Implementing IIR Filters
 via Residue Number Systems

by
Tai Leong Charn

A Thesis Submitted in Partial Fu?filment of the Requirement for the Degree of Master of Philosophy in Electronics.

The Chinese University of Hong Kong
May 1983.

; 43759

Cortents

Abstract
Acknow? edgement

1. Introduction P.1
2. Apprasimation for recursive filters using p.6
Eilinear..transformation method
2.1 Digital filter realization p.6
2.2 Brief review of Bilinearutransformation p.8
3. Introducing residue number system
D. 12
3.1 Enroding and decoding of residue numbers D.13
3.2 Modular arithmetic D. 17
4. Pesidue number tecrniques for recursive digital P. 19
filtering
4.1 Soaling for IIR filters p. 19
4.1.1 Specialized residue classes p.?0
4.1.2 Sole factor being a modu?us p.22
4.2.3 Polarity ambiguity P. 27
4.2 Overflow detection in medundant residue p. 30
number system
4.2.1 Redundant msidue number system p. 30
4.2.2 Cverflow detection 0. 33
4.2.3 Numerical examples 0.38
4.2. 4 Hardware considerations of redundant P. 42
modu? Us mo = ?
4.3 Overflow suppression P. 45
a.4 A vorsatile mesidue system for recursive p. 49
filtering.
5. Discussion p. 53
6. Conclusion D. 61
References
Appendix - AAPL programs to simblate the proposed mosiduenumber system for recursive digital filtering.
Appendix - 3

Herdmare implementation of second order IIR filters using APPLE II micro. computer.

Abstract

After briefly reviewing the bilinear transformation technique for digital filter design we introduce the structure of a residue number system and some notations. Then, a new algorithm to detect overflow via redundant rosidue number system will be presented. The approach eliminates the time-consuming conversion of mixed-radix digits but at the same time requires a nolarity shift operation to handle signed numbers. Because the scaling procoss which converts the fractional coefficients into integer values is unavoidable in recursive digital filtering, attention is given on this part for efficient implementation of residue number decoding. The decoder is realized by table look-up technique. It is well known that the ouerflow oscillation can be suppressed by changing the overflow characteristics. A similar oneration is derived for the residue number system. Finally, a residue number system combining the above foatures is established. Although the illustrative example is a second crder section, it can oasily be extended to higher order IIR filters. Programs are written to simulate the system and the results are presonted to demonstrate the principles.

Acknowledgement

I. Would like to express my sincere gratitude to Prof. C.F. Chen, my supervisor, for his helpful guidance and counsel during the research.

Also, I. want to acknow? edge the Croucher Foundation who offers a studentship for supporting the work.

Abstract

A digital filter is a digital system that can be used to filter discrete-time signals which may be real time or recorded signals. It can be realized by the use of special purnose hardwares, or by the implomentation of iterative sequencing of software instructions (computer programs) executed on a processor. The former gets more of our attention because we are often dealing with the yeal time signals.

It is well known that digital filters have certain advantages over their analogue counterparts. These include high accuracy, high reliability and the capobility of handling low frequency signals. A very important additional advantage is that filter characteristics can be changed easily by modifying the filter parameters in memory. The digital filters tond to roplace analog filters in many applications not only because of the above merits, but also due to the tromendous advancement of very large-scale integrated (VI.SI) circuit technology. Pecently, the drop of component cost facilitates the hardware implemantation of digital filters.
VLSI devices such as bit-slices and microprosessors have
heen employed to realize digital filters[1-4]. Standualone micronrocessor implemontation ras the problem of restricted bandwidth, which is a parameter assossed from the sampling rate of the filter. This comes from the fact that the instruction sets of microprocessors are for general purnose anplications. Multiplication instructions are usually not available and even if they do, a long processing time is needed. To oyercome the time-consuming multiplications which are reguired in a given difference equation, a separate fast multiplier is brought to co-onerate with the processor. Such anproach reaches a sampling rate of 555 kHz for a 2rd order low-pass filter [1]. A.s a comparison, the speed of microprocessor-based implementation is only 0.625 kHz [2] which is much lower and has limited applications.

Subject to the bottleneck of m:ltiplications, many attempts have been made to find other ways of realizing the arithmetic onerations in a digital filter. A notevorthy approach using distributed arithmetic technique is discussed by Peled and Lid[5]. It is applicable to the implementation of serond-order sections with fixed coofficients represented in fix-point notation. According to this method, the values will be pre-calculated and stored in read-only-memory (POM). Consequently, only add and shift operations are required in computing the difference equation. At the absence of multiplication, the operation speed is thus greatly
improved. A second order section utilizing this algorithm is claimed to operate in real time on a signal with a 10 MHz bandwidth[5].

Another approach appearing to compete favourably with the conventional filters is the implementation of residue arithmetic. For many years, residue number coding has been rocognized as a system which pyovides the capability of high speed multiplication and addition[6]. Such a system usually consists of several sub-ristems having shorter word.lengths. Fach subsystem sveluates the difference equation individually and produces the eorresponding output simultaneously. Bacause the word.length is not large, it is possible to execute the multiplication with a look-up table stored in ROM. This technique is known to be a fast operation of which the processing time is dependent on the time to access the ROM. Besides, there are no truncation or rounding errors arising in performing the arithmetic operations since rasidue system is composed of integers only.

[^0]arise in this step for the implementations of FIR filters because no feodback torm is involved in the difference equation. The implementation of $F I R$ filters using residue technique has been roported in[7]. For IIR filters, a scale-down process is reguired to recover the actual result before feeding back in calculating the difference equation. Unfortunately, division as well as sign detection[13] and magnitude comnarison are difficult to handle in residue systems. Scaling, or fixed constant division, is then a requisite operation during implementation. For efficient reoursive digital filter realization, some specialized residue classes are designed $[8,10]$. Given these special classes, the scaling is easy to handle by slightly modifying the Chinese Remainder Theorem, which prouides a moans for translating the residues back to natural numbers. It is noted that the scaling and residue decoding are carried out simultaneously. In the following chapters, a technique which senarates the above two operations is discussed and shown to have the advantage of saving hardmares.

Another problem, large-scale limit cycles which is introduced by arithmetic overflow, has urged researchers to pay attention on it. For a second order section implemented by 2 's complement arithmetic, the output oscil?ations can be suppressed by modifying the overflow characteristic $[11,12]$. This method is applicable provided that the system itself is
canable of detesting arithmetic overflow. Residue number systems are lack of this capability but rot for redundant residue number systems of which the dynamic range is layger than reguired. Error detection and correction using redundant residue number system has been discussed ir[9]. From which, a method based on mixed radix conversion is described for overflow detection. The conversion generates the mixed radix digits seguentially and thus is time-consuming. Utilizing the same redundancy technique, an Dyerflow detection scheme which gets rid of the conversion is discussed in the following chapters. No spocial operation is reouired except the polarity shift. The detection is accomplished by comnaring the redundant residue with the one deonded from the set of non-redundant rosidues. Such anproach is fast and easy to imploment but incapable of correcting eryors.

This research suggests various approaches to solve the problems encountered in implementing recursive digital filters using residue number system. A11 the results are verified by program simu? at ions.

2. Anprovimation for recursive filters using
 Eilinear transformation method

2.1 Digital filter realization

A digital filter is often described by a difference equation as shown in (1), where $\left\{x_{n}\right\}$ is the input soquence, $\left\{Y_{n}\right\}$ the output sequence, and $\left\{a_{i}\right\},\left\{b_{j}\right\}$ are the filter coefficients.

$$
Y(n)=\sum_{i=0}^{N-1} a_{i} X(n-i)+\sum_{i=1}^{M} b_{i} Y(n-i)
$$

The corrosponding Z-domain transfer finction of the filter is as follows:


```
By manipulating the transfer function, there are several
methods to ra?lize the digital filter. Three of them, namely
direct, parallel and cascade reclizations, are usually
employed. The cascade realization requires the trensfer
function to be factored into a product of and crder transfer
functions as
```

$$
H(z)=\prod_{i=1}^{L} H_{i}(z)
$$

where $H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}+a_{2 i} z^{-2}}{1+b_{1 i} z^{-1}+b_{2 i} z^{-2}}$

```
Alternatively, the transfer function can be expanded into
partial fractions as
```

$$
H(z)=\sum_{i=1}^{L} H_{i}(z)
$$

where $H_{i}(z)=\frac{a_{0 i}+a_{1 i} z^{-1}}{1+b_{1 i} z^{-1}+b_{2 i} z^{-2}}$

This gives the parallel form roalization. Pnother form of realization will be celled direct canonic realization as shown in FIg. 2.1. The number of unit delays employed in this method is egual to the order of the transfer function.

Fig. 2.1 Direct form realization of digital filter.

