
Synthesis and Realization of

Noncausal Digital Filters

Chok-Ki CHAN

A thesis submitted in partial fulfilment of

the reauirements for the degree of Doctor of Philosophy,

the Chinese University of Hong Kong

Department of Electronics

The Chinese University of Hong Kong

April 1984





For my wire and tamily



ACKNOWLEDGEMENT!

It is my pleasure to express my gratitude to my

supervisor, Professor C. F. Chen, for his most stimulating

guidance, valuable advice and encouragement throughout the

course of this research work.

I would also like to express my gratitude to the

donor of the Cheng Yick Chi Graduate Fellowship whose

financial assistant and support are proved to be valuable.

Thanks are also Cue to Dr. J. S. L. Wong and.

Mr. D. P. Kwok for their continual encouragement. Moreover,

I am particularly grateful to Dr. C. P. Kwong and

Dr. P. C. Ching for their helpful discussions and criticisms

Finally, I am indebted to Miss Rhoda Lam,

Miss Adeline Siu and Miss Winnie Lau for their patience in

typing the manuscript.



Abstract

In the field of digital filter design, most of

the research efforts have been concentrated e the

synthesis and realization of causal filters. Noncausal

digital filters receive far less attention mainly due to

the common notion that they are physically unrealizable.

By making use of the flexibility of digital computer,

techniques for the realization of noncausal filter have

been developed recently. In this thesis, the synthesis

and realization methods for noncausal filters are

considered.

The synthesis problem is tackled by decomoositing

the noncausal filter into a causal subfilter and a p e

noncausal subfilter connected in parallel or in series.

For zero phase filters, the subfilters can be made identical

for most cases. The frequency response 5 ela

given to facilitate the design process in practical

problems.

A sample-by-sample approach to noncausal filter

realization has been developed with two techniques.

introded. Compar3 with nconventional block processing

approachhave the new methods have the advantages of small

basic group delay, small9yLLemory size reauirement and

exactly known phase error.



The purely noncausal part of the filter is

realized by a nonrecursive subfilter or a recursive one.

The nonrecursive realization is based on a FIR filter

design method using Wiener ,Lee decomposition technique and

the unit circle real part function. The convergency'of

the FIR subfilter is guaranteed since many practical filter

responses satisfy Dirichlet conditions. The recursive

realization is based on the continued fraction expansion

often used as a model reduction technique. For narrowband

lowpass or highpass filters, recursive realization is more

computation fficient than the nonrecursive one. Many

practical examples ire presented. Comparisons are also madE

with the conventional technique.
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Chapter 1

INTRODUCTION

In the past two decades, the field of digital

signal processing has grown enormously to provide concrete

the 1 background for many design and implementation

problems in a huge number of areas [02]. The first attempt

to provide a comprehensive theory was due to Gold and Radar

in their classic book on digital signal processing [G2].

Since then, many textbooks by various authors, such as

Oppenheim and Schafer[ 01], Cappellini et al [C4], Rabiner

and Gold [R3] and Chen [C7], have deal with both the theory

and applications of digital signal processing in great depth.

Moreover, the rapid advance of high speed digital integrated

electronics has widened the application areas of digital

signal processing from the low frequency end, such as seimic,

biomedical and sonar signals, to the high frequency end, like

speech and radar signals [02].

In practical problems, the digital system design

engineer would inevitably encounter the problem of

realizability from time to time. The problem is so

fundamental that it is widely discussed in the literature.

Naturally, it leads to the classification of the causal

(nonanticipative) and the noncausal.(anticipative) digital

systems. A most common notion is that only causal systems

are physically realizable or, in other words, noncausal

systems are unrealizable and therefore have little practical

values. Logically, based on this classification, many of

the research and development worksnconcentratier efforts



the design, implementation and application of causal

digital systems. Usually, most design methodologies restrict,

at the very beginning, their designs to only causal type of

transfer functions without ever consider noncausal type of

functions. Nevertheless, many well established analytical

tools, such as difference equations and the two-sided

z-transform, can handle both causal and noncausal problems

[01]. The concept of unrealizability has impeded the

development of noncausal digital system design, not to

mention applications

Despite being unrealizable, noncausal systems are

useful in many aspects. In system analysis, noncausal

functions frequently appear in some intermediate steps of

mathematical operations. This usually happens when causal

functions are being recombined or decomposlbed-i— A well known

analysis procedure is the decomposition of a causal sequence

h(k) into even and odd parts (Fig. 1.1), where,

Both h (k) and hn (k) are noncausal sequences, which are

particularly important in many of the

causal digital system theorems, such as the Hilbert transform

[01].
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causal

even noncausii

odd noncausal

Fig. 1.1 Decomposition ofAcausal sequence into even

and odd sequences



In the field of digital filter design, it is well

known that many noncausal filters can provide benchmark

performance [C4, 01, R3]. A classic example is the ideal

lowpass digital filter with zero phase shift (Fig. 1.2a).

The frequency characteristic is given by,

(1.3)

Performing the inverse z-transform on (1.3), the impulse

response (Fig. 1.2b) is determined as,

(1.4)

Indeed, the impulse response h(k) is not equal to zero for

k 0 and therefore is considered as noncausal in nature and

physically unrealizable.

Another often encountered example is the ideal

Hilbert transformer having a frequency response (Fig. 1.3a)

of

(1.5)

The impulse response (Fig. 1.3b) is an odd sequence given by,

(1.6)



5

H

(a)

h(k)

(b)

Fig. 1.2 Ideal zero phase lowpass digital filter

(a) magnitude response; (b) impulse response.
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Fig. 1.3 Ideal Hilbert transformer(a) magnitude response

b) phase response. (c) impulse response.



Clearly, the ideal Hilbert transformer is also noncausal.

In fact, there are many other familiar examples, such as the

ideal bandpass filter and the ideal differentiator, that are

all noncausal in nature. These ideal characteristics are

often considered as the optimum unachievable standard

responses on which many of the causal system designs are

based. However, most of the well known causal filter design

methods, for example, the bilinear transformation, impulse

invariant and optimization methods in the frequency domain,

or the Pade approximation method in the time domain, confine,

at the earliest stage, the transfer functions to be of V-.•

causal type without ever attempt to consider noncausal type

of functions [R3]. This unfortunate fact has leatf to the,

relative undevelopment of noncausal filter design techniques

after all these years.;,. v j 1

With so many desirable features, noncausal digital

systems would have applied to a wider range offields should

the unrealizability constraint not exist. In reality, the

anticipative nature (the cause of unrealizability) of these

systems is trulsonly when the independent variable of the

system is -an—=eiemeFnt' time. In some areas such as image

processing the independent variable is -a space ei-e%dnt and,

therefore, the anticipatory difficulty no longer exists. In

fact, the application of noncausal processing techniques for

distortionless image signal filtering isknown [C4].

Even when time is the independent variable, it is

still possible to implement noncausal systems in an



approximate manner largely due to the flexibility of digital

computers. Recently, a two-pass technique for implementing

zero phase cascade noncausal filters has been developed

[Kl, CI]. It makes use of the fact that sampled digital

data in the memory can be processed in both the forward and

reversed direction. Therefore, evM--he.unea,Tia-bil-±-ty—

sonsiraant .is, realizable

approximations or implementation procedures can be derived

for noncausal systems. However, in the literature, research

works in the design, realization and application of noncausal

systems are very rare.

In this thesis, the problems in the design and

realization of noncausal systems are being investigated.

New design concepts and realization techniques are proposed.

The techniques are based on the decomposition of a noncausal

system into a causal and a purely noncausal subsystems

connected either in parallel or in cascade. The problem of

stability is considered with respect to the decomposartecr

subsystems. The characteristics of resulting noncausal

filters from different realization techniques are studied.

Results from the proposed methods are compared with the

conventional method.



1.1 Fundamental differences between causal and noncausal

filters

In the literature, causal digital filters are

further classified into the finite impulse response (FIR)

filters and the infinite impulse response (IIR) filters.

The most general form of the one-sided z-transform of IIR

filters can be written as

(1.7)

where aN is not equal to zero and there is no common factor

between numerator and denominator. The FIR transfer function

has the general form,

(1.8)

where h(N) is not equal to zero.

The noncausal digital transfer function is given

by the-two-sided z transform of its impulse response,

(1.9)

which may sometimes be written as a rational function wltn a

region of convergence defined by R+,, z R.

It is interesting to look at the pole-zero

patterns of this three types of digital filters. Due to the
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stability constraint, the poles of the IIR filter must all

be located inside the unit circle while the zeros can be

anywhere in the z plane (Fig. 1.4). Since the coefficients

are real, both poles and zeros are in conjugate pairs. For

the FIR filter, the zeros can lie anywhere in z plane while

the only pole is located at z= 0. In general, the zeros

exist in conjugate pairs (Fig. 1.5a), however, if the linear

phase constraint is imposed, the zeros also have to be

reciprocal pairs (Fig. 1.5b). For both causal IIR and FIR

filters, all zeros must lie inside the unit circle if minimum

phase is required.

1'I1 Bull dU5d1 1111.01 I iIUWCvei, L:aii itavt NviC Y

anywhere on the z plane excluding the unit circle (Fig. 1.6)

due to stability criteria. There is no restriction on the

location of zeros.

In many practical filter design probe m.., the

spectral shaping ability of the filter is o utmost portance.

In general, the frequency response can be obtained from the

pole-zero locations. Let D i (ejW) be the vector magnitude

from. the pole p i to the point ejW on the unit circle and

6 (eJw be the angle of the vector from p1. to ejw, while
1)

jw jw
C(e) denotes the magnitude due to the zero zi and i(ejw

denotes the angle. Then the frequency response can be

written as

(1. 10)
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as shown in Fig. 1.7.

