0.084) 

«4 2 -0.519* 

^4 3 1.091(0.089) 

0.862(0.076) 0.758(0.062) 

^2 1 0.552(0.055) 0.451(0.044) 

F32 0.805(0.072) 0.643(0.057) 

F42 0.737(0.068) 0.669(0.061) 

M21 0.299(0.057) 0.547(0.066) 

Ell 0.250(0.136) 0.211(0.109) 

E22 0.528(0.119) 0.353(0.084) 

E33 0.523(0.179) 0.371(0.133) 

E44 0.622(0.178) 0.604(0.167) 
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Table 9 ： Bayes Estimates corresponding to stochiastic constraints 

(dj if 二 i + 6. , I 二 M + and E = E + e-

Parameters Group 1 Group 2 

-0.512* 

0.983* 
本 

^22 -0.464 

^2 3 0.825(0.062) 

«32 -0.491* 

«33 1.032(0.079) 

«42 -0.519* -

«43 1.082(0.084) 

Fii 0.850(0.078) 0.778(0.070) 

F21 0.546(0.056) 0.451(0.047) 

F32 0.774(0.070) 0.653(0.060) 

F42 0.734(0.069) 0.675(0.065) 

^21 0.327(0.059) 0.505(0.067) 

Ell 0.258(0.138) 0.190(0.122) 

E22 0.522(0.113) 0.357(0.085) 

E33 0.525(0.166) 0.358(0.133) 

0.609(0.171) 0.591(0.164) 
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Table 10 ： Summary of the tests of the compatibility 

of the various stocliastic constraints 

2 

x^ d.f. Conclusion 

/ 、 ^(2) 1) 
(a) F - F + 6 

0.01 5.86 4 Do not reject 

0.05 1.17 4 Do not reject 

(b) M(2) =M(i)+ e ^ 

0.01 5.64 1 Reject — 

0.05 1.13 1 Do not reject 

(c) E(2) 二 E⑴ + e 
树 〜 〜 

0.01 17.89 4 Reject 

0.05 3.60 4 Do not reject 

⑷ F(2)=F(i)+e"M(2)—-M(i) +、2andE(2)=E(i)+e3 

0.01 29.37 9 Reject 

0.05 5.90 9 Do not reject 
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Table 11 ： Root Mean Squares errors between the various estimates 

and the population values for simulation 1 

RMS 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

0.154 0.116 0.124 0.119 0.135 0.133 

0.162 0.128 0.137 0.134 0.132 0.132 

M2I) 0.168 0.171 0.167 0.167 0.169 0.168 

Eu!) 0.193 0.190 0.190 0.189 0.193 0.193 

E二 0.221 0.221 0.217 0.216 0.220 0.220 

Ni=100 E“） 0.188 0.171 0.183 0.180 0.189 0.188 

^2=150 0.158 0.116 0.127 0.123 0.146 0.143 

F32 0.159 0.128 0.131 0.129 0.131 0.130 

m G ) 0.181 0.186 0.181 0.182 0.185 0.185 

0.289 0.274 0.276 0.273 0.285 0.284 

0.236 0.237 0.235 0.234 0.236 0.236 

0.233 0.229 0.226 0.224 0.233 0.232 
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Table 11 ： Root Mean Squares errors between the various estimates 

and the population values for simulation 1 

RMS 
Parameters — 

MLl ML2 BAYl BAY2 BAYS BAY4 

FgJ 0.100 0.085 0.090 0.087 0.099 0.097 

0.103 0.083 0.093 0.089 0.084 0.084 

0.130 0.123 0.129 0,128 0.130 0.130 

Ell 0.213 0.213 0.210 0.208 0.213 0.213 

0.176 0.177 0.173 0.172 0.175 0.176 

Ni-200 E;「 0.139 0.124 0.135 0.133 0.136 0.136 

N2=300 F G ) 0.139 0.085 0.107 0.102 0.117 0.114 

F s T 0.124 0.083 0.097 0.093 0.098 0.095 

K V 0.136 0.138 0.132 0.132 0.133 0.133 

0.224 0.228 0.223 0.222 0.223 0.224 

e G ) 0.177 0.174 0.174 0.173 0.175 0.175 

0.147 0.144 0.141 0.141 0.143 0.142 
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Table 22 ： Standard deviation of the various estimates for simulation 2 

Sample Mean 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

0.434 0.461 0.448 0.451 0.437 0.439 

F3丨） 0.486 0.492 0.481 0.482 0.488 0.488 

Msi) 0.285 0.274 0.281 0.280 0.281 0.281 

Eli) 0.409 0.417 0.410 0.411 0.408 0.408 

0.472 0.478 0.470 0.470 0.473 0.473 

Ni:100 E;;) 0.537 0.520 0.537 0.534 0.540 0.539 

N2=150 0.504 0.461 0.483 0.478 0.495 0.493 

0.483 0.492 0.496 0.497 0.491 0.491 

M^r 0.377 0.392 0.378 0.380 0.376 0.377 

Kl^ 0.663 0.654 0.655 0.654 0.663 0.662 

E G ) 0.550 0.550 0.550 0.549 0.550 0.550 

0.605 0.652 0.623 0.628 0.613 0.616 
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Table 22 ： Standard deviation of the various estimates for simulation 2 