According to the value of M in eqn.(1), digital filters can be classified into two types. If $M=0$, then there will be no feodback terms (coefficient $b_{i}^{\prime} s=0$) and the filter is defined as a nonrecursive or finite impulse response (FIR) filter. When $M>0$, the filter is named as recursive or an infinite impulse response (IIR) filter.

2.2 Erief review of Eilinezr-transformation

The task of designing a digital filter is mainly to find the confficients satisfying sone prescribed specifications. Althrough these specifications may be stated in time domain or frquency domain, we traditionally use the latter one. For IIR filter, one of the design technique starts from an analog filter having the required characteristic, and use yarious transformation methods to get the corresponding digital counterpart. The reason for using this approach is that the design mathods of analog filters are well establised. Several techniques[18] are presented to nerform the transformation. In the following, a second.order IIR filter is designed by utilizing Bilinear.transformation method. We derote to the lownass section only since other standard types namely, bandpass, high.-pass or band..-stop
filters, can be obtained from the lowpass filter by the Well known frequency transformation technique.

The essence of the Bilinear-transformation mothod comes from the manping described by eqn.(2), which transforms those in the left-half suplane into the interior of unit circle in the z..plane.

$$
\begin{equation*}
s=(z-1) /(z+1) \tag{?}
\end{equation*}
$$

Suhstitute $s=j v$ and $z=\exp (j w T)$ into oann. (2) to find the relationship between the frequencies in both domains. The result is g̣iven by eqn. (3), where v and w are respectively the froguencies of continuous and discrete cases. Clearly, the function governed by (3) is not ? linear mapping which leads to some distortions.

$$
\begin{equation*}
v=\tan \left(w^{T} / 2\right) \tag{3}
\end{equation*}
$$

As an illustrative example, let the sperifications for a digital filter be: second-order, low-pass with nass-band cut.off froquency, fc:r.00Hz and sampling frequency, fs=1 kHz (sampling period=1ms). For simnlicity, the prototype analog filter will be chosen from the well known Plitterworth a?ass. Fon...(4) shows the transfer function of a second-order Butterworth low-pass filter, where $v c$ is the cut-off
frequency. From (3), $v=628.32 \mathrm{rad} / \mathrm{sec}$ for the desired filter.

$$
H(s)=\frac{1}{(s / v c)^{2}+2(s / v c)+1}
$$

The corresponding transfer function of the digital filter can be calculated using egn.(2) either by direct substitution or matrix manipulation[19].

$$
G(z)=\frac{0.0675 z^{2}+0.1349 z+0.0675}{z^{2}-1.1430 z+0.4128}
$$

To demonstrate the differences between an amalog filter and the digital one derived from it using Bilinear..transformation, the frequency responses of $H(s)$ and G(z) are evaluated and plotted in. Fig. 2.2. The result shovs a grod matching at the low frequency range and large deriation in the vicinity of the folding frecuency.

3. Introducing residue number system

A residue number system consists of a set of pairwise relatively prime moduli $\left\{m_{1}, m_{2}, \ldots, m_{L}\right\}$. The dynamic range which represents the useful computational range of the number system is $[0, M)$, where M is the product of all moduli. i.e. $M=\prod_{i=1} m_{i}$. In order to handle signed numbers, the dynamic range will be divided into positive and nedative regions. If M is odd, the range of the residue representation is $[-(M-1) / 2,(M-1) / 2]$; if M is even, the range is $[-M / 2,(M / 2)-1]$. Each natural integer in the above ranges is uniquely coded by a sequence of I residue digits. Any number not in the range will then be classified as in overflow range. To quarantee the result is correct, the maximum and minimum values during intermediate calculations must be set within the dynamic range. Based on this criterion, the number (L) of moduli can be suitably chosen. During arithmetic calculation, each residue digit is evaluated independently. The operation can be very fast by selecting small moduli. Final result is then recovered from all residue digits through decoding using the Chinese Remainder Theorem.

3.1 Encoding and decoding of residue numbers

Fast onerations of residue systoms are achioved at the expense of an additional oyerhead cost of translating deta into and out of the system. These two processes are respectively defined as encoding and decoding operations. During encoding process, a natural integer X is converted into a sequence of residue digits $\left\{x_{1}, x_{2}, \ldots, x_{L}\right\}$ acoording to (5), where $|x|_{m_{i}}$ denotes the positive remainder of the division x / m_{i} for a cortain integral cuptient. Of course, the remainder is always less than mi.

$$
x=\langle x\rangle=\begin{array}{ll}
|x|_{m_{i}} & , x>0 \tag{6}\\
m_{i}-|x|_{m_{i}} & , x<0
\end{array}
$$

For example, $\langle 15\rangle_{13}=2,\langle-15\rangle_{13}=11$.

If a modulus has the form of 2^{k}, where k stands for any integer, the encoding is easy to implement. For binary digit representation, the tosk simply extracts the k least significant bits from the number being encoded. For moduli other than the above form the encoding is rather complex and requires arithmetic operations. Hovever, since the input samples of filters are taken from an analog.to-digital converter which usually has 8-bit word length, it is
possible to enoode these samples based on the technique of table look-up. The tables may be implemented by read only-memory (ROM) which has an acocoptable size of 256 words. This approach not only reduces the complexity but also provides a high-speed operation. If the system has L moduli, a total number of L residue encoders (ROMs) are required.

Decoding, an inyerse oneration of sncoding, requires the derivation of a natural number from a set of residue digits $\left\{x_{1}, x_{2}, \ldots, x_{L}\right\}$. The Chinese Remainder Theorem given by (7) can be used to carry out this operation. Denote M_{i}^{-1} as the
multiplicative inverse of M_{i} such that $\left\langle M_{i}\left(M_{i}^{-1}\right)\right\rangle_{m_{i}}=1$.

$$
\begin{equation*}
x=\left\langle\sum_{i=1}^{L} M_{i} M_{i}^{-1} x_{i}\right\rangle_{M} \quad, \quad M_{i}=M / m_{i} \tag{7}
\end{equation*}
$$

As an illustration, suppose $m_{1}=2, m_{2}=3, m_{3}=5$ then eqn. (7) becomes

$$
x=\left\langle 15 x_{1}+10 x_{2}+6 x_{3}\right\rangle_{30}
$$

The value represented by the residue set $\left\{x_{1}, x_{2}, x_{3}\right\}=\{1,2,1\}$ will be

$$
x=\langle 41\rangle_{30}=11
$$

The value M is generally a large composite integer because it is the product of all moduli. Consequently, the mad M multiplicaion, as shown in (7), is costly to implement with hardmare. Because of this, a technique based on the peled and l.iu structure is proposed in [7] to imp?ement the Chinese Remainder al gorithm. This approach reduces the mod M multiplication into a relatively common med M addition.

> Another solution to the implementation is using mixed-radix conversion process as discussed in [15]. This teshnique gives a shorter word length in Rom. A similar approach but with the combination of residue to-binary and digital-to-analog operations is proposed in [14]. The method is particularly usoful when it is dosired to translate the
residue samples directly into analog form.

In addition to the above approaches, it is feasible to implement (7) using ROMs by directly feeding the residue digits into the Pom's input if the number and sizes of the moduli are small enough. For instance, the above illustration requires 1 bit for m_{1}, 2 bits for m_{2} and 3 bits for m_{3} to hold residue digits. If the decoder is implemented by POM, then the table must have an entry of 6 -bit. This is dofinitely nossible since nowadays a ROM having 1.5-bit entry is not very unusual. Typical size of modulus, however, is around 4 to 5 bits. This suggests that a residue number system having 3 moduli is suitable.

The modular ayithmetic is different from the conventional arithmetic in that it neads not take care of caryy. During an arithmetic operat,ion, two N-bit cperands will produce a N.bit result. There is no truncation or rounding error even for multiplications. The so-called residue operations are defined by (8), where * denotes either addition, subtraction or multiplication.

$$
\begin{gather*}
x_{1} x_{2} \cdots x_{L} * y_{1} y_{2} \cdots y_{L}=z_{1} z_{2} \cdots z_{L} \tag{3}\\
z_{i}=\left\langle x_{i} * y_{i}\right\rangle_{m_{i}}, \quad i=1,2, \ldots, L
\end{gather*}
$$

Ceneral division is excluded from the residue operations because it may produce fractional result which is not allowed in residue systems. However, fixed constant division is possible if its multip?icative inverse exists and the dividend is divisible. For axample, consider the following two divisions $\langle 4 / 2\rangle_{5}$ and $\langle 3 / 2\rangle_{5}$, where the multiplicative inverse of ? is 3.
(i) $\langle 4 / 2\rangle_{5}=\left\langle 4 \times 2^{-1}\right\rangle_{5}=\langle 12\rangle_{5}=2$.
(ii) $\langle 3 / 2\rangle_{5}=\left\langle 3 \times 2^{-1}\right\rangle_{5}=\langle 9\rangle_{5}=4$.