The spectral shaping ability of FIR filters are

greatly limited by the fact that only zeros can be moved

freely to construct the desire frequency response. Thus,

given the same frequency specification, the FIR filter order

is usually very high (even though, efficient implementation

is possible due to the coefficient symmetry in the linear

phase case or by making use of the fast convolution algorithm)

[R3]. In the case of causal IIR filters, in addition to the

freedom of positioning zeros, the poles are free to move

within the unit circle. Hence, the spectral shaping ability

of IIR filters is better in other words, the order of IIR

filters is in general lower than that of FIR filters when

both filters are designed to satisfy the same frequency

requirements.

The freedom of positioning both poles and zeros is

greatest for the noncausal filter. The only restriction is

that poles must not lie on the unit circle. Therefore,

noncausal filters have the best ability to control both the

magnitude and phase responses given the same number of poles

and zeros. In fact, it is well known that causal IIR filters

cannot have exact linear phase characteristic while noncausal

filters, theoretically, can be designed.to have exact linear

phase [R3]
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Fig. 1.4 Pole zero pattern of causal recursive

digital filter



(a)

(b)

Fig. 1.5a pole zero patterns of causal nonrecursive

filter (a) general case (b) linear phase case
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Fig. 1.6 pole zero pattern of noncausal filter

Fig. 1.7 Geometric evaluation of frequency response

from pole zero diagram
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Chapter 2

Noncausal Systems

A noncausal system is defined as one of which the

output depends not only on present and past values of input

but also on future input values. The impulse response of

a noncausal system has, therefore, non-zero samples for

negative time values. It is convenient to define three

different types of sequences. A sequence h(k) is referred

as a causal sequence (Fig. 2.1a) if all its values are zero

for k < 0. A purely noncausal sequence (Fig. 2.1b) is

defined as one having zero values for k > 0. A noncausal

sequence (Fig. 2.1c) refers to one having some non-zero

values for both k < 0 and k > 0. Therefore, the noncausal

system's impulse response is a noncausal sequence while that

for a causal system is a causal sequence.

In this thesis, we concerned with the design and

realization of linear time invariant (LTI) digital noncausal

filters. The analysis and design of noncausal filters is

not well developed even though the application of such

filters in distortionless processing is not uncommon

[C1, C4, K1].It is necessary to establish the stability

conditions before going into further details of design and

realizablility.

2.1 Stability criteria

A noncausal transfer function H(z) is given by

the two-sided z transform of its impulse respons h(k),
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(20l)

For every bounded input sequence, the output of a stable

noncausal system is also bounded. Thus, the noncausal LTI

system is stable if and only if the impulse response is

absolutely summable,

(2. 2)

It is possible to separate the noncausal impulse response

h (k) into two causal impulse responses g1 (k) and g2 (k) by

[C1]

(2. 3)

Then we have,

(2.4)

Now the stability condition (2.2) becones,

(2.5)

and
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which are equivalent to the individual causal system's

stability criteria. Taking the z-transform of (2.4), we get

(2.6)

It follows that if the poles of Gl (z) and G2(z) all lie
2

inside the unit. circle then the noncausal system is stable.

Now the stability criteria for noncausal system

can be restated. If the noncausal system H(z) is decomposited

into two parallel connected systems consisting of a causal

system G 1 (z) and a purely noncausal system G 2 (z-1), then

H (z) is stable if both G1 (z) and G2 (z) have all their poles

inside the unit circle.

2.2 Design methodology

Even though many design techniques have been

developed for causal filters [R3], the design of noncausal

filters is relatively undeveloped. possibly due to their

limited application areas and inherent design difficulties.

Some of the noncausal design techniques are discussed in

this section.

The design problem is tackled by decom osit

the noncausal system into parallel or cascade connecting

systems consisting of a causal and a purely noncausal parts.

The concausal transfer function H(z) becomes

the cascade connection is usea, ana

Ln case of parallel connection

and G,(z) are causal systems while
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(a)

(b)

(c)

Fig. 2. 1 Types of sequences: (a) causal (b) purely noncausal

(c) noncausal.

y (k)
u(k) H2 (Z-1)H1 (z)

purely
causal

ncrncasa

causal

G1 (z)

y(k)
u(k)°

G 2 (z-1)

purely
noncausal

Fig. 2.2 Decomposition of a noncausal system:

(a) cascade structure; (b) parallel structure.
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are purely noncausal systems.

Applying the transformation z-1 -> z to the purely

noncausal systems, we-obtain H2 (z) and G2 (z) which are both

causal. Based on specifications in time or frequency domains,

H2 (z) and G2 (z) can then be -designed by many existing causal

techniques. Finally, the purely noncausal systems H 2 (Z-

and G 2 (z) are obtained by the inverse transformation

z-- >z-1. In effect, the decomposition procedure reduces the

noncausal design problem into a causal one which is easily

solved.

For parallel connection the decomposition is

easily obtained by (2.3) in the time domain (Fig, 2.3).

G1(z) and G2(z) are in nonrecursive forms. If recursive

realization is desirable it can be achieved by causal time

domain design techniques such as Pade approximations [B1, Y1]

or orthogonal-function approximations [S3, Fl]. To obtain

the cascade systems, we equate their transfer functions with

the parallel recursive ones,

(2.7)

It is easy to see that the poles of H1(z) are identical to

that of G 1( z) and those of H 2( z) are same as that of G2 W.

The zeros are found by solving the numerator polynomials.

The assignment of zeros to H 1 (z) and H 2 (z-1) can be done

arbitrarily provided that the order of numerators is less

than or equal to that of denominators for both transfer

functions. If minimal phase for the subfilters is desirable,
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time domain

specification

time domain

decomposition

nonrecursive

parallel subfilters

G2 (z-1)G1 (z)

Pade approximation

orthogonal function approximation

recursive parallel

subfitters

G1(z) G2 (Z-l)

pole zero

assignment

cascade

subfilters

H (z) H2 (Z-1)
1

Fig. 2.3 Time domain design



all the zeros inside the unit circle can be assigned to

H(z) and others to). However, the phase of the

overall system is unaffected.

If the noncausal transfer function H(z) is given,

the poles and zeros of Hfz) and (z are directly

obtained from those of H(z) (Fig. 2.4) since

H(z)= H(z) hfz). The poles inside the unit circle are

assigned to H(z) while those outside unit circle belong to

Hfz because of the stability and causality constraints.

Zeros may be assigned in any manner provided that both

transfer functions remain recursive in nature. The 2

of the parallel connection is determined by (2.7) using

partial fraction expansion. Again the poles of H(z) belong

to G(z) while that of (z) belong to G2(z).

2.3 Even and odd sequences

It is well known that for any stable noncausal

sequence h(k) it can be separated into an even and an odd

parts,

(2.8)

The even sequence h (k) is given by

(2.9)

and the odd sequences h„(k),

(2.10)

for all integer k.



Il(z)

1

Vz)

1

H2(Z_1

1

Fig. 2.4 Pole assignment for cascade noncausal system.



As mentioned in the introduction, an ideal system's

impulse response is either an even or an odd seauence.

therefore, it is of particular interest to investigate the

design of noncausal systems with symmetric or antisymmetric

impulse response.

2.3.1 Even impulse response

For a system with even impulse response, the

frequency is

(2.11)

which is purely real with zero phase. This class of

noncausal systems is of particular importance due to their

ability to provide distortionless filtering needed in many

applications [C4, R3]. In fact most of the dt research

works have emphasized in the design of noncausal filters

with identical subfilters [Kl, CI] which guaran an even

impulse response.

In parallel connection, according to (2.3), the

subfilter Gz) must be identical to G2(z) in order to give

an even impulse response. The frequency response is given

by

(2.12)

which Is purely real and equal to twice the subfilter s real

part response. The symmetry impulse response can be obtained



by (2.4)

For cascade noncausal filter H(z), the subfilters,

can obtained from,

(2.13)

Assuming that G(z) is in rational form, i.e. G(z)

N(z)

D( z)'

fhpn f 9 1) hppnmpq

(2.14)

where the order of the numerator polynomial N(z) is less

than or equal to the order n of the denominator D(z). It

is clear from the stability and causality constraints that

the poles of H(z) and (z) are identical to the zeros

of D(z) and D(z) respectively. Let p(z)= N(z) D(z)

then Pfz1)= N(z 1) D(z), thus

(2.15)

and

(2.16)

If the order of N(z) is less than D(z), then some of the

will be zero. Collecting common terms, the numerator

becomes



(2.17

Q(z) can be rewritten as,

(2.18)

which is a polynomial with symmetric coefficients. Applying

the transformation, z- z, to (2.18), it is observed that

the transformed polynomial is identical to the original

polynomial, that is,

(2.191

Therefore, if z is a complex zero of Q(z), then from (2.19)

it is concluded that 1z is also a zero of Q(z). Since the

coefficients are all real, the complex conjugates z

and 1z must also be complex zeros of Q(z). Then a

general elementary factor of Q(z) must be of the form,

(2.20)



which is indeed a polynomial with symmetric coefficients.

The complex conjugate and reciprocal pairs of zeros of Q(z)

is plotted in Fig. 2.5 to show the positional symmetry. If

all the zeros of the numerator Q(z) are in reciprocal pairs,

then (2.14) becomes

(2.21)

which implies H(z)= (z). The cascade noncausal filter

with even impulse response can therefore be decomposed into

identical subfilters when the reciprocal zeros are assigned

according to (2.20). In the degenerate case where the

complex zeros are on the unit circle (i.e. the reciprocal

becomes itself), the cascade filter cannot be decomposed

into identical subfilters unless they are all even order

zeros. Except for this degenerate case, we can always

construct the cascade filter by identical subfilters. If

minimal phase subfilter is desirable, all the zeros inside

unit circle are assigned to (z).

The impulse response of the cascade noncausal

filter with identical subfilters is given by the convolution

of the subfilter1s impulse responses h1 (j), that is,

(2.22)

(2.22) is readily recognized as the autocorrelation of the

subfilter1s impulse response, which is indeed an even



function. The frequency response is given by,

(2.23)

which is real and equal to the square of subfilter's

magnitude response. Due to the ease and simplicity in

design and realization, only cascade noncausal filter with

identical subfilters is considered here.

