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Abstract

After briefly reviewing the bilinear transformation

technique for digital filter design we introduce the

structure of a residue number system and some notations.

Then, a new algorithm to detect overflow via redundant

residue number system will be presented. The approach

eliminates the time-consuming conversion of mixed-radix

digits but at the same time requires a polarity shift

operation to handle signed numbers. Because the scaling

process which converts the fractional coefficients into

integer values is unavoidable in recursive digital

filtering, attention is given on this part for efficient

implementation of residue number decoding. The decoder is

realized by table look-up technique. It is well known that

the overflow oscillation can be suppressed by changing the

overflow characteristics. A similar operation is derived for

the residue number system. Finally, a residue number system

combining the above features is established. Although the

illustrative example i s a second order section, it can

easily be extended to higher order IIR filters. Programs are

written to simulate the system and the results are presented

to demonstrate the principles.
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I. Introduction

A digital filter is a digital system that can be used to

filter discrete-time signals which may be real time or

recorded signals. It can be realized by the use of special

purpose hardwares, or by the implementation of iterative

sequencing of software instructions (computer programs)

executed on a processor. The former gets more of our

attention because we are often dealing with the real time

signals.

It is well known that digital filters have certain

advantages over their analogue counterparts. These include

high accuracy, high reliability and the capability of

handling low frequency signals. A very important additional

advantage is that filter characteristics can be changed

easily by modifying the filter parameters in memory. The

digital filters tend to replace analog filters in many

applications not only because of the above merits, but al so

due to the tremendous advancement of very large-scale

integrated (VLSI) circuit technology. Recently, the drop of

component cost facilitates the hardware implementation of

digital filters.

VLSI devices such as bit-slices and microprocessors have
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been employed- to realize digital fi l ters[1-4]. Stand-alone

microprocessor implementation has the problem of restricted

bandwidth, which is a parameter assessed from the sampling

rate of the filter. This comes from the fact that the

instruction sets of microprocessors are for general purpose

applications. Multiplication instructions are usually not

available and even if they do, a long processing time is

needed. To overcome the time-consuming multiplications which

are required in a given difference equation, a separate fast

multiplier is brought to co-operate with the processor. Such

approach reaches a sampling rate of 555 kHz for a 2nd order

low-pass filter [1]. As a comparison, the speed of

microprocessor-based implementation is only 0.625 kHz [2]

which is much lower and has limited applications.

Subject to the bottleneck of multiplications, many

attempts have been made to find other ways of realizing the

arithmetic operations in a digital filter. A noteworthy

approach using distributed arithmetic technique is discussed

by Peled and Liu[5]. It is applicable to the implementation

of second-order sections with fixed coefficients represented

in -fix-point notation. According to this method, the values

will be pre-calculated and stored in read-only-memory (ROM).

Consequently, only add and shift operations are required in

computing the difference equation. At the absence of

multiplication, the operation speed is thus greatly
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improved. A second-order section utilizing this algorithm is

claimed to operate in real time on a signal with a 10 MHz

bandwidth [5].

Another approach appearing to compete favourably with the

conventional filters is the implementation of residue

arithmetic. For many years, residue number coding has been

recognized as a system which provides the capability of high

speed multiplication and addition[6]. Such a system usually

consists of several sub-systems having shorter word-lengths.

Each subsystem evaluates the difference equation

individually and produces the corresponding output

simultaneously. Because the word-length is not large, it is

possible to execute the multiplication with a look-up table

stored in ROM. This technique is known to be a fast

operation of which the processing time is dependent on the

time to access the ROM. Besides, there are no truncation or

rounding errors arising in performing the arithmetic

operations since residue system is composed of integers

only.

The use of residue number coding in realizing digital

filters requires a fractional-to-integer conversion. For a

stable filter, it usually has fractional coefficients in the

difference equation. Multiplied by a suitable factor, we

will get a set of integer coefficients. No problem will
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arise in this step for the implementations of FIR filters

because no feedback term is involved in the difference

equation. The implementation of FIR filters using residue

technique has been reported in[7]. For IIR filters, a

scale-down process is required to recover the actual result

before feeding back in calculating the difference equation.

Unfortunately, division as well as sign detection[13] and

magnitude comparison are difficult to handle in residue

systems. Scaling, or fixed constant division, is then a

requisite operation during implementation. For efficient

recursive digital filter realization, some specialized

residue classes are deli gned[8, 10]. Given these special

classes, the scaling is easy to handle by slightly modifying

the Chinese Remainder Theorem, which provides a means for

translating the residues back to natural numbers. It is

noted that the scaling and residue decoding are carried out

simultaneously. In the following chapters, a technique

which separates the above two operations is discussed and

shown to have the advantage of saving hardwares.

Another problem, large-scale limit cycles which is

introduced by arithmetic overflow, has urged researchers to

pay attention on it. For a second order section implemented

by 2's complement arithmetic, the output oscillations can he

suppressed by modifying the overflow characteri sti c[11, 12].

This method is applicable provided that the system itself is
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capable of detecting arithmetic overflow. Residue number

systems are lack of this capability but not for redundant

residue number systems of which the dynamic range is larger

than required. Error detection and correction using

redundant residue number system has been discussed i n[9].

From which, a method based on mixed radix conversion is

described for overflow detection. The conversion generates

the mixed radix digits sequentially and thus is

time-consuming. Utilizing the same redundancy technique, an

overflow detection scheme which gets rid of the conversion

is discussed in the following chapters. No special operation

is required except the polarity shift. The detection is

accomplished by comparing the redundant residue with the one

decoded from the set of non-redundant residues. Such

approach is fast and easy to implement but incapable of

correcting errors.

This research suggests various approaches to solve the

problems encountered in implementing recursive digital

filters using residue number system. All the results are

verified by program simulations.



6

2. Approximation for recursive filters using

Bilinear-transformation method

2.1 Digital filter realization

A digital filter is often described by a difference

equation as shown in (1), where{ Xn} is the input sequence,

{ yn} the output sequence, and {ai} , {bi} are the filter

coefficients.