Clearly, (i) gives the correct result while (ii) does not.

Although conventional $2^{2} s$ complement mu?tipliers and adders are still applicable to implement residue arithmetic operditions, a residue encoding process is required to correct the results. This will hinder the filtering speed. To actilieve faster operation, it inevitably comes back to the Table look-up technique. According to this method, the multiplication and addition will be realized by roms. Since we have the problem of size limitation on ROM the residue digits must be as small as possible. When the sizes of residues camot be further reduced, then it is possible to use a square-law multiplier as introduced in[16], or to compress the tab?es for modular arithmetics as discussed in[17].

4．Residue number techniques for recursive digital filtering

4．1 Scaling for IIR filters

Residue number systems have the merit of fast multiplication and addition．However，a difference eouation with fractional coefficients can take no advantage of it． This is because residue number system only allows integers． For a Fir filter，the coefficients can be converted to integers by scaling．Such method however is not applicable to IIR filters．In order to utilize modular arithmetic，an appronriate scale factor（A）is multiplied to the original difference equation to produce integral coefficients as shown in eoqn．（9a）．The final result is then recovered by performing a constant division which is illustrated in eqn．（9b）．

$$
\begin{align*}
Y^{\prime}(n) & =\sum_{i=0}^{N-1} A a_{i} X(n-i)+\sum_{i=1}^{M} A b_{i} Y(n-i) \tag{9a}\\
Y(n) & =Y^{\prime}(n) / A \tag{9b}
\end{align*}
$$

As mentioned above，residue number system has no general
division. This requires us to evaluate (9) in three sequential steps. First of all, from (9a) a set of residue digits representing $Y^{\prime}(n)$ are calculated through modular arithmetic. The second step will then involve the Chinese Remainder Theorem which determines the natural value of $Y^{\prime}(n)$. Finally, the actual result is obtained by performing a scaling operation as indicated in (9b). In order not to hinder the filtering speed by these three steps, efficient scaling method must be devised.

4.1.1 Specialized residue classes

Appropriate choice of moduli in a residue number system can simplify the scaling operation[8,10]. This anproach combines the last two steps and thus speed un the filtering. A special class is presented in the following to illustrate the principle of operation. The residue number system is supposed to have two moduli of the form $m_{1}=m$ and $m_{2}=m \cdot 1$ with a scale factor $A=m$.

From ean. (7),

$$
Y(n)=\left(M_{1} M_{1}^{-1} y_{1}^{\prime}+M_{2} M_{2}^{-1} y_{2}^{\prime}-k M\right) / A
$$

where $y_{1}^{\prime}, y_{2}^{\prime}$ - residue digits of $Y^{\prime}(n)$,

$$
\begin{aligned}
& M_{1}=m-1, M_{2}=m, M=m(m-1), \\
& 0<k<M_{1}^{-1}+M_{2}^{-1} .
\end{aligned}
$$

This gives

$$
Y(n)=(m-1) y_{1}^{\prime}-y_{1}^{\prime}+\left(y_{1}^{\prime} / m\right)+y_{2}^{\prime}-k(m-1)
$$

Because $Y(n)\left\langle(m-1)\right.$, this implies $Y(n)=\langle Y(n)\rangle_{m-1}$, so

$$
\begin{equation*}
Y(n)=\left\langle y_{2}^{\prime}-y_{1}^{\prime}\right\rangle_{m-1} \tag{1.0}
\end{equation*}
$$

The above equation eliminates the term $\left(y_{1}^{\prime} / m\right)$ so that a scaling error is arised, where $0 \leq\left(y_{1}^{\prime} / m\right)<1$. It also demonstrates that the scaling and residue decoding for this special system can be replaced by a modular subtraction which is rather simple to implement.

This approach requires that a modulus in the residue number system has same size as the scale factor. The set of residue digits for a natural value y^{\prime} in this system will be denoted by $\left\{y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{L}^{\prime}, y_{A}^{\prime}\right\}$, where y_{A}^{\prime} is the residue digit of the sperific modulus which has same size as the scale factor. According to the property of residue, the result of the oneration ($y^{\prime}-y_{A}^{\prime}$) is divisible by the scale factor (A). Consequently, as discussed in section 3.2, $\left(y^{\prime}-y_{A}^{\prime}\right) / A$ can be evaluated by modular arithmetic berause t.he multiplicative inverse A^{-1} is defined and existing in any moduli except the sperific modulus. The original scaling operation, y^{\prime} / A, will now be replaced by $\left(y^{\prime}-y_{A}^{\prime}\right) / A$. This produces an error $0 \leq\left(y_{A}^{\prime} / A\right)<1$.

A resiude number system employing this technique is shown in Fig. 4.1. As the system is used for recursive filtering, x and y are respectively the innut and output samples. From the residue set of input sample $\left\{x_{1}, x_{2}, \ldots, x_{L}, x_{A}\right\}$, we get another rosidue sot $\left\{y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{L}^{\prime}, y_{A}^{\prime}\right\}$ by evaluating the difference equation. According to the result of y_{A}^{\prime}, a set of modifying parameters $\left\{c_{1}, c_{2}, \ldots, c_{L}\right\}$ will be generated through the block "encoding", where $c_{i}=\left\langle-y_{A}^{\prime}\right\rangle_{m_{i}}$. The scaling operation is then carried out with the aid of these
parameters. i.e.

$$
\begin{equation*}
y_{i}=\left\langle\left(y_{i}^{\prime}+c_{i}\right) A^{-1}\right\rangle_{m_{i}} \tag{11}
\end{equation*}
$$

From this step, the residue set for the actual outnut sample $\left\{y_{1}, y_{2}, \ldots, y_{L}\right\}$ can be obtained. Note that during the residue decoding, the residue digit y_{A}^{\prime} is eliminated as indicated in Fig. 4.1. The reduction of residue digit is especially good for residue decoder that is realized by ROM. A smaller table size is required for this case. In Fig. 4.1, the block labelled as "scaling" and "encoding" can be implemented by ROMs.

As a comparison, a system having same dynamic range is sket.ched in Fig. 4.2. This system when performing residue decoding requires all residue digits $\left\{y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{L}^{\prime}, y_{A}^{\prime}\right\}$. The ROM size will be increased which is prooortional to the additional residue digit y_{A}^{\prime}. Such approach is suitable for those residue number system that are composed of special residue classes. i.e. Both scaling and decoding are carried out simultaneously.

Fig. 4.1 Residue number system with one modu? being the scale factor.

Fig. 4.2 A general residue number system for IIR filtering.

The scale factor must be large ennugh to convert fractional coefficients into integers with accentable error. For example, a scale factor of 100 will preserve two significant digits after the decimal point. This reouires ? bits. If a modulus has such word-length, it is not profitable to implement modular arithmetic by ROM. Two operands will totally occupy 14 bits and this requires a 1.6 K ROM.

Because of large table size we must find another way of real izing modular arithmetic. It is known from section 3. 1 that the residue encoding is simple for a modulus having the form of 2^{k}. As encoding is a step involved in modular arithmetic, it is reasonable to choose a scale factor of which the value is a power of 2. Instead of using ROM the modular addition now can be implemented by 2.'s complement adder. For modular multiplication, we can use the square-law multiplier as discussed in [16]. Three adders and two ROMS are needed for this mehtod. Since only one onerand is fed to the ROM, the table size is reduced significantly.

4.1.3 Polarity ambiquity

The scaling operation is a many-to-one mapping. A scaled result may come from several different inputs. When these inputs are around the boundary sedarating positive and negative ranges, it arises a problem of polarity change. The phenomenon is that a positive (negative) number after scaling will fall in the negative (positive) range. The sign is not preserved during scaling.

To analyze the cause of this problem, let A and M be respectively the scale factor and the dynamic range after scaling. The original dynamic range without scaling will thus be $M \times A$ (the scale factor being one of the moduli). Since an appropriate scale factor is an even value (nower of 2), M must be odd to satisfy the condition of "pairwise relatively prime". The product of M and A is undoubtedly an even number. Refer to section 3.1, the positive and negative regions for the original system and the one after scaling can be classified as following.

	positive range	negative range
original system	$[0,(M \times A) / 2-1]$	$[(M \times A) / 2,(M \times A)-1]$
after scaling	$[0,(M-1) / 2]$	$[(M+1) / 2,(M-1)]$

The scaling operation of the largest positive and negative numbers are defined as

$$
\begin{aligned}
& P=\operatorname{INT}[((M \times A) / 2-1+K) / A] \\
& N=\operatorname{INT}[((M \times A) / 2+K) / A]
\end{aligned}
$$

```
where INT [X] denotes the integer nart of X
    and }Y\mathrm{ is an offset to be dotermined.
```

In order not to have polarity ambiguity,

$$
\begin{align*}
& P \leq(M-1) / 2 \tag{12}\\
& N \geq(M+1) / 2 \tag{13}
\end{align*}
$$

These imply $(1 / 2+1 / A)>K / A \geq 1 / 2$.