2.3.2 Odd impulse response

A noncausal system with an odd impulse response

has a frequency response of,

(2.24)

which is purely imaginary. In order words, the magnitude

response may have a 90° or -90° phase shift. This class of

noncausal filter is particularly suitable for realizing

Hilbert transformation and ideal differentiators which have

purely imaginary frequency responses [01].

The parallel connected filter is easily obtained

by,

(2.25)

where the purely noncausal subfilter is simply the inversion

of the original subfilter. Its frequency response is

(2.26)

which is purely imaginary as expected.



For cascade connection, the subfilters are not the

same. It can be shown that, however, it is possible to

construct a pair of needed subfilters that differs by only

a factor of (z- z).

Consider a cascade noncausal filter H(z) with odd

impulse response given by (2.25),

(2.27)

It is clear that the poles of the cascade subfilters H(z)

and H(z) are identical with the zeros of D(z) and D(z)

respectively. With P(z)= N(z) D(z), we have,

(2.28)

where P(z) is in the same form as (2.16).

Collecting common terms, it is easily' to see that the

numerator polynomial Q(z) has antisymmetric coefficients,

(2.29)

where gg is identically zero. Applying the transformation,



z• z, it is observed that Q(z)= -Q(z). As far as the

zeros are concerned, this is similar to (2.19), thus the

zeros of the antisymmetric polynomials must also be in both

reciprocal and complex conjugate pairs. However, in order tc

obtain a polynomial of the form in (2.29), the degenerate

zeros at ±1 (its reciprocal and complex conjugate are

itself) must also be included. Multiplying a general

elementary factor of Q(z) with the factors (1- z) and

(1+ z), we have

which is in the desired form of (2.29). Therefore, except

for the case where complex zeros on the unit circle are of

odd order, Q(z) can always be decomposed to (Fig. 2.6),

(2.30)

(2.31)

which implies that the cascade subfilters are in the form,

H (z)

(2.32)

causal purely noncausal



/z
i

Q (z)

1

z i

z
i

1/2

Fig. 2.5 Zero positions for noncausal system with even

impulse response

1zt
1

VQ (z

z.
1

z
T

-1 1

1/z

Fig. 2.6 Zero positions for noncausal system with odd

impulse response
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Thus the subfilters are identical up to a factor of

The frequency response is then qiven by

(2.33)

2.4 Practical design considerations

In many filter synthesis problems, the frequency

response requirements are usually given and the filter

transfer function is to be determined. Due to the fact that

a noncausal filter is first decomposed into causal and

purely noncausal subfilters, both subfilters have to be

designed independently based on their own specifications.

Thus, the frequency response requirements for the subfilters

have to be derived from the given overall specifications.

For the general case,where the noncausal filter's impulse

response is asymmetric, there are no relationships between

the causal and noncausal subfilters. It is, therefore,

inherently difficult to derive the individual subfilters'

response requirements from the original specifications.

This design difficulty has prohibited the practical use of

the noncausal filters in the most general form.

However, for noncausal filters with symmetric or

antisymmetric impulse responses, the relationships between

the causal and purely roncausal subfilters have been

derived for both parallel and cascad connections (section

2.3). The subfilters requirements can thus be easily

obtained from the given filter specifications. Since these

types of noncausal filters also have zero phase
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characteristics, they are of particular interest for many

practical applications.

In both even and odd impulse response filters,

the subfilters for cascade connection are in general easier

to design than that of parallel connection. The specified

overall frequency requirements become real part (eq. 2.12)

or imaginary part requirements (eq. 2.26) for the parallel

connected subfilters. Synthesis of digital filters from

real part or imaginary part response is uncommon even

though it has been developed by Guillemin [G1] for passive

analog networks. However, for the case of cascade connected

subfilters, the given response requirements become magnitude

response specifications (eq. 2.23 and 2.33) while the phase

responses are immaterial. Design methods based on magnitude

response are well developed (see, for example, [R3, Al]),

thus the subfilters are readily constructed using familiar

methods. Therefore, for many applications, design simplicity

favors the realization of cascade structures rather than

parallel ones.



Chapter 3

Conventional Block Processing Technique

While the noncausal filter design problem is

solved by decomposing the filter into causal subfilters

which can then be designed by many well-known methods in

time domain or frequency domain, however the difficulties

in realization remain the main obstacles in many

application areas. In both parallel and cascade

connections, direct implementation of the purely noncausal

subfilter is physically impossible due to its anticipatory

nature. The classical realization approach makes use of

the fact that sequences of finite length can be processed

in reversed order [Kl, Cl]. For processing infinite input

sequence, the sequence is segmented into finite length

segments for the time reversal processing. The

conventional method is therefore essentially a block

processinq approach to noncausal filtering.

The following sections is devoted to describe

and analyse the conventional approach in some detail.

3.1 Time reversal of signals

The purely noncausal subfilter can be rendered

causal by a simple transformation of z+z-1. The method

was first proposed by Kormylo et al [K11 and further

generalized and improved by Czarnach [Cl].

Consider the input/output relation of the purely

noncausal transfer function given by,



(i n

Applying the transformation z- z to both sides of (3,1),

we obtained.

(3.2

where H(z) is a causal and stable subfilter which is

physically realizable. The transformation on the input

and output sequences is equivalent to a time reversal of

the sequences. By processing the input sequence in

reversed order with the causal subfilter H(z), a time

reversed output is obtained. The final output Y(z) is ther

obtained by applying the inverse transformation on Y(z S

which is again a time reversal operation.

The time reversal process is physically possible

only if the sequence is of finite length. However, the

transformation inherently assumes that sequences are of

infinite length. Therefore, it is natural that errors are

introduced when infinitely long seqeunces are segmented to

finite length sequences in order to perform the time

reversal process. The nature of this error is examined

in section 34.

The implementation of the time reversal operation

is most easily done in the computer by reindexing the

sequences where no samples are being shifted physically.

3.2 Parallel and cascade realization

As mentioned in chapter 2, the noncausal filter

can be decomposed into causal and purely noncausal parts,



thus there are two ways of implementation— the parallel

and the cascade methods. The implementations of the zero

phase noncausal filter for both parallel and cascade

connections are shown in Fig. 3.1. The time reversal

process is indicated by k -k.

If infinite length sequences can be processed

without segmentation, than the parallel and cascade

realizations are equivalent as far as the ouptut is

concerned. In practice, only truncated finite length

sequences can be processed and the two realization methods

produce different output errors. In actual applications

we are also interested in the difference in other aspects

of the realization methods, such as memory size

requirement and computation efficiency. Moreover, the

design methodology may also dictate the use of the parallel

or cascade structure since, as noted in chapter 2,

frequency domain design favors cascade form while time

domain specifications naturally lead to parallel form.

This fact is reflected by the dominance of cascade

realization in previous works [Kl, CI].

Without rigorous proofs, the general differences

in memory size requirement and computation efficiency for

both realization methods are established in the following

example. I ?fU }t

An noncausal filter consisting of identical

subfilters, H(z) z- 0.4
is realized by both methods
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Fig. 3.1 Noncausal recursive filters realized by block

processing approach: (a) parallel sturcutre

(b) cascade structure.



A finite length input sequence, u(k)= 1 for 0 k 4 is

being processed; results for output sequence y(k) in the

range -4 k£ 10 are shown in Figs. 3.2 and 3.3 for the

parallel and cascade methods respectively.

To generate each output sample of the subfilter

H(z), one multiplication, one shift and one addition are

required. Therefore, for the parallel structure a total

of 20 multiplications, 20 shifts and 25 additions are

needed. However, for the cascade structure a total of 26

multiplications, shifts and additions are necessary. Thus,

in general, if the required length of ouptut sequence is

longer than the input sequence the parallel structure needs

less mathematical operations.

The storage requirement, however, favors the use

of cascade structure since only 11 intermediate output

samples need to be stored while for parallel structure 20

intermediate samples are stored. The needed memory size

for parallel structure is approximately double that of the

cascade realization.

However, in many cases, the required ouptut

sequence is usually of the same length L as the input

sequence. Then, in this example, the cascade realization

requires 2L multiplications, additions and shift operations;

the memory size needed for intermediate result storage is

L. For parallel realization, again 2L multiplications and

shift operations are needed but the number of additions

increased to 3L. The storage requirement is 2L, which is



FIG 3.2 PARALLEL REALIZATION OF ZERO PHASE

NONCAUSAL FILTER FOR FINITE LENGTH

SEQUENCE
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Fig. 3.3 Cascade realization of zero phase noncausal filter

for finite length sequence



twice that needed by the cascade structure. Therefore, it

is more economical in both memory size requirement and

number of computations to realize a cascade structure.

in the next section, the errors ror no n

realization method are considered.

3.3 Processing of finite length sequence

It can be observed form Fig. 3.2 that in paralle:

realization the output sequence y(k) for k 4 is only

contributed by the forward filtering process, while for

k 0, the output is a direct result from the reversed

process. Since there is no truncation of input in the

forward and reversed subfilters, the output y (k) in the

range of interest is exact. Therefore, no error is

i nfirni1e ifarallel realization is used.

However, errors are introduced when cascade

realization is used because the forward subfilter's output

is truncated at a certain time k for the time reversal

operation and processing by the reversed subfilter

(Fig. 3. 3). Czarnach [Cl] proposed a state space method

to eliminate this truncation error.

Let the state space representations of the

forward and reversed subfilter be given by (3.3) and (3.4)

respectively.

(3.3)



(3.4)

where x. (k) are state vectors and A._, b. 0, c. 0, d,-

are the system matrices.