(1)

The corresponding Z-domain transfer function of the filter

is as follows:

By manipulating the transfer function, there are several

methods to realize the digital filter. Three of them, namely

direct, parallel and cascade realizations, are usually

employed. The cascade realization requires the transfer

function to be factored into a product of 2nd order transfer

functions as
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where

Alternatively, the transfer function can be expanded into

partial fractions as

where

This gives the parallel form realization. Another form of

realization will be called direct canonic realization as

shown in FIg. 2.1. The number of unit delays employed in

this method is equal to the order-of the transfer function.

X(n) an a1 a2 Y(n)aN

-1-1
Z-1 Z Z

-b -bN-b1

Fig. 2.1 Direct form realization of digital filter.
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According to the value of M i n eqn. (1), digital filters

can be classified into two types. If M=O, then there will be

no feedback terms (coefficient bi's=0) and the filter is

defined as a nonrecursive or finite impulse response (FIR)

filter. When M>O, the filter is named as recursive or an

infinite impulse response (IIR) filter.

2.2 Brief review of Bilinear-transformation

The task of designing a digital filter is mainly to find

the coefficients satisfying some prescribed specifications.

Although these specifications may be stated in time domain

or frquency domain, we traditionally use the latter one. For

IIR filter, one of the design technique starts from an

analog filter having the required characteristic, and use

various transformation methods to get the corresponding

digital counterpart. The reason for using this approach is

that the design methods of analog filters are well

establised. Several techniques[18] are presented to perform

the transformation. In the following, a second-order IIR

filter is designed by utilizing Biliear-transformation

method. We devote to the low-pass section only since other

standard types namely, bandpass, high-pass or band-stop
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filters, can be obtained from the low-pass filter by the

well known frequency transformation technique.

The essence of the Bilinear-transformation method comes

from the mapping described by eqn. (2), which transforms

those in the left-half s-plane into the interior of unit

circle in the z-plane.

(2)

Substitute s=jv and z=exp(jwT) into eqn. (2) to find the

relationship between the frequencies in both domains. The

result is given by eqn. (3), where v and w are respectively

the frequencies of continuous and discrete cases. Clearly,

the function governed by (3) is not a linear mapping which

leads to some distortions.

(3)

As an illustrative example, let the specifications for a

digital filter be: second-order, low-pass with pass-band

cut-off frequency, fc=10OHz and sampling frequency, fs=lkHz

(sampling period=lms). For simplicity, the prototype analog

filter will be chosen from the well-known Butterworth class.

Eqn.(4) shows the transfer function of a second-order

Butterworth low-pass filter, where vc is the cut-off

s = (z-1)/(z+1)

v = tan( wT/2 )
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frequency. From (3), vc=628.32 rad/sec for the desired

filter.

(4)

The corresponding transfer function of the digital filter

can be calculated using eqn.(2) either by direct

substitution or matrix manipulation[19].

(5)

To demonstrate the differences between an analog filter

and the digital one derived from it using

Bilinear-transformation, the frequency responses of H(s) and

G(z) are evaluated and plotted in. Fig. 2.2. The result shows

a good matching at the low frequency range and large

deviation in the vicinity of the folding frequency.

H(s) =

1

(s/vc)2 + 2 (s/vc) +1

G(z) =

0.0675 z2 + 0.1349 z + 0.0675

z2 - 1.1430 z + 0.4128
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3. Introducing residue number system

A residue number system consists of a set of pairwise

relatively prime moduli {mm ,...,m}. The dynamic range

which represents the useful computational range of the

number system is [0,M), where M is the product of all

moduli, i.e. M= In order to handle signed numbers,

the dynamic range will be divided into positive and negative

regions. If M is odd, the range of the residue

representation is [-(M-l)2, (M-l)2]; if M is even, the

range is [-M2, (M2)-1]. Each natural integer in the above

ranges is uniquely coded by a sequence of L residue digits.

Any number not in the range will then be classified as in

overflow range. To guarantee the result is correct, the

maximum and minimum values during intermediate calculations

must be set within the dynamic range, Based on this

criterion, the number (L) of moduli can be suitably chosen.

During arithmetic calculation, each residue digit is

evaluated independently. The operation can be very fast by

selecting small moduli. Final result is then recovered from

all residue digits through decoding using the Chinese

Remainder Theorem.
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3.1 Encoding and decoding of residue numbers

Fast operations of residue systems are achieved at the

expense of an additional overhead cost of translating data

into and out of the system. These two processes are

respectively defined as encoding and decoding operations.

During encoding process, a natural integer X is converted

into a sequence of residue digits {x1 ,x2,..., xL }

according to (6), where |X|mi denotes the positive remainder

of the division X/mi for a certain integral quotient. Of

course, the remainder is always less than mi .

(6)

For example, <15>13=2, <-15>13= 11.

If a modulus has the form of 2k, where k stands for any

integer, the encoding is easy to implement. For binary digit

representation, the task simply extracts the k least

significant bits from the number being encoded. For moduli

other than the above form the encoding is rather complex

and requires arithmetic operations. However, since the

input samples of filters are taken from an anal og-to-digital

converter which usually has 8-bit word length, it is

X = < X > = |X|mi
, X > 0

mi mi - |X|mi ,X < 0
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possible to encode these samples based on the technique of

table look-up. The tables may be implemented by

read-only-memory (ROM) which has an acceptable size of 256

words. This approach not only reduces the complexity but

also provides a high-speed operation. If the system has L

moduli, a total number of L residue encoders (ROMs) are

required.

analog input

A/D converter

quantized input

8

residue encoder

(ROM size - 1/4K)

4 4 4

residue digits

Decoding, an inverse operation of encoding, requires the

derivation of a natural number from a set of residue digits

{ xl, x2,...,xL} . The Chinese Remainder Theorem given by (7)

can be used to carry out this operation. Denote Mi-1 as the
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multiplicative inverse of Mi such that

(7)

As an illustration, suppose m1=2, m2=3, m3 =5 then eqn. (7)

becomes

The value represented by the residue set {x1,x2,x3}={1,2,1}

will be

The value M is generally a large composite integer because

it is the product of all moduli. Consequently, the mod M

rnultipl icaion, as shown in (7), is costly to implement with

hardware. Because of this, a technique based on the Peled

and Liu structure is proposed in [7] to implement the

Chinese Remainder algorithm. This approach reduces the mod M

multiplication into a relatively corn-non mod M addition.