For any value of $A, K=A / 2$, will satisfy the above condition. With this, we conclude that the polarity ambiguity can be remoyed by adding an offset $A / 2$ to the oriọinal data before scaling. For example, if a residue number system consists of the moduli $m_{1}=5$ and $m_{A_{1}}=2$, the corresponding parameters will be $A=2, M=5$ and offset $=$ 1. Refer to Fig. 4.3, a polarity error appears at the row where $X=5$. The value $X=5$ is regarded as a negative number in the original system. However, the scaling without offset produces a result of 2 which is considered as a
positive number and ensue the change of nolarity. Correct scaled value 3, as shown in the rightmost column, is obtained if wo add the offset. It is noticed that the dynamic ranges of the system before and after scaling are respectively $[-5,4]$ and $[-2,2]$.

Fig. a. 3 Elements of a residue number system before and after scaling.
4.2 Overflow detection in redundant residue number system

4.2.1 Redundant residue number system

Based on an existing residue number system we can set up a redundant residue number system. Let the set of moduli for the existing system be $\left\{m_{1}, m_{2}, \ldots, m_{L}\right\}$, from which we define $M=\prod_{i=1} m_{i}$. This means that there are totally M states that can be handled by the svstem. As signed numbers are involved, half of the states are used to represent negative data. According to eqn. (6), the negative numbers will map onto the upper part of the interval $[0, M)$. Consequently, the dynamic range of the system is $[-(M-1) / 2,(M-1) / 2]$ for odd M, and $[-M / 2,(M / 2)-1]$ for even M. To obtain the redundant residue number system (RRNS), extra moduli $\left\{m_{L+1} m_{L+2}, \ldots, m_{L+r}\right\}$ will be added to the fundamental set. With the additional r medul i the number of L+r
states is extonded from M to MT where MT $=\pi m$. Clearly, $i=1$ MT >M. If we keep the computational range of the RPNS the same as above, then redundancy appears. In other words, we have the redundant interval [M,MT) if the operands and results of operations carried out in the PDNS are constrained to the range [$0, M$). This is similar to the case of using five or more bits to represent a 4-bit number.

0 \qquad 4 MT
$[0, M)$ permissible range of original system
[0,MT) axtended renge for the rows
[M,MT) redundant interval

It is seen from above that there is no difference between a residue number system and a redundant residue number system exoept that the latter possesses redundant states. Using the upper range to reprosent nogative numbers a?so applies to the RONS. This implies that the mapping results would unavoidably fall in the redundant interval [M,MT). For the reason that those states groater than M cannot be controlled by the original system, it is important to bring the mapping results back to the range [0 M). A nolarity shift [9] which is actually a Mod MT addition is performed to accomplish this. For M odd, a constant value of (M-1)/2 is added to the data; for M oven, $M / 2$ is added. After performing the circular shift, the positive and negative numbers are respectively mapped onto the upper and lower parts of the range $[0, M)$ in the RNNS indicated in Fig. 4.4. The purpose of the polarity shift is for range indication. Actual result must be recovered by subtracting a constant,
esperially for those feedback data which occur in recursive diģital filtering.

$$
P=\left\{\begin{array}{ll}
(M+1) / 2, & M \text { odd } \\
M / 2, & M \text { oven }
\end{array} \quad M= \begin{cases}M T-(M+1) / 2, & M \text { odd } \\
M T-M / 2, & M \text { even }\end{cases}\right.
$$

After polarity shift

negative nositive
range range

$$
P= \begin{cases}(M+1) / 2, & M \text { odd } \\ M / 2, & M \text { sven }\end{cases}
$$

Fig. 4.4 Illustration of RNS intervals before and after polarity shift.

4.2.2 Overflow detection

A redundant residue number system haying a redundant modulus m_{0} is depicted in Fig. 4.5. In spite of the redundant modulus, the original residue number system which consists of the moduli $\left\{m_{1}, m_{2}, \ldots, m_{L}\right\}$ produces an output Y_{M}. However, as an overall view, the RRNS itself would give an ontput $Y_{M T}$. It is noted that $M=\prod_{i=1} m_{i}$, and $M T=M \times m_{0}$ - As indicated in Fig. 4.5, $y_{0}, y_{1}, \ldots, y_{L}$ are the residue codes renresenting the res!!ts after modular arithmetic operations. Using the decoding formula (7), the residue set $\left\{y_{C}, y_{1}, \ldots, y_{L}\right\}$ would generate the output $Y_{M T}$, and by eliminating y_{0}, the remaining residue digits will give Y_{M}. Ohviously, $0 \leq Y_{M}<M$ and $0 \leq Y_{M T}<M T$.

As long as the calculated results are within the fundamental range $[0, M), Y_{M T}$ and Y_{M} should be equal because y_{0} is redundant for this case. Direct comparison of V_{M} and Y_{M}, however, is not efficient. It requires a large residue decoder (mod MT) to find $Y_{\text {FT }}$. By taking the following oneration, we can save one residue deroder. The parameter y_{0} is immediately available at the redundant modu? us system.

$$
\begin{equation*}
\left\langle Y_{M}\right\rangle_{m_{0}}=\left\langle Y_{M T}\right\rangle_{m_{0}}=y_{0}, \quad \text { if } 0 \leq Y_{M T}\langle M . \tag{14}
\end{equation*}
$$

Fig. 4.5 Insertion of a redundant modulus m_{0}.

Since the RRNS has a nermissible range [$0, M T$), it is possible for the results to fall in the redundant interval [M,MT). When this is the case, Y_{M} would produce an incorrect data but, not for $Y_{M T}$. In fact, we have $0 \leq Y_{M}<$ M and $M \leq Y_{M T}<M T$. Because they are both derived from the same residue set $\left\{y_{1}, y_{2}, \ldots, y_{L}\right\}$, their residue codes in redundant modulus must be different to satisfy the one-to-one mapping. i.e.

$$
\begin{equation*}
\left\langle Y_{M}\right\rangle_{m_{0}} \neq\left\langle Y_{M T}\right\rangle_{m_{0}}=y_{0}, \quad \text { if } M \leq Y_{M T}\langle M T . \tag{15}
\end{equation*}
$$

Having est.ablished the above criterion, we can proceed to nyerflow detoction. It is known that after the molarity shift, the whole valid computational range will be manped ont.o the range $[0, M)$. If a result lies in the range (M,MT), then it can be classified as overflow. The canability of detemining a result in ($[0, M$) or (M, MT) has already been provided by (14) and (15). Eventually, we reach the purpose of neerflow detection.

Let the residue set $\left\{k_{0}, k_{1}, \ldots, k_{L}\right\}$ represent the constant (K) required for the polarity shift.

$$
\begin{equation*}
z_{i}=\left\langle y_{i}+k_{i}\right\rangle_{m_{i}}, \quad i=0,1, \ldots, L . \tag{16}
\end{equation*}
$$

From (16), the actual output $\left\{y_{0}, y_{1}, \ldots, y_{L}\right\}$ is changed to
$\left\{z_{0}, z_{1}, \ldots . z_{L}\right\}$. To distinguish whether a data is in the redundant interval, we can now compare $\left\langle Z_{M}\right\rangle_{m_{0}}$ and z_{0} as described above, where Z_{M} is decoded from the residue set $\left\{z_{1}, z_{2}, \ldots, z_{L}\right\}$. We conclude that overflow occurs only if $\left\langle Z_{M}\right\rangle_{m_{0}} \neq Z_{0}$.

The utilization of an RRNS for overflow detecting is illustrated in Fig. 4.6. Because the polarity shift is a modular addition, ROM instead of binary adder implementation is preferred. An additional residue encoder will be required for the comparison. After determining there is no overflow, the real result Y_{M} can be obtained by subtracting the constant K from Z_{M}. The operation is no longer a modular subtraction. With meference to Fig. 4.4, the valid values of Z_{M} is in the range [0,M-1]. A 2's complement subtractor will exactly generate the sign of the number after subtracting the constant as illustrated in the following.

	constant K	Z_{M}	$Y_{M}=Z_{M}-K$
${ } }$	$(M-1) / 2$	$[0, M-1]$	$[-(M-1) / 2,(M-1) / 2]$
M even	$M / 2$	$[0, M-1]$	$[-M / 2, M / 2-1]$

Fig. 4.6 A RRNS for overflow detection.

a.2.3 Numerical examples

For demonstration, a redundant residue number system consisting of three moduli $m_{0}=2, m_{1}=3$ and $m_{2}=5$ is chosen, where m_{0} is the redundant modulus. Table 4.7 illustrates the possible sets of the residue cones for this system. The computational range of the RRNS is confined to [-7,7] though the actual dynamic range is [-15,14]. As $M=15$ is an odd value, the constant associated with the polarity shift for this example will be 7 of residue codes $(1,1,2)$. Considering the field of "signed numbers" in Tahle 4.7, those results after polarity shift are listed in the right column. For instance, given a state of value 4, it is interpreted as a positive number 4, but after the operation, it is regarded as a negative number -3 .