The finite length input sequence u(k) is zero for

k 0 and k k. Suppose the output for the forward

subfilter is truncated at k= k k then for any k k,

the output v(k) of this subfilter is uniquely given by:

Reversing v(k) and applying to the reversed subfilter, we

get the state vector x(k) for k -k

(3.5)

Since the output of the forward system is truncated at k,

the state vector X2(-k) given by (3.6) contains all the

loss information due to the truncation. Thus, we obtained

from (3.6)

(3.7)

The matrix summation in (3.7) is a fixed matrix depending

only on the subfilters. Thus the loss information due to

truncation is passed on to the initial state of the

reversed subfilter from the final state of the forward

subfilter. If the initial state of the reversed subfilter

is chosen according to (3.7), no error is introduced and
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the output v (k) in the range of interest is exact.

Even though the matrix T

determined once the subfilters are fixed, however, to

compute the initial state x2 (-kl) of the reversed subfilter

from (3.7), n2 multiplications and additions are needed

if the subfilters' order is n. The computation cost for

elimination of truncation error is therefore expePive

for high order subfilters.

In summary, the output y (k) are exact for both

parallel and cascade realizations provided that (3.7) is

implementated into the cascade structure. If the recursive

subfilters are of order n and canonical form realization is

used, then each output sample requires 2n+1 multiplications

and additions.

When the iengtn or porn input aria OuLpuL

sequences is L, then (4n+ 2) L multiplications and (4n+ 3)L

additions are required for parallel realization while, for

cascade realization with error elimination, (4n+ 2)L+ n2

multiplications and additions are needed. In most

applications L is much larger than n (e.g. typical values

are n= 8, L= 1000), therefore, the numbers of computationE

are similar for both realizations. Finally, it should be

mentioned that the memory size for parallel realization is

2L which is double that of cascade method while the

processing time is similar.



3.4 Processing of infinite length sequence

In most filtering problems, the input sequence is

of infinite length. The time reversal procedure of the

conventional technique requires the segmentation of the

input sequence into finite length ones. Segmentation

necessarily introduces transient errors since when a

segment is being processed the effect of future segments

are not known. To reduce the transient effects, similar

overlap-save algorithms were proposed by Kormylo et al [Kl]

and Czarnach [CI]. The main idea is to overlap the

Segments to be processed by a certain amount and discard

the initial andor the end transients.

For cascade realization the overlap-save

algorithm is depicted as shown in Fig. 3.4. The i th

segment u (k) overlaps with u_-(k) and u j_+]_() by an

amount q= q-+ q2 at both ends. The sequence is then

processed in the forward and reversed direction. The

output sequence y(k) is formed by discarding q1 samples

at the beginning and q2 sample at the end. The error

depends on the overlapping length in relation to the

length of the main energy portion of the impulse response

h(k). For the case, q= q2, Czarnach [CI] has shown that

the maximum error is given by

(3.8)

where M is the upper bound of input |u (k). For a certain

accuracy requirement, q can be determined by (3.8). In
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practice the segment length is usually chosen to be several

times that of q.

3.5 Main characteristics of block processing approach

One of the main advantages of noncausal filtering

is that it can provide almost ideal performance. The most

useful and widely known example is the zero phase filters.

For finite length input sequence, the block processing

technique gives exactly zero phase (or linear phase due to

finite processing time) results which are desirable for many

applications. However, for infinite length sequence, both

phase and magnitude errors are introduced due to

segmentation. Even though the maximum error bound for each

output sample can be computed from (3.8), there is no

similar formula for the phase error. Therefore, one of

the disadvantages of block processing technique is that

the phase error due to segmentation is not known.

Comparing with the classical optimal linear

phase FIR filters, the block processing noncausal filters

is computationally more efficient for a wide range of

filter responses [CI]. This is due to the fact that all

filtering is done recursively rather than nonrecursively

in a block processing noncausal filter. Since it is well

known that optimum FIR filters in general require less

computation than similar phase equalized causal recursive

filters [Rl], the block processing noncausal filters are

the most computational efficient to provide linear phase

characteristics in many applications.



However, the block processing approach requires

large amount of memory (in the order of thousands) to

store the intermediate results. This also implies that

the processing delay tirae'is extremely long. If there

are L samples in each segment, the delay time is at least

2LT if the processing time for each sample is appropriately

one sampling time T. Comparing with similar linear phase

causal filters, this delay tilrrfe is very much longer.



Chapter 4

Sample-by-sample approach using all zero approximation

The conventional block processing technique has

three main disadvantages, namely, very long group delay time,

huge memory size requirement and unknown phase distortion

due to segmentation. In many applications where fast

processing is mandatory, the conventional approach to

noncausal processing cannot be applied.

A sample-by-sample approach to noncausal filtering

is described in this chapter. The new approach has the

advantages of short basic group delay time, small memory

size requirement and exactly known phase response. Therefore,

noncausal processing canfeTbe applied to wider application

areas'.

4.1 Nonrecursive approximation

The main difficulty in the realization of noncausal

filters arises chiefly from the purely noncausal part

H(z~). Without the limitations of the block processing

approach, a nonrecursive filter of length N can be used to

approximate Hz1). The nonrecursive approximation can be

rendered causal by adding sufficient delays.

Consider an N-l order all zero approximation

F(z) to the stable and causal filter (z). In general,

F(z) is of the form

(4.1)



with the frequency response,

(4.21

The purely noncausal transfer function is obtained

by applying the transformation z+ z on (4.1),

(4.3]

Adding N-l unit delays, the FIR transfer function becomes

causal, that is,

(4.4

with

Since the phase of H(e-a3T) is nonlinear, the coefficients

of FIR filter have no symmetric constraint.

For cascade realization, the delayed causal FIR

subfilter is cascaded with the causal IIR subfilter. The

overall transfer function becomes (Fig. 4.1a)

I A r

For parallel realization, however, delays are added to both

the causal and purely noncausal subfilters (Fig. 4.1b), that

is,

(4.6)
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Fig. 4.1 Noncausal filter realization by FIR and

IIR subfilters: (a) cascade structure;

(b) parallel structure.



where F(z) is the all zero approximation to (z).

Therefore, some extra delay is added also to the causal

subfilter G(z). The overall response has a magnitude

approximates that of the original response with an added

linear phase of -(N-l)ooT.

Now H(z) is both causal and stable, thus can be

implemented by many well established implementation

techniques [R3]. The implementation does not require any

segmentation or time reversal of signals and therefore is

essentially a sample-by-sample processing of signals. The

frequency response H (eJ) can also be exactly computed.

The construction of the all zero approximation

F(z) from a causal recursive filter H(z) is discussed in

the following sections.

4.2 Real part sufficiency

IhthV 1 vt~rdfiue, vast majority of the previous

research works on FIR digital filter design been

concentrated on linear phase FIR filters owning to their

superior performance in providing distortionless processing

[R2, L2, Pi]. Most design methods are based on the

assumption that the filter coefficients are symmetrical (or

antisymmetrical) which necessarily implies that the resulting

FIR filter is linear phase. However, several papers have

proposed design methods for particular classes of nonlinear

phase FIR filter. The design of minimum phase FIR filters

is first considered by Herman et al. [H3]. While in the



application areas of phase equalization and chirp processing,

all pass FIR phase network design has been proposed by

Steiglitz [SI]. Moreover, Goldberg et al. [G3] have

investigated methods for designing optimal nonlinear phase

FIR filters which can be implemented efficiently. For the

general case of designing FIR filters to approximate both

the magnitude and phase responses, methods have been proposed

using optimization and iterative techniques [C8, H2]. Even

though, we can construct the all zero approximation F(z) to

the recursive filter (z) using the general optimization

or iterative techniques which require long computation time,

a more efficient and flexible method is proposed. Before we

discuss the details of the new design method, we would like

to establish some properties of digital systems concerning

the real part of a digital transfer function on unit circle.

These properties are used to accomplish the design of similar

(in term of frequency response) IIR and FIR digital filters.

In this classical work on passive network,

Guillemin [Gl] has shown that the j-axis real part of a

transfer function is sufficient for the construction of the

system. It is further shown that a continuous system can be

designed based on real part function specifications rather

than the conventional magnitude and phase specifications [Gl].

For a causal, stable and linear time invariant (LTI) digital

system, similar conclusions can be made on the transfer

function's real part on unit circle.

Consider a digital system function given by



(4.7)

where h(nT) is a real sequence defined for n= 0, ±1, ±2,..

and the sampling time, T 0.

On the unit circle, z= ewT, we have

(4.8)

where H (z) is the complex conjugate of H(z).

Thus, the real part of the system function on the unit

circle is given by,

(4.9)

and the imaginary part,

(4.10)

It is noted that both H and H are real function of the

real variable coT.

The impulse response of the system is given by

[01],

(4.11)

where C is a counter-clockwise closed curve in the region

of convergence of H(z). For a stable and causal LTI system,

the region of convergence is z 1. Choosing C to be the

unit circle, z= e, we have



(4.12)

Writing H(e:a))= H (wT)+ j H (wT) and noting that H„(toT)

is an even function of out while H (tuT) is an odd function

of a)T, we have,

Replacing n by -n into the integrals of (4.13),

we observe that the first integral of (4.13) is an even

function of n while the second integral is an odd function

of n.

For a causal system, f(nT)= 0 for negative

integer n. Thus, for n= -1, -2, -3,..., we have

Then, for n= 1, 2, 3, we obtain

Thus, (4.13) becomes

(4.13)

(4.14)

(4.15)



and

or

(4.16

(4.17:

which shows that the real part alone suffices to determine

the impulse response of the causal digital system [01].

Unlike the analog case it is noted that the right side of

(4.16) is a discrete time function while the left side is a

continuous function.

The digital system transfer function is obtained by applying

the z-transform to (4.16),

(4.18)

Equation (4.18) essentially shows that we can uniquely

construct the digital system from a given real part function

alone if the LTI system is stable and causal. Moreover,

the imaginary part is given by the well-known Hilbert

transform [01]. Therefore, by relating the real part

functions (on j-axis for analog systems or on unit circle

for digital system) of two transfer functions, good

approximation in both magnitude and phase response is



obtained. In fact, design methods have been developed basec

on unit circle real part functions in rational trigonometric

forms [VI, Dl]. If the real part function is given in

other functional forms or graphical forms, (4.16) can be

computed numerically to give a nonrecursive filter. Since

(4.16) is the integral of a real function over a real

variable, it is more efficient to evaluate on computer. If

a recursive filter is desirable it can be obtained from the

nonrecursive approximation by many well known methods

[Bl, Yl].