Another solution to the implementation is using

mixed-radix conversion process as discussed in [15]. This

technique gives a shorter word length in ROM. A similar

approach but with the combination of residue-to-binary and

digital-to-analog operations is proposed in [14]. The method

is particularly useful when it is desired to translate the
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residue samples directly into analog form.

In addition to the above approaches, it is feasible to

implement (7) using ROMs by directly feeding the residue

digits into the ROM's input if the number and sizes of the

moduli are small enough. For instance, the above

illustration requires 1 bit for m1 2 bits for m2 and 3 bits

for m3 to hold residue digits. If the decoder is implemented

by ROM, then the table must have an entry of 6-bit. This is

definitely possible since nowadays a ROM having 16-bit entry

is not very unusual. Typical size of modulus, however, is

around 4 to 5 bits. This suggests that a residue number

system having 3 moduli is suitable.

residue digits

4 4 4

residue decoder

(ROM size - 4K)

12

natural number
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3.2 Modular arithmetic

The modular arithmetic is different from the conventional

arithmetic in that it needs not take care of carry. During

an arithmetic operation, two N-bit operands will produce a

N-bit result. There is no truncation or rounding error even

for multiplications. The so-called residue operations are

defined by (8), where * denotes either addition, subtraction

or multiplication.

(8)

General division is excluded from the residue operations

because it may produce fractional result which is not

allowed in residue systems. However, fixed constant division

is possible if its multiplicative inverse exists and the

dividend is divisible. For example, consider the following

two divisions <4/2>5 and <3/2>5 , where the multiplicative

inverse of 2 is 3.

Clearly, (i) gives the correct result while (ii) does not.
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Although conventional 2's complement multipliers and

adders are still applicable to implement residue arithmetic

operations, a residue encoding process is required to

correct the results. This will hinder the tiltering speed.

To achieve faster operation, it inevitably comes back to the

table look-up technique. According to this method, the

multipliation and addition will be realized by ROMs. Since

we have the problem of size limitation on ROM the residue

digits must be as small as possible. When the sizes of

residues cannot be further reduced, the it is possible to

use a square-law multiplier as introduced in[16], or to

compress the tables for modular arithmetics as discussed

in[17].

xi yi

/ 4 / 4

modular multiplication

or addition

(ROM size - 1/4 K)

/ 4

v

zi



4. Residue number techniques for

recursive digital filtering

4.1 Scaling for IIR filters

Residue number systems have the merit of fast

multiplication and addition. However, a difference equation

with fractional coefficients can take no advantage of it.

This is because residue number system only allows integers.

For a FIR filter, the coefficients can be converted to

integers by scaling. Such method however is not applicable

to IIR filters. In order to utilize modular arithmetic, an

appropriate scale factor (A) is multiplied to the original

difference equation to produce integral coefficients as

shown in eqn.(9a). The final result is then recovered by

performing a constant division which is illustrated in

eqn. (9b).

(9a)

(9b)

As mentioned above, residue number system has no general



division. This requires us to evaluate (9) in three

sequential steps. First of all, from (9a) a set of residue

digits representing Y1(n) are calculated through modular

arithmetic. The second step will then involve the Chinese

Remainder Theorem which determines the natural value of

Y'(n). Finally, the actual result is obtained by performing

a scaling operation as indicated in (9b). In order not to

hinder the filtering speed by these three steps, efficient

scaling method must be devised.

4.1.1 Specialized residue classes

Appropriate choice of moduli in a residue number system

can simplify the scaling operation[8,10]. This approach

combines the last two steps and thus speed up the filtering.

A special class is presented in the following to illustrate

the principle of operation. The residue number system is

supposed to have two moduli of the form m and m-1

with a scale factor A=m.



From eqn.(7),

where y ,yi- residue digits of V'(n),

This gives

Because Y(n)(m-1), this implies Y(n)=Y(n) 1, so

(10)

The above equation eliminates the term so that a

scaling error is arised, where It also

demonstrates that the scaling and residue decoding for this

special system can be replaced by a modular subtraction

which is rather simple to implement.



4.1.2 Scale factor being a modulus

This approach requires that a modulus in the residue

•

number system has same size as the scale factor. The set of

residue digits for a natural value y1 in this system will be

denoted by where y is the residue

digit of the specific modulus which has same size as the

scale factor. According to the property of residue, the

result of the operation is divisible by the scale

factor (A). Consequently, as discussed in section 3.2,

can be evaluated by modular arithmetic because

the multipiicative inverse is defined and existing in

any moduli except the specific modulus. The original scaling

operation, will now be replaced by This

produces an error

A resiude number system employing this technique is shown

in Fig. 4.1. As the system is used for recursive filtering,

x and y are respectively the input and output samples. From

the residue set of input sample {x ,x,x, ,x}, we get

another residue set by evaluating the

difference equation. According to the result of a set

of modifying parameters {c 1 ,c9,...,cj will be generated

through the block encoding, where t he

scaling operation is then carried out with the aid of these



parameters, i.e.

(11)

From this step, the residue set for the actual output sample

{yiy2'•••pi can be Obtained. Note that during the residue

decoding, the residue digit is eliminated as indicated

in Fig. 4.1. The reduction of residue digit is especially

good for residue decoder that is realized by ROM. A smaller

table size is required for this case. In Fig. 4.1, the

block labelled as scaling and encoding can be

implemented by ROMs.

As a comparison, a system having same dynamic range is

sketched in Fig. 4.2. This system when performing residue

decoding requires all residue digits

The ROM size will be increased which is proportional to the

additional residue digit y. Such approach is suitable for

those residue number system that are composed of special

residue classes, i.e. Both scaling and decoding are carried

out simultaneously.
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Fig. 4.1 Residue number system with one modulus

being the scale factor.
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Fig. 4.2 A general residue number system for

11R filtering.