Three examples involving addition and multiplication are given in the following. The operations are carried out by modular arithmetic, from which we demonstrate the principle of oyerflow detection. With the aid of Table 4.7, it is easy to perform the encoding and decoding operations.

Table 4.7 Residue sets of a special RONS.

```
Case 1 : y = 5 + (-2)
```

Modular arithmetic: $\left(y_{0}, y_{1}, y_{2}\right)=(1,2,0)+(0,1,3)=(1,0,3)$
Polarity shift : $\left(z_{0}, z_{1}, z_{2}\right)=(1,0,3)+(1,1,2)=(0,1,0)$
From Table 4.7: $\quad Z_{M}=10$
$z_{0}^{\prime}=\left\langle Z_{M}\right\rangle_{m_{0}}=0$
Conclusion : No overflow because $z_{0}^{1}=z_{0}$
Result : $\quad y=z_{M}-7=10-7=3$
Case 2: $\quad y=5 \times(-2)$
Modu? ar arithmetic : $\left(y_{0}, y_{1}, y_{2}\right)=(1,2,0) \times(0,1,3)=(0,2,0)$
Polarity shift : $\left(z_{0}, z_{1}, z_{2}\right)=(0,2,0)+(1,1,2)=(1,0,2)$
From Table 4.7: $\quad Z_{M}=12$
$z_{0}^{\prime}=\left\langle Z_{M}\right\rangle_{m_{0}}=0$
Conclusion : Overflow for the reason $z_{0}^{\prime} \neq z_{0}$
($y=-10$ after multiplication)
Case 3: $y=(-5) \times(-5)$
Mono? ar arithmetic: $\left(y_{0}, y_{1}, y_{2}\right)=(1,1,0) \times(1,1,0)=(1,1,0)$
Polarity shift : $\left(z_{0}, z_{1}, z_{2}\right)=(1,1,0)+(1,1,2)=(0,2,2)$
From Table 4.7: $\quad Z_{M}=2$
$z_{0}^{\prime}=\left\langle Z_{M}\right\rangle_{m_{0}}=0$
Conclusion: $z_{0}^{\prime}=z_{0}$ implies no overflow. (Wrong!)

In case (3), the wrong conclusion is reached though it anpears not to be. The above multiplication will give the value 25 which is obviously out of the range $[-7,7]$. The failure comes from the fact that the value 2.5 is not only an inyal id number to the original PNS but al so to the PRNS of which the permissible range is $[-15,14]$. Such a dofect will berome less harmful when the redundant range is extended. By setting the redundant modulus greater than $M / 2$, which is the maximum value of onerand, it is possible to get rid of the fault completely.

4.2.4 Hardware Considerations of Pedundant Modulus mo=2

```
An PPNS with the capability of overflow detection has been estahtished. So far, we have not invest.igated the härdware comnlexity when an RNS is modified to an RRNS. Such a modification mainly involves the insertion of a redundant modulus system of which the internal structure is similar to the other fundamental modulus systems. It is known that the hardware cost is proportional to the word length of the modulus system. In order to save hardware during the insertion, the size is chosen to be as small as possible. Clearly, \(m_{0}=2\) will be the optimal one.
A modulus system with word length of 2. has special advantages over the others. It is noticed that such a system is composed of two residues, 0 and 1. One bit is sufficient to represent all residues. Consequently, the hardware needed to configure this system will use logic gates as the major components. Having built such a system, it is easy to find the residue code of a natural number because the remaining inb is simply to extract the least significant bit of the number. For modular arithmetic, the maltinlication and addition can be realised by \(A N D\) gates and Exclusive-OR gates respectively.
```

operands	x	+	
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Furthermore, it is nossible to renlace the ROM by an Exclusive-OR gate for the polarity shift. Its residue code is 0 if the constant K is even; and 1 if K is odd. The following table shows the possible combinations of y_{0}, k_{0} and z_{0}. It is readily seen that z_{0} is the result of EX-OR operation between k_{0} and y_{0}.

y_{0}	k_{0}	$z_{0}=\left\langle y_{0}+k_{0}\right\rangle_{2}$
0	0	0
0	1	1
1	0	1
1	1	0

The redundant modulus system imnlemented by logic gates is denicted in Fig. 4.8, where a. 2nd order IIR filter is used as an example. Such a system not only has simple structure but also can onerate at very hịg sneed. The result is produced after the delay of two logic gates.

Difference equation of a 2nd order IIT filter:

$$
Y(n)=a_{0} X(n)+a_{1} X(n-1)+a_{2} X(n-2)+b_{1} Y(n-1)+b_{2} Y(n-2)
$$

Fig. 4.. 8 Internal structure of a redundant modulus system having l-bit word length.

4. 3 Dyerflow suppression

Dverflow of ?'s complement arithmetic would introduce undesirable full-scale oscillations[12] which persist regardless of what input sequence is subsequently annlied to the filter. The character of the oscillation has been analyzed in detail by [11]. It is proven that if the overload characteristic is modified to certain natterns, then no self.oscillations will be present. We have found emnirically that for a stable second order I! fiffer, the oyerflow of residue arithmetic can similarly nroduce self-oscillations as indicated in Fig. 4.9. The figure, which is the filter's step response, shows that oscillations annear after an overflow occurs at the sixth sampled noint. There is no way to stop the oscillations eyen if input is set to zero.

To cone with the self-oscillation, we first consider the overflow characteristic of the residue arithmetic. As described previnusly, negative numbers of a residue system are located at the upper part of state range according to the complement technique. This is similar to ?'s comnlement arithmetic in which positive numbers come first and then negative numbers as we count in ascending order.

Fig. 4.9 Step response of a 2nd order IIR filter showing self-oscillations.

Consequently, the result of the addition of two positive numbers becomes negative if it overflows. For instance, the residue system ut.ilized to imolement the above second order filter has a dynamic range [-71, 71] while its state range is $[0,142]$. Neqative numbers $[-71,-1]$ map onto the upper state range [72,142]. Because 71 is considered as the largest positive number, overflow will certainly arise for the addition $71+1$. The result is undoubtedly 72 but will be regarded as -71 by the residue system for the reason that it falls in negative region. Such kind of overflow characteristic, which is dopicted in Fig. 4.10(a), is exactly same as that for 2 's complement arithmetic.

According to the analysis described in [11], the oscillations would be suppressed by modifying the nverflow characteristic to the one as shown in Fig. 4.10(b). To achieve the snecific characteristic, results which are out of range must be complemented. If the residue system has totally M states, then the complement of a value Y is defined by eqn.(17a).

$$
\begin{align*}
& \bar{y}=M-y \tag{17a}\\
& \bar{y}_{i}=m_{i}-y_{i} \quad, \bar{y}_{i}=\langle\bar{y}\rangle_{m_{i}}, y y_{i}=\langle y\rangle_{m_{i}} . \tag{17b}
\end{align*}
$$

With the same example as illustrated above, we have $M=143$ and $y=72$, then the complemented result $\bar{Y}=71$. That
means, we can still nreserve the sign of overflow result but lose the magnitude information after nerforming the complement. Enn.(17b), which directly finds the complemented residue dinits, is the actual oneration carried nit by a residue number system. It is not difficult to verify that both expressions are equivalent.

Full scale dynamic range normalized to ± 1

Fig. 4. 10 0verflow characteristic.

4.4 A versatile mesidue system for recursive filtering

Having discussed the various problems encountered during recursive filtering, we now nroceed to obtain a summary. First of all, a residue number system which includes the features of scaling, overflow detection and suppression is established. The system is flexible and easily adanted to any order of IIR filters by modifying the structure of "modular erithmetic". Then, as an illustration, a second order low-pass filter is implemented. Typical functions such as step and impulse are input to the system to see the responses. The results are compared with those obtained by infinite nrecision arithmetic.

Fig. 4.11 illustrates the organization of a suggested residue number system which is set up according to previous discussions. There are four moduli, two of them (m_{1}, m_{2}) are classified as the fundamental modulus, one of them is the redundant modulus $\left(m_{D}\right)$ and the remaining one $\left(m_{A}\right)$ is assoriated with the scale factor. As the system is used for recursive filtering, X and Y_{M} are respectively reprosenting the innut and output samples.

Fig. 4.11 A special RNS for recursive filtering.