The unit circle real part function can also be

used to perform the inverse z transformation which is

conventionally obtained by the contour integral method, power

expansion method and partial-fraction expansion method [CI].

While the last method is only suitable for rational system

function, the first two methods can be applied to general

cases. However, both methods involve contour integrals

which are difficult to solve. In such cases, the real

part function can first be computed,

(4.19)

and the inverse transform computed by (4.16) numerically.

Another important application of the real part

function is in the area of digital system modelling. The

transform integral (4.16) is particular easy to apply when

the real part response of the system is given either in

graphical form or from frequency measurement data.



In the next section, the real part sufficenc}

property is ultilized to construct the nonrecursive

approximation for the purely noncausal subfilter.

4. 3 Wiener-Lee decomposition

Since one of the most popular methods of designing

IIR filter (i.e. the causal subfilter) is the bilinear

transformation technique, this section derives a similar

technique for designing FIR filters. If the same analog

filter is used for both the IIR and FIR filters, their

responses will be approximately the same satisfying the

condition (4.2) and thus suitable for realizing noncausal

filters.

The design of FIR filter based on the bilinear

transformation of an analog filter function is first

considered by Sallai [S2]. The analog filter function is

of the special form,

(4.20)

Transforming by, s (4.20) becomes

(4.21)

which is a FIR digital filter transfer function. However,

(4.20) is not a typical analog transfer function therefore

many well known analog filters cannot be transformed into



FIR digital filters. The difficulty can be solved by

decomposing the continuous filter transfer function into

Wiener-Lee decomposed form which under the bilinear

transformation becomes a nonrecursive digital filter.

Consider a general analog filter function of the

form,

(4.22)

Equation (4.22) can be decomposed into the Wiener-Lee form

[LI, C2]

(4.23)

Lee [LI] has shown that by equating the real parts of (4.22)

and (4.23) along the j-axis, the coefficients gn are given

by the familiar Fourier cosine transform. On the j-axis

the value of a general term in (4.23) is expressed as

(4.24)

with unity magnitude and a phase of -ncf). Equating the

phase, the relation between j and the analog frequency oj

is

(4.25)



In the (f) domain, the value of (4.23) along the imaginary

axis becomes,

(4.26)

Matching the j-axis real parts of (4.22) and (4.26) in the

(J) domain, we obtain the familiar Fourier cosine series

expansion,

(4.971

where the subscript R denotes the real part of the function

The coefficients are then givedjn by,

(4.28)

From (4.28), it is clear that g are always real

Since the real part alone is suffice to determine

the transfer function (section 4.2) and that it satisfies

Dirichlet conditions, F(s) converges to H(s) for n°°. The

nonrecursive filter is then obtained by the familiar bilinear

transformation of (4.23),

(4.29)

with digital frequency response

(4.30)



The frequency response is the same as that of an IIR filter

(z) obtained from the bilinear transformation of the same

analog filter H(s), that is,

(4.31)

where

It should be noted that the matching of j-axis real parts of

(4.27) is equivalent to the matching of the real parts of

(z) and G(z) on the unit circle, z= eJ. Therefore, the

real part sufficiency of digital system is analogous to that

of analog system as shown in section 4.2.

Finally, the FIR filter is obtained by truncation

using a window function W(n),

and (4.32)

It is necessary to investigate the fall-of rate of

q in order to determine the FIR filter order N. Since all

well known analog filter functions have well-behave j-axis

real part that satisfies Dirichlet conditions, the

coefficents fall off at least as rapidly as 1n [Ml]. In

most cases the fall-off rate is faster since the real part

response may have high order derivatives that satisfy

Dirichlet conditions. Therefore, very good approximations

to H1(etoT) can be achieved by relatively low order FIR



transfer functions independent of the type of window

functions used.

The coefficients can be computed numerically on a

computer by (4.28) or by expanding (4.31) into a Laurent

series about z= 0 [K2]. While (4.28) is suitable for a

general class of functions (such as functions given in

graphical forms), the latter method is particular easy to

carry out if rational function is given.

By making use of the Wiener-Lee decomposition, the

well-known bilinear transformation technique of IIR filter

design is extended to FIR filter design. It is now possible

to design the FIR and IIR subfilters of a noncausal filter

from an analog filter using bilinear transformation.

4.4 Design procedures

A noncausal cascade filter suitable for sample by

sample processing has the transfer function of (4.5) which

is repeated here,

Neglecting the linear phase shift, the real frequency

response is approximately given by

(4.34)

Once a magnitude specification in the frequency domain and

the group delay ripple requirement are specified, a step to

step approach is taken to design both-the IIR subfilter

(4.33)



(z) and the FIR subfilter F (z) based on the bilinear

transformation technique.

The design procedure consists of six major steps

(Fig. 4.2):

(1) obtain an analog magnitude specification by halfing

the original log magnitude scale and prewarping the

digital frequencies into analog frequencies by,

(4.35)

(2) design of the analog filter from design tables;

(3) computation of IIR filter H(z) from the analog filter

by the well known bilinear transformation algorithms

[C3, R3];

(4) computation of the first N terms of the Wiener-Lee

decomposed form coefficients of the analog transfer

function;

(5) time reversal of the impulse response of the FIR filter

F(z) and the addition of N-l delays to obtain F(z);

and,

(6) cascading Hz) and F(z 1) to form the noncausal filter

H (z).

In step (4), it is necessary to determine the FIR

filter order N from the group delay ripple requirement by an

iterative method. The convergency properties guarantee that

the group delay ripple decreases as N increases. While

both compexity and group delay of the filter increase with

N, the smallest N should be determined such that the group
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delay tolerance is satisfied.

For bandpass and highpass filter design, the

design has to be incorporated in the analog domain using

well established analog transformation techniques since

digital frequency transformations are not suitable for FIR

filters.

The above procedures outline the design of cascade

noncausal filter consisting of identical subfilter. For

parallel noncausal filter, the design procedures become:

(1) based on digital magnitude specification and obtain an

analog filter following the procedures (1) and (2) of

the cascade design;

(2) obtain H(z) from analog filter by bilinear

transformation;

(3) construct the cascade filter and decompose into parallel

form by partial fraction method; that is,

(4.36)

where G(z) contains all the poles of H(z);

(4) expand G(z) into a Laurent series F(z) about z= 0 and

retain first N terms;

(5) time reversal of impulse response of F(z) and adding

N-l delays to form F(z 1);

(6) add N-l delay to G(z) to form G(z); and,

(7) form the parallel noncausal filter by connecting G(z)

and F (z) in parallel.

It should be noted that the magnitude response is

approximately given by |H(e)



4.5 Filter characteristics and desgin examples

By using many design examples, we would like to

investigate some common properties of the noncausal filters

designed by the proposed methods. Since, in practice, the

cascade realization has the advantages of ease in design

and low cost implementation, we would only consider this

realization in this section. The design examples cover

many types of conventional filters, namely, lowpass,

bandpass, highpass and bandstop filters. A comparison is

being made in Example 2 with the design example using the

conventional block processing approach [CI].

4.5.1 Lowpass filters

Example 1:

A lowpass cascade noncausal filter is designed

with the following specifications:

(i) cutoff at frequency, co T= 1.0, with less than 0.6 dB

passband ripple;

(ii) stopband cutoff at frequency, o T= 1.38, with

minimum stopband attenuation= 52 dB; and,

(iii) a passband group delay ripple of not more than 3%.

Prewarping frequencies by (4.35), the analog

frequencies are given as co= 0.546 and co= 0.825. Taking

the square root of the magnitude specification, the

passband ripple and minimum stopband attenuation are then

0.3 dB and 26 dB respectively.



From an analog filter design table [Zl], a

fourth-order elliptic filter is chosen based on the analog

specifications. The filter characteristics satisfy both

the and requirements and having a passband ripple of

0.18 dB and a minimum stopband attenuation of 27 dB.

With the analog transfer function, an IIR and a

51th order FIR filters are then computed by the described

methods on a computer. Their magnitude and phase responses

are shown in Fig. 4.3a and b, respectively. The 51 term

FIR filter's magnitude and phase responses approximate

almost exactly in the passband, however, they differ

significantly in both the transition and stopband. Yet

the passband ripple and minimum stopband attenuation become

0.24 dB and 28 dB respectively, both satisfying the

specification. However, the stopband frequency is relaxed

to 1.43.

The impulse response of the FIR filter is shown

in Fig. 4.4. The convergency of the function is evident

from the rapidly diminishing Wiener-Lee decomposition form

coefficients. It is observed that the coefficient fall off

faster than the reciprocal of n. Therefore, neglecting

high order terms will have little effects on the main

characteristics of the function.

Time reversing the FIR impulse response and

adding N-l unit delays, we obtained F(z). The composite

filter is then obtained by cascading the IIR and FIR filters.
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MAGNITUDE AND PHASE RESPONSES OF H (Z) AND F (Z)
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The magnitude response and the group delay

characteristics of the composite filter is shown in Fig.

4.5a and b. The passband ripple and minimum stopband

attenuation are 0.4 dB and 57.4 dB respectively satisfying

the specification. The stopband cutoff frequency is 1.35

which is better than the specified 1.38.

The passband normalized group delay of the

composite filter is essentially constant (Fig. 4.5b) with

0.32% maximum ripple. The transition band group delay also

has a near constant feature. Instead of zero group delay

of the theoretical noncausal filter, a group delay

of 50 samples is introduced.