The scale factor must be large enough to convert

fractional coefficients into integers with acceptable error.

For example, a scale factor of 100 will preserve two

significant digits after the decimal point. This requires 7

bits. If a modulus has such word-length, it is not•

profitable to implement modular arithmetic by ROM. Two

operands will totally occupy 14 bits and this requires a 16

K ROM.

Because of large table size we must find another way of

realizing modular arithmetic. It is known from section 3.1

that the residue encoding is simple for a modulus having the

form of 2. As encoding is a step involved in modular

arithmetic, it is reasonable to choose a scale factor of

which the value is a power of 2. Instead of using ROM the

modular addition now can be implemented by 21s complement

adder. For modular multiplication, we can use the square-law

multiplier as discussed in [16]. Three adders and two ROMs

are needed for this mehtod. Since only one operand is fed

to the ROM, the table size is reduced significantly.



4.1.3 Polarity ambiguity

The scaling operation is a many-to-one mapping. A scaled

result may come from several different inputs. When these

inputs are around the boundary separating positive and

negative ranges, it arises a problem of polarity change. The

phenomenon is that a positive (negative) number after

scaling will fall in the negative (positive) range. The sign

is not preserved during scaling.

To analyze the cause of this problem, let A and M be

respectively the scale factor and the dynamic range after

scaling. The original dynamic range without scaling will

thus be MxA (the scale factor being one of the moduli).

Since an appropriate scale factor is an even value (power of

2), M must be odd to satisfy the condition of pairwise

relatively prime. The product of M and A is undoubtedly an

even number. Refer to section 3.1, the positive and negative

regions for the original system and the one after scaling

can be classified as following.

positive range negative range

original system

after sealing



The scaling operation of the largest positive and

negative numbers are defined as

where INT [X] denotes the integer part of X

and K is an offset to be determined.

In order not to have polarity ambiguity,

(12)

(13)

These imply

For any value of A, K= A2. will satisfy the above

condition. With this, we conclude that the polarity

ambiguity can be removed by adding an offset A2 to the

original data before scaling. For example, if a residue

number system consists of the moduli m= 5 and m 2, the

corresponding parameters will be A= 2, M= 5 and offset=

1. Refer to Fig. 4.3, a polarity error appears at the row

where X =5. The value X= 5 is regarded as a negative

number in the original system. Flowever, the scaling without

offset produces a result of 2 which is considered as a



positive number and ensue the change of polarity. Correct

scaled value 3, as shown in the rightmost column, is

obtained if we add the offset. It is noticed that the

dynamic ranges of the system before and after scaling are

respectively [-5,4] and [-2,2],

original system scaled results

X I NT[X2] I NT[(X+offset)2]

0-

1

2

3

4

(0)

(1)

(2)

(3)

(4)

0

0

1

2

2

(0)

(0)

(1)

(2)

(2)

0

1

1

2

2

(0)

(1)

(1)

(2)

(2)

5

6

7

8

9

(-5)

(-4)

(-3)

(-2)

(-D

2

3

3

4

4

(2)

(-2)

(-2)

(-1)

(-D

3

3

4

4

0

(-2)

(-2)

(-D

(-D

(0)

()= the correspond! ng signed values,

scale factor= 2.

Fig. 4.3 Elements of a residue number system before

and after sealing.



4.2 Overflow detection in redundant residue number system

4.2.1 Redundant residue number system

Based on an existing residue number system we can set up

a redundant residue number system. Let the set of moduli for

the existing system be from which we

define M This means that there are totally M

states that can be handled by the system. As signed numbers

are involved, half of the states are used to represent

negative data. According to eqn. (6), the negative numbers

will map onto the upper part of the interval [0,M).

Consequently, the dynamic range of the system is

[- (M-1)2,(M-1)2] for odd M, and [-M2,(M2)-l] for even M.

To obtain the redundant residue number system (RRNS), extra

moduli will be added to the

fundamental set. With the additional r moduli the number of

states is extended from M to MT where MT CIea rly,

MT M. If we keep the computational range of the RRNS the

same as above, then redundancy appears. In other words, we

have the redundant interval [M,MT) if the operands anc

results of operations carried out in the RRNS are

constrained to the range [0,M). This is similar to the case

of using five or more bits to represent a 4-bit number.
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0 M MT

[0,M) permissible range of original system

[O,MT) extended range for the RRNS

[M,MT) redundant interval

It is seen from above that there is no difference between

a residue number system and a redundant residue number

system except that the latter possesses redundant states.

Using the upper range to represent negative numbers also

applies to the RRNS. This implies that the mapping results

would unavoidably fall in the redundant interval [M,MT).

For the reason that those states greater than M cannot be

controlled by the original system, it is important to bring

the mapping results back to the range [0 M). A polarity

shift [9] which is actually a Mod MT addition is performed

to accomplish this. For M odd, a constant value of (M-1)/2

is added to the data for M even, M/2 is added. After

performing the circular shift, the positive and negative

numbers are respectively mapped onto the upper and 1 owe r

parts of the range [0,M) in the RRNS indicated in Fig. 4.4.

The purpose of the polarity shift is for range indication.

Actual result must be recovered by subtracting a constant,



especially for those feedback data which occur in u cm.iv(

digital filtering.

Original encoding

0 P M N MT

positive

range

negat ive

range

(M+l)2, M odd

M2, M even

N
MT-(M+l)2, M odd

MT-M2, M even

After polarity shift

0PM MT

negative positive

range range
p

(M+ l)2, M odd

M2, M even

f l'!% 4 Illustration of RMS intervals before and after
polarity shift.



4.2.2 Overflow detection

A redundant residue number system having a redundant

modulus rriQ is depicted in Fig. 4.5. In spite of the

redundant modulus, the original residue number system which

consists of the moduli {m ,m ,...,m j produces an output

Flowever, as an overall view, the RRNS itself would give

an output. It is noted that M
MT and MT= M x m

As indicated in Fig. 4.5, y ,y, ...,y are the residue
w d. L.

codes representing the results after modular arithmetic

operations. Using the decoding formula (7), the residue set

y ,y, ...,y} would generate the output Y, and by
OIL nl

eliminating y, the remaining residue digits will give Y.