At first sight, the system seems complicated. However, a careful invest.igation shows that several operations can be combined together. For instance, operations such as offset, scaling, polarity shift and complement are grouped as a single unit and actually realized by a ROM with input set $\left\{y_{i}^{\prime}, c_{i}\right\}$ and output set $\left\{z_{i}, y_{i}, \bar{y}_{i}\right\}$. Such an arrangement not only reduces hardware complexity but also saves processing time because the operations must be carried out in series for direct realizations. Same technique can be found in output module in which residue decoding, encoding, subtraction and comolement are put tonether. The ROM out.nut, unlike the innut, has no size limitation in the sense that additional ROMs can be connected in parallel with the original one to expand the output canacity. From Fig. 4.11, as Y_{M} and y_{A} are expected to be large values, two or more ROMs will be used to implement the output module. Finally, it is worth mentioning that if there is an overflow, the complemented results $\left\{\bar{y}_{0}, \bar{y}_{1}, \bar{y}_{2}, \bar{y}_{A}\right\}$ are selected, otherwise, the normal values $\left\{y_{0}, y_{1}, y_{2}, y_{A}\right\}$ are chosen for the ooerations concerned. Utilizing digital multiplexors, the selection is easy to implement. Depending on the filter's order, the internal organization of "modular arithmetic" may be varied. Fig. 4.12 shows the structure for a 2nd order IIR filter. For higher order, more registers are required to hold the sampled values and coefficients.

Fig. 4.12 Structure of "modular arithmetic"

With preference of small sizes, we assign $m_{1}=11, m_{2}=$ 13. Each of them would consequently ocrupy 4 bits. To
preserve two significant digits after decimal point of filter's confficients, let the scale factor be 128. The value may be varied subject to the precision reouired. After detemining the scale factor, we have $m_{A}=128$. Although the ontimal value of the redundant modulus is 2 , it is not applicable to this system. To satisfy the condition of relatively prime, the redundant modulus will be 3 which is the smallest number next to the optimal one.

Based on the given numerical values, the dynamic range provided by the system is [-71,71]. For clarity, the parameters concerned with the polarity shift and scaling are listed below.

	value residue digits	
constant for polarity shift	71	$\{2,5,6\}$
offset for scaling	64	$\{1,9,12\}$

A program coded by APL language is written to simulate the residue system. Although many operations can be implemented by ROMs, no table is created during the simulation. The onerations are directly simulated by their arithmetic expressions. In order to evaluate the performance of the residue system, a second order IIR filter having the difference equation shown in ean.(5) is implemented. Fig. 4.13-4.14 show respectively the step and
impulse resoonses of the filter. The corresponding responses evaluated by infinite precision arithmetic are also present to illustrate the difforences. To demonstrate the oyerflow suopression, the magnitude of input function is increased. Fig. 4.15 depicts the result. It is seen that by setting the input to zero, the oscillation will gradually die down.

Deviations, though not great, are observed between the results calculated by residue arithmetic and those by infinite precision arithmetic. The accuracy is mainly affocted by two factors, ouantization of filter's coefficients and truncation during scaling. A large scale factor can reduce the effect of the former one. For examnle, in the above illustration, the coefficient set used by infinite precision arithmetic is $\{0.0675,0.1349,0.0675$, $1.143,-0.4128\}$. After the quantization (multiplied by the scale factor, round off and divided hy the scale factor), the set becomes $\{0.0703,0.1328,0.0703,1.1406,-0.414\}$ which are the actual parameters supplied for the RNS. Clearly, differences are found between the two coefficient sets which in turn affect the filter's responses.

sequence	step	residue	precision	error
(n)	innut	arithmetic	arithmetic	
$X(n)$	$Y_{Y}(n)$	$Y_{i}(n)$	$Y_{r}(n)-Y_{i}(n)$	

1	50	4	3.375	0.025
2	50	15	13.38	1.022
3	50	23	23.08	0.9218
4	50	41	33.82	1.182
5	50	43	1.7 .42	0.5832
6	50	51	51.26	-0.2553
7	50	52	52.51	-0.5062
8	50	52	52.35	-0.3514
9	50	51	51.66	-0.6581
10	50	50	50.93	-0.9295
11	50	50	50.38	-0.383
12	50	50	50.06	-0.05906
13	50	50	43.91	0.0356
14	50	50	49.88	0.1172
15	50	50	1.0 .91	0.09365
15	50	50	43.95	0.05365
17	50	50	43.98	0.01766
13	50	50	50.01	-0.006957
13	50	50	50.02	-0.02024
20	50	50	50.03	-0.02527
21	50	50	50.03	-0.02552
22	50	50	50.02	-0.02374
23	50	50	50.02	-0.0216
214	50	50	50.02	-0.01989
25	50	50	50.02	-0.01882

Fig. 4., 13 Step response evaluated by residue arithmetic.

seouence (n)	impulse input $X(n)$	residue arithmetic $Y_{r}(n)$	```infinite precision arithmetic Y (n)```	error $Y_{r}(n)-Y_{i}(n)$
1.	50	4	3.375	0.625
2	0	1.1	10.6	C. 3974
3	0	1.4	1.1.1.	-0.1206
$1:$	0	1.1	1.1. 74	-0.7402
5	0	7	7.598	-0.5983
ε	0	3	3.839	-0.3385
7	0	1.	1.251	-0.2509
8	C	0	-0.1548	0.1548
3	0	0	-0.6933	0.6333
1.0	0	0	-0.7235	c. 7285
1.1	0	0	-0.0.5465	C. 5465
1.2	0	0	-0.3239	0.3239
1.3	0	0	-0.1447	0.1547
1.14	0	0	-0.03162	0.03162
1.5	0	0	0.02357	-0.02357
1.5	0	0	0.04	-0.04
1.7	0	0	0.02599	-0.03599
1.3	0	0	0.02462	-0.02462
1.9	0	0	0.01329	-0.01329
20	0	0	0.005023	-0.005023
21	0	0	0.0002567	-0.0002567
22	0	0	-0.00178	0.00178
23	0	0	-0.002141	0.002141
214	0	0	-0.001712	0.001712
2.5	0	0	-0.001073	0.001073

Fig. 4. 14 Impulse resonse evaluated by residue arithmetic.

Fig. 4.15 Step response with overflow sunpression.
l.arge scale factor is usually required to reduce the quantization error of filter coefficients. Typical word length of scale factor is around 8 bits. Previous sections assume that one modulus in a residue number system is equal to the scale factor. If so, look-up tables are no longer applicable to implement the corresnonding residue arithmetic as the table size is quite large. However, being treated as a system, large modulus (or scale factor) can be further decomposed into small constituents, each of which are then considered as a small modulus. For instance, the following figure shows a scale factor (A) breaking down into two subsystems, A1 and A2. The decomposition reouires an additional residue decoder to recover the value y_{A}^{\prime} as indicated in Fig. 5.1. However, if we combine the 'encoding' and 'residue decoding' operations, that is, both are realized by a single table with input $\left\{y_{A}^{\prime},, y_{A 2}^{\prime} ;\right.$ and output $\left\{c_{0}, c_{1}, \ldots c_{1}\right\}$, then the decoder can be saved.

Fig. 5.1 Decomposition of a scale factor (A) into Al and A2.

In order to satisfy the condition of relatively orime among the moduli, the scale factor must be an odd value if the redundant modulus is 2. Consequently, we have an odd scale factor (A) and an even scaled dynamic range (M). With similar polarity analysis as shown in section 4.1.3,

```
P = INT [ ( (M x A )/2 - 1 +K)/A ],
N= INT [( (M\timesA)/2 + K )/A ]
```

and

$$
P \leq M / 2-1,
$$

$$
N \geq M / 2 .
$$

By solving the ineguality, the offset K has zero value. That means, direct scaling of an arbitrary signed number for this case would not cause polarity change.

Rased on the above discussions, we suggest another residue number system which consists of the moduli $\{2,13,15,7,31\}$. They are, respectively, redundant modulus - 2 ; fundamental moduli - 13,15 ;
and constituents of scale factor - 7,31. (i.e. scale factor $=217$)

The system has three advantages: it does not require offset oneration, eliminates the use of large modulus and is possible to adopt the ontimal redundant modulus (m0=2).
6. Conclusion

```
New anproaches to scaling and overflow detection in residue number system have been presented for use in recursive digital filtering. Under the assumption that the scale factor is equal to one modulus or a product of several moduli, scaled residue digits can be produced before performing residue decoding. By adding an appropriate offset value during scaling, the polarity ambiguity is completely eliminated. As scaling is carried out separately from residue decoding, less residue digits are input to the decoder, which makes it feasible to be realized by look-up tables.
```

Based on redundancy technique, a scheme is devised to detect residue arithmetic overflow. Redundancy is established by inserting a redundant modulus to the fundamental set of moduli of a given residue number system. A nolarity shift oneration, which is actually a modular addition, is reouired to accomolish the detection. It is shown that a medundant modulus of value 2 has the simplest pardoare structure and is recomended for use. As the overflow characteristic of residue arithmetic is similar to 2's complement arithmetic, self-oscillations exist for residue implementation. The problem is solved by replacing
overflow results with their complemented ralues.