Sample Mean 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

F3I) 0.462 0.469 0.464 0.465 0.458 0.459 

0.481 0.488 0.481 0.481 0.485 0.485 

Msl^ 0.316 0.313 0.315 0.314 0.316 0.316 

0.497 0.501 0.496 0.496 0.497 0.497 

0.501 0.505 0.500 0.500 0.502 0.502 

Ni=200 E;;) 0.526 0.516 0.527 0.526 0.527 0.527 

^2=300 FgJ^ 0.473 0.469 0.474 0.473 0.474 "o.475 

F^r 0.498 0.488 0.495 0.496 0.496 0.495 
( 2 ) 

M21 0.415 0.421 0.414 0.414 0.414 0.414 

0.538 0.536 0.536 0.536 0.537 0.537 

0.624 0.622 0.623 0.622 0.623 0.623 

E33 0.614 0.635 0.620 0.622 0.619 0.619 
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Table 15 ： Standard deviation of tlie various estimates for simnlation 1 

Standard deviation 
Parameters — 

MLl ML2 BAYl BAY2 BAY3 BAY4 

FgJ^ 0.141 0.111 0.114 0.110 0.121 0.119 

F3;) 0.163 0.129 0.137 0.134 0.133 0.133 

M ^ ) 0.170 0.171 0.168 0.168 0.169 0.169 

0.172 0.172 0.169 0.169 0.171 0.171 

£22^ 0.221 0.223 0.217 0.216 0.221 0.221 

Ni二100 E丨丨） 0.186 0.172 0.182 0.179 0.187 0.186 

N2 二 150 0.159 0.111 0.127 0.122 0.148 "0.145 

0.160 0.129 0.133 0.130 0.132 0.131 

0.181 0.188 0.181 0.183 0.185 0.185 

0.285 0.271 0.273 0.270 0.281 0.280 

E;;) 0.233 0.234 0.232 0.231 0.233 0.233 

£33^ 0.236 0.226 0.227 0.224 0.235 0.234 

i 
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Table 16 ： Standard deviation of tlie various estimates for sinnilation 1 

Standard deviation 
Parameters — 

MLl ML2 BAYl BAY2 BAYS BAY4 

FgJ^ 0.094 0.080 0.084 0.081 0.090 0.089 

F3I 0.102 0.083 0.092 0.088 0.084 0.084 

0.130 0.123 0.129 0.128 0.130 0.130 

0.215 0.216 0.212 0.210 0.215 0.215 

0.177 0.178 0.175 • 0.173 0.177 0.177 

二200 E“） 0.138 0.124 0.134 0.132 0.135 0.135 

N2=300 F 丨 0 . 1 3 7 0.080 0.105 0.099 0.116 0.112 

0.125 0.083 0.097 0.094 0.099 0.096 

M;;) 0.137 0.138 0.133 0.133 0.134 0.134 

E;;) 0.217 0.221 0.216 0.215 0.217 0.217 

eG) 0.177 0.174 0.175 0.173 0.175 0.175 

E33 0,148 0.141 0.141 0.140 0.143 0.142 
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Table 11 ： Root Mean Squares errors between the various estimates 

and the population values for simulation 1 

RMS 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

F ^ ) 0.166 0.193 0.153 0.152 0.167 0.165 

0.155 0.196 0.128 0.125 0.132 0.131 

M2i 0.157 0.166 0.158 0.158 0.164 0.163 

E;:) 0.215 0.215 0.214 0.213 0.216 0.216 

E G ) 0.202 0.210 0.195 0.193 0.197 0.197 

Ni=100 E3丨） 0.212 0.222 0.204 0.201 0.202 0.202 

Ns-lSO F G ) 0.152 0.180 0.123 0.123 0.139 0.136 

F G ) 0.188 0.204 0.148 0.145 0.152 0.151 

M ^ r 0.183 0.191 0.182 0.184 0.181 0.181 

0.255 0.260 0.252 0.252 0.257 0.257 

K V 0.261 0.280 0.249 0.247 0.251 0.250 

£33^ 0.195 0.210 0.183 0.182 0.184 0.184 
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Table 11 ： Root Mean Squares errors between the various estimates 