Ob viously, M and 0

As long as the calculated results are within the

fundamental range [0,M), Y and Y should be equal
MT M 1

because y is redundant for this case. Direct comparison of

Y and Y, however, is not efficient. It requires a
MT M H

large residue decoder( mod MT) to find Yt. By taking the
MT

following operation, we can save one residue decoder. The

parameter y is immediately available at the redundant

modulus system.

(14)



X
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encoder

m0

re si due

encoder

mi

residue

encoder

m2

residue

encoder

mL

modular

arithmetic

modular

ari thmet i c

modular

arithmetic

modular

arithmetic

yo yi y2 yL

residue decoder residue decoder

ymt ym

Fig. 4.5 Insertion of a redundant modulus mq.



Since the RRNS has a permissible range [0,MT), it is

possible for the results to fall in the redundant interval

[M,MT). When this is the case, Yr would produce an

incorrect data but not for YMT. In fact, we have 0 Y..
MT- M

M and M Y MT. Because they are both derived from

the same residue set jy ,y, ...,y|, their residue codes

in redundant modulus must be different to satisfy the

one-to-one mapping, i.e.

(15)

Having established the above criterion, we can proceed to

overflow detection. It is known that after the polarity

shift, the whole valid computational range will be mapped

onto the range[ 0, M). If a result lies in the range [M,MT),

then it can be classified as overflow. The capability of

determining a result in [0,M) or [M,MT) has al ready been

provided by (14) and (15). Eventually, we reach the purpose

of overflow detection.

Let the residue set {k ,k ,...,k j represent the

constant (K) required for the polarity shift.

i= 0,1,..., L. (16)

From (16), the actual output {y ,y, ...,y(} is changed to



z 0' z]_ ).)Z J. To distinguish whether a data is in the

redundant interval, we can now compare m and Zq as

described above, where Z is decoded from the residue set

, z 2, ...,z}. We conclude that overflow occurs only if

ZM zn.
H m 0

The utilization of an RRNS for overflow detecting is

illustrated in Fig. 4.6. Because the polarity shift is a

modular addition, ROM instead of binary adder implementation

is preferred. An additional residue encoder will be required

for the comparison. After determining there is no overflow,

the real result Y can be obtained by subtracting the

constant K from Z. The operation is no longer a modular

subtraction. With reference to Fig. 4.4, the valid values of

Z is in the range [0,M-1]. A 21 s complement subtractor

will exactly generate the sign of the number after

subtracting the constant as illustrated in the following.

constant K ZY= Z- K
M M M

M odd

M even

(M-1J2 [O.M-l][- (M-l )2, (M-1 )2]

M2 [O.M-l] [-M2.M2-1]



X

residue encoding

X0 xi x2 XL

Modular arithmetic

y0 -V1 y2 L

ROM ROM ROM ROM

Z0 Z 1 Z L

residue decoder

encoder (m)

ZMM

compare subtractor

overflow indication
ym

Fig. 4.6 A RRNS for overflow detection.



4.2.3 Numerical examples

For demonstration, a redundant residue number system

consisting of three moduli m g= 2, m= 3 and m= 5 is

chosen, where m is the redundant modulus. Table 4.7

illustrates the possible sets of the residue codes for this

system. The computational range of the RRNS is confined to

[-7,7] though the actual dynamic range is [-15,14]. As M=15

is an odd value, the constant associated with the polarity

shift for this example will be 7 of residue codes (1,1,2).

Considering the field of ''signed numbers in Table 4.7,

those results after polarity shift are listed in the right

column. For instance, given a state of value 4, it is

interpreted as a positive number 4, but after the operation,

it is regarded as a negative number -3.

Three examples involving addition and multiplication are

given in the following. The operations are carried out by

modular arithmetic, from which we demonstrate the principle

of overflow detection. With the aid of Table 4.7, it is easy

to perform the encoding and decoding operations.
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1
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0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

MT

p- polarity shift

Table 4.7 Residue sets of a special RRNS.



Case 1:

Modular arithmetic

Polarity shift:

From Table 4.7

Conclusion: No overflow because

Result

Case 2:

Modular arithmetic

Polarity shift

Frorn Tabl e 4.7:

Conclusion: Overflow for the reason

( y= -10 after multiplication)

Case 3

Modular arithmetic:

Polarity shift:

Fran Table 4.7:

Conclusion: implies no overflow. (Wrong!)



In case (3), the wrong conclusion is reached though it

appears not to be. The above multiplication will give the

value 25 which is obviously out of the range[ -7,7]. The

failure comes from the fact that the value 25 is not only an

invalid number to the original RNS but also to the RRNS of

which the permissible range is [-15,14]. Such a defect will

become less harmful when the redundant range is extended. By

setting the redundant modulus greater than M2, which is the

maximum value of operand, it is possible to get rid of the

fault completely.



4.2.4 Hardware Considerations of Redundant Modulus mo=2

An RRNS with the capability of overflow detection has

been established. So far, we have not investigated the

hardware complexity when an RNS is modified to an RRNS. Such

a modification mainly involves the insertion of a redundant

modulus system of which the internal structure is similar to

the other fundamental modulus systems. It is known that the

hardware cost is proportional to the word length of the

modulus system. In order to save hardware during the

insertion, the size is chosen to be as small as possible.

Clearly, m= 2 will be the optimal one.

A modulus system with word length of 2 has special

advantages over the others. It is noticed that such a system

is composed of two residues, 0 and 1. One bit is sufficient

to represent all residues. Consequently, the hardware needed

to configure this system will use logic gates as the major

components. Having built such a system, it is easy to find

the residue code of a natural number because the remaining

job is simply to extract the least significant bit of the

number. For modular arithmetic, the multiplication and

addition can be realised by AND gates and Exclusive-OR gates

respect i vely.



operands x+

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

0

K

Furthermore, it is possible to replace the ROM by an

Exclusive-OR gate for the polarity shift. Its residue code

is 0 if the constant K is even; and 1 if K is odd. The

following table shows the possible combinations of yg ,kg

and Zg. It is readily seen that Zg is the result of EX-OR

operation between kg and yg.