A 2nd crder IIR filter is implemented based on the above approaches. In comparison with those calculated from infinite precision arithmetic, small deviations are observed.

References

［1］P．J．A．llen and A．G．J．Holt，＂Implementation of a 2nd－order digital filter using AM2900 bit－－slice devices and a fast multiplier＂，IEE Proc．，vol．128， Pt．G，No．4，np．215－219，August 1981.
［？］R．J．Simpson and T．J．Terrell，＂Microprocessor－based digital filters＂，The Radio and Electronic Engineer， vo？．51，No．9，n0．423－428，Sentember 1981.
［3］J．G．M．Goncalves and R．M．Lea，＂LSI module for the implemnetation of digital filters＂，IEE Proc．， yol．128，Pt．F，No．6，no．353－358，November 1981.
［4］L．，C．Tai，＂Design of a micronnocessor－based digital filter＂，A progress report presented to the Croucher Foundation， 1932.
［5］A．Peled and B．Liu，＂A new hardware realization of digital filters＂，JFEE Transactions on Aroustics， Speech，and Sional Processing，vol．ASSP－22，No．6， pp．456－462，Derember 1974.
［6］MलClellan and Rader．＂Number theory in digital signal processing＂，Prentice Hall．
［7］W．K．Jenkins and B．J．Lenn，＂The use of residue number systems in the design of finite imnulse response digital filters＂，IFEE Transactions on Circuits and Systems，vol．CAS－24，No．4，pp．191－201，Anril 1977.
［3］W．K．Jenkins，＂Recent advances in residue number techniques for recursive digital filtering＂，IEEE Transactions on Acoustics，Speech，and Signal Processing，vol．Assp－27，No．1，pp．19－30，Feb 1979.
[9] M.H. Etzel and W.K. Jenkins, "Redundant residue number systems for error detection and correction in digital filters", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-28, No.5, pp.538-544, Cotober 1980.
[10] M.H. Etzel and W.K. Jenkins, "The design of specialized residue classes for efficient recursive digital filter realization", IEEE Transactions on Acoustics, Sneech, and Sional Processing, vol. ASSP-30, NO.3, Pp, 370-380, June 1982.
[11] P.M. Ebert, J.E. Mazo and M. G. Taylor, "Overflow oscillations in digital filters", Bell Syst. Tech. J., vol.48, pp.2999-3020, Nov. 1969.
[12] S.L. Freeny, "Snecial-purpose hardware for digital filtering", Proceedings of the IEEE, vol.63, No.4, pip. 633-648, April 1975.
[13] D.K. Banerji and J.A. Brzozowski,"Sign detection in residue number systems", IEEE Transactions on Computers, vol. C.-13, No.4, pp.313-320, April 1969.
[.14] W.K. Jenkins, "Terhniques for residue-to-analog conversion for residue-encoded digital filters", IEEE Transactions on Circuits and Systems, vol. CAS-25, No.7, op.555-562, July 1978.
[15] A. Baraniecka and G.A. Jull ien, "On decoding techniques for residue number system realizations of digital signal processing hardware", JEEE Transactions on Circuits and Systems, vol. CAS-25, No.11, DP.935-936, November 1978.
[15] M.A. Soderstrand and C. Vernia, "A high-speed 1 ow-cost modulo Pi multiplier with PNS arithmetic anolications", Proceedings of the IEEE, yol.68, No.4, pp.529-532, Aoril 1980.
[1.7] C.H. Huang and F.J. Taylor, "A memory compression scheme for modular arithmetic", IEcE Transactions on Acoustics, Sneech, and Sianal Processing, vol. ASSP-27, No.6, no.508-611, December 1979.
[18] C.T. Chen, "One-dimensional digital signal processing", New York, M. Dekker, 1979.
[19] C.F. Chen and Y.T. Tsay, "A new fonmula for the discrete time system stability test", Proceedings of IFEE, DP.1200-1202, August 1977.

> Appendix - A

APL programs to simulate the proposed residue number system for recursive filtering
∇ SORNS; T:M:TCOEF; HM
[1] P. A 2ND OPDER ITR ETITSR IMRJFMDNTTED
[2] ค BY REGTDUE NUMRER SYSOEM
[3] ค TO SHON THE SDECTEIC SCAITNG
[4] ค AND OVEREIOW DRTSCTION
[5] ρ
[6] ค MOD \& GET OR MODULI
[7] ค SPACPOR \& SCALE FACMOR
[8] P ISF \leftarrow MUUTPLICATIVE TNYERSE OD GPOCTOR
[日] P DECODE \& EARAMEIERS IN DECONTNG FORMIIAA
[10] p. CO \& ETLTER CORRPTOTENTS IN REGTDJE CODES
[11] ค $P B G \leftarrow P E C T C T E R S ~ C O N T A I N ~ Y 0, X 1, X 2, Y 1, Y 2$
[12] ค. $B M \leftarrow$ BATE CP DYMQMTC RANCE (M)
[13] \& HA \& HAJF OR SCATE PACTOR
[14] MOR $\lim ^{2}(3,11,13,128)$
[15] NMODKDMOD
[15] PASt (2,3)
[17] M4×/MOD[BASE]
[18] SRACTOQ\&MOD[NMOD]
[13] TST $\leftarrow(2,8,6)$
[20] DECONE $\leftarrow(78,56)$
[21] NCOLFKOCOEF
[22] PECN NMOD.NCOEE) PO
[23] YP\&NMOROO
[2't] $\quad 2$ P $_{4} C<(N M O D-1) \rho 0$
[25] EMK- 1 M $\div 2$
[26] $E \hat{\Delta}+0 \cdot \leftarrow \cdot P S \leftarrow 10$
[27] ค MAGNTHY, QUANTIZE AND ENCONE COFDETCTENTS
[23] $\quad T-1$
[23] LOOP1:CO $C O, L 0.5+M O D[I] \mid S F A C T O R \times C O E R$
[30] HA HA,MOD[I]|SFACTOR 2
[31] PS\&DS,MOD[I]!HM
$[32] \rightarrow(N M O D>I \leftarrow I+1) / \operatorname{InOPD}$
[33] CO $(N M O D, N C O E P) \cap C O$
[34] f
[35] a BEGIN OF ETLTERING
[36] ค XTN, YY \& TNPUT AND OIVTPUT SAMPLES
[37] J +1
[3B] f MONUTAR ARTMLMETIC
[33] STAFTT:MODA
[.40] F: SCALTVG OPROATION
[41] ECATE
[42] \& OVFREIOW DETBCRTON
[43] OUDET
[44] YRT WMOn7\&MOD[NMOD] $\mid Y Y[. T]+Y M$
$[45] \quad \cdots\left(n \geq_{0} T+T+1\right) / S T A R T$
∇
∇ MOna; I
[1] a PTCUT SUTFT REC- $(X 0, X 1, X 2, Y 1, Y 2)$
[2] a AND EVATUATE THF DTFAERENCE EQN.
[3] $\quad I * 1$
[4] $[$ [OOD: $P E G[I ;] \leftarrow(M O D[I] \mid X I N[J]), 4 \uparrow R E C[I ;]$
[5] $R F G[T ; 4] \leftarrow Y R[I]$
[.6] $Y R[I] \leftrightarrow M O D[I] \mid+/ C O[I ;] \times \operatorname{REG}[I ;]$
[7] $\rightarrow(1 M O D \geqslant I \leftarrow I+1) / I C O D$
∇
∇ SCATE; I

- SCALE DOHN THE OUMPUT RESUTIS

[5] $I<1$

[7] $I O O P 2: C[I 7 \& M O D[I] \mid-Y R[N M O D]$
[3] $\left.Y P[I]<M O D[I] \mid \operatorname{ISF}[I] \times\left(Y R^{[} I\right]+C[I]\right)$
[9] $\rightarrow($ MMOD>T\&T+1)/LOOP2
∇

```
    \ ONDBTT;I
```

[1] $I+1$
[2] IOOP1: ZRT TT AMOD I I |YP $I]+D S[I]$
[3] $\rightarrow($ NMOD $=I \notin T+1) /$ LOOR1
[4] $2 \mathrm{M}+\mathrm{M} 1+/ D E C O D E \times Z R[R A C B]$
[5] $M+2 M-F M$
[S] $\rightarrow(Z R[1]=M O D[1] \mid Z M) / 0$
[7] $I+2$
[s] IOOD2:YR[I]+MOD[I]-YR[I]
$[\mathrm{C}] \rightarrow(\mathrm{MODD}>T+T+1) / L O O P 2$
[1.0] $\quad Y:-Y M$
[11] YD[1.] $\mathrm{MOD}[1] \mid \mathrm{YM}$
∇

Appendix - B
Hardware implementation of 2 nd order IIR filters using APPIEE II micro-computer

Abstract - A project summarized from the report "Design of a microprocessor-based digital filter" is presented to illustrate the hardware aspect as
well as the distributed arithmetic of digital filters.