Example 2:

In this example, it is intended to compare the

general characteristics of the proposal realization method

with the convention block processing approach. The

comparison is made between the present example and the

filter example shown in Czarnach [CI]. The present lowpass

filter is designed based on the following specification:

(i) 03 T= 0. 5tt, 03 T= 0. 5 4tt with 0.5 dB passband ripple

and 70 dB stopband attenuation; and

(ii) a passband group delay ripple of less than 3%.

A 7th order elliptic filter is design for the

subsystems using a table [Zl]. The passband ripple is

0.04 dB and stopband attenuation is 42.7 dB. Based on this

elliptic filter, an IIR and a FIR filter are constructed.
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Time reversing the FIR impulse response and adding N- 1

delays, we obtained F(z). The composite filter is then

obtained by cascading the IIR and FIR subfilters.

The magnitude response and the group delay

characteristics of a 70 term FIR filter cascading with an

IIR filter are shown in Fig. 4.6a and b. The passband

ripple and minimum stopband attenuation are 0.46 dB and

75 dB respectively satisfying the specification. The grou]

delay of the elliptic filter is highly nonlinear within

the passband as shown in Fig. 4.7. However, the composite

noncausal filter's group delay is almost flat in the

passband (Fig. 4.6b) with a delay ripple of less than 3%.

The impulse response of a 25 term FIR filter is

shown in Fig. 4.8. The convergency of the function is

evident from the rapidly diminishing Wiener-Lee

decomposition form coefficients. It is interesting to

investigate the effect of the FIR filter order N on the

composite filter parameters, such as, passband ripple,

stopband attenuation and passband group delay ripple.

Fig. 4.9 shows the dependence of these parameters on N.

With increasing N, all filter parameters converge to ideal

values rapidly.

For a similar filter using the block processing

approach [CI], a segmentation of L— 2000 is needed with an

overlapping length q of 400 points. The normalized group

delay is at least 4000 samples. Including the wasted



overlapping sample points, the number of real

mutliplications needed for each output sample is 20.

The differences between the present filter and

the filter shown in Czarnach [CI] is shown in Table 4.1.

For the present example, it is noted that the group delay

is 57 times shorter, the memory size needed is 26 times

smaller while the number of multiplication is 4.2 times

more than that of the filter realized by block precessing

technique.

sample-by-sample

approach

block processing

approach

group delay

memory size

multiplication

per sample

69

77

84

4000

2000

20

Table 4.1 Comparison between sample-by-sample

approach and block processing approach

It is also noted that the proposed method is more

flexible. The group delay errors and magnitude response

errors are adjustable with the FIR filter order N. If the

linear phase requirement is not very strict, N can be

fairly small. For the block processing approach, however,

the error in phase has not been investigated.

In conclusion, the new approach has the advantages

of short basic group delay time, small memory size
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requirement and exactly known phase response. The main

disadvantage is that the number of multiplication per

output sample can be fairly large if the group delay

requirement is very strict (e.g. less than 1% ripple).

4.5.2 Bandpass filter

To design a bandpass noncausal filter by the

proposed method, it is necessary that the analog prototype

filter is of bandpass type. This is due to the fact that

digital frequency transformation is not suitable for the

FIR subfilter of the noncausal filter. Usually after the

lowpass analog filter is selected from filter design table,

a lowpass to bandpass transformation [R3],

(4.36)

is applied to obtain the bandpass prototype filter. The

analog upper and lower cutoff frequencies, oo and are

computed by (4.35) from the digital frequency

specifications.

Example 3:

A wideband bandpass noncausal filter is designed

based on the following specifications:

(i) low cutoff frequency= 0.15, upper cutoff

frequency F= 0.35; passband ripple of less than

0.4 dB and minimum stopband attenuation of 80 dB.

(ii) passband group delay ripple of less than 1%.

The filter is realized by cascade structure.



According to the design procedure as outlined in

Section 4.4, a 4th order elliptic lowpass filter is

selected from table with a passband ripple of 0.18 dB and

a minimum stopband attenuation of 41 dB. The analog cutoff

frequencies given by (4.35) are= 0.51 and= 1.96.

The 8th order bandpass filter is then obtained by applying

the analog frequency transformation (4.36) on the lowpass

filter.

Following the procedures, an IIR and a 60 term

FIR bandpass filters are constructed based on bilinear

transformation. The noncausal filter's magnitude response

and passband group delay are plotted in Fig. 4.10a and b.

The passband ripple and minimum stopband attenuation is

0.36 dB and 81 dB respectively. The passband group delay

is essentially constant (Fig. 4.10b) with a ripple of

0.64% satisfying the specifications.

To observe the convergency of the FIR subfilter,

the passband group delay ripple is plotted against N as

shown in Fig. 4.11. The group delay ripple decreases

rapidly towards zero as N is increased. Comparing with

that of the lowpass case (Fig. 4.9) it is not surprising

to note that they both have a common exponentially

decreasing characteristics.

Example _4:

Using the same analog lowpass filter, a

narrowband bandpass noncausal filter is designed with

cutoff frequencies at F= 0.15 and F— 0.25. Going
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through the same procedure, the bandpass noncausal filter

is realized by cascading an IIR and a 60 term FIR subfilter.

The magnitude response and passband group delay is shown in

Fig. 4.12a and b. The passband ripple is 0.72 dB and

minimum stopband attenuation is 77 dB. However, the group

delay has significant ripple (4.6%) in the passband, which

is not acceptable.

The delay ripple decreases down to 1.3% when the

FIR length N is increased to 80. The passband ripple then

becomes 0.43 dB and minimum attenuation 80 dB satisfying

the specifications.

The impulse response of the bandpass FIR subfilter

is shown in Fig. 4.13. The rapid decay of the Wiener-Lee

coefficient with N is once again observed in consistent

with theoretical predictions.

4.5.3 Highpass filter

Like the bandpass filter case, the design of

highpass noncausal filter can be obtained from an analog

highpass prototype filter. The highpass prototype filter

is derived using the analog frequency transformation,

(4.37)

Other procedures follow exactly with that of the bandpass

case.

However, it is possible to derive the highpass

noncausal filter based on a corresponding lowpass



noncausal design using the digital lowpass to highpass

transformation,

(4.38)

Unlike other kinds of digital frequency transformation,

the nonrecursive property of the FIR filter remains

unchanged under the transformation. The highpass cutoff

frequency, F, is related to the lowpass cutoff frequency,

V bY-

(4.39)

Computationwise, it is easier to implement the digital

transformation (4.38) on computer than the corresponding

analog transformation (4.37). Nevertheless, both methods

give the same result.

Example 5:

A 7th order lowpass elliptic filter is shown as

the prototype filter with 0.04 dB passband ripple and

42 dB minimum stopband attenuation. The digital highpass

cutoff frequency F is at 0.3; thus, the corresponding

lowpass cutoff frequency is at 0.2. Following the

same procedures in the lowpass design, a lowpass noncausal

filter is first obtained. Applying the digital frequency

transformation (4.38), the desirable highpass design is

obtained. The highpass noncausal filter consists of an

IIR subfilter cascading with a 50 term FIR subfilter. The

magnitude response and group delay characteristics are

shown in Fig. 4.14a and b. Since the FIR order is

relatively low, large ripples are observed near the
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passband edge. The passband group delay ripple is 8.3%.

The impulse response of the highpass FIR

subfilter (Fig. 4.15) is exactly the same as that of the

lowpass FIR subfilter except that all the odd order terms

are reversed in sign. Thus, the same convergency

properties is expected for the highpass filter.

4.5.4 Bandstop filters

Similar to the bandpass case, it is necessary

for the noncausal filter to be constructed from an analog

bandstop prototype filter which is derived from a lowpass

filter by the frequency transformation,

(4.40)

Example 6:

A bandstop noncausal filter is designed with the

following specifications:

(i) cutoff frequencies at F= 0.1 and F= 0.4;

(ii) passband ripple of less than 0.5 dB and minimum

stopband attenuation 90 dB; and

(iii) passband group delay ripple of less than 3%.

Prewarping the cutoff frequencies by (4.35), the

analog cutoff frequencies are= 0.32 and= 3.08.

From filter table, a 4th order lowpass filter is selected

with passband ripple 0.18 dB and minimum stopband

attenuation of 50 dB. The bandstop filter is then derived



by (4.40). Applying the bilinear transformation to the

bandstop filter, the IIR and FIR subfliters are obtained.

The magnitude response and passband group delay

characteristics of a 40 term FIR filter cascading with an

IIR filter are shown in Fig. 4.16a and b. The passband

ripple is 0.48 dB while minimum stopband attenuation is

96 dB. The passband group delay are nearly constant with

a ripple of 2.34%.

Plotting the passband group delay ripple of this

filter against N (Fig. 4.17), the convergence properties

of the nonrecursive realization method are again evident.
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Chapter 5

Sample-by-sample approach using pole-zero approximation

In the last chapter, an all zero approximation

method has been derived to approximate the purely noncausal

part (z) of the noncausal transfer function H(z). The

resulting nonrecursive filter F(z) is guaranteed to be both

stable and causal. However, the implementation of

nonrecursive filter usually requires greater number of

arithmetic operations and delay elements, especially when

there is no symmetric constraint on the filter coefficients.

On the other hand, a recursive structure does not in general

have these disadvantages. Therefore, methods of constructing

a recursive approximation to the purely noncausal function

(z are explored in this chapter.

5.1 Recursive Approximation

The design goal is to find a stable and causal

recursive function R(z) such that both the magnitude and

phase responses closely approximate that of the purely

noncausal function (z except for a possible linear

phase shift. Accurate phase response is especially important

when the original noncausal filter H(z) has zero phase

characteristics. The problem is particularly difficult since

all the poles of R(z) must locate inside the unit circle

while that of H (z~) all lie outside the unit circle.

A general approach to the problem is to match some

characteristics of the impulse responses of R(z) and (z).

The Laurent series of H1 (z) is given by,



(5.1)

Multiplying (5.1) by z (N_1)' we obtain a delayed series,

(5.2)

which contains a positive and a negative series. The positive

time series is causal and therefore can be approximated by a

recursive function.