0 k0 z0~ 0+ k0 2

0

0

1

1

0

1

0

1

0

1

1

0

The redundant modulus system implemented by logic gates

is depicted in Fig. 4.8, where a. 2nd order 11R filter is

used as an example. Such a system not only has simple

structure but also can operate at very high speed. The

result is produced after the delay of two logic gates.



Difference equation of a 2nd order 11R filter:

X(n) X(n-l) X (n-2) Y(n-l) Y(n-2)

ao ai
a.

bl b2

1 1 1 1 1 1 1 1 1 1

AND

ko
1

(polarity shift)

EX-OR

1

zo

Fig. 4.8 Internal structure of a redundant modulus

system having 1-bit word length.



4.3 Overflow suppression

Overflow of 21 s complement arithmetic would introduce

undesirable full-scale osci 11 at ions[12] which persist

regardless of what input sequence is subsequently applied to

the filter. The character of the oscillation has been

analyzed in detail by [11]. It is proven that if the

overload characteristic is modified to certain patterns,

then no self-oscillations will be present. We have found

empirically that for a stable second order 11R filter, the

overflow of residue arithmetic can similarly produce

self-osci 11 atioris as indicated in Fig. 4.9. The figure,

which is the filter's step response, shows that oscillations

appear after an overflow occurs at the sixth sampled point.

There is no way to stop the oscillations even if input is

set to zero.

To cope with the self-oscillation, we first consider the

overflow characteri sti c of the residue arithmetic. As

described previously, negative numbers of a residue system

are located at the upper part of state range according to

the complement technique. This is similar to 21s complement

arithmetic in which positive numbers come first and then

negative numbers as we count in ascending order.
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25

0

filter input
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Fig. 4.9 Step response of a 2nd order 11R filter

showing self-oscillations.



Consequently, the result of the addition of two positive

numbers becomes negative if it overflows. For instance, the

residue system utilized to implement the above second order

filter has a dynamic range [-71,71] while its state range is

[0,142]. Negative numbers [-71,-1] map onto the upper state

range [72,142]. Because 71 is considered as the largest

positive number, overflow will certainly arise for the

addition 71+1. The result is undoubtedly 72 but will be

regarded as -71 by the residue system for the reason that it

falls in negative region. Such kind of overflow

characteristic, which is depicted in Fig. 4.10(a), is

exactly same as that for 2's complement arithmetic.

According to the analysis described in [11], the

oscillations would be suppressed by modifying the overflow

characteristic to the one as shown in Fig. 4.10(b). To

achieve the specific characteri st i c, results which are out

of range must be complemented. If the residue system has

totally M states, then the complement of a value Y is

defined by eqn.(17a).

(17a)

(17b)

With the same example as illustrated above, we have M= 143

and Y= 72, then the complemented result Y =71. That



means, we can still preserve the sign of overflow result but

lose the magnitude information after performing the

complement. Eqn.(17b), which directly finds the

complemented residue digits, is the actual operation carried

out by a residue number system. It is not difficult to

verify that both expressions are equivalent.

output

+1

-2 -1 + 1 +2
i nput

-1

(a)

output

+1

-2 -1 + 1 +2

i nnut

-1

(b)

Full scale dynamic range normalized to ±1

Fig. 4.10 Overflow characteristic.



4.4 A versatile residue system for recursive filtering

Having discussed the various problems encountered during

recursive filtering, we now proceed to obtain a summary.

First of al 1, a residue number system which includes the

features of scaling, overflow detection and suppression is

established. The system is flexible and easily adapted to

any order of 11R filters by modifying the structure of

modular arithmetic. Then, as an illustration, a second

order low-pass filter is implemented. Typical functions such

as step and impulse are input to the system to see the

responses. The results are compared with those obtained by

infinite precision arithmetic.

Fig. 4.11 illustrates the organization of a suggested

residue number system which is set up according to previous

discussions. There are four moduli, two of them (m ,m)

are classified as the fundamental modulus, one of them is

the redundant modulus (m) and the remaining one (m) is

associated with the scale factor. As the system is used for

recursive filtering, X and are respectively representing

the input and output samples.
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Fig. 4.11 A special RNS for recursive filtering.



At first sight, the system seems complicated. However, a

careful investigation shows that several operations can be

combined together. For instance, operations such as offset,

scaling, polarity shift and complement are grouped as a

single unit and actually realized by a ROM with input set

and output set Such an arrangement

not only reduces hardware complexity but also saves

processing time because the operations must be carried out

in series for direct realizations. Same technique can be

found in output module in which residue decoding, encoding,

subtraction and complement are put together. The ROM

output, unlike the input, has no size limitation in the

sense that additional ROMs can be connected in parallel with

the original one to expand the output capacity. From Fig.

4.11, as Y and y are expected to be large values, two or

more ROMs will be used to implement the output module.

Finally, it is worth mentioning that if there is an

overflow, the complemented results are

selected, otherwise, the normal values a re

chosen for the operations concerned. Utilizing digital

multiplexors, the selection is easy to implement. Depending

on the filter's order, the internal organization of modular

arithmetic may be varied. Fig. 4.12 shows the structure for

a 2nd order IIR filter. For higher order, more registers are

required to hold the sampled values and coefficients.
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Fig. 4.12 Structure of modular arithmetic

With preference of small sizes, we assign m= 11, nv=

13. Each of them would consequently occupy 4 bits. To



preserve two significant digits after decimal point of

filter's coefficients, let the scale factor be 128. The

value may be varied subject to the precision required. After

determining the scale factor, we have m= 128. Although

the optimal value of the redundant modulus is 2, it is not

applicable to this system. To satisfy the condition of

relatively prime, the redundant modulus will be 3 which is

the smallest number next to the optimal one.