Introduction - Second order IIR filters are implemented according to the algorithm presented by Peled and Liu. The mothod utilizes distributed arithmetic technique to carry out the multinlications as required in a difference equation. In order to reduce the hardware complexity for the realization, a micro-computer having enough suoporting t.onls such as proaram debugging rountines, Deripheral interfaces is chosen. The one we adopted is APPIEE II micro-computer.

Distributed arithmetic - Based on the algorithm, filter confficients as well as innut and out.put samples are represented by fixed point not.ation. Since the processing unit is byte oriented, an 8-bit word length is used for the digital filter. The binary form of a value X will be written as $x^{0} \cdot x^{1} x^{2} x^{3} x^{4} x^{5} x^{6} x^{7}$. i.e.

$$
x=\sum_{j=1}^{7} x^{j} 2^{-j}-x^{0} \quad \text {, where } x^{j}=0 \text { or } 1
$$

From (1), it is known that $-1 \leq X<1$. By substituting (1) into the standard difference equation of a 2 .nd order IIR filter, we get

$$
\begin{aligned}
& Y(n)= \sum_{\substack{i=0 \\
2}}^{\sum_{j=1}^{7}} a_{j}^{7}\left(\sum_{j=1}^{j}(n-i) 2^{-j}-x^{0}(n-i)\right) \\
&+\sum_{i=1} b_{i}\left(\sum_{j=1}^{j} r^{j}(n-i) 2^{-j}-Y^{0}(n-i)\right) \\
& B-i
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{j=1}^{7} F^{j} 2^{-j}-F^{0} \\
& \text { where } F^{j}=\sum_{i=0}^{2} a_{i} X^{j}(n-i)+\sum_{i=1}^{2} b_{i} Y^{j}(n-i) \tag{2}
\end{align*}
$$

Given a set of coefficients, F^{j} can be pre-calculated and stored in a table for further accessing. The value is addressed using the following 5 bits, $x^{j}(n) x^{j}(n-1) x^{j}(n-2)$ $Y^{j}(n-1) Y^{j}(n-2)$. From (2), multiplications are consequently replaced by bit shift and add operations.

Hardware realization - Fig. 1 illustrates the block diagram of the digital filter. The corresponding hardware circuit and timing diagram are respectively depicted in Fig. 2 and Fig. 3. From Fig. 1, five registers are used to store the input and output samples. The table is realized by read-only-memory (ROM). Real-time siganls can be fetched in or sent out through the A / D and D / A converters. All control signals such as shift, reset are generated by the CPU through the peripheral interface device. Except the data acouisition module, all components are assembled on one circuit board to give neat anpearance.

Cirouit doscription - Duantized innut samole produced by the analoo-to-digital converter is stored in the x_{n}
register. At initial phase, a reset procedure is necessary for all registers so that they hold zero values. An I/0 port namely PIA-6821 acts as an interface between the CPII and the registers. Each time a shift command is issued, the table is addressed and the output is fetched by the CPI for add and shift operations. After repeating the same procedures for seyen times, we reach the final step which requires a subtraction. If the calculation signals overflow, then its result will be comnlemented, otherwise the result is directly passed to the Y_{n-1}. register through the $1 / 0$ port and at the same time, accessed by the digital-to-analog converter. Both input and ouput samoles are displayed on the screen of an oscilloscope for examining. The original table reguires 32 words but a $2 K$ ROM is used, that means other tynes of 2 nd order filters can also be accommodated until the whole ROM is completely occupied. Different types of filters are designed to be selected by a switch-band.

One phase for evaluating an output samole

Fig. 1. Block diagram of the hardwired digital filter.

Fig. 2 Circuit diagram of the digital filter.

CB2 -PE

CA 2

LOAD

$\therefore H 1 F T$

$S T C$

k
CALCU:F 110リ OF ONE OUTPUT
AAMP: E

Fig. 3 Control signals.

Results - Two 2nd order JIR filters having transfer functions shown in the following are implemented. The tables calculated from the corresponding coefficient sets are given in Fig. 4.
(1) Low-pass filter, cut-off frequency 100 Hz , sampling frequency 1 KHz .

$$
H_{1}(z)=\frac{0.0675+0.1349 z^{-1}+0.0675 z^{-2}}{1-1.143 z^{-1}+0.4128 z^{-2}}
$$

(2.) Band-pass filter, lower and higher cutoff frequencies $9.5 \mathrm{~Hz}, 10.5 \mathrm{~Hz}$, sampling frequency 100 Hz .

$$
H_{2}(z)=\frac{0.1-0.1 z^{-2}}{1-1.5695 z^{-1}+0.9391 z^{-2}}
$$

By applying different inputs to the filters, we get the responses as illustrated in Fig. 5 and Fig. 6. The time reouired for evaluating one output sample is approximately 0.36 ms so it gives a sampling frequency of 2.7 KHz . It is
noted that the sampling frequency does not match with the two filters. The modification of sampling frequency, however, will affect the cutoff frequency as their ratio is fixed. Consequently, for $H_{2}(z), 100 \mathrm{~Hz}$ is changed to 270 Hz ; and for $\mathrm{H}_{2}(z), 9.5 \mathrm{~Hz}$ and 10.5 Hz are respectively changed to 255 Hz and 293 Hz .

From Fig. 5, the low-pass filter successfully retains the 120 Hz signal component and rejects the other component, 1 $K H Z$ which is out of the cutoff frequency.

For the band-pass filter, a square-wave is used for the test.ing. An output of sinusoidal waveform is obtained as illustrated in Fig. 6. The result can be explained to be the fundamental frequency (270 Hz) of the square-wave, which lies in the pass-band.

Address	Contents	
	$H_{1}(z)$	$\mathrm{H}_{2}(z)$
00	00	00
01.	E 6	C.
02	49	68
03	2E	28
04	04	FA
05	EA	R5:
06	$4 \square^{1}$	$5 E$
07	33	21.
08	08	00
09	E. ${ }^{\text {P }}$	Cal
08.8	5.	64
CO	37	28
OC,	06	FA
08	F3	BE
0	56	5 E
$0 \cdot$	3 P	21
10	04	06
1.	E.A	C.B.
12	4.0	6 A
13	33	2 E
14	08	00
15	E.F	C. 4
15	51	6.4
17	37	2.8
18.	OC	05
19	F3	C. B^{2}
1 A	55	$6 \wedge$
1.3	38	25
16	1.	00
1.19	F?	C.4
15	5 A	64
1.5	40	23

Fig. 4 Tables for the filters.

upper: input signal $-V \sin (2$ Iff $t)+V \sin (2$ Ilf $2 t)$, where $f_{1}=1 \mathrm{KHz}, f_{2}=120 \mathrm{~Hz}$.
lower: output of low-pass filter $H_{1}(z)$.

upper: inout signal - 100 Hz square wave.
7ower: outnut of 1 ow-pass filter $H_{1}(z)$.

Fig. 5 Responses of $H_{i}(z)$.

upper: inout sianal $-V \sin \left(2 \pi f_{1} t\right)+V \sin \left(2 \pi f_{2} t\right)$, where $f_{1}=1.2 \mathrm{KHz}, f_{2}=270 \mathrm{~Hz}$.
lower: output of bandpass filter $\mathrm{H}_{2}(z)$.

upper: input signal - 270 Hz square wave.
lower: output of bandpass filter $H_{2}(z)$.

Fig. 6 Responses of $\mathrm{H}_{2}(z)$.

Discussion and conclusion - The assembly program for initialization and digital filtering has been stored in an EDROM located on the I/O interface card. With sophisticated design, the card can be plugged into any seven of the eight peripheral slots provided by the APPLE II micro-computer. To start the filtering in real-time, key in the command "PR\#n" where n is the slot number.

Based on distributed arithmetic technique, two 2nd order IIR digital filters have been implemented. The method is suitable for those systems using general purpose processor which lacks multiplication instructions. A sampling frequency of 2.7 KHz is achieved for the implementation using APPLE II micro-computer. Real-time results are obtained which show both filters work correctly.

000443759

[^0]: The use of residue number coding in realizing digital filters requires a fractional-to-integer conversion. For a stable filter, it usually has fractional cocfficients in the difference equation. Multiplied by a suttable factor, we will get a set of integer coefficients. No problem will