A nth order recursive filter in general has the form,

(5.3)

where not all a are equal to zero. Requiring that R(z) be

causal, the Laurent expansion of R(z) about z= 0 is,

(5.4)

It is possible to match (5.4) with the positive time series

of (5.2) and obtain R(z). This is equivalent to the time

domain design of recursive digital filters problem with many

well known methods [Bl, B2, HI, S3, Yl]. Before some of the

time domain design methods are described, it is necessary to

point out that the approximation can never be exact. The

frequency response of a delayed noncausal function given by

(5.2) is,



(5.5)

where F(z) is the stable and causal all zero approximant while

E(ew) is the error term. Since only F(z) is used to obtain

R(z), even if the approximation is exact there is at least an

error of Efe-). As being discussed in last chapter, however,

this error can be made arbitarily small since F(ew) converges

to II (e -Ja)) as N increases for most practical transfer functions

satisfying Dirichlet conditions.

5.2 Pade Approximation and Least Square Technigue

The earliest major development in time domain design

of recursive digital filters appears to be due to Burrus

et al [Bl]. The approximation of the nonrecursive power series

F(z) by a rational function R(z) is often referred to as the

Pade approximation technique.

Rewritting the N term nonrecursive approximation to

the delayed purely noncausal function Hfz), we have

(5.6)

where f= h(k-Ntl). The time domain problem is to find the

coefficients a. and bi such that the first N terms of (5.4)

match as close as possible with f. If N= n+ m+ 1, exact

solution for a_L and bi can be obtained by equating r(k) with

f. for k= 0, 1,... N-l.



Setting r(k)= f k, for k= 0, 1,... N-l and

r(k)= 0 for k N-l, the inverse z-transform of R(z) is

(5.7)

Writting (5.7) in matrix form, this becomes

b0

bl

b
m

0

0

fo

fl

f 2

fN-l

0

f0

fl

fN-2

0

0

fo

0

fN-n-l

1

al

a
n

(5.8)

This equation is partitioned into the following form,

b0

bi

b
m

fo

f
m

0 0

0

0

bm+l

fN-l fN-n-l

].

al

a
n

(5.9)



or

(5.10)

Since N- m 4- n+ 1, F has n rows and n+ 1 columns which

guarantee a nontrivial solution to the eauation [a] [F]= 0.

The coefficients are then given by

(5. ii:

Even though, the first N points of the impulse responses of

F(z) and R(z) are matched exactly, there are no constrainton

the values of the impulse response of R(z) for k N. In

fact, the Pade approximants, if not unstable, often exhibit

very significant tail components outside the specified

region [HI]. In such case, the frequency response is poorly

approximated and cannot be used to realize the noncausal filter.

Different techniques has been used by various

authors to deal with the stability and tail problems of the

Pade approximants [B2, B3, HI]. Iterative procedures are

often used to minimize a weighted mean square error over a

finite number of time samples. Long computation time is

required especially when designing a high order recursive

filter. In some cases, the approximant could not be obtained

due to ill-conditioning of the matrix [HI].

The major drawback of most time domain design methods

when applying to the present problem is that the minimization

in time samples' error may not guarantee a satisfactory

frequency characteristics required for the noncausal filters.



The exact frequency response is given by

(5.12)

Suppose an error e occurs at the p1 time sample f, the

frequency response will have an error term,

(5.13)

However if the same error occurs at the qtime sample f,

then the error in frequency response is

(5.14)

Comparing (5.13) and (5.14) it can be seen that the not only

the magnitude of the time sample errors but also their

locations on the time axis contribute to the frequency

response errors. Thus when the weighted sum of square error

in time samples is used as a performance index in the iteratio

procedure, the frequency domain error is unpredictable since

the locations of the time errors have not been taken into

account. The normal optimization procedure is therefore not

suitable for the present design problem.

A new method suitable for the design of a

recursive digital filter from the all zero approximation of

the purely noncausal subfilter is developed in the next

section.



5• 3 Continued Fraction Expansion

A method suitable for obtaining a recursive

transfer function R(z) from the nonrecursive approximation

F(z) of a delayed impulse response of (z can be derived

based on the continued fraction expansion technique often

used in control theory [C5, C6, S4] and analog network

synthesis [S3, Tl, V2]. The model reduction technique has

been applied to solve the stability problem of digital

recursive filters designed by time domain methods [K3].

Consider a N term nonrecursive approximation to

the delayed purely noncausal function of (z) given by

(5.6). The polynomial F(z) in the z domain is transformed

to a rational function F(s) in the s domain by the familiar

bilinear transformation,

(5.15)

The coefficients c are easily obtained by a binomial

expansion since they originate from the expansion of

(1+ s)N1. The coefficients di are readily found by a

matrix transformation of f [C3],



[d0'V° dN-l N-l' fN-2'°° f0

t21

t12 tlN

fcNl fcNN

[5 o16)

The matrix elements tj can be generated by a

simple algorithm [C3]. Every elements of first column are

unityc The first row is the standard binomial coefficients

of the expansion of (1- s)N10 Other elements of the

matrix T are then qiven by the formula.

(5.17)

A model reduction technique based on the continued

fraction is then applied to F(s). Assuming F(z) is a

lowpass filter, the numerator and denominator polynomials of

(5.15) are first rearranged in ascending order and then

expanded into a continued fraction about s= 0 by repeated

division,

F(s]

Ki

K2

K3

K4

1

s

s

s

(5.18)



If a m order recursive filter is desirable, 2m+ 1

quotients in (5.18) are retained and the inverse procedure

performed. The rational function in the s domain is then

transformed back to the z domain by the inverse bilinear

transformation. The resulting m order recursive filter

R(z) is the desired approximation to the purely noncausal

subfilter. The design procedures are summarized as shown

in Fig. 5.1.

Even though the continued fraction technique have

a long history of application, however, the physical meaning

of this operation on a transfer function is first pointed

out by Chen [C5]. In feedback concept, the continued

fraction expansion (5.18) corresponds to a combination of

many feedback and feed forward blocks (Fig. 5.2). The

outermost loop is the most dominant and corresponds to the

steady state solution. As the quotients in (5.18) descend

lower and lower in position, they are less and less

important in terms of their influence on the performance of

the system. Thus, the simplified transfer function is

obtained by discarding the inner loops of the system.

In the time domain, the continued fraction

expansion and time moments matching methods are similar in

that they both match the first few time moments of the

system [B4]. In fact, once the time moments of the system

are known the quotients of the continued fraction expansion

can be computed and vice versa [B4]. In the frequency

domain, the matching of the first few time moments is
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equivalent to the matching of the first few coefficients of

a Taylor series expansion of the transfer function about

s= 0 [B5]. This, in the z domain, is equivalent to an

expansion about z= 1 after applying the bilinear

transformation. Therefore, very good magnitude and phase

response approximations are expected for digital frequency

close to zero. Since the expansion is at only one point

in the digital frequency range, poor approximations at

frequency far from the point is expected. However, when

more and more quotients of the continued fraction are

retained, better approximations for high frequency end is

anticipated. For moderate reduction of the original lowpass

filter, small stopband attentuation at the high frequency

end is expected. Therefore, this approximation method is

particularly suitable for cascade realization of noncausal

filters, where the causal IIR subfilter dominates the

stopband behavior. The saving of computation and delay

elements for recursive realization over the nonrecursive one

may be large especially for narrowband lowpass filters.

This fact is illustrated by examples in section 5.4.

The recursive cascade noncausal filter is then

given by

(5.19)
H(z)= R(z) H1 (z)

where H(z) is the causal subfilter.

For highpass filter, the numerator and denominator

polynomials of the transfer function are arranged in



descending order as in (5.15) and expanded into continued

fraction about s= which with the bilinear transformation

is equivalent to the point z= -1 in the z domain. Therefore,

good approximation in the high frequency end is guaranteed

even though it is poor in the low frequency region.

It has been seen that the model reduction

technique results in good approximations either in the low

frequency end or the high frequency end but not both. If

good approximations in both low and high frequency regions

are required, it can be achieved by carrying out the

continued fraction expansion alternately at s= 0 and s= 00

[C9]. That is to say, the first quotient of the continued

fraction is obtained from the constant terms of the numerator

and denominator polynomial; the second quotient is then

computed from the coefficients of the highest order terms,

and so on. That is,

(5.20)



By repeating this sequence of expansion, we have

F (s)
1

Ki

s

K s
1

K3

s

K„ s
4

(5.21)

where

Ki

fn

f 21
K2

f 2n

3,n-l
K3

f 31

f41

etc.

The reduced model is obtained by retaining the

first few quotients of (5.20) and performing the inverse

procedures. Since the Taylor series expansion is carried

out both at s= 0 and s=°°, good approximations are obtained

for both low and high frequencies. This method is

particularly suitable for bandstop filter approximations

since the passbands are located at both low and high

frequency ends. A bandstop noncausal filter is designed

in Example 3 of section 5.4 to illustrate this fact.

5.4 Design considerations and examples

Before carrying out the design it should be

pointed out that the main goal of recursive realization of

the purely noncasual subfilter is to save both the number

of arithmetic operations and delay elements. This may not

always be achieved and, sometimes, nonrecursive realization

is more efficient. In order to have a recursive subfilter

R(z) more efficient than the FIR subfilter F(z), it is



necessary that N-l 2m where m is the order of R(z).

Thus, it is necessary to reduce the order of the original

transfer function by more than one half and still maintain

a reasonably good approximation in the frequency of interest.

Otherwise, nonrecursive realization should be used instead.