and the population values for simulation 1 

RMS 
Parameters — 

MLl ML2 BAYl BAY2 BAY3 BAY4 

0.125 0.176 0.127 0.130 0.134 0.134 

0.116 0.148 0.108 0.107 0.110 0.110 

Msi) 0.106 0.115 0.107 0.108 0.109 0.109 

0.247 0.260 0.241 0.240 0.246 0.246 

0.218 0.223 0.217 0.217 0.222 0.222 

Ni=200 E“） 0.139 0.145 0.136 0.135 0.137 "0.137 

N2二300 F丨厂 0.149 0.165 0.128 0.126 0.135 0.134 

Kl^ 0.143 0.157 0.114 0.109 0.113 0.112 

M ^ r 0.142 0.150 0.135 0.134 0.135 0.135 

En^ 0.245 0.262 0.243 0.242 0.246 0.246 

0.231 0.243 0.224 0.222 0.225 0.224 

0.136 0.155 0.129 0.128 0.130 0.130 
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Table 22 ： Standard deviation of the various estimates for simulation 2 

Sample Mean 
Parameters — : 

MLl ML2 BAYl BAY2 BAYS BAY4 

0.437 0.388 0.411 0.404 0.412 0.411 

^32 0.462 0.535 0.494 0.503 0.513 0.514 

0.260 0.256 0.257 0.258 0.250 0.251 

Ell 0.414 0.404 0.406 0.405 0.409 0.408 

0.447 0.474 0.455 0.458 0.463 0.463 

Ni-lOO E“） 0.557 0.547 0.559 0.558 0.541 0.542 

N2=150 0.301 0.388 0.350 0.360 0.351 0.353 

FsT 0.639 0.535 0.589 0.577 0.573 0.571 

M^r 0.374 0.375 0.365 0.366 0.373 0.372 
i 2 ) 

Ell 0.635 0.648 0.637 0.638 0.640 0.640 

0.579 0.556 0.565 0.562 0.562 0.562 

E丨r 0.584 0.641 0.611 0.617 0.623 0.623 
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Table 22 ： Standard deviation of the various estimates for simulation 2 

Sample Mean 
Parameters — 

MLl ML2 BAYl BAY2 BAYS BAY4 

Fgl^ 0.432 0.391 0.416 0.410 0.413 0.412 

F32 0.478 0.536 0.496 0.502 0.509 0.510 

Msi) 0.317 0.317 0.316 0.317 0.314 0.314 

EiJ^ 0.458 0.450 0.452 0.451 0.455 0.454 

E“） 0.506 0.526 0.510 0.511 0.516 0.516 

N广200 E33^ 0.538 0.524 0.538 0.537 0.526 0.527 

N2=300 lll^ 0.335 0.391 0.361 0.368 0.363 0.365 

F32^ 0.609 0.536 0.583 0.575 0.573 0.572 

M。） 0.424 0.424 0.418 0.418 0.422 0,421 

0.640 0.648 0.641 0.641 0.642 0.642 

0.616 0.562 0.609 0.607 0.606 0.606 

£33^ 0.564 0.632 0.576 0.580 0.584 0.584 
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Table 16 ： Standard deviation of tlie various estimates for sinnilation 1 

‘Standard deviation 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

Fgl^ 0.155 0.159 0.126 0.119 0.144 0.140 

F32 0.152 0.195 0.129 0.126 0.133 0.132 

M;「 0.154 0.162 0.153 0.154 0.158 0.157 

EJJ^ 0.199 0.194 0.194 0.192 0.198 0.197 

£22^ 0.196 0.210 0.191 0.190 0.195 0.195 

Ni=100 E3厂 0.207 0.219 0.198 0.194 0.200 0.200 

N2=150 F;;) 0.153 0.159 0.114 0.108 0.130 0.126 

0.186 0.195 0.149 0.145 0.152 0.149 

M G ) 0.183 0.191 0.181 0.182 0.180 0.180 

eIT 0.255 0.258 0.252 0.251 0.256 0.256 

0.262 0.279 0.249 0.247 0.250 0.250 

0.196 0.208 0.184 0.183 0.184 0.184 
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Table 22 ： Standard deviation of the various estimates for simulation 2 

Standard deviation 
Parameters 

MLl ML2 BAYl BAY2 BAYS BAY4 

FgJ^ 0.106 0.139 0.096 0.094 0.103 0.102 

0.115 0.145 0.109 0.108 0.111 0.111 

Msi) 0.105 0.115 0.107 0.107 0.109 0.109 

E " ) 0.245 0.258 0.239 0.237 0.244 0.244 

0.220 0-223 0.219 0.218 0.224 0.224 

N 广200 E“） 0.135 0.144 0.132 0.131 0.136 0.135 

N2=300 0.146 0.139 0.114 0.108 0.121 —0.118 

F G ) 0.144 0.145 0.113 0.107 0.111 0.109 

0.141 0.148 0.135 0.134 0.135 0.135 

EJi^ 0.244 0.260 0.242 0.241 0.245 0.245 

E2 2̂  0.233 0.242 0.226 0.224 0.227 0.226 

E“） 0.132 0.153 0.128 0.128 0.130 0.130 
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