Based on the given numerical values, the dynamic range

provided by the system is [-71,71]. For clarity, the

parameters concerned with the polarity shift and scaling are

1 i sted below.

val ue residue digits

constant for polarity shift 71{ 2,5,6-

offset for scaling 64{ 1,9,12

A program coded by APL language is written to simulate

the residue system. Although many operations can be

implemented by ROMs, no table is created during the

simulation. The operations are directly simulated by their

arithmetic expressions. In order to evaluate the

performance of the residue system, a second order 11R filter

having the difference equation shown in eqn.(5) is

implemented. Fig. 4.13-4.14 show respectively the step and



impulse responses of the filter. The correspond]'ng responses

evaluated by infinite precision arithmetic are also present

to illustrate the differences. To demonstrate the overflow

suppression, the magnitude of input function is increased.

Fig. 4.15 depicts the result. It is seen that by setting

the input to zero, the oscillation will gradually die down.

Deviations, though not great, are observed between the

results calculated by residue arithmetic and those by

infinite precision arithmetic. The accuracy is mainly

affected by two factors, quantization of filter's

coefficients and truncation during scaling. A large scale

factor can reduce the effect of the former one. For

example, in the above illustration, the coefficient set used

by infinite precision arithmetic is{ 0.0675, 0.1349, 0.0675,

1.143, -0.4128}. After the quantization (multiplied by the

scale factor, round off and divided by the scale factor),

the set becomes {0.0703, 0.1328, 0.0703, 1.1406, -0.414}

which are the actual parameters supplied for the RNS.

Clearly, differences are found between the two coefficient

sets which in turn affect the filter's responses.
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Fig. 4.13 Step response evaluated by residue arithmetic.



sequence i mpu1se

i nput

residue

arithmetic

infinite

precisi on

arithmetic

error

(n) X (n) Y(n) Yx (n) Yr (n)-Yi(n)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

50

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

11

14

11
n

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.375

10.6

14.1

11.74

7 .598

3.839

_1.251
0.1548

0.6933

~0 .7285

0.5465

0.3239

0.1447

0.03162

0.02357

0.04

0.03599

0.02462

0.01329

0.005023

_0.0002567
0.00178

0.002141

0 .001712

0.001073

0.625

0.3974

0.1006

0.7402

0.5983

0.8385

0.2509

0.1548

0.6933

0.7285

0.5465

0.3239

0.1447

_0.03162

_0.02357
0.04

0.03599

0.02462

0.01329

0.005023

0.0002567

0.00178

0.002141

0.001712

0.001073

Fig. 4.14 Impulse response evaluated by residue arithmetic.
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Fig. 4.15 Step response with overflow suppression.



5. Discussion

Large scale factor is usually required to reduce the

quantization error of filter coefficients. Typical word

length of scale factor is around 8 bits. Previous sections

assume that one modulus in a residue number system is equal

to the scale factor. If so, look-up tables are no longer

applicable to implement the correspond!ng residue arithmetic

as the table size is quite large. However, being treated as

a system, large modulus (or scale factor) can be further

decomposed into small constituents, each of which are then

considered as a small modulus. For instance, the followinq

figure shows a scale factor (A) breaking down into two

subsystems, A1 and A2. The decomposition requires an

additional residue decoder to recover the value y as

indicated in Fig. 5.1. However, if.we combine the 'encoding'

and 'residue decoding' operations, that is, both are

realized by a single table with input {y,} and

output |cn ,c],... cj, then the decoder can be saved.



yA XA yAl XA1 yA2 XA2

Modul ar

arithmet i c

Modul ar

arithmet i c

Modul a r

a ri thmet i c

yA yAl yA2

encoding residue decoder

y'
A

co C1 CL
encoding

c0 ci CL

Fig. 5.1 Decomposition of a scale factor (A)
i nto A1 and A2.

In order to satisfy the condition of relatively prime

among the moduli, the scale factor must be an odd value if

the redundant modulus is 2. Consequently, we have an odd

scale factor (A) and an even scaled dynamic range (M). With

similar polarity analysis as shown in section 4.1.3,



P= INT[( (M x A)2- 1+ K )A],

N= INT[( (M x A)2+ K )A]

and

P M2- 1,

N M2.

By solving the inequality, the offset K has zero value. That

means, direct scaling of an arbitrary signed number for this

case would not cause polarity change.

Based on the above discussions, we suggest another

residue number system which consists of the moduli

{2,13,15,7,31}. They are, respectively,

redundant modulus- 2;

fundamental moduli- 13,15;

and constituents of scale factor- 7,31.

(i.e. scale factor= 217)

The system has three advantages: it does not require offset

operation, eliminates the use of large modulus and is

possible to adopt the optimal redundant modulus (m02).



6. Conclusion

New approaches to scaling and overflow detection in

residue number system have been presented for use in

recursive digital filtering. Under the assumption that the

scale factor is equal to one modulus or a product of several

moduli, scaled residue digits can be produced before

performing residue decoding. By adding an appropriate offset

value during scaling, the polarity ambiguity is completely

eliminated. As scaling is carried out separately from

residue decoding, less residue digits are input to the

decoder, which makes it feasible to be realized by look-up

tables.

Based on redundancy technique, a scheme is devised to

detect residue arithmetic overflow. Redundancy is

established by inserting a redundant modulus to the

fundamental set of moduli of a given residue number system.

A polarity shift operation, which is actually a modular

addition, is required to accomplish the detection. It is

shown that a redundant modulus of value 2 has the simplest

hardware structure and is recommended for use. As the

overflow characteristic of residue arithmetic is similar to

21 s complement arithmetic, self-oscillations exist for

residue implementation. The problem is solved by replacing
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overflow results with their complemented values.

A 2nd order IIR filter is implemented based on the above

approaches. In comparison with those calculated from

infinite precision arithmetic, small deviations are

observed.
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Appendix- A

APL programs to simulate the proposed

residue number system for recursive filtering
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Appendix- B

Hardware implementation of 2nd order 11R

filters using APPLE II mi cro-computer

Abstract- A project summarized from the report

Design of a microprocessor-based digital filter

is presented to illustrate the hardware aspect as

well as the distributed arithmetic of digital filters.