After a frequency specification is given, the

cascade recursive noncausal filter is then designed following

the procedures as shown in Fig. 5.1. The order m of the

recursive approximation R(z) to the purely noncausal transfer

function (z) is usually also specified. An obvious

question immediately emerges as how to choose the length N

of F(z) that will give a R(z) which is a good approximant

of (z)„ It is noted that F(z) itself is an approximation

of (z) with a frequency error of Efe-'03) given by (5.5)

Since R(z) is derived from F(z), we would expect that R(z).

be, at most, as good as F(z). Thus to reduce error, an

instinctive reaction is to increase N enormously so that

F(z) converges to (z). However, since the order m of

R(z) is fixed if the order of F(z) is too large, the

approximation will be too poor to be useful. In the other

extreme when N is too small, then even if R(z) is an

excellent approximation to F(z), the frequency error E(ew)

will be unacceptable large. Therefore, it is necessary to

select N so that R(z) is considered to be an acceptable

approximation to (z. An example is used to illustrate

this fact.



Example 1:

A recursive lowpass noncausal filter with linear

phase is designed to investigate some properties of the

proposed method. A 4th order analog elliptic filter with

0.18 dB and 37 dB minimum stopband attenuation is selected

as the prototype filter. The digital passband frequency

is at 0.1 and a 10th order recursive approximation R(z) to

the noncausal filter is desired.

Based on a 30th order FIR approximation, R(z) is

derived using the proposed method by retaining 21 quotients.

Cascading R(z) with the causal subfilter H(z), we obtain

the recursive noncausal filter. The magnitude responses

of H(z), R(z) and H(z) are shown in Fig. 5.3a while the

group delay of H(z) in the passband is plotted in Fig. 5.3b.

It can be seen that the rational approximation R(z) is

excellent in the passband but is poor in the stopband with

an attenuation of only 6 dB. Since R(z) is cascaded with

H(z), the overall magnitude response in the stopband is

dominated by |H(eJ)|. The basic group delay of the

filter is approximately 30 sample times which, as expected,

is similar to the order of the FIR subfilter F(z). The

percentage group delay ripple in the passband is 3.7%.

Since linear phase is one of the main design

criteria, it is interesting to investigate the effect of N,

the length of F(z), on the passband group delay ripple while

keeping the order m of R(z) fixed. The result is plotted

in Fig. 5.4. It is noted that an optimal point is reached



when N is equal to 30 which gives a smallest delay ripple of

3.71%. It is observed that for N smaller than 30, the delay

ripples for both noncausal filters realized by F(z) or R(z)

are the same. However, for N larger than 30, the delay

ripple of F (z) decreases with N while that of R(z) grows

rapidly. In this case, this indicates that a 10th order

rational approximation is no longer good enough for a FIR

subfilter of order larger than 30.

Comparing the recursive realization with the

nonrecursive one, R(z) requires 21 real multiplications and

10 delay elements when implemented by canonical form while

F(z) needs 31 real multiplications and 30 delay elements

when direct form is used. Therefore, much savings are

obtained by the recursive realization in this example.

To further improve the group delay performance,

the recursive filter order m has to be increased. It is

interesting to plot the percentage passband group delay

ripple against N while using m as a parameter (Fig. 5.5).

The solid line indicates the delay ripple when the filter

is realized by the FIR subfilter. The dashed lines indicate

the results from recursive realization with m as a parameter.

For m= 14, the recursive approximation is exact for N less

than 40. The delay ripple departs significantly from the

FIR ones when N is greater than 40. The magnitude response

and group delay characteristics of a filter derived with

m= 14 and N= 40 are shown in Fig. 5.6a and b. The

magnitude response of R(z) with m= 14 is similar to the



FREQUENCY

0.1 0.2 0.3 0.4 0.5

dB

0

-20

-40

-60

R

Ki

H

(a)

31

30

29

0.2 0.6 1.0

(b)

Fig. 5.3 Lowpass noncausal filter (N= 31, m- 10)

(a) magnitude response, (b) group delay.



o,o

30

20

10

20 30 40

N

Fig. 5.4 Effect of N on passband group delay ripple.

20

10

20 30 40 50 60

m=l 0

m=l 4

m=l 8

Fig 5-5 Group delay ripple against N with m as a

parameter.



optimal one with m= 10. The delay ripple, however, improves

to 1.42% which is significantly better. For m= 18, the

optimal point occurs at around N= 52 with a delay ripple of

only 0.55%. For N larger than 52, similar behavior is

observed.

For the optimal points, it is noted that the ratio

Nm is approximately 3. This indicates that, for this

particular filter, recursive realizations are always more

efficient than the nonrecursive ones for sufficiently good

results.

In this example, the passband frequency is at

F= 0.1 which is close to the point of expansion for the

continued fraction. Therefore, the number of retained

quotients to maintain the passband performance is small.

However, it can be forseen that if F is far away from zero,

the order of recursive approximation required for

sufficiently good delay characteristics will be high. To

illustrate this point another noncausal filter with F =0.2

is designed based on the same analog lowpass prototype filter.

The passband group delay ripple is plotted (Fig. 5.7) against

N with m as a parameter. For m= 10, the minimum point

occurs at N= 18 with a ripple of 4.9%. When m= 14, the

minimum ripple is about 2.4% at N= 23. A minimum ripple

of 1.5% is achieved for m= 18 and N= 30. At these optimal

points the ratio Nm is approximately 1.7. For a Nm ratio

less than 2, the nonrecursive realization is in general more

efficient than corresponding recursive one. This implies
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that the proposed recursive realization is more efficient

only for narrowband lowpass filter.

Example 2:

A recursive highpass noncausal filter is designed

to demonstrate that the proposed method can be applied to

the highpass case if the continued fraction is expanded at

s= The numerator and denominator polynomials are then

arranged in descending order before the expansion is carried

out. Thus the same continued fraction expansion program can

be used for the highpass case.

A 5th order highpass elliptic prototype filter is

selected with 40 dB minimum stopband attenuation and 0.18 dB

passband ripple. The IIR and the FIR subfilters with

F =0.4 are then obtained by bilinear transformation method.

A 19th order recursive approximation to the purely noncausal

part is then derved from a 39th order FIR subfilter using

the proposed method for highpass filters. The cascade

filter's magnitude response and passband group delay

characteristics are plotted in Fig. 5.8a and b. The

recursive filter is basically a good approximation of the

FIR subfilter. The passband group delay ripple is 8.2%.

To improve the delay ripple, N has to be increased. In

this example, the filter is essentially a narrowband

highpass one, therefore, efficient recursive realization

is expected.
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Example 3:

The proposed recursive realization method can be

applied to design bandstop filters if the continued fraction

is expanded alternately about s= 0 and s=°° as in (5.20).

A 4th order elliptic lowpass filter with 0.18 dB passband

ripple and 50 dB minimum stopband attenuation is transformed

by (4.40) to a 8th order bandstop prototype filter. The

desired cutoff freauencies are at Fn= 0.1 and F= 0.4.

Following the same procedure, a 18th order recursive

approximation is obtained from a 30 term FIR subfilter.

The linear phase noncausal filter's magnitude and group

delay responses are shown in Fig. 5.9a and b. The magnitude

responses of H-(z) and R(z) are also plotted in Fig. 5.9a.

It is observed that R(z) approximates H(z) closely in both

the lower and upper passband. However, the approximation is

poor in the stopband. The overall stopband attenuation is

mainly due to (z). The group delay is approximately

constant in the passband with a ripple of 5.5%.

In this example, it is noted that the ratio Nm

is 1.7 which indicates that the recursive realization is not

as efficient as the nonrecursive one. In reality, efficient

recursive realization can be achieved only for bandshop

filter with narrow passbands at both low and high frequencies.
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Chapter 6

Conclusion

Noncausal filter synthesis and realization

techniques are considered in this thesis. By decompositing

the noncausal filter into a causal subfilter and a purely

noncausal subfilter connected either in parallel or in

series, the noncausal synthesis problem is reduced into a

causal filter design problem. The stability criteria are

expressed in terms of the subfilters. The decomposition of

zero phase noncausal filters turns out to be consisting of

identical subfilters for most cases. The frequency response

relationships between the noncausal filter and the subfilters

are given which greatly facilitate the synthesis process in

a practical problem.

Realization is one of the major obstacles that

prohibits the application of noncausal filtering. The

conventional approach makes use of the fact that sampled

signals in the computer can be processed in both forward and

reversed directions. It is basically a block processing

approach which requires large memory size and very long

processing time. A sample-by-sample approach to the

realization problem has been developed. Two new methods are

introduced. The resulting filter has a small basic group

delay and small memory size requirements; thus, it is

particularly suitable for applications where fast processing

is mandatory.



The purely noncausal part of the noncausal filter

is realized by either a nonrecursive filter or a recursive

one in the sample-by-sample technique. The nonrecursive

realization is based on a FIR filter design method using

Wiener-Lee decomposition technique and the unit circle real

part function of the digital filter. The real part function

can also be applied for numerical evaluation of the inverse

z-transform and digital system modelling. The resulting

noncausal filter consists of a recursive subfilter and a

nonrecursive subfilter. The convergency for the nonrecursive

subfilter is guaranteed for many practical filter responses

since they satisfy Dirichlet conditions. Many practical

examples have been shown for lowpass, highpass, bandpass and

bandstop filters. Comparisons between the block processing

technique and nonrecursive realization show that much shorter

group delay and smaller memory size requirement characterize

the latter method while the former is more computation

efficient. The proposed method is also more flexible in

design and the resulting phase error is exactly known.

The recursive realization is based on the well

known continued fraction expansion often used as a model

reduction technique in control problems. The recursive

approximation to the purely noncausal part is obtained by

applying the reduction technique to the original FIR

approximation. The resulting filter is linear phase in the

passband. For narrowband lowpass or highpass filters,

recursive realization is shown to be more computation

efficient than the nonrecursive one while the basic group



delay characteristics and passband behavior are preserved.

If the continued fraction is expanded about s=0 and s=oc

alternately, good approximations are obtained in both low

and high frequencies. Examples are presented to point out

the characteristics of the recursive realization technique.

Since many ideal filters, often referred as

unachievable standards, are noncausal in nature, the

development in noncausal filter synthesis and realization

techniques are important to provide solutions for many

application areas. It is hoped that this work would generate

more attentions to the relatively undeveloped field of

noncausal filtering.
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