Introduction- Second order IIR filters are implemented

according to the algorithm presented by Peled and Liu. The

method utilizes distributed arithmetic technique to carry

out the multiplications as required in a difference

equation. In order to reduce the hardware complexity for the

realization, a micro-computer having enough supporting tools

such as program debugging rountines, peripheral interfaces

is chosen. The one we adopted is APPLE II micro-computer.

Distributed arithmetic- Based on the algorithm, filter

coefficients as well as input and output samples are

represented by fixed point notation. Since the processing

unit is byte oriented, an 8-bit word length is used for the

digital filter. The binary form of a value X will be written

as i.e.

,where= 0 or 1. (1)

From (1), it is known that -1_ X 1. By substituting (1)

into the standard difference equation of a 2nd order IIR

filter, we get

Y(n)

i=l j=l



(2)

where

i =0 i= l

Given a set of coefficients, FJ can be pre-calculated and

stored in a table for further accessing. The value is

addressed using the following 5 bits, XJ'(n) X'(n-l) X(n-2)
• •

YJ(n-l) YJ(n-2). From (2), multiplications are consequently

replaced by bit shift and add operations.

Hardware realization- Fig. 1 illustrates the block diagram

of the digital filter. The correspond!'ng hardware circuit

and timing diagram are respectively depicted in Fig. 2 and

Fig. 3. From Fig. 1, five registers are used to store the

input and output samples. The table is realized by

read-only-memory (ROM). Real-time siganls can be fetched in

or sent out through the AD and DA converters. All control

signals such as shift, reset are generated by the CPU

through the peripheral interface device. Except the data

acquisition module, all components are assembled on one

circuit board to give neat appearance.

Circuit description- Quantized input sample produced by

the analog-to-digital converter is stored in the X



register. At initial phase, a reset procedure is necessary

for all registers so that they hold zero values. An IO port

namely PI A- 6821 acts as an interface between the CPU and the

registers. Each time a shift command is issued, the table is

addressed and the output is fetched by the CPU for add and

shift operations. After repeating the same procedures for

seven times, we reach the final step which requires a

subtraction. If the calculation signals overflow, then its

result will be complemented, otherwise the result is

directly passed to the register through the IO port

and at the same time, accessed by the digital-to-analog

converter. Both input and ouput samples are displayed on the

screen of an oscilloscope for examining. The original table

requires 32 words but a 2K ROM is used, that means other

types of 2nd order filters can also be accommodated until

the whole ROM is completely occupied. Different types of

filters are designed to be selected by a switch-band.

Register Add and shift Subtraction

shift the accumulator

1 2
7

8

One phase for evaluating an output sample



analog input analog output

AD converter DA converter

8 8

xn

]

L. S. B i t 8-bit register

X n-1

1

Xn-1

1

X n-2

1

Yn-2

1

8ROM

control

signals 8

IO port

CPU

Fig. 1 Block diagram of the hardwired digital filter.
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Resul ts- Two 2nd order 11R filters having transfer

functions shown in the following are implemented. The tables

calculated from the correspond!'ng coefficient sets are given

in Fig. 4.

(1) Low-pass filter, cut-off frequency 100 Hz,

sampling frequency 1 KHz.

(2) Band-pass filter, lower and higher cutoff

frequencies 9.5 Hz, 10.5 Hz, sampling

frequency 100 Hz.

By applying different inputs to the filters, we get the

responses as illustrated in Fig. 5 and Fig. 5. The time

required for evaluating one output sample is approximately

0.36 ms so it gives a sampling frequency of 2.7 KHz. It is



noted that the sampling frequency does not match with the

two filters. The modification of sampling frequency,

however, will affect the cutoff frequency as their ratio is

fixed. Consequently, for H(z), 100 Hz is changed to 270 Hz;

and for H (z), 9.5 Hz and 10.5 Hz are respectively changed

to 256 Hz and 283 Hz.

From Fig. 5, the low-pass filter successfully retains the

120 Hz signal component and rejects the other component, 1

KHz which is out of the cutoff frequency.

For the band-pass filter, a square-wave is used for the

testing. An output of sinusoidal waveform is obtained as

illustrated in Fig. 6. The result can be explained to be

the fundamental frequency (270 Hz) of the square-wave, which

lies in the pass-band.



Address Contents

Hj_ (2) H2(z)

00

01

02

03

04

05

06

07

08

09

OA

OB

00

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

00

E6

49

2E

04

EA

4D

33

08

EF

51

37

OC

F3

56

3B

04

EA

4D

33

08

EF

51

37

OC

F3

56

3B

11

F7

5A

40

00

C4

64

28

FA

BE

5E

21

00

C4

64

28

FA

BE

5E

21

06

CB

6A

2E

00

C4

64

28

06

CB

6A

2E

00

C4

64

28

Fig. 4 Tables for the filters.



upper: input signal- V sin( 2 nf t)+ V sin( 2 llf),

where f= 1 KHz, f= 120 Hz,

lower: output of low-pass filter H(z).

upper: input signal- 100 Hz square wave,

lower: output of low-pass filter H (z).

Fig. 5 Responses of H,(z).



upper: input signal- V sir

wh ere

lower: output of bandpass filter H(z).

upper: input signal- 270 Hz square wave,

lower: output of bandpass filter Hfz).

Fig. 6 Responses of FL(z).



Discussion and conclusion- The assembly program for

initialization and digital filtering has been stored in an

EPROM located on the IO interface card. With sophisticated

design, the card can be plugged into any seven of the eight

peripheral slots provided by the APPLE II mi cro- computer. To

start the filtering in real-time, key in the command PRAn

where n is the slot number.

Based on distributed arithmetic technique, two 2nd order

11R digital filters have been implemented. The method is

suitable for those systems using general purpose processor

which lacks multiplication instructions. A sampling

frequency of 2.7 KHz is achieved for the implementation

using APPLE II micro-computer. Real-time results are

obtained which show both filters work correctly.






